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I. INTRODUCTION

Linked data structures form an integral part of many software and database systems. Per-

o2 d B R

forming error detection and correction to preserve the correctness of data structures is important in

|

achieving overall system reliability. To reduce the performance degradation incurred through their

use, detection and correction should ideally be executed concurrently with normal processing, and

A

every invocation of these procedures should be completed in O(1) time. If any global checking

information (e.g.. a global count) is used in detection or correction, then O(n) nodes must be

Lo

accessed. where n is the number of nodes in the structure, and those procedures cannot run in O(1)

o

time. In addition, since node access time is the major contributing factor to the cost of error detec-

»

tion, the number of nodes accessed should be minimized. The Checking Window concept is intro-

o

.'"J

duced in this paper as a method of formalizing these ideas, and as a method of describing local con-

current error detectability as a function of the number of nodes to be checked. To preserve the

structural integrity of linked data structures, a new approach to detecting and correcting structural

errors, called the virtual backpointer, is also introduced in this paper. The technique is used to

construct two new data structures: the Virtual Double-Linked List and the B-Tree with Virtual

|

Backpointers. The Virtual Double-Linked List uses the same amount of storage as the double-

linked list from which it is derived. The B-Tree with Virtual Backpointers, derived from the B-

b =

tree of order m, requires m+4 more fields in each node. It is shown that O{1) local concurrent error
detection can be performed for both structures, and that O(1) correction is possible for those errors

detected during forward moves through the structures. Correction for those errors detected during

&R A

backward moves through the structures is in worst case O(n).

The foundation work concerning robust data structures was performed by Taylor. Morgan,

o o)

and Black [1]. Several techniques have since been presented to achieve robust data structures; how-

-]

ever, most achieve error detection in O(n) time. A global count. as used by Taylor. Morgan and

Black in the modified(k) double-linked list. the chained and threaded binary tree. and the robust

|‘J3\.

B-tree {1-3]. by Munro and Poblete in their isomorphic binary tree [4], by Sampaio and Sauvé in
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their robust binary tree (5], and by Seth and Muralidhar in their mod(2) chained and threaded
binary tree [6]. necessitates, for some errors. a traversal of all the nodes of the structure for error
detection. The three pointer tree, as explained by Yoshihara et al. [7] requires O(n) time to detect
double errors, since a preorder traversal of all the nodes of the tree is performed. Though not indi-
cated in their paper, error detection can be performed in O(1) time using the D-loops within the

structure, but only single errors can be detected. Kuspert's work with the separately-chained hash

table [8], which is an application of double-linked lists, achieves detection in O(1) time; however,

five extra fields must be stored in each node.

A general theory of local detectability and local correctability has been introduced and for-
malized by Black and Taylor [9], and bas been successfully applied to several different types of
data structures, including: the spiral(k) list [9], the LB-tree [9-10], the mod(k) list [11]. the
helix(k) list [12], and the AVL tree [13]. The intention of their work is to be able to correct an
arbitrary number of errors in a data structure, provided the errors are sufficiently separated from

each other. However, the complexities of the correction algorithms (which include error detection)

are typically not O(1).

The organization of this paper is as follows. Section II presents an analysis of local concurrent
error detection, giving formal definitions for Checking Windows and local concurrent error detecta-
bility. In Section III, the virtual backpointer concept is described and is used to construct two new
data structures: the Virtual Double-Linked List and the B-Tree with Virtual Backpointers. The
local concurrent error detectability and correctability of each structure is analyzed. Section IV
describes a concurrent auditor process as applied to data structure error detection. analyzes its
effectiveness in increasing the mean time to failure of a system, and presents the results of an

implementation. Finally, Section V summarizes the results.
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II. LOCAL CONCURRENT ERROR DETECTION AND CORRECTION

Local concurrent error detection (LCED) is an on-line technique for detecting structural errors
in a locality of a currently accessed node in a linked data structure. If the size of the locality is
constant and the degree of each node is fixed, then an LCED procedure will run in O(1) time. Local
concurrent error correction (LCEC) can correct errors detected by an LCED procedure, using
another locality of the currently accessed node (not necessarily the same as that used by the LCED
procedure). If the size of the locality is again constant, then an LCEC procedure will run in O(1)
time. Error detection and correction typically degrade system performance. The degradation is a
function of the number of nodes accessed, the number of nodes stored, and the computation
required, for detection and correction. For the LCED procedures analyzed here, no extra node
accesses are required (except in the initialization phase). Hence, the storage and computation

requirements dominate the cost of error detection and correction.

Linked data structures may be modeled as directed graphs. A graph G = (N, E) consists of a
finite set of nodes N = {N;, N,.- - -, N,} and a finite set of edges E = {E,, E,, - - -, Ep}. Each edge
E, = <N;,N,> links a pair of ordered nodes in this directed graph (digraph). In the digraph
representation of a linked data structure, the nodes represent the data records. and the edges
represent the pointers between the records. If all the nodes consist of the same fields, then the data
structure is said to be uniform. A move from a node N, to a rode N, is possible if there exists an
edge E, between them, and is represented as N;=N,. Then N, is reached from N, by following E,. A

traversal is a series of moves starting at a root node or header of a structure that accesses part or all

of the data structure.

An LCED procedure is invoked to detect structural errors whenever a move attempts to fol-
low a pointer, which may be a forward pointer, a backward pointer, or a virtual backpointer (Sec-

tion III). That is, the LCED procedure attempts to verify the move. Thus. it is on-line, or con-

current with normal structure access.

[
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The errors considered in this paper are those that affect the structural information of the data
structure (e.g.. pointer values. structural checking information). The probability of an erroneous
pointer to a random location remaining undetected by the techniques presented in this paper is pro-
portional to 27, where b is the number of bits used to represent a pointer, and d is the number of
erroneous pointers required for masking. Since this probability is very low, the error detection
analysis concentrates on the case where erroneous pointers point to other nodes of the same type.
This kind of error may occur in partially or incorrectly updated data structures, or as a result of
software errors or hardware failures. These erroneous pointers may or may not coincide with logi-
cal pointer boundaries; however, the routine that accesses nodes from slow memory can detect

these boundary errors and supply this information to the LCED procedure.

Memory subsystems are commonly configured hierarchically. and the ratio of the access time
of slower memory (used to store the data structure, e.g.. MOS RAM., disk) to that of faster
memory (used to buffer the currently accessed nodes, e.g.. cache, register file) is usually very large.
Hence it is desirable to have all the nodes in the LCED or LCEC localities stored in the fastest
memory. In the remainder of this paper, A; will represent the address of a node N, in a linked data

structure. N, may have many pointers to other nodes. and a desired move MV from N; will be

represented as N;=Ny,y,.

DEFINITION 1¢ R, is a fast memory of capacity ¢ nodes, which holds the ¢ most recently
accessed nodes, including the node reached by the current move MV. Since a move is performed
between two nodes. ¢ must be at least two to verify the move. That is, for a move MV N, =Ny,
R, holds both N; and Nyy,. If ¢ =1 then only Ny could be stored. and the information of the

source node N, (e.g.. address, pointer value) would be lost. Thus. an erroneous move would be

indistinguishable from a correct move. -

The LCED procedure requires a set of ¢ nodes to verify the move MV. This set of nodes is

called a Checking Window. The cost of a Checking Window is proportional to ¢, since it involves

storing the required nodes in the fast memory (storage cost) and performing checks on those nodes

4 N U _a_

A s % =, ° ~g
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(computation cost). The nodes in the Checking Window need not be re-accessed from slow d

- SR
t

memory, since they are already stored :n R.. :

DEFINITION 2: Let a set of Checking Windows of size ¢, W°, be defined recursively as:

W = (W UN,} where W™} is the i*® Checking Window of W™ (1 £ i< |We™|) and N, ¢
j k j J 4 k

W;’.1 is adjacent to one of the nodes in Wf-l. The base case is W2 = {{N, Ny} 0

W, for some m, is constructed by adding one more node N, to the smaller Checking Window

W; ™, such that N, can be reached from W, " in one move. All such Wy, form a set of sets, W°. It

&

*
-

o will be shown that Checking Windows of the same size do not necessarily achieve the same detecta- -

” bility. When the context is clear, we may use W* to represent one particular W/, .
e

& EXAMPLE 1: Consider a forward move N;—N,,, in a normal double-linked list (Figure 1): :

:E: le = {Nl’ Ni+l} \
- W = (W]} = {(N, Ny, )

i Wf = {N;, Niypo Nyl X

LA

3

= {Nipo Ni. Ny} -

»

<
-

R i

el

B A

e

Figure 1. Checking Windows for a Double-Linked List.

5

-~
[ ¢

PR PN

“
.................... O L P S Y

" .;..}\_;‘.f L RN -.(‘-‘) P I'_ v"4 .-’ .~ -:’.:_.\, - ""-I';f'*'.' -.f-.l‘".-_-l'%(,\ﬂ' f"f f\f..—”vl',.f"f,\f\f,\l,.: .'J' f‘\f L4 J'\I X

Y C ) 4] " 0 . ». A DAl Ll A ol ol o s ' B A o o



]

3

W’ = {Wf- Wza} = {{Ni. Nig1e Nigoho N Ni Ny, 1)

etc. (]

The Lock and k.ey concept is now introduced as a generalization of structural checking infor-
mation that is distributed throughout the nodes of linked data structures (distributed checks). In
the simplest case, nodes in the structure will have associated with them a Key. When performing a
move from a ncde to its child, the node’s Key becomes an argument to the child’s Lock function,
which either returns "True.” signaling a valid move, or "False,” signaliné error detection. In its most

general form, the Lock and Key concept allows for multiple-Key Locks and Keys distributed over

potentially many nod-s.

DEFINITION 3: A Key is information associated with a node (e.g.. its address, a pointer, or dis-

- tributed check) that is used by a checking function to verify a move. Qo

N DEFINITION 4¢ A Lock, Lockyy. is a checking function that verifies a move, such that
i Locky(Key,. - -+ . Key,) = "True" if all its Key, arguments are present and correct. "False” if all
> its Key, arguments are present and not all are correct, or "X" (don't care) if not all its Key; are
» present. A Lock whose Key arguments are all present is called a checkable Lock. otherwise the
:.,: Lock is an uncheckable Lock. a
. The computational overhead to evaluate the checkable Locks is O(1) if all Lock,,, are defined
2t on Keys that can be contained in a fixed-size Checking Window Wf. No storage overhead is neces-
':' sary because Locks are functions and are not stored. and Keys can be information that is already
. present in the node, e.g.. pointers.

N

& DEFINITION 5¢ A Circular Lock. CLockNr.N‘. is a Lock function whose Keys are addresses of
‘-'E nodes:

¥ Keys = <A A, >

CLocky -y (x.y) = (x 7= g(y))

% ™

- where ~ is a pointer (e.g.. a forward pointer, a backward pointer, a virtual backpointer) of N, to
L)
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N,. g is a function that generates x using a series of pointers. and 7= represents a comparison that

returns either "True" or "False” for a checkable CLock. 0

Circular Locks possess the property that for all starting nodes N;, any single pointer error

encountered in the moves of g causes the Lock to evaluate to "False." The following two examples

show that the double-linked list and a binary tree with signatured access paths employ Locks and
Keys. The double-linked list uses a Circular Lock checking function. while the trse with signa-

tured access paths uses a Lock defined on O(height-of-tree) Keys.

EXAMPLE 2: Let N,. N,, - -- , N, be the nodes of a double-linked list. Let a node IN; have a

forward pointer P, and a backpointer B,. For a forward move N;—N;,:

Keys= <A, A >

CLockN|,_NM(x y)=(x =gy =(x ?=y.B).

P )

4

)
1
o
‘
Al
\
1
|
)
1
1

|

The backpointers are the distributed checks, and the g function in the Circular Lock retrieves the
-::‘: backpointer B from the node at y. This structure achieves O(1) single poin:er error detection in
q’ Checking Window W2 (cf. Example 1). C
K EXAMPLE 3: In the signatured access path technique, signatures defined over the nodes of valid
:E traversal paths are embedded at path termination points. where a traversal path starts at a header
- and ends at a leaf, for a binary tree [14]. Error detection is achieved by comparing signatures gen-
::: erated at traversal time with the embedded signatures. A simple signature is the logical exclusive-
;:’_ or function (@) of all the pointers in the valid traversal path.
X
}::-. Krys = <ordered set of pointers in a valid traversal path, signature>
K LocKorwara(Py: * ~* . Py. Signature) = (p;® - - - ®pDsignature 2= 0).
&

The nodes’ pointers are the distributed checks. This structure cannot guarantee O(1) detection time
- as O(height-of-tree) nodes may be accessed in the traversal path. c
oy
L3
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We now determine the minimum number of errors that are required to cause the checkable

Locks used by the LCED procedure to evaluate to "True” in a particular Checking Window. This is

& similar to the changes used by Taylor, Morgan and Black [15] to determine the distance between
two data structure instances. The difference here is that the distance is measured within a Check-

ing Window. Hence this new distance is termed local distance, from which the definition of local
concurrent error detectability follows directly. Let Lockyy be defined. for every possible move

MV in a specific data structure. over Keys distributed in nodes contained in a fixed-size Checking

Window.

the minimum number of pointer errors in all W; that can mask a move 10 an incorrect node. due to
a pointer error, where MV is the move to the correct node. Errors are not detectable if all check-

able Locky,y, evaluate to "True." : o

@ DEFINITION 6: The local distance, d;j(MV), within a Checking Window of size ¢ is defined as

DEFINITION 7: The local concurrent error detectability, D°(MV), for a specified move MV and
’3‘5 Checking Window of size c is given by:

D*(MV) = max(d;(MV)) - 1,1 < j < | W, al

The max function is used because, for a specified move, it is always possible to find a Check-
ing Window Wf which can detect at least D° simultaneous errors (including the pointer from N; to
Npv that is erroneous). When the context is clear, we may omit the parameter MV in d;(MV) or

E’i D°(MV).

The following theorem will be used to prove that the local concurrent error detectability of

data structures employing the virtual backpointer is the same for both forward and backward

8
§ o
R

THEOREM 1: In a uniform data structure, if for every pointer of the form N;=N, there exists

a ~ pointer to reach N, from N, in one move, and the Lock functions are Circular Locks. then

using an LCED procedure, D°(N;=N,) = D°(N,~N,) = D°.
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PROOF: Since the data structure is uniform, N;—N, and N,~N, represent all possible forward

and backward moves, respectively. Notice that W2 = (N, N,}. Thus, all W are also the same for
both moves as Wy is defined on W2, If N,~N, is erroneously changed to N;~N,. it is isomorphic
to the case N,~N, being changed to N,~N,. because the pointers used in the g function of the Cir-
cular Lock are not changed by the isomorphism. In both cases. the Locks evaluate to the same
value because the accessible nodes in W/ are the same. By Definition 6, d;(N,~N,) = d/(N,~N,).

Hence D°(N,—~N,) = D°(N,~N,) = D°. o

Theorem 2 will be used in determining the upper bounds of local concurrent error detectabil-

ity for the Virtual Double-Linked List and B-Tree with Virtual Backpointers.

THEOREM 2¢ Local concurrent error detectability is a monotonically increasing function of

window size ¢. Thatis, D°™' € D° € D" for 3 € ¢ € n. where n is the total number of nodes in

the data structure.

ProOF: Every W, is constructed by adding one adjacent node N, to a Checking Window of
size c-1: W5 = W™ U N,. If each checkable Lock in W; ™" evaluates to "True” in W' then it
will remain "True” in W{, because the Keys of the Lock are contained in both W; ' and W If the
addition of N causes an uncheckable Lock in Wf_l to evaluate to "True® or "X" in W, this results
in d, = d; . However, if the uncheckable Lock evaluates to "False.” then d, > df-‘. since at least
one other error would be required to mask the detected error. Hence. d; > df-l. Then max(d,) 2
max(df-l). and D° 2 D*™* follows from Definition 7. The upper limit of detectability is trivially

D", since the entire structure is then included in the Checking Window. 0

If the Checking Window includes all the nodes of the structure, LCED procedure degenerates
into a global error detection procedure, which requires O(n) execution time. Therefore, to achieve
maximum local concurrent error detectability. it is sufficient to use a Wf with minimum size ¢ for
which D° = D*.

The LCED procedures mentioned throughout this section were unspecified because the actual

procedure used depends on the particular data structure to be checked. The general LCED

g L ALY RN LR 1.(..' '.C\".O-l.-'
"' S NLITNI .




o &2 B O

Feo LM

35

i .52

{I’

e

g

10

technique is as follows. First, determine the apprcpriate Checking Window Wf that achieves the
desired local concurrent error detectability. For each possible move from each node, identify the
Lock functions and associated Key arguments that are used to perform the checking. The LCED
procedure can be constructed as follows: for each move made, access the nodes defined by the
Checking Window, and evaluate all the checkable Lock functions. If all Locks return "True,” then
either no error has occurred or undetectable errors have occurred; if any Lock returns "False,” then

at least one error has been detected. Once an error has been detected by an LCED procedure, LCEC

C

may be performed. The upper limit of correctability is

. However, the actual correctability
depends upon the data structure.

Since errors are detected and corrected based only on information from nodes in the Checking
Window, many other detectable errors may exist simultaneously throughout the data structure.
Although the local concurrent error detectability and correctability may only be one or two in the

window, the actual number of detectable and correctable errors may be much larger.

III. VIRTUAL BACKPOINTERS

The virtual backpointer is a distributed checking symbol that can be used to achieve O(1)
LCED and O(1) LCEC during a forward move, and O(1) LCED and O(n) LCEC during a backward

move in many linked data structures. In addition, it can be used to generate a backpointer from a

node N, to its parent N, In the general case, a virtual backpointer may point to an ancestor

Nuscustor Of 2 node N|, where N . ouor iS an ancestor of N, if there exists a series of moves from

Nagesor 10 N;.

DEFINITION 8: In a linked data structure, let N, o D¢ an ancestor of N, and Q, be the set of
all pointers in N;. The virtual backpointer V, = f(Q,. A,pcenror): Where f is a function such that

Asncertoe ® £ Q. V) = £(Q,. £(Q,r Aypeuror))- and f' is a companion function determined by f. In

i - 3 v . . LTS R TSI
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general, there may be vectors of virtual backpointers. V, = f(Q,, A), which, after suitable transfor-

mation by T, point to vectors of nodes A. 0

The virtual backpointer has the following properties. 1) For a forward move N;=N; ;. Vi,

=

provides checking information. 2) For a backward move N, ;~N,, V,,, provides the backpointer

o N . . . .
= after transformation by f . and Q,q.enoc iS Used as checking information. Two example data struc-
B% tures employing the virtual backpointer are presented in the following subsections: the Virtual

Double-Linked List, which is derived from the double-linked list, and the B-Tree with Virtual

Backpointers, which is derived from the B-tree.

A. Virtual Double-Linked List

o The Virtual Double-Linked List (VDLL) is a data structure that employs the virtual back-
i pointer and possesses local concurrent error detectability and correctability. Errors are detected in

O(1) time with an LCED procedure. For a forward move, detected errors may be corrected using

"T‘

TOR
~

LCEC in O(1) time; for a backward move, detected errors may be corrected using LCEC in O(n)

&s

time. The VDLL requires no more storage space than the double-linked list (DLL), and retains the

<>l

simplicity of the DLL, in that it is possible to move directly from a node to its parent, using the

o virtual backpointer. This is not possible, for example, in the modified(k¥) DLL (1], for & 2 2, which
w

"ﬁ must access other ancestors of a node in order to reach the node’s parent.

¥

DEFINITION 9 A Virtual Double-Linked List is described as follows (Figure 2). In a linked

¢
LY

1
a

list data structure, let N, be the parent of N;, and P, be the forward pointer of the N;, therefore

PP
-

Q = (P}. Let f(Ix}, y) = £ ({x}. y) = x®y. then V, = P®A,_, = A,;8A,_,. and A,_, = POV, where

B

® denotes the logical exclusive-or function. Also. ¢ header nodes N,. N_; - -+ .N_.,, are added.

where ¢ is the size of the Checking Window. These header nodes are assumed to be always accessi-

=i

ble by the LCED procedure. Note that N__,, = N a

The VDLL is created from the DLL by replacing its backpointers with virtual backpointers.

The same operation can be applied to the modified(k) DLL family [1], resulting in the modified(k)
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Figure 2. Virtual Double-Linked List (VDLL) of S nodes.

VDLL structures. It will be shown that each modified(k) VDLL achieves greater local concurrent

error detectability than the corresponding modified(k) DLL.

DEFINITION 10: A modified(k) Virtual Double-Linked List is described as follows. In a linked
list data structure, let N,_, be the k' ancestor of N,. and P, be the forward pointer of the N,. there-
fore Q = (P}. Let f(x.y) =f({x}.y) = x®y, then V,=P®A,_, = A,,,®A,_,. and A_, = PGV,
Also, max(k+1, ¢) header nodes. are added. o

The possible Locks and Keys of the VDLL can be identified as follows (Figure 2). For a for-

ward move N, =N, following P,,

Keys = <A, P, 8V, >

CLockN‘..Nm(x y)=2(x =g =(x 7=y),
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where g is the identity function. For the backward move N,,,~N,; following V&P, _,.

Keys= <A, . A>

30 WE S O

CLocthrN‘(x )=k =gly))=(kx7=y.P),

o)

14
R

where g retrieves the pointer P from the node at y. Locks and Keys for the modified(k) VDLL can

LA

e

be identified similarly. Using the results of the analysis of LCED, we now determine the local con-

current error detectability of the VDLL.

L

THEOREM 3: Using an LCED procedure, the local concurrent error detectability of the VDLL

-

is D’(forward) = D*(backward) = D? = 1, and D° (forward) = D°(backward) = D° = D’ =2, V ¢
2 3.

e O

PROOF: Since the VDLL uses virtual backpointers and Circular Locks, by Theorem 1,

bt e

D°(forward) = D°(backward). Consider a forward move MV, N,=N,,,. following P. The LCED

o

procedure attempts to verify this move. A pointer that does not point to a logical node boundary

-' 1}-

can easily be detected by the node access routine. Therefore consider only erroneous pointers that

.l

- -

lead to valid logical node addresses. Suppose that P, is erroneous and leads to N,,, instead of N,,,.

=% 0

In W] = [N, Ny, ). df =2: either V,,, or P,,, must be erroneous to mask the error in P, Assume

B s s e

% that V,,, is erroneous (Figure 3a). In Wf = {N;. Npopo Nyl d; = 2. However. in W; =
) {Nj—1. Ni. Njyybo V) will lead to the detection of the error in P, because following the backpointer
boe

; :} given by VOP, will lead to a node N,_, instead of N,_,. and P,_; # N,. Therefore, V, must be

[}

)

A

changed into the value A,,;®A,_, to mask the error in P,. Thus d: = 3,

RIRO
&L

Assume now that V,,, is not erroneous, so P,,, must be erroneous (Figure 3b). Consider

sy

W3 = (N, Nj,;. Ny,p). The LCED procedure will not detect the error in P, if P, has been changed

© %

to Ay,; = A®V ;. and V, 8P, ,, has been changed (via a change in either V,,, or P,,,) to A,
The remainder of the analysis is similar to the case above. and gives dl2 =2, d: = 3. and d2J =3.

According to Definition 7, D’ =1and D’ = 2. Since the VDLL can be changed to another correct

oy

| VDLL by three pointer errors (node deletion), D" = 2, where n is the number of nodes in the struc-

)
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ture. By Theorem 2,D° =2,V ¢ 2 3. o

The above proof suggests that when moving forward N,—N,, following P, use
W = {Npeew: Ni. Npry! as the Checking Window, where N,,,, corresponds to Ny, in the proof: and
when moving backward N,~Ny,y following POV,, use W’ = {N,, Nyyv. N or) as the Checking Win-
dow, where N ., is the node reached by following P\®Vyy. By using these windows, double
pointer errors can be detected, or single pointer errors corrected (described below). The LCED pro-
cedure using this Checking Window evaluates four locks when moving either forward or back-
ward. For a forward move, the locks are: L1: A, 7= P@®V,, L2: A; 7= P\, @V . L3: A 7= P,
and L4: Ay, ?7=P,. For a backward move, the locks are: L1: A, 7= P\ BV,,. L2
Ayy 7= P@V,. L3: Ay 7= P, and L4: A, 7= P,y (In the W? Checking Window. only two locks
are evaluated. namely A, 7= Pp @V y and A,y 7= P, for the forward move, and Ayy 7= POV,
and A, 7= Py, for the backward move.) A comparison of local concurrent error detectability is
given in Table 1 for the VDLL, modified(2) -VDLL, modified(3) VDLL, DLL without a glcbal
count, and modified(2) and modified(3) DLL without global counts [1], for various sized Checking

Windows. The local detectability of the modified(2) and modified(3) VDLL can be obtained using

Table 1. Local Concurrent Error Detectability
of Several Linked List Data Structures.

Local mod(2) mod(3) mod(2) mod(3)
Detectability | VDLL | VDLL VDLL | DLL DLL DLL
D 1 0 0 1 0 0
D’ 2 1 0 1 1 0
D' 2 2 1 1 2 1
D’ 2 3 2 1 2 2
D° 2 3 3 1 2 3
D" 2 3 4 1 2 3
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the same analysis technique as that applied to VDLL. Any modified(k¥) VDLL achieves greater
local concurrent error detectability than the corresponding modified(k) DLL. For k > 3. no further

improvement in detectability can be made for either of the two families.

THEOREM 4: Any single pointer error detected by a forward move in W= {Np,,,. N,. Nqvl in
a VDLL can be corrected with an O(1) LCEC procedure requiring at most one extra node access for
both diagnosis and correction. Any single pointer error detected by a backward move in

W = (N, Nyve Ny} in a VDLL can be corrected with an O(n) LCEC procedure requiring at most

one extra node access for diagnosis.

PROOF: Since the local concurrent error detectability for this structure using wisD'=2,
the upper limit of correctability is 1. Assume that a single error has been detected during a for-
ward move. The LCED procedure supplies the values of the four detection locks (Table 2a). and
three error indication values generated by a node access routine, NA,,,. NA;, NAyy. that indicate
out-of-bounds pointers or pointers that do not point to logica! node boundaries. when used to
access N,y N; and Nyy. respectively. There are eight possible errors: 1) A,y error, 2) P ey erTOL.
3) A, error, 4) P, error, 5) V, error, 6) Ay error, 7) Pyy error and 8) Vyy error. To distinguish
the eight errors, the seven-tuple syndrome {L1, L2, L3, L4, NA,,,. NA,, NAyy} is constructed
(Table 2b). For the error-free case, the syndrome will be {True, True, True, True. True, True,
True]. There are two cases of identical syndromes for different errors. In each case one extra node
is accessed to completely diagnose the error. Ny is accessed by following Pyy to distinguish a Pyy
error from a Vy,y error. Ny is accessed by following P®V, to distinguish an A_,,, error from a V;

error. Once the error has been diagnosed, correction proceeds as follows:
1) A, error: correct value is POV,
2) P, error: correct value is A,.
3) A, error: correct valueis P,

4) P, error: correct value is Ayy.
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Table 2a. Detection and Diagnosis Locks for Forward Moves

in the VDLL using W°.

Detection Locks

Ll [ A, 7=P@V,

L2 | A?=POVyy

L3 | AT=P,,

L4 | Ay ?=P

Diag&osis Locks

LS Apyy 7= Py®Vy | Access Ny via Pyy |

L6 | A7=P,

Access Ny via POV,

Table 2b. Error Detection and Diagnosis Syndromes for Errors Detected

17

W by Forward Moves in the VDLL using W,
-
. ) error 111 | L2 [ 13 [ 14 | NA_ [ NA | NA,, [ L5 [ L6
e A T FIlTI|TI|T T T T -1 T
v E‘: Py | T | T | F | T T T T - | -
B A, T F F T T T T - -
"I P, F | T|T|T T T F - -
| & F|F |[T]|T T T T - | -
\ N F F T T T T F - -
\A F T T T T T T - F
?, N Ayy LT | T | T F T T T - -
- P T F T T T T T F -
V:: T F T T T T T T -
YN
"
.x.
O]
) E-: 5)  V,error: correct value is A, ®P,.
. 7 6) Ay error: correct value is P,
» "--\
f 7) Py error: correct value is ABV,y,.

o,

LEX

8) Vyv error: correct value is A @P,,y.

Assume now that a single error has been detected during a backward move. The LCED pro-

N cedure supplies the values of the four detection locks (Table 3a). and three error indication values
18 L 2"}
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' generated by a node access routine, NA_,,,. NAyy. NA,, that indicate out-of-bounds pointers or

pointers that do not point to logical node boundaries, when used to access N,.. Nyy and N,

e

respectively. There are eight possible errors: 1) A_,,, error, 2) P ., error, 3) Ayy error, 4) Pyy

error, 5) V. error, 6) A, error, 7) P, error and 8) V, error. To distinguish the eight errors. the

L

's.

seven-tuple syndrome {L1, L2, L3, L4, NA,,.. NAyy. NA}} is constructed (Table 3b). For the
. error-free case. the syndrome will be {True, True, True, True, True, True, True}. There are two

cases of identical syndromes for different errors. In each case one extra node is accessed to

v Table 3a. Detection and Diagnosis Locks for Backward Moves
] in the VDLL using W".

_:, Detection Locks
2 LI | Ay 7= Pyf@Vyy
L2 Ayy 7= POV,
i L3 Ayy =P
L4 A ?7=Pyy
. Diagnosis Locks
by LS | A 7=P@&Vy Access Ny via P, |
ke L6 | A ?7=P.&V, Access Ny via P,

> o

Table 3b. Error Detection and Diagnosis Syndromes for Errors Detected
by Backward Moves in the VDLL using W".

w

d error [ L1 [ L2 | I3 | L4 | NA, | NA,, | NA, [ Ls | L6
= Ag | F | T T[T T T T - -
” (P [ T | T [ F T T T T -
(Ayy [ T F F | T T T T - -

2 Py T | T | T | F F T T - -
O T T F F T T T - -
T | T F F F T T - -

o Ve W T | T [ T[T F T T T -
- T | T | F | T T T T - -
T | T F T F T T - -

A A, T | T | T F T T T - -
: P, T F | T | T T T T - F
Vv, T F T | T T T | T || - T
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completely diagnose the error. Ny is accessed by following P, to distinguish a P,,,, error from a

Vuv error. Ny is accessed by following P, to distinguish a P; error from a V| error. Once the error

has been diagnosed, correction proceeds as follows:
1) A, error: correct value is Ppn®Vyy-
2) P error: correct value is Ayy.
3) Ay error: correct value is Py,

4) Py error: correct value is A,.

5)  Vpy error: To correct the error in V. first access the headers of the struc-
ture. Next, move forward, accessing nodes N, N;. - - - , N;, performing w?

LCED and correcting single errors with O(1) LCEC, until P, = Apq,. Then the

correct value of Vg, = A, BPyy.
6) A, error: correct value is Pyy,.
7) P, error: correct value is A, ®V,.
8) V,error: correct value is Ay /SP,. »

Note that for a forward move, both diagnosis and correction are O(1) time. and require one
extra node access. For a backward move, diagnosis is O(1) time (one extra node access) but correc-
tion requires O(n) extra node accesses in the worst case. Thus, O(1) LCEC is possible for an error
detected by a forward move, while O(r) LCEC is possible for an error detected by a backward
move. The proof assumed that W* LCED was used; if W? is used instead, then diagnosis for both

the forward and backward moves is still O(1), but correction for both moves requires O(n) LCEC.

B. B-Tree with Virtual Backpointers

The B-Tree with Virtual Backpointers (VBT) of order m is a data structure that possesses local
concurrent error detectability and correctability. Errors are detected in O(1) time if the time com-

plexity is measured as a function of the number of nodes in the tree, i.e.. n. For a2 forward move,
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detected errors can be corrected using O(1) LCEC: for a backward move, detected errors can be
corrected using O(log,, n) LCEC. The VBT requires m+4 extra fields in each node, and has the

additional feature that backward traversal can be performed without a stack. using the virtual

backpointer.

The underlying structure of the VBT is the B-tree of order m [16], which finds application in
the construction and maintenance of large-scale search trees. The B-tree has the following charac-
teristics:

1) Every node contains at most 2 keys. and every node except the root contains

at least m keys. The root contains at least one key.

2) Every node is either a leaf node, with no pointers to other nodes, or an internal

node, with pointers to other internal nodes or to leaf nodes.

3) Al leaf nodes appear at the same level.

4) An internal node with k keys will bave k+1 pointers to subtrees. The k keys
will be arranged in strictly increasing order, and keys in the i'® subtree will be
less than the i key. while keys in the i+1"™ subtree will be greater than the i"
key.
Let P, be the j™ pointer in node N;. Assume that each pointer requires one word of memory.
Therefore, each pointer is uniquely addressable by A (Figure 4a). The VBT is modified from the
B-tree in the following ways to achieve local concurrent error detectability.

1) A header node N, is created with Py, = A, for0 € j £ 2m.

2) V., the virtual backpointer of N, is defined as V,=P &P ®

P, 5 A g ent ) Where the j"l pointer in N, points to N;. For the special case

of the virtual backpointer from the root to the header. V, is defined on A,,.

even though all Py ; point to N;.
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3) Thekeysof N, (i.e.. K; ;. Ki5. -+ . K;2,) are arranged in a matrix (Figure 4b)

and the key check symbols X, ; and Y, are generated using a product code [17]

:: as follows:

i Xy =K ms1 @ Kiriyms2® * @ Ki(ppymum 1 S5 S2

g:i Y =K ;®Kpy -1 £jsm

= K,; is used to determine X (1ymy+1 304 Y (;1)medm + 1+ Called its

b corresponding X and Y check symbols, respectively.

E.: The number of key fields used in N, is called count,, which is added for performance enhance-

ment. A VBT of order 2 is illustrated in Figure 4c. The possible Locks and Keys of the VBT can be

SN

identified as follows. Assuming the j"' pointer of N, points to N,. for a forward move N,—N, fol-

[
.

lowing P, ..

e
0
v

Keys = <A‘J' (Pk_OQPkJ@ ¢ @Pk_z,n@vk)>

CLockNl_.Nl(x )= =gy =k ?7=y).

W& -

where g is the identity function. For the backward move N,~N; following (P, /®P, ,®

'|? ®P, ., 0V,).

" Keys = <A,. A >

CLocky, —(x.¥) = (x ?=g(y)) = (x 7= y.P).

N

o where g retrieves the jm pointer P, ; from the node at y.

V) We now determine the local concurrent error detectability of the VBT, employing the results
by of the analysis of LCED. Using Theorem 2, Table 4 presents the possible key and pointer errors
b that can occur in the VBT (errors in the count field are covered by the fifth and sixth rows of the ‘
e table), and the number of errors required to mask them, assuming an LCED procedure is used.

- THEOREM 5: Using an LCED procecure, the local concurrent error detectability of the VBT is
2 D’=1andD’=D°=2,Vc 2 3.
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Figure 4a. Node Representation in Order-2 B-Tree with Virtual Backpointers.

K, K2 - K | Xy
Katl Kgp+2 . Kpn | X

Yia Y2 Y,

SR

i E count, = number of key fields used in N;

‘: % Figure 4b. Virtual Backpointer and Key Check Symbols in a VBT Node.
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" @ Figure 4c. Order-2 B-Tree with Virtual Backpointers (VBT).
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PROOF: From Table 4, the minimum df =2 and the minimum df =3,¥Vc¢ 2 3. From

Definition 7, it follows that D’ = 1and D° =2,V ¢ 2 3. 0

From Table 4 it can be seen that no increase in the local concurrent error detectability can be
gained by using W° for ¢ 2 3. It can be shown that when moving forward N;—N,, following Py,

or when moving backward N~Nyy following (Pyy ®Ppyv® OPp\y 2BV yy). use

W = {Npeey: Nj. Ny} and W= {N;. Nyve Nooxt)  respectively. to achieve detection of double
pointer errors, or correction of single pointer errors (described below). In the window for the for-
ward move, N, is the parent of N, and in that for the backward move, N, is the parent of
Npv. The LCED procedure using this window evaluates four locks. For a forward move, the locks
are: Ll: APNVJ ?= PLOGPMO * @Punevx. L2: A‘J ?= PMV,OGPMV,IO * GPMV,ZIIGVMV' L3:
A ?=P,,, and L4: Ay, 7= P, ;. For a backward move, the locks are: L1: A, 7= Py (®Pp\y 1@
te GPMVJ'HGVMV’ L2: AMV,! 7= Pl.oepug A GPIMGV‘. L3: AMV 7= an‘ and L4: Al 7= va".

(In the W? Checking Window. only two locks are evaluated. namely A,;?= Py ®Ppyy @ -

OPyv 2, ®Vv and Ay ?= P, for the forward move, and Ayy, 7= P, (®P;® ‘- &P ,,®V, and
A, 7= Py, for the backward move).
Table 4. Analysis of Errors in the VBT.
, , max(d,)
Error Condition max(d,) max{(d,) Yc24
Non-empty VBT becomes empty 2m+1 2m+1 2m+1
Empty VBT becomes non-empty 2m+2 2m+2 2m+2
Key, X or Y becomes erroneous 3 3 3
Internal node’s non-null pointer points to incorrect node 2 3 3
Internal node’s non-null pointer becomes null 6 6 6
Internal node’s null pointer becomes non-null 6 7 7
Two of internal node’s pointers exchanged 2 4 4
Internal node becomes a leaf node 3 3 3
Leaf node becomes an internal node 3 4 5
D T A N NN NN L N e e
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THEOREM 6: Any single pointer error detected by a forward move in w = {Npm. N, Nmv!
can be corrected with at most 2m+1 extra node accesses in O(1) time. Any single pointer error
detected by a backward move in W = {N,, Nyy. Noo) can be corrected in O(log,, ) time if it is

detected during a backward move.

PROOF: Since the local concurrent error deiectability of this structure in W is D* = 2, the
upper limit of correctability is 1. Assume that the error detected is a single error. The error may
be a key. a key check symbol, a count or a pointer. For the key or key check symbol error, diag-
nosis and correction are performed using the procedures for product codes [17]. For a count error,

all the keys and key check symbols will be correct, hence counting the non-null keys will regen-

erate the count.

For the pointer error, if the erroneous pointer is located at the header node, it can be corrected
by simple comparison because there are 2m+1 2 3 identical pointers in the header. Otherwise.
there are two cases: detection by a forward move and detection by a backward move. Assume that
the error has been detected during the forward move from N, to Ny following P,;. The LCED
procedure supplies the values of the four detection locks (Table 5a), and three error indication
values generated by a node access routine, NA,,. NA;, NAyy. that indicate out-of-bounds pointers
or pointers that do not point to logical pointer boundaries, when used to access N,,. N; and Nyy.
respectively. There are nine possible errors: 1) A, error. 2) P, error where P, is the
pointer from N, to N;. 3) A, error, 4) P,; error, 5) P, error for 0 £ s S 2mands # j, 6) V,
error. 7) Ayy error, 8) Py, error for 0 € t € 2m, and 9) V), error. To distinguish the nine
errors. the seven-tuple syndrome {L1, L2, L3, L4, NA,,,. NA,, NA} is constructed (Table 5b).
For the error-free case, the syndrome will be {True, True, True, True, True, True, True}. There are
two cases of identical syndromes for different errors. In each case extra nodes are accessed to com-
pletely diagnose the error. The nodes N; are accessed by following all the pointers Py, from Nyy
to distinguish a Py, error from a Vy,y error. Ny is accessed by following P, ®P, & - -+ &P, ,, BV,

to distinguish an A, error from a V, error or a P, error. The latter two errors are distinguished

L “"-."-ff"yl -',::" -;f\'-:r_:.~~r.;-f'
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Table Sa. Detection and Diagnosis Locks for Forward Moves

1=0

in the VBT using W".
Detection Locks
Ll Aw 7= PLOG MR @Plgmevl
L2 Ai‘l ?= PMV oe A GPMGVW
L3 | AA’=P 0
L4 Ayy =P,
Diaggsis Locks
MV
LS I (Amve?=Py®- - ®Py,,®Vy) | Access Ny via Pyy, for0 <t < 2m

16 | A =P,
i

Access Ny via P, ® - - - ®P,, @V,

L7 I1 (A 7= Pz ® - - - ©Pz,,6V7)

AccessNz via P, for0 £ s € 2mands # j

Table 5b. Error Detection and Diagnosis Syndromes for Errors Detected
by Forward Moves in the VBT using W,

error L1 [ L2 | 13 [ L4 | NA_ | NA | NA, 115 [ L6 | L7
Age I F | T[T [T T T T - 1 T [ -

P e T [T | F | T T T T - [ - [ -
A T | F [ F [ T T T T - | - | -

P, F | T | T]|T T T F - | - [ -
F|F |T]|T T T T - - -

F | F|lT]|T T T F - - -

PoGs=) | F | T [T [T T T T - | F | F
v, F | T [T | T T T T - | F | T
Ay || T | T | T F T T T - | - | -
Pyvs T | F | T | T T T T F | - | -
Vuw T | F | T [ T T T T T | - | -

by accessing the nodes Nz by following all the pointers P, from N;. Once the error has been diag-

nosed, correction proceeds as follows:

1) Ay error: compute A, from P, (@P,,® --- &P,,, 9V, from which A,

can be calculated.
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2) P, error: correct value is A,.
3) Ajerror: correct valueis P, ..

4) P, error: correct value is Apy.

5) P, error: correct value is A,,,, OP,® - -+ ®P,, @GP, 0@ 0 OP,, OV,
6) Vl error: correct Value is APYW,I’GPI.OGP‘.IQ D QPIZ’I .

7) Ay error: correct valueis P, ;.

8) Pyy, error: correct value is A, @Ppy® - OPpv 1-19Ppy 141®

®Ppry 2OV pry-

9)  Vyy error: correct value is A; ®Pyy (®Pyy 1@ * -+ ©Ppy o

Assume now that the error has been detected during a backward move from N; to Ny fol-
lowing P;o®P,;® -:- &P,,®V,. The LCED procedure supplies the values of the four detection
locks (Table 6a), and three error indication values generated by a node access routine,
NA e NAyy. NA,, that indicate out-of-bounds pointers or pointers that do not point to logical
pointer boundaries, when used to access Nygy. Nyy and N, respectively. There are eight possible
errors: 1) A, €r1or, 2) Py, ervor where Py, , is the pointer from N, to Npy. 3) Ay erTor, 4)
Pyv, error for 0 € t € 2m, 5) V), error, 6) A, error, 7) P, error for 0 € j € 2m, and 8) V, error.
To distinguish the eight errors, the seven-tuple syndrome {L1, L2, L3, L4, NA___,. NAyy: NA} is
constructed (Table 6b). For the error-free case. the syndrome will be {True. True. True, True.
True. True, True}. There are two cases of identical syndromes for different errors. In each case
extra nodes are accessed to completely diagnose the error. The nodes Ni are accessed by following
all the pointers P, from N, to distinguish a P,, error from a V| error. Ny is accessed by following
Poext0PPoert 18 © ** BPpog; 2 ®V oy 10 distinguish a P, a2 error from a Vy,y, error or a Py, error.
The latter two errors are distinguished by accessing the nodes N; by following all the pointers

Pyv: from Nyy. Once the error has been diagnosed, correction proceeds as follows:
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1) Ay error: compute A, from Pyy®Pyy,® ‘- ®Pyy2,®Vyy. from
which A,,,, can be calculated.
2) P, erTOr: correct value is Ayy.
Table 6a. Detection and Diagnosis Locks for Backward Moves
in the VBT using we,
Detection Locks
L1 Angis 7= Pyy o® - - - @Ppry 5 BVigy
L2 Am{‘ ?= gu)e e @PihGVL
L3 Avy 7= Prons
L4 | A7=Pyy,
_— Diagnosis Locks
LS | II(A,?=Pi®: - ®P},,OVY) Access Nj via P for 0 € j € 2m
—t
L6 ABFM;?= Py, Access Ny via P oy @ - - - @P 0 0 OV = Ay, |
L7 I (Apv.?7=Pzo® - ®P;,,®V;) | Access Nz via Pyy, for0 <t € 2m
$=0
Table 6b. Error Detection and Diagnosis Syndromes for Errors Detected
by Backward Moves in the VBT using w.
error L1 L2 L3 LA N. NA NA, ” LS L6 L7
At F T T T T T T - - -
Prois T T F T T T T - F -
Ayy T F F T T T T - - -
Prve T T F T T T T - T F
T T F T F T T - T F
Vv T T F T T T T - T T
T T F T F T T - T T
A T T T F T T T - - -
P, T F T T T T T F - -
T F T T T T T T - -
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. ‘ 3) Ay error: correct valueis P .
‘EE | 4)  Pyy, error: To correct the error in Pyy . first access the headers of the struc-
E:. g ture. Next, move forward, accessing nodes Ny N,, - -+ . N,, performing w
._i - LCED and correcting single errors with O(1) LCEC, until P,, = Ayy. Then
é "" the correct value of Ppy, i Ay @BPpyo® °*° Py ®Ppy(41®
R OPyry 20 OVav-
N 5) Vv error: To correct the error in Vi, first access the headers of the struc-
K
‘ - ture. Next, move forward, accessing nodes No. N. - - - . N,. performing W*
';: g LCED and correcting single errors with O(1) LCEC, until P,, = Ayy. Then
;; . the correct value of Vyy isA, SPp, (BPpyy @ * - * OPpyyop-
?‘: E: 6) A, error: correct value is Pyy ..
g
!.: i 7)  Pyjerror: correct value is Ay P, @ - - - ®P, @P, @ ‘- @P,, OV,
EE 8) V,error: correct value is Ayy ®P (@P, @ - - ®P,,. o
y &

The robust B-tree [3] presented by Black, Taylor and Morgan performs double error detection

or single error correction in O(n) time, and requires 2m+3 extra fields in each node of an order-m

W)

gg B-tree. Taylor and Black have also developed the LB-Tree [10] which is locally correctable, in that
.: j‘& it can correct many single errors if they occur in separate substructures. However, in order to ver-
". ify a pointer. one level of nodes must be traversed. and to correct a pointer, all the levels above the
E:.: * current level must be traversed. Hence, double error detection and single error correction require
:é) O(n) time, and 2m+5 extra fields in each node of an order-m B-tree are required. In comparison. the
<. advantages of the VBT are as follows:

[

5 ~ 1) Double pointer errors can be detected in the VBT using an O(1) LCED pro-

N N cedure.

X ‘ 2) Single pointer errors can be corrected in the VBT using an O(1) LCEC pro-

-
-

¢-(

e

cedure for an error detected during a forward move, or using an O(log,,n)
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LCEC prccedure for an error detected during a backward move.
3) The VBT requires only m+4 extra fields in each node.

4) The virtual backpointer facilitates backward traversals of the VBT, which can

then be used to enhance performance.

S

IV. ANALYSIS AND IMPLEMENTATION OF A CONCURRENT
AUDITOR PROCESS

f 4

A5

o » >
-
.l

s
L =

The Concurrent Auditor Process (CAP) is an on-line process for error detection and correction

e

that runs in parallel with user processes accessing a database. It is used, in this case, to perform

L

" data structure error detection and correction for the user processes, and allows concurrent access to
K|

structures being checked to reduce the system performance degradation due to error detection.

;: ~ Koved and Waldbaum have developed an auditor program that provides detection of computer
e : : ,

g subsystem failures [18), based on Waldbaum's concept of the auditor program [19]. Taylor, Mor-
a k gan and Black have suggested the use of an audit program to periodically perform error detection
l| A

X and correction in data structures [1]. However, little analysis has been performed on the

LW N

effectiveness of such an audit program. This section presents an analysis of the effectiveness of the

CAP and presents measurements of the CAP’s effectiveness in a Sequent Balance 8000 multiproces-

R |

. »

p sor implementation using a database of VDLL.

(5

The CAP described here accesses structures more frequently and uniformly than user

g - processes to reduce the latency of error detection. Also, the CAP performs error detection in

b

Checking Windows of higher cost than those used by user processes, to reduce their performance
e degradation. For example, if the database is composed of VDLL or VBT instances, user processes
may perform single pointer error detection in W? with less computation cost, while relying on the

CAP to detect the less-frequent double pointer errors in W* with more computation cost. The

e o T

. effectiveness of the CAP is determined by its increase of the mean time to failure (MTTF) of the

& v o e
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. system. Ideally, a large increase is achieved with little degradation of user process performance. A
¥ - '
Hence, the CAP permits user processes to access structures being checked as long as they do not -
L]
w

insert or delete nodes from the CAP’s current Checking Window. Expressions are derived to deter-
mine the MTTF in a multi-user, n-process system with and without the use of the CAP. This is

followed by the results of an implementation of the CAP using a VDLL database. i

A. Analysis

[d
c
In a multi-user. n-process shared-database environment, assume that the CAP performs error g
)

detection in W and that user processes perform error detection in W2, The pointer errors can then

B Xy R S8 P

be divided into three classes: E,. E, and E,. E, errors are those which can be detected by a user

LE Y . )
A process or by the CAP. E, errors can be detected by the CAP but not by a user process. E, errors y
i can be detected by neither a user process nor the CAP. Suppos= the time for an E, error to occur is
T;{ the time for a user process to encounter that error is Ty, and the time for the CAP to detect an a
. )
e 3
3) E, error is T,. For the purposes of analysis assume, in a given time interval. both the number of :
errors that occur and the number of accesses to a particular node are random variables following a
g Poisson distribution. Then. random variables T;i. Ty and T, follow an exponential distribution '_
n
.B with mean time y;'. 8 and a. respectively. "
. J
LEMMA 1: The probability of an E, error causing any of the n processes to fail in the presence h
of the CAP is 1= |—| . ;
\-’3 a+f N
% i
]
g PROOF: For a single process. the probability to fail can be derived using basic probability 5
e
theory: :
% bt
1 g8 - @ .
> Prot(T,>Ty) = fProb(Tuzx)Prob(TA> x)dx = f—e YheMody & —— ..
oy o o B G+B -
r
~
|
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8

e —

a+f

Therefore, the probability of any of the n processes failing is 1—

1= —

at+f

= 1- .

o

THEOREM 7: Without the use of the CAP, MTTF = y; + 8, and with the use of the CAP,
.l
. 71 a'
me = min _—” . 72 + ﬁ.
B

a+f

1=

PROOF: If no CAP is used. MTTF = min(E(TEl). E(T,',‘z)) + E(Ty) = min(y;.y3)+B8 =
¥: + B. where E(X) is the expected value of random variable X.

In the presence of the CAP, the determination of whether an E, error will cause a failure can

be modeled as a Bernoulli trial with parameter p = 1— . Hence the MTTF,, follows a

a+f
n
1
geometric distribution with mean ——, where n' represents the effect of n user processes and the
P

CAP. o

If E, and E, errors are formed by the accumulation of E, errors. then T;l and 'I‘;2 are propor-
tional to the access frequency. Thus y; = nyll .y = nyzl and 721 >> y:. This gives, for the

without-CAP case, MTTF = yi‘ +8= ny,l + B. In the with-CAP case, since the CAP is E— times
a

faster in checking the data structure than a user process, 7'{' = 711 . E, errors will retain an

n+—
@

: B
exponential distribution but with different mean y, = ln+— yzl. For this case the theorem gives

[ 4
Bl
n+=— Iy,
i B
M'm-'w-mm————.‘,w—y,’ + 8.
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EXAMPLE 4: Suppose 711 = 100 hours, 721 = 10,000 hours, 8 = 1 minute, and 5 user processes

are active on the system. Without the use of the CAP. MTTF = 500 Lours. However, by using the

CAP, and with a = 10 seconds, MTTF is increased to MTTF¢,, =2050 hours. 0 b

If a is small enough (i.e.. the CAP is fast enough). the term can exceed the

1-—

at+f

£

I.’z'!»£
| «

-

FEsy

y;-l-ﬁ. This effectively eliminates the chances of

y; term. In this case, MTTF,, = L
a

R =%
£z

<~
=y

a user process failure due to E, errors, which occur more often than E, errors.

SRR

B. Implermernzation

77~ K

A model database of VDLL was implemented in C and run on a Sequent Balance 3000 ::
~

-~y

shared-memory multiprocessor system with six CPUs. Single random errors and worst-case double :
™

-

s errors (called "double cooperative errors.” where a second error masks a previous error) were

injected into the database one at a time. Error detection was accomplished by one of four user E: :

W processes, the database manager, or the CAP, each of which performed either W or W* checking. g

' The database manager serviced all update requests, and the CAP operated in the idle time of the o
‘g database manager, to reduce performance degradation. Databases of 50, 100, 500 and 1000 nodes

&8P

LR N AN

were used in the simulations. Each database consisted of eight VDLL instances: six non-empty

. _:'.'

instances, one empty instance, and a free list. To model the locality of user process database access,
each user process performed approximately 80% of its operations (composed of 75% searches, 12.5%

insertions and 12.5% deletions) within one VDLL, and the other 20% in a randomly selected VDLL.

2 o
T,

For each single or double error injected, the detection latency and the number of operations

s 4
-4’,,_
§3 completed in that time were measured, for five different combinations of user process LCED/CAP o
LCED (Table 7). The mean error detection latencies for the five combinations, applied to databases ,‘_:
‘o

&\_‘V
PP

[
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of 50, 100, 500 and 1000 nodes, are shown in Table 8. Table 9 shows by what factor use of the

CAP can decrease the error detection latency. The following observations can be made based on the

results of the implementation:

;fmmmmm

1) Single and double LCED can be performed on the VDLL in O(1) time.

:: 2) The use of the CAP significantly reduces the error detection latency of both

k)

single random errors and double cooperative errors.

3) The CAP is more effective in reducing the detection latency of single random

errors as the size of the database increases.

B 2%

Using the analysis results of the previous section, the first observation shows that 7'1" 2 Sy,
Thus from Theorem 5, the MTTF,p > SXMTTF. This clearly shows the utility of the CAP in

increasing the MTTF of the system.

- % | e ey
£oL W iy

V. SUMMARY

Lo

)

» In this paper. we have presented 2 new technique for local concurrent error detection in linked
-_2 data structures that can achieve O(1) error detection in a variety of data structures. This tech-
N

)

nique uses the concept of a Checking Window to define the locality in which local concurrent error
detection is performed and also to determine the associated cost of the locality. The virtual back-

pointer was introduced and used to define two new data structures, the Virtual Double-Linked

=~ |

List, which incurs no storage overhead, and the B-Tree with Virtual Backpointers of order m,
P -’:: which requires m+4 extra fields per node. It was shown that double errors could be detected using
A

H a local concurrent error detection procedure in O(1) time for both structures. In addition. those

errors detected during forward moves were shown to be correctable using a local concurrent error

]
i s correction procedure in O(1) time. Correction of those errors detected during backward moves was
U "y
3 o
‘ ¢ shown to be, in worst case, O(n). Finally. an analysis and implementation of a concurrent auditor
[}
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Table 8. Mean Error Detection Latencies.

Table 7. Combinations of User Process LCED and CAP LCED.

Error Database Number of Case

Size Sa.xnglea 1 2 3 4 S
Single 50 10000 77 8 7 64 7
Random 100 10000 144 11 10 127 10
Error 500 1800 4884 147 134 5052 140
1000 200 29087 372 308 31033 312
Double 50 10000 72 7 7 39 7
Cooperative 100 10000 60 13 10 57 11
Error 500 1800 420 54 48 447 50

Table 9. Detection Latency Reduction Factor Through Use of the CAP.

Error Database Cases Compared
Size 1:2 13 4:5

Single 50 10 11 9|
Random 100 13 14 13
Error 500 33 37 36
1000 78 94 99
Double 50 10 10 6
Cooperative 100 5 6 ]
Error 300 8 9 9
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process in a shared database using the virtual backpointer technique was shown to significantly

reduce the error detection latency.
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