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ABSTRACT

The practical applicabiiity of randomization tests is discussed. The randomization
test for two independent scmples 1s the specific test examuned in both hypothesis and
significance testing contexts. This test has optimum thcoretical properties as a
nenparametric procedure for comparing the means of two populations. However, the
calculations that are required to actually use the test in practice can be extremelyv time
consuming. Using the randcmization test for two independent samples to conduct a
signiticance test is shown to be a #P-complete enumeration problem. This implies that
a computationally eflicient wav to perform an exact version of the procedure is not
itkelv to exist. Two approximate wavs to perform the randomization test are studied
with the aid of a simulation. One method uses a normal distribution to approximate
the actual randomization distribution and the other method is the usual two sample t-

test. The t-test 1s found to vield results very close to those that are obtained from the

exac: randomization test under the ccnditions studied.
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X I. INTRODUCTION
Randomization tests have long been recognized as powerful nonparametric
::: statistical metheds since the introduction of the principal ideas by R.A. Fisher in 1935,
. Even when compared to the most powerful parametric tests such as the t-test,
. randomization tests perform extremely well. Theoretical work since Fisher's paper has
\ indicated that randomization tests may be the best methods to use in many situauons
:ij mvolving significance testing or tests of hypotheses. This 1s partcularly true if
. assumptions about the underlving probability distributions are difficult to establish.
Despite their strong theoretical basis, however, randomization tests have not
v been in widespread use. The major rcason thev have not been commonly used is
= because they are very tedious to perform. Even when sample sizes are relativelv small,
the computation time required to perform these tests can be significant. While this is
iess of a problem with modern computing equipment, there sull exists a point where
) the size of the data sets 1s large encugh to make the procedures :mpractical. This point
1s reached rapidiv due to the inherent combinatorial nature of the algorithms used to
' perferm the tests. Vast unprovements in computational speed have onlv a marginal
S effect on the size of the data sets that can be handled. Approximate randomuization
;‘{j tests have been developed because of these difficulties, but analvtuic results describing
f'zj the errors involved with their use are limited. Exact analvtic results are difficult to
. obtain because the form of the underlving distributions is not known.
- This thesis addresses the issue of practical implementation of randomization tests.
j The randomization test for two independent samples is the specific procedure chosen for
- the entire study. This procedure is representative of randomization tests in general. A
.' compleie description of this test. along with each assumption needed to ensure its
';‘ vahdity is given first. Also included is a summary of some of the important theoretical
work that has been done since the test appeared in the literature. Next, the methods
- available for performing an exact version of this test are shown to require so much
. computation time when the length of the input data sets increases that the methods
.: become impractical on even the fastest computers. The mathematical framework
:r:: necessary 1o prove this result is fullv developed using concepts from the theory of #P-
:r compiete enumeration problems.
A
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Finallv, an approximate method for performing the randomization test for two
independent samples is described. This method is compared to the exact test and the
standard t-test, using the same sample vaiues for each. The samples are generated from
several distributions through standard simuixtion routines and the performance of each
test o terms of signiticance level und average power is recerded. The resuits from this
cimuiation are discussed, and recommendations dre miade as to which test should be

used and when.
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II. RANDOMIZATION TEST THEORY

A.  THE RANDOMIZATION TEST FOR TWO INDEPENDENT SAMPLES

1. Randomization Concept

Tue basie wdea of randmmizarion was intreduced bu Fisher in 935 TRetl 1
Rundomization mmvolves taking precautions in the design and wctual performaence of un
exrenimient 1o ensure the validity of stutistical procedures used on the resuining Jduta. A
crliomized experiment 18 one in which treatments are randomly assigned within cach
Prock, Fisher aroued thato on the hasis of a randonuzed experniment, it 1s possible to
conduct @otest o srniiicance without making any assumpuons about th o distribution
vecdistnipanon free rrocedures 'Refl 20 pl 950 The idea of using a randomizaiien test 1s
to perfurm g hepethosts or siznficance test nvelving two or more samples from
populations whese distrihutien funcuens are unknown.  The hypotheses of interest

are the Drm ool testing whether or not these distrihution functions are ail
vl eneept for possihiv ditferent locstion parameters imeans, for examplen
2. Test Method

A randenuzaiion st for twvo independent samples was {irst propoced by Pitman
~ 3 The purpese of this test is to compare the means of two populations. The
~rocedure iy to dray two random sampies XU XS L X and YL YL Y, o sizes n
nd o respectively from two independent populations X and Y. Fellowing the
doseription in Conover [Refl 40 p. 328, independence wurnin each sample 1s assumed. as
wei s independence berween the two samples. Also assumed 1s that either the two
ropulation distribution functions are identical, or one population has a larger mean
thun the other. Without this second assumption the test 1s stll valid but might lack
consistency.  The hvpothesis to be tested 1s that the mean of the population from
which the X's were drawn (W, ) is the same as the mean of the populaton from which
the Y's were drawn (W ). The (nwo-tailed) alternative is that the means are not the

sanmie. In other words, this is equivalent to testing

H(J: llx = uy
vs. Hyop =z p
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N where H, denotes the null hypothesis and H, 1s the alternate. This two-tailed test is the
Fm -
RN . . . .
,;\\ specific form of the randomization test that will be referred to henceforth.
? An appropriate test statistic that can be used is just the sum of the X
o observations:
Ty
s
o n
o T, = ¥ X (eqn 2.1)
) =
", 1= 1
nt
o : . . .
i The critical (or significance ) level of the test is denoted @. This number is equal to the
o5 probabiiity that the test staustic could have produced values identical to or more
exireme than the originally observed value TO. To find a, the null hypothesis Hj is
Rl assumied to be true; that is, the X and Y populations are identically distributed. 1f Hy
o is true, then the X's should have no more of a tendency to be low or high than do the
o Y s, Essenually, the X's and Y's could be thought of as just one collection of n+m
oo
® observaticns {rom the same distribution, and each selection of » X observations
P shouid be considered equally iike'v from the n+m observations available.
The significance level @ is obtained by counting the number of wavs n of the r
- n—m cbservations mayv be selected so that their sum is equal to or more extreme than
.. . . ~ . . .
{ the criginally observed value of the test statistic TO. More extreme means smaller if T
g is in the lower tail or larger if T is in the upper tail of the distribution of all possible
e vaiues of the test statistic using the observed data. The number of wavs is doubled,
e . . . ) .
N because the test 1s two-tailed, and divided by (%;”) to vield a. [Ref. 4: p. 329]
D) In the case of hypothesis testing. a critical value, say a;, 1s specified beforehand
__::" and the null hypothesis is rejected if @ < @ If significance 1esting is being performed.
) . . . RN . . .
\-_::, the interpretation is somewhat different. In this case, there is no pre-specified value aj.
) . . L :
k) The signiiicance level @ is computed and if it is small, say less than .01, then either the
a8’
® cbserved value of the test statistic happened to be a rare event or the basic premise
' -' v . . . . . . .
1S that the X's and Y's are identically distributed is unlikely. The smaller @ is, the more
L . .
e compelling is the latter event.
7
ol B. THEORETICAL PROPERTIES
@9

l. Efficiency and Asymptotic Relative Efficiency

e

The term efficiency is applied to statistical tests when comparing the sample

K,
[ "! .
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sizes required by two different tests that give comparable results. The power of a test is

-

defined to be the probability of rejecting the null hypothesis Hy when it is false. The
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power of a test depends upon facters such as sample size and the parucular alternate
hypothesis H, chosen. Suppose two tesis have the same level of significance and
power and they can both be used to test a particular H against a parucular alternate
H,. Then the test requiring the smaller sample size 1s preferred. because a smaller
sample size means less cost and effort is required in the experiment. As indicated in
Conover [Ref. 4: p. SM], the test with the smaller sample size is said 1o be more efficient
than the other test.

Suppose T, and T, represent two tests that could be used to test a given H,
against a given H,. Suppose further that either test, if used, would vield the same value
of @ and the same power characterisucs. Then. adopting Conover’s noctation
{Ref. 4 pp. 88-89], the relative efficiency of T, to T, is the rato n, np, where 7 and n,
are the sample sizes required by the tests T, and T, respectvely in order fer each to
vield identical resuits.

The relative efficiency of two tests depends on the particular values chosen for
a and power and it also depends on the particular alternate hypothesis H, chosen if H,
is composite. A\ composite hvpothesis 1s one that does not specify a probubility law
compietely. It would be more uscful if an efficiency measure could be developed that
does not depend on these quantities. Such a measure can be developed in the following
way. Consider two parallel sequences of tests constructed so that as n; and n, are
increased, the significance level and power of each pair of tests remains the same. To
accomplish this, two things would be required. First, as n; is increased, the power of
cach test in the first sequence would change if the alternate hypothesis H, were kept
fixed. To Kkeep the power constant, a different H, could be selected each time. The
values of @ and power would then remain the same from test to test in the first
sequence. Second, for each value of n,. a value of n, must be calculated so that each
test in the second sequence has the same values of @ and power as its corresponding
test in the first sequence under the alternative hypothesis chosen. Then there is a
sequence of values of relative efficiency n, n,. one for each pair of tests in the original
sequences. 1f n, n; approaches a constant as n; becomes large. then that constant is
called the asymptotic relative ejficiency (A.R.E.) of the first sequence of tests to the
second. if the constant is the same for all values of @ and power.

The A.R.E. is one measure of a test’'s performance. For many nonparametric
tests, the A.R.E. 1s less than 1.0 when compared to the corresponding parametric tests

in situations where thev are appropriate. This implies that, in general, a nonparametric
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‘-‘_:j procedure will require a larger sample size to achieve the same results as a parametric
procedure if the basic assumptions of the parametric method are valid (e.g., normality).
° tHowever, according to Conover [Ref. 4: p. 327], the A.R.E. of the randomization test is
,' :-:: 1.0 when compared to the most powerful parametric tests in some situations. The 1
f:f AR.E. mav be much higher than 1.0 if the basic assumptions of the parametric test are
nct met. Thus a randomization test should be at least as efficient as a parametric test 1
;’ and ceuld be more efficient on the basis of asvmptotic relative efficiency. Note that, on
.j: the busis of relative ¢fficiency (not asvmptotic), the randomization test might be better
:::: or worse than a parametric test depending on the circumstances. Generally, though.
“"-;ﬁ asymptotic relative efficiency is a reasonable and widely accepted measure of a test's
‘ perrormance.
:: 2. Unbiasedness
.fj: The definition of an unbiased rest is a test in which the probability of rejecting
\. a talse Hy is always greater than or equal to the probability of rejecting a true H,
‘.1 [Ref. d: p. $6]. Another wayv to state this is to say the power is at least as large as the
ﬁ‘:- level of significance. This is obviously a desirable propertv to have; a test should be
é" more likely to reject Hy when it is false than when it is true. The randomization test
'.:‘_: nas been shown to be an unbiased test in Lehmann and other sources [Refs. 5,6]. ]
‘ ) 5. Uniformly Most Powerful Test
N The power of a test, denoted by 1 —f, is the probabilitv of rejecting a false ]
,‘_ null hypothesis. In the case of a simple alternate hypothesis that specifies a probability
5::: law completely, this is a unique number. However, in the case of a composite alternate
. hvpothesis, the power i1s not unique. The alternate hypothesis being considered here,
-_f_::: Hy:m = p . is composite since there are an infinite number of possible probability
__ functions irﬁplied bv the inequality. When the alternate hyvpothesis is of composite
_\‘ tvpe, power is represented by a power function, where the value of power depends on
". the parameters of the alternate probability laws implied by H,. Specifically,
2
i ?;: Power = P(Reject H| 8) (eqn 2.2)
.r_:.
e
'S Where 8= p - p. The power function for a two-tailed test of Hy vs. H| has a
! ,. characteristic 'L"-s'hapc centered at the value p - py= 0. |
"‘S: The size of a test 1s defined to be the maximum probability of a Type I error
- (rejecting the null hypothesis H, when it is true) over all values of parameters for T
o
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‘ which Hj is true. Among all tests which have size @, the best test (if it exists) is that
I test which has the largest power over all values for which H| is true. Such a test is
K called the uniformi{y most powerful test of size @ [Ref. 7). Graphically, this implies the
3
o power function of a uniformlv most powerful test will pass through the point @ when
1%g) "
g }f Ho is true and will lie above the power curves of all other possible tests of size @ that
.~ £ .
_“:4 couid be used
L]
k.- In the case of the randomization test for two independent samples. Oden and
! Wedel [Ref. 5: p. 520] have stated the following for the case of a one-sided alternative
"\ H,: "Among all unbiased tests for testing H, against H, the test is uniformiy most
A\
A : powerful for the subclass of H, with elements ( f, g ) such that In ( fg ) is linear,
:0 including e.g. the case of 'normality and equal variances’.” The extension to a two-
N sided alternative is readily apparent. Here, f and g are one-dimensional probability
-~ . - . . . .
- density functions that belong to the class of functions associated with H,. An example
> of densities / and g that satisfy such conditions would be two standard exponential
- density functions with parameters ;'1 and A,, respectively.
o This is a very significant result. The fact that the randomization test for two
- independent samples is the uniformiv most powerful test against a certain subclass of
n lternatives 1s strong theoretical justification for use of the test in many circumstances.
. . . . . .
. When the other desirable properties of the test mentioned previously are also
‘ considered, the implication is that the randomization test should be preferred over any
o other method of comparing means unless underlying distributions can be clearly
.- justified.
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III. COMPUTATIONAL ISSUES

A.  COMBINATORIAL NATURE OF THE RANDOMIZATION TEST
1. Rapid Growth of Combinations

Even though the randomization test for two independent samples has been
shown to possess many desirable properties, the test is not encountered veryv often in
practice. The basic reason is the amount of computation time required to perform the
test. In the previous chapter, the test method was shown to be essentially a counting
procedure involving combinations of the data. The number of combinations possible of
n-+m objects taken » at a time 1s (”;m). and this number grows at a substantial rate as
n and m are increased. The following table illustrates the growth of combinations for

some selected values of n and m:

1

| TABLE 1

{ COMBINATIONS

|

, n m (n;m)

‘ 2 2 6

| 3 3 252

: 7 S 6335
9 10 92378
1l 12 1332078

| 13 20 33237943160

There 1s no known way to perform the exact randomization test for the
general case other than enumerating all possible combinations of the data (or at least a
fair proportion of them) and comparing cach one to the original test statistic Ty In
certain special cases, more efficient methods do exist. For an example of such a method
see Soms [Ref. 8]. It is possible to reduce the number of combinations that need to be
considered through the use of more intclligent enumeration schemes, backtrack scarch
or other techniques. However, even though considerable savings could be achieved. the
number of combinations remaining continucs to grow at a rate proportional to total

enumeration. Thus the computation time required to perform the general

randomization test is a function of the number of combinations involved.
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N
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g— Py
!
o4 2. Computer Time Considerations
ANy . . : :
-\.j As an example of how rapidly enumeration becomes untenable, consider a
&
'_"« computing device capable of generating combinations of data sequenually and
el comparing each one to a fixed value. Assume that each combination could be formed.
SAS - - : s ~
<o compared, and counted 1n a time span of | microsecond (this is very fast, even for a
SAY . o . . .
- lurge computeri.  Also assume 1t 1s desired to use this device to perform the
o ) . . .
randomization test on samples of sizes up to #n=30 and m=30. Such sample sizes are
' . . . . .
P verv comumon in practice. The following table gives the total time that would be
\) *. . B . -
:3: required to enumerate all combinations of the form (") using this device. For
. s simplicity, only equal sample sizes are included (n = m):
&n
.
) i‘
R ! TABLE 2 ’
\‘j ; COMPUTATION TIMES 1
N3 :
°® ! n or m Approximate Time Requirement i
Py 5 00023 seconds
e : 10 .18 seconds
S ' 15 135 seconds
! 20 38.3 hours !
b ; 23 4.0l vears ‘
- | 30 37.3 centuries 1
( ' I
2 1 "
{ Even if the number of combinations could be reduced by a factor of 100 through
'!.,’ . . .
-f‘.{ careful enumeration or backtrack search as mentioned before, the time requirements
) would remain virtually untenable. Further, if a new computing device were installed
o that performed the calculations 1000 times faster, our ability to process the data sets
=
F Y . .
e would be increased only marginally.
e . .
e The examples above demonstrate that the direct method of performing the
A o : : .
° randomization test for two independent samples is not efficient in any reasonable sense
:-'_’,.: of the word. As sample sizes increase, the inefficiency of the method makes it
I"‘ . . . . . . .
IS unsuitable for practical use. In the next section, it is shown that 7o efficient algorithm
o
L% . . . . . . .
o is likely tc exist for performing this test. To define what is meant by an ¢fficien:
vy , . ; :
@ algorithm, some ideas from the theory of NP-completeness are introduced.
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B. ALGORITHMIC EFFICIENCY AND NP-COMPLETENESS
1. Basic Concepts and Terminology
To begin a discussion of algorithmic efficiency, several basic terms must be
defined. An excellent treatment of the subject is given in Garev and Johnson [Ref. 9],
ind the terminology used there is adopted herein. Following Garev and Johnson. an

&gorichern s o step-by-step procedure used to solve a problem. A problem is

.4 gencral question to be answered, usually possessing several parameters, or
free varables, whose values are left unspecitied. A problem is described by giving:
el a general descripuon of all its parameters, and (2) a statement of what
properues the answer, or solution, 1s required to satisfv. An instance of a problem
ts obtained by specifving particular values tor all the problem parameters. . .. An
algorithm is satd to soive a problem IT if that algorithm can be applied to anv
instanee [ of IT and 1s guaranteed alwavs to produce a solution for that instance
I8

To show the use of the above terminology. consider two classic problems from

graph theerv. The first 1s due to the [9th century mathematician William Rowan

—

fumulton. The preblem is to decide if an arbitrary graph consisting of a collection of
vertices and edges has a path that passes through each vertex exactly once. Such a
path, 1f 1t exists. 1s known as a Hamdtonian path. The parameters of this preblem

consist of & finite set 17 = {v,, v, .. v ; of vertices and a set £ = fe|. ey el of

2 i
edges between pairs of vertices. /A solution is an crdering < Vire Yooy o ViR of
the vertices such that (vi; v 1,) € E for 1 S1<K and cach vertex is visited exactly
once. An instance of the problem would be obtained bv giving specific vertices and
edges (reterenced to a coordinate svstem, for example).

The second problem. due to Euler. 1s veryv similar to Hamiiton's problem. It
can be stated using the same sets as above. except that in this case, a path is sought
which traverses each edge in the graph exactly once. Such a path is called an Eulerian
puatt. Both Hamlton's problem and Fuler’'s problem can be solved bv exhausuve
tabulation of all possible paths, checking cach one to see if it has the required
properues. This approach has the same problems as compiete enumeration of
combinations in the randomization test. The number of possible paths grows in a
simlar fasmon, and the aigonthm quickly becomes too inctficient for practical use.

The important distinction between these two graph theoretic problems 1s that

there 18 a »nuch casier way to solve Euler's problem than exhaustive tabulation. Fuler

showed that 2 path traversing each edge of a graph exactlv once must exist if the graph




meets wwo condions: ( 1y the wraph must be connected and 2y there must he an even
number of edges that meet 4t any vertex, with the exception of the starting und
finshing points of the path. The computation time required to check this s refated 10
the number of vernces and edges, not the number of possible paths, An aigonithm
using this approach is practeal even when the number of veruces and edges 15 vers
large, despite the fact thut the number of pessible paths mav be astroncmical. In the
case of Huamulton s probiem. however, no such simple and ellicient methed of solution
nas crer been found. Ax discussed by Lewrs and Papadimitriou [Ref. 100 po [02], the
most ctficrent methods availabie today are fundamentally no better than exhaustive
Tahuiation.

An algerithm that operates efhicently’ could be viewed as one thut uses a
miaimum amount of computer resources to arrive at the <oiution to a preblem.
Cemputer resources include things such as memorv space, CPU ume, und 10
tInput Outy o capacity. However. since the critical resource 1s usuallv time, the ‘most
cfficient algorithm is normally the fastest one. The tme requirements of an algorithm
cun be expressed in terms of a single vanable, the 'size of a problem instance.
Intormally, this can be thought of as the amount of data that must ke input to
describe a given instance. Examples would be the number of vertices and edges in
Hanulton's problem or the number of X and Y observations in the randonuzation test.
The formal way to characterize problem size views the situation from the standpoint of
actual entry into a computing device. Problems must be input in a single finite sining of
symbols chosen from a fixed set, or mpur aiphaber. An encoding scheme must be
specified, which maps problem instances into the svymbolic strings describing them. The
input lengrh for an instance of a problem is the number of svmbols required to specify
the instance under the given encoding scheme. As indicated in Garev and John<on
[Refl 9: pp.5-6], the input length 1s what 1s used as the tormal measure ot instance size.

The time complexity funciion for an algorithm expresses its time requirements
v giving, for cach possible input length, the largest amount of time nceded by the
algorithm to solve a problem instance of that size. This funcuon won't be well defined
uniess a particular computing device. input alphabet and encoding scheme are
spectfied. However. 1t turns out that these are relativelv unimportant factors. \What s

capertant is the ferm of the ume complexity function. The following discussion from

Garer and Johnson [Refl 90 p.o) introduces this idea:
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Different algorithms possess a wide variety of different time complexity functions,
and the characterizaticn of which ot these are ‘efficient enough’ and which are
too inetfictent” will ulwavs depend on the situation at hand. However, cemputer
scientists recognize a simple distinction that otfers considerable insight into these
matters, This 1s the disuncuion between polvnomial ume algonithms and
exponent:al ume algorithms.

2. Polynomial Time and Exponential Time Algorithms
A polynomial tme wgorithm 1s defined to be one whose time complexity

function can be bounded by a polvnomial. That is, there exists a constant ¢ such that
HING £ ¢ piN) (eqn 3.1)

tor ail wvalues of N20, where f{N) is the time complexity function. p(N\) is a
polvrnomual tunction of N, and N is the input length. An algorithm whose time
complenity function cannot be so bounded bv any finite degree polvnomial is called an
expronential tme algorithm [Ref. 9: p 6},

The distinction between these two tvpes of algorithms becomes important
vhen the input lengths become large. Polvnomial functions of degree k will evaluate to
be of the order NX. but exponential functions are allowed to have terms such as 2N or
N\& There 15 always a value of N bevond which exponential functions grow at a faster
rate than any polvnomial function. even if the polynomial is of degree 100. It is for
this reason that polvnomial time algorithms are generally regarded as being much more
desirable than exponential time algorithms. There are some notable exceptions,
however. As mentioned in Garey and Johnson [Ref. 9: p.9], the simplex algorithm for
linear programming has been shown to have exponential time complexity, but it
tvpically runs very quickly in practice. Garev and Johnson (Ref. 9: p.§] also observe
that "ume complexity as defined is a worst case measure, and the fact that an algorithm
has time complexity 2" means only that at least one problem instance of size n requires
that much time.” Examples of exponential time algorithms that run well in practice are
rare. Most exponential time algorithms are variations on exhaustive search or complete
enumeration, while polynonual time algorithms generallv exploit some fundamental
structure of o problem.

3. The Classes P and NP
Probiems for which only exponential time algorithms exist are intractable, in a

sense, because even fairly small instances may never be solved in a realistic amount of

20

TTT—




P
FRIL

PRALR ‘-._-
S B

.0

.'.._'. v e

et jare.
AT

»
«
s
.

—_—

XN
2’2" 2" "2%a

{ .
LN

g5

O
A
» & > ¥

"
L

i

N !, 4
’A l.l ‘.l‘

LN Y
R

?.
f,
0O

.-.
o 4
NP
R PIAMLTIS

A
b5 SIRNARE

v
*x
‘o' .‘\“\-. ,

]

ime. For those problems that have polyvnomial time algorithms. the polvnonuals
involved typicaily are not of a high order. and thus instances of practically any size can
be solved. It would be convenient if ali problems of interest could be placed into two
groups, those having exponentai time complexity and those having polvnomial time
<omplexity. Unjortunately, it 1s exceedingly difficult to prove that a given problem is
mntractadler that 1s, no polvnonual time algorithm can ever be devised to solve it. For a
sl number of problems it has been shown that exponenual time algerithms are the
oniy ones possible, but for most practical problems of interest, this has not been Jdone.

Those preblems for which polvnomial time algorithms are known to exist are
in & class denoted P. Euler’s problem is a member of P. In between this class and the
class cf provubly intractable problems is another class, denoted NP. Formal
definitions of these classes usually involve models of computation known as Turing
uachines. However, to gain an understanding of the class NP, the concepts of
nondeterministic cocmputation and polyvnonual time verifiability are most important.

A deterministic algorithm can be thought of as being composed of a
predetermined sequence of operations that do not vary each time the algorithm is used.
A nondetermunisiic algorithm introduces the possibility of randomness at points within
the procedure. A convenient way to view the operation of such an algorithm is to think
of 1t as being composed of two separate stages, the first being a guessing stage and the
second a checking siage. Given a problem instance, the first stage guesses some
structure. The second stage checks this structure in a deterministic fashion to see if it is
4 ~olution to the problem. A nondetermunistic algorithm is said to operate in
poivnomial time if there exists some guessed structure that solves the problem and this
structure can be verified by the checking stage in polvnomial time [Ref. 9: pp.2§-29].

The class NP is defined informaily to be the class of all decision problems that
can be ‘solved’ by polvnomial time nondeterministic algorithms [Ref 9: p.29]. A
decision problem is one that has only a yes or no answer; for example, “Does this
graph have a Hamultonian path?”. Most problems of interest can be carefullv phrased
as decision problems, so this is not overly restrictive. A nondeterministic algorithm
would solve’ Hamilton's problem in the following way: (1) an arbitrarv path through
the graph would be guessed, and (2) the path would be examined to see if it passes
through cach vertex exactly once. If the graph does have a Hamultonian path, then one
of the guesses will lead the algorithm to respond ‘ves’, thus solving the problem.
Hzmilton's problem is known to be a member of the class NP: this implies that step

2y above can be performed in polvnomial time.

21
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;fE:: It is very important to note that the word 'solve” as used above does ne mean
that a nondetermunistic algorithm s a realistic method for solving decision prebiems.

Ao This 1s a onlv theoretical concept. In fact, a hvpothetical machine using a !
:.:::' nondeternunistic algorithm is envisioned as having the abiiity to pursue an unbounded

:;i:' number of independent computational sequences in paraliel. Thus, in Hamilton's J
proolem. the jact that there may be an exponential number of possible paths to check

iy not counted. It is oniv required that. given a path, it can be checked in polynomiul

_::"__ ame. It is this notion of polvnomial time verifiability that the class NP is intended to

_‘:"_t cupture. Most importantly, as Garey and Johnson [Ref. 9: p.12, pp.28-29] point out,

- nonemual time venifiability does not imply polvnomial time solvability.

ol 4. NP Complete Problems

’ A simplistic wayv to view the class NP is to think of it as containing ‘hard’

_:::j nroblems: those for which polynomial time algorithms are not known, but neither can

J',' it be rroved that none exist. The problems in this class also share the important

. preperty that any one solution arrived at by ‘guessing’ can be quickly checked, even

-':J though there mav be exponentiallv many guesses possible. The class P contains "easy’

ﬁzj probiems in the sense that polvnomual time algorithms are known for them. ]
7 The relationship between P and NP is fundamental to discussions of

o~

algorithmuce efficiency. It can easily be shown that P2 NP. Following Garev and

-_" 4
LR -
o Johnson [Ref. 9: p.32}:
J',:.l
::-:: LEverv decision problem solvable by a polvnomial time deterministic algorithm is
W also solvable bv a polvnomial time nondetermunistic algorithm. To see this, one
.;- simply needs to observe that any deterministic algorithm can be used as the
. checking stage of a nondeterministic algorithm. If TleP, and A is anv polvnomial
N time deterministuc algorithm for I, we can obtain a polvnomial time
o nondeterministic algorithm for [T merely by using 4 as the checking stage and
gt 1ynoring the guess. Thus [TeP implies [TeNP.
2 It 1y widely believed that the inclusion is proper, that is. PS NP but PzNP. This has
L not been proven, but all evidence seems to stronglv suggest this is the case. This is of
s prime importance. because if P differs from NP, then the set NP —P would not be
s
' empty - it would contain intractable problems.
. . . . . . B o
Another concept central to the discussion of algorithmic efficiency 1s that of
.- rroblems of equivalent difficuliy. 1f several problems can be shcwn to be related. or of
% ) . . X )
S equtvaient Jditficultv, then results of considerable generahity and power can he obtained.
2 Reterring avain to Garev and Johnson [Ref. 9: p.13):
-
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The principal technique used for demonstraung that two probiems are related is
that of ‘reducing’ one to the other, bv giving a censtructive transformation that
maps any instance of the first probiem into an equivalent :nstance of the second.
Such a transtormation provides the means for converting anv aigorithm that
sclves the second problem into a corresponding algonthm fer soiving the first
probiem.

B

The important characterizauon here is nolvnomial nme reducididiry, that is, reductions
r - -

for which the reguired transformation can be executed oy a poivnomual tume algonthm.
A If one prodlem can be reduced to anctier through 1 poivnorual ume reduction. this
\“ . . B .
o ensures (nat any poivnomud. ume d.tnithm for the secoend preblem can be converted
T into a corresponding peivnomual ume 1gonthm for the first probier
o There i« a vunciasy of oromiems within NP othat has an impertant property:
everv protiemy in NP ooan be roiinomuiady recuced to one cf the problems in this
A
L subciass. The probiems an this sunciass are named VP-complete problems. The
s IMPECALIONS OF thig suDlase are :Lx.r~re;;:;;ng [T a:n one of the NP-complete problems
- can he soived with a penvnomuwl ume dlgonihim, then so can every problem in NP,
ry Also. if any prebiem in NP s intractable, then all the NP-complete problems must be
%~ . . . . . L . . . -
iy intractable. In a sense. the NP-complete problems are the hardest probiems in NP,
A picture representing the relatcnships detween the ciasses of probiems discussed so
far is given in Figure 3.1
L
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Hundreds of problems have been shxwn o re NP-lompiete since the first
such problem was identified by Stephen Coox n 1471 (the satstiability’ probiem of
Beclean logicy [Refl 9:p 13, p.38). The st of NP-complete problems includes
Huanulton's problem, many well known combinatorial probiems, and others {rom a

wide variety of Jisciplines. As more and more problems are added to the list, it appears

more and more Likely that P2NP and the NP-complete problems are trulv intractable,

\ but Little progress has been made toward either a preof or a disproof of this coniecture.
f::‘;:j As Guarey and Johnson conciude [Ref. 9: p.ldf, even withcut such a proof, the
:-}_.{ xnowledge that a problem is NP-complete suggests, at the verv least, that a major
: breakthrough will be needed to solve it with a polvnomial time algorithm.

3. #P-Complete Problems

So far the discussion of NP-completeness has centered around decision
problems with ves-no answers. In many cases. however, the real question to be
answered goes bevond simply whether a solution exists or not (ves or no). [t mayv be
important to find out how man; solutions there are. Then the problem becomes an
cawreration problem. For example, associated with the NP-complete decision problem
‘Docs this graph have a Hamiltonian path?’ is the enumeration problem How many
distinct Hamiltonian paths are there in this graph?’

According to Garey and Johnson [Ref 9: p.167), "Enumeration problems
provide natural candidates for the type of problem that might be intractable even if
P=XNP.” Even if the basic decision problem could be solved in polynomial time. it is

net at all clear that the number of distinct solutions could be determuined in polvnomial

mie. Note that enumeration problems do not require all the solutions to be dispiaied.

r
[}

;_\-. cr..v counted. Thus the number of Hamiltonian paths in a graph may be exponentially
.{"‘_- .warge and an exponential amount of time wculd be required to list them all. but the
:::E answer to the enumeration preblem is just 2 single number. Some enumeration
5' ) mrodlems can be soived in polvnomial time. For example, the question ‘Given a graph

;. how many Fulerian paths are there for 77 can be solved with a polvnonual time

algorithm, like the basic decision problem. However, some enumeration problems do

not appear to be solvable in polvnomial time even though the associated decision

. nrohlens can be selved in polvnomial time.
Lol To encempass these considerations, the ideas behind NP-complete problems
. . . .
Tl can e oextended. A new class, devgnated #P-complete can be used to categorize
.- ~
T Al I . R . e
A cnumerausn problems.  This 1s intended to capture the additional difficultv of
..\'.
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enumeraung soluticns, not just their existence. This class 1s defined in a way analogous

e el
S oo
e

w0 the class of NP-complete probiems. Manyv of the enumeration problems associated

5

with bhasie NP-compiete problems are #P-complete. What 1s interesung 1s that some
eriumieration probiems are now known o be #P-compicte even though their associated
dearsion problems are mor known to be members of NP IRefl 91 pp.loeS-1701

The sigmificance of all this is that if a practical problem can be shown o be
#P-complete, the scurch for an efficient, exact algorithm that ~solves the problen might
never be productive. This is not to sav that one never will be found. but ruther thut o

'

mwor breakchrough will be required. And if an algorithm is ever discovered that solves

the prebiem in polynomial time, the implications will be verv fur reaching. Even though
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C. EFFICIENCY OF ALGORITHMS FOR PERFORMING THE
RANDONMIZATION TEST

. Randomization Test is an Enumeration problem
Performing the randomization test for two independent samples to accomplish
a significance test 1s an enumeration problem. The remainder of this chapter 1s devoted
to show:ing that it 1s #P-complete. The fact that it is an enumeration problem 1s seen
pv considering the structure of the test. The significance level & is obtained by counting
subsets of size 7 out of n=m elements such that the sum of the elements in each subset
is equal to or mors extreme than the fixed value T,. Analogous to the problems

discussed in the last section, an asscciated decision problem could be stated “For some

fixed number K, are there K or more subsets of size »n for which the sum of the
clements is cqual to or more extreme than T,?" This could be answered yes or ne if a
vasde of A were specified beforehand. This would effectively correspond to using the

randomization procedure to perform a hypothesis test, because the value of K could be

determined from the desired value of @, using the relation qy= K ('7;"’). In the case

of signyyicance testing, there is no pre-specified value a,,. To calculate the significance

1

wevel, we need to know how many subsets have sums equal to or more extreme than

T, In rhis case. the randomization procedure becomes an enumeration problem rather

i

than a decision probiem. The implications of this are discussed in the last chapter.
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2. Significance Testing is #P-Complete

To show that using the randomization procedure to perform a significance test
18 #P-compiete. two steps are reguired. irst, an enumeration problem 1s introduced
1

which 1s known to be #P-complete. Second, performing the randomuzation procedure is
SAOWT 10 e of eguvalent dTicwdny to this preblem. The #P-complete problem is termed
the A* LIRGEST SUBSET problem and 1s described next.

The KM LARGEST SUBSET problem can be stated succinctly using the
termunology and format of Gareyv and Johnson [Ref. 9: p.114}:

Probiem Instance: Given a finite set 4. a size s(ta) € Z 7 for each a € A, and two
nonnegative integers B SE stayand K = 21

Question: Are there A" or more distinct subsets .4 € A for which the sum of the sizes
ot the elements in 4" does not exceed B?

The notation 'AJ 1s defined as the number of elements in the set 4. It is not vet known

if this decision problem is in the class NP, but it is known that the corresponding

enumeration problem is #P-complete.

Performing the randomization test for two independent samples {(assuming
significance testing) can be described using the same kinds of set theoretic objects as
are used in the K LARGEST SUBSET problem above. This can be done in the
following wav. Let 4 be the set of n+m elements consisting of the X and Y
observations taken together; that is, 4 = {Xl, Xz. . Xn, Y], Yz- .y Ym}. Let the
size s(a) be the positive integer representation of each element of A. This does not
restrict applicability of this result to positive integer observations, however. To show
why, consider the following. Note that the test statistic being used T=\__‘Xi 1s just the
sum of »n elements selected from the set 4. Suppose some of the elements of .4 are
negative. Then choose a positive constant ¢ such that when ¢ 1s added to everv
member of the set .4, all the elements will become positive numbers. Every value of the
test statistic will also be increased by a constant value, namelv ng. This has the effect
of shifting the randomization distribution by a fixed amount, and it is obvious that the
counting process used to determine the significance level of the test is unaffected.

The next question that might be asked is, what if the elements of 4 (the X and
Y observations) are real numbers? If the elements in 4 are the observations from
some actual experiment, then any measuring device used can only produce results
accurate to within some fixed number of decimal places. Therefore, even though the sct

of possible measurements is theoretically a subset of the real numbers, it in actuality
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cunn onlv be a collection of integer values over some range; the decimal point i<
immaterial. Even if real numbers could actually be obtained from some expeniment.
they would stll have to be reprecented internallv in anyv phyvsical computing device by oy
Sxed number of bitss Agwin, the positicn of the decimal point 1s immaterial; the set of
valaes that can actually he represented s restricted to some collection ot integers.

Tre impltication of the preceding paragraphs is that any real expenimental data

R N T SR AR 4
AN TnaoudgnT

i as positve integer valued 1f computing devices are used to perform
sranstical testss Thus, any results about algonthmic ediciency stated in terms of

rositive ntegers apply whether the true cbservatuons are real numbers, integers, or

Nexr, et the number B equal the value of the originaliv observed test staustic
T Let A be the number of test staustic values equal to or more extreme than T,
Lhen the ewnencrazion problem asscaated with the guestion ‘Are there A or more
distinet susets 47 € o for which the sum of the sizes of the elements does not exceed
A0 os wimost egutvalent to performung the two sample randomuzation test. Note that

ahove guestien specities A or enere distinet subsets A4 S 4. This inciudes il

(&%

camsers ¢ AL regardiess of how many elements thev centaimn. The number of such
< 2PTP Gnce the number of elements in 4 1s #+m. In the randomization
tost, though, we are interested in counting only those subsets with a fixed number of
eenients, nameiv . This is equivalent to enumerating all instances where the test
statistic vaiue 1s cqual to or more extreme than T, since the test statistic is formed by
suheets of size .

Restriciing the enumeration problem 1o subsets of size n is also =P-complete.
This can be <hown as follows. Suppose we had available an algorithm which could
enumerate the number cof subsets of size : for which the sum of the sizes of the
eiements Jdoes riot exceed B for anv fixed value of i such that 0S/<n+m. Note that
by selecting i=n, this algonthm would perform the enumeration required for the
randemization test. Suppose further that this algorithm operated in polynomual time,
that is, in time bounded by a pelynomial in N = n~m. Then, by simply incrementing
{sequentially from 0 to n+m and using this algoritzm repeatedly, we could count all
the distinct subsets A° € 4 for which the sum of the sizes of the clements does not

evceed B This s true because of the relutuonship

(\) =N fegqn 3.2)
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where N = n+m. In other words, we could solve the K" LARGEST SUBSET
problem by using our algorithm N+1 times. This would mean the time required to
enumerate all the subsets 4" € 4 for which the sum of the sizes of the elements does
not exceed B would be bounded by a function of the form (N + 1)p(N) - but this is
castly seen to be another polvnomial. This is a contradiction, because the KW
LARGEST SUBSET problem is #P-complete, and its solutions cannot be enumerated
in polvnonual time. Therefore, any enumeration algorithm that only counts subsets of

fixed size » is also #P-complete.
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IV. ANALYSIS OF AN APPROXIMATE RANDOMIZATION TEST
PROCEDURE

A.  INTRODUCTION
I. Reasons For Using An Approximate Method

In the previous chapter, it was shown that performing the randomization test
for two independent samples is computationally a #P-complete enumeration problem
when the method 1s used for significance testing. This means that a fast and efficient
wav to perform the test is not likelv to exist. Certainly one is not known at the present
time. In practical terms, the amount of computer time required to complete the
necessary calculations becomes totally unreasonable for large data sets. Therefore, if
the randomization test is to be used regularly, some way must be found to obtain
approximate results that are almost as good as the exact results but don't require
anvwhere near as much computation time.

2. Considerations When Using Approximations

There are many approaches one could take in devising an approximate
randomization test. The idea is to come up with a method that yields significance levels
very close to those that would result if the exact test were used on the same data. The
method should give good results over a wide range of conditions and it should require
onlv a modest amount of computer time. Ideally, it should be possible to establish
bounds on the errors involved with using the approximation. These bounds should
result from an analyvtic investigation of both the approximation and the exact test.

Unfortunately, in the case of the randomization test, analytic results are hard

to come bv. When a randomization test is used, the test statistic can take on as many

as ()"4-)71

values. The distribution of these values is called the randomization distribution.
It 1s important to note that this is a conditional distribution. That is, it is formed by
using the given observations. Therefore, this distribution changes every time a set of
observations 1s taken. [t can easily be shown that the randomization distribution
asymptotically approaches one of the standard distributions, such as normal or chi-
square, but the use of the asvmptotic distribution as an approximation mayv not be
accurate in some cases. As Conover [Ref. 4: p.327] indicates, when the observations
change from one sample to the next, it is impossible to measure the accuracy of any

asymptotic distribution.
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Another problem with developing analytic results is that the underlving |
distributions of the X and Y populations are not required to be of some specific form. |
It might be possible to derive error bounds on a conditional basis. That is, by stating |
something like “If the underlying distributions are of the forms F(x) and G(y) , then the
maximum error incurred by using this approximation is H(x, v).” Of course, the number
of possible distributions is infinite, and the ‘true’ underlving distributions can never be
known with certainty, so this approach may have limited value.

3. Method Studied

There are several ways that have been used to perform approximate
randomization tests. One way is to simply use the standard t-test, even though the data
may not be normally distributed, and then hope that the results are not too far off.
Other methods have involved using only portions of the data, sampling from the total
number of combinations, and fitting various distributions. Some of these methods are
brieflv described in the next section. The method studied here with the aid of
simuiation is the 2-momen:t fir method. Significance levels obtained with this method
are compared to those obtained from the exact randomization test and the t-test.

Power curves for each test are also generated as a separate indicator of performance.

B. PERFORMING APPROXIMATE RANDOMIZATION TESTS
1. Subsampling

One way to perform an approximate randomization test is to determine the
significance level from a subset of the test statistic values making up the randomization
distribution. The subset consists of combinations chosen at random from the (”;m)
combinations possible. The test statistic values are computed for these combinations
only and an approximate significance level is obtained. This is called subsampling and
the combinations can be selected through random sampling with replacement or
without replacement. For example, if an experiment vielded 30 X observations and 30
Y observations {(n=m=30), the total number of test statistic values making up the
randomization distribution would be (?8), which is about 1.18x 10!7. Instead of
comparing all those combinations to the original test statistic value T, 2 much smaller

set of test statistic values, say a few thousand, could be formed from combinations

selected at random out of the (g’g) available. This smaller number of test statistic

values could then be compared to T, and an approximate significance level could be

found.




Subsampling is a very attractive approximation method, since even a few

thousand test statistic values can be generated at random and compared rather quickly.

n+m:
n )

possible 1s considered equally likely if the null hypothesis is true. Sampling from a set

The method has intuitive appeal also, because every combination out of the (

of equally likely objects should vield representative subsets. The only questions to be
answered are how large a sample is required and whether sampling should be done with
or without replacement. Studies done on this subject [Ref. 11: pp.43-45] make it
appear that sampling with replacement is acceptable and the use of sample sizes as
small as 1000 can provide good results.

2. Blocks

Another approximation method, which is a variation on the subsampling
scheme, is the use of biocks. This method can be applied to the randomization test for
two independent samples in the following way, which is described by Bovett and
Shuster [Ref. 12: p.666]. Within the X and the Y samples, an appropriate number of
blocks is formed by random allocation, each block having the same number of
cbservations. Then an exact randomization test is used on the block sums. For
example, if the data consisted of 30 X observations and 30 Y observations, six blocks
of five observations each could be randomly formed within the X's and the Y's. The
sum of the observations in each block would be found. Then the exact randomization
procedure couid be used on the block sums. The number of all such sums would only
be ( 13 ) = 924. Again, significant savings could be achieved over performing the exact
test on all 1.18 X 1017 combinations of the observations without blocking.

How many blocks should be chosen depends on how accurate the results need
to oe and on how much computation time is considered acceptable. Using a smail
number of blocks may be less accurate, but the computer time required will certainly
be less than if manyv blocks are used. [t should also be noted that it mav not be
possible to form a convenient number of blocks (all containing the same number of
observations) without discarding some of the data. For example. if we had 23 X
observations and 26 Y observations, we might form 7 blocks of 3 observations each
within the X's and $ blocks of 3 observations each within the Y's. In this case, two X
and two Y observations would have to be discarded.

3. T-test as an Approximation
[f random sampling from normal distributions can be assumed, the standard

two sample *-test is the appropriate parametric procedure that can be used to perform
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b a comparison of means. However, even if the underlving distributions are not normal. a
\.‘. histogram of the test statistic values from the randomization procedure often resembles
;: a bell-shaped normal density. This is true for the test statistic being used here, namelv
¥ T= S .\'.l. An equivalent test staustic thar vields the same results 1s
-:‘ T= (E.\'i) n - (SYi) m . 1f this test statistic is used, a histogram of the test statistic
values is centered at the origin and takes on the appearance of a central t densitv. In
:;': fact, the randemization distribution arising from the use of this test statistic is usuallv
‘ ) approximated reasonably weil bv an appropriately scaled t distribution. Hence, as Box,
f:jt' Hunter and Hunter [Ref. 2: pp.95-97] observe, provided that a randomized experiment is
::;: performed, t-tests can be used as approximations to exact randomization tests even if
‘: the underlving distributions are not normal.

N 4. 2-Moment Fit Method

-::‘_: The next approximation method to be discussed will be called the 2-moment fir
:fztj metnod. The basic principle involved is simpiv that of using a continuous distribution
':::_I to approximate a discrete distribution. As mentiored in the last section, if histograms

of the true randomization distribution are examined, it becomes apparent that in manv

Randomizaetion Histogram, X,Y~N(2.')
- '
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Figure 4.1 Typical Randomization Histogram.

°
e cases the histograms seem to have a characteristic bell shape as in Figure 4.1. In fact,
g if the null hypothesis is true, the distribution of the randormizaticn test statistic should
i asymptotically  approach a normal distribution under easilv met conditions
.’ [Ref 4: 0327, With this in mund, it seems reasonable to assume that a normal
e distribution with some mean p and standard deviation @ might be firted to the
-:_‘.:-: rangomization distribution, as shown in Figure 4.2.
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Mistogram With Normal Density Fitted
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Figure 4.2 Normal Density Fitted to Randomization Histogram.

If the normal density ‘fits’ reasonably well, the area under a given portion of
the curve should approximate the corresponding area under the randormization
histogram bars. The area represented by the histogram bars equal to or more extreme

than the originaily observed test statistic value T corresponds to the significance level

Histogram With Narmal Oensity Fitted

012

0.04

Relative Frequency of Occurrence
o008

3 10 12 14 18
Test Stotistic Volues (Sum of X obeervations)

Figure 4.3 Tail Areas Correspond to @.

a of the test. This is shown in Figure 4.3, Therefore, the laborious exact calculation of
a by enumeration can be replaced by fitting an appropriate normal curve and using
tabies 10 find the required areas. The approximate @ obtained in this manner could be
verv quickly calculated, no matter how large the number of test statistic combinations.
To ‘fit" a normal distribution to the distribution of test statistic values, the
first two moments (functions of g and @) of the normal distribution must be related to
two values in the test statistic distribution, hence the name "2-moment fit. Two values

that could be chosen are simplyv the end points - that is, the smallest and the largest
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'ffj vaiues that the test statstic takes on when the randomization test is actually
:::ff rerformed. It is easv to find these wtwo values without enumerating all possible
o combinations; just sum the » smallest and then the » largest observations from the
combined et {X.Y!. Once the smallest and lurgest test statistic values are found, the
:'.:::'. rromabilities associated with their occurrence are easily deternuned from knowledge of
:_:_' the total number of test statistics possible, which is ("3). These probabilities are used
20 find the poand ¢ that completely deseribe the fitted normal density. For a full
- Jertvation of the equations involved with this method. see Appendix A.
:::::: The 2-moment fit method seems intuitively appealing. As the number of test
E::::_ stuuistic values that make up the randemization distribution gets large, it seems
s reasondable 1o expect that a continuous function {the normal distribution) should more
- closelv approximate the true discrete distribution. The degree to which the
:-:::: approximation vields values ‘close’ to the true @ also depends on the degree to which
' the normal curve foliows the snape of the true discrete distribution.
L
..?*.- C. A COMPARISON OF EXACT AND APPROXIMATE METHODS USING
.{-'\‘:: SIMULATION
-_;:::' l. Purpose of Simulation
-::':-'_ The inherent difficulties associated with deriving analytic results describing
" error bounds have been discussed previousiy. Because of these difficulties, the errors
NS that result trom the use of approximate methods can be studied convenlently using
,E: senulation techniques. After a simulation has been run several times, approximate
.':::: error hounds can be established and confidence limits on those bounds can be applied.
)' A sariery of input conditions and underiving distnibutions can be entered, and the
e eifect of cach can be analvzed.

A sdmulauon was written for the sole purpose of comparing the significance
tevel and power of the cexact randomization test under varving conditions to two
aiternacive methods:

t1y  The 2-moment fit approximation

2, The two-sample t-test.

T @
O

ERTIN I

A cempilete description of the simulation and an interpretation of the major resuits
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cmtained fromatare the subjects of the remainder of this chapter.
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2. Description of Simulation
a. Overall Structure
The overall structure of the simulation can be outhined as follows. The
purpose s to compare the power and significance level of the exact randomuzation test
o the 2-moement it approximate method and the standard t-test. This is accomplished
v repeatediv generaung sets of X and Y observations from presejected distributicns.
The purameters of the X and Y distributions can be independentlv varied. At ecach

repenition, 4 sigadticance test 1s nerformed on the hvpothesis
I S v t -

Hyp = Ry
vs. Hiop = B,

using each of the three methods. The results are recorded in a file for analvsis by
separate means. To generate power curves for each test method, the parameters of the
X distribution are held fixed while the mean of the Y distribution is varied over a
specified range. Using a pre-selected value denoted @, the probability of rejecting the
nuil hyvpothesis when it is false (the definition of power) i1s empirically determined for
cach difference p, — _ in the specified range.
The follo“"ing basic distributions can be selected for the X and Y samples:

(1}  Normal

2)  Exponental

(3)  Uniform
All input parameters can be varied. These include:

t2v  Mean of X and Y distributions (all types)

oy Standard deviation of X and Y distributions (normal)

f¢cv Sample sizes n and m

tdy Number of repetitions

rey  Range over which power curves are to be generated

ify  Value of a; to use in obtaining power values.
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b. Programming Details
The simulation was programmed in VS FORTRAN. Routines in both the
IMSL and NON-IMSL libraries were utilized for random number generation and
calculation of values associated with the normal and t distributions. A complete
program listing 1s provided in Appendix B.
3. Results and Interpretation
a. Significance Levels
The first studies conducted with the simulation were those in which the

significance levels vielded by each of the three methods were compared. These

compariscns were made by generating n X observations and m Y observations from

the same type of distribution, except that p_and p_ could each be varied. Once a set of

f_'.j.: X and Y observations was generated, all three tests (exact randomization, 2-moment fit
'_’_ approximation, and the t-test) were performed on that set and the three resulting
,_" significance levels were recorded. This process was repeated a selectable number of
5‘; times. The fellowing input conditions were varied:

: 1) Distribution type (Normal, Exponential. and Uniform)
12)  Hjtrue (n, = uy) and H, false (n, = p}_)

-.‘_:-_?, (3)  Sample sizes n and m for X and Y sets, respectively

' i4) Number of repetitions

}'_f:« Sample sizes up to n=11 and m=11 were examined, and up to 200 repetitions were

: used. For each input condition, the significance levels from the 2-moment fit method

"'3::: and the t-test were plotted against the corresponding values obtained from the exact

3 randomization test.

:.’x The plotted data from these simulation runs indicated that for all sample

__ sizes larger than n=4 and m=4. the 2-moment fit method generally produced smaller

:i:::; significance values than either the exact randomization test or the t-test, with a
*a

maximum average error of about 0.2 units of probability. The significance values
obtained from the t-test were much closer to those from the exact randomization test.
This behavior was observed for all three distributions and for everv combination of
input parameters. Example plots appear in Figures 4.4 and 4.3,

For simulated sample sizes less than n=4 and m=4d, the fact that the

T randomuzation test can only produce a discrete set of significance values tended to
-

2.~ . . . . .
) introduce more variability in the results. [t was also noticed that the 2-moment fit
I , .

e, method vielded essentially the same values as the other two methods when the

agnificance levels were close to either 0 or |.
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b. Power Curves

To develop power curves, the simuiation was rur onogomanner simiar 10 the
stgnificance testing situation.  Ihe same npus onost et Lt ettt g
value of oy was speciiied betoreharnd Duchi e vo s e o0 L s e eurred
that was less than ¢, the test that produced 1o oo N T T
the null hrpothesis Fjo The number of tnes vacho mor o o000 s e Doanded
the number of repetittons 1o vield whverage porser vy Do S LI S AT

ol . vawues around a fixed value o' p .

‘ Examples of power curves generuted trom e oo appear oo booure
4.6. It appears from the power curves that the 2-moment 0 mmethod reected the null
hyvpothesis oo often. That 1s, the power curves ror tius method were wrtiliaais hgh.
This {ciiows from the tact that the 2-moment 2 miethod generally vielded wioniicance

values that were too low. When the null hvpothesis is true p_=p . the pewer curve

(2]

should pass through the selected value of @;. This was not the cace for th
fit curves; thev were consistently too high.

The power of the t-test was close to the power of the exact randonazatce
test for runs involving the normal and the uniform Jdistributons However, 1or the
exponential distribution, the exact randomuization test power curve was glvass ahove
the power curve for the t-test. This is consistent with the theorencal resuits discussed 1
Chapter Two - namely that the randomization test (& the wrlrmn, viosr roacr i fes
against the subclass of alternatives that includes the exponertia denvities

¢. Randomization Histograms

Randomization distribution histograms were picitel for munt o0 the input
conditions used in the simulation. Most of these were umimodal i1 appearanee, as
expected. However, some of the histograms resulting from runs mveiang the
exponential distribution were multimodai when the null hyvpothesis was false. For two
examples, see Figure 4.7. This behavior could help expiain why the 2-moment fit
method does not approximate the true significance level very wwell in these cases. The
2-moment fit method tries to fit a tunimodal) normal densitv to the test stauistic values,
and 1f those values exhibit muitimodal tendencies, large errors are likely.

4. Summary of Results
The mest significant results obtained from the simulation are (1) the t-test is a
good approximation to the exact randonuzation test in most cases, and (2) the

2-moment it mcthod wusuallv vields smaller significance values than ecither the
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AN randomization test or the t-test. The maximum average error incurred is about 0.2
N units of probability. The reason the 2-moment fit method does not work very well is
<, - B N . .o .
probably related to its use of the two most extreme values of the test statistic. Finally,
o
= ‘-- . .
N the power curves that were generated showed that the randomization test can be more
oL . .
oo powerful than the t-test when samples are exponentially distributed.
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V. SUMMARY

A, MAJOR RESULTS AND CONCLUSIONS

This thesis has addressed issues related to the practical implementation of the
randomuzation test for two independent samples. The test was described as a method
{or comparing the means of two populations X and Y from which independent samples

have been drawn. The method can be categorized as a nomparametric statistical

procedure because assumptions about the specific form of the X and Y distributions

and associated parameters are not necessary.
i;j Although manyv nonparametric procedures are ‘weaker’ than corresponding
"‘_;:{ parametric techniques, the randomization test 1s at least as good from a theoretical
:';:': standpoint as its parametric counterpart, the t-test. In some cases, its performance can
;‘ be better. Some of the indicators of a good statistical test are efficiency, unbiasedness
“’1 and power. The randomization test has been shown to have an asvmptotic relative
:_;'.:j etficiency of 1.0, it is an unbiased test, and it is the uniformly most powerful test in
'_:j::l certain situations. Each of these results obtained from the literature was discussed. The
( ) implication is that the randomization test should be the preferied method of testing

equalitv of means unless reasonable justification exists for the use of the t-test
(normality assumptions can be supported, for example).

Even though the randomization test may be the best wayv to compare population

means In theory, it can be so time-consuming to actually perform the test on a
computer that it is not often used unless sample sizes are relatively small. The structure
of the test is basically a counting procedure involving combinations of the X and Y
observations. As the number of observations increases, the number of possible
'. : combinations becomes so huge that even the fastest computing machinery cannot
| perform the test in a realistic amount of time. There is no known way to perform the
test etficiently for large sample sizes in the general case.

To be more specific about what is computationally efficient and what is not,

» topics from the theories of NP-complete and #P-complete problems were introduced in
L this thesis. Algorithms for performing tasks or solving problems on a computer can be

-'Iq.. . . . . .

N broadly classed as efficient if thev can be executed in polynomial time. If a problem can
j-."_:-: be clussified as NP-complete or #P-complete, it 1s extremely unlikely that a polvnomual
b7 32
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time algorithm exists which can solve it. The randonization test for two independent

samples was shown to be a #P-complete enumeration problem when significance

S
ey

esting is being pertormed. Therefore, an efficient algorithm for implementing the test

HEXTTTTY
b

- . on a computer is not likely to exist.
Because of the problem of excessive computation time, wayvs have been sought to
b perform the randonuzation test approximately, that is, to obtain significance values

close 1o those that would result if the exact test were used on the same data. Some of

- the wavs that have been suggested to perform an approximate test include
_:::::: subsampling. the use of blocks, asvmptotic distributions or simply using the standard t-
: test. There are advantages and disadvantages involved with the use of each of these
o methods.

o Another way to perform an approximate test is to fit a normal distribution to the
.:::::j distribution of test statistics that would result if the exact procedure were used. This
o method extracts the largest and the smallest test statistic values and uses them to find
the first two moments cf the fitted normal distribution, hence the name 2-moment fi
\?r_: method.  This method was studied with the aid of a simulation. The simulation
?f compared the performance of the 2-moment fit approximation to the exact
:-_t-: randomuzation test and the standard t-test. Significance levels were found and power
o < curves were developed for each test under varyving conditions.
.. - Several conclusions couid be drawn from analvzing the simulation data. The first
:::'::l conclusion is that the 2-moment fit method will. in general. underestimate the true |
E significance level that would result from using the exact randomization test. This

R behavior occurred for all conditions studied in the simulation, which included changes
e in the sample distributions, changes in location parameters, and both true and false
= ::"; ull hvpotheses. The maximum average error resulting from the use of the 2-moment
f“j fit method approximation when the null hvpothesis is true 1s about 0.2 units of
_,'.,j probabilitv. Error in this context is defined to be the true significance level from the
%1 randomization test minus the approximate significance level.
_',,‘ Another important conclusion is that the t-test is quite adequate as an
I':: approximation to the exact randomization test in most cases. Statements to this effect
- are in the literature, and the simulaton results proved to be consistent. The

significance values produced by the t-test were generaily very close to those obtained
from the exact randomization test. When power curves were developed. though. it was

demeoenstrated that the exact randomization test can be more powerful than the t-test
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when the underlying distributions are exponential. This is also consistent with
theoretical results identifving the randomization test as the uniformly most powerful
test in that particular situation.

The overall conclusion of this thesis is that the randomization test for two
independent samples should be used in its exact form for testing equality of means if
sample sizes are small and there is concern over whether or not assumptions of
rormality can be justified. When sample sizes become large enough that performing an
exact randomization test requires more than a reasonable amount of time, the t-test
provides good approximate results. Of course, the t-test is always the most appropriate

test to use in the first place if one is willing to assume normality actually exists.

B. AREAS FOR FURTHER RESEARCH
1. Approximations

Approximate methods appear to be the most practical wavs to implement
randonuzation tests if they are desired for large sample sizes. More research in this area
cculd be of value. It might even be possible to obtain more accuracy from the
2-mement {it method in some wayv. But this research indicates that a significant
imprevement would be required before the method could be considered better than the
t-test as an approximation.

2. Pseudo-Polynomial Time Algorithms

Onc arca of research that could prove to be very significant would be the
development of a pseudo-polynomial time algorithm to perform the randomization test
when hvpothesis testing is being done. A pseudo-polynomial time algorithm is one that
can be executed in polvnonual time if a bound on the allowable input lengths is
established ahead of time. For a more detailed explanation, see Garey and Johnson
[Ref. 9: p.91]. This would correspond to selecting upper limits for the sample sizes n
and m ard designing an algorithm based on the knowledge that larger sample sizes will
not be input to the routine. An example of this kind of approach is the use of dinamic
programming 1o solve the classic knapsack problem.

[t was shown in Chapter Three that using the randomization test to perform
significance testing is a #P-complete enumeration problem. However, if hypothesis
resting is being performed, the test is reallv a decision problem with a yes or no answer.
[f maximum allowable sampie sizes were to be established in advance, an approach
similar to dvnamic programming might be used to solve the problem much more

efficiently than using total enumeration. An indication of how this could be applied

44
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L) appears in Garey and Johnson [Ref. 9: pp.90-92]. If a suitable algorithm could be
X designed that runs quickly in practice (even if it is theoretically a pseudo-polvnomial
x> time algorithm), an important step would be made toward more widespread use of

randomuzation tests for statistical hvpotheses.
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I DERIVATION OF THE 2-MOMENT FIT METHOD
o Purpose: To obtain approximate significance values by fitting a normal distribution to
o the distribution of exact randomization test staustics. Areas under the resulting
‘ ) normal curve correspond to the proportion of test statistics equal to or more extreme
4 rthan the originally observed value TO.
1

'::::'. Step 1: Find u and ¢ that define a fitted normal density function.

Rl v . . . . .

Recall that the test statistic is just the sum of the X observations:

e T=YX .,i=1.nmn
o

® * Let n be the number of X observations and m be the number of Y observations. Let
AN TS be the smallest test statistic value. This value can easily be found by summing the »

i smallest observations from the combined set {X,Y]. The combined set {X,Y)} is the set
."’. . 3 . . .

¢ of all the X and Y observations taken together. Similarly, let T, be the largest test
Y L R . .
i‘ staustic value, which can be found by summing the » largest observations from the set

2 . . . .

N It is possible that either Ts or 'Tb (or both) are not unique. More than one test

o statistic value might be the smallest, for example. This could happen if the number of
L ¥ = p pp

AN

observations 1s small or there are many ties. To account for this possibility, define the

C

)g_ numbers j_ and j in the following way:

. .:-f\.’

Kon? j, = number of smallest test statistic values

WY ) -

' j, = number of largest test statistic values.

®

7 vl

-t One way to determine the numbers | and j_ is as follows. Order the set {X,Y} of
ol . . .. )
) n+ m observations from smallest to largest. Look at the observation in position n. If it
ity

P ALY

is unique, then 'l's is unique and j =1. If the observation in position n is not unique,

then '1's is not unique. Assume there are k observations that are equal to the

o
'R}

-

y
.
»
L.

observation in position n. Also assume that the k equal observations begin in position

¢ a_N
5SS ‘-‘_\"’
a2t "l

n=r+1. Then i, = (/’f). The number j, is determined similarly, except the set {X.Y}
must be looked at in the opposite direction, from largest to smallest.

a
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-

i
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Once T.. T,. . and j have been found. the two extreme points of the

randomuzation distribution are detined. A normal density function is fitted by matching

X
o,
<.
<
o
28

18 radl areas to the probabilities of randomly selecting the values T, and T, out of all
the (",’I'”) test statistics available. Let p_ be the probability of selecting T, and let Py be
the probubtiity of selecting T,. Then p, = j ;™) andp, =), ("™

Nent, et ' orepresent an arbitrary random variable that is normaliv distributed

Rl il
g ® t ¥ & R
« b 1 * 2 13

with mean pand standard deviation 6, and let y be its densitv function. To match the

I~ tuil areas ot the function W to the probabilities p_and Py st
b2 :
\’
' #
I.J
] < =
- PW =T, = p,
‘A for the lower tail area, and
.
A '-: ( > =
- PP 2T,) = p, .
¢ . .
- which is equivalent to
~ ’ < = -
o P¥=T)=1-p,

)

Y for the upper tail area. Letting Z represent a standard normal random variable, the
~

o above probabilities can be rewritten in terms of the standard normal distribution
-~ N . . A

- {unction by subtracting f and dividing bv 6:

19

X,

‘.

e
|
=

- PY=T) = PIZs———) = p,

g ¢

)

[\ =

> T -

e and (¥ <T,) = pzs—b P - Py -
- ¢

Let z_ be the percentile of the standard normal distribution associated with the
i probanility p.. That is, P(Z.<_zs)= p,. Simularly, let z, be the percentile associated
‘
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with the probability 1 — p,. Then

. and z

: Multipiving through by ¢ and rearranging vields the two equations

T |

},l+250' s

T

p*ze =1y

The above system of linear equations can be easily solved for the quantities p and ¢ by
s standard methods to vield
-\.

and 6 = 25

These are the values of p and ¢ that define the fitted normal density function .

e Step 2: Relate the area under the fitted normal density function to the proportion of
nf-:- test statistics equal to or more extreme than T,

o Two cases must be considered, depending on whether Ty, is in the upper or lower tail of
.- the distribution of all (™) test statistics.

y Case I TO is in the lower tail.

- @ Let a be the significance level that would result if an exact randomization test

ou
S

were to be performed on the same data. Recall that a is found from the proportion of ‘

A

test statistics whose values are equal to or more extreme than the originally observed

LRI
P e

value T. This proportion is doubled to yield the value of @ because the test is two

P
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tatled. The proportion of test statistics whose values are equal to or more extreme than
T, is approximately the same as the area under the fitted normal density function y to
the Jest OFTO. since T, is in the lower tail. Since areas under a normal density function

correspond to probabilities. the following relation holds:

'r _
a ~2P(P<Ty) = 2P(Z 5-06—"-)

where Z 1s the standard normal random variable. Substituting the values of p and 6 for
the titted density ¥ in the equation vields

T. - b™s b
0 Z, — Z
a ~ 2PZ < b s )
Tb ~ Ts
Zb - ZS

Which simplifies to

z(Ty = T) + z(T, — Ty

a ~ 2P(Z <
T, - T,

The probability on the right can be found by consulting a table of the standard normal
probability function.

Case 2: T is in the upper tail.
The same reasoning used in Case 1 is applicable. Due to the symmetry of the
normal distribution, P(Z2§) = P(Z=< —{) for all { Therefore, the resulting

approximation formula for @ is the same as in Case 1 with the exception of a minus
sign:

Zb(Tﬂ _ Ts) * Zs(Tb — TO)

T, - T,
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Pl APPENDIX B
‘, » SIMULATION PROGRANM LISTING
Y
l‘\l
- c
-‘:-‘ C Principal Variable listing: . .
‘oo C Al) v, Output vector used in combinatorial procedure
[P N TR ' < Vel ke
C ALPHA...... Significance level for power curves
) C APCWER..... Approximate power
Sy C APPROX..... Approximate significance level
Bty C DELTA...... Cifference in means, X and Y
o C DIYPE...... Distribution type
oo C DXY()eveunn Data X and Y vector _ ‘
e C EPOWER..... Exact power from randomization test
A, o EXACT...... Exact significance level
o C ISEED...... Random number generation seed
C 400 Unequal sample size variable(X)
"N C KDY.'evrunn. (Same) (Y) )
AN c Loo.o.oua., Largest value of the test statistic
o C NCOMB(,)... No. of combinations
e C (Ko eevnnnan No. of X's
) C NYouiounnnn No. of ¥'s o
o C Seeeieniens Smallest value of the test statistic
S C TCLER...... Tolerance on equality of sums
L C TPOWER..... T-test power value
o C TVAL....... T-test significance level . i .
oL C ZL......... Quantiles of the standard normal distributicn
Ny C 2S. i associated with the largest and smallest
"l ¢ values of the test statistics.
::;‘t E % e T 3 ve sk e e ke e g e A ok sk ke e ke e e gk ok ok sk sk vk e e ok sk ok ke e ok ok ok ok ok Tk 3K e sk ke sk ok o ok ok ok ok ok ke e
el o Program Begins Here.
{ C
b ¢
b INTEGER NCOMB(2:15,2:15) ,DIYPE,H, A(15),RESP
P REAL*4 DXY(30),6SN(30),E(30),U(30),L
- REAL*8 Q,X,2S,2L,Y,P,APPROX
-,::\ c LOGICAL MIC
:)‘ E Read in no. of combinaticns from external file:
3_-‘;~ (R;SAIIDéUIgIT=7,FMT='(IIO)',ERR=1) ((NCOMB(I,J),hI=2,15),J=2,15)
LR
'\.;'-' 1 PRINT *,'ERROR IN READ.'
sy STOP .
:,p}, 2 PRINT *,'Enter the following parameters:'
i PRINT *,'Alpha'’
READ * ALP
S ¢ . . :
Aty PRINT *, 'Distribution type:'
e PRINT *,' 1 = Normal
' PRINT * ! 2 = Exponential!'
v PRINT *,! 3 = Uniform!
m‘ c READ *, DTIYPE
. h‘
d L} PRINT *,'Xmean'
¥ c READ *, XMEAN
" PRINT *,'Xsigma’
:".:::. c READ *, XSIGMA
e PRINT *,'¥sigma’
Py c READ *, YSIG
s
LA 50
%
b
)
o
Lok
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SO PRINT *,'Vmean range in the form YMIN, YMAX'
e c READ *, YMIN,YMAX
" PRINT *,'No. cf divisions to divide mean range (MDIV)'
e READ *, MDIV
c
o PRINT *,'No. of repetitions (NREPS)!'
LR READ =, NREPS
-L-:'~” C
e PRINT *,'Range of sample sizes: KMIN,KMAX!
p\ c READ *, KMIu KMAX
VN
Y PRINT *,'For unequal sample sizes, enter KDX, KDY:'
) READ *, KDK KDY
. c
oy ISEED=47771
e, TCLER=1.0E-5
P C
L YSTEP= (YMAX - YMIN)/MDIV
b R IF (YMAX.EQ.YMIN) MDIV=0
. C *** Begin Main outer loop: vary mean of ¥ while holding X fixed.
-
A . DO 7003 MSTEP=0,MDIV
- YMEAN = YMIN + YSTEP*MSTEP
e o c DELTA = YMEAN - XMEAN
v
QL C  ** Next loop: vary sample sizes for X and Y.
c
L DO 7002 KSIZE = KMIN,KMAX
T C
= C “(Start with equal sample sizes, then vary by KDX,KDY):
NX = KSIZE + KDX
\ c N7 = KSIZE + KDY
- NC = NCOMB(NX,NY)
( N = NX + Y
K = NX
N @
'iu: C ‘Inltlallze power curve counters:
b KE 0
oS KA =0
I KT = 0
s c ) ) .
- C * Start iteration loop:
c
N DO 7001 ITER = 1,NREPS
S C I
::ﬂj C ‘Select appropriate distribution ’
o C '
- GO TO(101,102,103) DTYPE
o 101 CALL NORMAL( ISEED,NX,NYV,XMEAN,XSIGMA,YMEAN,YSIGMA,DXY )
.W C///'Data 1maort facility:
- C / READ(U IT=10,FMT='¥F5.1)') (DX¥(I),I=1,12)
[
GO TO 200
102 CaALL GEXP’IQNL( ISEED,NX,NY,XMEAN, YMEAN,DXY )
x 103 CALL UNIFRM( ISEED NX,NY,XMEAN,YMEAN,DXY )
1 C
ek C 'Find value of observed test statistic TO:
‘o C
R 20 T0 = O.
Kore DO 210 IX = 1, NX
D 210 TO = TO + DXY(IX)
o C
‘;:: C  'The following section performs an exact randomization test of
- - c significance for the null hypothesis Ho: Xmean = Ymean against
2 51
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L
o - a two sided alternative. The sum of the X observations is used
. c as the test statistic. In addition. the largest and smallest
SN C test statistic values are found for later use in the approximate
Y C method.
- c
: z ‘Initlalize parameters/ counters:
)" Z
S S =19
N =70
" JS = 2
- JL=0
Wl =9
NIE =0
.‘ c
L z 'Gernerate all pecssible combinations of the elements in DXY()
. c t3azen NX at a time: This algerithm is given in Niienhuis, A. &
L Z . Cembinatorial Algorithms for Computers and Cal-
o C 2né EQ. Academic Press, 1978 , pp. 32-33.
” FALSE
v = 1, NC
X ) GO TZ 49
NN b
e LT.N-H) H=0
< =3 K+1-H)
- =1.4
. ")iy"’-&J
T 1) .NE.N=-K+1
- c
QQ; c id sum of the X's for this combination
WY c
-(:- ‘: = 0'
[ 0C 320 IL =1, NX
(' 330 T =T + DXY ( A(IL) )
. C///'Test statistic outpu; facility: 1
C WRITE(10,69) T,NC
TR C 69 FORMAT(Fi0.4 4",16)
- /77
2 o 'Find smallest & largest sums and count them:
B . IF (sﬂssu‘ 5) ;LT. TOLER ) THEN
RN GO TO 310
) ELSE IF ( T .LT. S ) THEN
A S =T
= JS =1
END IF
o o
." 310 IF ( ABS(L-T) .LT. TOLZIR ) THEN
i JL = JL + 1
- GO TO 320
v ELSE IF ( T .GT. L ) THEN
- " L=T
- JL =1
- END IF
N 320 CONTINUE
= o
!;' C 'Count # of observations <= and >= TO0:
2N Ir é T.LE.TO g NLE = NLE + 1
" T IF ( T.GE.TO ) NGE = NGE + 1
< c
A 400 CONTINUE
D) '.r‘ C
N c .
. C ‘Compute exact 51gn1f1cance level
- IF ( NLE.LE.JNGE ) EXACT = REAL(Z*NLE)/REAL(NC)
o 52
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IF¥ ( NGE.LE.NLE ) EXACT = REAL(Z2*NGE)/REAL(NC)

a0

‘Perform approximate method:

Q = DBLE(JS) / DBLE(NC

CALL INORM ( Q,X,IERR

IF ( IERR.EQ.1 ) THEN .
PRINT *,'Error in subroutine INORM'
STCP

END IF

IF ( JS.EQ.JL ) THEN
25 = %
= -X

(@]

ZL
ELSE
X

25 =}
Q = DBLE(JL) / DBLE(NC
CALL INORM ( Q,X,IERR
IF ( IERR.EQ.I ) THEN _
g%égT * 'Error in subroutine INORM (2)'

(@}

ZL = =X
END IF

Y = ( ZL*(T0-S) + 2ZS*(L-T0) ) / (L-S)
CALL MDNORD ( ¥,P )
IF ( P.LE. 0.5D0 ) THEN

APPROX = 2.0D0 * P

APPROX = 2.0D0 * ( 1.0D0 - P )

(@]

'Perform standard t-test:

CALL TTEST ( DXY,NX,NY,TIVAL )

I IRIR]

‘Increment power curve generators:

IF g EXACT.LE.ALPHA ) KE = KE + 1

[eInke!

IF APPROX.LE.ALPHA ) KA = KA + 1
IF IVAL.LE.ALPHA ) KT = KT + 1

WRITEga,lOOO) DTYPE , XMEAN , YMEAN ,DELTA,NX,NY, TVAL, EXACT, APPROX
1000 FORMAT(IL,3(2X,F6.3).2(1X,13),3(2X,F7.5))

7001 CONTINUE

(@]

‘Calculate ave. power values for this sample size:

REPS = REAL(NREPS)
£POWER KE / REPS
APCWER KA / REPS
TPOWER KT / REPS

aOOOnNn O

'Write power curve values into separate file:

WRITE29,2000) DTYPE ,NX,NY,DELTA ,EPOWER,APOWER, TPOWER
C2000 FORMAT (3(I3,2X),F6.3,3(2X,F7.5))

7002 CONTINUE
7CC2 CCHNTINUE

aONon

aOM

PRINT *,' Another run? 0 = no, 1 = yes'
READ *, RESP

$3
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2 c IF ( RESP.EQ.1 ) GO TO 2
’\
S STOP
A END
- cC
» C
I"} C -
C
ﬂ:; . SUEROUTINE NORMAL ( ISEED,NX,NY,XMEAN,XSIGMA,YMEAN,YSIGMA,DXY )
'4
o g 'Generates rormal X and Y samples. <
N
’ DIMENSION DXY( NX + NY ),SN(30)
3 NGEN = NY + NY
~ c -2LL SNOR ( ISEED,SN,NGEN,2,0 )
?ﬁ cC S2nerate X:
- DO 1 IX = 1, NX
k. c 1 DXY(IX) = XMEAN + XSIGMA * SN(IX)
\ C 'Generate Y:
_ DO 2 IY = 1, NY
* c 2  DXY(NX+IY) = YMEAN + YSIGMA * SN(NX+IY)
o
i RETURN
W END
3 o
» :
o c
a8 SUBROUTINE EXPONL( ISEED,NX,NY,XMEAN,YMEAN,DXY )
P o}
10 C 'Loads DXY with exponentially distributed X,Y.
L) C

- DIMENSION DXY( NX+NY ),E(30)
NGEN = NX + NY

o

i CALL SEXPN ( ISEED,E,NGEN,2,0 )
C
L C 'Generate X:
- DO 1 IX = 1, T
w c 1  DXY(IX) = XMEAN*E(IX)
- C  'Generate Y:
< DO 2 IY =
5) c 2 DXY(NX+IY) YMEAN*E(NX+IY)
o RETURN
)xj END
-‘.'- C
’nf\b c
J::. C
oL C
'::~ SUBROUTINE UNIFRM ( ISEED,NX,NY,XMEAN,YMEAN,DXY )
o
xz- C 'Loads DXY with uniformly distributed X,Y.
e <
- DIMENSION DXY(NX+NY) U(30)
£ NGEN = NX +
g4 CALL SRND ( -SEED U,NGEN,2,0 )
. ¢ 'Generate X:
-} DO 1 IX = 1, NX
o5 c 1 DXY(IX) = U(IX) + XMEAN - 0.5 ¥
-?I C 'Generate Y:
e Do 2 IY = 1, NY
82 2  DXY(NX+1Y) = U(NX+IY) + YMEAN - 0.5 ‘
. C
-/ RETURN
END
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™ C
N c
.& c SUBROUTINE INORM ( Q,X,IERR )
hd -
™ C 'This routine ¢om§utes the inverse of the normal probability function
q, . C uslng a modification of the formula given in Approximaticns for
. C Digital Computers, C. Hastin?s, 1955. . ,
v C  The modification consists of the addition of a sinusoidal error
j g reduction term effective in the probability range 10-9 < ¢ < .5.
o - REAL*8 Q,X,N,Y,T,B
. g 'Is Q in the range 0 < Q <= 0.5 ?
- IF ( %iLE. 0.0DO .OR. Q.GT. 0.5D0O ) THEN
iy IERR = 1
> GO TO 10
~ c END IF
Oy
- N = DS%RT( -2.0D0 * DLOG(%) )
N Y = 1.085085260D0 / DSQRT(N)
. T = 2.515517D0 + 8.02853D-1 * N + 1.0328D-2 * N * N
o B = 1.0D0 + 1.432788D0 * N + 1,89269D-1*N*N + 1,308D-3*N*N*N
. X = (I/B) - N + 4.434009D-4 * DSIN( 1.1493099D1"Y - 5.789591D0 )
W IERR = 0
N 10 RETURN
oy END
- C
C
.'. C
- C
. c SUBROUTINE TTEST ( DXY,NX,NY,TVAL )
- cC 'This routine performs a standard 2-sample t-test for differences
‘ ¢ in the means of X and Y samples.
{ . DIMENSION DXY (NX+NY)
e C 'Sum X's and X*2's:
™ SUMX = O.
N SUMX2 = 0.
. DO 1 I= 1, NX
“ X0B = DXY(I)
* SUMX = SUMX + XOB
c 1 SUMX2 = SUMXZ2 + XOB*XOB
. C 'Same for Y's:
o SUMY = 0.
. SUMY2 = 0.
. DO 2 J=1, NY
et Y0B = DXY(NX+J)
. SUMY = SUMY+ YOB
e o 2 SUMZ2 = SUMYZ + YOB*YOB
-~
W DF = REAL( NX + NY - 2 )
2y S2P = 2 SUMX2 + SUMY2 -(SUMX*SUMX/NX)-gSUMY*SUMY/NY) ) / DF
o T = ( (SUMX/NX)-(SUMY/NY) )/SQRIi( S2P*( (1.C/NX) + (1.0/NY) ) )
oY TA = ABS(T)
» CALL MDTD ( TA,DF,Q,IER ) , .
IF ( IER.NE.O ) PRINT *, 'Error in subroutine MDID'
-@ VAL = Q
- ¢
. RETURN
b END
>
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