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I. INTRODUCTION

Linked data structures form an integral part of many software and database systems. Per-

forming error detection and correction to preserve the correctness of data structures is important in

achieving overall system reliability. To reduce the performance degradation incurred through their

use, detection and correction should ideally be executed concurrently with normal processing. and

every invocation of these procedures should be completed in 0(1) time. If any global checking

S information (e.g.. a global count) is used in detection or correction, then O(n) nodes must be

accessed, where n is the number of nodes in the structure, and those procedures cannot run in 0(1)

S time. In addition, since node access time is the major contributing factor to the cost of error detec-

tion. the number of nodes accessed should be minimized. The Checking Window concept is intro-

duced in this paper as a method of formalizing these ideas, and as a method of describing local con-

current error detectability as a function of the number of nodes to be checked. To preserve the

structural integrity of linked data structures, a new approach to detecting and correcting structural

S errors, called the virtual backpointer. is also introduced in this paper. The technique is used to

construct two new data structures: the Virtual Double-Linked List and the B-Tree with Virtual

.. Backpointers. The Virtual Double-Linked List uses the same amount of storage as the double-

S linked list from which it is derived. The B-Tree with Virtual Backpointers, derived from the B-

tree of order m. requires m+4 more fields in each node. It is shown that 0(l) local concurrent error

detection can be performed for both structures, and that 0(1) correction is possible for those errors

detected during forward moves through the structures. Correction for those errors detected during

backward moves through the structures is in worst case O(n).

The foundation work concerning robust data structures was performed by Taylor. Morgan.

and Black [1]. Several techniques have since been presented to achieve robust data structures; how-

ever. most achieve error detection in O(n) time. A global count, as used by Taylor. Morgan and

Black in the modified(k) double-linked list. the chained and threaded binary tree. and the robust

B-tree (1-31. by Munro and Poblete in their isomorphic binary tree (4]. by Sampajo and Sauvi in
I.I
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Ntheir robust binary tree [.5], and by Seth and Muralidhar in their mod(2) chained and threaded

binary tree [6]. necessitates, for some errors, a traversal of all the nodes of the structure for error

detection. The three pointer tree, as explained by Yoshihara et at. [7] requires O(n) time to detect

double errors, since a preorder traversal of all the nodes of the tree is performed. Though not indi-

cated in their paper. error detection can be performed in 0(l) time using the D-loops within the

S structure, but only single errors can be detected. Kuspert's work with the separately-chained hash

table [8]. which is an application of double-linked lists, achieves detection in 0(1) time; however.

S five extra fields must be stored in each node.

A general theory of local detectability and local correctability has been introduced and for-

malized by Black and Taylor [9]. and has been successfully applied to several different types of

data structures, including: the spiral(k) list [9]. the LB-tree [9-10]. the mod(k) list [II]. the

helix(k) list [12]. and the AVL tree [13]. The intention of their work is to be able to correct an

U arbitrary number of errors in a data structure, provided the errors are sulciently separated from

Seach other. However. the complexities of the correction algorithms (which include error detection)

are typically not 0(0).

The organization of this paper is as follows. Section I presents an analysis of local concurrent

error detection, giving formal definitions for Checking Windows and local concurrent error detecta-

S bility. In Section HI. the virtual backpointer concept is described and is used to construct two new

data structures: the Virtual Double-Linked List and the B-Tree with Virtual Backpointers. The

local concurrent error detectability and correctability of each structure is analyzed. Section IV

S describes a concurrent auditor process as applied to data structure error detection, analyzes its

effectiveness in increasing the mean time to failure of a system. and presents the results of an

implementation. Finally. Section V summarizes the results.

P0

•0

E.
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11. LOCAL CONCURRENT ERROR DETECTION AND CORRECTION

Local concurrent error detection (LCED) is an on-line technique for detecting structural errors

in a locality of a currently accessed node in a linked data structure. If the size of the locality is

constant and the degree of each node is fixed, then an LCED procedure will run in 0(1) time. Local

concurrent error correction (LCEC) can correct errors detected by an LCED procedure. using

another locality of the currently accessed node (not necessarily the same as that used by the LCED

procedure). If the size of the locality is again constant. then an LCEC procedure will run in 0(1)

' . time. Error detection and correction typically degrade system performance. The degradation is a I-

S function of the number of nodes accessed, the number of nodes stored, and the computation

required, for detection and correction. For the LCED procedures analyzed here, no extra node

accesses are required (except in the initialization phase). Hence. the storage and computation

requirements dominate the cost of error detection and correction.

Linked data structures may be modeled as directed graphs. A graph G = (N. E) consists of a
finite set of nodes N =IN,. N 2- • N.) and a finite set of edges E = {El. E, . Em). Each edge

El = <NJ. Nk> links a pair of ordered nodes in this directed graph (digraph). In the digraph

representation of a linked data structure, the nodes represent the data records, and the edges

represent the pointers between the records. If all the nodes consist of the same fields, then the data

structure is said to be uniform. A move from a node NJ to a node Nk is possible if there exists an

edge E, between them, and is represented as N,-N t. Then Nk is reached from NJ by foUlowing El. A

traversal is a series of moves starting at a root node or header of a structure that accesses part or all

S of the data structure.
.J.

An LCED procedure is invoked to detect structural errors whenever a move attempts to fol-

low a pointer, which may be a forward pointer, a backward pointer, or a virtual backpointer (Sec-

tion Ill). That is, the LCED procedure attempts to verify the move. Thus. it is on-line, or con-

S current with normal structure access.
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The errors considered in this paper are those that affect the structural information of the data

structure (e.g.. pointer values, structural checking information). The probability of an erroneous

pointer to a random location remaining undetected by the techniques presented in this paper is pro-

portional to 2-" d, where b is the number of bits used to represent a pointer, and d is the number of

erroneous pointers required for masking. Since this probability is very low, the error detection

analysis concentrates on the case where erroneous pointers point to other nodes of the same type.

This kind of error may occur in partially or incorrectly updated data structures, or as a result of

software errors or hardware failures. These erroneous pointers may or may not coincide with logi-

cal pointer boundaries; however, the routine that accesses nodes from slow memory can detect

these boundary errors and supply this information to the LCED procedure.

Memory subsystems are commonly configured hierarchically. and the ratio of the access time

of slower memory (used to store the data structure. e.g.. MOS RAM. disk) to that of faster

memory (used to buffer the currently accessed nodes, e.g., cache, register file) is usually very large.

-, Hence it is desirable to have all the nodes in the LCED or LCEC localities stored in the fastest

memory. In the remainder of this paper. Ai will represent the address of a node N, in a linked data

, structure. N, may have many pointers to other nodes. and a desired move MV from N, will be

represented as NI-NMv.

DEFINITION 1: Bc is a fast memory of capacity c nodes, which holds the c most recently

accessed nodes, including the node reached by the current move MV. Since a move is performed

between two nodes. c must be at least two to verify the move. That is. for a move MV Ni-NMv,

'RC holds both N1 and NMV. If c = 1 then only NMV could be stored, and the information of the

S source node N, (e.g.. address, pointer value) would be lost. Thus. an erroneous move would be

indistinguishable from a correct move.

The LCED procedure requires a set of c nodes to verify the move MV. This set of nodes is

,, called a Checking Window. The cost of a Checking Window is proportional to c. since it involves

storing the required nodes in the fast memory (storage cost) and performing checks on those nodes
i o 'I
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(computation cost). The nodes in the Checking Window need not be re-accessed from slow

I memory. since they are already stored :n R,.

DEFINITION 2: Let a set of Checking Windows of size c. V. be defined recursively as:

Wc= W -l U Nk} where W" is the jb Checking Window of W -' (1 4, j 4 1W'-) and Nk

J is adjacent to one of the nodes in W'. The base case is W2 = {{N 1 . NMV}. 0

Wc. for some m. is constructed by adding one more node Nk to the smaller Checking Window

W3
- , such that Nk can be reached from We- in one move. All such W1 form a set of sets. Wc. It

will be shown that Checking Windows of the same size do not necessarily achieve the same detecta-

bility. When the context is clear, we may use V to represent one particular W4.

EXAMPLE 1: Consider a forward move N1-. Ni+1 in a normal double-linked list (Figure 1):

- 2 = IN, N14 }

W 2 = IW2} = {(N1. NI})

Wi = IN. Ni41. Ni+2)

W2 = Ni-1 N1, NIJl

----- ------- - ------- :2

I P I -

I r - - -
I

' I I BI+,' L ----'-1 - - '-"-..

L.---------------------- -- ---------

i i 2 Pi+ ,I

Figure 1. Checking Windows for a Double-Linked List.
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.V3 - {W1. W2} I{N1. Ni1 .N+ 2 }. (Ni_ 1. N. N+, 1)

The Lock and key concept is now introduced as a generalization of structural checking infor-

mation that is distributed throughout the nodes of linked data structures (distributed checks). In

,, the simplest case, nodes in the structure will have associated with them a Key. When performing a

move from a node to its child, the node's Key becomes an argument to the childs Lock function.

which either returns "True.* signaling a valid move, or "False." signaling error detection. In its most

general form, the Lock and Key concept allows for multiple-Key Locks and Keys distributed over

potentially many nod-s.

DEFINITION 3: A Key is information associated with a node (e.g.. its address, a pointer. or dis-

tributed check) that is used by a checking function to verify a move. 0

DEFINITION 4* A Lock, LockMv, is a checking function that verifies a move, such that

Lockmv(Key, . Key k) = True" if all its Key, arguments are present and correct. "False" if all

its Key arguments are present and not all are correct, or 'X" (dont care) if not all its Key are

present. A Lock whose Key arguments are all present is called a checkable Lock. otherwise the

Lock is an uncheckable Lock. 0

The computational overhead to evaluate the checkable Locks is 0(0) if all Lockmv are defined

on Keys that can be contained in a fixed-size Checking Window Wc. No storage overhead is neces-

sary because Locks are functions and are not stored. and Keys can be information that is already

present in the node, e.g.. pointers.

DEFINITION 5: A Circular Lock. CLockN-N,N. is a Lock function whose Keys are addresses of

.'e nodes:

B,
,.

Keys = <A. Ak>

CLock (x. y) = (x ?= g(y))

where - s a pointer (e.g.. a forward pointer, a backward pointer, a virtual backpointer) of N, to

N e"-
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S Nk. g is a function that generates x using a series of pointers, and ?= represents a comparison that

returns either "True" or "False" for a checkable CLock. 0

Circular Locks possess the property that for all starting nodes Ni.any single pointer error

encountered in the moves of g causes the Lock to evaluate to "False." The following two examples

show that the double-linked list and a binary tree with signatured access paths employ Locks and

Keys. The double-linked list uses a Circular Lock checking function, while the tree with signa-

tured access paths uses a Lock defined on O(height-of-tree) Keys.

EXAMPLE 2: Let N o.NI, • • N, be the nodes of a double-linked list. Let a node N, have a

forward pointer P, and a backpointer B1. For a forward move Nj-Nj+x:

Keys = <Aj. Ai+ 1>

* CLockNsN+ (x. y) = (x ?= g(y)) = (x ?= y.B).

The backpointers are the distributed checks, and the g function in the Circular Lock retrieves the

backpointer B from the node at y. This structure achieves 0(0) single pointer error detection in

Checking Window W2 (cf. Example 1). 0

EXAMPLE 3: In the signatured access path technique. signatures defined over the nodes of valid

a'? traversal paths are embedded at path termination points, where a traversal path starts at a header

and ends at a leaf, for a binary tree [14). Error detection is achieved by comparing signatures gen-

. c " erated at traversal time with the embedded signatures. A simple signature is the logical exclusive-

or function (G) of all the pointers in the valid traversal path.

Keys = <ordered set of pointers in a valid traversal path. signature>

Lockforwrd(pl, " " " P.. signature) = (pIG . . Gpsignature ?= 0).

The nodes' pointers are the distributed checks. This structure cannot guarantee 0(0) detection time

, ~ as O(height-of-tree) nodes may be accessed in the traversal path.
'".

% ,.*... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .
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We now determine the minimum number of errors that are required to cause the checkable

Locks used by the LCED procedure to evaluate to "True" in a particular Checking Window. This is

similar to the changes used by Taylor. Morgan and Black [15] to determine the distance between

S two data structure instances. The difference here is that the distance is measured within a Check-

ing Window. Hence this new distance is termed local distance, from which the definition of local

concurrent error detectability follows directly. Let LockMv be defined, for every possible move

MV in a specific data structure. over Keys distributed in nodes contained in a fixed-size Checking

Window.

DEFINITION 6: The local distance. dc(MV). within a Checking Window of size c is defined as

the minimum number of pointer errors in all W" that can mask a move to an incorrect node. due to

a pointer error, where MV is the move to the correct node. Errors are not detectable if all check-

able LockMv evaluate to 'True.' 0

DEFINITION 7: The local concurrent error detectability. D (MV). for a specified move MV and

S Checking Window of size c is given by:

D'(MV) = max(dc(MV)) - 1.1 j VIw'I. 0

The max function is used because, for a specified move, it is always possible to find a Check-

ing Window Wc which can detect at least Dc simultaneous errors (including the pointer from Ni to

NMV that is erroneous). When the context is clear, we may omit the parameter MV in d:(MV) or

Dc D(MV).

The following theorem will be used to prove that the local concurrent error detectability of

data structures employing the virtual backpointer is the same for both forward and backward

moves.

THEOREM 1: In a uniform data structure, if for every pointer of the form Ni-,Nk there exists

a - pointer to reach N, from Nk in one move. and the Lock functions are Circular Locks. then

i using an LCED procedure, Dc(N,- NI) = DC(Nk- NI) ] DC.

. S-
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PROOF: Since the data structure is uniform. Ni-Nk and N--N, represent all possible forward

and backward moves, respectively. Notice that W2 N. NJ. Thus, all We are also the same for

both moves as We is defined on W2. If NI--*Nk is erroneously changed to NI Nk.. it is isomorphic

to the case N,,-N, being changed to N,,-Nr. because the pointers used in the g function of the Cir-

cular Lock are not changed by the isomorphism. In both cases. the Locks evaluate to the same

! value because the accessible nodes in Wc are the same. By Definition 6. dc(NI-Nk) = dc(N"-NI).

Hence DC (N-*Nk) - Dc.(N,.N,) = Dc.

Theorem 2 will be used in determining the upper bounds of local concurrent error detectabil-

S ity for the Virtual Double-Linked List and B-Tree with Virtual Backpointers.

THEOREM 2: Local concurrent error detectability is a monotonically increasing function of

window size c. That is, Dc-' 4 De 4 Wn for 3 4 c 4 n. where n is the total number of nodes in

i the data structure.

PROOF:. Every W' is constructed by adding one adjacent node NJ to a Checking Window of
size c-1: We = We U N . If each checkable Lock in W ' evaluates to "True* in W - 1 then it

will remain 'True* in We because the Keys of the Lock are contained in both Wc - 1 and We. If the

addition of N, causes an uncheckable Lock in Wc- 1 to evaluate to 'True" or OX* in W_. this results

in d d - However. if the uncheckable Lock evaluates to False." then d' > dc. since at least

one other error would be required to mask the detected error. Hence. dc > d' - . Then max(dc) >

A max(dF-), and De > D'' follows from Definition 7. The upper limit of detectability is trivially

D"a since the entire structure is then included in the Checking Window. -

If the Checking Window includes all the nodes of the structure. LCED procedure degenerates

", into a global error detection procedure. which requires 0(n) execution time. Therefore, to achieve

maximum local concurrent error detectability, it is sufficient to use a Wc with minimum size c for

which Dc - Dm.

The LCED procedures mentioned throughout this section were unspecified because the actual

procedure used depends on the particular data structure to be checked. The general LCED

0'. 4ni "'' . r': -' -I : i - .I ,NU
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technique is as follows. First, determine the apprcpriate Checking Window W that achieves the

desired local concurrent error detectability. For each possible move from each node, identify the

S Lock functions and associated Key arguments that are used to perform the checking. The LCED

S procedure can be constructed as follows: for each move made. access the nodes defined by the

Checking Window, and evaluate all the checkable Lock functions. If all Locks return "True." then

either no error has occurred or undetectable errors have occurred; if any Lock returns "False," then
Lu

at least one error has been detected. Once an error has been detected by an LCED procedure. LCEC

IDc
may be performed. The upper limit of correctability is - However. the actual correctability

depends upon the data structure.

Since errors are detected and corrected based only on information from nodes in the Checking

Window, many other detectable errors may exist simultaneously throughout the data structure.

S Although the local concurrent error detectability and correctability may only be one or two in the

"e window, the actual number of detectable and correctable errors may be much larger.

III. VIRTUAL BACKPOINTERS

The virtual backpointer is a distributed checking symbol that can be used to achieve O(I)

.:) LCED and 0(1) LCEC during a forward move, and 0(1) LCED and 0(n) LCEC during a backward

move in many linked data structures. In addition, it can be used to generate a backpointer from a

node N, to its parent N,, r In the general case, a virtual backpointer may point to an ancestor

ANauto of a node N,. where N,.,,r is an ancestor of N, if there exists a series of moves from

N to N,.

- DEFINITION 8: In a linked data structure, let N.M.M be an ancestor of N1. and Qj be the set of

all pointers in N1. The virtual backpointer V - f(Qj. A 1 0¢ ). where f is a function such that

.~ w A m - f'(Q, V1 ) - f (Q, f(Q, A5 at,1 )). and f' is a companion function determined by f. In
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, general. there may be vectors of virtual backpointers. Vi = i(Q. A). which, after suitable transfor-

mation by f, point to vectors of nodes A. 0

The virtual backpointer has the following properties. 1) For a forward move N1-. N+. Vj+1

provides checking information. 2) For a backward move N+ 1---N. V1l1 provides the backpointer

after transformation by f', and Q. is used as checking information. Two example data struc-

tures employing the virtual backpointer are presented in the following subsections: the Virtual

Double-Linked List, which is derived from the double-linked list, and the B-Tree with Virtual

Backpointers. which is derived from the B-tree.

A. V'uira Doub-Linked List

The Virtual Double-Linked List (VDLL) is a data structure that employs the virtual back-

t pointer and possesses local concurrent error detectability and correctability. Errors are detected in

0(1) time with an LCED procedure. For a forward move. detected errors may be corrected using

LCEC in 0(1) time: for a backward move. detected errors may be corrected using LCEC in 0(n)

time. The VDLL requires no more storage space than the double-linked list (DLL). and retains the

S simplicity of the DLL, in that it is possible to move directly from a node to its parent, using the

virtual backpointer. This is not possible. for example, in the modified(k) DLL [1]. for k > 2. which

must access other ancestors of a node in order to reach the node's parent.

DEFINITION 9: A Virtual Double-Linked List is described as follows (Figure 2). In a linked

list data structure, let Nj_, be the parent of N,. and Pi be the forward pointer of the N. therefore

Q = {Pj}. Let f({x). y) = f*({x}, y) = xy. then V = P1GAjj = A1+GA1._ and A,-, = PQGVj. where

0 denotes the logical exclusive-or function. Also. c header nodes No. N-1. "- - ,N..+ are added,

where c is the size of the Checking Window. These header nodes are assumed to be always accessi-

ble by the LCED procedure. Note that N_,+1 = N(.

X. The VDLL is created from the DLL by replacing its backpointers with virtual backpointers.

The same operation can be applied to the modified(k) DLL family [1], resulting in the modified(k)
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r

A .. P. 'a 5aL
Figure 2. Virtual Double-Linked List (VDLL) of 5 nodes.

VDLL structures. It will be shown that each modified(k) VDLL achieves greater local concurrent

error detectability than the corresponding modified(k) DLL.

DEFINITION 10: A nodified(k) Virtual Double-Linked List is described as follows. In a linked

list data structure, let N,-,: be the k'h ancestor of N,. and Pi be the forward pointer of the N,. there-

fore Q, = (Pi). Let f(x. y) - f*((x}. y) = xy, then Vi = P1GAiv = Aj+IGAIj... and Aj_ = PiQVi.

Also. max(k+1. c) header nodes, are added. -

The possible Locks and Keys of the VDLL can be identified as follows (Figure 2). For a for-

ward move NI-Nt1, following P,.

Keys = 1 <A t.P +Vl.,. >

CLock. , (X. y) = (x ?ff g@y)) = (x ?= y).

iow Iw
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' where g is the identity function. For the backward move N,+,-N, following Vi+laPi+,.

Keys = <A,+,. A,>

CLockN +,~N (X. y) = (x ?= g(y)) = (x ?= y.P).

where g retrieves the pointer P from the node at y. Locks and Keys for the modified(k) VDLL can

be identified similarly. Using the results of the analysis of LCED, we now determine the local con-

current error detectability of the VDLL.

THEOREM 3 Using an LCED procedure. the local concurrent error detectability of the VDLL

is D2(forward) = D2(backward) = D2 = 1. and Do (forward) = Dc (backward) = DP = D3 = 2. V c

>3.

PROOF. Since the VDLL uses virtual backpointers and Circular Locks, by Theorem 1.

S Dc (forward) = Dc (backward). Consider a forward move MV. NI-N, 1 . following Pi. The LCED

procedure attempts to verify this move. A pointer that does not point to a logical node boundary

; can easily be detected by the node access routine. Therefore consider only erroneous pointers that

lead to valid logical node addresses. Suppose that P, is erroneous and leads to N,+1 instead of N, -,.

22In W, = (Ni. N)+,}. di = 2: either Vj+I or P,+, must be erroneous to mask the error in Pi. Assume

that V,+I is erroneous (Figure 3a). In W (NI. Nt.N j+,. NJ 2 ). d3 = 2. However. in W 3

(N. 1 Ni.Nj+,). Vi will lead to the detection of the error in P,. because following the backpointer

given by V1QP will lead to a node N.-1 instead of N_,. and P,-, Nd N Therefore. V, must be

changed into the value AJ+x.IQA to mask the error in Pi. Thus d 3 -3.

Assume now that V, I is not erroneous. so P,+, must be erroneous (Figure 3b). Consider

W1 = (N,. Nj., N,. 2). The LCED procedure will not detect the error in P, if Pj+i has been changed

to Ak+ 2 - AQV, ,. and Vi+2@Pk+2 has been changed (via a change in either Vk+2 or P,+2) to A,+,.
2 3 3

The remainder of the analysis is similar to the case above, and gives d, = 2. di = 3. and d2 = 3.

According to Definition 7. D2 - 1 and D3 = 2. Since the VDLL can be changed to another correct

VDLL by three pointer errors (node deletion). D4 = 2. where n is the number of nodes in the struc-

,0
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A- 2 V-2 A,... 2 P,.. 2 V,.. 2

Figure 3a. Analysis of VDLL: Errors in Pi. Vi. and V,+,.

Ak.21 P1..-2 IVk. 2 1 A,-..2 1p -2 1V -2 IAi-. 2 IP,.. 2  IV,.. 2 I

j A PWV

A k,2 k+ 2 +V42  AJ, 2  P.4.2  V.,2 V i

Figure 3b. Analysis of VDLL: Errors in P,. V,. P, 1. and V, 4.2.
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ture. By Theorem 2. D" = 2. V c > 3. 0

The above proof suggests that when moving forward NI-NMv following Pi. use

W3 {NI,. N1. NMv) as the Checking Window. where NP. corresponds to N._ in the proof; and

when moving backward Ni--NMv following PjQVj. use W3 = IN,. Nmv. N3 .. ) as the Checking Win-

dow. where N.. is the node reached by following PMvGVMv. By using these windows, double

pointer errors can be detected, or single pointer errors corrected (described below). The LCED pro-

cedure using this Checking Window evaluates four locks when moving either forward or back-

ward. For a forward move. the locks are: Li: Apm 7= PGV. L2: Ai 7= PMGVMV. 12: A 7= Ppm

and L4: AMv? P,. For a backward move. the locks are: Li: Aw ? PmvQVMv, L2:

Amy ?= P1GVj. 13: AM 7= P. and L4: Aj 7= PMv- (In the W 2 Checking Window. only two locks

are evaluated, namely Ai ?- PmveVMv and A~y 7= P, for the forward move, and AMy 7= P1QV

and A ?- PMV for the backward move.) A comparison of local concurrent error detectability is

C given in Table I for the VDLL. modifed(2) .VDLL. modified(3) VDLL. DLL without a global

count. and modifted(2) and modifled(3) DLL without global counts [1]. for various sized Checking

Windows. The local detectability of the modified(2) and modifled(3) VDLL can be obtained using

Table 1. Local Concurrent Error Detectability
of Several Linked List Data Structures.

Local mod(2) mod(3) mnod(2) mod(3)
Detectability VDLL VDLL VDLL DLL DLL DLL

D* 1 0 0 1 0 0

__ Dj  2 1 0 1 1 0
D4 2 2 1 1 2 1

__D3 2 3 2 1 2 2
D6 2 3 3 1 2 3

" D7 2 3 4 1 2 3
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P the same analysis technique as that applied to VDLL. Any modified(k) VDLL achieves greater

local concurrent error detectability than the corresponding modified(k) DLL. For k > 3. no further

S improvement in detectability can be made for either of the two families.

THEOREM 4: Any single pointer error detected by a forward move in W3 {N .o. Ni.NMv) in

a VDLL can be corrected with an 0(0) LCEC procedure requiring at most one extra node access for

S both diagnosis and correction. Any single pointer error detected by a backward move in

W 3 = {NV.W. N,%Iv. Nil in a VDLL can be corrected with an 0(n) LCEC procedure requiring at most

S one extra node access for diagnosis.

PtOOr Since the local concurrent error detectability for this structure using W3 is D3 = 2.

the upper limit of correctability is 1. Assume that a single error has been detected during a for-

,, ward move. The LCED procedure supplies the values of the four detection locks (Table 2a). and

three error indication values generated by a node access routine. NAP. NA. NA,v. that indicate

out-of-bounds pointers or pointers that do not point to logical node boundaries, when used to

i access Npm, Ni and Nv. respectively. There are eight possible errors: 1) Ap, error. 2) Pp, error.

3) A error. 4) P error. 5) V, error. 6) A., error. 7) PMv error and 8) VMv error. To distinguish

the eight errors, the seven-tuple syndrome {L1. L2. L3. L4. NAP. NA. NAMv) is constructed

(Table 2b). For the error-free case, the syndrome will be (True. True. True, True. True. True.

True). There are two cases of identical syndromes for different errors. In each case one extra node

Sis accessed to completely diagnose the error. Nx is accessed by following Pmv to distinguish a PMv

error from a Vmv error. Ny is accessed by following PGVi to distinguish an Ap error from a V,

Serror. Once the error has been diagnosed. correction proceeds as follows:

1) AP... error: correct value is P1QVj.

2) P, , error: correct value is A1.

3) Ai error: correct value is PP..

4) P, error: correct value is A. v.
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Table 2a. Detection and Diagnosis Locks for Forward Moves

in the VDLL using W3 .

Detection Locks
Li A.,,,?= PjQV _

L2 A, ?= PmvQV _ _

L3 A, ?= Pray

L4 Amy ?= Pi
Diagnosis Locks

L5 AMv ?= P1 Vz Access N x via Pmv

L6 A, ?= Py Access Ny via PjGV

Table 2b. Error Detection and Diagnosis Syndromes for Errors Detected

by Forward Moves in the VDLL using W3 .

error LI L2 3 A NADU, NA, U L6
A,,, F T T T T T T - T

T T F T T T T - -

A T F F T T T T - -

P, F T T T T T F - -

F F T T T T T - -

___ F F T T T T F - -

V, F T T T T T T - F

Amy T T T F T T T - -

T F T T T T T F

T F T T T T T T -

5) Vi error: correct value is A.,qP ,.

6) Amv error: correct value is P,.

7) Pmv error: correct value is AjQVmv.

8) V.v error: correct value is AiQP. v .

Assume now that a single error has been detected during a backward move. The LCED pro-

cedure supplies the values of the four detection locks (Table 3a). and three error indication values

V
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. generated by a node access routine, NAMv, NA1 . that indicate out-of-bounds pointers or

pointers that do not point to logical node boundaries, when used to access N, NMV and N i.

respectively. There are eight possible errors: 1) A.,., error. 2) P..., error. 3) Amy error. 4) PMV

error. 5) Vmv error. 6) A, error. 7) P, error and 8) V error. To distinguish the eight errors. the

seven-tuple syndrome ILL. L2. L3. L4. NA.,. NAMv. NA) is constructed (Table 3b). For the

error-free case. the syndrome will be (True. True. True. True. True. True. True). There are two

cases of identical syndromes for different errors. In each case one extra node is accessed to

Table 3a. Detection and Diagnosis Locks for Backward Moves
in the VDLL using W ".

Detection Locks

LI An.xt ?= __ Vv

L2 AMv ?= PjQV ,.

L3 A%1i 7= P___

L4 A,?= PXV
Diagnosis Locks

L5 A,, 7= PxGVx Access Ny via P.,,

L6 A, ?= Pj±VY Access Ny via P,

Table 3b. Error Detection and Diagnosis Syndromes for Errors Detected
by Backward Moves in the VDLL using W.

error L1 L2 L3 L4 N NA NA, L5 L6

AF T T T T T T - -

P T T F T T T T F -

Amy T F F T T T T - -

.,f T T T F F T T - -

T T F F T T T - -

T T F F F T T - -

VMv T T T T F T T T
T T F T T T T -

T T F T F T T -

A T T T F T T T i- -I

T F T T T T FT
T F T T T _T T - I

f.'-4#s '" .e' ' .e/ eL e- ._' . e _ %,.; e . .%: ' ¢.€ .. , € ,..€€:t ',,', .'",' :"



19

q completely diagnose the error. Nx is accessed by following P,., to distinguish a P..,, error from a

Vmv error. NY is accessed by following P, to distinguish a Pi error from a Vi error. Once the error

has been diagnosed. correction proceeds as follows:

1) An. error: correct value is PrVQVMv.

2) P.. error: correct value is AMy.

''3) AMy error: correct value is Pn..t-

4) PMV error: correct value is A,.

5) VMV error: To correct the error in VMv. first access the headers of the struc-

ture. Next, move forward, accessing nodes No. N1  . N.. performing W3

LCED and correcting single errors with O(1) LCEC. until Pk AMy. Then the

correct value of VMv - AkPX,%v.

S 6) A, error: correct value is PV.

7) Pi error: correct value is A.vVj.
V4.

8) Vi error: correct value is A.fvQP. C3
L

Note that for a forward move. both diagnosis and correction are O(I) time, and require one

4'., extra node access. For a backward move. diagnosis is 0(0) time (one extra node access) but correc-

tion requires O(n) extra node accesses in the worst case. Thus. O(1) LCEC is possible for an error

I detected by a forward move. while 0(n) LCEC is possible for an error detected by a backward

move. The proof assumed that W3 LCED was used: if W2 is used instead, then diagnosis for both

the forward and backward moves is still 0(1). but correction for both moves requires 0(n) LCEC.

B. B-Trw with VirL Backp anters

The B-Tree with Virtual Backpointers (VBT) of order m is a data structure that possesses local

concurrent error detectability and correctability. Errors are detected in 00) time if the time com-

plexity is measured as a function of the number of nodes in the tree. i.e.. n. For a forward move.
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. detected errors can be corrected using 0(1) LCEC: for a backward move. detected errors can be

corrected using 0(log2,,n) LCEC. The VBT requires m+4 extra fields in each node. and has the

additional feature that backward traversal can be performed without a stack, using the virtual

backpointer.

The underlying structure of the VBT is the B-tree of order m [16]. which finds application in

N the construction and maintenance of large-scale search trees. The B-tree has the following charac-

teristics:

1) Every node contains at most 2m keys. and every node except the root contains

at least m keys. The root contains at least one key.

2) Every node is either a leaf node, with no pointers to other nodes, or an internal

node. with pointers to other internal nodes or to leaf nodes.

3) All leaf nodes appear at the same level.

4) An internal node with k keys will have k+l pointers to subtrees. The k keys

will be arranged in strictly increasing order, and keys in the i subtree will be

less than the i"' key. while keys in the i+1" subtree will be greater than the i"

S. key.

N Let Pi.j be the j' pointer in node N,. Assume that each pointer requires one word of memory.

Therefore. each pointer is uniquely addressable by A,.J (Figure 4a). The VBT is modified from the

B-tree in the following ways to achieve local concurrent error detectability.

1) A header node No is created with Po.j = A,., for 0 - j 4 2m.

2) Vi. the virtual backpointer of N,. is defined as Vi = PoP. "'

"Pi2.,@AP, .j where the j pointer in NP, , points to N,. For the special case

of the virtual backpointer from the root to the header. V1 is defined on A .o,

:.5 even though all Po., point to N,.

8% "

8% , 8'> ' " '#_ ¥ ' " -
M

- " r . ' :. .. ,. - .'... , '
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3) The keys of N, (i.e.. K1 ., Kj .• . KI.) are arranged in a matrix (Figure 4b)

and the key check symbols X1j and Yj are generated using a product code [17)

as follows:

Xij - K.( m+ 1 Ki.(Jl)m+2 Q ) • . 1 j 2

Yi.j-= Ktj 9 Kt.+j . 1 4 j 4 M.

K1tj is used to determine Xijnt((.ljlm)+I and Yi.(i-i) mod m + 1' called its

corresponding X and Y check symbols. respectively.

Z@ The number of key fields used in N, is called count,. which is added for performance enhance-.;,

ment. A VBT of order 2 is illustrated in Figure 4c. The possible Locks and Keys of the VBT can be

h identified as follows. Assuming the j pointer of N, points to N ,. for a forward move N,-Nk fol-

lowing P ,."

Keys = <At.r (Pk.oQP . ... DPk2.GV)>
iCLockr4_N (X. -Y) = (X ?= g(Y)) = (X ?= y).

where g is the identity function. For the backward move Nk--N following (Pk.OGPk.I "'"

Keys = <A,. Aj.j>

CLock -N (x, y) = (x ?-g(y)) (x ?- y.Pj).

where g retrieves the j pointer P|.j from the node at y.

We now determine the local concurrent error detectability of the VBT. employing the results

of the analysis of LCED. Using Theorem 2. Table 4 presents the possible key and pointer errors

that can occur in the VBT (errors in the count field are covered by the fifth and sixth rows of the

table). and the number of errors required to mask them. assuming an LCED procedure is used.

THEOREm 5: Using an LCED procedure. the local concurrent error detectability of the VBT is

2 3D =1and DDE =2. Vc) 3.

-/
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P1.0  P 1  Pi. PO, Pi.4

Figure 4a. Node Representation in Order-2 B-Tree with Virtual Backpointers.

Kmu K 2 . K,,,, X,.

Y.i Y.2 .' Y,

Vi = Pj o0 P 1 -.. •Pj.2 Ap,, j
count, = number of key fields used in N,

Figure 4b. Virtual Backpointer and Key Check Symbols in a VBT Node.

A 6

A 1119 A 31 0 2

Figure 4c. Order-2 B-Tree with Virtual Backpointers (VET).
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PROOr. From Table 4. the minimum d2 = 2 and the minimum d' = 3. V c > 3. From

Definition 7. it follows that D2 = I and D = 2. V c > 3. 0

From Table 4 it can be seen that no increase in the local concurrent error detectability can be

~* gained by using W4 for c > 3. It can be shown that when moving forward N1-NNMV following Pj.

or when moving backward NI--NMV following (PMvOQPMv.j@ ... *PMvZ@VMv). use

= {N]. N1. NMV) and W3 = (N i. NMv. Nam } respectively, to achieve detection of double

pointer errors, or correction of single pointer errors (described below). In the window for the for-

ward move. NP. is the parent of Ni. and in that for the backward move. Na,. is the parent of

S Nmv. The LCED procedure using this window evaluates four locks. For a forward move. the locks

are: Li: A , ?= Pj1 OQPj.11  ... QP1.ZVj 1. 2: Ajj ?= PMV.0ePMv.1  9"PMv2MVv. L3:

A, ?= P,, and L4: Amy 7= Pi,. For a backward move. the locks are: Li: .. =. 7- PMV.PW1mv.GQ

... PMv.,,@Vmv. L2: AMV.t 7= P1,o0P,.O 1 ... Pj2mVj. L3: AMy 7= P., and L4: A, 7= PMV.t.

(In the W2 Checking Window, only two locks are evaluated, namely Aij ?- PMv.oGPMv.10 ...

" PmvS VMv and A 7- ? PLj for the forward move. and A.v.t  P.oQP.jQ ... P2QDVj and

A, 7 Pmv.t for the backward move).

". ~* Table 4. Analysis of Errors in the VBT.

! max(d'.:

Error Condition max(d 2 ) max(d) c 0 "4

Non-empty VBT becomes empty 2rn+I 2m+l 2m+l
Empty VBT becomes non-empty 2m+2 2m+2 2m+2
Key. X or Y becomes erroneous 3 3 3
Internal node's non-null pointer points to incorrect node 2 3 3
Internal node's non-null pointer becomes null 6 6 6
Internal node's null pointer becomes non-null 6 7 7
Two of internal node's pointers exchanged 2 4 4
Internal node becomes a leaf node 3 3 3
Leaf node becomes an internal node 3 4 5
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THEOREIM & Any single pointer error detected by a forward move in W = {NP,. Nj. NMv)

can be corrected with at most 2m+l extra node accesses in 0(1) time. Any single pointer error

detected by a backward move in W3 = (NI. NMV. Naj,} can be corrected in O(log2.n) time if it is

detected during a backward move.

PROOF: Since the local concurrent error detectability of this structure in W' is D3 = 2. the

upper limit of correctability is 1. Assume that the error detected is a single error. The error may

be a key. a key check symbol. a count or a pointer. For the key or key check symbol error. diag-

nosis and correction are performed using the procedures for product codes (17]. For a count error.

S all the keys and key check symbols will be correct, hence counting the non-null keys will regen-

erate the count.

For the pointer error. if the erroneous pointer is located at the header node, it can be corrected

S by simple comparison because there are 2m+1 ; 3 identical pointers in the header. Otherwise.

there are two cases: detection by a forward move and detection by a backward move. Assume that

the error has been detected during the forward move from N to NMV following Pj. The LCED

procedure supplies the values of the four detection locks (Table 5a). and three error indication

values generated by a node access routine, NAprW. NAj, NAMv, that indicate out-of-bounds pointers

or pointers that do not point to logical pointer boundaries, when used to access NPM. N and NMv.

respectively. There are nine possible errors: 1) Ap. error. 2) PP... error where P"V, is the

pointer from NP.. to N1. 3) A, error. 4) P 14error,5) P, error for 0 4. s 4, 2m and s ;d j. 6) Vi

error. 7) Amy error. 8) Pmv.t error for 0 4. t 4 2m, and 9) VMv error. To distinguish the nine

errors. the seven-tuple syndrome (LI. L2, L3. L4. NAP,,. NA. NAmv is constructed (Table 5b).

For the error-free case. the syndrome will be (True. True. True. True. True. True. True). There are

two cases of identical syndromes for different errors. In each case extra nodes are accessed to com-

pletely diagnose the error. The nodes N' are accessed by following all the pointers PMv., from NMv

to distinguish a PM.v, error from a Vmv error. Ny is accessed by following P~o0 Pi.PU • -•Pi,9V i

to distinguish an A.. error from a V, error or a Pi, error. The latter two errors are distinguished

%II .7
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Table Sa. Detection and Diagnosis Locks for Forward Moves
in the VBT using W3.

Detection Locks
Li Amu ?= P1_09.. OP, 2NVII

L2 A 1 7= Psk 0 9 ... •Pwy 2,,GVy
L3 A, ?= P_ _ __,_

L4 Am -?=-- Pi__
- MV Diagnos Locks

- * MV

L5 (AMv.t ?= Pt .o... OP GV1) Access N% via Pmv.t for 0 t t 2m

_L6 A,7 Py "  Access Ny via P, 9-.. DPIGVI

L7 i(Aj ?= P2.o ' ... Access NZ via Pi, forO K s , 2m and s j

Table 5b. Error Detection and Diagnosis Syndromes for Errors Detected
by Forward Moves in the VBT using W 3 .

error LI L2 L3 LA NA NA NAvy L5 L6 L7
= = =11 _____ __

F T T T T T T - T
.Pe. T T F T T T T - - -

At T F F T T T T - - -

PI.J F T T T T T F - - -

F F T T T T T - - -

F F T T T T F - - -

P, (s j) F T T T T T T - F F
V, F T T T T T T - F T

AwT T T F T T T- - -

PMv, T F T T T T T F - -

Vv T F T T T T T T - -

by accessing the nodes N- by following all the pointers P,, from N1. Once the error has been diag-

nosed, correction proceeds as follows:

1) A., error: compute Ap, from P,.oQP,.jQ ... OP zV, . from which A,,.

can be calculated.
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2) Pp,.. error: correct value is A1.

3) A, error: correct value is Ppn,.,-

4) Pij error: correct value is AMy.

5) PI, error: correct value is Apm,)PI.o .. • p1 .. 1 Gpj.'+Q ... pI,,@VI.

6) V, error: correct value is ApP. .PO t' ... Gpi.2,.

7) AMy error: correct value is Pij.

8) PMVt error: correct value is A1j.PMV.0Q ... Q)PMv.t_-1PMv.t+1Q ...

@'PMv', QVMv.

9) VMV error: correct value is A 14 PMv.O9PMv,1e •••Pv.,.

Assume now that the error has been detected during a backward move from N to NMv fol-

j lowing P.oQP1.Q . P1,,V,. The LCED procedure supplies the values of the four detection

locks (Table 6a). and three error indication values generated by a node access routine.

SNAaM, NAMv, NA, that indicate out-of-bounds pointers or pointers that do not point to logical

pointer boundaries, when used to access N.... NMv and N,. respectively. There are eight possible

errors: 1) A.. error. 2) P. error where P... is the pointer from N... to NMV. 3) Amy error. 4)

PMV.t error for 0 4 t 4 2m. 5) VMv error, 6) At error. 7) P,.j error for 0 4 j 4, 2m. and 8) Vi error.

To distinguish the eight errors, the seven-tuple syndrome {Li. L2. U. L4, NAnt. NAMv. NAJ) is

constructed (Table 6b). For the error-free case. the syndrome will be (True. True. True. True.

True. True. True). There are two cases of identical syndromes for different errors. In each case

extra nodes are accessed to completely diagnose the error. The nodes N J are accessed by following

all the pointers P.J from N, to distinguish a Pu~j error from a V error. Ny is accessed by following

P.t.o9PI . "".=z,@V. to distinguish a P.... error from a VMv error or a Pv~t error.

The latter two errors are distinguished by accessing the nodes N z by following all the pointers

P%. from Nv. Once the error has been diagnosed. correction proceeds as follows:

Or1

.4l



27
J.

1) A,. error: compute A ,,, from PMv.oQPmv.jG ... QPMvZQVMv, from

which A.. can be calculated.

2) PA.t. error: correct value is AMy.

Table 6a. Detection and Diagnosis Locks for Backward Moves

in the VBT using W 3.

Detection Locks
Ll A,..,_ ?- Pm, o0" .. OPmv,,GV,%f,
L2 A~mfv ?= P, 0"... _P,2,V_

U Amy ?= Pov__

L4 Ai ?= Pvm _

Diagnosis Locks

L5 Il (AI.J ?- PIo... OPIQ,.AVI) Access NJ via P1j for 0 j 2m

L6 A...T= P y, Access N via P,, 0" - - OP,,OV, 1 Ay,
MV

L7 1" (AMv~t ?= P .o'... Pz",oVz) Access N' via PMv.t for 0 4 t 4 2m -

two

Table 6b. Error Detection and Diagnosis Syndromes for Errors Detected

by Backward Moves in the VBT using W3 .

error LI L2 L4 NA NA NA L5 L6 L7

At T T T T T T - - -

P T T F T T T T - F -

A T F F T T T T -

PMv.t T T F T T T T - T F
T T F T F T T - T F

VMV T T F T T T T - T T

T T F T F T T - T T

A, T T T F T T T - - -

PiA T F T T T T T F

V. T F T T T T T T

VS
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3) AMy error: correct value is P....,.

4) PMv.t error: To correct the error in PMv.t. first access the headers of the struc-

ture. Next, move forward, accessing nodes No . N1 . .... N, , performing W 3

LCED and correcting single errors with 0(1) LCEC. until P.. = AMy. Then

the correct value of PMV.% is AkPMv.0o ... PMV.t-1PMV.+i*

GPMv.2, @VMv "

5) VMV error: To correct the error in VMv. first access the headers of the struc-

ture. Next, move forward, accessing nodes No. N I. . N,. performing W 3

LCED and correcting single errors with 0(1) LCEC. until P,- A.Y" Then

the correct value of VMV isAksP,0*PMvo G .. ••PMv . MV-

6) A error: correct value is PMv.-

7) P4 error: correct value is Asv.,GP.o6 • PiJ_.S.PijO11 ... P1 ,'QV.

8) V, error correct value is Afv.tQP.oQP.j1  ... P . 0

The robust B-tree [3] presented by Black. Taylor and Morgan performs double error detection

or single error correction in 0(n) time. and requires 2m+3 extra fields in each node of an order-m

B-tree. Taylor and Black have also developed the LB-Tree [10] which is locally correctable, in that

it can correct many single errors if they occur in separate substructures. However. in order to ver-

ify a pointer. one level of nodes must be traversed, and to correct a pointer, all the levels above the

current level must be traversed. Hence. double error detection and single error correction require

O(n) time. and 2m+5 extra fields in each node of an order-m B-tree are required. In comparison, the

advantages of the VBT are as follows:

1) Double pointer errors can be detected in the VBT using an 0(1) LCED pro-

cedure.

2) Single pointer errors can be corrected in the VBT using an 0(1) LCEC pro-

cedure for an error detected during a forward move. or using an 0(log,.n)

Nor % V t. . a '''*..
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LCEC procedure for an error detected during a backward move.

3) The VBT requires only m+4 extra fields in each node.

4) The virtual backpointer facilitates backward traversals of the VBT. which can

then be used to enhance performance.

IV. ANALYSIS AND IMPLEMENTATION OF A CONCURRENT

AUDITOR PROCESS

The Concurrent Auditor Process (CAP) is an on-line process for error detection and correction

that runs in parallel with user processes accessing a database. It is used. in this case. to perform

data structure error detection and correction for the user proces. and allows concurrent access to

S structures being checked to reduce the system performance degradation due to error detection.

Koved and Waldbaum have developed an auditor program that provides detection of computer

subsystem failures (18]. based on Waldbaum's concept of the auditor program (19]. Taylor. Mor-

. gan and Black have suggested the use of an audit program to periodically perform error detection

and correction in data structures [1]. However. little analysis has been performed on the

S effectiveness of such an audit program. This section presents an analysis of the effectiveness of the

CAP and presents measurements of the CAP's effectiveness in a Sequent Balance 8000 multiproces-

sor implementation using a database of VDLL.

The CAP described here accesses structures more frequently and uniformly than user

* processes to reduce the latency of error detection. Also. the CAP performs error detection in

Checking Windows of higher cost than those used by user processes. to reduce their performance

X degradation. For example, if the database is composed of VDLL or VBT instances, user processes

may perform single pointer error detection in W2 with less computation cost. while relying on the

CAP to detect the less-frequent double pointer errors in W3 with more computation cost. The

effectiveness of the CAP is determined by its increase of the mean time to failure (MT F) of the
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* system. Ideally, a large increase is achieved with little degradation of user process performance.

Hence, the CAP permits user processes to access structures being checked as long as they do not

insert or delete nodes from the CAP's current Checking Window. Expressions are derived to deter-

mine the MTTF in a multi-user. n-process system with and without the use of the CAP. This is

followed by the results of an implementation of the CAP using a VDLL database.

A. Andyzis

In a multi-user, n-process shared-database environment, assume that the CAP performs error

S detection in W3 and that user processes perform error detection in W2 . The pointer errors can then

be divided into three classes: E . El and E2 . Eo errors are those which can be detected by a user

process or by the CAP. E, errors can be detected by the CAP but not by a user process. E2 errors

i can be detected by neither a user process nor the CAP. Suppot the time for an E, error to occur is

T,. the time for a user process to encounter that error is TU. and the time for the CAP to detect an

error is TA. For the purposes of analysis assume, in a given time interval, both the number of

errors that occur and the number of accesses to a particular node are random variables following a

Poisson distribution. Then, random variables T 4 TU and TA follow an exponential distribution

with mean time ,. 0 and a. respectively.

LEMMA 1: The probability of an El error causing any of the n processes to fail in the presence

of the CAP is --j

PROoF: For a single process. the probability to fail can be derived using basic probability

theory:

-a

Prob(TA>Tu) f Prob(TU=x)Prob(TA>x)dx = f -e d x = .

0 0

% N

'V ~ ~ ~ ~ ~ ~ ~~~SK * ,.'... e ~ *'Y j ., '\lf.'.
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Therefore, the probability of any of the n processes failing is 1- 1-

THO.EM 7: Without the use of the CAP. MTTF =y' + 3. and with the use of the CAP.

M rCAMmin +/

1- I

INoor If no CAP is used. MTTF = minCE(Tp . ECTE)) + E(T u ) = min(y'. -v,*) + =

v%' + 3. where E(X) is the expected value of random variable X.

In the presence of the CAP. the determination of whether an error will cause a failure can

be modeled as a Bernoulli trial with parameter p 1- Hence the MTTFC, follows a

geometric distribution with mean -, where n' represents the effect of n user processes and the
P

CAP. 3

If E, and E2 errors are formed by the accumulation of F0 errors. then T m and T are propor-
,112

tional to the access frequency. Thus vy = n-. V2 = n 2 and V2 y- This gives, for the

without-CAP case. N = In + nl + P. In the with-CAPcase. since the CAP is - timescasea

faster in checking the data structure than a user process. = -n + l,. E2 errors will retain an

exponential distribution but with different mean ' = 2 For this case the theorem gives

MT w minIn IYI +

p

*P ~~.- -



32

1 1
EXAMPLE 4: Suppose 'y = 100 hours. y2 = 10.000 hours. € = 1 minute. and 5 user processes

are active on the system. Without the use of the CAP. MT= % 500 hours. However, by using the

CAP. and with a = 10 seconds, MTTF is increased to MT'TFc" =2050 ho urs. -

If a is small enough (i.e.. the CAP is fast enough),. the M term can exceed the

iP+.i~ em.I ti cs. l2~1 + P-v+ This effectively eliminates the chances of

a user process failure due to El errors, which occur more often than E2 errors.

.A a-

A model database of VDLL was implemented in C and run on a Sequent Balance 8000

shared-memory multiprocessor system with six CPUs. Single random errors and worst-case double

errors (called 'double cooperative errors.0 where a second error masks a previous error) were

injected into the database one at a time. Error detection was accomplished by one of four user
processes. the database manager. or the CAP. each of which performed either W2 or W3 checking.

The database manager serviced all update requests. and the CAP operated in the idle time of the

K. database manager. to reduce performance degradation. Databases of 50. 100. 500 and 1000 nodes

were used in the simulations. Each database consisted of eight VDLL instances: six non-empty

instances, one empty instance. and a free list. To model the locality of user process database access,

each user process performed approximately 809%1 of its operations (composed of 75% searches. 12.5%

insertions and 12.5% deletions) within one VDLL. and the other 20% in a randomly selected VDLL.

LFor each single or double error injected. the detection latency and the number of operations

completed in that time were measured, for five different combinations of user process LCED/CAP

LCED (Table 7). The mean error detection latencies for the five combinations, applied to databases Z

'V % %
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of 50, 100. 500 and 1000 nodes. are shown in Table 8. Table 9 shows by what factor use of the

CAP can decrease the error detection latency. The following observations can be made based on the

S results of the implementation:

1) Single and double LCED can be performed on the VDLL in 0(0) time.

2) The use of the CAP significantly reduces the error detection latency of both

single random errors and double cooperative errors.

3) The CAP is more effective in reducing the detection latency of single random

errors as the size of the database increases.

Using the analysis results of the previous section. the first observation shows that y" 5 y'-

Thus from Theorem 5. the MTTFc" > 5XMTTF. This clearly shows the utility of the CAP in

increasing the MTTE of the system.

V. SUMMARY

In this paper. we have presented a new technique for local concurrent error detection in linked

data structures that can achieve 0(1) error detection in a variety of data structures. This tech-

nique uses the concept of a Checking Window to define the locality in which local concurrent error

detection is performed and also to determine the associated cost of the locality. The virtual back-

J pointer was introduced and used to define two new data structures. the Virtual Double-Linked

List. which incurs no storage overhead, and the B-Tree with Virtual Backpointers of order m.

which requires m+4 extra fields per node. It was shown that double errors could be detected using

a local concurrent error detection procedure in 0(I) time for both structures. In addition, those

errors detected during forward moves were shown to be correctable using a local concurrent error

correction procedure in 0(1) time. Correction of those errors detected during backward moves was

shown to be. in worst case. O(t). Finally. an analysis and implementation of a concurrent auditor
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U Table 7. Combinations of User Process LCED and CAP LCED.

Case User Process LCED CAP LCED
1 W, None
2 W2  w 2

3 W2  W3

4 W 3  None
L5 W3  W

Table 8. Mean Error Detection Latencies.

Error Database Number of Case
Size Samples _1 2 3 4 5

Single 50 10000 77 8 7 64 7
Random 100 10000 144 11 10 127 10

Error 500 1800 4884 147 134 5052 140
1000 200 29087 372 308 31033 312

Double 50 10000 72 7 7 39 7
Cooperative 100 10000 60 13 10 57 11

Error 500 1800 420 54 48 447 50

Table 9. Detection Latency Reduction Factor Through Use of the CAP.

Error Database Cases Compared
Tye Size 1:2 1:3 45
Single 50 10 11 9
Random 100 13 14 13

Error 500 33 37 36
1000 78 94 99

Double 50 10 10 6
Cooperative 100 5 6 5

Error 500 8 9 9

r 

M
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jp ocess in a shared database using the virtual backpointer technique was shown to significantly ,

reduce the error detection latency. ..
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