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ANALYTICAL METHODS

AN IMPROVEMENT TO SHAIKH'S METHOD FOR THE TORSIONAL
VIBRATION ANALYSIS OF BRANCHED SYSTEMS

B. Dawson

Polytechnic of Central London
London, England

M. Davies
University of Surrey
Surrey, England

frequency range of the problem.

A globally convergent iteration technique developed by the authors
for application to residual function value vibration analysis methods is
developed as an extension to the method proposed by Shaikh. This yields
a fully automatic, efficient and foolproof method irrespective of the
natural frequency distribution or frequency range of the problems.

The iteration formula in the extended method requires the first and
second derivatives of the residual determinant as well as the determinant
itself and the method of derivation of these derivatives via both a matrix
transfer and Holzer procedure is presented.

Illustrative examples of the application of the extended method to the
solution of the torsional natural frequencies of marine geared drive
systems are presented which demonstrate the power and efficiency of the
extended method, irrespective of the natural frequency distribution or the

INTRODUCTION

The rapidly increasing adoption of
branched drive arrangements for driven machin-
ery coupled with increasing power requirements
of geared systems has led to a requirement for
efficient methods of torsional vibration analy-
sis for large order multi-junction-point
branched systems,

A number of methods are currently avail-
able and these may in general be divided into
two types, namely (i) system matrix eigenvalue
extraction methods, and (ii) trial and error
search methods based on the matrix transfer/
Holzer procedures.

System matrix methods have the advantage
of ease of application to a wide variety of
systems since all that is required is the foru-
lation of the system matrix equation followed
by eigenvalue extraction using a standard
l1ibrary program., The method, however, has limi-
tations in respect of (i) size of computer re-
quired, and (ii) efficiency of solution if only
a limited number of lower frequencies are re-
quired, i

The Holzer method is well favoured by
marine engineers on many years of system appli-
cation. However, when applied to branched sys-
tems, computational problems arise since poles
appear in the residual-function curve making
the search procedure for zero residual function
values far from a trivial task even using a
digital computer.

Shaikh [1) has developed a matrix trans-
fer procedure based on the formation of a
residual-function determinant which assumes
zero values at natural frequencies. This tech-
nique has the effect of removing the poles from
the residual-function determinant curve. The
method still, however, requires an efficient
and automatic determinant search technique to
make it an attractive alternative to system
matrix methods. Standard techniques are far
from automatic, efficient, foolproof procedures
when faced with residual-function curves with
very uneven zero distributions and with clmters
of close zeros. In particular, at higher fre-
quencies, where the residual curve becomes very
sensitive to frequency, the search becomes a
very time-consuming pin-pointing operation.




In this paper a globally convergent
iteration technique developed by the authors
[2] for application to residual-function meth-
ods of vibration analysis is applied to extend
the method proposed by Shaikh. This yields a
fully automatic, efficient and foolproof method
over any frequency range, irrespective of the
distribution of natural frequencies in that
range.

The iteration formula in the extended
method requires the first and second deriva-
tives of the residual-function determinant as
well as the determinant itself. The method of
calculating these derivatives via both a matrix
transfer and Holzer procedure is presented in
this paper.

Illustrative examples of the application
of the extended method to the solution of the
torsional natural frequencies of marine geared
drive systems are presented which demonstrate
the power and efficiency of the extended method

HOLZER FORMULATION OF RESIDUAL-FUNCTION
DETERMINANT

Considering first the straight torsional
vibration system shown in Fig. 1, with rotor
inertias I.(r = 1, ..., n) and shaft stiffnesses
kpe(r = 1, ..., n-1) as marked, the following
equations may easily be derived:

s-1 1.6

- - L (g =
8. 0‘_1 Arfl ks-l (s =2, .e., n)
1)
n
and A L 18 =R )
1 TT

where ) = wz denotes the square of a circular
frequency w, 6 _ is the torsional vibration
amplitude at rStor r, and R is the residual
torque at rotor n which under free vibration
conditions must be zero. The residual torque R
is determined by assuming an arbitrary value
for 0, and applying the set of equations (1)
and (}) seriatim.

1 1

1
Kn-1

| |

Ll
[ ]

Fig. 1 - Straight torsional vibration system

1f, however, the system shown in Fig. 1 is one
of the branches of a multi-branched system
there will be a torque T present at rotor 1.
The residual torque R may be derived assuming
arbitrary values of both 6; and T by using the
modified equations:

s-1 AIrB +T

1
9 =9 -z (s =2, ..., n)
8 s=1 __ k__
r=1 8~-1 3)
-
and Tl + 2z Irer = R, 4)
r=]l -

In this case the general solution is obtained

as a linear combination of fundamental solutions
obtained using two linearly independent sets of
starting values 6) and T;. For this sub-system
the procedure is indicated symbolically by the
following representation:

Starting Values Solutions
1st 2nd Ist 2nd
set, set set_ set

—
8: 1 0 applications of % 8, 5
. equations (3) §
T: o] 1 @) R1 R2

The complete solution is a linear combi-
nation of the two linearly independent solutions
namely:

6= alel + azez (6)

R = qR + R, &)

corresponding to the starting values 6 = aj,

T = ay. As before, the residual torque R is zero
when A is the square of a natural freqaency of
the system.

Arm 2

Arm 3

Arm 1

Arm ¢

Fig. 2 - Single branch-point system
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For the systea illustrated in Fig. 2,
which comprises r arms meeting in a single
branch-point, the solution is obtained by
applying the foregoing algorithm to each branch
arm, in each case starting from the branch
point with the starting values given in tabular
form in the transformation (8) below. The sig-
nificance of the notation in this and subse-
quent transformations is as follows: (i) for
the starting values a single suffix or the
first of a pair of suffices denotes the branch
point and the second suffix the branch arm;
(ii) for the solutions the first suffix is the
number assigned to the solution set and the
second suffix or a single suffix denotes the
branch arm.

Rll RZl 0 eee O
Ri2 @ Ry ..o 0
a: |. .. . . 0.(13)
er 0 o ot thl,:
o 1 1 S |

Since the process of generating the
residual torques via equations (3) and (4) give
the variable elements of A as polynomials in A,

Starting values

1st 2nd 3rd (r+1)th
set set set .. set
Branch { 61 1 0 0 .. 0

T,.,: 0 1 0O .. 0

Branch (6, : 1 O O .. 0

Solutions

1st 2nd 3rd (r+1)th
set set set .. set

°11 62‘ o .. 0

Rll RZI o .. 0

6,,0 86, .. 0

1 > 12 32
arm 2 le: o o 1 .. 0 Applicat@on sz 0 Rsz . 0 (8)
of equations
. . . . . . (3) & (4) . . .
Branch 01 1 0 0 .. 0 elr o o0 .. er*l,r
arm r Tlr: o 0 o .. 1 er 0o 0 .o Rr#l,r

Having obtained the fundamental solu-
tions shown in this table, the free-end con-
ditions of the branch arms gives, in terms of
the foregoing notation:

Ry =aRy *oRy =0 ®
Rz = °1R12 + u3R32 = 0 (10)
Rr = alklr + ur#erOI,r =0, (11)

Equilibrium of the initial torques at the
junction point requires

T,, + le + ...+ T. =0,

11 ir

i.e. Ay # 0z + .o b = 00 (12)

Equations (9) through (12) comprise a
system of r+1 homogeneous linear algebraic
equations in aj, a3, ..., Grs1. Therefore at a
natural frequency the (r+l)th order residual-
function determinant

it follows that the determinant A is itself a
polynomial in A and is therefore free from poles,
as stated earlier.

AUTOMATIC ROOT SEARCHING METHOD

It has been shown by the authors [3)
that for straight systems the Holzer methgd may
be extended to calculate dR/dA and d?R/dA
using the recurrence relationships
s=1 I_(A$_+6)
0y =0y - I ST (s=2, ..., ) (19)

8 8 =1 Y

v = _ s;l Ir(lwr42¢r)
8 s-1 k
r=1 8~-1

(s =2, ..., n) (15)

contemporaneously with eguations (3)and (1),
6

de d r

where ¢r-—d-x£ and wr = -d—;}— .

The results expressed in equations (14)
and (15) were obtained from equations (1) and
(2) for straight torsional systems. However,




they continue to apply to equations (3) and (4)
in respect of any branch of a branched system
provided T, is held constant, and therefore to
the fundamental solutions giving rise to the
variable residual-elements of A in (13). Thus

drR a
- rfl (00 +6 ) (16)
d &’ L )
an - I_(W_+2¢.). an
:;! =1 T rr

The residual-function elements and their
first and second derivatives are then used in
the iteration formula

(ko1)_, () |8
A -) + ——2-— (k-o,].,.--)
/{ (%-) -A‘i‘}} ®© (18)
dx A=)

which yields a fully automatic, gtogally
convergent, root search procedure 2],

For the single branch point system
shown in Fig. 2 the derivatives of the elements
of the determinant in equation (13) are
obtained contemporaneously with the fundamental
solutions according to scheme (19), where
primes denote differentiation with respect to X.
The first and second derivatives with respect to
A of the residual determinant A are then
obtained by the determinant differentiation .
algorithm described by the authors(4], Appli-
cation of the square root iteration formula (18)
then yields a fully automatic, efficient search
procedure. This approach is readily extended
to multi-branch point systems. Thus, for the
two branch point system described by Shaikh[1]
and illustrated in Fig. 3 the solution, ignoring
higher derivatives, is obtained as shown in
scheme (20).

Starting Values
1st 2nd 3xd (r+1)th
set set set .. set
(2 1 0 o .. ‘0

—

Branch Oi
arm 1

0

0

T 0
GY 0
o}

o © O o o o

-
R
-

Branch | 8!
arm 2 ¢

—
Q=+ 0 © O O O © O ©o o o o

[+ -]
-3
=e » s+ O O ©O O O

.
.
—

Branch |- 8!
arm r

©c O O O O 0+ +*0 O ©O O 0 0o O o o o
O © O o © o0+ 0 O © O

o © © o o
o ©o o o

1r

Solutions
1st 2nd 3rd (r+1)th
soln soln soln .. soln
ell 921 0 .. O
Rl1 R21 o] .. 0
eil 951 o] «w 0
1 L]
R11 R21 0 . 0
" "
911 921 0 . 4]
" "
Rll R21 (o] .. ©
912 0 632 . 0
R12 0 R32 .. O
L} t
912 (o] 632 .. 0
Equations Riz 0 Riz .. 0 (19)
3) @, a9-an .
612 0 932 . 0
Rgz 0 Rgz . 0
b, © 0 erﬂ,r
er 0 (] . Rr#l,r
1 )
elr 0 0 .. er‘l'r
l L
er 0 0 .e Rr#l,r
" \dd
elr 0 0 .o Fel,r
" "
er 0 (v} .e Rr#l,r
- 4




Fig. 3 - Shaikh's two dranch point system

The displacement compatibility at junction 2
gives:

ec-ez

i.e. 0181c * Oy87. = 9y * 0. 27)

At a natural frequency the determinant A
of the coefficients of equations (21)-(27) must
equal zero, hence

Starting Values Solutions
1st 2nd 3rd 4th S5th 6th 7th 1st 2nd 3rd 4th Sth 6th 7th
set set set set set set set set set set set set set set
3
arm {?1 1 0 0 0 0 0 O 8, 0 6, 0 0 0 O
a 'l'l a 0 o0 1 0 0o O O 1a 0 RS a 0O 0 0 o
arm {?1 1 0 06 0 0 0 O 6, © 0 6,0 0 O
b le o 0 0 1 0 o0 0 Rlb 0O O R‘b o 0 O
arm (O 0 1 0 0 0 O O Equations 0 0,,0 0 6_.,0 O (20)
2 2d Sd
(3) § (4)
d 'l'2 d 0O 0 0 0 1 o0 0o 0 Rz d [0 B ¢ ] Rs d o o
arm {ez 0 1 0 0 0 0 O o 6,0 0 0 6,0
e Tz e o 0 0 0 0 1 0 . 0 Rz e o 0 O R6e 0
arm {91 1 0 0 0 0 0 O 8, 0 0 0 0 0 6,
c 'l‘1 c o 0 0 0 0 O 1 Rl ¢ o 0 0 0 O R7c
The boundary conditions give: Rln Rs.
R =aR, +aR, =0 (21)
a 11a 3 3a elb e“
6 =af, +a8, =0 (22) '
b 171b 4" 4b 92 d Bs 4
0, =2ab,. +006,,=20 23) -
d 2°2d 5 Sd 4= ch R6e s 0
R, = aR,. + acR. = O, (29 11 I (28)
The equilibrium of the initial torques at Rlc -1 -l R7c
junction 1 gives:
0 -1 )
Tla + le + Tlc =0 1c 7¢
i.e ag *+ oy *a, =0 (25) The derivatives of the elements may be

The equilibrium of torques at junction 2 gives:

-RCOTZdoT”-O

1c = %Rye * 0

i.e. -alk + ag ™ 0., (26)

S

determined contemporaneocusly with the elements
in the manner described previously, noting
that the derivatives of the unit elements of
the matrix of elements of A are zero,

In practice the 6 and R elements of A
together with their first and second A-




derivatives are computed for each arm in turn
and the determinant then formed from the top-
ology of the systea.

MATRIX TRANSFER FORMULATION
It has been shown by the authors[S] that,

for straight systems, extended point and field
transfer matrices of order 6 may be used in a

Since this relationship is unaffected by
multiplication of both sides by an arbitrary
scalar quantity, an arbitrary constant value
may be asugned to ell-, and using the boundary
condition T{L = 0 (assuming a free t nd) the
rentming e elents of the vector Z;

=T'L=g"L=1"Lco, The ele-ents of
the vectors ZnR are then functions of A via the
elements of a;;(A), and inserting the boundary

matrix multiplication prpcess leading to the values we find that
relationship Z," = [AJZ;" relating the state TRaa ol 'R o,k "R P
vectors at the two end-points, where [A] is a n 21°1 3 ' 84151 ¢ n
6 x 6 matrix whose elements a;; (i, -l....,6) and
are functions of A, and Z = (%1”' T',8", T}, R L . 'R L . "R L
The significance of the notation in this 6, =2,,0,75 8 " =a;6"6 " =a,0"
relationship is that a superfix denotes a
point immedistely to the left(L) or right(R) Hence a.. = a ' a.=a.." s.=a '
of the point indicated by the corresponding 41 21 * Tel 21 731 11
suffix when the system is viewed so that the anda_. = a. . 29
numbering 1, 2, ..., n of consecutive mertias 51 11
proceeds from left to right,
Starting Values Z‘l‘ Solutions Z nR
1st 2nd 3rd (r+1)th ist 2nd 3rd (r+1)th
r set set set .. set set set set .., Set
6, 1 o o .. o 0,°81; 92812y O -+ O
'rn 0 1 o .. (0] Rll 0 RZl"ZZl 0 ... 0
’ ’ ]
a:- <91 0 0 o .. 0 Ou 1 921-1321 o ... 0
] 1]
Tll o 0 ' o .. 1] 11°%11 RZI-.AZI 0o ... 1]
" (1] UJ
61 0 o o .. o ell"Sll 921"521 0 ... 0
" R L " u
Un 0 0 o .. 0 zn-(A]Zl Rll %11 21 81 0o ... o
f, 1 o o .. o 8,5°%)12 o 05,7815, ++ O
le 0 0 1 .. 0 12 12 (o] R32-.222 .. 0
(] L
a;l 1 0 o o0 .. o 12°%312 4] 85,"8g55 2 O (30)
L ]
T v [}
12 0 o o .. 0 "12"412 0 Rsz"422 . 0
” " "
61 0 0 o .. 0 612"512 0 932-3522 .« 0
" ”
LTIZ 0 0 o .. 0 12°%12 0 RSZ"622 e 0
ex 1 0 o .. 0 elr'allr 0 o .. er#l,r"er
Tlr o 0 o .. 1 1r°%1r 0 o .. Rrol.r"zzr
] ] .
a:l 01 0 0 o .. 0 elr e 0 0o .. erol.r-.SZr
L 1] L}
Tlr 0 0 o .. 0 er %ir 0 o .. Rrol,r"er
" ” "
01 0 0 o .. 0 eh_ %1y 0 o .. rol,r"SZr
1] " "
T, 0 0 0. 0 Ry "%, o ° .. Buir"%2r
6




thus giving the A-derivatives of the elements
a, and a 1 in terms of other elements of the
ndtrix (A}

Likewise an arbitrar{ constant value may
be assigned to Tll‘, and 6, set equal to zero,
in which case it can siniiarly be shown that

ca. e, =a.;a, s
42 22 * Y62 22 * 732 12
”

12 ¢

and a., = a (31)

52

Thus, taking two sets of linearly indepen-
dent boundary values in the same manner as for
the Holzer method, on applying the extended
transfer method to the several arms of a multi-
branched system which meet at a particular junc-
tion point denoted by 1, we obtain scheme (30)
above,

In scheme (30) the previous notation is
extended by denoting the (i,j)th element of [A)
for the rth branch arm by ai.pe

jr

Applying this table to the single junction
shown in Fig. 2, the free-end boundary conditions
give

GRy * Ry =0

i.e, TR Y] B 0, (32)
ORyp * ARy = 0,

i.e. 018,19 * G5y * 0. (33)
alklr * °rolkr¢l,r =0,

i.e. +Q

%1821r * %re1®22r

The equilibrium of the initial torques at the
junction 1 give

= 0. (34)

T11 + le + .. * Tlr s 0,

i.e. By + Gy 4 o0 v, " 0. (35)
At a natural frequency the determinant of the

coefficients of ay, ap, a3, ..., 0p,3 in equa-
tions (32) through (35) must vanish and hence

851 %91 0 o .. 0
8512 0 8502 o .. 0
%513 0 V] 8553 +° 0
A)) = . . . . . | s0.36)
8y 0 0 O 821
0 1 1 1 .. 1

When applyiang the iterative formula (18) to find
the zeros of this determinant, the first and

second A-derivatives of the elements of A are
given directly from the elements of [A] by
applying formulae (29) and (31).

The extension to multi-junction branched
systems is performed exactly in the way described.
under the Holzer formulation,

ILLUSTRATIVE EXAMPLES

The extension to Shaikh's method has
been applied to solve the following systems:

Shaikh'su:I single branch point
main drive shaft system, shown
schematically in Fig. 4.

Example (i):

Fig. 4 - Shaikh's single branch point main drive
ship system
Example (ii): A single branch point marine
propulsion unit shown in Fig. S
This unit comprises three iden-
tical engine branches, two
identical generator branches, a
reduction gear and a propeller
drive shaft branch.

Example (iii):  The same system as in Fig. S,
but augmented by a third gener-
ator, identical to those on
branch arms 1 and 5, connected
at the control box Ips.

The results using the Holzer formulation
of these problems are presented in Tables 1-3,
which give the computed natural frequencies and
the corresponding numbers of iterations. The
program incorporates a control parameter set by
the user for the frequency separation tolerance
[2], i.e. the coarsest acceptable resolution for
close frequencies. This was pre-set at 0.1 .
rad/s. However, the square root iterative algo-
rithm (18) terminates at the limiting precision
of the computer, and the number of iterations
shown in the tables are those required to attain
this limiting precision, which is many times
finer than the prescribed tolerance.
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Fig. S - Equivalent branched sy
Table 1
Shaikh's Example

(Example (i). Fig.4)

Natural

Natural Number of frequency
frequency | iterations | Shaikh's values
(rad/s) (rad/s)

13,264 3 13.25

43.950 3 43.95
179,937 3 -
847,487 7 -
852,778 6 -

RESULTS

Inspection of Table 1-3 demonstrates the
excellent search characteristic of the method.
It should, however, be pointed out that tuning-
fork type frequencies (so-called anti-resonance
frequencies) have been suppressed in examples
having identical branch arms meeting in a
common branch point. Thus in example (ii) the
three identical engine branches and two iden-
tical generator branches were replaced in the
computations by only one engine branch and only
one generator branch. The in-phase torque
contributions of all the engine arms and all
the generator arms were allowed for by assuming

respective torque contributions of 3T1,engino

stem of marine propulsion unit
Table 2
Marine Propulsion Unit
(Example (ii). Fig.S)
Nontuning-fork type natural frequencies
Number of iterations

Natural frequency
(c.p.m.)

175.517
220.867
441.160
741,800
1823.189

2060.573
3340.436
4573.950
4717.807
6171.244
6268.212
7018.011
7343.151
9851.445
12028.960
13027.054
13789.528
15074.529
15850.686
20431.929
21425,.442

SBOAMBAVNVNVAVMAMBOALNYNNLE NUWELELSL

and ZTl,generator at the branch point. By

means of this device the numerical difficulties
associated with finding multiple zeros of the




Table 3
Marine Propulsion Unit
Example (iii). Two branch-point system
Nontuning-fork type natural frequencies.

Natural frequency | Number of iterations
values

(c.p.m.)

154.832
183.226
271.845
441.512
741.800
1823.188
1953.283
3340.312
4573.950
4623,500
5220.852
6171.491
6268.212
7343.151
9068.698
9851.445
12028.960
13027.127
13789.528
15074.529
15850.686
20431.929
21425.442

LUNEBNANOTVOOLLOAINNAENNUELELLEN

determinantal function is avoided, as well as
reducing the order of the residual-function
determinant - in this particular case from 7 to
4,

Of course, if the tuning-fork type fre-
quencies of the system are required they may be
found by a separate Holzer calculation for a
straight system with the branch-point end fixed

Application of the extension of Shaikh's
method to complex multi-branched systems
presents no further difficulties, The order of
the residual-function determinant is equal to
the total number of branch and link arms plus
the number of branch points, and the structure
of the determinant may easily be generated from
the topology of the system,

CONCLUSIONS

An extension to Shaikh's method has been
presented that enables the natural frequencies
of branched systems to be efficiently and auto-~
matically determined over any frequency range.

The method has distinct advantages over
system matrix methods insofar as (i) it has
only a small random access memory requirement
and (ii) a limited range of frequencies can be
explored without the need to determine all the
frequencies of the systesm.
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DISCUSSION

Voice: Considering the Myklestad or
Holzer methods applied to bending type
besm problems. We finally gave up and
started using am eigenvalue extraction
method as being one that guarantees that
you don't miss modes, one that is more
automated and perhaps more appropriate
for inexperienced engineers who may make
a mistake. Are you going in this direc-
tion too?

Mr. Davson: Oh yes, we are actually
using this. In fact a lot of people
still use Holzer method of course.

Voice: WNot in this country I would
think, I don't know.

Mr. Dawson: 1In the UK it 1is still used
but 1 do confess the finite element
method has taken over everything. 1In my
opinion this 18 a very, very efficient
procedure. The trouble with beams:-was
that the Myklestad or the matrix trans-
fer method tended to only work out the
firet fev frequencies. This doesn't
apply to torsional vibdrations snd so
there is no problem on hov many fre-
quencies., But, when people used the
Mykelstad - transfer matrix methods for
beams they found they could only get the
firet basic frequencies so it tended to
have it's problems that way. It doesn't
have the problems this way for torsional
vibrations. It is basically s small
iterative formula combined with a

searching technique. The cost store is
remarkably small. You won't miss fre-
quencies. I think the problem in the
past was that there was not an efficient
search method. We believe we've now de-
veloped an efficient search method and 1
will say that this is applicable to sll
problems where you have to search for
zeros of a function and therefore it
could be used to extract eigenvalues
from the characteristic determinent.

Voice: Can you zero in any particular

frequency, or do you have to go from the
first?

Mr. Dawson: No, wherever you start it

will then zero into the next frequency.

So you can in fact consider a range of
frequencies or you can start froa any
position you want. So if we give it a
starting value it will immedistely jump
to the next eigenvalue or frequency to
its increasing right. It slways pro-
ceeds one way. We have published quite
a number of papers on this technique and
they are quoted in the paper. I will
just say that in the paper I haven't
mentioned the topology of the system so
you won't actually get the ideas of the
topology. All I did was to determine the
deterainent in the same way Shaikh

did. And the point with Shaikh's work
you couldn't see how the detarminent is
formed for different systems. Now in our
technique you can immediastely form that
determinent.
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ABSTRACT

This paper evaluates errors in

matching the lst mode frequency
and shape of a 2 mass model when
a Guyan Reduction is applied to

the model.

INTRODUCTION

Dynamic analyses of large com-
plicated finite element models are
efficiently managed by reducing the
number of active degrees of freedom
(d.o.f.;. The Guyan Reduction Tech-
nique'l) which, in effect, eliminates
d.o.f. by applying constraint forces to
balance inertia forces at the elminated
nodes is frequently used. After a Guyan
Reduction, the equations of motion
consist of reduced mass and stiffness
matrices and a reduced forcing function
vector. 1In general, the reduced models
will accurately represent the original
model, at least for the lower modes of
vibration, if the active d.0.f. are
selected carefully:

(1) select active d.0.f. that
best describe the modes of
interest,

(2) avoid eliminating d.o.f.
which have associated large
mass,

(3) retain 4.0.f. which may have
significant motion in modes
whose frequencies are in
the range of interest or
lower.

Although there is evidence that accuracy
can be maintained even after drastic
reductions on d.0.£f., little is known
quantitatively about the errors incurred.
This study was made to determine magni-
tudes of error involved in reducing a

simple 2 mass (2 d4.0.f.) model. Two
Guyan Reduced models were generated by
first elim.nating the interior node
(Reduced Model No. 1), then by elimina-
ting the exterior node (Reduced Model

No. 2). Errors in matching the 2 mass
model exact lst mode frequency and shape
with the approximate lst mode frequency
and shape of both reduced models were
calculated for various mass and stiffness
ratios. The errors can be formulated in
terms of any 2 of several variables (mass
ratio, stiffness ratio, frequency ratio,
etc.). Since a scheme which automat-
ically az%ycig the active d.0.f. has been
proposed ,(3), the errors are pre-
sented as functions of stiffness ratio
for various mass ratios. The defini-
tion of stiffness ratio is consistent
with the criteria used in sye s to-
matic selection technique( . ( i.e.,
the stiffness at a node corresponds to
the diagonal element of the stiffness
matrix.
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Fig. 1 - Original two degree ot
freedom model and
reduced models

ERROR ANALXSIS

The exact lolution“) for the
normalized 1lst mode natural frequency
of the 2 mass model (Fig. 1lA) can
be expressed in terms of a mass ratio
and a stiffness ratio as

"’1 2
k! 1)
u22 (
L AK 4y - V(8K - w) s apax®
25K
where
wy is the 1lst mode natural frequency
K
2 2
8K = up"= for B=w,.,/w
Ky & l<2 227711

wo= MM

X
-t =
01 xz 1l - Xl (2)

After a Guyan Reduction on the 2
mass model by eliminating the interior
node (1), the 1lst mode frequency and mode
shape of the reduced model (Fig. 1B) are

wl \2
Al (8 ) o1- &
¢ \"22 2 (3)
U

and

I

’G = xl/xz = AK . (4)
where

superscript I means node (1) elimin-
ated

The errors in lst mode frequency (e ) and
shape functions (t: ) are

wI - W AI
e k) « Bt a5 -1 O
and
o e
(AKIU) = -g'o—_l
1
8K - (X - 1)) (6)

= —-—1——for1A #0

Similarly. eliminating the exter-
ior node (2) gives for the 1lst mode
frequency and mode shape of the reduced
model (Fig. 1C)




s

mII 2
IT1 (G —_t = AK
AG T\ w = 1 m
22 AK(1 + ‘-‘)
and
11 _ (8)
oG 1.0
where

superscript II means node (2)
eliminated

Likewise, the corresponding error
functions can be defined as

I
[ (9)
epr (k) = \[5% - 1 :
1
and
ol - ¢
est (8K,u) = —6 11
% (10)
M
=7 x for 1 - A # 0

The error functions (eq's (5),
(6), (9) and (10)) were calculated for
a range of parameters.

DISCUSSION OF RESULTS

When a degree of freedom is elimin-
ated from the 2 mass model (Fig. 1lA)
the errors are functions of 2 variables,
namely, mass ratio (y = "2/"1) and stiff-

ness ratio K
(o = i
1 2

Errors in both the 1st mode frequency
and shape were studied for two Guyan
reduced models:

{1) Reduced Model No. 1 - interior
node (I) eliminated

(2) Reduced Model No. 2 - exterior
node (2) eliminated

Maintaining accuracy in both frequency

and mode shape is important in guaran-

teeing representative models since both
are fundamental to any response calcu-

lations.

13

(1) Reduced Model No. 1

Fig. 2 shows the error in lst mode
frequency when the interior node (1) is
eliminated as a function of all possi-
ble stiffness ratios (0 <AK < 1) and a
particular range of mass ratios
(.1 < u £10.). Because of the error
function definitions, a positive error
indicates the reduced model yields
frequencies higher than the true fre-
quencies. The frequency error curves
are bounded over the stiffness ratio
range; i.e., for any mass ratio the
error in lst mode frequency has a maxi-
mum at some intermediate value of stiff-
ness ratio. The error in frequency
increases as the ratio of mass at the
active d.o.f. (My) to mass at the
eliminated node (M;) decreases; i.e.,
more mass located at the eliminated node
means a larger error.

The error in the lst mode shape is
always negative; accordingly, the
approximate mode shape amplitude is less
than the true amplitude. With all other
considerations equal, response calcula-
tions made with the reduced model would
tend to be lower than those from the 2
mass model. Therefore, the reduced
model may predict nonconservative
results.

Fig.'s 2 and 3 show the frequency
and mode shape error curves for a
practical range of mass ratios (u > 1).
Even when the mass ratio is unity, the
maximum possible error in frequency is
only 2.6X. Hence, eliminating the
interior node whose mass is less than
that at the active node guarantees an
extremely accurate lst mode frequency
(Fig. 2) regardless of the ratio of
stiffness between the 2 nodes. How-
ever, the error in mode shape can be
as large as -0.2 (Fig. 3).
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Fig. 2 - Error in frequency of
1st mode for reduced
model No. 1 (interior
node (1) eliminated as
a D.O.F.)
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Fig. 3 - Error in shape of lst mode
for reduced model No. 1
(interior node (1)
eliminated as a D.O.F.)

As an alternative way to present
the error data, Fig.'s 4 and 5 show the
error in frequency and shape of the lst
mode as a function of stiffness ratio
for various frequency ratios (ratio of
frequency at active node to eliminated
node). Only cases where the frequency
at the active node is less than or equal
to the frequency at the eliminated node
were considered (8 < 1). The match in
both the 1lst mode frequency and shape
improve with decreasing frequency ratio.
For example, where the frequency at the
active node is 4 the frequency at the
eliminated node (B = .5), the maximum
errors are 0.0069 and -0.25 in frequency
and shape, respectively. Although the
error in shape is large at low stiffness
ratios, it improves as the stiffness
ratio increases.
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Fig. 4 - Error in frequency of lst
mode for reduced model

No. 1 (interior node (1)

eliminated as a D.O.F.)
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Fig. 5 - Error in shape of lst
mode for reduced model
No. 1 (Interior node
(1) eliminated as a
D.0.F.)

(2) Reduced Model No. 2

When the exterior node (2) is
eliminated as a 4.0.f., the error
functions illustrate characteristics
different from those observed in the
foregoing model. Both the lst mode
frequency and shape errors are unbounded
as the stiffness ratio (ratio of stiff-
ness at active node to eliminated node)
approaches 0, while both errors
approach 0 as the stiffness ratio
approaches unity. As before when the
ratio of mass at the eliminated node
(2) to the active node (1) increases the
errors increase. PFig.'s 6 and 7
involve errors in lst mode frequency and
shape for cases where the mass at the
eliminated node (2) is less than or
equal to mass at the active node (1).
For mass ratios near unity, the errors
are acceptable only when the stiffness
at the eliminated node (K3) is nearly
the stiffness at the active node
(K} + K3). However, for small mass
ratios (u € .2) the errors are small
over the entire range shown
(.3 < AK <1); e.g., the error in
frequency is less than 5% (Pig. 6).
error in mode shape for u <.2 becomes
less than +20% once the stIffness ratio
surpasses 0.5. Since the mode shape
error is positive, the reduced model No.
2 response would tend to be
conservative.

The
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Fig. 6 - Error in frequency of lst mode
for reduced model No. 2
{(exterior node (2) elimin-

ated as a D.O.F.)
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Fig. 7 - Error in shape of lst mode for
reduced model No. 2 (exterior
node (2) eliminated as a D.O.F.)




Curves of the errors in 1lst mode
frequency and shape for various
frequency ratios (ratio of frequency
at eliminated node to active node =

8 =wp3/w1)) show as the frequency ratio
increases, the errors decrease (Fig.'s
8 and 9). For example, when the
frequency at the eliminated node is
twice the frequency at the active node

w
(8 = 3%% = 2) the maximum possible

errors are +.7% and +33% in frequency
and mode shape, respectively. Moreover,
the error in mode shape decreases to
+10% as the stiffness ratio becomes
greater than 0.58.
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Fig. 8 - Error in frequency of 1lst
mode for reduced model
No. 2 (exterior node (2)

eliminated as a D.O.F.)
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9 - Error in shape of 1lst
mode for reduced model

No. 2 (exterior node (2)
eliminated as a D.O.F.)

CONCLUSIONS

A quantitative measure of errors in
frequency and mode shape introduced by
the Guyan Reduction Technique when
applied to a 2 mass (2 d.0.f.) model
has been determined. The errors are
functions of 2 variables: therefore,
any criteria prescribed for selecting
active d.o0.f. should be based on 2
parameters.

When the interior node was elimin-
ated as a d.o0.f., the errors corres-
ponding to any finite mass ratio were
bounded over the range of stiffness
ratios (ratio of stiffness at active
node to eliminated node). The errors
were small for either very low ’

(AK + o, ez, e: + 0) or very high stiff-

ness ratios (AK +~ 1, eg, eI + 0) even

¢
for small mass ratios (ratio of mass

at active node to eliminated node).

For mass ratios greater than unity, the
errors were small for any stiffness
ratio - less than 2X in frequency and
20X in mode shape. The approximate

mode shape indicates less motion than
the exact mode shape which could produce
nonconservative response calculations.




When the exterior node was elim-
inated as a d.o.f., the errors were
unbounded as the ratio of atiffness at
eliminated node to active node
approached o (AK -~ o: e;’I, t:I + ®), As

the stiffness ratio approached unity,

the errors approached o(AK+ 1; s?,
eil +0).

As in the foregoing model, the errors
improved as the ratio of mass at elim-
inated node to active node decreased

(u »o; eil, sil +0). Furthermore, the
approximate mode shape indicates greater
motion than the exact mode shape which
could produce conservative response
calculations.

APPENDIX
(I) Eliminate interior node (1)

The homogenuous squation of
motion for 2 mass model
(Pig. 1A)

is .
M (x} + K {x} = {0}

or

M, o J(x
1 1 (A-1)
L0 My (X%
Kl + xz -Kz x 0
+ A =
CK2 Kz xz 0
Applying the constraint equation
K
x
1 K, + K,
- {x,}
x 1l
2 (A-2)
= mixg)

to equations (A-1) gives
m® oo (x])

s+ mT pam xI) - (0}

or {(A-3)
euf—t2\ Iz
Mt H Ky + K *s

+ lez xé =0
xl + xz

Therefore,
sferh)

1 \2
6 "\¥;, K2/"2 mym, (K
"1‘”‘2

1__2_
= R/ﬂ ""2

v
o (“il Ky +K 2))

bl A =AK (A~4)

2

1 + AKC
u

Also,
K
S QL B
% "%, " K +K, (A=5)

(II) Elimin~te exterior node (2) °

Applying the constraint

equation
Xy 1
-[ ](xll = 17 (xg'}
x, 1 {A~-6)
to eq. (A-1l) gives
. {(A-7)
My + M3 SE(I;I + 1K) xéI = 0

vhere

( ST\ 2 «
oy 1

)‘ S -

3 LY Kp/My My + M,

e ()

1+ "1’"2)

xzm,




i, (a-8)

141" e+ 4y
u

and

n o A,
4 X, 1.0 (A-9)
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Mr. Scavuzzo (NKF Engineering):

DISCUSSION

Did you
investigate the effect of the error in
the forces?

The error im the forces was
not addressed but it should be. I am
not certain of this, but 1t means that
you have to be careful because you could
have non-conservative calculagions.
That should be investigated and 1if that
is what that means, and I have always
been under the impression that we are
working with counservative calculations,
then the real system 1§ worse than what
I have modeled.

Voice: You said in one case that you

have a smaller mode shape and that means
there would be more dynamic force from
the upper mass, less than the smaller
one. A good question is what 1is the
dynamic force on the elements and for my
purposes this remains to be done.

Mr. Wolff: That is right., This is only

for the simple two mass systeam. I

noticed in the program that there is a
paper tomorrov afternoon that addresses
the same general problem. It will be
interesting to see what conclusions are
drawn there.




A METHOD FOR ESTIMATING
THE ERROR INDUCED BY THE
GUYAN REDUCTION

Gary L. Fox
NKF Engineering Associates, Inc.
Vienna, Virginia

—

model .

uvate this error.

The Guyan Reduction refers to a method used to reduce
the number of degrees of freedom in a structural model
for dynamic analysis. Experience has shown that, if the
method is properly employed, then this reduction method
does in fact provide a "reasonably" accurate approxima-
tion of the dynamic characteristics of the unreduced

To date, however, a cost (or computer time)
effective method to estimate the actual error induced
by the reduction process was not available.
presents an accurate and cost effective method to eval-

This paper

INTRODUCTION

Consider the well-known system of
linear equations with constant coeffi-
ents

M) [X} + [K] [X}=[p(©)} (1)
where:
M] = mass matrix
K o = gtiffness matrix
x}, [x} = displacement,
acceleration vector
[(p(t)} = load vector

In current finite element models
the degrees of freedom represented by
equation (1) are often many thousand.
This large number of equations is usually
a result of the finite element technique
itself rather than being necessary for a
sufficiently accurate solution to a dy-
namic problem.

In a short, but significant paper
{1] Guyan suggested .that a transforma-
tion be applied to the mass matrix that
was based on partitioning the stiffness
matrix. This reduction of the number of
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degrees of freedom for a dynamic analy-
sis is cost effective, in terms of
computer time, when the system of equa-
tions is reduced by a factor of four or
more.

Computing efficiency is therefore
a central issue to the consideration of
any reduction process. A numerical pro-
cedure for estimating the error must not
add significantly to the total computing
time to solve the dynamic problem. The
method presented here meets this basic
requirement. This is particularly true
when a modal analysis is required as
part of the solution process.

It is the assumption that the ana-
lyst wishes to calculate a significant
number, say ten percent, of the lowest
modes represented by the homogeneous
form of equation (1),

(M (X} + (K] [X} = o© (2)

Modal analysis provides an insight
into the dynamic behavior of a complex
system, provides a means by which a
finite element model may be checked for
errors, or provides a basis for estimat-
ing the response of the system to a
specific, simple excitation. Modal an-
alysis plays a central role in the U.S.




Navy's Dynamic Design Analysis Method
(DDAM) as well as many other well known
technigues of enforced motion boundary
problems that use shock response spectra
as a statistical technique for dynamic
analysis. In addition, the system re-
sponse to transient or harmonic exdita-
tion may be calculated by an eigenvector
expansion. Eigenvector expansion tech-
niques are also cost effective when a
number of different load conditions are
analyzed for a given set of eguations.

DERIVATION OF THE ERROR TERM

Presume that the eigenvalue i
Equation (2), is partitioned into two
sets; the "0" set of DOF to be omitted
and the "a" set of DOF to be retained in
the Guyan Reduction, i.e.,

A =i A -1
Kaa Faol[*a - ii Maa Mao| [?a
=i
Ksa Kool [*o Moa Moo 34
(31
Where i1 is the true eigenvalue and

(#h) = [tg} is the true eigenvector for
rid
the 1P node.

The reader is reminded that the
solution of the reduced equations using
the Guyan reduction is

[K,a] [43) = At [n,,] [o3)

(4)
where
[Kaa] = [iaa] + [Kao Coal
[Haa] = [ﬁaa] * [Goa Moa]

+ ["ao Goa] + [GOC “OO Goa]

(ol = [Kog ' Ko,

Consider the exact solution of
equation (3) in partitioned form by
lolxing the second lrt of equations for

(43} in terms of [¢7},

(333 = -[x, - Xim 37k - Xiw 103,)
' (5)

The first term of the matrix product
indicated above can be expanded in a

‘tions (3) for the

pover series i -1 -1
[xoo(xoo-x Koo uoo)] 1-

(r_+X xlu +...0x

00 00

Substituting (6) inig the first of equa-
i== eigenvalue and

eigenvector

(8, = [6,,00#%) + 1% [E_ 10§41+ nigher
order terms (7)
where

[!oa] - 'K;g [MooK;: Koa .Moa]

The first term on the right in Eguation
(7) provides the theoretical justifica-
tion for the Guyan Transforration, being
correct to first order in Al. The second
term is the second order correction to
the Guyan Transformation,

i
¢
i a
(67 = i (8)
oa a

The condition that the term containing
[E..] in equation (7) be small can be
exsfelsed as

[IOO] >> Xi [K;: HOO]

(9)
and
i
[Goa) >> M [E,,]
10)

Assuming that the second term, "ga
in the error matrix, E_., is negligable,
Equation (10) reduces to Equation (9).
Equation (9) is thus the condition that
a particular eigenvalue be accurate for
a specific !et of omitted DOF. The
lowar the A* and larger the product

xss the more accurate the eigen-
vi?geugﬁ 'thorotore the eigenvector.

Equation (9) points out the well-
known dependency of the Guyan reduced
error on frequency; the lower the mode,
the lower the error. Another well-
known rule, to keep all large masses in
the a-set, is also confirmed by this
eguation. The influence of the stiff-
ness term, however, has evidently not
been generally recognized.

EVALUATION OF THE ERROR TERM

Numerical studies indicate that
errors in frequency and errors_in ampli-
tude have the same magnitude{2]. A




relationship between the error in fre-
quency and the first order correction
term i&oquation is required. Consider
the ill gigenvalue given by Rayleigh's
quotient.

3w o1 TR0t 7 Loy Ty
(11)

Taking the natural log of (11)
yields

hxi-lnx;-lmné

(12)
where
K; = ith generalized stiffness
M; = ith generalized mass

Taking differentials of (12) pro-
vides the relationship in error between
the eigenvalue, A\, and stiffness and
mass weighed eigenvectar,

i
a1 a1
e Sl T ™ 3
9 g9

Writing the differential of the
first term of (13)

i i i
aK; ﬁ""l"‘tm [

1‘),23-"1l Kpn o(s2)

Since the two terms in Equation
(14) are identical,

(14)

dx; = 2[s}1T[K][as)

(15)
Similarly
dH; = 2[s11T[K][aed}
It is now required to evaluate
1 a0,
[a¢") = i
doo
to first order in 11. Using the Guyan
tranlfomtion,[%) - [Go.} Q.) in the
second of Equation (3).
[0 = [MI0 0,3+ ALMGIL G L 00
(16)

Pre-multiplying Equation (16) by [G ] T

and adding it to the first of Equation
(3) one finds that to first order in ),

[KGHJIOQ} = l[uﬂlj[’l}

(17)
It is therefore seen that
[as )} =[0}
(18)
From Equation (7)
iy o .1 i
{ac} = o [eag) o2}
(19)

Therefore, from Equation (18) and (19)

b4 - 5759 o

? i
and [0i} - a ‘
oa)|*a “(21)

Evaluation of the first term of Equation
{13) using Equations (20) and (21) yield

dK;‘ -3t [¢:}'r [an E, + G:a Koo ’oa]E”:}

(22)

The term in brackets is identically zero,
dK;‘- 0

(23)

to first order in ). The error in A\,
to first order of )\, is due to the sec-
ond term in Equation (13), i.e.,

i
B = Aretimaraeh
NUMERICAL EXAMPLE

In order to test the results pre-
sented in the previous sections, the
bending modes of a 5-cell cantilever
beam is considered. The physical param-
eters of the beam are shown in Figure 1.
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M= c; EI/A i™" theoretical
eigenvalue

c = 1.875, 4.694,
7.855, 10.996

First theoretical
four eigenvalue
coefficients

Figure 1. Five cell bean

The NASTRAN computer code was used
for the numerical calculations because
of the powerful DMAP compiler available
and the generality of the results. The
Guyan transformation is available
through the use of Alter statements
which allows the evaluation of the error
simply by performing some inexpensive
matrix multiplicationg. A complete des-
cription of the NASTRAN DMAP alters will
appear in the proceedings of the next
NASTRAN users colloquium.

Many elements in NASTRAN offer two
options for the form of the mass matrix;
lumped parameter or coupled mass. The
bulk data parameter COUPMASS identifies
the elements for which coupled mass
matrices are to be used. The first four
eigenvalues of the finite element model
are compared to the coupled mass results
in Table 1.

Table 1. Comparison of Theoretical and
FEM Coupled Mass Eigenvalues.

FEM
ODE (COUPLED
NO. THEORETICAL  MASS)

ERROR (%)

5.50829E6 5.50839E6 1.81E-3

2.16363E8 2.16547E8 8.50E-2

1.69667E9 1.70827E9 6.84E-1

6.51554E9 6.66659E9 2.32

Let the ten DOF system, five transition-
al, and five rotational, be Guyan reduc-
ed to four degrees-of-freedom and
evaluate the estimated and “actual®
error. The "actual” error is defined as
the difference in frequency between the
10-DOF system and the Guyan reduced
system. Table 2 shows the four eigen-
values and the predicted and actual
error. The analysis set is defined as
6-2, 5-2, 4-2, and 3-2; the first number
being the grid point, and the second
number the direction.

Table 2. Comparison Between Predicted
& Actual Guyan Reduction

Error.
MODE WACTUAL"  PREDICTED |
NO. EIGENVALUE ERROR (%) ERROR (%)
1 5.50856E6 3.09e-3 3.22E~3
2  2.17408E8  3.98E-1 3.89E-1
3 1.86197E9 8.62 7.55
4 1.01909E10 52.9 27.3

The accuracy with which the error is
predicted decreases with increasing pre-
dicted error. Also, as expected, the
error increases as the mode number in-
creases. Small studies of the actual
error have led to the "rule of thumb”
that in a Guyan reduced model, the low-
er 50% of the modes in the reduced model
are reasonably accurate; similar to the
above result.

As an additional example of the
accuracy of the error analysis let
concentrated masses of 1.0 E~1 and 1.0
E-2 be located at grid points 2 and 4.
These masses are large compared with
the mass of a cell, 4.7 E-4. A Guyan
reduction to the 3-DOF of 2-2, 4-2, and
6-2 yields the results shown in Table 3.

Notice that all three modes are
acceptable for normal engineering prac-
tices. This accuracy is surprising when
compared to the "rule of thumb" mentioned
above. The analysis set included the
two large mass points as well as the
extreme point of the model.

Table 3. Predicted & Actual Error for
the 5-Cell Beam with Two
Concentrated Masses.

NO. EIGENVALUE ERROR (%)

ERROR (%)

1.6754E6 1.06E-2 1.06E-2

1.9465E7 9.50E-2 9.40E-2

1.5367e8 2.11 2.05




Consider, as a final example, the
15-DOF system that is identical to that
above but includes the axial, X,, di-
rections of the grid points. Tﬁe
analysis get is defined as 2-2, 3-1,
4~2, 5-2, and 6~2. The comparison of
"actual” vs. Guyan reduced eigenvalues
and the actual vs. predicted exrrors are
compared in Table 4.

The interesting effect shown in
this model is that the third mode of
the Guyan reduced model is predicted to
have less than 0.2% error, but when
compared to the third mode of the com-

Table 4. -‘Guyan Error Analysis

plete model, the eigenvalue is more than
508 different! A comparison of mode
shapes reveal that the third mode of

the reduced model is the first axial
mode, the fourth mode of the complete
model., This example points out the
pitfall of comparing the first few eigen-
values of two models without making sure
that the eigenvalues represent the same
mode. This kind of comparison is common-
ly used to ascertain the accuracy of two
Guyan reduced modes or of a reduced

model to the first few modes of the com-
plete model.

for 15-DOF System with Two Concentrated

Masses. A= Axial Mode, B= Bending Mode.

FIGENVALUE ERROR (§)
MODE
NO. ACTUAL REDUCED ACTUAL | PREDICTED
1 | 1.675228E7}1.675243E6 8.95E-4 | 9.00E-4
(B-1) (B-1)
2 | 1.944648E7|1.944747E7 5.67E-3 | S5.10E-3
(B-2) (B-2)
3 | 1.663417E8]1.504932E8 1.86E-1 | 1.84E-1
(A-1) (B=3)
4 | 1.507730E8|1.087748E8 34.6 48.2
(B-3) (A-1)
5 | s.s96351E8]3.53227389 | 53.6 18.5
(A=-2) (B~-4)
6 | 5.098570E9
(B-4)
CONCLUSION REFERENCES

In summary it has been shown that
a method exists that provides a useful,
cost effective method for estimating
the error induced by the Guyan Reduc-~
tion. The method presented produces a
single number for the error in each
mode, making it easy for the analyst to
evaluate the accuracy of the reduced
model that will produce reliable
results.

1. Guyan, Robert J., "Reduction of
Stiffness and Mass Matrices," AIAA
Journal, Vol. 3, No. 2

2. NASTRAN THEORETICAL MANUAL, Section
11.3 (Available from COSMIC, Suite
112, Barrow Hall, Athens, Ga 30602)




DISCUSSION

Voice: Would the inclusion of the
second order theoretical improve your
results?

Mr. Pox: That's a good question. I
tried to do that and I didn't get the
results that I was looking for. It
seemed to me like one should be able to
get a second order correction to the
eigen vector but I havean't been able to
prove that. Also that term should be
able to tell us how to optimize for
Guyan reduction and that is a challenge
to the audience if you can figure out
how to do it. I haven't been able to do
it yet. 1've been working a year on
that.




CRITICAL SPEEDS OF MULTI-THROW CRANKSHAFTS
USING SPATIAL LINE ELEMENT METHOD

Cemil Bagci, Professor
Department of Mechanical Engineering
Tennessee Technological University
Cookeville, Tennessee

Donald R. Falconer, Project Engineer
Duriron Valve Division
Cookeville, Tennessee

axial, and torsional deformations,

A finite element method for the determination of the critical speeds
of multi-throw crankshafts 1is presented.
three-dimensional dynamic system and throws in their actual geometries
spaced at some angles relative to each other and subjected to flexural,

The method uses spatial actual finite
line element whose each end may experience six degrees of freedom of spa-
tial motion--three rotations and three linear displacements. Both regular
and irregular elements are used. Masses and rotary inertias are lumped to
the joint freedoms chosen as generalized coordinates, using either discrete
element mass matrix or the consistent element mass matrix plus the discrete
external load mass matrix, depending on the model used. Equations of free
motion are solved for natural frequencies and the corresponding mode vectors
as an eigenvalue problem by matrix iteration, using the reduced dynamics
matrix for higher modes. An experimental unbalanced crankshaft having three
throws of different sizes, supported by four bearings, connected to a variable
speed drive by a flexible coupling, and carrying three external load disks

is designed, tested, and results are compared with those of analytical finite
element solutions for different models, including those considering rotary
inertias, flexible bearings, and equivalent pure torsional straight shaft
models, showing the method of the article to be a very efficient. tool for the
dynamic design of industrial crankshafts.

A crankshaft is considered as a

INTRODUCTION

Critical speeds of a crankshaft are its
most important dynamic characteristics since the
operat ional speeds of machines where the crank-
shaft is operating are bound by these critical
speeds. Available 1iterature show that critical
speeds of a crankshaft is in general estimated
by reducing the crankshaft to a pure torsional
system using rules of thumb to approximate
throws as shaft portions and disks, then using
Holzer's assume-and-iterate method [1-3), or
using planar finite line element technique pre-
sented in [4). Investigations of crankshafts
considering the actual three dimensional geo-
metry of throws has been limited due to the com-
plex geometry involved. Available literature on
the three dimensionsl study of crankshafts
again use simplified models applying Myklestad
Method and iteration [5,6].

This article presents a three-dimensional
finite 2)ement method for the determination of

critical speeds of crankshafts considering their
three-dimensional actual geometries and as sys-
temas experiencing axial, flexural and torsional
deformations, and using lumped mass systems.
Equations of free motion of a crankshaft are
written making use of the matrix-displacement
method, which makes use of the stiffness influ-
snce coefficient matrix of the crankshaft. The
finite element technique is used in the formu-
lation of the global axternal etiffness matrix
{K]) of the crankshaft and in the formulation of
the global mass matrix [M). The generalized
coordinate influence coefficient matrix is de-
termined by partitioning [K] or its inverse
according to the number of the generalized coor-
dinates used, to which masses and rotary mass
moments of inertias are lumped (4, 7-14}. Equa-~
tions of free motion are then transformed into
the eigenvalue form and solved for the natural
frequencies and the corresponding mode vectors
by matrix iteration. Natural frequencies deter-
mine the critical speeds of the crankshaft. The




method permits the inclusion of the rotary in-
ertias of elements as well as of the externally
mounted objects and investigation of their

effects on the predicted value of the critical
speed with ease. It also eliminstes the rules-
of-thumb techniques of the conventional model-

ing.

EQUATIONS OF MOTION

Equations of motion for the forced and
damped vibration of a dynamic system written
using the method of influence coefficients in
the form of uacoupled displacements, and in
matrix form, are [8, 13):

(xs}-lésl{-[Hl{x'}-[Cl(xSH{%t)} 1)

where {xg}, {xg}, and {x,) are the Ng x 1 vec-
tors of genen!iud coor,imte displacements,
velocities, and accelerations, respectively. g
stands for "generalized". Ng designates the
number of the generalized coordinates used. [M]
is the Ng x Ng global mass matrix in which
masses are lumped to linear generalized coor-
dinates and rotary inertias are lumped to rotsry
generalized coordinates. (C] is the Ng x Kg
global damping coefficient matrix. {F(y)}is the
Ng x 1 time dependent forcing vectar. ﬁ.‘] is .
the Ng x Ng generalized coordinate flexibility
influence coefficient matrix whose determination
for the crankshaft becomes the major sim of the
finite element formulation. Thus, to determine
[6.]. the global stiffness matrix [K] is formed
by the finite element technique. Then, it is
inverted or partitioned. The global stiffness
matrix [K] relates all the active joint freedoms
{x} to the external joint forces (P} by

{P} = {K]}(x) (2)

where {x} and {P} are of sizes Np x 1, [K] is of
size x Ny, and is the number of active
joint freedoms. An active freedom is a neutral
freedom, 1f no mass is lumped to it. It is gen~
eralized coordinate freedom otherwise. Let the
oumber of neutral freedoms be No. Then, Npei,
+fg. The number of the external joint freedome
are assigned such that the early numbers 1, ...,
Ny are for the neutral freedoms and the remaining
aumbers No+l, ..., Np are for the generalized
coordinate freedoms, so that the inverse of [K]
is easily partitioned to obtein {5g}. Thus,
from eq. (2),

1.. .l!o . |

{x} -[x]"{’o} 1}0 6:-_}'5: {p,} o)
(x‘) (p') ‘ 82 §6~ {P‘)

in which {x;} 1s the N x 1 neutral coordinate
displacement vector, {p,} is the Ny, x 1 netural
coordinate forcing vector and is sero. {pg} 1s

the Ny x 1 generalized coordinate forcing vector
vhich is the post multiplier of [6g] in eq. (1).
Hence, from eq. (3), [6.] = [84]). Then, to find
[6‘]. one only needs to form (K] and partition its
inverse to extract [8s] of size Ng x Ng.

Determining [§_ ] by partitioning (K] saves
computer time. Thus, rewriting eq. (2), one

has
! Ke]l{x } P}
F -1 ,f]l it o (3a)
‘l H x‘} P'}
from which
{x,} = ~(K 17 [KeUx ) (3b)
[Ks) {xo}ﬂln.]{x') -{l"} (3¢)
[ixa1-ta1im )7 (R21] €} =tp)) (34)
Then, [8,] = [Ko)™, vhere [K.)= [K]-[Ks)[K ]
(Kz]. Ifiverted matrices are [Ki] of size N, x N,
and [K.] of size Il‘ x ll..

For the free motion {P }= -[M]{x,} which
upon substituting into eq. (1’. along :!th the
form of the harmonic motion {xgl=cos (ut+¥){R},
give the eigenvalue form of the equations of
free motion:

(M- wmy)mr=o )

vhere A=1/w? 1s the eigenvalue of the dynamic
matrix [Dgl=[8_]{M]. w is a modal natural fre-
quency of the !rmhluﬂ:. {R} is the correspon-
ding modal smplitude vector and Y the phase an-
gle. Ny values of ) determine the N, values of
w and tgc correspond ing values of {l}. Equation
(4) is solved for the values of Xy and {R)y
easily by matrix iteration. The solution of eq.
(4) by matrix iteration using the original value
of [Dy] gives the fundsmental mode frequency w
and the corresponding mode smplitude vector {Rh
{14]. For higher mode frequencies [Dy] must be
reduced. Thus, for the (k + 1)th mode it is
given by [14):

w, [ m, |’
() [ )

Dyl = Pl 75
u:{l)k[ll] (R},

The fundamental frequency wy of a crank-
shaft determines its critical operational speed,
so does for the kth mode. (R}, defines the
modal amplitudes of the generalized coordinates
with respect to the undeformed geometry of the
crankshaft. The corresponding neutral coor-
dinate modal amplitudes are given by eq. (3b) as
('o}k = -[K])? [K2{R}y.

THE EXTERNAL JOINT FPREEDOM (P - x) DIAGRAM

Figure 1 shows an external joint displace-
ment diagram for a crankshaft having two throws.
This figure illustrates several rules and con-
siderations in modeling a crankshaft. A joint
is introduced where the cross-sectional proper-
ties of the crankshaft varies, where a mass or
mass moment of inertia is to be lumped, and
vhere there is a support. Between two joints an
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element is formed. Since the finite element
technique is a numerical method, the more ele-
ments means better accuracy in the results ob-
tained. Single-headed solid arrows designate
active linear joint freedoms. Double-headed
solid arrows designate active rotary joint free-
doms. The restrained joint freedoms are desig-
nated by dashed arrows, and they will assume
the freedom number Np+l. Joint freedoms are
restrained to satisfy the existing boundary
conditions such as at the fixed end at A in Fig.
1 and at rigid support location, such as the
linear joint freedoms at support C and N, If
a support (bearing) is designed to permit axial
play of the journal (which is done to permit
axial expansion of the shaft in high temperature
environments) the axial freedom at the support
location is not restrained, such as the freedom
105 at support Y. The transverse linear free-
doms at a support become active freedoms when
a bearing is considered flexible in the trans-
verse directions (which may be the case when
the bearing housing is mounted on vibration
isolator or wvhen the effect of the bearing
housing deformations is to be considered).
Freedoms are sometimes restrained to obtain the
type of model desired. For example, in Fig. 1,
all the joint freedoms except the torsional
freedom 1 at the flexible coupling joint are
restrained to permit the flexible coupling
experience torsional deformation only and re-
place it by an element, element 1, which exper-
iences torsional deformation only. Axial free-
doms at joints L, M. N, O, and P are restrained
so that elements 12, 13, 14, and 15 do not

MAY EXIST

YA

experience axial deformsations. For example,
(x73-x72) defines the axial deformation exper-
ienced by element 5. However, axial freedoms
along the IL side of throw 1 are all numbered 84
80 that elements 9, 10, and 11 do not experience
axial deformations, even though the joints I, J,
K, and L experience axial joint displacement B84.
Similarly, elements 21, 22, and 23; elements 19
and 20; and elements 24 and 25 do not experience
axial deformations, althought their joints ex-
perience the linear freedoms 99, 95, and 105,
respectively. The O end of element 15 experi-~
ences torsional freedom 51 only, fixing this
joint for flexural and axial displacements. The
P end, however, experiences the torsional free-
dom 52 and the flexural freedom 53, while the
freedom 53 is experienced as a torsional freedom
by element 16. The freedom numbering on the PS
side of the second throv eliminates the dis-
placements of joints P, Q, R, and S in the axial
Y' direction. So, elements 16, 17, and 18 do
not experience axial deformations; and no flex-
ural rotation in the X'Y' plane, but linear
freedoms 91, 93, and 95 with zero slope of the
deflection curve at P, Q, R, and S on this plane.
In this manner desired elastic model experien-
cing the desired freedoms can dbe formed.

IRREGULAR AND REGULAR ELEMENTS

One of the throws, preferably the first
one, throw 1 in Fig. 1, is used as a reference
throv vhen forming the P-x diagram. The refer-
ence throw lies in the XY plane of the XYZ
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Fig. 1 ~ A sample external joint P-x diagram for a lumped mass model
of a crankshaft having two throws
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reference system. Successive throws are posi-
tioned with respect to the previous ome by the
angle, 6. Since the freedoms of the joints on
the throw sides are assigned such that some are
parallel to the axis of rotation of the crank-
shaft and some lie along the element line (the
Y' sxis), the elements connecting a throw to the
previous one, such as the element 15 in Fig. 1,
congist of two external joint freedom end-coor-
dinste systems which are displaced relative to
each other through rotation 6 about the X axis.
Since this requires the transformation of the
end forces and moments in the element equations
of equilibrium, elements such as the element 15
are called irregular elements. Other elements
wvhich require no transformation are called
regular elements.

Assigning freedoms along the element lines
of the throws have gseveral purposes: to permit
the use of element mass matrices of simplified
geometries, to permit mass displacements to oc-
cur in the directions orthogonal to the element
lines and to the principal axes of the element
crogs-sections, and to provide simple means to
eliminate certsin freedoms and neglect the ef-
fect of certain maas properties.

DYNAMIC MODEL

The dynamic model of a crankshaft is char-
acterized and formed when one decides which of
the active external joint freedoms are to be
used as the gensralized coordinstes. In Pig. 1
freedoms 1 to 31 are considered neutral coor-
dinate freedoms. Then R.»78. If there was a
flywheel at C, the freedom 2 would be considered
within the generalized coordinates. Freedoms 3
and 4 could have been included in the genera-
1ized coordinates also if the effect of flexural
rotary inertias of the flywheel about the Y and
Z axes was to be included, but their numbers
would be in those defining the generalized coor-
dinate freedoms. At M the effect of mass (due
to freedoms 89 and 90), effect of torsional
rotary inertia (due to freedom 48), and effect
of flexural rotary inertias (due to freedoms 49
and 50) are included. Effect of torsional ro-
tary intertias about the Y axis of the elements
4-6, 9-11, 16-18, 21-23, and about the X axis of
the elements 21-25 sre considered. The effect
of the flexural rotary inertias of masses at H,
Q, R, and T is neglected, so is of the torsional
rotary inertias at S, T, and U ends of elements
19 and 20. The effect of masses corresponding
to linear freedoms, except in the directions of
joint freedoms 10-14, is considered. In case of
the discrete msss matrix, the sum of the masses
at $, T, and U is lumped to freedom 95, the sum
of those at U, V, W, and X is lumped to freedom
99, that of at I, J, K, and L to freedom 84, and
that of at X, Y, and Z to freedom 105. These
masses contribute also to off-diagonal elements
in case of the consistent mass matrix. The
global mase matrix [M] 1s formed considering all
these effects by using element mass matrices--
discrete slement mass matrix or the consistent
element mass matrix, depending on the method

used--as described in the following section.

THE ELEMENT P-x DIAGRAM AND THE ELEMENT
EXTERNAL STIFFNESS MATRIX

The general geometry of the spatial finite
line element used is shown in Fig. 2. Figure
2(a) shows the element P-x diagram snd the or-
der of the local external foint displacements
X(N,) to x(N,,). Each end of an element exper-
ifences three %-otnry displacements and three
linear displacements. X, Y, and Z position the
terminal end with respect to the initial end of
the element. x(j, ), X(j,)» 80d x(N,) are joint
rotations at the initial end; x(y,

. X » and
X(Ng) are joint rotations at thg 22:-131)”«:.

x » X . X ., and x ' X ' X
.g’%hc g:tlar 5(213;: frced&':t ﬂ(‘x‘x initihz)
and terminal ends, respectively. N to Ny,
designate the global numbers of the joint dis-
placements. For example, for element 6 in Fig.
1, My =36, N, =37, Ny=17, Ny=38, Ng=39, Ng=18,

Ny =12, Ny=73, Ny=77, M o=79, M1=74, N 2=78,
and X=Z=0, Ysl;, where the XYZ system is the
element reference system. For element 18, thase
numbers are (26, 55, 109; 27, 56, 109; 93, 109,
94; 95, 109, 96), where the X'Y'Z' gystem is the
slement reference system, and XaZ=(, Y=L,,. a,
8, and vy are the direction m!ho and cos a=X/L,
cos B=Y/L, cos y=Z/L, Li=X24¥%42t,

Element external stiffness matrix relates
the element external joint displacements x(N,)
to X(N,,) to the corresponding element exterfal
joint fotcu P(N,) tO P(N;;) ®8 they contribute.

(P}‘ - [K.](x}. (6)
T T
where {P}'-[P('l). P(‘z). seey P ). {x).-
Ix s X s seey X ]. P‘ is th
12:“1'!’.1-.9:"3::.::;.1 gﬁ 22:1: m: is
given by T
[Kel=[A]g(S)elAlq 1§))

in which [A], 1s 12x6 element statics matrix as
described below for both regular and irregular
elements, [A]] 1s its transpose and is the defor-
mation matrix, {8}, is the elwment internal
stiffness matrix and relates the internal end
noments and end forces to the end deformations
of the element [15, 16]. Refer to Figs. 2(b)
and (c), where shown are the element internal
end forces; axial force F; and axial deformation
e3; torsional moment F; and the torsional defor-
mation e2 of the terminal end with respect to
the initial end; flexural moments F; and F,
about the axes normal the X'Z plane, but paral-
lel to the 1-1 principal axis of the element
cross-section, and the corresponding flexural
deformations ey and es about their axes; flexural
moments Fs and Fg about the axes norsal to the
element axes but lying in the X'Z plane being
parallel to the 2-2 principal axis of the element
cross-section and the corresponding flexural de~
formations e, and e, about their axes; and the
shearing forces V; and V; being normsl to the axes
af corresponding end moments and the element axis.
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It should be noted that the 1-1 principal axis
of an element always remains in the XY plane of
the reference throw and in the X'Y' plane of
the other throws. Hence, [S]e is defined by

Nl 1]z 3]s s]e
1 S
2 S2
(81,=] 3 483 | 283 (®
4 25y | 484
5 48, | 28,
6 28, | 484

v

; A ..‘ 9'.@"‘{ 0t

where S;=EA/L, S2=GJ/L, S3=EI;/L, S4=RBI»/L, E
is the modulus of elasticity, G is the modulus
of torsional rigidity, A is the cross-sectional
area of the element, I, and I, are the area
moments of inertia of the element cross-section
about the principal axes 1-1 and 2-2, respec-
tively, and J is the torsional constant of the
cross-section.

Statice Matrix for Regular Element.

Regular element is that element whose ex-
ternal joint freedoms at initial and terminal
ends are defined in parallel coordinate systems
as in Fig. 2(a). All the elements, except ele-
went 15, in Pig. 1 are regular elements. Ele-
ment statics matrix [A], relates the element
internal forces Fy, F2, ..., F¢ to the eslement
external joint forces, p(N;)» P(N2)» c<+» P(l!u)
It is obtained by simply writing the equati




of force and soment equilibrium at the joints
in the directions of the external joint forces
P(Ng)* Thus, observing the joint free-body dia-
grak for the initial end shown in Fig. 2(d), one
writes

l(n7)1+P(N.)?ﬂ’m’)f-ﬂ'xﬁxwwzwzlh'o 9

as the force equation of equilibrium, and

P )T+P (N, )j * )'E+Fzﬁl+r sU2-FsUs=0 (10)

as the equation of moment equilibrium. Simi-
larly, the equations of force and moment equi-
1libriwm for the joint at the terminal end are
written to be

P(“”)1+P(“n)_1+r(nu)k-nU;-vw,-Vzu;-o (11)

and

j+P k-FzUanUs"'FcUz'o (12)

(Nu) *® )P wg)

where 1, j. and k are the unit vectors of the
XYZ reference system; U;, U2, and Us are the
unit vectors that position end forces in the
joint coordinate system as shown in Fig. 2(d)
and are defined as

Ti+al+bj+ck, Uze-cgl-cdj+hk, Us= -di+g]

where n-cosa, b=coaB, c=cosy, d=sin¢=b/(a
+b2)? »_h=siny, also a=hg and b=hd. Separa-
ting 1, j. and k components of eqs. (9)-(12),
the element statics matrix for the regular ele-~

ment is obtained to be that given in eq. (13).
[A]e =

O 1] 2] 3| e s | s
N -a -d cg

N2 -b '3 cd

N3 -c ~h

Na a ~-d cg
Ns b 8 cd
N¢ c -h 13)
N7 -a eg/L| cg/L | d/L | d/L
Ks |-b cd/L| cd/L [-g/L |-s/L |
No -c ~h/L] -h/L

K10 P -cg/L|-cg/L | -d/L {-d/L
N1 b ~cd/L]-cd/L | g/L | g/L
Ni2 c h/L| h/L

Although this element statics matrix may be
simplified for the crankshaft elements lying
along an X axis, for which asgsh=l, bsc=d=0,

and for the throw side elements for which a=g=
c=0, bmdshe]l, it is preferable to maintain it in
ite general form within the program to account
for the throws whose sides may not be parallel
to the Y or Y' axis.

Statics Matrix for Irregular Elements.

Observing Fig. 1, the irregular elements
in a crankshaft will be formed on one side of a
nonreference throw, such as the element 15 in
Fig. 1, and again on one side of an inner flex-
ible support as it is seen in Fig. 4. Figure 3
shows the general geometry of an irregular ele-
ment where the external joint-freedoms at the
terminal end are defined in the XY"Z" system
which is displaced through rotation 8 about the
X axis. The end forces and end moments on the
element remain as defined in Fig. 2 (b) and (c).
Equations (9) and (10) are the same for the ir-
regular element. Then, the rows 1, 2, 3, 7, 8,
and 9 of [A], in eq. (13) are also the corres-
ponding rows of the irregular element. The re-
maining rows of the statics matrix are deter-
mined by re-writing the equations of equilibr-
ium given in eqs. (11) and (12) involving the
necessary transformation through rotation 6.
Thus, the force and moment equations of equili-
brium for the terminal end joint of the irregu-
lar element are

P
(Ny0) _ _ _
P(“ll) r‘ [Te](FIUI + Vilz + V2U;3) = 0 (14)
P(Nu)J
and
P(Nu) _ _ _
(Ns) p- [Tl (F2lUy + FuUs - Fel2) = 0 (15)
(Nc)
where 1 0 0
[Te] =10 cos® s8iné (16)
0 -sind cosé

is the matrix that transforms the internal
forces at the terminal end joint from the XYZ
coordinate system into the XY"Z" coordinate sys-
tem. Thus, the statics matrix for the crank-
shaft irregular elements becomes that given in
eq. (17). The numerical value of 6 is a posi-
tive number when the rotation has taken in the
right hand screw direction, negative otherwise.
Note that rows 4 and 10 of matrices in eqs. (13)
and (17) are the same since the rotation has
taken place about the X axis, the axis of P(m)
and P(Nro)-

Element internal stiffness matrix for an
irregular element remains as given by eq. (8).

Since [A)e and [S]. matrices are determined
by element properties such as E, G, A, X, Y, 2,
L, I,, Iz, J; the numbers of the global external
joint freedoms at ends of an element; and 1if
the element is an irregular one; reading these
data for each element within a program, the ele-
ment external stiffness matrix [Ke] for each ele-
ment is formed according to eq. (7), and its ele~
ments are stored to the corresponding locations
of the global external stiffness matris [.].
Thus, [Ke] has the form of eq. (18). For example,
for element 24 in Fig. 1, N;=65, N,=66, Ny=67,




{A)

P 1 2 3 4 5 6
N, -a -d
N2 -b 8 ce
N3 -C od
Ry a -d -h cg
Ns b.cosé g cosb cd.cosd
+c. cosd ~h.2ind
Ng c.cosf -g 8ind -cd.sin®
e - -b.cosd _-h.cos® an
R Ny -a cg/L cg/L d/L d/L
Ns -b cd/L cd/L -g/L -g/L
Ng -c -h/L -h/L
Nio a -cg/L -cg/L -d/L -d/L
R11| b.cosd (h.sind (h.sin6
Hc.8ind ~cd.co80) /L -cd.cos8) /L {cone f‘.“'e
Ni2| c.cos® (cd.sind {(cd.siné -
~b.s1ine + h.cos6) /L +h.cos8) /L g‘ue - f'me
Ny=8, Ns=9, Ng=10, Ny=105, Ny=99, N4=106,
\ N1o=105, Ny =Nz 109 Np+l; and the (3, 10) ele-
x(N") Y" ment of its (K] matrix will be its contribution
r 4 . to the (67, 105) element of the global [K] ma-

element with terminal point irregularity

trix. In order that the element P-x diagrams
defined in Figs. 2(a) and 3 can be applied to
all the elements, the restrained freedoms are
given the number N +1. Although, this forms

8 +1)th row and (Np+1)th column during the for-
mulation of [K] when superposing all the element
{Kq] matrices, these column and row of [K] are
discarded. For example, both (3,11) and (3,12)
'(Nd elements of [Ky] for element 24 in Fig. 1 will
— . contribute to the (67, 109) element of [K).
[
X (x)=-
‘(Nq)
P N N2 N1 Ny LT
l(“sl /x. s L
Ny x x x x x
{f ¥
N2 x x x x x
X(N3) { ¢
X Ky x x x x x
L L J—; : 3 - o -
-~ .. T ~ -~ ps
¥y | x x x x x
N
Fig. 3 - Element P~-x disgram for irregular 12 | x x PR x x

(18)




THE MASS MATRIX

The global mass matrix [M] for the crank~
ghaft is formed as a discrete mass matrix or as
a consistent mass matrix. In both cases the
global mass matrix is the sum of two global mass
matrices:

(M] = [M;] + [M2] (19)

where [Mi1] is the contribution of the element
masses and mass moments of inertia to the global
mass matrix, [M2] is the mass matrix consisting
of the masses and mass moments of inerita of the
externally mounted and concentrated objects on
the crankshaft such as the gears, flywheels, and
pulleys. Since in general objects are mounted
on a crankshaft having their principal axes
parallel to the external joint freedom axes, the
products of mass inertia will vanish and [M;])
matrix will be a diagonal matrix. Depending on
the number of externally mounted objects and the
number of generalized coordinates used, some of
the diagonal elements of [M:] may be zero. No
diagonal element of [M] can be zero, however.
For example, in the system show in Fig. 1, the
mass of the gear at Z would form the (74, 74),
(76, 76) and (77, 77) elements of [M;] being
lumped to the similarly numbered generalized
coordinate freedoms which correspond to the ex-
ternal joint freedoms x;ps, X107, and Xjpg.
mk?y, mk?;, and mk®, will form the (37, 37),
(38, 38), and (39, 39) elements of [M;], respec-
tively, corresponding to the external joint
freedoms Xgs, X¢3, and X7, respectively. m is
the mase of the gear; ky, ky, and kz are the
radii of gyration about the axes designated by
the subscripts.

The mass matrix [M;] may be formed in two
manners; either as a discrete mass matrix or as
a consistent mass matrix., As a discrete mass
matrix, [M;] is a diagonal mass matrix for
crankshafts such as the one shown in Fig. 1.
Diagonal elements of [M;) can be formed without
the need for a discrete element mass matrix,
although an element mass matrix simplifies the
process by the aid of a computer. As an example,
consider the generalized coordinates at point F
in Fig. 1. Lumped to the generalized coordi-
nates xg, (x3¢) (X37), g\, (x73), gnd x
(x17) aft (mokd +mekiy3/2, tasks, ekt ) /25" ng
4mg) /2, and (Is'!c)/z. raespectively, where ms,mg
are the masses of elements 5 and 6. ks and k¢
are the radi1i of gyration of one half of ele-
ments 5 and 6 on the sides of F, about F. ksy
and k¢ are the radii of gyrations of these
elmn! masses about the Y axis. No rotary in-
ertia about Z axis is considered since xi17 is
not & generalized coordinate freedom. When a
sufficient number of masses are used in a dis-
crete mass model almost exact solution results
are achieved [14].

Discrete Element Mass Matrix.

The global discrete mass matrix [M ] can be
formed as the superposition of discrete element
mass matrices. Thus, the discrete element mass
matrix [l‘le]D for a regular element whose princi-
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pal axes lie along the axes of the joint free-
dom coordinate systems is given by eq. (20) in
which qy=Nj-No designates the generalized coor-
dinate corresponding to the external joint free-
dom x(y;). ¢ 1s the mass density (kg/m!)or 1bf-
sec? /in ; The radii of gyration are kp=(L/4)?
+ about any axis normal to the element axis,
where n=1, 2, 3 designates axes X,Y,Z; kg, is
the centroidal radius of gyration of one-half
of the element about the axis designated by n.
When element data are read into a computer pro-
gram, the nonzero elements of [Mg]. are formed
and stored to the locations of the global mass
matrix designated by the global joint freedom
numbers q;=(N;-Ng), q2=(N2-No),..., qi2=(N12-No).
When q4<0 and q1>Ng, the mass matrix element is
discarded since 1<0 defines a neutral coordi-
nate freedom and q{>N, defines a restrained
freedom. Tapered elements are approximated by
straight elements using the centroidal proper-
ties. The effect of element rotary inertias on
the natural frequency of a system is very small
and negligible in many instances. To neglect
the effect of a rotary inertia, the correspon-
ding joint freedom is considered a neutral coor-
dinate freedom or restrained depending on the
model used. If a torsional freedom is used as

a neutral coordinate freedom, the torsional ro-
tary inertia at the location is neglected, but
the shear deformation still occurs, and the glo-
bal stiffness of the system hag the effect of
shear deformations.

Consistent Element Mass Matrix.

The consistent mass matrix is a discrete
mass matrix consisting of the effects of pro-
ducts of inertia, and it is the best approxima-
tion for the continuous mass model [9, 10, 12].
For the spatial finite line element used in this
article, when the X or X' axis lies along the
element line, the consistent element mass ma-
trix [Me]cx is given by eq. (21), where ri=J./
(3A), Jy being the torsional constant of the
element cross-section, rz-L2/105+2k;/15l ry=
-13L/420+k}/10L, Ty=-L2/140-k3/30, Ts=L {105
+2k3/15, re=11L/210+k3/10L, r7=13L/420-k3/10L,
rg=13/3546K2/5L , re=d/70-6k2/5L%, r1s=13/35
#6kj/5L?, r11=-11L/210-ky/10L, r1g=9/70-6ky/5L?,
r13=13L/420-k3/10L, ria=-L%/140-kz/10. ky and
kz are the centroidal radii of gyration of the
element cross-section about Y(or Y') and Z(or
Z') axes, respectively.

For the elements that lie along a Y or Y'
axis, the consistent mass matrix given in eq.
(21) takes a different form since the principal
axes of the element cross-section lie in a dif-
ferent joint freedom reference system. Thus,
[Me] is given by eq. (22) where r;s-L?/105
+2kz/15, rig=-L2/140-k3/10, ry7=13/35+6k2/5L,
r14=9/70-6k3/5L2, r;e=13L/420-k3/10L, rz=11L/
210+kg/10L, r;;=13L/420-ki/10L, and k, is the
centroidal radius of gyration of the element
cross-section about the X axis.

When the effect of rotary inertias is to
be neglected, ky, ky, k;, and J. are set to be
zero in the element data.
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Element mass matrix for an irregular crank-
shaft element is the same as given by eqs. (20)-
(22) depending on the type of model used, since
the irregular element is of circular cross-sec-
section.

MODELING FLEXIBLE SUPPORTS

Flexible supports tend to reduce the criti-
cal speed level of a crankshaft. When a bearing

housing is mounted on flexible mounts for the pur-

pose of absording vibration, the rigidity of the
support is lost and an appreciable amount of re-
duction in the critical speed is observed.

it becomes important to kmow the reducing effect
of flexible bearings on the operating speeds of

Hence,

crankshafts, astraight shafts, and the machine
in which they operate. Incorporating a flexible
bearing in the dynamic model of a crankshaft
merely introduces restrained linear regular ele-
ments, and it may cause some regular shaft ele-
ments to become irregular elements., Shown in
Fig. 4(a) 1s a portion of a crankshaft mounted
on flexible bearings at A and D, where it is
assumed that the bearings are linear springs
experiencing axial deformations only in Y and

Z directions under the radial loading. Ki and
K2, for example, represent .1inear spring rates
of the suppaort at A fer loading in Z and Y di-
rections, respectively. In the finite element
model they are bars experiencing axial defor-
mations only. Thus, bar AB and AC experience




q q2 q3 qs | qs

qs

q7 qe | 99 | q10 qi11 qr2

qQ T1s 16

29 r2:

q2 n r/2

q3 Ts

Tie

~Ts “T13

=r2) =T20 -

qs ry/2 r

qs Tis
M. =oAL ‘

Ts

Iis T20 22)

q

Ty Ty

qe

1/3 1/6

qs T20 -T21

r17 Tie

an 1,

Xze

Iie Iy

qu

1/6 1/3

q12 r21 ~r20

T1e 7

joint freedoms xsy and x4, Tespectively. All
the other freedoms on these elements are re-
strained. The shaft experiences all three ro-
tary freedoms at the support; xsg, Xs3, Xs2-
At support D the only difference is in that the
shaft is permitted to experience axial play in
the bearing housing due to the linear freedom
Xg¢s that the joint of the shaft experiences.
Ends of the bars representing the springs do
not experience linear freedoms in the X direc-
tion. When preparing the element data for
these spring bars, E{, A;, and L{ values must
be assigned to render Ki = E4A¢/L;.

If the bearing housing experiences a con-
siderable amount of rotational deformations
about X, Y, and Z axes, rotary freedoms such as
those designated by (*), (**), and (***) for
the spring element AC are considered active
freedoms, respectively, within the neutral coor-
dinate freedoms. In that case the spring ele-
ment is a cantilevered beam element experien-
cing flexural and torsional deformations, and
the element data must furnish G, I;, 12, and J
values also to render the flexural and torsional
spring rates of the bearing housing in the res-
pective directions. In Fig. 4(b) elements 11
and 12 are regular elements. However, elements
15, 23, and 24 are irregular elements, and in
their statics matrices given by eq. (17) one
must use 6=8,, 6= -8,, and O=f,, respectively.

COMPUTER PROGRAM

A digital computer program in FORTRAN IV
language is prepared to perform the frequency
analysis of crankshafts having any nonuniformity
along the shaft and along the throw sides, any
number of throws and externally mounted objects,

any awaber of rigid or elastic supports?® The
program forms the global externsl stiffness
matrix [K] ¢ 1 the global generslized coordinate
element mass matrix [M;] as it reads the element
data one element at a time where the type of ele-
ment mass matrix to be used must be defined for
each element. The nonzero elements of the exter-
nal load mass matrix [Mz) are read separately in
an array in the order of the corresponding gen-
eralized coordinates. The program inverts [K]
and partitions it according to No and Ng to de-
termine [5g], then forms [Dm] and solves eq. (4)
for \; and {R;}; for the fundamental critical
speed of the crankshaft. It reduces [Dm] by eq.
(5) and solves eq. (4) for the higher mode fre-
quencies and the corresponding mode vectors as
many as desired.

Element data requires E, G, I, I,, J, X, Y,
Z, o global joint freedom numbers Ny, N3, ...,
Ny2, identification number designating if the
element is regular or irregular, 6 if there is
any, identification number designating if dis-
crete or consistent element mass matrix is to be
used, kx, ky, kz, kG,» kG,» kg, if required.

NUMERICAL EXAMPLE AND EXPERIMENTAL RESULTS
A very flexible unbalanced crankshaft, sup-

ported by four ball bearing supports, having
three equally spaced throws of different crank

radii and carrying three externally mounted disks,

shown in Fig. 5, was designed for experiments to
verify computer solutions for different finite

element-dynamic models st low speeds. The crank-
shaft was driven by a variable speed drive motor

* The copy of the program is available for
the interested reader.
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to wvhich it was connected by a flexible coupling,

LOVEJOY No: L-100, of torsional stiffness 5156
in.-1bf/rad. The whole crankshaft asgembly was
mounted on a steel frame. See the experimental
setup in Fig. 6. Material is steel of density
0.28 1bf/ind, E=30 x 10° psi, Gell x 10° psi.
Shaft portions and crank pins are connected to
the throw aides by silver soldering. Using 45
elements and the aforementioned digital compu-
ter program, the frequency analysis of this
crankshaft was performed for several dynamic
models to investigate the effect of different
system properties. Figure 7 shows locations of
joints. These models are considered in eleven
cases described in the following. The frequen~

cies and the critical speeds for the first four
modes are given in Table 1 for each case.

Case 1. Pure torsion of shaft elements about
the X axis considering linear freedoms on the
throw joints in the Z and Z' directions as gen-
eralized coordinates since throw and crank pin
masses contribute to torsional moment. Rotary
inertia of the externally mounted disks about
the X axis are considered along with the throw
masses contributing to torsion. Shaft elements
experience no flexural and axial deformations;
throw and crankpin elements experience no axial
deformation, no linear freedom and flexural ro-
tation in the XY and X'Y' planes. N,=93, No=42,




WELDING

THROW |

oG- B
] Ly

) . 2 120°
7R _/1 THROW |
0

DIMENSIONS ARE IN INCHES
UNLESS SPECIFIED. lin.=254mm

THROW 3 2 WEEW A

Fig. 5 - Geometry and the Dimensions of the Experimental Crankshaft

N,=51. Discrete mass matrix is used. The sam-
pie P-x diagram for the reference throw is shown
in Fig. 8(a), where the element AB is the flex-
ible coupling element experiencing torsional de-
formation only in all cases.

Case 2. This is the same as in Case 1 but in-
cluded are the torsional rotary inertias of the
shaft elements. The corresponding freedoms such
as x2 to x¢ 1in Case 1 are included in the gen-
eralized coordinates. Np=93, Ng=66. Discrete
mass matrix is used.

Case 3. In this case every element experiences
torsional and flexural deformations except the

axial deformations. No flexural and torsional
rotary inertia of elements and externally moun-
ted disks are considered. Only masses of the
elements and disks are considered. This, cer-
tainly considers inertial torque effect of throw
sides and crankpins. Np=214, Ng=79. Figure 8
(b) shows the sample P-x diagram for this case.
Discrete mass matrix is used.

Case 4., In addition to masses considered in

Case 3, this case includes torsional rotary in-
ertias of the shaft and crankpin elements and of
the disks. No flexural rotary inertia is con-
sidered except those of the elements on the
throw sides about the X and X' axes contributing

Fig. 6 ~ Experimental setup: Textronix Type 562 oscilloscope, Perkin M377 power
supply, Berkley 7160 electronic counter, ELECTRO 3060 AN magnetic pick-up,
vibration pick-up General Radio 1560-P52, vibration pick-up on the second
bearing, vibration meter General Radio 1553-A
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to the torsional rotary inertia of the shaft. freedom. The rotary inertia of a throw side
Torsional rotary inertias of the throw side ele- about the axis of the shaft is lumped to rotary
ments are not considered. Np=214, Ng=124. freedom at the joint connecting the throw to the
Figure 8(c) shows the sample P-x diagram for shaft. Np=27 and No=27. The P-x diagram for
this case. Discrete mass matrix is used. this case for the same portion of the shaft is
given in Fig. 8(e). There are ways of forming
Case 5. In this case the masses and flexural equivalent straight shafts to replace the crank-
rotary inertias of the shaft elements, crank- shafts, which are somewhat of rule-of-thumb type
pina, throw side elements and external load arbitrary procedures and considered in Case 9
disks are considered. No torsional rotary in- [1, 17]. The modeling of the crankshaft in this
ertia is considered except those of the throw Case offers a rational way of reducing a crank-
side elements since they contribute to flexural shaft into an equivalent straight shaft whose
deformations of shaft and crankpin elements. torsional frequency may also be determined by
=214 and Ng=169. Figure 8(d) shows the sample using finite element techniques incorporating
P~x diagram for this case. Discrete mass ma- simpler line elements. One such technique is
trix is used. given in [4]. Discréte mass matrix i{s used in
this case.
Case 6. In this case masses, torsional, and ]
flexural rotary inertias of every element in the Case 9. In this case the straight shaft equiv-
model and of the external load disks are con- alent torsional model of the crankshaft is simi-
sidered. WNp=Ng=214. Discrete mass matrix is lar to that of Case §, but the throw is replaced
used. by an equivalent shaft portion using the rules
given in [1] and [17] which are formulated to
Case 7. This is as in Case 6, but consistent reduce the torsional frequency of the equivalent
element mass matrix 1s used along with the dis- shaft considerably to achieve conservative re-
crete external load mass matrix [M;]. The sults and overdesigns, and are suited for crank-~
masses and rotary inertias due to extensions at shafts having small crank radii and thick throw
throw-shaft and throw-crankpin joints are con- sides, where the crankpin and throw sides are
sidered as discrete masses in their proper reduced to shaft portions of dianeter on the
directions in [M2]. N,-Zlb and Ng=214. side of the throw or of the crankpin (as used in
this case). The sum of the rotary inertias of
Case 8. In this case the crankshaft is reduced the crankpin and of the throw sides is lumped
to an equivalent straight shaft experiencing to the joint at the center of the equivalent
torsional deformations only, where a throw is portion. In this case the freedoms at the throw
replaced by its crankpin introducing one addi-~ sides are not generalized coordinates, although
tional joint at the midpoint of the crankpin for they may exist due to dismeter change along the
each throw. The rotary inertia of the crankpin equivalent shaft. Thus, Np=21 and Ng=21. The
about the axis of the shaft, that is, its cen- rule of [1] recommends the length of the equiv-
troidal moment of inertia about the X axis plus alent shaft portion replacing the throw to be
the product of its mass with the square of the about the length of the throw. The frequencies
crank radius, is lumped as the torsional rotary for the models obtained using the rules of {1)
inertia to the newly introduced torsional joint and [17) are given in Table 1.
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Case 10. This is the same as Case 6 but the tor- Experimental Results,
sional stiffness of the flexible coupling is re-
duced to 3000 in.-1bf/rad. Reduction in the The experimental crankshaft of Fig. 5, mounted
operatable critical speed of the shaft is on a steel frame was run at different speeds and
noticeable. the aaplitude of the vertical acceleration of
the top of the second bearing from the left was
Case 11. This is the same as Case 6, but all the measured by vibration meter (see the experimen-~
S supports are considered flexible and are re- tal setup in Fig. 6) and plotted with respect to
. placed by two linear springs each as shown at the crank speed rps (Hz.) in Fig. 9. The peak
. support A in Fig. 4, where the spring rates of of the acceleration plot shows the actual criti-
) both springs at each support at D, G, K, and N in cal speed of the shaft to be 1350 rpm, or 141.37
‘ Fig. 7, respectively, are 1000, 800, 600, 400 rad/s. The first peak at 1) rps wvas due to the
b 1bf/in. The effect of flexible supports on the noticeable vibration of the plate at the top of
! operatable critical speed of s crankshaft is the supporting frame.
noticeadble,
38
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Discussion of the Results.

Studying the results for differemt dynamic
models given in Table 1 following conclusions
can be drawn. Any of Cases 6 and 7 is a com-
plete and most relisble model. Comparison of
Cases 1, 2, and 6 shows that the systea is pri-
marily torsional. However, comparison of Cases
3 and 5 with Case 4 shows that maintaining the
flexural flexibility of throws is most desirable.
The model of Case 8 appears to be a reliable
equivalent straight shaft model of a crankshaft
for the determination of the fundamental crit-
ical speed of the crankshaft. A healthier and
rational one in comparison to those of comven-
tional rules, since the model of Case 8 is
entirely dependent on the crankshaft geometry.
It leads to error on the unsafe side for the
higher mode critical speeds.

Comparison of Cases 6 and 7 with Case 8
also shows the considerable effect of the flex-
ural properties of the crankshaft on the higher
mode critical speeds.

Flexible coupling and slags in belts,
chains, and clearances in geared connections
tend to make the crankshaft behave as a free-
free system in the direction of the torsionmal
freedoms along the shaft axis, and drastically
reduce the operable critical speeds of the crank-
shafts. Case 10 illustrates the phenomena. The
fundamental critical speeds for Cases 4 and 5
with the reduced torsional stiffness of the
flexible coupling were 2159.10 and 1400.84 rpa,
respectively. Conventional methods of forming
equivalent pure torsional models for crankshafts
appears to be arbitrary and may lead to over-
designs, as seen in Cases 8 and 9, or they may
lead to unsafe designs. The effect of flexible
supports on the critical speed level is reduc-
tion as seen in Case 11.

CONCLUSIONS

The method of determining critical speeds
of crankshafts using finite line element method
considering the throws in their actual geometries
presented in the foregoing with experimental
verification is a very efficient, relisble, and
powerful tool for the dynamic design of indus~
trial crankshafts. Farewell to costly test-and-
modify type conventional designs based on exper-
iments on prototype models. Modelings in Cases
6 and 7 are the most recommended ones. When
only the fundamental critical speed is of the
prime interest, the modeling of Case 8 offers a
very simple tool which can also be handled with
f:lllit. element techniques using simpler elements

It is hoped that the contents of the article
and the computer program made available will de
of value for the practicing engineers and the
teachers of mechanical design.
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DYNAMIC ANALYSIS

A PARAMETRIC STUDY OF THE IBRAHIM TIME DOMAIN
MODAL IDENTIFICATION ALGORITHM

Richard S. Pappa
Structural Dynamics Branch
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Hampton, Virginia

and

Samir R. Ibrahim
Department of Mechanical Engineering and Mechanics
0ld Dominion University
Norfolk, Virginia

The accuracy of the Ibrahim Time Domain (ITD) identification algorithm in
extracting structural modal parameters from free-response functions has
been studied using computer-simulated data for 65 positions on an isotropic,
uniform-thickness plate, with mode shapes obtained by NASTRAN analysis.
Natural frequencies, damping factors, and response levels of the first

15 plate modes were arbitrarily assigned in forming the response functions,
to study identification results over ranges of modal parameter values and
user-selectable algorithm constants., Effects of superimposing various
levels of noise onto the functions were investigated in detail. A partic-
ularly interesting result is that no detrimental effects were observed
when the number of computational degrees-of-freedom allowed in the algo-
rithm was made many times larger than the minimum necessary for adequate
identification. This result suggests the use of a high number of degrees-
of-freedom when analyzing experimental data, for the simultaneous identifi-
cation of many modes in one computer run. Details of the procedure used
for these identifications are included.

INTRODUCTION

A fundamental problem in experi-
mental structural dynamics is the accu~
rate determination of parameters
characterizing the important vibration
modes of a test structure. These param-
eters--natural frequencies, damping
factors, and mode shapes~--are used for
a variety of purposes, including:

1. trouble=shooting excessive
vibration or noise from mechan-
ical equipment;

2. dynamic analysis of portions
of a structure that are too
difficult to model analytically;

3, refinement or verification of
an analytical model; and

4. direct calculation of dynamic
loads or response levels that
a structure may experience
during operation.

An additional future use of experimen-
tally determined modal parameters, of
current research interest to NASA, is in
the active attitude control of large
space structures.

Obviously, the applications and
corresponding accuracies which are re-
quired of these data vary considerably.
Results adequate for one use may be un-
acceptable for another. 1In addition,
accuracy requirements for particular
applications may be difficult to quantify
and may be subject to error. Establish-
ing the adequacy of experimental modal
data still often includes a judgement
of whether the most accurate set of data,
within an allocated period of time, has
been obtained.

Before the widespread use of mini-
computers in the laboratory, modal test-
ing and analysis were conducted almost
exclusively with analog instrumentation.
As the advantages of digital computation




because apparent, many data analysis
techniques that had been developed on the
analog systems were simply converted

to their digital counterparts. These
techniques are, in fact, still used today
in successfully measuring the dominant
modal patterns of "well-behaved" struc-
tures. Accompanying the conversion to
digital-based laboratory equipment was
an increased use of random force, as
opposed to sinusoidal force, for exciting
test structures. This trend was closely
related to the revolutionary switch in
the late 1960's to fast Fourier trans-
form (FFT) methods for rapidly computing
frequency-domain characteristics of ran-
dom response signals. Although many
structures are still tested with the
classical multiple-shaker, sine-dwell
approach, the majority of experimental
dynamists now select the faster random-
force methods for modal testing.

A standard step in the data-reduc-
tion phase of most modal test programs
is the computation of fregquency-domain
characteristics of the measured struc-
tural responses. In controlled ground
vibration tests where the input force(s)
as well as the responses can be accurate-
ly measured, acceleration/force frequency
response functions are usually formed:;
in cases where the input forces cannot be
measured, the response information alone
is used. Many single~- and multi-degree-
of-freedom algorithms have been developed
to identify the structural modal param-
eters by curvefitting analytical expres-
sions to these data ?1]. Single-degree~
of-freedom methods use a few data points
near each resonant frequency for quickly
estimating the modal parameters of one
mode at a time., Because in these tech-
niques it is assumed that the overall
response near each resonance is dominated
by the characteristics of a single mode,
however, the degree of modal coupling in
any frequency interval significantly
affects identification results. On the
other hand, multi-degree-of-freedom algo-
rithms, developed to identify the param-
eters of several modes simultaneously,
nearly always work well on data that can
be reasonably analyzed with single-degree~
of-freedom methods, but may differ appre-
ciably in more difficult cases.

various aspects of using time-
domain response data rather than frequen-
cy-domain functions in the experimental
modal identification of structures excit-
ed by random forces(s) have been dis-
cussed previously by Ibrahim [2-6]. An
early multi-degree-of-freedom time-domain
identification procedure [2] required
numerical integration (assuming the
measurement of acceleration responses)
to obtain displacement and velocity time
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histories at each response measurement
point, in addition to the measured ac-
celeration time histories. This approach
was later abandoned in favor of a more
straightforward method [3] in which any
one of displacement, velocity, or ac-
celeration free-response functions are
used in an eigenvalue solution scheme

to obtain the desired modal parameters.
This newer procedure is referred to in
this paper as the ITD ("Ibrahim Time
Domain") algorithm. The term "free-
response” function is used throughout
this paper to denote any of three time
response forms which may be used in the
identification algorithm: actual free-
decays measured following random excita-
tion of a structure; unit-impulse-
response functions formed by inverse
Fourier transformation of frequency
response functions; or “random-decrement”
functions [4] computed from random
operating time histories.

The ITD algorithm has been used
to analyze test data from several struc-
tures{7,eg). As now implemented, the
identification process is a "blind" tech
nique, requiring a minimal amount of
operator input to compute parameters
for many modes from a set of free-
response functions. A large number of
structural modes, often 20 or more, are
identified in a single computer run. In
general, the parameters computed for the
dominant modes of these structures agreed
well with those obtained by other methods
Parameters for modes identified by the
ITD analyses, but not determined with
other analysis methods, however, lacked
verification and their accuracy was
rightfully questioned.

The work reported in this paper was
initiated to help interpret these experi-
mental results. For this study, compu-
ter-simulated free-response data, for
linear, multi-mode models with known
modal parameters, were processed with
the ITD algorithm. The identified para-
meters were used to quantify the ability
and accuracy of the identification pro-
cess, to look for anomalous numerical
behavior under severe identification
conditions, and to compare results for
ranges of the few user-selectable algo-
rithm constants. The modeling approach
consisted of constructing free-response
functions for 65 positions on an isotro-
pic, uniform-thickness rectangular plate
by the linear summation of the free-res-
ponses of the first 15 analytical modes.
The mode shapes were obtained from a
finite-element analysis, and modal fre-
quencies, damping factors, and response
levels were arbitrarily assigned for
each deesired modal model. Various
levels of noise, calculated on an rms-




percentage basis, were superimposed
onto Spe frqe-rosponse functions.

Techniques for obtaining distortion-
free sets of free-response functions
from experimental measurements, an
important phase in the modal identifi-
cation process when the ITD algorithm
is used, are not addressed in this paper

Somewhat new terminology is used in
describing the algorithm. To avoid con-
fusion in correlating the identifi-
cation results with the usage of the
free-response data in the procedure,
complete details of the technique are
included. The methods used in con-

* structing the free-response functions
and in quantifying the accuracy of
identified mode shapes are described
in the following report sections. The
remainder of the report contains a sum-
mary of the identification results.
These data illustrate typical identifi-
cation accuracies over a wide range of
simulated modal models and user-selec-
table algorithm constants.

LIST OF SYMBOLS

agx + ibx k'th complex eigenvalue of [A]
A the "gystem” matrix
A]T Transpose of [A]
C a damping coefficient
(C/Cc)x  damping factor (fractiin of
critical damping) of k'th
mode
£y frequency corresponding to
k'th eigenvalue of [A
b 3% multiples of the frequency
1/(2(At)i)
£y *folding frequency" based
on (At); '
i measurement station index
3j time index
k mode index
K a spring constant
m number of assumed modes
(= NDOF)
M a mass
N1,N2,N3 number of time samples cor-
responding to (At)31, (At)2,
and (At)3
Po number of response measuremerts
avajilable
s number of time samples in
each free-response function
(= NCOL)
ty time instant J
total time length of response
functions
X34 free-response of station i
at time instant J
time increment between the two
f:;ponae matrices, [¢] and

time increment in forming
"transformed stations”

(at) 3 time increment between data in
upper and lower halves of the
response matrices

At an arbitrary time increment

€ a small uncertainty in an
eigenvalue determination

O angular position of k'th
eigenvalue in the a-<b plane

A characteristic value of mode k

[k] a matrix of complex exponen-
tials

Ik damping value of k'th mode
(= real part of characteris-
tic value) .

Ok2 damping value of k'th mode
using alternate method

[s] response matrix whose rows
contain the free-response

" functions

[¢] The [¢] matrix delayed (At);

(v} complex eigenvector of mode k

(k2] matrix whose columns are the

- system's eigenvectors

[v¥] the [¥] matrix with responses

delayed (At))

(wg) damped natural frequency of
k'th mode (= imaginary part
of characteristic value)

(wn)x undamped natural frequency of
k'th mode

Abbreviations

ITp Ibrahim Time Domain (technigue)

MAR Modal Amplitude Ratio

MCF Modal Confidence Factor

Mscce Mode Shape Correlation Constant

NCOL ngber of Columns in [¢] and

NST Number of (measurement)
Stations used in calculation
of OAMCF

OAMCF Overall Modal Confidence Factor

RMS Root-Mean-Square (value)

SF data Sampling Frequency

(= reciprocal of time interval
between data samples)

THEORY OF THE IDENTIFICATION TECHNIQUE

The Eigenvalue Solution Approach

The characteristic equation for a
classical single-degree-of-freedom struc-
tural system, governed during its free
response by

MX+CxX+Kx=0 (1)

is 22 M+ A C+ K =0, and the general

solution form is x(t) = y eAt., For an

overdamped system, ¢ and A are both

real~valued; for an underdamped system,

they are complex, occurring in conjugate
pairs.

In the more common underdamped case,
the roots of the characteristic equation
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are X =0 t i wg, where wy is the
damped natural frequency in radians/sec-

ond, wp = /02 + wg? the undamped natu-
ral frequency, and { = ¢/w, the damping
factor or fraction of critical damping,
C/Cc.

For a linear multi-degree-of-free-
dom system with m excited modes, the
free response of the structure at any
(measurement) station i and instant of
time tj can be expressed by the sum-
mation Oof the individual response of each
mode as:

2m At
= = z: k™j
xi(tj) = xij biy © (2)
k=1

where yj, and Ay are both complex
numbers, in general. Note that the sum-
mation extends to 2m since there are
2m roots of the characteristic equation.

Free-~response values for 2m sta-
tions and s instants of time, calcu-

lated using Eq. (2), can be arranged
into matrix form as:

(*11 X12 X1
X

21 ¥22 v X

*2m,1 s xzm'fj
wll le e wl'zm
Vo1 Va2 cer V5 on
= L] » X
Yam,1 ese ¥Yom,2m
B y N
Ayt At At
e 1 1 e l 2... e 1 s
ALt A At
e?l o 2"-2.“ e 28
. . (3)
Aamt1 . e*zmts

or simply i
[o] = [¥] [A) (4)
(2m x 8) = (2m x 2m) (2m x 8)
Similarly, free-response values (At);
later in time than those in Eq. (2),

measured at the same stations, can be
expressed as:

xil}j + (At)]:]

2m

Ak tj + (At)i]
:2: Yik ©
k=1

A, (At) At
}E:[;ik e X %] ek

A t.
= :E: Vi © k™3 (5)

or, in matrix form, for 2m stations and
s instants of time:

(8] = [¥] [A] (6)

(2m x 8) = (2m x 2m) (2m x 8)

For s>= 2m, [¥] and [¥] are
related through Egs. (4) and (6),
eliminating [A], by:

[a) [¥] = [¥] (n
(2m x 2m) (2m x 2m) = (2m x 2m)

where
[e1T [a1T = [3)7 (8) |

(8 x 2m) (2m x 2m) = (8 x 2m)

Since the columns of [¥] and [@] are

N xk At)1
related from Eq. (5) by {¥}, = e
{¥}x, the complete system can now be
placed in the form of a single eigenvalue
problem as:

A, (At)
[AJv)}, = e X L), (9)

The matrix [A] is referred to in this
paper as the "system matrix," and con-
tains information characterizing the
complete set of modal parameters of the
system,




The desired structuial (damped)
natural frequencies and damping factors
are determined from the eigenvalues of
Ak(At)l

[A]r e = ay + ibk’ by:

1 -1
(Nd)k = 27 fk = TKETI tan (bk/ak)

1 2 2
% = To; ek * R
(10)

g
k
(C/Co)y =

ot (md)k

The eigenvectors of [A] are the
desired (complex) structural mode
shapes, {w}k.

Equations (8) and (9) formthe
basics of the solution approach: free-
response functiong are placed into the
rows of ¢ and ¢; [A]JT is obtained
by a least-squares solution of Eq. (8);
and the complex eigenvalues and eigen-
vectors of [A] are then found, to
which the system'’s modal parameters
are directly related.

The dimension 'm' is referred
to throughout this paper as the "number
of allowed (computational) degrees-of-
freedom," NDOF. This term should not
be confused with the more widely used
meaning of "degrees-of-freedom" as
the number of independent spatial coor-
dinates necessary to define the motion
of a system. The "number of assumed
modes” or the "order of the math model”
are other descriptors that have been
used to denote this fundamental analysis
constant. The matrix dimension 's,’
the number of columns in [¢] amd [§]
(i.e., the number of time samples used
from each free-response function), is
referred to throughout as NCOL. The
matrices [¢] and [8] are referred
to as the two "response matrices.”

Three distinct, user-selectable,
time shifts are used in positioning over-
lapping segments of the measured free-
response functions into the rows of the
response matrices. The fundamental time
increment between all data placed into
(¢] ana [8] is (At);. Two other
time shifts, denoted by (At)2 and

(At) 3, will be discussed in the report
section entitled "Transformed Stations
and Modal Confidence Factors." The
number of consecutive time samples

corresponding to each of the shifts
will be denoted hereafter by simply Nj,
N2, and N3, respectively.

Figure 1 provides an example of
the placement of free-response data into
the two response matrices, assuming that
three response functions are available.
In this example, NDOF and NCOL are se-
lected equal to 7 and 30, and the three
data shifts, Nj;, N2, and N3, are 3,
8, and 4. This figure should be used as
a reference in clarifying the definition
of each of these five primary user-
selectable analysis constants.

Solution Considerations

Equations (8) and (9) are forms
whose computer solution have been studied
in depth by numerical analysts. Egq. (8)
is an over-determined system of simulta-
neous linear equations, and Eq. (9) is
an algebraic eigenvalue problem, where
the (2m) eigenvalues of [A] are

Ak(At)l
e and the corresponding eigen-
vectors are {y},.

The "conventional transpose ap-
proach" of solving Eq. (8) consists of
pre-multiplying both sides by [4] and
then solving for [A]T by any of several
methods for the solution of 2m simulta-
neous lincar equations in 2m unknowns.
Tnis is the approach used for the results
shown in this paper. In particular, pre-
multiplying Eq. (8) by [¢] results in:

(rel 1615 [a1T = ([e] [81D)  an

Equation (l11) was then solved by a stan-
dard Gaussian elimination subroutine
using an LU decomposition of the

([{¢] [¢]T) matrix of coefficients.

Other methods are available for
solving Eq. (8) which do not require
the pre-multiplication of each side by
[¢], [8,9]). These methods have been
developed for the express purpose of in-
creasing the solution accuracy when the
matrix of coefficients, in this case
[¢]T, is ill-conditioned; the pre-
multiplication will increase any ill-
conditioning of the coefficient matrix.
A limited number of comparison identifi-
cations have been run using two other
computer subroutines available for the
solution of Eq. (8), namely:

1. by singular value decomposition
of the coefficient matrix using
Householder transformations,
obtaining the isometric matrix
(u] and orthogonal matrix [V],




such that [9]T=[U}[Q][V]T, where
the singular values comprise the
diagonal matrix [Q]. The least-
squares solution is then formed
by [A]T=[V][at] [U]T[®)T, where
[Qt] contains the reciprocals of
the non-zero values of [Q].

2. by using Householder trans-
formations to perform the QR
decomposition of the coeffi-
cient matrix, where [Q] is
an orthogonal matrix and [R]
is an upper triangular matrix.
The least-squares solution is
then formed as [A]T=[R]=1[0;]T
[®1%, where [Q) is partitioned
in the form [Q]=(Q1,Q2) with
[21T=[Q11(R].

In all cases run using these other methods,
no changes in the computed modal param-
eters were observed to the precision used
in printing the results shown in this
paper. On the other hand, each of the
two methods described above required
considerably more computer memory to
implement using available FORTRAN sub-
routines than the conventional transpose
approach. 1In both cases, the [¢]T and
[gﬁT matrices--each of size (s x 2m)~--
needed to reside in core, whereas the
transpose method was implemented with

two matrices of order 2m each. For

a typical s/2m ratio of 3 used in many
of the identifications, selection of
either optional solution method required
a factor of 6 times more core storage.

The details of available tech-
niques for the solution of Eq. (8) are
compiled in several numerical analysis
textbooks [8,9]. A subroutine pack
containing a standardized set of computer
code for implementing these methods is
available [10].

The numerical techniques for solving
Eq. (9) are not as plentiful; the QR
method advocated by Wilkinson [8,11],
is the accepted approach for determining
the complete set of real and complex
eigenvalues and eigenvectors of [A],
a fully-populated general matrix with
real elements. This is the method used
to obtain all results presented in this
paper. A subroutine pack [12] con-
taining standardized code for the com-
puter solution of eigenvalue problems
is also available. .

"Transformed Stations" and

"Modal Confidence Factors"

Two aspects of the practical imple-
mentation of the method described thus
far, which have been discussed in pre-
vious papers [2,3,5], are: (1) process-
ing data when the number of available
free-response measurements is less than
the number of rows in [¢] (equal to
twice the number of degrees-of-freedom
desired in the identification process),
and (2) distinguishing those eigenvalues
of [A] corresponding to the desired
structural modes from those eigenvalues
corresponding to "noise modes," computed
whenever NDOF is larger than the number
of structural modes contributing to the
responses.

When the number of response measure-
ments that are available, say pg, is
less than the number of computational
degrees-of-freedom which are desired,
fewer than half the rows of [¢] are
filled by the original, unshifted,
response functions. Under these circum-
stances, "assumed" or "transformed"
stations [2] are created for the addi-
tional rows of both response matrices
by simply shifting the original functioms
placed in the first po rows by multi-
ples of a second user-selectable time
shift, (At)2: (At)2, 2(At),, 3(At),,
etc., until the upper halves of botg
matrices are filled. This process of
adding transformed stations does not
mathematically affect the eigenvalues of
the system matrix, [A], assuming perfect
identification. (If NDOF is selected
smaller than po, only NDOF of the
available response functions are used in
the analysis.)

The bottom halves of the two
response matrices are formed by duplicat-
ing the upper rows, but delaying an
additional user-selectable time shift,
(At)3. The rationale for filling only
the upper halves of the matrices with
the available response functions (and
transformed stations) and filling the
bottom halves with a time-shifted form
of the upper halves is based on the cal-
culation of "Modal Confidence Factors,"
to be discussed next.

If two segments of a free-response
function obtained from the same measure-
ment station, but separated by an
arbitrary time interval A1, are placed
into different rows of the response
matrices, the elements in each computed
eigenvector of [A] corresponding to
these two rows, ik and ¢tix, will be

related (again assuming perfect identifi-
cation) by:




A AT
Wi =g e (12)
for each linear structural mode k.
This fundamental property, Eq. (12),

and the time-shift relationship between
the data in the upper and lower halves
of the response matrices, (At);, are
used in the calculation of "Modal
Confidence Factors,” MCF [5], devised
to distinguish "noise modes” from the
desired structural modes. The (complex-
valued) MCF's for accurately identified
linear structural modes--one MCF cal-
culated for each of the first pp ele-
ments in each computed (complex)
eigenvector of [Ag-—will cluster near
unity in amplitude and near 0° in phase;
those calculated for "noise modes”
will be randomly distributed in value,
To form the MCF's, the first pgo ele-
ments in the lower halves of the com-
puted eigenvectors are compared with
‘"expected®” values for these elements,
calculated using Eq. (12) by the product
of the corresponding p upper-half
eigenvector elements and the complex
xk(At)
exponentials, e » where Ay are
the computed characteristic values. The
MCF is defined as the amplitude ratio and
phase difference between each of these
“expected" values and the corresponding
values computed by the eigenvalue
analysis. If the amplitude ratio is
greater than 1.0, the reciprocal is
taken. The phase angle is normalized to
range between -180° and 180°. Obtain-
ing MCF values near 100% in amplitude
and 0° in phase is certainly a necessary
(but not sufficient) condition to indi-
cate that an accurate identification of
. a linear structural mode of the system
has been made.

This process can be thought of as
the comparison of two sets of eigen-
vectors, corresponding to the same set
of eigenvalues, computed simultaneously
for the system using two different
segments of the available free-response
functions. An important user advantage
in obtaining both sets of eigenvectors
in one eigensolution is that no effort
is needed to "pair up" corresponding
eigenvectors if somewhat different
eigenvalues are computed for each set of
segments. A single eigenvalue set is
obtained using information derived from
both sets of data, and the two eigen-
vector sets are correctly compared in the
computer analysis with no user decisions
required.

An MCP is calculated in this manner
for each of the py stations, for each
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identified complex eigenvalue. To com-
pact this information to a more manage-
able level, an "Overall MCF,"” OAMCF, is
calculated for each "mode” (that is, for
each computed complex eigenvalue) as the
percentage of po stations whose MCP
values are at least 95% in amplitude and
within 10° of 0.0 in phase. The OAMCF
parameter, introduced for this study, has
been found very effective in distinguish-
ing the desired structural modes from the
"noise modes," and is a fundamental part
of the identification results presented
in this paper. 1Its value has been found
to provide a good characterization of the
Po MCF's calculated for each mode and,
in general, a closer examination of the
individual station-by-station MCF data
was unnecessary.

The time shift (At)3 srhould not be
selected equal to either (At)] or
(At)2. If equal to (At)), all MCF's
will be computed as 100% in amplitude and
00 in phase, and be of no use. If
equal to (At);, and at least one trans-
formed station has been used, [¢] and
[8] will each have two identical rows
and Eq. (8) cannot be solved. Setting
(At)3 equal to one-half the value of
(At)2 has been found satisfactory in
most cases. To clarify the relationship
between these time shifts, refer again
to Fig. 1, which shows a typical place-
ment of data into the response matrices
when three free-response functions are
used.

CONSTRUCTION OF THE SIMULATED
FREE~-RESPONSE FUNCTIONS

Mode shapes used in constructing
the simulated free-response functions
were obtained from a NASTRAN finite-ele-~
ment analysis of an isotropic, uniform-
thickness plate with 8 x 24 square ele-
ments. Data for 65 stations were obtain-
ed by using the analytical mode shape
data (for motion normal to the plate
only) from every other grid point in
both directions, including the outside
border. The first 15 modes of this
analysis were used in forming the
responses. For each desired modal model,
a damped natural frequency, damping
factor, and response amplitude were
arbitrarily selected for each mode. The
effects of randomizing the initial phase
angle for all stations of each mode and
of selecting other than 0° or 180° bhe-
tween the stations in a mode (i.e.,
complex modes) were studied for several
cases, and no changes in the identifi-
cation accuracy were noted. Thus, unless
otherwise stated, the contribution of
each mode in the responses was represent-
ed as a damped cosine function multiplied
by an appropriate (positive or negative)
mode shape amplitude constant.




That is, each free-response func-
tion was formed as :

15 -0t
xi(tj) = 2 "'ik e k™3 cos[(wd)ktﬂ
k=1

(13)

For this study, each simulated
free-response function consisted of
1000 data points calculated using
Egq. (13), at a sampling rate of 400
samples per second. Uniformly distri-
buted noise was added to these functions
on a function-by-function, rms-percentage
basis, with the rms value of each noise-
free function calculated using all 1000
available data points. The mode shapes
used in forming each modal model were
assigned to the 15 mode indices in the
order determined by the finite-element
analysis.

For ease in interpreting identifi-
cation results, the modal frequencies
were arbitrarily selected for all models
in this study (i.e., the natural fre-
quencies of the plate obtained from the
NASTRAN normal-mode analysis were not
used). Many of the simulated models
were formed by spacing the 15 modal fre-
quencies every 2 Hz from 10.0 to 38.0 Hz,
and setting the modal damping factors and
response amplitudes equal for each of the
modes. Each of these basic modal
models are characterized by a single
modal damping factor and noise per-
centage, and are referred to throughout
this paper for simplicity as "baseline
models. "

EVALUATION OF IDENTIFICATION ACCURACY

The accuracy of all mode shape
identifications for this study has
been quantified by computing a "Mode
Shape Correlation Constant," MSCC,
between the identified mode shapes and
each of the 15 input mode shapes. The
constant is calculated in a manner
analogous to that of coherence, often
computed in time-series analysis work.
The functional form is that of the
square of the correlation coefficient
defined in basic statistics, computed
between two sequences of complex numbers.

Mathematically, if (y3} is a known
input (complex) mode shape, and {y3}
is an identified (complex) mode shape:

[ty )T (y,3*12

— 100
[(6, 07 (9" 100v,)T (9,3"]

C =

(14)

where T denotes the transpose and
* the complex conjugate.

The MSCC between two mode shapes
will always range from zero--for no
resemblence of the two shapes--to 100%~-
for perfect resemblence. Values inter-
mediate between 0.0 and 100.0 can be
interpreted as the amount of coherent
information in the two compared mode
shapes.

The accuracy of identified fre-

quency and damping parameters was
assessed by direct observation only.

RESULTS AND DISCUSSION

In processing a set of free-
response functions with the identifi-
cation algorithm, five primary user-
selectable constants must be chosen.
They are NDOF, NCOL, (At)1, (At)s,
and (At)3. Secondary consideratfonl
include the selections of data sampling
rate and analog or digital filtering
ranges, the particular stations to be
analyzed in one computer run, and the
absolute starting times of the free-
response data (i.e., whether any data
points are skipped at the beginning of
the functions). An optimum selection of
the analysis options is a function of
the characteristics of the data being
analyzed, and "cookbook” instructions
are difficult to develop. The results
to be shown in this section, however,
provide guidelines for their selection
and for judging the sensitivity of the
choices, and illustrate identification
accuracies which may be expected.

All results shown in this paper
were obtained using a vectorized version
of the code on Langley's CDC Cyber 203
(formerly Star-100) computer. Typical
CPU times for identification were 15 sec-
onds for NDOF = 65 and NCOL = 390, and
340 seconds for NDOF = 200 and NCOL =
968. The required computer time varied
approximately as the number of columns
used in ([¢#] ana [8], NCOL, and as
the square of the number of allowed
computational degrees-of-freedom, NDOF.

‘Some Baseline Model Results

Figure 2 shows the time- and fre-
quency-domain responses at measurement
Station No. 1 (a corner of the plate)
for three of the baseline models analyszed
in the study. 1In Pigs. 2(a) and 2(b),
the damping factor, C/Co, of all 1S
modes was set to 2%. The rms noise
levels in these two cases were 2% and
208, respectively. Similarly, Fig. 2(c)
shows the response of Station No. 1 with




all 15 modes assigned 5% damping and

10% noise. The dashed lines on the

time history plots designate the range
of points used from each function in ITD
analyses whose results will be pre-
‘sented in Table I and Figs. 3 through 5.
The center and right-hand plots in

Fig. 2 show the quadrature (imaginary)
component and modulus, respectively, of
the Fourier transform of the correspond-
ing free-response function.

Table I contains MSCC values for
these three identifications calcu-
lated between each of the 15 input mode
shapes and each identified mode (whose
OAMCF was 2% or larger), rounded to the
nearest whole number. Also included
are the identified frequencies in
Hertz, the identified damping factors in
percent, and the OAMCF for each mode.
The column to the right of the OAMCF
data contains the number of stations of
65, NST, that were used in calculating
the corresponding OAMCF value; only

i those stations with non-negligible

Y modal response (at least 3% of the max-
imum value of the mode) are included in
the calculation. This 3% criterion was
imposed on the calculation of OAMCF
because many of the selected 65 measure-
ment stations were located exactly on
mode shape node lines; the variance in
the calculated MCF data for these
stations was generally high, as to be
expected, because very small modal
amplitudes identified for these stations
were used in the calculations. Each of
these identifications were run using
NDOF of 65 and NCOL of 390. The other
50 "modes” obtained in each identifi-
cation were "noise modes," differentiated
by low (<2%) OAMCF values.

Por these identifications, the user-
selectable time-shift constants, (At);,
(At) 2, and (At)3, were set to 3/SF,
8/SF, and 4/SF, respectively, where SF
is the data sampling rate. The values
Np = 3, Np = 8, N3 = 4 were used in
obtaining all identification results
. shown in this paper, unless otherwise
o noted. (These are the values selected
Y for Fig. 1 in illustrating a typical
U4 placement of free-response data into the
two response matrices.)

o By

Figure 3 shows the 15 identified
L (complex) mode shapes for the 2%-damping,
' 2%-noise baseline model, corresponding
to the data contained in Table I. These
identified mode shapes are indistinguish-
able from those used in constructing the
model. Note that the ITD algorithm
identifies complex mode shapes, consisting
of a magnitude and phase at each selected
measurement station: the identified
mode~shape phase angles are included
adjacent to each mode shape, assigned by

)}

congecutive station number from the
center of the circle to the outer ring,
as depicted in the lower-right corner of
Fig. 3; the data for the accompanying
mode shape plots were obtained by the
product of the identified mode-shape
amplitudes and the cosine of the cor-
responding phase angle.

Figures 4 and 5 show the mode shapes
identified for the two other baseline
models whose results were presented in
Table I, also using NDOF of 65 and NCOL
of 390 in the analyses. As before, only
those "modes” with an OAMCF of at least
2% are shown. In Fig. 4, for the 2%~
damping, 20%-noise model, the identified
shapes are also indistinguishable from
the exact, input mode shapes, and the
phase-angle scatter averages only a few
degrees. Identification results for the
5%-damping, 10%-noise model, provided
in FPig. 5, show mode shapes that are
slightly distorted for modes 11 through
14, with significant phase angle scatter
in several of the modes. In interpret-
ing these results, however, the reader
is cautioned that more accurate identifi-
cations are obtainable for these models;
as shown later, allowing higher degrees-
of-freedom in the identification will
increase the accuracy to some degree.
These identifications all used NDOF of
65 and NCOL of 390, and the results
typify the effects of changing modal
damping and noise level while holding
all of the algorithm constants fixed.

Note in Table I that an MSCC of
100% was calculated for each of the
accurately identified mode shapes of the
2%-damping, 2%-noise baseline model,
shown in Fig. 3. Also of interest in
these MSCC results is the slight "blend-
ing" of the higher-numbered mode shapes
for the 5%-damping, 10%-noise model,
corresponding to the small distortions
seen in the plots in Fig. 5.

The Number of Allowed Degrees-of-Freedom

The number of computational degrees-
of-freedom allowed in the identification,
NDOF, should be selected equal to the
number of modes excited in the responses
if the free-response functions are
noise-free. For any deviation of the
response data from the exact analytical
form-~that is, some level of super-
imposed noise--more degrees-of-freedom
than this must be allowed for accurate
identification. It is somewhat intuitive
that better identification of the under-
lying deterministic modal data may result
when one allows for the calculation of
extra "noise modes," in addition to the
number of actual structural modes con-
tributing to the responses, to provide

[
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an outlet in the assumed model for the
noise contribution.

To illustrate the effect of increas-
ing the allowed degrees-of-freedom,
identified modal frequencies for the
2%-damping baseline model, using values
of NDOF from 1 to 75, are plotted in
Figs. 6 and 7 for each of eight increas-
ing levels of superimposed noise. At
each value of NDOF, the identified fre-
quencies are denoted by vertical line
segments at the corresponding frequen-
cies, whose heights are proportional to
the OAMCF value computed for each mode.
As before, only those identified "modes"
with negligible OAMCF (less than 2%) are
not shown. When the individual seg-
ments align to form a solid, vertical
line, the OAMCF's are all 100% and the
identified modal frequency is invariant
with increasing NDOF. On examining
these eight plots, a consistent trend
in the requirement for increased
degrees-of-freedom to accurately iden-~
tify all 15 frequencies, with increased
noise level, is noted. Another interest-
ing trend is that after an NDOF level
is attained for each noise level where
all 15 frequencies are accurate, increas-
ing NDOF above this value did not de-
grade the frequency identification
accuracy. These plots will be referred
to as "NDOF-frequency maps,” and have
been found very useful in interpreting
experimental identification results.

The identifications at each NDOF level
in Figs. 6 and 7 were run using NCOL
of 300.

The lowest value of NDOF for accu-
rate identification has been found in
this study to be related to the signal-
to-noise ratios of the modal responses.
The considerable shifting of the fre-
quency "lines"™ in these NDOF-frequency
wmaps at low values of NDOF results ~
largely from setting all 15 modal
response levels equal. When experi-
mental data are processed, the lowest
NDOF values for identification of each
made vary considerably more between
modes than the data shown in Figs. 6
and 7, due to different response levels,
and almost no line shifting occurs.

Typical accuracy at much higher
allowed degrees-of-freedom are included
in Table 1I for the 2%-damping, 20%-noise
baseline model with analyses at NDOF of
65, 200, 250, and 300. These iden-
tifications used all 1000 data points in
each of the 65 response functions; that
is, NCOL was made as large as possible
in each case. Although the parameters
for all 15 modes are of acceptable
accuracy for most applications at NDOF

of 200, it is interesting that the
accuracy (of the damping factors) con-
tinued to increase as NDOF was raised
beyond this point. Only those "modes”
with an OAMCF of less than 2% are ex-
cluded from these results; at NDOF of
300, for example, 285 additional

"noise modes" were computed, all of
which are differentiated by the OAMCF
parameter. Also very important is that
no anomalous identification problems

Oor numerical instabilities were observed
in this or any other identification con-
ducted in this study using such high
values of NDOF. These results suggest
that the ITD algorithm, used with a high
number of degrees-of-freedom, may accu-
rately identify all of the excited
structural modes, for large modal sur-
veys, in one computer run.

Note that the results shown in
Table II for NDOF of 65 were not as
accurate as those shown earlier in
Table I for analysis of the same 2%-damp-
ing, 20%-noise baseline model; the re-
sults in Table I were obtained using
NCOL of 390 and those in Table II with
NCOL of 993. The effects of the selec-
tion of NCOL on identification accuracy
will be addressed in a later report
section.

The Selection of (at),

To help understand the effects of
the user-selectable algorithm constant
(At)1 (the time increment between cor-
responding data in the two response
matrices), note from Eq. (9) that the
computed eigenvalues of [A], ax + ibk,
are exponential functions of the product
of the system's ‘characteristic values,
Ak, and (At)1l. The desired structural
modal frequencies and damping factors
are then calculated directly from these
eigenvalues by Eqas. (10). Using these
relationships, loci of constant damping
factor are plotted in Pig. 8 in the com-
plex a-b plane, for fg = wy/(27)
ranging from 0 to 1/(2(At)1). A typical
eigenvalue of [A] is denoted by point
'k,' whose corresponding natural fre-
quency in radians/sec is simply the
angle ©) divided by (At)1l. Since
equal damping values, 0y, lie on equal
radii in the a-b plane, by Eq. (10),
the contours of constant damping factor
(equal to the damping value divided by
the undamped natural frequency) will con-
verge to the point (1,0) for fgq = 0
and separate from one another as fg4
increases. As C/Co increases, the
contours lie inside one another, until,
at 1008, the locus is simply the positive
x~axis.

The frequency in Hertz correspond-
ing to Ok = 7, denoted as f4, is the
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point at which the identified fre-
quencies will "fold" because of the
circular nature of the exponential func-
tion--analogous to the well-known
*Nyquist folding-frequency” which results
from the circular nature of the discrete
Fourier Transform. That is, all iden-
tified frequencies will fall in the
range 0 to f,, regardless of their
actual value; only those modal fre-
quencies no larger than £, will be
correctly calculated. The value of £,
is simply 1/(2(At)3]). Of course,

this "eigenvalue aliasing™ will lead to
erroneous frequency and damping factor
results for modes with frequencies
greater than f; contributing to the
response functions used in the identi-
fication; as with the well-understood
Nyquist-frequency aliasing, however,

the phenomenon can also be used bene-
ficially, with the results accordingly

-adjusted, if the data are pre-filtered

to contain information only in a cert-
ain, known frequency interval.

Obviously, for two eigenvalues of
[A] separated by ¢, any inaccuracy
in their calculation may translate to a
considerable inaccuracy in their cor-
responding modal frequencies and damping
factors, depending on the location in the
a-b plane. To quantify this character-
istic, Pig. 9 provides contours of mini-
mum and maximum percent deviation in the
identified modal frequencies and damping
factors for three magnitudes of uncer-
tainty in the eigenvalue determination.
Note, in Fig. 9(a), that percent fre-
quency deviations are nearly independent
of damping level, and are large only for
values less than 0.1 £y (because the
data are shown on a percent-deviation
basis, and f is small in this range).
For all three uncertainty levels, the
percent frequency deviations are no
greater than 2% at all frequencies at
least 0.2 f4, for C/Cc < 10%. The
envelopes of maximum perSent deviation in
the damping factor identification, on the
other hand, are considerably larger, as
shown in Fig. 9(b). These data suggest
that damping factors derived from eigen-
values of [A] subtending small angles
in the a-b plane may be subject to
appreciable error.

As (At); increases, the fre-
quency interval corresponding to eigen-
values located at ©Ox = 0 and O = 7
decreases, and the eigenvalues for any
two modal frequencies separate in the
a-b plane. When this occurs, a more
accurate analysis generally can be made
of a smaller total frequency interval.
Figure 10 shows typical results of this
effect in the identification of the
28~-damping, 20%-noise baseline model for

two selections of N; (the number of data
samples corresponding to the time-shift
interval (At)j;). The results in

Fig. 10(a) were obtained with N;} =1
and those in Fig. 10(b) with N = 3,
holding all other algorithm constants
unchanged. In the polar plots of

Fig. 10, the symbols denote the loca-
tions of all identified eigenvalues of
[A] in the a-b plane; the eigenvalues
corresponding to the 15 structural modes,
distinguishable from the "noise modes”
whose OAMCF's were all less than 2%,

lie approximately equally spaced along
the 2%-damping (dashed)line in each
figure. As shown in the tabulated re-
sults, the identification accuracies of
both damping factors and mode shapes
were improved when N) was increased

from 1 to 3.

An Alternate Method for

Calculating Modal Damping

In addition to the straightforward
calculation method for the desired modal
damping factors using the eigenvalues of
[A], shown in Eq. (10), limited study has
been done of an alternate method using
the first po elements in the upper and
lower halves of the computed eigen-
vectors--data used previously in comput-
ing the MCF values. Based on experience,
the identified damping factors often show
the greatest variance of all the computed
modal parameters. By assuming that the
eigenvector data are more accurate than
the identified damping data, a method
similar to the reverse process used in
computing the MCF data can be used to
obtain a second estimate of the modal
damping factors.

Mathematically, a form analogous to
that for obtaining the amplitude of a
frequency response function using the
Fourier components of input and response
signals can be used to compute an average
modal amplitude ratio between the 'upper’
and 'lower,' po-element, mode shape
vectors. 1In particular, if {yy} is an
upper identified (complex) mode shape, and
{yy} 1is a lower identified (complex)
noﬁe shape, a Modal Amplitude Ratio (MAR)
can be calculated as:

T *
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MAR T
Wt (yy)

(15)

from which an alternate modal damping

factor can be calculated, using the cor-
responding damped natural frequency,
obtained directly from the eigenvalue o

[a), by:




a
/ey, = k2 (16)

Oka  * lwg)y

where o), = 1ln(MAR)/(At)3.

This estimate of modal damping was found
more accurate in many cases--but not
all--particularly for modes with poor
signal-to-noise ratios. Figure 11

shows modal damping factors identified
by each of the two methods for the
2%-damping, 50%-noise baseline model for
NDOF in steps of 20 from 60 to 200.

Only data for the first 10 modes are
included. Although the data for modes 1
and 2 (circle and square symbols) are
significantly over~estimated by either
method, overall, the data in Fig. 11l(b),
obtained indirectly using the eigenvector
and identified frequency data, cluster
appreciably closer to the true value of
2% than the data in Fig. ll(a), cal-
culafe? directly from the eigenvalues

of Al.

When the modal damping is calculated
using this alternate method, an MSCC
between the upper and lower pg—-element
vectors used in the calculation should
also be formed to be used as an indi-
cation of the consistency of the eigen-
vector data, which may itself be inaccu-
rate. A conservative approach would
certainly be to calculate the damping
factors by both methods, and use any
discrepancy in their values as a indi-
cator of inaccurate identification.
Unless otherwise noted, the damping
identification results shown in this
paper were obtained using the direct
calcflﬁtion method from the eigenvalues
of Aj.

Modal Response Level

In all identification results pre-
sented thus far, the response levels of
all 15 modes in the simulated models were
set equal; for actual experimental data
this would not be the case. To examine
identification accuracy of modes with
significantly different response level,
Figs. 12(a) and 12(b) show NDOP-fre-
quency maps for the 2%-damping, 2%-noise
baseline model when the response level
of mode 8 (at 24 Hz) was reduced to 1%
and 5%, respectively, of the level selec~-
ted fcr each of the other 14 modes. The
18-xesponse case represeants the approxi-
mate lcwer limit at which this mode was
identifiatls for NDCOF up to 75. Com-
pared with a similar plot shown earlier
in Pig. 6(c) for all modes of equal
response level, note that these plots
have several randomly scattered dots,

corresponding to "modes" with OAMCF less
than 2%, the cutoff used for plotting
the data shown in Figs. 6 and 7. This
cutoff criterion was removed for these
plots to allow the 24-Hz mode data in
Fig. 12(a) to be discernible.

Although Figs. 12(a) and 12(b) show
that the 24-Hz modal frequency was iden-
tified in both cases, these data do not
indicate the accuracy of either the
identified mode shapes or modal damping
factors; this information is included in
Figs. 12(c) and 12(d), respectively.

In Fig. 12(c), MSCC's calculated between
the identified mode shapes and the known
input shape are plotted for each case as
a function of NDOF. For the 5%-response
case, denoted by the square symbols, the
MSCC is essentially 100% for all NDOF
above 46; for the l%-response case, on
the other hand, the MSCC value does not
rise above the 83% level. In fact, when
the l%-response model was analyzed using
NDOF of 250, the MSCC of the 24-Hz mode
remained at approximately 83%.

Identified modal damping factors
for these cases, calculated both using
Eq. (10) and by the alternate method
discussed in the previous report sec-
tion, are shown in Fig. 12(d). 1In all
cases, the data appear to be approaching
the correct value of 2% with increasing
NDOF; the results for the 5%-response
case being closer to the true value than
those for the lt-response case. Addi-
tionally, the damping factors calculated
by the alternate method using the com-
puted eigenvector data are more accurate
at each value of NDOF than the damping
factors calculated directly from the
identified eigenvalues of [A].

The Selection of NCOL

In establishing the two response
matrices, both the number of rows (equal
to twice NDOF) and the number of columns,
NCOL, must be selected for each identifi- *
cation. As shown in NDOF-frequency maps
in Figs. 6, 7, 12(a), and 12(b), the
minimum required NDOF is related to the
signal-to-noise ratio of the modes.

The value for NCOL, denoted by 's' in
the THEORY section of this report, is
restricted to be at least twice NDOF,

so that Eq. (8) contains no fewer equa- ’
tions than unknowns. An intuitive upper
limit in selecting NCOL corresponds to
the time at which the free-response sig-
nal for the mode to be identified becomes
smaller than the noise level; beyond this
point each additional data point used
from the response functions would provide
more noise than additional information
to the identification algorithm.




The effects of the selection of

‘'NCOL on identification results for the

2%-damping, 20%-noise baseline model

are shown in Fig. 13. To estimate the
time at which the superimposed noise
exceeds the signal information in the
free-responses, a 20-point, running
mean-square value, averaged over all 65
functions used for the model, is plotted
in Fig. 13(a). These data have been
normalized so that the asymptotically
approached noise level corresponds to

0 @B, Since all 15 modes have the same
response level in this model, the mean-
square value of the free-response signal
for each mode equals the mean-square
noise level when the function of

Fig. 13(a) equals 10 log(16) or 12 dB.
This corresponds to NCOL of approximate-
ly 225,

Using NDOF of 65, all 15 modal fre-
quencies for this model were accurately
identified for NCOL ranging from 200
to 950, and their values are not shown.
Of interest, though, are the cor-
responding MSCC values and identified
modal damping factors for these cases.
These results are shown in Figs. 13(b)
and 13(c), respectively. To maintain
clarity, data for only the first five
modes (which typify the results obtained
for all 15 identified structural modes)
are included. Of particular interest in
these figures is the rapid deterioration
of the identification results when NCOL
is less than 200. Above NCOL of 200,
the MSCC data are affected only slightly
as NCOL increases to 950, although a
slight downward trend is noted for NCOL
greater than 300. Optimum mode shape
identification was obtained for NCOL
ranging from 200 to 300. The identified
modal damping factors, on the other hand,
diverge from the selected value of 2%
considerably faster than the MSCC data
from 100%, as shown in Fig. 13(c).
Selecting NCOL near 200 would also pro-
vide the best damping identification
over the range of NCOL from 170 to 950.
It is of interest to note that the
identified damping factors in Fig. 13(c)
all tend to approach the correct value
of 2% as NCOL decreases. This effect is
similar to that shown in Fig. 11l(a) for
an increase in NDOF with NCOL held
constant.

Close Natural Frequencies

A classic problem using any modal
identification technique is the accurate
determination of the modal parameters
for two or more structural modes of
approximately the same natural frequency.
Assuming no attempt was made to appor-
tion the force used in exciting the
structure, the response levels of two

modes close in frequency may well be
approximately equal in a set of response
measurements obtained during wide-band
force excitation. If T seconds of
data are available for analysis, the
corresponding frequency-domain functions
will be determined to a resolution of
1/T Hz by Fourier methods. For the
models constructed in this study,

T = 2,5 seconds, which corresponds to a
frequency resolution of 0.4 Hz. To
obtain accurate modal parameters with
methods that rely on visual determina-
tion of response peaks in frequency
spectra or frequency response functions
is unreasonable when the modal frequency
separation approaches the frequency
resolution value.

To study the frequency resolution
ability of the ITD algorithm, several
modal models were constructed by moving
the frequency of mode 8, originally at
24.0 Hz in the baseline model, to a
lower value, close to mode 7 at 22.0 Hz.
All 14 other modes were maintained at
their original spacing of 2 Hz frcm
10.0 to 38.0 Hz. Table III shows the
identification results using the 2%-damp-
ing, 2%-noise baseline model, for 0.10,
0.05, and 0.01 Hz frequency separation
between modes 7 and 8. Sixty-five
degrees-of-freedom, with NCOL of 390,
were used in the identifications. At
each frequency separation value, the
damping in mode 8 was successively
changed from 2% (the same value assigned
to mode 7), to 3%, to 10%. For all
three frequency separations, near-perfect
identification of the parameters for all
15 modes was obtained for the cases when
the mode 8 damping was either 3% or 10%.
Identification accuracy of modes 7 and
8 in the cases where both modes werc
assigned 2% damping successively deter-
iorated as the frequency separation was
decreased. These trends are consistent
with the fact that two modes, although
of equal natural frequency, will cor-
respond to different eigenvalues of [A]
if their damping factors are different—
the larger the difference in damping,
the larger the corresponding eigenvalue
separation.

To extend the study of eigenvalue
resolution one step further, modal
models were constructed with five of the
15 modal frequencies set to 22.0 Hz.
Figure 14 provides identification results
for two of these models: Fig. l4(a)
with the five modes assigned damping
factors of 1, 2, 3, 4 and 5%; and
Fig. 14(b) with damping factor assign-~
ments of 2, 4, 6, 8 and 10%. Of course,
as shown in the frequency spectrum plots,
only one response peak is discernible at
22 Hz in both cases. The parameters of
all 15 modes were accurately identified
in each model, as shown, when the
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percentage of added noise was held to a
very low level: 0.01% in the AC/Cc =
1% case and 0.1% in the AC/Cc = 2%
case. Although these noise levels are
extremely low--often unattainable

with experimental data--these results
do illustrate the potential accuracy of
the method and the relationship between
noise level and the attainable eigen-
value resolution. These two identifi-
cations were run with NDOF of 65; the
same models could be identified with
somewhat higher noise levels at the
(computational) expense of allowing more
degrees-of-freedom.

A Condition on the Selection

of (At)4

The selection of the time shift
between the upper and lower halves of
the two response matrices, (At)3,
can significantly affect the iden-
tification accuracy of modes at or
near certain frequencies; in particular,
if all of the data in the lower halves
are obtained by delaying the data in the
upper halves by (At)3, frequencies
fx = n/(2(At)3), for integer values of
n, will not be identified. Using a
different time shift on one or more of
the stations will help alleviate this
problem, which may occur whenever
fx < f4. Of course, selecting
(At)3 < (At)] will always eliminate the
condition by forcing the lowest value of
fx to be larger than £y, the upper
limit of the analysis range.

CONCLUDING REMARKS

Using simulated free-response
functions, the Ibrahim Time Domain (ITD)
algorithm has been found capable of
accurately identifying known, structural
modal parameters over a wide range of
frequency separations, damping factors,
mode response levels, signal-to-noise
ratios, and user-selectable algorithm
constants. It has been found that the
modal parameters can often be identified
in cases of poor signal-to-noise ratio
if sufficient computational degrees-
of-freedom are allowed in the identifi-
cation process. A significant finding
is that no detrimental effects were
observed when many times more degrees-
of-freedom were allowed than the minimum
necessary for reasonable identification;
this result suggests the use of a high
number of degrees-of-freedom for the
"blind" use of the algorithm in analyz-
ing experimental data.

For many of the models analyzed,
the identified modal frequencies and

mode shapes were more accurate than the
corresponding modal damping factors.
When the identified damping factors were
plotted as a function of either the
number of allowed degrees-of-freedom,
NDOF, or the number of time samples

used from each response function, NCOL,
however, the correct values were often
asymptotically approached. An alternate
method for calculating modal damping,
using the identified eigenvectors and
modal frequencies, was found more accu-
rate in some instances than using the
identified eigenvalues directly.

For each set of user-selectable
algorithm constants, direct correlation
was found between the variance in the
identification results and the signal-
to-noise level of the responses. In
analyzing noisy data, when sufficient
degrees-of-freedom were allowed in the
analyses, all natural frequencies and
mode shapes were identified with good
accuracy in nearly every instance. Low
values of Overall Modal Confidence
Factor, OAMCF, for modes with reasonably
identified mode shapes, were usually
indicative of inaccuracy in the esti-
mated damping factors. For noise-free
input data, the identification accuracy
of all parameters approached the computa-
tional accuracy of the computer.

The required computer time varied
approximately as the number of columns
in the response matrices, NCOL, and as
the square of the number of allowed
degrees-of-freedom, NDOF. Typical
CPU times for identification on the CDC
Cyber 203 computer were 15 seconds using
NDOF of 65 and NCOL of 390, and 340
seconds using NDOF of 200 and NCOL of
968.

Related areas of work which need
further attention include the study of:

1. techniques to minimize noise
and distortion on free-response
functions from experimental
measurements;

2, effects of structural non-
linearities on ITD identifi-
cation results; and

3. resolution and roundoff errors
which may occur in using the
technique on smaller-wordlength
computers.
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TABLE I.- IDENTIFICATION RESULTS FOR THREE BASELINE MODELS.

(A1l "Noise Modes" had OAMCF < 2%)

NDOF = §5; NCOL = 390 in each identification.

(See Figure 3 for mode shapes)

2% noise.

C/Cc = 2% in all modes.
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TABLE II.- IDENTIFICATION RESULTS FOR THE 2%-DAMPING, 20%-NOISE
BASELINE MODEL AT HIGH ALLOWED DEGREES-OF-FREEDOM.

mope | MOOF = 65 (NCOL = 993) § NDOF = 200 (NCOL = 969) || NDOF = 250 (NCOL = 969)]| NDOF = 300 (NCOL = 961)
. F |C/C C OAMCF | MSCCR F  { C/C c OAMCF | MscC)l F | c/c c OAMCF | MsCCll F | C/C c OAMCF | NSCC
1 9.99|8.1 90 | 99 [l10.01{2.70] 96 10011 10.01 | 2.44| 98 | 100]] 10.01 | 2.31 98 | 100
2 |N.99|7.69| 80 | 99 §11.99|2.72( 94 | 100{|11.99|2.48] 92 | "100{|11.99]|2.42] 94 | 100
3 113.99(14.28| 95 | 99 [114.00]2.44]| 100 1004| 14.01 | 2.27| 98 | 100|[ 14.01|2.18| 96 | 100
4 115.9)5.%9 76 | 99 || 16.00{2.53| 98 | 100]/16.01]2.38] 96 100[| 16.01{ 2.34] 93 | 100
§ |17.99|3.44] 87 | 98 jj18.012.29| 95 100} 18.01 | 2.21 96 100{| 18.00| 2.1 96 | 100
6 [20.05](4.36] 76 | 98 [119.99|2.49} 89 100{{19.99(2.32| 90 | 100{l20.0012.24% 95 | 100
7 |22.0213.59| 77 | 98 ||22.01|2.28| 89 100]]22.01( 2,15} 93 | 100f} 22.00| 2.08| 93 | 100
8 |24.04]2.84] 85 | 99 J|24.01|2.16| 95 100]|24.00] 2.13| 92 100}]) 24.01 [ 2.07] 93 | 100
9 |26.09|3.87] 59 | 96 J]|26.02|2.34] 96 991{26.02 | 2.22| 94 1001/ 26.01 | 2.13] 92 100
10 |28.00 |4.64] 35 | 95 ]| 28.00{2.57| @89 991127.99) 2.48| 88 | 100||27.99(2.27) 93 | 100
11 {30.04] 3.51 70 | 95 |{ 30.00]2.31 94 | 100)}30.00]2.25| 9 100]| 30.02 [ 2.14| 87 100
12 | R.05]{4.01 39 | 91 [i3R.0312.39] 8§ 99]) 32.03] 2.21 81 100]} 32.03}2.03| 87 | 00
13 | 34.25)4.22 33 | 86 |{34.00)2.18| 89 9911 33.99 2.15| 89 100]| 34.00 ( 2.07] 90 | 100
14 |36.30]65.24| 17 | 51 |} 36.02|2.29| 85 | 100]| 36.02 | 2.21 83 | 100]135.99 | 2.08| 85 100
15 | 37.43}6.12 9 BJ 37.98|2.221 94 | 100]|37.98]| 2.14| 96 | 100}| 37.97|2.06]| 88 | 100

(A1} "Noise Modes" had UAMCF < 2%)

(NDOF = 65; NCOL = 390 in each identification.)

TABLE III.- IDENTIFICATION RESULTS WITH FREQUENCIES OF MODES 7 AND 8
SET NEARLY EQUAL IN 2%-DAMPING, 2%-NOISE BASELINE MODEL.

Af = 0.10 Hz 1 Af = 0.05 Hz Il Af = 0.01 Hz
INPUT PARAMETERS
oase [ £,02) | fouz) | (E/C), | (C/C) n f002) | egtnz) | (€7D | (CC B e na) | equay | (©/CC), | (/6D
1 | 22.000 | 22.100 | 2.00 2.00 || 22.000 [ 22.050 | 2.00 2.00 22.000 | 22.010 | 2.00 2.00
2 3.00 3.00 3.00
3 10.00 10.00 10.00
IDENTIFIED PARAMETERS
CASE '”ng‘ t c/c, | oamcr | mscc f C/c, | OMMCF | msce f c/c, | ommcr | mscc
7 | 21998 | 2.51 | &7 1B 2r.9m .28 57 66 21.184 | 36.69 1 3
! 8 | 22.074 | 2.07 | 100 |l 2.0 2.00 100 66 22.007. | 2.01 | 100 66
7 | 22.000 | 211 | 96 99 || 22.00 2.12 9% 9 22.001 | 2.2 | 98 9
” 2 8 | 22,100 | 3.08| 98 99 || 22.083 3.09 100 ) 22.008 | 3.09 | 100 99
e 7 {22000 | 200 | 100 | w0} 22.0m 2.00 00 | 100 22.000 | 2.00 | 100 | 100
N 3 8 | 22.100 [10.02 | 100 | 100 ]| 22.08: 10.02 00 | 100 22.0n | 10.02| w0 | 100

(1dentification accuracy of other 13 modes comparable to values shown
in Table 1 for 2%-damping, 2%-noise model.)
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- Figure 1.- Example Placement of Free-Response Data into the Two Response Matrices.




Amplitude

Amplitude

SAMPLING FREQUENCY = 400 HZ (1000 PTS. IN EACH FREE-RESPGMSE FCT.)

] -
W[ y80[ s
4
261 +  eof
['}]
E 390 PTS. ¢ 10k
16 [+% 0 3 [
| £ 3 ¢
0 ©
[§] Q 2
6 | . 90} s
o 10" oF
Al o [
Vv v 3 .
-4} | (@] -180{
3 ' 2
10° i L -l i i ' A 1 )
141 1 1 Y i J =270 MU WA TN SR WA N T U S |
0 5 10 15 20 25 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Time, sec. Frequency, Hz Frequency, Hz
(a) C/C. = 2% in all modes. 2% noise.
103 -
i 180 H
4
- € 90 2
g d 102
16 8_ o Ao d abh g g
L E """ S 4}
o ©
(8] [*) 2
6 -90} >
° 10" 4p
" o ef
-4 3 -180} s
2
100 1 1 J L L A 1 1 i — |
-14 L. 1 i1 " L ) =270 PV T WA T RN SHN S N S |
0 5 1.0 15 20 25 0 5 10 15 20 25 30 35 40 45 50 05 ‘°F‘5 20 25 30 3&”‘5”
Time, sec. Frequency, Hz requency, Hz

Amplitude

(NO NOISE)

g

©
o

(=]

1
[}
(=

'y

Quad. component

2

) =270

.
1.0 1.5
Time, sec.

2.0

25
Frequency, Hz

1 A ' ' 1 ' i 4 J
0 5 1015 20 25 30 35 40 45 50

Modulus

{b) C/Cc = 2% in a1l modes. 20% noise.

10°

»

102

10

10°

(c) o, = 5% in all modes. 10% noise.

N 00 » O

N &> 00
v~ T

' A A A A il 1 A A J
0 5 1015 20 25 30 35 40 45 50
Frequency, Hz

Figure 2.- Typfcal free-responses and frequency spectra for three baseline models,
with modal frequencies spaced every 2 Hz from 10 to 38 Hz.
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NDOF = 65; NCOL = 390.

{Mode shape phase angles
indicated in polar plots)

Figure 3.- ldentified (complex) mode shapes for baseline mode)l with 2% damping
in all modes and 2% noise.




NDOF = 65; NCOL = 390.

~ Identified (complex) mode shapes for biselino mode] with 2% dasping
in all modes and 20% noise.

Figure 4

NDOF = 65; NCOL = 390.

Figure 5.- Identified (complex) mode shapes for baseline model with 5% damping
in all modes and 10% noise.
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NCOL = 300 in each identification.
(Heights of vertical line segments proportional to OAMCF values)
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Figure 6.- "NDOF-Frequency Maps" for 2%-damping baseline model at several low -~
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NCOL = 300 in each identification.
(Heights of vertical line segments proportional to OAMCF values)
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2%-damping, 20%-noise baseline model.
NDOF = 65; NCOL = 390.
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Figure 10.- Typical effect of changing (At)1 on identification accuracy.
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NDOF = 65; NCOL = 390 in each identification.
CICc = 2% in modes 1-5 & 11-15.
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DISCUSSION

Mr. Evins (Imperial College,London):

Are you convinced that the theoretical
data you have used which was pclluted
with noise, realistically represents the
kind of data you get from experiments on
real structures?

Mr. Ibrahim: From my previous ex-
perience, I would rather work with
experimental data than simulated data.

Mr. Ewins: I asked because we've been
through a similar kind of process and we
find that experimental data contains a
quite different type of error to that
which you put in with random errors
superimposed on the theoretical ideal.
The structures have systematic errors.
You have non-linearities and 1 wonder
whether the method 18 equally effective
on real data as you have shown on the
synthesized.

Mr. Ibrahim: Yes, we have lots of pre-
vious applications and we will put the
paper in the AIAASDM Conference in April
and we are dealing with large modal sur-
veys of real experimental full scale
structures. And to answer your ques-
tion, I personally feel as comfortable
with experimental noise as with simu-
lated noise because the experimental
noise 18 nice and random. What you
generate in the computer usually has
some distribution. The other question
is non-linearity. We did not include a
non-linearity here, but non-linearity of
the structures is another completely
different ball game and it has to be
dealt with separately. But we get as
good results with experimental data,
yes.
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EFFECTIVE DYNAMIC REANALYSIS OF LARGE STRUCTURES

B. P. Wang
University of Virginia
Charlottesville, Virginia 22901

and
F. H. Chu

RCA Astro
Princeton, New Jersey 08540

This paper describes an effective dynamic reanalysis method which can be
used to estimate the new natural frequencies of the structure after modi-
fication using the modal information of the original structure (i.e.,
natural frequencies, mode shapes at the location of the changes, and the
generalized mass for each of the modes). A nonlinear algebraic equation

is derived and by solving this equation using either the Newton Raphson's
iteration method or simply the bisection method will give the new natural
frequencies of the structure after modification. This method can be
applied to the change of a linear spring, a concentrated mass, an extension
member, a beam, and a plate element. A group change of the above mentioned
elements can be achieved by solving a set of coupled nonlinear algebraic
equations. Since this method makes no assumption on the changes of the
mode shapes after modification, it is not restricted to small local modifi-
cations as in most of the dynamic reanalysis methods. The accuracy of the
method can be improved by including the static deflections of the original
structure at the modification locations due to a unit force at these leca-
tions to simulate the effect of higher modes of the original structure. A
finite element model of a 196 deqgree of freedom solar array panel system is

used to demonstrate the effectiveness and accuracy of the method.

INTRODUCTION

In the dynamic analysis of large struc-
tures, an analytical finite element model is
usually constructed to calculate the resonant
frequencies of the structure. This model may
contain hundreds of degree of freedom and if
the model is changed locally, either due to a
design change or a modeling change reanalysis
of such a model by solving a new eigenvalue
problem is expensive.

This paper describes an application of the
general formulation of the efficient structural
reanalysis techniques of References 1 and 2.

In particular, a method of estimation for the
new resonant frequencies of the modified struc-
ture using the modal information of the original
system will be presented. The modal information
needed is the natural frequencies, the mode
shape coefficients at the location of modifica-
tions, and the generalized mass for each mode.
Por structure modification involving one para-
meter at a local location (such as add a spring

to ground), it can be shown that the frequency
equation is a nonlinear algebraic equation in
terms of the modal parameters of the original
system, When all the modes of the original
system are used, this equation will yield the
exact solution of the modified system. When only
partial modes are available, the accuracy of the
method can be improved by including the static
deflections of the original structure at the
modification locations due to a unit force at
thege locations to approximate the effect of
higher modes of the original structure.

To find the natural frequencies of the
modified system, the above frequency equations
are to be solved numerically using Newton-Raphson
iteration or the bisection method.

The above method can be applied to the
<hange of a linear spring, a concentrated mass,
an extension member a beam, or a plate element,
etc. A group change of the above mentioned
elements can be achieved by solving a set of
coupled nonlinear algebraic equations. Since




this method makes no assumption on the changes

of the mode shapes after modification, it is not
restricted to small local modifications as in most
of the perturbation type dynamic reanalysis
methods.

A 196 degree of freedom finite element
model of a a solar array panel system is used
to demonstrate the effectiveness and accuracy
of the method.

GENERAL FORMULATION

Consider the free vibration of an undamped
nonrotating N-dof structure model described by
the well known equation of motion

M){u} + [k1{u} = {0} ¢8)

Equation (1) describes the behavior of the
"original system". When the structure is
modified, the mass and stiffness matrices will
be changed and the equation of free vibration
of the modified system becomes

M1{a'} + [K'Hu'} = {0} (2)

where
M) = (M) + [AM] (3a)
[X'] = [K] + [AK) (3b)

By substituting (3) into (2), the modified sys~
tem equation of motion can be written as

M1{u'} + ([K1{u'} = - [aMI{u'} - (axl{u'l (4)

Assume harmonic motion

{u'} = {ur}e®® (5)
(4) becomes
(- + KD {U'} = (wzmm - [ak]){u*} (6)

Now if the structural modification is localized,
then the modification matrices [AM] and [AK]
will be highly sparse, i.e., they will have
only a few nonzero entries. Under these condi-
tions, we can rewrite (6) as

(~o2 ) + NIUYY = {LE) 7

where {U'} contains only the dof's affected by
the modification., When the modification is
localized, the dimension of {U'} is much smaller
than the dimension of {U'}. Each element L, (Ui')
of the vector {L(U')} is a linear function of

{0'}. Equation (7) can be solved now as

{u'} = (R (L(O"} (®)
where

(R] = (-] + (kDY (9)

= receptance matrix of the
original system

When the modal superpoasition approach is used,
the element R, . of the receptance matrix can be
expressed as

n  ¢$., ¢
R.= ¢ ig "je

(10)
13 2 2
R=1 G, (N'l

- 0%

where

th

o, = natural frequency of the £ mode

L
= mode shape coefficient of dof i of ltfh

¢
it mode

Gf_ = generalized mass of the l.th mode

= (8, 100,

Note that w {0"} and G, are assumed known in the
solution <>£l the original system. Now from equa-
tion (8), one can extract a subset of equations
such that

(G') = w{o'} (11)
where the elements W, of the matrix [W] is a
function of elements 3: the known matrices [R],
{AM) and [AK] as well as the unknown frequency .
From (11), the condition of the nontrivial solu-
tion leads to the frequency equation for the
modified system, which is

det([I]} - [W]) = O (12)
The dimension of matrix (W) of ¢ x ¢ where c is
the number of dof's affected by the modification.

For specific modifications, equation (12)
can be simplified to explicit equations in terms
of unknown frequencies and known parameters.

Once the natural frequency of the modified system
are solved for the corresponding mode shape can
be computed by first computing {U'} using equa-
tion (11) and then computing {U'} using equation
(8). The above general formulation will be
applied to special casées in the next section.

APPLICATION OF GENERAL FORMULATION
In the following, we will apply the general

formulation derived in the previous section to a
few special cases of local modification.

Add Spring K between dof i and dof j

Assume the added spring ig massgless, then

case 1:

[AM) = [O]




o
0-+-0--0+:.0
xa. ._Ka. « 014
K] = |- . . .
Q ¢+ *~K - Ka. « 0 3
0 4] (o] J
and
ul
- i
{u'} = v
J
for this case,
o
V] .
=K Ui + K U
i 0
(L, (@} = -ax){v} = . > (13)
—_— . e AM~.6>“~ Ar.ﬁ...«,
Kan - Kan
0
o)

Substituting (13) into (8), we can write the
equations for U! and U;:

i
uy = Rii(-x U + Kan) + Rij(x u; - xa05) 4
Uj i( K, U + j) + R j( - xauj

Comparing equations (14) with (11), we can
identify

13 Rii ~ Ry

- + R -
31 * By 317 Ry
and the frequency equation becomes

ii

W] = K‘ (15)

R

1-K, (-Ry (4R, 1) K (R, +R, )
det ([1])-[W)) = a’ 117 43 =0
1-xa(aj1-njj)

which can be simplified to (note that Rji = Rij)

xa(Rji-Rjj)

1+ Ka(Rii + Rjj - 2Rij) =0 (16)

Express Rii and Rij in terms of modal data of the
original system
N ‘i;

- ————————————
Uy Gl(wi - wd)

5

N b0 ¢
R..= T if Jl

134 Gz‘”z - w?)

Thus, equation (16) becomes
2
L (;, = 45,
+ I ——533-——1§—— =0 an
a =1 Gl(wl - w%)

N!H

Equation (17) is the frequency equation of the
system with spring K, added betweed dof i and
dof j. If all the n modes of the original sys-
tem are available, then the equation is exact.
Otherwise, the equation will .give an approximate
solution to the natural frequencies of the
modified system,

As a special case of adding spring K be-
tween dof i and ground at which ¢ 2 =0, equa-
tion (17) becomes

1 b (7
i T2 3
a Lm] Gl(w2 -w)

=0 (18)

Case 1I: Add Mass M_ at node P with 3 dof i,j,k

Assume that the mass is a point matrix and
does not change the affect of the stiffness pro-
perty of the system. Then

i 3 x
[o
"M i
a
(aM] = " j
M, k
0
L °)
{AK) = [0]
'I
Uy
{(u'} = UJ
Luk
o)
2.7,
w Man
- 2 CN N T
(L") = " M0} = 4 wn,0 ’
25 e
w Hauk
)
\

and the frequency equation becomes

»
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2 2 2 and the frequency equation becomes

1-w HaRii -w MaRi 3 - HaRik .
2 2 2 2 2 2
dgt -w MaRji 1w MaRj 3 -w HaRik =0 (19) 1w Manii -~ MaRi 3 - Manik xakis
2 2 2 2 2 2
- Hapki W Mapkj 1-w MaRkk det - HaR 34 1~-w Hanj 3 -w “akili KaRji i
2
The above equation can be expanded to obtain the — Ma 3 w MaRkj 1w Mapkk xayka
frequency equation if so desired.
K_R KR K_.R 14K_R
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Case III: Add Mass M_ at node P with dof i,j, and (20)

and spring K_ between dof s and ground

Case IV: Change beam bending rigidity EI of
a beam element in plane bending

In this case, neither [ X) or [ M] are
null. For this case:

Assume the beam element is massless and the

i3k 4 dof associated with the ends are a, b, ¢, and
’-0 1 d) respectively, as shown in Figure 1.
Ma i a ch
(AM] = M, 3 by h N
M k
a
0
° Qb Fig. 1 Plane bending beam element
-
s
-o -
- . (am} = (0}
0 a,b,c,d
(8K} = X, s o o 0
0 ~--z-- -
. [ K] = 10O K 0 a,b,c,d
o] [+] 0 0
o where
i 12
- U'
' =
{u} 3 ~6L 4L2
u’ AEX
x 8K = 3] -12 +61 12
Us 2 2

{' 0
. v,
Ul
2Malli {u'l= b
Ul
ZMaU:" c
n u}
(L0 )= w?(aM) {5}~ [8K){T'} ={ 0 } a
0 (o}
o (L)) = -(ax}{u'} = J-faxy} {v)
“K,Ug {0
0
\ o } (W] = -[R] (K]
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The frequency equation becomes
det ([I] + [R] [AK]) = O

which can be expanded and simplified to
ARX 2 ABEI
() (AB -AB) - (=)(A +B) +1=0
L3 Pq qQp LT (21)
where

L L L

L
A =L P A B = P B M= q,A Bq-}:qs
Pyttt p, ot e Y Lt et

P 12, , + 614, o - 120, - 614, ,

2 2
q =64, , +ALG, o - 6LA, , * Ay,

(22)
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ACCURACY IMPROVEMENT OF RECEPTANCE MATRIX

The receptance matrix can be expressed
using modal data as

L {e};{e},T
(R] = T ——2_ (23)

2 2
=1 G,' (u,' - u,.)

when L < n, the above representation is not
complete. Hirai et al [3] and Leung (41, have
suggested ways of improving (23) using the static
solution plus L lower modes. Their developments
are based on the following two identities:

2,2rx
1 1 . “2 . . (wz):-l (w /u’.)
- — byl see +
I B ) 02T @2 - 0
2 L L L )
2,z-}
(o it - ) | L "
Gz""z’ -

Using the above identities, the emcc' spectral
representation of [R) becomes:

T T
B or (oMo whHh e e, ) @

[Rl= £ I

2z 2 .2 .22

=1 =1 Gyuy (wy—w") ()
T, 2.8-1 N T 2r

. {0, 1o, 1" 0% e g o)

28’ =1 2 2

S=1 4=} lel Wy - w
(25)

when only p lower modes are available, the above
equation becomes:

r-1 - -
(= £ (k)" 23St

S=1 i=] G"u" (ml

T2
m‘h;‘ %,(zs)
4 - )

For r = 1, we have
o L (e M
[R] = (K] + I 73 3
L=1 G,u, (w, - )
L

(27)

In practice, when applying Bq. (27), one does
not have to compute [K ‘1, instead, only the re-
quired columns of [K)™" are computed. Por
example, if the ith column of [K]'l is required,
we solve {x} from

[x} {x} = {F)
where

(F}* = 10,....0, 1 ,0....0]
"

Then (x} = 1®® column of (x17L.

As an example of applying the improvement
in receptance matrix, we apply the case of ¥ = 1
to the case of adding spring K. between dof i
and dof j. The resulting frequency equation is

P, @ «u-ojl)’

K+T - - (§,-0,) = 0
® 1= 6, (u:-uz) t=1 G‘ui 173 ,
(28)
where

"

oy & aj = STATIC DEFLECTION DUE T0

)T = (0...0 1 0...0 ~1 0...0)
1 3 e

NUMERICAL EXAMPLES

A deployed solar array system shown in Fig.
2 is used to demonstrate the accuracy of the
present method. The system is composed of a
short and a long boom and two solar panels on
each side of the supporting casing. The panels
are modeled as beam elements using the stiffness
on the back of the panels and general springs




are used to represent the hinge joints and the
supporting casing. This finite element model is
shown in Fig. 3.

smce-

Fig. 2 A deployed solar array system

A Y
v ﬁ‘—2=‘v— \—
A & A

= 105 in-1b/rad.
= 104 in~lb/rad.

Original System K

[:}

Modified System l(e

Fig. 3 Finite element model of solar array

system with 196 dynamic degree-of-
freedom

The first case considered is the effect of
rotating spring K, at the supporg. The original
system is designeg using Kg = 10~ in-lb/rad. 1It
is desired to investigate the case when this
stiffness is reduced by a fastor of 10. Thus, a
change in spring rate 9 x 10° in-lb/rad is re-
quired to correct the model. Since the modifi-

cation is localized affect only one dof, the
frequency equation (18) is applied here. For
this case,

Ka = -9 x 1()4 in-1b/sec

The modified system frequencies are solved for
using Eq. (18) with the first 8 of the original
system modes. The solutions are not satisfactory
when compared with the exact solution of the
modified system. (See Table 1) The improved
receptance formula with r = 1 is then applied to
this problem. The results are put under the
title "8 modes plus static deflection” in Table
1. It can be seen that the first mode freguency
is improved drastically over using 8 mode with~
out static deflection.

As a second example, consider adding a 1.5
1b mass at node A as shown in £iq, 3. This mass
could represent the additional balance weight
added to the system after the structural analy-
sis has been performed. This mass had 3 dof's.
The modified system natural frequencies are
computed using Eq. (19). The elements of the
receptance matrix are computed by using 8 modes
of the original system. The results are summa~
rized in Table 2, along with the exact solution.
It can be seen that all the 8 frequencies com-
puted using Eq. (19) are in very cood agreement
with the exact solution. The computation cost
zatio of the exact solution to the reanalysis

solution is 25. Thus, a considerable saving is
achieved ¢

TABLE 1 Comparison of Natural Frequencies of
the Modified System

Natural Frequencies of Modified Systems

Local Modification Theory

Mode Exact 8 Mode 8 Mode Plus

No Solution Static Deflection
Xk 0.234Hz 0.394Hz 0.243Hz

2 0.737 0.738 0.737

3 0.890 0.890 0.890

4 1.090 1.090 1.090

5 1.735 1.735 1.735

6 2.450 2.573 2.454

7 3.162 3.472 3 162

8 3.467 3.474 3.470
TABLE 2 Comparison of Natural Frequencies of the

Modified System (Mass Modification)

Mode Exact Solution Local Modification
No. of Modified System Theory, Use 8 Modes
1 0.526 Bz 0.526 Hz

2 0,729 0.729

3 0.857 0.857

4 1.089 1.089

S 1.709 1.709

6 2.674 2.675

7 3.114 3.115

8 3.457 3.458
CONCLUSIONS

A systematic method of deriving the fre-
quency equation of modified structures is pre-
sented in this paper. It has been shown that
the frequency equation can be expressed as a
determinant of the order equal to the number of
degrees of freedom affected by the modification
and is independent of the number of dof of the
original system. Frequency equations for special | &
cases of local mcdification are derived. It is
clear that those equations can be used to per-
form parametric studies of large structures
effectively. The accuracy of the method depends
on the number of modes, methods of improving
accuracy are indicated., The numerical example
shows that even with r = 1, i.e., static correc-
tion, the results are improved drastically.
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EFFECT OF STIFFENER ARRANGEMENT ON THE RANDOM

RESPONSE OF A FLAT PANEL

R.B. Bhat and T.S. Sankar
Department of Mechanical Engineering
Concordfa University

Montreal, Quebec, Canada

design applications.

The effect of stiffenér arrangement on the random response of a flat
panel is investigated. The panel is stiffened in two orthogonal di-
rections and simply supported on all edges. A stationary random load
whose power spectral density is a band limited white noise, acts at the
geometric center of the panel. The mean square values of displacement,
velocity and acceleration responses at the center of the panel as well
as the space averaged values of these responses over the entire area of
the panel are obtained. Equivalent viscous damping of the structure is
included to account for the structural damping in the material of the
panel. Response analysis is carried out by the normal mode approach
using finite element techniques and generalfzed harmonic analysis with
damping assumed proportional to the mass and stiffness.
that it is possible to reduce the response of a stiffened structure by a
nonuniform arrangement of the stiffeners. The results are discussed for

It fs concluded

INTRODUCTION

Stiffened structures are extensively used
in aerospace applications to minimize structural
weight while satisfying the required strength
criteria in operation. They are also used in
design situations where weight may not be the
primary concern such as in ship construction,
buildings etc. The current practice is to
space the stiffeners uniformly on the struc-
ture and the advantages of such an arrangement
are mainly the convenience in fabrication and
simplicity in design analysis. The random
response of panels stiffened uniformly may be
obtained using any one of the following methods,
namely: i) smearing the effect of stiffeners
over the panel area (1] and analyzing the re-
sponse of the resulting orthotropic panel
using the techniques in [2], 11) the finite
element methods ?3,4], 111) the transfer matrix
?gghods (5] and iv) the wave propagation approach

The aim of the present investigation is to
critically study the effect of nonuniform
stiffener arrangement on the random response
of the panel. When the stiffeners are arranged
nonuniformly, only the finite element methods
and transfer matrix methods are suitable for
carrying out the response analysis. In this

paper, the finite element technique by the nor-
mal mode approach is employed for analysis.
The structure under consideration is a square

panel stiffened in two orthogonal directions
and simply supported on all edges. A station-
ary random load whose power spectral density is
a band limited white noise acts at the geo-
metric center of the panel. Equivalent viscous
damping of the structure fs included to account
for the hysteretic structural damping in the
material of the panel. The mean square values
of displacement, velocity and acceleration re-
sponses at the center of the panel as well as
the space averaged values of these responses
over the panel area are obtained for design
recommendations.

RANDOM RESPONSE ANALYSIS

Normal mode analysis is used along with
finite element techniques and a generalfzed
harmonic analysis to obtain the random re-
sponse of the stiffened panel. The equation
of motion of the structure can be written as:

(MI{W} + [C){w} + [K){w} = {F} Q)]

where [M] 1s the mass matrix, [C] {s the dam-
ping matrix, [K] is the stiffness matrix, {w}
is the displacement vector and {F} is the
vector of forces acting on the structure., The
admittance matrix is then given by:

[H(1w)] = [-w?[M] + fwlC] + [K1]™ (2)

When the forces acting on the panel are




stationary and ergodic, the relation between
the response cross power spectral density
EP%D) and the cross PSD of forces is given by
7

[s,(10)] = (" (1) (s (1a))[H(10))T  (3)

The asterisk denotes the complex conjugate and
(fw) denotes the complex functional dependence
on w. The cross PSD matrices are hermitian and
can be expressed as

[s(1w)] = [P(w)] + 1[Q(w)] (4)

where [P(w)] is a real symmetric matrix (co-
power spectral density) and [Q{w)] 1s a real
skew-symmetric matrix (quad-power spectral den-
sity). The equation of motion is solved for un-
damped free vibration, by discarding the damp-
ing and the forcing terms in Equation (1),
which provides the natural frequencies w; and
the normal modes ¢; of the structure. e
damping 1s assumed”to be proportional to mass
and stiffness in the form

(€] = ulM] + A[K] (s)

where u and A are proportionality factors.
Hence the normal modes ¢; can be used to diag-
onalize the mass, stiffngss and the damping
matrices. The generalized mass of the {i-th
mode is given by

" = {oj}T Mo} (6)
and the generalized admittance of j-th mode is
T
"J(im)-{¢j} [H(iw)]{OJ} (7)
which can be written as
Hj(im) = 'l/MJ[-m2 + 1w(uu\mj’) +(ujz] (8)

The modal damping factor %y for the j-th mode
is related to the damping “proportionalfty
factors u and A as

;J - u/ij + xmj/z (9)

Using Equatfon (7) in (3) the total cross PSD
of the response is obtained as the double sum-
mation of the cross PSD of the response of
pairs of modes as

[s,(te)]= £ £ Wl (o) IsFCia)] (10

where [Sék(im)] fs the cross PSD of generalized
forces of pairs of modes and is given by

531001 = fo,} 0, IS (1)) aH )T (1)

When the damping in the structure is small,
an approximate solution for the response 1s
obtained by neglecting the cross product terms
in Equation (10) which Teads to a single sum-
mation over the modes and is given by

Pl= o WOl pwl 02
w 391 h) 3

The joint deflection moment for a structure can
be obtained by integrating the corresponding
cross PSD terms in Equatfon (12) over the
entire frequency range. Denoting such an oper-
ation by a matrix integration, the joint deflec-
tion moments for the pairs of structural node
points are given by

[engu>] = {“[p"(m)]dw (13)

where angular brackets denote time averages
and the subscripts q and r denote the qth and
rth structural node pairs. The diagonal
elements of [<w "r’l are the mean square
deflectfons,

In the present study, the PSD of excitation
is assumed to be a band 1imited white noise,
which covers all the major structural modes.
Hence the joint deflection moments can be
written after integration of Equation (13) as

Caww>l= £ [PY(0)] n/amia? (14)
Mgt = I PR e mrAMgeE

Frequency response expressions for the
velocity and acceleration response for the
J-th. mode can be written, respectively, as

Hj(im)vel. -1m/Mj[-mz+im(u+Aa§) +a§] (15)
and
Hy(1e), oo, = oMy [-u?Ho(ure]) +of] (16)

Using Equation (15) fn (12) and performing the
necessary integrations, the joint moments of
velocities are obtained as

. e m 3
[, -Jfltﬂ, ()] Moz, (17)

Assuming that the band 1imited white noise
excitation covers a frequency range of 0 to W s
and using Equation (16) in (12), the joint
moments of accelerations are given by

“ LR 1|
[«qi.'?] = J’-:l [P':, (uj)](ujlﬂj)[(uoluj) +

4z2.3)

1-452 2 / (
* 'C; tan™) B A Yo £ (wg/e )+ ——-1—‘7-2-

]'(No/mj)z 8(";;)

(18)

(”b’”h)a - 2(«5103)(1-tj)l7! +1

STIFFENER SPACING PARAMETER

Although there are several possible ways
of arranging the stiffeners with nonuniform




spacing, in this study it is accomplished in
accordance with a single parameter. This para-
meter, m, is established such that

n
z Sy * /2 : (19)
=l

and
Sga1 = S i=1,2,...n-1 (20)

where s,, $,... s, are stiffener spacings,
starting at the center and proceeding towards
the boundaries as shown in Figure 1, and ¢ is
the length of the side of the square panel. In
this arrangement, m > 0 indicates an arrangement
where the stiffeners are densely packed near the
panel center whereas m < 0 shows that stiffeners
are denser near the panel edges. This particu-
lar configuration of stiffener spacing is chosen
because it provides a single spacing parameter
against which the responses can be plotted for
comparison.

RESULTS AND DISCUSSIONS

The panel studied is shown in Figure 1 with
a dimension 1.2x 1.2 m and 2 mm thick. There
are seven channel stiffener sections, which were
10 cm deep with 5 cm flange and 4 mm thick,
placed along each of the two orthogonal direc-
tions. The damping proportionality factors u
and X are taken as 0.1 rad/sec and 0.1x 10-% sec,
respectively. The response analysis of the
structure was carried out using SPAR structural
analysis program [8].

The natural frequencies and normal modes of
the stiffened panel are obtained by solving the
problem of free vibration for the undamped str-
ucture., The mean square values of displacement,
velocity and acceleration. responses are given at
all points on the panel surface using Equations
(14), (17) and (18). The space averages of the
mean square responses are evaluated by summing
the mean square responses at all points on the
panel and dividing it by the total panel area.

The variation of first eight natural fre-
quencies with the stringer spacing parameter, m,
§s shown in Figure 2. The fundamental frequency
decreases as m is increased but it increases for
negative values of m (indicating closer spacing
near the edges) until around m= -8, beyond which
the frequency starts decreasing again. The in-
crease in fundamental frequency when the spacing
of stringers is changed from a uniform config-
uration, {m=0) to a nonuniform configuration
with m= -8 is approximately 21.4%. An explana-
tion of this behavior is that a closer spacing
of stringers near the panel edges reduces the
inertia of the panel in the fundamental mode,
and increases its stiffness resulting in a
higher fundamental frequency. The natural fre-
quencies corresponding to the higher modes in-
crease with increasing m.

The variatfons of the central mean square

displacement with the spacing parameter, m,
are shown in Figure 3. The response at the
panel center reduces with an increase inm
until m {s around 8 (when the response becomes
89% of the value at m=0) and then starts in-
creasing again., However, the space averaged
mean square displacement response increases
monotonically with m. Since the panel is load-
ed at the center, the response is predominant
in the fundamental panel mode, and hence the
above behavior can be explained by looking at
the fundamental mode shapes of the panel for
different values of m, shown in Figure 4. When
m> 0, the fundamental mode is shallower com-
pared to that when m=0 (uniform stringer
spacing). Hence, when m > 0, the mean square
displacement response at the center is less,
but because the response is more evenly dis-
tributed on the panel surface compared to the
case of m=0, the space averaged displacement
response is more than that corresponding to
m=0.

The mean square velocity at the panel center
and the space average mean square velocities are
plotted against the stringer spacing parameter,
m, in Figure 5. The response at the panel center
decreases monotonically with increasing m, for
the range of m values studied. The space aver-
aged mean square velocity also decreases as m
is increased until m is around 6 and then starts
increasing. The same trend is observed in the
case of mean square acceleration responses as
shown in Figure 6.

The above results indicate that by rearran-
ging the stiffeners in a nonuniform fashion, it
is possible to change the natural frequencies of
the structure and to reduce the panel response.
A reduction in vibration response of the struc-
ture will result in a reduction of the noise
produced by the structure and hence these re-
sults have greater significance in providing
optimum aerospace structural design, for re-
ducing interior noise in aircraft fuselages etc.
In the case of floor mounted machinery, the
response of the floor can be reduced by the
suggested rearrangement of the floor beams. For
any particular application, an optimum value of
m can be found from the results shown here,

CONCLUSIONS

The effect of nonuniform stiffener arrange-
ment on the random response of a flat panel
stiffened in two orthogonal directions is stud-
fed for design applications. The mean square
responses of the pane!, both at its center and
its space averaged value, when excited by a
stationary random load at the panel center,
were calculated when the stiffeners were arranged
uniformly and nonuniformly. The results in-
dicated that it is possible to reduce the dis-
placement, velocity and acceleration responses
of the panel by arranging the stiffeners non-
uniformly over the panel surface by a proper
choice of m for a specified 1imiting response
of the structure. These results are quite




useful in the design of aerospace structures,
in the design of floor beams in buildings with
machinery mounted on floors, etc. where stiff-
ened structures are used for minimizing the re-
sponse at a given location.
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DISCUSSION

Mr. Yang (University of Maryland): 1In
your study you varied the spacing of
stiffeners when you used the finite
element technique. Did you actually do
any optimization studies or did you just
plug in different values and vary the
parameters during each .run?

Mr. Bhat: We haven't done any optimi-
zation study to date. It is possible we
nay do some in the future. Right now we
are seeing how the parameter M varies.
Parameter M affects the vibration
response and that is what we are
studying. However, it is possible to
use an optimization technique to find
out the optimum value of M.

Mr. Yang: But with an optimization
technique you need mathematical equa-
tions. You really cannot operate on the
finite element., What I just wanted to
mention 1is that there has been alot of
work in this area starting off with Dr,
Klosterman of University of Cincinnati
back 5 to 6 years ago with his PhD
thesis. With that technique you use the

87

measured data to get the modal para-
meters then you do a parametric study to
get a mathematical model. Two years ago
a student of mine, Dr. Rhee, did work in
this area, He actually obtained a
mathematical model from measured modal
parameters. The advantage of this is
that once you have thé mathematical
equations then you do the optimization
study without changing all the para-
meters and plugging into the finite
element technique. I think now they are
also coming out with hardware with which
one can do this type of study.




ON NONLINEAR RESPONSE OF MULTIPLE BLADE SYSTEMS
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In the first part of this paper, modal and discrete models are examined
from the point of view of predicting the dynamic response of a single
Jet engine turbine or compressor blade to harmonic excitation by an
external force and with restraint provided by a dry friction link to
ground. Experimental identification of parameters in the modal and dis-
crete models is discussed. The discrete model is then used as a basis
to characterize the nonlinear response of a set of several blades
connected at their roots to a rigid disk, and having dry friction
coupling from blade-to-blade and from blade-to-ground. The nonlinear
differential equations of motion of the system are transformed into a
set of nonlinear algebraic equations, which are solved numerically using
an iterative method. The results, which are given in terms of amplitudes
and phase an?les of the response, fllustrate several effects including
blade mistuning, magnitude and distribution of excitation forces, and
phase differences between exciting forces on adjacent blades. Two
general types of conclusions may be drawn so far, concerning the
influence of dry friction between blades. One concerns the effect of dry
friction in reducing response amplitudes (damping effect) and the other
concerns effects of blade mistuning (effects of blade-to-blade coupling).
These conclusions will be discussed in the paper.

1. INTRODUCTION

Vibration induced fatigue failures in
turbomachinery blading occur very often in
modern systems, partly because ever-increasing
performance requirements inhibit traditional
modifications such as changes inblade geometry,
which have often been found effective in the
past, usually on an empirical basis. The high
stresses which lead to such failures are due to
flutter and/or aerodynamic or mechanical
excitation of blades at frequencies equal to
some multiple of the rotation speed, coupled
with coincidence of mechanical resonances of
the bladed disk system, under conditions where
aerodynamic sources of damping are ineffective.
For this reason, other sources of damping, such
as material or structural have been of con-
siderable interest for the past several years.
However, the very nonlinear nature of the

a involved has made rational analysis
difficult, so that much of the industrial

application work has usually been done on an
empirical basis.

The problem of predicting the response
of a bladed disk system with allowance for
interblade coupling, mistuning, and frictional
forces is very difficult to solve exactly.
Several approaches to the problem are possible,
including finite element modeling, syntheses
of harmonic receptances and discrete element
modeling. Finite element techniques are
becoming ever more widely applied, and have
been applied to some extent to this problem
[1-3]). However, these will not be
discussed further in this paper, except to
note that runnin? times can be quite high,
making 1t expensive to study the effect of all
possible relevant parameters. Receptance
methods are potentially applicable, and have
been used to solve many different linear




problems [4]. For systems having nonlinear
elements and for very complex structures, it is
more difficult to apply and iterative solutions
will probably have to be sought for multiple
blade systems. Up to the present, however,only
a single-blade analysis has been completed for
the nonlinear damping from dry friction forces,
and this will be discussed and the results com-
pared with the discrete analysis, which is the
main subject of the paper.

Two main problems will be addressed,
namely single blade response and multiple blade
response, in each case with allowance for )
frictional damping. The single blade analysis
is of interest in its own right, and to estab-
lish the limits of the discrete model in com-
parison with receptance methods, including
identifying single blade parameters in a dis-
crete model, which in turn forms the basis for
a discrete analysis of a multiple blade system.
The results of the multiple blade analysis are
of considerable interest and throw 1ight on
several effects, including (a) mistuning of
blades, (b) amplitude and phase relationships
between excitation forces on each blade, and

(c) influence of blade-to-blade friction forces

2. IDENTIFICATION OF SINGLE BLADE PARAMETERS

2.1 Modal Analysis

In order tc provide a basis for the
analytical modeling of a single blade clamped
at the root, one may resort to finite element
analysis [1-7], other analytical methods [8-9],
or experimentally measured receptances at two
or more points, along with measured mode shapes
for the important modes of vibration [10-19].
In this paper, the latter approach will be
adopted and applied to a typical jet engine
compressor blade, as described in more detail
in Appendix 1.

The first set of test results were
obtained for the test blade clamped in a rigid
fixture, which was set in turn on rubber
isolator pads, with excitation and response
pickup at the tip leading edge, as illustrated
in Figure 1. Several measurements were made
of the driving point receptance ajq(w), being a
function of the frequency w, for various
driving force levels in the 1inear, low ampli-
tude range, and the results are shown in
Figure 2 [20]. Following Ewins and others
(18,19,21,22], the receptances “1j(w) were
represented by the form:

N Qn(xivy'l Mn(xj ,.VJ)
L 2 Z
n=1 Mn[wn (1+1nn) -w")

where M_ {is the n-th modal mass, ¢n(x.y) is
the n-th modal function, normalized here at
the tip leading edge, U is the modal loss
factor in the n-th mode, w_ = 2nf_ is the n-th
natural frequency, and 1 and j are the two
points where the receptance was measured.
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Fig. 1. Compressor blade with excitation and
pickup points.

a.,(w) is the driving point receptance at

pglnt 1, the tip leading edge, ay,(w) that at
another point 2, and 4o = 02] are the cross
receptances.

The modal functions ¢, were measured
from receptance tests and from laser holographic
interferometry [20,23], and are illustrated
for the first three modes in Figure 3. The
np's and fp's were determined for each mode
from the receptance plots, and M, were esti-
mated from the peak value of ayy at point 1.

If the modes are well spaced:

- 2
297 | max /M M @

2 (2)
Moo= 1/ngen 1% |pax

for each mode n. This procedure is most
effective, of course, for widely separated
natural frequencies and would have to be
modified if they were close. Figure 2 shows
the fit between such a series representation
and the experimental data, for specific values
of w, (or 2rf,) and My, the series being
terminated at the third mode. The agreement is
quite good, and it does not seem that in this
case neglect of higher order modes leads to
any significant high frequency residuals in
the estimation of a;, [19].

The data in FigureAZ was fitted using
the following parameter values;




data set for use in establishing the best
« EXPERIMENT discrete model of the blade, as will be
Kt sdnd discussed in section 2.2,

10°g

S
)

2.2 Discrete Model

The advantage of a discrete model is that
the differential equations of motion of a
system encompassing several structural elements
may be described quite simply in terms of
ordinary second order differential equations,
and therefore reasonably accurate solutions
may be obtained at low cost. Customarily, one
identifies the parameters in a discrete model
in such a way that the lowest order natural
frequencies of the more complex system are
properly replicated, but for analyses involv-
ing nonlinear forces, such as friction damping,
one needs a model in which the receptances
ajj are accurately reproduced also, and this
is"much more difficult to do.

5

RECEPTANCE &4 ~m/N
q ™

Fig. 2. Measured receptances consid : . he two d .
ntation. nsider, for example, the two degree o

and modal representatio freedom system shown in Figure 4. Thegmo
masses m and m,, and the springs Ky and K,
allow one to replicate the first two natural
frequencies of the blade, both of which repre-
sent bending type modes in this case, as well
as a) in the vicinity of the fundamental
resonant frequency. The modeling of a 2 and

is much poorer, but the parameter Lz which
zgﬁtrols the apparent amplitude of the force
Sz does allow one some scope for improvement
of the model. Hence R, represents a correc-
tion coefficient for tﬁe continuous nature of
the real blade. Consider the equations of
motion of the system in Figure 4:

i
U

- fwt
mX KX - X)) = Se (4)

MODE 2
420

mly + Ky(Ry - )+ KRy = SR (5)

These equations are solved, with Sl and S;
e

Fig. 3. Modal functions for compressor blade.

M, = 0.045kg having harmonic time dependence (steady-state
= 0.030 kg solution), and the corresponding receptances
) 035 obtained in the form:
H3 = 0. 9
£, » w/2n = 125 Mz
fz . u2/2‘l = 420 H2 N — S
fo» w/2n = 935
ITY
“(lz;’z, = 0.06 K,
02(12-12) = -0.15
.3(‘20’2) = -0.30 g —o L SeRy
Oi(x‘.y‘) = 1.00 (1 =1,2,3) %
This {dentification of receptances 7
for the blade serves three purposes. First,
to ““:'1’; :t"‘hly““: ""9":’:':":';::r°;r°;‘]’£ Fig. 4. Discrete model of compressor blade.
used in fu r analysis of non ,
such as that of a blade with dry friction
demping at potnt 2; secondly, to mode) several 2
blades in a rigid disk through vector addition aX, Ky #Kp=Mow (6)
of receptances (not done in this paper) and, O
thirdly, to 7111 gaps in the sparse measured i
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. - Ity S | 7 2.3 Receptance Analysis of Single Blade
M2°F®, "/ "7 !jfﬁ STip at 5¥n1: 2

2
] (Ky =M o) If now the blade is excited by a force
022 = E"l = _"_1_:_1__12_ (8) Sy(t) = S1Cos{wt) at point 1, and is linked to
. . - - as ustra n Figure 6, equations
A = (Ky-my ) (KyHKyompu ) =Ky 9 of motfon can be written in terms of a summa-

tion of receptances as follows:
Figure 5 shows the variation of the receptances
a3(1,3=1,2) with frequency for the set of

paFameters: « /ﬁ
™ s 0.040 kg ™~
n, - 0.022 kg ) ~
= “<
K 35,530 N/m \
K, = 111,034 N/m ) \
= PSR ()
R, 0.1 Q\
It is seen that a1} and a2 are reproduced
quite well in the vicinity of the fundamental \

mode, but @22 not quite so well, althougha 22 m
does asopsom'a‘c zen') asmth:dfreqmu:nc¥ appri':actes

about 2, as it should. s is eviden
from Equation (8). For the fundamenta) mode, Fig. 6. Blade with friction damper at point 2.

therefore, the discrete model is reasonably

accurate, although by no means perfect, and - :
will form the basis for investigations of mul- X = §; oy + uN sgn(Xp)ay, (10)
tiple blade systems. The second mode is not .
well modeled, except that the resonant fre- Xp = Sy ay + N sgn(xz)azz 41}

quency is properly reproduced. Clearly, much
improvement is needed, and is possible 1f one

1ooks at models having more than two degrees where uN sgn(X,) represents the Coulomb model

of freedom, but this does defeat the purpose of of the frictioﬁ forces,u is the coefficient of

a simple model. The problem of {dentifying friction (dynmmic) and N s the normal force.
continuous systems in terms of discrete models Even though the term uN sgn(X,) is nonlinear,
has attracted much attention [11-17], but it the linear summing of receptafices is permitted
seems clear that more attention must yet be because the nonlinearity 15 external to the

paid to perfecting such models to properly blade ftself. The Equations (10) and (11) are,
duplicate the receptances of the continuous of course, nonlinear. They can be solved for
systems in the lower order modes, in addition steady-state vibrations by the method of Harmonic
to matching the resonant frequencies. Balance, as shown in Appendix 2, to give the

n*nltudes of the responses D and A of the
points 1 and 2 respectively:

' 0/ OT\SE (N2 ayyagy atyy) (12)

30830/ i

Aoy /ST (GmPagl 0)?  (13)

where X, = D Cos{wt+Y) and X, A Cos{ut+@). It

is evident from Equation (13) that A can exist
only when:

ISi > (8uN/m) Jayp/og | (14)

and 1f this condition is not satisfied, A must
be assumed to be zero, and the solution for

which X, = O must be sought. This can be
_J found by introducing any copstant amplitude
800 force F in place of uN sgn(;z) in Equations

(10) and (11), letting X,» 0%and eliminating
Fig. 5. Receptance of discrete model. F between the equations, so that:
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Fig.7. Apparent receptance of continuum and
discrete models with friction.

X Oyy Gny = o
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Using the expressions for the receptances au
from earlier, and/or the experimental resul
directly, one can therefore predict the non-
1inear response of the single blade. Figure 7
illustrates the predicted variation of |D/S,|
and |A/S l with frequency for the cowresso]'
blade, ul ng the same values of My,Mp,M3, f1,
2.3, &), $2, and ¢3 as were tabulated

earlier, and for the case uN/S]-IOO. It is
seen that, for this particular case, |A/S;|
exists over only a very narrow frequency range,
defined by inequality (14}, for modes 1 and 2.
The three mode expansion does not allow one to
predict more modes, because the combination of
a]1s b2, and a2 always leads to the loss of
one mode when ayy is determined; hence more
terms in the expansion would be needed to model
more modes.

2.4 Discrete Analysis of Single Blade
with STip at klnt 2

If the blade is represented by a two deg-
ree of freedom model, as in Figure 8, the equa-
tions of motion can be written in the form:

m]i'] + Ky (=Ky) = $y(t) (16)

Moy + Ky (Xp= Xy MK K,#uRM sgn(X,) = 0 (17)

where » is the dry friction coefficient, N is
the normal load, and Ry is a correction coef-
ficient. Again, using the method of Harmonic
Balance, we get the solution:

oep [LE 3 FILERTCRT] -G 0w
AT O E R

Note that A does not exist unless:
15,1 > (4uMRy/x) |1 = mpul/k, | (20)

$0 that only one mode can be modeled for this
case. Discrete models with more than two
inertial elements would be needed to account
for s1ip in more than one mode. Using the
values of the parameters m, m2, Ky, and K
determined earlier, the response of the damped
blade is plotted in Figure 7 for uN/Sy = 100.
The specific values of the parameters used are:

= 0.040 kg
m, = 0.049 kg
K, = 35530 N/m
K, = 111,034 N/m
R, = 0.1
wN/S; = 100

The value of my s found to be not very criti-
cal, and this value was used instead of 0.022
kg because it reduces the second resonant fre-
quency, to correspond to some degree with the
mass loading effect of a platform of a real
blade. It is seen that the discrete and
receptance model agree quite well in the
vicinity of the fundamental mode, This sec-
tion completes and extends some of the pre-
vious work in the area of single-blade
response [20, 25-29].

3. ANALYSIS OF RESPONSE OF
MULTIPLE BLADE SYSTEM

3.1 Equations of Motion

It is for systems involving many
blade elements, in a disk, that the discrete
model of the blade becomes most useful, since
it allows one to reduce the analytical problems
to manageable proportions while retaining some
measure of the real behavior of the original




Fig. 9.

system. For example, for a rigid disk having
n blades, one might create a discrete model

as {llustrated in Figure 9. In this figure,
the masses mﬁ represent the platform (or per-
haps a shrou Y on the vth blade, so one can
allow for frictional coupling between blades
and between blade and disk. Since mj and Ky,
can be varied, one can allow for mistuning o}
the blades. The interblade stiffness elements
K2, allow one to model interblade coupling.
Tﬁgy can represent the disk flexibility to
some limited extent. The equations of motion
of the system, and the method of solution, are
described in Appendix 4. At this point it is
sufficient to say that the method of Harmonic
Balance is used to obtain the steady-state
harmonic solution, but an iterative procedure
is now necessary, in contrast to the closed
form solutions obtained for a single-blade.
The numerical solution obtained from the
computer program consists of printed values of
amplitudes Dy, and A, , and phases v, and of
the response of each blade (see Appendix 4), as
a function of the system parameters my,, my,,

Kivs Kgus K3us Hs Nys Npys Sy, Sy, etc.
3.2 Solutions for Zero Friction (Linear

Cases)

Since many prior analyses (7, 21, 22,
31] have addressed the problem of predicting the
damped response of a bladed disk, or multiple
blade, system to various types of excitation,
the first task to be addressed before proceed-
ing to a study of the effects of friction was
to establish that the present approach and the
related computer program predicted the same
behavior.

The first case considered was that of
12 blades, both tuned and mistuned. The basic
blades were modeled by the discrete parameters
listed in Table 1, representing the compressor
blade discussed earlier. Figures 10 and 11

show the predicted response of the tuned and
mistuned systems as a function of frequency.
Figure 10 shows the effect of a stationary
"Cosine excitation” on the response of a
typical blade (blade 1). This type of excita-
tion is described analytically by the expres-

sfon:

Discrete model of Multiple Blade System.

S\') s, Cos(wt)=S Cos[2jm(v-1 )/n]j_‘Cos(Qt) (21)

where n is the number of blades (12) and §S is
the maximum driving force (0.1 N), and j is an
integer. If j = 0, S, is constant for all
blades;if j = 1, then = 0 for blade number
v =3 and v=9, and so on. Figure 11 shows the
effect of a stationary "Sine excitation,”
described by:

(22)
S\‘, = Sv Cos{wt) = $ Sin [2jn{v-1)/n] Cos(wt)
J=

TALE 1
PARAMETERS FOR BLADES (ZERO FRICTION)

SIOKT A D1
Tuned (50) | Mistuned (S1)
12 12 12
", 0.049 0.049 0.0064 0.0064
", 0.040 0.0364¢, (v) 0.0052 0.0083¢, ()
v 35,530 35,530 40,530 40,530
2 n1,034 11,034 126,850 126,850
3 20,000 20,000 40,000 40,000
Nty 0.001+0.01 | 0.001:0.00 0.001:0.01 0.001+0.01
L¥ M 0 0 0 0
u 0.1% 0.15 0.15 0.15
Sy 0.1 f,(v) 0.1 f5(v) 0.1 f(v) 0.1 ¢, (v)
Gv 0 0 0 0

i =1 ¢ 0.1 Sin[n(v-1)/n]
fy = S8 )amy(w-1)m)

For the tuned case, no difference is seen, of
course, but for the mistuned case, some clear
di fferences in response are seen, including
different frequencies of maximum amplitude. It
is also seen that mistuning allows several
response peaks to appearsin contrast to the
tuned case [31]. The second case considered
was to predict the effects of mistunin? on the
response of a simplified blade comprising a
beam about 80 mm lon? (as compared with 203 wm
for the compressor blade), and discussed by
Ewins [31]. The estimated discrete parameters
corresponding to Ewins' geometry are also
listed in Table 1. Figure 12 shows the
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Fig.10. Response of Tuned and Mistuned Systems
to Stationary “Cosine Excitation"”
(Blade 1; Cases 30,31, author's not.).

predicted response to a stationary “Cosine
excitation” (J = 6), for the tuned and mis-
tuned cases, as was considered by Ewins. In
this case, the "cosine excitation" corresponds
to a 180° phase shift in excitation on adjacent
blades, and S}. is of constant amplitude for
each blade. Figure 12 also shows a histogram
of the relative amplitudes, D/Dyy,,. and
phases v,, of each blade, at frequencies corres-
ponding Yo each resonant peak in the tuned and
mistuned cases.

3.3 Frictionally Damped Systems

Having established that the dynamic
response behavior without friction is in keep-
ing with previous work, one is now faced with
the task of varying a large number of para-
meters in order to gain insight intd the non-
1inear effects, since each parameter configura-
tion is now unique, and generalizations cannot
be made as readily as in the linear case.

For the present, we have confined
attention to a 1imited number of cases, includ-
ing: (a) a tuned system, (b) a mistuned
system with smooth variation of masses m] »and
(c) a mistuned system with random variat 3n of
m] . Parameters varied for each case include
{ \{ the excitation force amplitude S,, on each
blade, (11) phase angle &, of excitation force
on each blade, for tnveﬂng wave excitation
of the form:

Fig. 11. Response of Tuned and Mistuned Systems
to Stationary "Sine Excitation”
(Blade 1; Cases 30,31, author's not.).

S, * S“Cos(ut - 6\,) (23)

where &, = 2n§(v-1)/n;J = 0,1,2---etc.; (111)
stationary excitation of the form:

S, * S, Cos(ut) (24)

« 5395} [2n3(v-1)/n] Cos (ut);

(iv) effects of irregularities in the phase of
exciting forces, such as:

o - B @

where An # 0, and an irregularity in phase
occurs between blade n and blade 1; and,finally;
{v) the effect of the number of blades.

The first case considered in this sec-
tion was a tuned system (author's workin? nota-
tion, Case 16) of n blades, each having fdenti-
cal mass and stiffness characteristics, as given
in Table 2. Each blade v was excited by a force

of constant 1itude, with constant incre-
ment of phase angle between blade v and blade
v + 1, again as givm in Table 2, such that the
phase angle &, is equal to 2n(v-1)/n. Figure
13 shows the predicted values of D,/S, for all
blades and for one value of uN/S, and for
several values of n. It is seen that this
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Fig. 12. Response of tuned and mistuned
multiple blade systems to "Cosine
excitation® (Blade 1; Cases 50,51).
Histograms of relative amplitude
D,/D,,, and phases Y, of each blade
at frequencies corresponding to
resonant peaks.

behavior is qualitatively similar to that for a
single blade. The peak amplitude steadily
varies from a large peak near 125 Hz at &, = 0
(n + =), to a large peak near 150 Hz for
growing, with Towest amplitudes occurring *or
certain values of n. Figure i4 shows the effect
of varying N/S ratio between normal force and
amplitude of driving force for n = 11, u = 0.15,
on the values of response amplitudes

|A1/S| and [Dy/S|. It is seen that the effect
of varying n fs similar to that of varying uN/S.
A later case will examine the same behavior

for a mistuned system.

When the blades are mistuned in a
regular manner (author’'s Case 20, Table 2), the
mass m,, vary smoothly from 0.04 kg to 0.044 kg,
as illustrated in Figure 15. This figure also
shows the random distribution to be discussed
presently. Figures 16 and 17 show typical

raphs of amplitudes of response, |n¥/s| and
Av/S|, for several values of N/S. Figures 18
to 20 show three-dimensional, computer gener-
ated plots of |D/S| and |A/S| versus frequency
and blade nusber for particular values of

uN/S (u = 0.15, N = 10, S variable, see Table 3).
Note the systematic variation of the peak

TABLE 2
PARNNETERS FOR BLADE (FINITE FRICTION)

n

1
", 0.009 0.009] 0.00s |o.00e 0.088
K 35,50 | 35,50 35,50 |35,5% 35.5%
K,, o |nnesfinem e 11,0
K 0 0 to 0

R 120,000 200000 ’
oy 0.00 0.0 | 0. 0.0 0.01
L ° 0 0 ) ]

X, 10 10 10 10 10
" 0.15 0.as | 0.8 0.15 0.15
5 0. 0.3 0.001 to | 0.1¢ .

v fa(v) 10 2 o-o%
e, ae-/m| 0 atv-m| 0 2x(v-1)/0
L/ 1 ¢ 0.1 $in [w(v-1)/n]

f, <85 (20(v-1)/n)
2.5%10°%
200} rewlv-iiin

19078

T

10%10°% r —8,°0

APPARENT RECEPTANCE |0y/8| m/N

;
3

W%

Fig.13. Response of n-blade systems to traveling
wave excitation (Case 16, effect of
nusber of blades n and phase angle of
excitation °v' uN/S = 15).
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' Fig. 17. Response of mistuned system to
traveling wave excitation (Blade 1,
A /S, Cases 20— Table 3, effects of
ratio of normal force to exciting
force amplitude).




Fig. 18. Computer generated plot of response
(D and A) versus frequency and blade
number (for case 20.05- Table 3, S
= 1.0N, N, = TON).

response |D\/S| from & peak at 125 Hz to one at
150 Wz, as uN/S varies from O toe (Fig. 18).
The limtin? case N/S = = corresponds to all
masses mp, locked together. Note also that
|A/S| varies somewhat differently than in the
tuned case, and exists over a wider frequency
range. Figures 21 and 22 show similar varia-
tions of |D,/S| and |A,/S| for a blade with

N ——]
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200 @00

_N?

ek d
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Fig. 19. Computer generated plot of response
(D and A) versus frequency and blade
number (for Case 20.18- Table 3, S,
= 0.2N, N, = 10N). x

randomly mistuned masses my,, as illustrated in
Figure 15. Despite the d‘l“erent types of mis-
tuning, the response plots appear remarkably
similar to the previous case (author's Case 20),
and on the basis of this very limited sample,
one might conclude tentatively that, while the
exact type of mistuning will affect precisely
which blade sees the maximum response, it does




80+ TABLE 3
. - PARAMETERS FOR VARIOUS CASES
?4@ Case Case Case
E | Parameter]  20.05 20.18 20.09
o3 n n n n
W My 0.04f, (v} 0.08fF (v} 0.04f, (v)|
g 20 My, 0.049 0.049 0.049
% 10 K1y 35,530 35,530 35,530
&
1 Koy 111,034 111,034 |111,034
4
%
o Ky 0 | 0 0
Q' n 0.01 0.01 0.01
m 0.01 0.01 0.01
My 0 0 0
N, 10 10 100
u 0.15 0.15 0.15
s, 1.0 0.2 0.1
6\’ 2n(v-1)/n 2u(v=-1)/n 2n(v-1)/n

n‘:
E M-;\ N/821000
. .| 0
00— /’
lo"_ ., p—
i f 00
E B
s | 33-\ /ss.s
B 3
1= 7
8”‘: 8+2 /J Y 0
€ Foweo - .
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Fig. 20. Computer generated plot of response '
{D and A) versus frequency and blade 5 !
number (for Case 20.09-— Table 3, Sv !
= 0.1N, N, = 100N). o W W
FREQUENCY M2
not affect the value of the maximum response.
Obviously, this is not a final conclusion, and Fig. 21. Response of mistuned system to
further investigation seems warranted, espe- traveling wave excitation (blade 1,
cially for large values of uN/S. Figure 23 D,/S, Cases 22- Table 3,u = 0.15,
shows the values of |D,/S|max versus uN/S for effect of ratio of normal force to
these two cases, and for the tuned case, and exciting force amplitude).
dc;os seem to bear out this tentative conclu-
sion.
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Fig. 23. Variation of (D/S)max with uN/S for -
traveling wave excitation.

Another set of calculations determined
the effect of anirregularity in the phase
between exciting forces on blade 5 and blade 1,
for n = 5, for traveling wave excitation (j=1)
of the tuned system (author's Case 16). This
was accomplished in the computer program simply
by letting &, = 2x(v-1)/(n+An), where An is a
positive or negative number. Figures 24 to 26
show the response |nx/S| for all blades of the
five-blade system and several values of An with

100

2.0x%107

Fig. 24, Response of tuned system to travel-.
ing wave excitation (effect of phase
irregularity of the exciting force,
uN/S = 15, Case 16).

= 0,1. It is seen that the phase irregula-
rity occurs between blades 1 and 5. It is also
seen that blades 1 and 5 typically see the
highest response amplitudes, and that the
behavior changes from dominant response near
125 Hz, for large phase irregularity, to
dominant response near 150 Hz when the phase
shift is less severe. Further evidence of the
effects of phase irregularities in a mistuned
system is shown in Figures 27 and 28, where an
11-blade system (author's Case 20) is examined.
The properties are given in Table 2, column 3,
except that Figure 27 corresponds to 4, =
2n(v-1)/(n+2) and Figure 28 to &= 2n(v-1)/
{n-2). These results should be compared with
Figure 16, which corresponds to a uniform
distribution of phase &, = 2n(v-1)/n. Agafn,
large amplitudes are seen for blades 1 and 11.
Further investigation of the effect of other
parameters, especially in regard to minimizing
the large increases in amplitude, seem indi-
cated, and can be accommodated by this model.

Finally, further consideration is
given to the effect of variation in the number
of blades, other parameters being equal, on the
response of tuned and mistuned systems under
traveling wave excitation. The system para-
meters are given in Table 2, column 1 (tuned
system) and column 3 (mistuned system). In
these cases,é,= 2n(v-1)/n, s0 no phase
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Fig. 27. Response of mistuned system to
traveling wave excitation (effect of
phase irregularity of the exciting
force, uN/S = 15, Case 20).

irregularity occurred, but the interblade
exciting force phase angles do change, becoming
smaller as n increases. This is reflected in
the response behavior, as Figure 29 (tuned) and
Figure 30 (mistuned) show. Comparing Figure 14
and 29 and Figures 16 and 17 with Figure 30,

we see that increasing the value of n has an
effect similar to that of decreasing N/S. In
fact, it can be shown [32] that a single para-

meter 2 Eg |Sin %—l combines the effect of
uN/S and n.

Obviously, many more cases need to be
considered, but it is not possible to consider
more in this paper. What is clear is that non-
1inear response behavior is much more difficult
to classify and generalize than linear behavior,
so that special rather than general conclusions
must be drawn, both from these results and
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Fig. 28. Response of mistuned system to
traveling wave excitation (effect of
phase irregularity of the exciting
force, uN/S = 15, Case 20).

from any results obtained by other methods of
analysis.

4. CONCLUSIONS

In this paper, the authors have developed a
simple multiple degree of freedom model of a
multiple blade array capable of accounting for
effects of mistuning, blade-to-blade and blade-
to-ground frictional damping, blade-to-blade
compliant coupling and different magnitudes and
phases of exciting forces on each blade. The
applicability and 1imitations of the two degree
of freedom model of each blade have been dis-
cussed and compared with receptance models and
experimental data for a nominally undamped blade
in a rigid fixture. It is shown that modes of
the system which correspond to the fundamental
mode of the blades can be quite accurately
modeled. The second mode of the blade cannot
be so well modeled by a two degree of freedom
system. It has also been shown that receptance
techniques of response synthesis can be further
developed to solve such nonlinear multiple
blade problems in a more exact manner. In this
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paper, however, a single blade receptance
analysis only is completed.

Specific conclusions emerging from the
numerical results of the computer program




generated to solve the equations of motion are
as follows:

1. The effectsof mistuning are to introduce
blade-to-blade coupling through the stiff-
ness elements K3,, and this leads to typi-
cal mistuned behavior in which several
response peaks are observed, scattered on
both sides of the tuned-system resonant
frequency.

2. When friction is introduced between blades,
it usually becomes the most important blade-
to-blade factor and the effects of K3, are
less evident. See Figures 27 and 28, for
example.

3. The type of harmonic excitation variation
of amplitudes and phases has a very great
effect on the qualitative as well as the
quantitative form of the response, and
different types of excitation lead to
different types of response behavior,
including on occasion very high response
levels. Lowest response amplitudes seem
generally to correspond with the "smooth-
est" &, (least radical excitation dis-
tributions) and it is deviations from
uniformity which seem to lead to high
amplitudes.

4, For a given number of blades, an optimum
value of the friction parameter uN/S(ratio
of friction force to driving force ampli-
tude) seem to exist, for which response
amplitude are a minimum in all blades,
provided that uniformity of the phase
angle &, occurs. This optimum does not
seem to be very strongly dependent on the
type or amount of mistuning (smooth or
random variation from blade-to-blade),
except that at high values of uN/S (typi-
cal of real engine conditions), the
randomly mistuned cases seem to have some-
what lower amplitudes under the same
(smooth) excitation conditions. This, how-
ever, remains to be verified when more
cases are examined. '

5. The mathematical model and corresponding
computer program which has been developed
for numerical calculations have quite
general character within 1imits and may be
used for prediction of amplitudes of blade
or disk vibration (and corresponding
stresses) for various bladed disk systems.
The particular interest of this program
1ies in the possibility of investigation
of structural friction damping, which
exists in joints or is deliberately intro-
duced to the system through platforms
or special friction dampers.

Several other parametric investigation,
reflecting various blade configurations and
dynamic conditions are still being conducted,
and will be the subject of future publications.

A computer program has been developed and
individuals interested in defining specific
problems for calculation are invited to
communicate with the authors,
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NOMENCLATURE
A amplitude of xz(t)
A, amplitude of xz\,(t)

C] .C2 constants

amplitude of X](t)
amplitude of X, (t)

va functions (see Tables 1-3)

n-th natural frequency (Hz)
points on blade surface (1, = 1,2)
integer

K] ,K2 stiffnesses

KN ,K? n stiffnesses

Kav coupling stiffness
Hn modal mass
m .,y masses

™, Ry, Masses of v-th elements

number of modes, also normal force

Nv'"m normal forces for v-th blade

number of blades, also integer

E matrices

correction coefficient

S. 51 driving force amplitudes

4




S; driv'ing force

S! driving force

t time

Xye¥y coordinates

XqsYy response displacements at point i
).(1. 9‘ velocities

response of mass "
)(2 response of mass ",
"11"’1'1 cross receptances
a,Y,8 phase angles

a,» v"v phase angles

By+85 constants

A see Equation 9

An irregularity in n
€1+€7 precision indicators

n »n loss factors

Tin Toss factor of n-th mode

% n-th modal function

ﬁ coefficient of friction

v integer

o iteration index (o= 0, 1, --)
w circular frequency

w, natural frequency of n-th mode

APPENDIX 1: EXPERIMENTAL INVESTIGATIONS

The specific blade chosen for base-1ine
tests was a typical slightly twisted, cambered,
steel compressor blade with a simple dovetail
geometry. The blade was held in a heavy fix-
ture, Figure 31, having meting surfaces that
matched the contours of the blade root. For
the receptance tests, the root conditions
were such that the clamping pressure prevented
siip from occurrin?. However, the centrifugal
loads which exist in the operational environ-
ment were not simulated, because of the diffi-
culty of 1icating this effect without mesk-
ing other blade characteristics, such as low
domping. The test fixture for the blade was a
102 m» square broach block, made of steel. In
the first set of tests, this block was placed
directly on a rubber pad to isolate the fixture
from the surroundings. Later tests were con-
ducted with the broach dlock fixture attached

e

to a 51-mm-thick by 460-mm-square aluminum
plate, which in turn was mounted on rubber
isolators, to even more completely isolate
the blade from the surroundings.

The test system is illustrated by block
diagrams in Figure 32, The Bruel and Kjaer
Mode) 1014 Beat Frequency Oscillator could
generate a harmonically varying voltage of
magnitude 0 to 120 volts, at any selected fre-
quency from 20 Hz to 20 kHz. The output imped-
ance, measured in Ohms, was variable within
limits to accommodate various impedance
exciters. As the frequency was varied, the
current through the output terwminals to the
exciter, or driver, could be controlled by
means of a “compressor.” This was simply a
feedback loop which measured the voltage
across a fixed resistor in the output circuit,
and used it to control the output current. A
meter gave a reading of nominal voltage across
the terminals.

The output current from the oscillator
was fed directly to a magnetic transducer
(Electro Model 3030-HTB), with the output
impedance set at 600 Ohms to best match the
transducer. The transducer consisted, essen-
tially, of a n?netized iron rod with many
coils of fine wire surrounding it, through
which the oscillating current flows. This
current produces an oscillating magnetic field
which modulates the steady magnetic field of
the rod, and hence produces an oscillating
harmonic force on any iron object placed nearby.
The magnitude of this force depends on the
amplitude of the current and on the gap between
the end of the magnetized rod and the structure
being excited.

The waveforms of the input and
response signals were monitored on a dual beam
oscilloscope (Ballantine Model 1066S). The
frequency of the input signal was measured by
a digital frequency meter (HP Model 5216A).

The pickup system used a miniature high
1lxedance quartz accelarometer (Endevco Model
22), of mass about 0.2 grams and having a very
thin and flexible cable to minimize interfer-
ence, An MB Zero Drive (MB MA0O) amplifier was
used to amplify and condition the accelerometer
signals, so that they could be read off a volt-
meter (HP Model 3400A). A "line driver" was
used in conjunction with the high impedance
amplifier to minimize losses of signal strength
in the cables. This system was used to measure
the driving point receptances at point 1,
mnlya”. {1lustrated in Figure 2.

This system has been further updated for
further analog tests at the Materials Labora-
tory. The sweep oscillator was replaced by an
SD Model 104A-5 system to give more flexibility
in testing procedures and display of results,
and was connected with a 250-watt power ampli-
fier so that the controllable input force
amplitudes could have a greater range. This
was particularly important because of the
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Fig. 32. Analog test system.

inductive drop-off of the magnetic transducer
output force at high frequencies. To correctly
match the output impedance of the amplifier

(4 Ohms) to that of the transducer (1,600 Ohms),
an audio transformer was used. This minimized
distortion of the input signal. To ensure
constant output force from the transducer, the
current was monitored by observing the voltage
across a fixed (1 Ohm) resistor. Voltage to
the transducer was monitored so as to control
the input power, thereby minimizing the danger
of fusing the wire coils together in the
transducer, which could lead to loss of signal
strength and increased distortion, as well as
disturdb the calibration of the system.

A digital signal analyzer (HP Mode) 3582)
has also been used to conduct tests. The
capability of this digital system to conduct
spectrum analysis in conjunction with impulsive
excitation of the blade (calibrated hammer)
allowed for very effectmuing procedures.
The impact hammer (PCB ) and accelerom-
eter (PCB 3031) were both low impedance devices
so that electronic noise was minimized. Even
so, great care had to be taken in calibrating
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the system and in ensuring that each individual
test was well conditioned. A block diagram of
the test system is given in Figure 33.

ADOER -
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Digital test system. ¢

RECEPTANCE ANALYSIS OF BLADE
WITH SLIP

Equations (10) and (11) are solved by
assuming, for steady state response (the
existence of the steady state response of the
form Equation (26) was analyzed by Plunkett [33]
from the viewpoint of a solution in the time
domain) that

Xz = A Cos wt,

»L”;g”mﬁ”
Fig. 33,
APPENDIX 2:

X - D] Cos mt+025'ln wt = DCos (wt + v)

Then: sgn (x‘.‘,)f: - 4/usgn(A) Sin wt 1f we take
the first term and the Fourier expansion of
s?n (Sin wt). Putting these into Equatfons
(10) and (11) gives:

D]cos Ut+0251n ﬁ)t = an(S”COS mt‘l'S]zSin wt)

- % uN sgn {A) Sin wt %2 )
A Cos wt = (sl'l Cos wt + SIZ Sin wt)azl

- -:-uN sgn (A) Sin wt a9

gy

Equating terms in Cos wt and Sin wt gives the
four equations:

0y = oSy

. 4N
Dy = ayySy, - <5 s9n (Alay, (28)

A = Sjapy




= 5,09 - 2 son(Alay,

ghich are readily solved for D]. DZ’ S". and
12°

S12 * ﬂ‘— sgn (A) “:2

. §,=S,,Cosut+ 4N sgn (A) 22 Sin wt
1 711 'n a1

(29)
o et (m)z 1‘2)2
1 n " (021
2, q Z
2 4uN 22
S = S - Sphy &£
n / 1 ( v )(“21)
Hence:
X;=aq 1 Cos wt + J’- sgn(X )( N%2 -an)smnt

o el B o (M)z (“11“2:;]"12“21)2 (30)

- [ @]

(g';i)z ("n"zz ;2‘:12"21 )2

Hence, Equation (12). Since A = S" By
Equation (13) follows also.

APPENDIX 3: DISCRETE ANALYSIS.OF BLADE
HITH SLIP

Equations (16) and (17) are solved, for
steady state response, by assuming that

Xz = A Cos wt
Xy = DyCos wt + 0,51 wt=D Cos (wt +y) (31)
and uNR, sgn (xz) - ::— uNR, sgn(A) - Sin wt

Hence, Equations(16) and (17) become:
- mu?) (D) Cos ut + D, SIn wt) -KjA Cosat

(33)
- (S" Cos wt + 512 Sin wt)

(K #Ky-mu®)A Cos ut-K, (D,Cos wt + D,Sin ut)
4u
Rz ——=35gn (A) Sinuwt = 0
equating terms fn Cos wt and Sin wt gives the

four equations:

2

2

(Ky=mu”) D, = Sy (34)
(K #Ky=m?) A = K1y = 0

-KyD, = sgn (A).
Hence:

-4uN
" §) = S Cos wt + (Ky-myo) (——"-R;z—-)sgn (A)
x Sin wt

4uNR,\2
. 2 2,2 35
S S] = Sn 0('—"r]'-) (K.I-ll]w ) (35)

Sn - /"f - (‘u:kzsz (l - flﬁ)

From the first and third of Equations 2
eliminating D,, we get the expression for
|A]. Further, we get the expressions for D‘( %)

PV
[("r—)( '—M-F‘ ]

""z

—2 son (A) (37)

0, =

Hence, since I)|2 -2 + 0 » we get the

expression (18) for '|D|.

APPENDIX 4: ANALYSIS OF MULTIPLE BLADE
SYSTEM WITH SLIP

The equations of motion for the v-th
blade, in Figure 9 are:

- Ky.n . .
v -
™oy Kol %y x?.v) * (Xyy = X\




=s,Cos (wt + 8 ) (38) ()T = Q, (43)

. - X ) where Z is the column matrix (m x 1) of
( 2v Tv variables Z, ; and I, wherev=1,...n and }

m=2n, Q is the column matrix (m x 1) of the

- Ky.n
Tv
mvkey Kkt T

KZv" . 3\> )

+ X - X excitation vectors, and P is a nonlinear
( 2v © "2,V +l) square matrix of dimension m x m,
K The matrices P, Z, and Q are given by
+ -i'u‘"—‘-]-(xzv X2 - ‘) K3 W2, v expressions (44) through (51).
- K3.v—l xz,v-l 1= 17 ] * Ay Cosay ]
v v v z -A, Sina
WM Ry sgn (K= X, 1)+ uMy Risan (X)) 2 2 ) 1
.o - : $ap
t Ry s (o Xy o) * (K, * Ky, -A, Sina,
) (44)
+ K3v + K3.v-'|) sz = 0 (39) .
for v =1, 2, ...n, where n is the number of zm-l An Cosan
blades in the system. These are a set of non-
linear differential equations of the second 7 -A_ Sino
order, with the only nonlinear term represent- | ) An
ing a Coulomb model of the frictional forces.
In Equation (38) and (39) n and n, are Mo 1 T 1
Loss factorslgn ;last‘i’c members ?hystirltic =19 S'I(R"cos‘sl"RZ'ISi"'sl)
amping mode 1 and Rz are correcting -
coefficients, N, N, , and N, are normal forces, % So(Ry$1n6; -Ryy Cosé, ) (45)
and y is the dry frictio"“coefficient. . . .
Applying again the method of harmonic ' ) )
balance, we let Q1 Sp(RypCosE #R,y STNE )
X‘v = Dv Cos(wt 'Wv) (40) LQ'" j _S“(R1“S‘In6“+RZnCossn)‘
A, Cos(ut +a,) (1)
In the matrices we further have:
1f we introduce these into the equation of 2
motion, and introduce the simplifications: P = Koot K3t K3,v-l - My ,
sgn [c‘sm(wt +8;) - CpSin (wt +Bz)] 2
ke 2Lan?) "1»""1;“’
C,Sin(uwt + 8.) - C,Sin(ut + 8,) (Ky m @) + (K n)
,% 1 ) 2 2 (42) v MV W (46)
/¢} + 5 - 20,C, Cos(8, - B,)
P 2 = nsz + nl(K3\, + K3.V-'|) pre
{first term of the Fourier expansion; €y »,
By 2 are constants) then the equations }6%’ the 2 4
unknowns : nkyy My
+ 72 7
ZZV—I " Av Cosa,, (Klv'"'lv >+ (Klv")
and

ZZv' -Av Sinuv Ve l, ..y, D

can be written in the form of a nonlinear
algebratc matrix equation:
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"y PLat¥y Y, “n Lt 0 3 =My,
L6300 S Mad u "nEa LT "1 ¥3a%, %3n
31 nEan P2 P2V, 32 "MKy ¥y o
"y LT P40 *V; P - MRy, ®32 0
%32 “Mik32 Y2 2% P3*¥y s
I
I A} :
f * - —oI - -K on, £, - (47)
0 “¥y,0-2 5y, et ™0 Pa-1,1 Pae1,2-1""-2*Vn1 1,01 153, n-1Ya-1
LIS, WY S LA Pael,l Bt S T Sl B P S5
s
‘vn-l
K3 "1 %3y %y, n-1 “"1%3, 0e1"0-1 a1 Pa2*¥p*¥pn
o ——— e —— —
s " LFTS "M%y, -1 %5 el Pazt¥, -
/Y e
plo-1)g(0) L g 51, 2,... where
plo-l) o pz 01y 0w 2,3,
(l 4t % wz) (o)
R 1v Initially, P is calculated with Hv =
v no 2 Z 2 u(°) =0,andV =YV o) forv=1,...,m and
(l v +n v v v
v (48) the system
(m ,,,,z) POz g
Rp” v 5 is solved for Z = g(‘). \("). G\(,‘) . H\(,]),
[(' L wz) . z] v‘(,”. and finally f“) are then computed and
S n
v V7. (52)
4N R, solved for 22}, The process continues with
v

R
i:%l (49)

A, * / Zzzv_] + sz! (50)

4
& = Moy s ) * (B - ) (1)

withvs=1,2, ....,n,andn+1=1,n+2=2,

Iterative Calculations: As previously noted,
the matrix P contains entries involving Hv and

¥, which in turn are functions of the components
Z, of the vector Z. Thus, the notation g(g) is

meaningful.

A sequence 209) of approximate solutions
is obtatned which™satisfies

each iteration obtained by a standard linear
equation solving subroutine. The particular
algoritim utilizes UL factorization with
iterative refinement (References [34,35]).
The process terminates when any one of the
following conditions is satisfied:

M Max 120 L gle Ny <
v

z‘()a) - Z\("cs-l)

e RS

(2) Max
v

(3) o = ITMAX (maximum number of
{terations.)

(c‘. € - chosen numbers defining the precision
of results).

The amplitudes and phases of the solution
(40) and (41) are finally expressed as




o, = {S\z: + \zakl\z)(]’"z) t 2, SVK]V[Cos(Gv - u\a)
+ nSin(év -uv)]}uz[(l(]v - l]vwz)z (55)

+ (kg 17172

a, =arc tan (-z;i;’—) (56)

-

= - 2 -
Y, = arc tan [{SV(KIV ™ ) Sin 8, - K"

-Cos 8.1 + A Ky Stn o [k, (1 + n?)

-my w21 - ACos am K’} / (7)
2
{Sv (Klv -m ) Cos 8+ Kyyn Sinsv]
+ A K, Cos a [K (l#nz)- wZ]
v v vty My
2
+ Av Sin avm.lvkwm) 1]
v=1l,..., 0
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VIBRATIONS OF A BEAM UNDER MOVING LOADS BY A FINITE ELEMENT

FORMULATION CONSISTENT IN TIME AND SPATIAL COORDINATES

. Julian J. Wu
U.S. Army Armament Research and Development Command
Large Caliber Weapon Systems Laboratory
Benet Weapons Laboratory
Watervliiet, WY 12189

A finite element formulatfon, which discretizes the time dimension in the
same sanner as it does to the special dimension, is presented and applied to
the vibration analysis of elastic besms under moving load and to the lateral
aotions of & gun tube affected by a woving projectile. The procedure is based
on an unconstrained variational approach. Bi-cubic polynomials are used as
element shape functions. "Stiffness” matrices and "force” vectors integrated
both in time and spatial coordinates are described. The versatility of this
formulation is demonstrated by numerical results obtained for moving loads with
constant and varisble velocity beams with sundry support conditions and with
differential equations which can be nonself-adjoint and with variable coeffi-
cients. Numerical convergence of several simple cases have been verified with
a series solution. Results of motions of a typical cannon tube are included.

INTRODUCTION

A general and versatile procedure is intro-
duced and applied to vibration analysis of besms
subjected to moving loads. Depending on the
range of speed and acceleration of the load,
this problem is often associated with the design
and analysis of rails and bridges affected by
noviag vehicles, tracks for rocket-firing and
the gun barrel dynamics as affected by a moving
projectile. Most of the work in the existing
literature are concernsd with railroad struc~-
tures (see, for example reference (1] and many
pspers cited therein from the year 1911 to
1971). Recently, application of this mathemat-
ical model has been extended to gun dynamics
analysis [2,3].

Only linear problems will be considered in
this paper. The basic differential equation 1s
that of a Buler-Bernoulll besm including inertia
effect. This aquation can be modified to
include structursl damping, elastic foundation
and axisl force. There can be & wide range of
support conditions. PFrequently, the reality of
sultiple spans of a besa must be dealt with.
Pinally, there are the moving loads. These
loads may be concentrated or varying in spatial
as well as ia time coordinates. They may be
moving with constant or varying speeds. If the
moving load is associated with s mass, the iner-
tia effect must be included.| Classical analy-
ses on the dynamic behavior of deams with mov-~
ing loads were usually carried out either by
eigenfunction expansions (with appropriate

boundary conditions), or, by transform methodas.
These approaches are ad hoc and have many
restrictions. On the other hand, the finite ele-
ment sethod has not yet been exploited to {ts
full potential in solving transient dynamic prob-
lems which are of our concern here.

In Saction 2, the partial differential equa-
tion of an Euler-Bernoulli beam subjected to a
moving force and on elastic foundation and that
of a gun tube aotions are stated, These equa-
tions are nondimensionalized; and the normalized
parameters are introduced for the convenience of
parametric studies and for generality. The mov-
ing mass problem can be considered as a spacial
case of the gun motion equation. 1In Section 3,
the variational problems equivalent to the stated
different fal equations and a general set of end
conditions are presented. One special feature of
the present formulation is that all the ead
condit{ons - {.e., boundary as well as infitial
condition are made to be natural “"boundary” con-
ditions through the use of some large “"spring”
constants, or the so called penalty functions
method in optimization theories. Based on these
variational problems, a finite element discreti-
gation is {mplemented. This is outlined in Sec-
tion 4. The shape function is chosen to be a
product of two third order (hermitian) poly-
nomials, one in spatisl coordinates and the other
in time. This eslewent shape function has been
used previously with success in conjunction with
a heat conduction problem [4]. Some numericel
results obtained by the present formulation are
presented in Section 5. The moving force

s J



problem with constant velocity in studied with
various velocities. The results are compared
with a series solution. Then the effect of
acceleration is examined. The solutions to a
beam on elastic foundation, a two-span beam and
that of a moving mass, are presented. Finally
some calculations for the motion of a typical
cannon tube are presented.

2. DIFFERENTIAL EQUATIONS AND
NONDIMENSIONALIZATION

2.1. Moving Force on a Beam on Elastic
Foundation

Let us begin with the differential equation
of a uniform Euler-Bernoulli beam on elastic
foundation subjected to a moving, concentrated
force.

- 0< x< 2

EIy™" + ky + pAy = P8(xp-x) 1)
0<t<T
where
E,p = Young's modulus, density of
the beam material
I,A = second moment, area of the
beams cross-section
3 = length of the bean

y = y(x,t) = beam deflection

x,t = coordinates in beams' axial
direction and in time

P = magnitude of the concen-
trated force

g(x) = Dirac delta function

Xp = xp(t) = location of P

T = some finite time of interest
k = sgpring constant of the
foundation

As usual, a prime (') denotes differentiation
with respect to x; and a dot (°), differentia-
tion with respect to time t.

It is convenient to employ nondimensional
parameters and equations. These will be
introduced by way of eq. (1). The nondimensional
parameters will first be identified by an
asterisk (*). When everything appears with an
asterisk st the end of nondimensionalization, we
then drop all the asterisks to save some writing,
but with the realization that they are now
nondimensional quantities. |Thus, let

y*=y/t , xtwx/t , t*eg/T (2)

Use (2) in (1), one has

0< xv < 1

y*" ¢ kiyh + Y2gh = Q8 (xpt-x*) 3
0<tr< 1
where
o ket c
er ' t '
%)
2 pALY P2
¢t - -—;— . Q = PR & ===

Also note in eq. (3) that the differentiations
are now with respect to the nondimensionalized
variables x* and t*, From now on, we shall use
eq. (3) with the asterisks dropped altogether.

0<x<1

Yo" 4 ky + ¥2y = Q8(xpmx) (5)
0<C¢g <}

2.2. Gun Tube Dynamics and Moving Mass Probleas

The second differential equation considered
here is that of gun tube vibration. We shall
simply introduce the equatfon and state the
meaning of each term. The detailed derivations
of this equation are given in reference [2].

(Ely")" - [R(x,t)y']" + oAy = —P(x,£)H(xp=x)

-np[xpzy'f + 2x5y' + y]8(xp=x)-(apgcosa)s (xp=x)
- pAgcosa (6)
Referring to Figure 1, y(x,t) denotes the
lateral motion of a gun tube approximated by a
Euler-Bernoulli beam. Symbols in addition to
those already defined in Section 2.1 are the
following:
P(x,t) = wR2(x)p(t)

R(x) = inner tube radius

p(t) = bore pressure I

- ] I! pAdx

P(x,t) = (-P(0,t) + gsina | pAdx) =—===—-
o I: pAdx

fps Xp projectile mass and velocity,

respectively
8 = gravitational acceleration
a = elevation angle (see Figure 1)

H(x) = Heaviside step function

X -Xp




Fig. 1 - A schematic drawing of the gun tube motion problem

Assmming uniform cross-section for simplic-
ity at the present time, the nondimensionalized
equation of (6) can be written as

"+ (-; + 8 sin a)[(1-x)y']" + Y%y
. . N

- -;y'ﬂ(;-x) - Yn ;zy” + 2;;' + ylg(;-x)

- (gm cos “)E(;-x)-g cos a

where m is the projectile mass (normalized).

It 18 noted that, with only the teras
underlined retaining, eq. (7) become one for a
moving mass problem.

3. VARIATIONAL PROBLEMS AND END CONDITIONS

It 1s well known that many procedures for
the obtaining of approximate solutions to ini-
tial and boundary value problems can be based
either on some variational problems (principles)
or on the concept of weighed residuals [5]. In
case of self-adjoint problems, the two can be
made equivalent to each other and the conver-
gence proofs of such procedures are well estab-
lished including finite element discretizations
(see, for example [6]). The general proof of
convergence of such procedures applied to
non-self adjoint problems {s not known to this
vwriter except in some very special cases [7,8].
Since the problems considered in this paper are
non~-self adjoint in general, the solution
procedurs can be viewed as numerical experimen-
tations. For many problems experimented,

including non-self adjoint boundary value prob-
lems and initial value problems, the results
have been encouraging [4].

3.1. Moving Force Problems

To establish a desired variational problenm,
one begins with the given differential equation
and perform integrations~by-parts upon the inner
products formed by the equation and the varia-
tion of some properly chosen functions. In our
procedure, the adjoint variable hsas been taken
for this purpose. Thus, for the equation con-
sidered in Subsection 2.1, we have obtained the
following variational problem.

§1(y,y*) = 0 (8a)
where

R ST -
L=, [y = v25y% + kyy* - Q8(xpx)y*)dndt

1
+ o [KIF(O.EIT*(0,8) + kay' (0,6)y**(0,¢)
+ k;(Y(l.t)Y*(l.t) + kgy'(1,t)y*' (1,t)
1
+ Io {k71¥(x,0) = yo(x)1y*(x,1)

- y1(x)y*(x,0) }dx (8b)

where y*(x,t) is a function "adjoint” to y(x,t)
[9]. By carrying out the first variations of
eqs. (8) and at the same time restraining the
original function y(x,t) from varying at all,
one arrives at:




§I =0

11 -~ .
=l I 4y +¥%y - QS Gxpmn) ) Sykdxde

+ fl

0 {ty"*(0,t) + k3y(0,£)])8y*(0,t)

[y"(0,t) = %2y'(0,t)]8y*(0,t)
{y"'(1,t) = kay(l,t)]dy*(1,¢t)
+ [y"(L,t) + kgqy' (1,8)]18y*(1,¢)

+ ksy(xg,t)8y*(xg,t) }dt

l .
+%{Pﬂmn+kﬂﬂm®-ydnwﬁhﬂ)

+ [y(x,0) = y1(x)18y*(x,0)}dx ¢))
By virtue of the fundamental lemma of the calcu-
lus of variation [10] and the fact that Sy*(x,t)
is not restricted in any way whatever, eq. (9)
leads to the recovery of the original differen-
tial equation plus the initial conditions:

y(x,0) = yo(x)
(10)

;(x,o) = y1(x)
a set of very general boundary conditions
y*'(0,t)+k1y(0,t) = 0, y"(0,t)~kay'(0,t) = O
(11)
y* ' (1,t)=kqy(1l,t) = 0, y"(1,t)+kgy*(1,t) = 0O
and an intermediate support condition:
(12)

It should be noted that the first eq. (10) and
eq. (12) are valid only when k7 and ks goes to
infinity, respectively. This use of k5 was
employed previously with success in obtaining
numerical solution to a simple heat conduction
problem. It is also known as the penalty
functions method fn optimization theories

for example, [11]). However, from our point of
view, k7 i{s an extension of kj, k3, etc. are
simply the spring constants known to structural
engineers long before the so called "penalty
function method” came into being.

y(xg,t) = O

Thus, one has established the equivalence
between a variational problem and an initial
boundary problem for a particular set of
parameters to be selected. For example, 1f one
chooses ky » kp = , k3 = k; = kg = 0, the
problem becomes a cantilevered beam without
intermediate support.
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3.2. Gun Motions and Moving Mass Problems. The

variational associated with eq. (7) for gun tube
motions can be written as follows:

12

3
81 = (8I)y = 121 (81y)y - 321 (8J) =0 (13a)

with

1 1
I = IO ]0 y"y*"dxdt

- 1 .1
I = (P - g sin a)fo IO (1-x)y'y**dxdt

1 1 oo
I3 = -y2 dxdt
3 Y fo Io yy*dx:
1.1 -
I; = -Pfo IO y' y*' H(x-x)dxdt
1,1 --
Iy = -Pfo IO y'y®* 8 (x-x)dxdt
1 .1 - -
1g = ﬂnszvzfo IO t y'y*'8 (x-x)dxdt
1,1 - -
17 = -nBzYzfo IO ty'y*'8 ' (x-x)dxdt
1.1 -
Ig = ZmBYzfo IO ty! y*8 (x—x)dxdt

2t -
19 = -y Io !o yy*8 (x-x)dxdt

1 1+ --
I0 = ﬂnvzfo Io yy*S (x~x)dxdt
1
Iy = Io {k17€0,£)y*(0,t) + kay'(0,t)y*(0,t)

+ kay(1,e)y*(1,8) + kgy' (1,e)y*'(1,¢) }de

1
Iy = k7Io ¥(x,0)y*(x,1)dx (13b)
and
1,1
J) = -g(cos a) Io Io y*dxdt
11 --
Jy = -gm(cos a) Io foy'6(x-x)dxdt
1
J3 = k7fo Y(x)y*(x,1)dx (13)




=

Similar to eqs. (11) and (12), the boundary and
initial conditions turn out to be respectively:

y"(0,t) = k2y'(0,t) = 0
y (1,t) + kgy'(l,t) = 0O
¥ (0,t) + kyy(0,8) + (<P + g cos a)y'(0,t)
+ Py’ (0,£)R(x(t)) + mBly' (0,63 (x(t)) = 0
¥ (L,E) - k3(l,t) + Py’ (1,0)H(x(e)-1)

+ w82y (1,£)8(x(t)-1) = 0 (l4a)
and

3(x,0) = 0

YD1 + w8 (x(1)=0)] + k7[y(x,0) - ¥(x)] = 0
(14b)

It is noted that with Iy, Is, and Ig dropped in

eqs. (13), the problem becomes that of a moving

mass including the inertia of the beam.
Equations (19) and (13) are then the bases

from which the numerical procedures are

established.

4. FEATURES IN FINITE ELEMENT DISCRETIZATION

4.1. local Coordinates and Shape Functions

As the normalized parameters are used, the
domain of interest of a problem is always a unit
square., The elements then consist of the sudb
rectangles resulting from a division into K
equal segments in x-direction and one into L
equal segments in t-direction. A typical ele-
ment scheme is shown in Figure 2. The relation

between global coordinates (x,t) and local (£,n)
of the (i,J)th element can be written as

E=£6(1) o gx - 141
(15)
n=nd) e - 341

In terms of local coordinates, eq. (9) becomes

K L 1 1.x3
- ] 6 -
‘Zl 3-24 Iy Io[x. Y (11)87*"(19)

YL
- -;- 7(13)57'(13)1454“

L 1 ki
- ]
+jzl ]o dn [L Y(14)€0,n)8y*(14)(0,n)
‘2
k2 - ¥' (13)€0,n)8y** (14)(0,n)

‘f !l E rvzrs (£,0)8 [(A3))]
Lo Y7ks(y(14)(£,008 y*(44)(E,

- E 'f g 5(:-;)6:#(; (€.n)dEdn
1=1 je1 L0 0 P
K viks
+ ] === [ 48 [Y(q)(E)6y*(ar)(E, 1)1  (16)
11 k O

The shape function vector {s now introduced.
Let

Y(19)(Em) = aT(E,mY(1y) an
y*(13)(Eom) = aT(E,)T%(q4) = Y2T(qg)a(E,n)

At jt® coLumn
T} —
087 I:
f 0.6T 2 ) /-iﬂl ROW
i 16, 4
041 —
0.21
0. X
0. 2 4 6§ 8 10
j--.

Pig. 2 = A typical finite element grid scheme showing
and the global, local coordinates
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In thie present work, we have chosen a{§,n)
to be in the following form: =

a=1,2,...,16
ag(€,n) = by(E)bg(n) (184)
: P,q = 1,2,3,4
with
by(€) = 1 - 3&2 + 263
ba(g) = € - £2 + &3
by(e) = %2 - 23
bg(E) = - €2 +¢3 (18b)
As 8 result of this choice of shape functions,

the generalized coordinates Y(q4) for the
(1,7)th element can be written as

!‘l'(u) - {Yl 12 """"""""Ylel(ij) (19)
- l(’ ’D& ypn ’.En)l

0 76 Y %603 0 5,6 T vl
where the superscript T denotes the transpose of
a matrixz (in this case, a vector) and the sub-
scripts 1, 2, 3, and 4 indicate the local nodes
also shown in Figure 2. The correspondence
between the index m and the pair (p,q) in eq.
(18s) is given in Table I below.

Table I. Correspondence Between (p,q) and
u in Displacement Functions
an(€,n) = by(n)bg(n)

J | (p,¢) | & 1 (pa) T
T { | 1 T
| 1 I (1,1 I 9 I (1,3 l
! 2 ] (2,1) | 10 I (2,3 |
{ 3 I ,2 I 1 | (1.4) |
| 4 | (2,2 | 12 | (2,8) |
| s I 3,0 I 13 | (3,9 |
i 6 | (4,1) i 14 | (4,3) (
| 7 | (3,2 | 15 | (3,8) |
| 8 | (4,2) ] 16 | (4,8 )

With shape functions introduced sbove, we
shall describe the obtaining of element "stiff-
ness”, "mass” matrices and element "force"™ vec~
tor which involves integrations in time as well
as in spatial coordinates in the next subsec~
tion.

4.2, Sciffness Matrices and Force Vectors

Integrated in Time and Space Coordinates
Substituting eq. (17) into (16), one has

K L ‘3 St A

I 1 soTegqy (=a--—}1Y

gop g1 - D HTIT S -0
sz’

k1
8yeT - ———
*"gl T(1g) (= 31 + === B2} Yay)

(v ve Yn Y,En)2 -

L T k3 k4K2 l
¢ ] — -
+ L Ty b ml Tay
X Y’ks
+ 1 smaTig, {T 85} Y(ar)

1=1
Io§ e, d
= SYh - Py
to1 gm - AP LTUD
{ T szs
+ 81Ty —— G(1 (20)
2L A o
where, as it can be seen easily, that
1.1 T
A= f, a6 aT ec dean
11
3= ], 2 aT,n atan
1
B = ]O E(O.n).f(o.n)dn
1
B2 = fo f,;(O.R)ST,;(O.n)dn
1
B3 = [, aCt,maT(1,n)an

1
By = [0 8,6(1,n)aT c(1,n)dan

1
85 =/ 0 a(E,1)aT(E,00d¢ (21)

11 - -
Feggy =/ 0 I, a(8.m)8(19) (6~€)atdn

1
Gay = [ MEDY(1)(E)eE (22)

It 1s noted thet the matrix A, in eq. (21) 1s
analogous to the ususl stiffness matrix except
now, it also {ncludes the fntegration in the
tise disension. Ths matrix B {s the corre-
sponding “mass” matrix, etc. These matrices
are easily obtained. However, we shsll
describe the procedure of obtaining the “force”

. vector Feiq) in eq. (22) in some detsil:
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1.1 - -
Fag = [, ], s€mByE=atan (23

where the components of a {s given in eq.
(18a). Note that equation (18b) can be writtena
as

& p'-l
bp(€) = 2l bpp'€ (24)
p'=

and the value of b”' can be tabulated as in
Table II.




Table Il. Values of bpp' in Equation (24)

Nr T T ] T
| p | 1 12 t 3 1 & |
T | I I I |
| 1 | 11 o | -3 | v |
] 2 | o | 1 | =2 | 11
| 3 | ol o | 3 ]-=21
I 5 | of o | -1 {1 |

Now, let us consider §(44)(§-§). This
“function” represents the effect of the Dirac
delta function & (x-X) in the (1§)th element.
If the curve of travel x = x(t) does not go
through the element (1,3), 3(1 )(E-€) = 0, If
it passes through that element, one has

6(15)(54.) = §(x-x) = K§(E-E) (25a)

£ =g(n) (25b)
The function E(n) 1s derived from x = x—(t).
For example, if the force moves with a constant
velocity, one has
x = x(t) = vt (26a)
it follows from Eqs. (15) that
- - vk
£ =g(n) = ~1+]1 + l-.‘ (n+i=1) (26b)

Wicth Eqs. (18), (24), (25), and (26), one
writes (23) as

I'(1_1)k -xf [ &k(E .n)g(5°€.)d5d?\ (27a)

1¢-1. .
[ bygbyq & n' B(s-Eragan

(27)

l
0
P = 1 zxf‘
ape= 1 Lx]f,

Equation (27) can then be evaluated easily once
the_exact form of £ is written. For example,
1if £ = n, Bq. (27) reduces to

& 4 1 pig-2
) [ ¢

Pape = 1 1 Kb by a
p=1 q=1

- [ A (28)

With all element matrices and force vectors in

eqs. (20), (21), and (22) evaluated one can

routinely assemble the global scalar equation
SY*T K ¥ = 8y~ F (29)

By virtue of the fact that 8Y* {s not subjected
to any constrained conditions, one has

KYeF (30)

which can then be solved routinely.
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The assenbling of equations for a gun
dynamics problem is more involved. The basic
procedures, however, are the same. We shall
omit such details here.

5. NUMERICAL RESULTS

The solution formulation presented in the
previous section clearly can be applied to a
wide range of problems. Here in this Section, a
number of demonstrative examples will now be
given.

5.1 Moving Force With Constant Velocity

First, let us consider a simply supported
beaa subjected to a moving force with a constant
velocity
L
T

As T varies from » to O, the velocity varies
from 0 to =,

vy =

It will be helpful to compare v with some
reference velocity which is a characteristic of
the given beam. It is known that for a siaply~
supported beam, the first mode of vibration has
a frequency (see, for example, [11])

£ et ('z) eyel )
& o= oen (==) w-— (¢ es r seconds
1 2x 2x 2c ye pe

and the corresponding period,

T 2 212 (pA)
== SodY AL
[ { El

The letter symbols 2, T, and C all have been
defined in Section 2,

The velocity of the flexural waves corre~
sponding to the first mode is
1 13
vy = 20f) = —-
c

Hence the relative velocity of the moving load
is defined by

- v c Ty

Ve e & e 5 ==

vi T 2T

In several exanples to follow, the value of c is
taken to be unity (1.0 sec.).

Thus

L
£ =5 = 1.578 He ; Tp = 0.6367 sec.

and
- 1
v - e
=T

-

v
3
¢
&




For T = 100 sec. or more, the relative Table III. Deflection of a Simply Supported

velocity v (= 0.0032 or less), the solution of Bean Under a Moving Force*
beam's deflection are almost purely static. The T = 10! gec., Constant Velocity
: results for T = 10!? and for T = 100 are shown
¢ in Tables III and IV and also in Figure 3. For y(x,t)/2 [x 107]
d T = 0.1 sec. and 0.05 sec. (V = 3.2 and v = 6.4
' respectively), the dynamic effect becomes I% | 1 I 1 |
evident as shown in Figures 4 and 5 and also in It/T 0. § 0.25 10,50 | 0.75 | 1.00}
Tables V and VI with various values of T. These i | | | | | |
solutions agree quite well with a Fourier series lo. |o.10. | 0. | 0. | 0. |
solution [1] given in parentheses in these | 0.25 | 0. | 0.11719 | 0.1432 | 0.09115 | O, |
g Tables mentioned. It should also be pointed out | 0.50 | 0. | 0.14323 | 0.2083 | 0.14323 | 0. |
‘ that the grid scheme used is 4 x 4, a rather | 0.75 | 0. | 0.09115 | 0.1432 | 0.11719 | 0. |
; coarse one. The spring constants used for a | 1.00 1 0. | 0. | 0. | 0. | 0. |

simply supported beam are that
#*Results identical to static deflection for at
k) = k3 = 1010 least the number of digits shown.

ky = kg = 0 -

i and for the initial condition to converge to
' zero displacement, the value k7 = 1010 was used.

Table IV. Deflection of a Simply Supported Beam Under a Moving Load
T = 100 sec., Constant Velocity

[

rﬂ

y(x,t)/t (x 107}]

e 1 | | ]

Ile/T 0. | 0.25 0.50 | 0.75 1.00 |

1 | | | k|

' 0: I 0. I 0. 0. I 0. Oo l

: : €0.) I, (0.) €0.) } 0.) (0.) }

| 0.25 | 0. | .72 L1432 | L0911 0. |

' = : (0.) = (.1167) | (.1426) } €.0907) €0.) %
I lo.so | 0. | L1431 | .2082 | L1431 0. | %

P } = (0.) : (.1433) = (.2085) : (.1434) €0.) = :
At ‘"
N lo7s | o. | .0908 | .1427 | .1168 0. | -

I = 0.) : (.0916) : (.1438) ; (.1176) | (0.) { =
| 1.00 ] 0. | =.0047 | -.0066 | -.0046 0. |
| I__¢0.) | (-.0002) | (-.0003) | (-.0002) €0.) |
Table V. Deflection of a Simply Supported Beam Under a Moving Force
T = 1,0 sec., Constant Velocity '
y(x,t)/2 [x 107)
T2 T
t/T 0. 0.25 0.50 0.75 1,00
{
| o. | o. | 0. | 0. 0. o. |
I = (0.) : (0.) | (0. I (0.) : (0.)

« | 0.25 | 0. | .0949 .1135 on1 | 0. ¥
: : = €0.) = (.0980) (.1141) ! (.0694) = (0.) A
! 1050 | 0. | .20 .3040 2149 | 0. 0

% = (0.) = (. 2080) = (.3026) (.2113) : 0.) | e
lo7s | o | .0%87 | .0952 094 | o, |
I { (0.) = (.0583) : (.0940) (.0809) : (0.)
l1.00 | o0 | =02 | .0519 Jd157 1 0. -
| | (0.) | (02000 ] (¢.0315) | (.0241) 1 (0.) |
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Table V1. Deflection of a Simply Supported Besa Under a Moving Force

0.05

0.10

0.15

0.20

Fig. 3 - Deflection of a simply n“ort«llbn- under & moving force:

T @ 0.1 sec., Conetant Velocity

y(x,t)/8 [x 10°2)

[ ] T 1 1 v 1
e/ 0. | 0,25 i 0.5 i 0.5 | 1.00 1}
T | ] )] T i
| o. ] R | .0 ) .0 ] .0 | 0 |
{ I o | o 1 (.0 ] oy | oy
{ ! | | i i ]
] 0.25 | 0 | L0819 | ~.0148 | .0043 | 0 |
; : (.0) { (. 0645) : (~.0149) : (.0033) { (.0) {
| 0.50 | 0 b L2002 ) 1228 ) -.0494% | 0 |
% , ; .0 : (.1952) { (.1262) {(-.om) l (.0) :
{ 0.7 | .0 | 3007 | .3832 | .0770 | .0 |
: ‘ (.0 : (.2929) = (.3849) ; (.ooon)l (.o)z
| 1.00 | 0 | 4601 ) Le912 | .577 | 0 |
| | €0 | (.4018) | (.4880) | (.5959) | (.0) |

y/%

constant valocity, T = 10'Y sec
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0. 0.28°

0.75 1.00

-1.0x10"3

2.0x10°3

-3
3.0x10

4,0x10"

v/

Fig. 4 - Deflection of a simply supported beam under a moving force:
constant velocity, T = 0.1 sec. (cf. T} = 0.637 sec.)

For a cantilevered beam, one only needs to
replace k9, 1 = 1, 2, 3, and 4, with the
following set

k] = ky = 1010

k3 = k4 =0

Solutions similar to the simply supported beam
are shown in Tables vu{ VI1I, and IX (Figures
6, 7, and 8) for T= 10' Tw 1,0, T = 0.1 and
T = 0,05 sec. As before, the case for T = 100
sec. or more the results are almost purely
static. But in the case for T = 0.1 and 0.05,
the dynamic effect becomes evident.

j
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0. 0.25 0.50 0.75 1.00

-0.5x10"> | l B
T=0,05 sec.
°0

0.5x10"

1.0x10°

1.5x10°

0
2.0x10'£ l J l

Fig. 5 = Deflection of a simply supported beam under a moving force:
conetant velocity, T = 0.5 sec. (cf. T) = 0.637 sec.)

Table VII. Deflection of a Cantilevered Beam Under a Moving Force#®
T = 1010 sec., Constant Velocity

yx,t)/% [x 1071)

r‘-z[:~‘{ T 1 T I |
le/T 0. | ©0.25 | 0.50 | 0,75 | 1.00 |
| | | T T [ T .3
| 0. | o. | o | o. | o. | 0. |
| 0.25 | 0. | 0.05208 | 0.13021 | 0.20833 | 0.28646 |
] 0.50 ] 0. | 0.13021 | 0.41667 | 0.72917 | 1.04167 |
| 0.75 ( 0. | 0.20833 | 0.72917 | 1.40625 | 2.10938 |
| 1.00 l 0. | 0.28646 | 1.04167 | 2.10938 | 3.33333 |

#*Results identical to static deflection for at least the number of
of digits shown.
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Table VIII. Deflection of a Cantilevered Beam Under a Moving Force
T = 1.0 sec., Constant Velocity

y(x,t)/2 [x 1071}

e T |
t/T 0. 0.25 |  0.50 0.75 | 1.00
| I
0. 0. 0. 1 o. 0. | 0. |
0.25 0. | 0.02522 | 0.03512 0.01532 | -0.01155 |
0.50 0. | 0.05213 | 0.14333 0.12242 | 1.22543 |
| 0.75 0. | 0.11526 | 0.39630 1.76307 | 1.13685 |
| 1.00 0, | 0.28681 | 1.84846 1 1.77227 | 2.85636 |

Table IX. Deflection of a Cantilevered Beam Under a Moving Force
T = 0.1 sec., Constant Velocity

y(x,t)/2 [x 1072)

/e ] I | | | 1
t/T 0. | o0.25 0.50 | 0.75 | 1.00 |
I | . T T [
. 0. ' 0. I 0. 0- l Oe | Oe I
0.25 | 0. | 0.0402 -0.0082 | 0.0021 | -0.0006 |
0.50 | 0. | o.1161 0.1162 | -0.0454 | 0.0544 |
| 0.75 | 0. | 0.1561 0.2849 | 1.1623 | -0.2216 |
| 1.00 | 0. | 0.1079 1.4904 | 0.4668 | =0.2138 |
0. 0.25 0.50 0.78 1.00 x/2
°O ‘
0.1
0.2
T10'? sec.
0.3 |—
v/t

Fig. 6 - Deflection of a cantilevered bean under a moving force:
constant velocity, T = 1-10 sec. (cf. Ty = 1.787 sec.)
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0. 0.25 0.50 0.78 1.00

-2.0m073 | _
Ts0.1 sec. -
o.

2.0x10~3

-3
‘ 4.0x10 -

-3

6.0x10

y/2

Tig. 7 - Deflection of a cantilevered beam under a moving force:
constant velocity, T = 0.1 sec. (cf. Ty = 1.787 sec.)

Table X. Deflection of a Cantilevered Beam Under a Moving Force
T = 0.1 sec., Constant Acceleration

y(x,t)/% (x 1072)

(]
t/T 0. 0.25 0.50 0.75 1,00

{ :
, 0. 0. 0. 0. 0. 0.
0.25 0. | 0.0611 -0.0111 0.0181 0.
0.50 0. | 0.10% 0.0704 | -0.0327 0.

0.75 0. | 0.2306 0.1746 | =-0.063%6 0. ,

1,00 0. | 0.3153 1.3872 | 0.1522 0. S

- 4

o 4
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0.
0.5x10-3
1.0m0° 3}
1.5x0°3
2.0x10"3 I | 1
y/A
Pig. 8 - Deflaction of a cantilevered besam under s moving force:
constant velocity, T = 0.03 sec. (cf. T} = 1.787 sec.)
5.2. Moving Porce With Constent Acceleration where 8 1is the nondimsasiocnsl acceleration.
Hence the path of iategratiom of the force
When the force is moving with conetant vector is cheaged and this csa be done with very
scceleration rather than constant velocity, the . 1ictle effort. Ths solution for a cantilevered
only change necessary in this solution besa with T » 0.1 fe shown in Table X and
formulation is to replace Eq. (26a) by Higures 9 and 10.

- 1 The sverage velocity for this case 1o the
x = = pt? same as for the case of T = 0.1 with constant
2 velocity, the effect of sccelerstion is obssrved
by coaparing Pigure 10 with Pigure 7 (or Table X
with Table IX).




1.00

0. 0.25 0.50 0.7
-0.28x10"> | ] ]
Ts0,0S sec.
°o R ‘;“- ¥
t=T/2

0.25x10"> |—

3

0.50x10  }—

-3
0.78x10 [

1.00x10

t=3T/4

x/L

t=T

v/

Fig. 9 - Deflection of a cantflevered beam under a moving force:
constant acceleration, T = 0.05 sec. (cf. T = 1.787 seac.)

5.3, Beam on Elastic Poundation With Two Spans

5.4, Gun Tube Motions Affected by a Moving

The versatility of this solution formula-
tion is demonstrated by another example of a
beam resting on an elastic foundation and with
In this case wo have
taken again the simply supported beam with a

three rigid supports.

force moving with constant speed.

The deflec-

tion curves shown in Figure Il are for T = 0.1
and with an intermediate rigid support at the

midepan and without an elastic foundation.

Fig-

ure 11 18 for the seme with a uniform elastic
support with a spring constant of k = 10,000 per

unit length.
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Projectile

The differential equation of this problea
is not only non-self adjoint, but also has vari-
able coefficiente and with several discontinuous
loads. Howaver, the solution formulation
presented here also can be routinely applied.
The parameters used are from a model M68 - 105
ma cannon tube. The relevant ones are listed
below:

iq
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-2,0x10°

.0x10°°

0.
A2
1.0x10"3
2.0x10”3
B I | |
- v/r
l Fig. 10 - Deflection of a cantilevered beam under a moving force:
constant acceleration, T = 0.1 sec. (cf. Ty = 1.787 sec.) .
i
For the tube: For the projectile, we have

E = 2,068 x 10'2 dyne/ca? (30 x 108 pei) ay = 9.07 kg €20 1b (a))

p = 7.8 g/cn’ (0.2818 1b/1n?) P = 27.58 x 10° dynes/ca? (40,000 psi)

L «53%ae (17.5 ft) 8 = 2,36 x 105 ca/sec? (6 x 10° 1n/eec?)

(0.0.) gy * 18.50 ¢ (7.284 in.) T = 0,008 sec 2 0,01 sec. i
Raniad 1.D, = 10,5 ¢cm (4.130 in.)

A= 182.13 ca? (28.23 1n?) Consequently, the nondimensionalized parameters
o 1 « 5.145 x 10° cn” (123.60 1n%) are
L and B = 2,0 , c=0.106 , P* = 6,40
[ pM6 2

A ce= (-ﬁ-)l/ = 0.10396 sec. mp* = 0.012 , g* = 0.020
And, with T = 0,01 sec., the deflection curve
is shown in Figures 13 and 14,
126
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-1.0x0"3 | —

- «0.5x10°3

0.5x10°3

1.0x10"3

1.5x10"3

2.0x10"3

L

L y/%

Fig. 11 - Deflection of a beam with three supports and under a moving force

constant velocity, T = 0.1 sec.

6. CONCLUDING REMARKS some analysis reported earlier [13,14]. Thus,
future analysis, which includes such parameters
A finite element formulation based on vari- as support flexibilities support locations, pro-
ational concepts has been established for gun jectile eccentricity (which contributes to a
sotions analysis. A special feature of this moving "couple” to the gun tube) is planned.

formulation 1s that it discretizes the time

dimension of a dynamic problem in the same way REFERENCES

that the spatial dimension is discretized.

Comparisons of numerical results with series 1.
solutions of & moving force problem indicate

that the present method generates correct

results. For gun tube motions analysis in this

paper, the effects due to a moving projectile, 2.
the recoil force and the curvature induced force

have deen included. The support condition of a
cantilevered used in the analysis is obviously
unrealistic. Numerical datas obtained here

appear to be small by as much as two orders of
magnitude compared with experimental data and
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0. [.2s |.50 .75 1.00

-0.5x10” |~ 12005 sec,
k=10,000.
°‘
0.5x1073
-3
_ 1.0x10 -
& -
. “yl!.
Fig. 12 ~ Deflection of a cantilevered beam on elastic foundation and under a moving force;
constant velocity, T = 0.05 sec., k = 10,000
0. ].25 j.so ].75 1.00
-7
-1.0x 10 | —
0. °
x/2
-7
1.0x 10 —
‘
-
: -7
: 2.0x 10 —
[ STY 4
. 3.0x 10”7 —_
y/%

Fige. 13 = Gun tube motfons during firing: data from a simplified M68 - 105 mm cannon
(see page 16), T = 0.01 sec
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b

Fig. 14 - Muzzle motion during firing:
a simplified M68 = 105 mm cannon (see page 16), T = 0.0l sec
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DISCUSSION

Mr. Yang (University of Maryland): That
is a very interesting paper. On a
couple of slides you had a capital T
that was equal to a 10 to the 10th power
times something?

Mr. Wu: We are using an arbitrary large
nunber to approximate infinity. As a
matter of fact if we use anything more
than say 100 or a couple of 100 the
nominal number would be one, would be
unity. So {f we take say 100 or 200
essentially it is the game.

Mr. Yang: I understand now. You also
indicated that in some of your runs the
time was 1.2 micro seconds. If that
were the case, then this curve looks
awfully smooth. I mean di{d you consider
the wave propagation and the size of the
front element meshes or steps?

Mr. Wu: OK, I understand. You see the
number of elements that were taken is
very very small. We take something like
four elements. The most that we have is
a four segments in space and eight in
time. In other words this kind of
viggle is the most we can pilck up - any
higher frequency we would not be able to
pick it up. To pick up any higher fre-
quency, you would have to use much finer
mesh.




THE BEND-BUCKLING OF A RING-STIFFENED CYLINDRICAL SHELL

DUE TO WHIPPING EXCITATIONS

Kenneth A. Bannister
Naval Surface Weapons Center

White Oak, Silver Spring, Maryland 20910

The problem of interest is the bend-buckling of a ring-stiffened
cylindrical shell executing a low frequency beam-like "whipping"
motion in one plane. This topic is related to the design of
practical ring-stiffened shell structures subjected to in-service
bending loads, for example, submarine pressure hulls. The larger
objective is a systematic investigation into the dependence of

the critical bend-~buckling load of the structure on discrete
stiffener parameters such as spacing, eccentricity (whether the
ring is inside or outside), shape, and area. As a simple initial
study, we will focus on just one ring placed on a very long
uniform shell. Three different models for the problem will then
be briefly reviewed: (1) A Dirac-8 formulation which explicitly
treats discrete effects; (2) A linear "smeared" stiffener model in »
which the ring is smoothed over the shell, thus effectively s
replacing the original ring/shell by a uniform shell with ortho- i
tropic material properties; and (3) A numerical model using the

-
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these models.

"STAGS" finite difference computer program.
for typical large shells will be presented in order to compare

Finally, calculations

INTRODUCTION

We discuss here work in progress on
the relationship of overall and local
buckling modes of a metal structure.

In particular, we seek a method for
predicting the critical load of a ring-
stiffened cylindrical shell subjected
to a state of pure bending. We term
this critical load valué the "bend-
buckling® load to distinguish it from
the other well-known loading patterns
that can lead to cylinder buckling-
axial compression, hydrostatic
compression, and torsion. The
motivation for this research is that
ring-stiffened cylinders are widely
used in submarine pressure hull design,
aircraft and missile structures, and in
many industrial applications such as
tanks for storage or transport of
chemicals. These structures can
experience static or quasistatic bend-
ing loads of differing severities
depending on their external environ-
ments. Pressure hulls, for example,
may be subjected to low frequency
bending vibrations (i.e., "whipping")
due to a nearby noncontact underwater
explosion. This motion is of such low
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frequency compared to much higher local
structural frequencies that it can be
considered a quasistatic or static
response even though the vibrations
sometimes appear transient and irregular
in character. 1In this study, then,
since we wish to determine the local
buckling response to what are essen-
tially quasistatically applied loads,
the analysis will proceed with the
assumption that "whipping"-generated
loads are static loads.

Although the buckling behavior of
stiffened shells has been intensively
investigated for many types of shell
geometries, stiffener arrangements, and
load conditions, the problem at hand
has not received much attention. This
paper therefore describes a "new start"
on the problem, discusses previous
work, and presents reasonable approaches
to obtaining bend-buckling loads. The
larger goal of the study is a systematic
investigation into the dependence of
bend-buckling loads of general stiffened
shells to discrete stiffener parameters
like spacing, shape, area, and
eccentricity. Determining the
relationship ("sensitivity") of the




bend-buckling load to local stiffener
discreteness parameters would provide
very useful design data for purposes of
preventing bend-buckling collapse of
stiffened shell structures.

Real pressure hulls are quite
complicated structures to analyze; rife
with imperfections, residual stresses,
material inhomogeneities, diameter
changes, and so forth. To reduce the
problem to manageable size, we represent
the hull as a constant diameter thin
circular shell stiffened by equi-spaced
rings of identical properties. We
ignore the effects of hydrostatic
loading here but at some phase of the
study such effects should be con-
gidered. The entire stiffened shell is
placed in a state of static pure
bending--representing, for example, the
situation at a given instant in a
submarine undergoing whipping response.
Local dynamic effects are assumed small
so that inertial terms can be neglected.
Lastly, the local fluid pressures due
to the hull moving through water will
be ignored. (This latter assumption
generally applies except perhaps at
regions of the hull opposite the
explosion where high speed flow
impinges on the hull gurface.)

It is instructive to describe the
bend~-buckling behavior of unstiffened
and stiffened cylinders observed in
experiments, Figure 1 shows an
unstiffened cylinder subjected to end
moments. The shell is made of a
linearly elastic isotropic metal
(Young's Modulus E), is assumed to be
very long (L/R > 20), and has a
circular cross section with moment of
inertia I. The shell bends like a beam
with curvature 1/p in response to the
applied moment. Axial stress result-
ants thereby appear in the shell wall
and, as shown in Figure 1, have
inwardly pointing components which pull
outer fibers of the cross section
inward. Thus, as M increases, the
shell flattens (ovalizes) and reduces
its moment of inertia I; in turn the
bending stiffness EI is reduced. This
process yields a nonlinear moment-
curvature plot (Figure 2) with a
horizontal slope at the critical
moment. Attempts to increase the
applied moment beyond this critical
value will cause a precipitous collapse
of the shell--this sort of collapse can
be easily demonstrated with an ordinary
plastic soda straw.

For short shells, with ends held
circular by rigid end supports, the
bend-buckling resembles axial
compression buckling. With increased
applied moment, small amplitude axial
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waves, “"wrinkles," form on the
compressed side of the shell. Unlike
the axially compressed shell, these
wrinkles decay in amplitude with
circumferential distance away from the
most compressed fibers. In general,
the exact source of the wrinkles is not
known but is believed to be the low
amplitude wavy imperfections always
present in real shells. The amplitudes
of the wrinkles grow with increasing
load until the shell suddenly "snaps"
into the classical diamond-faceted
pattern characteristic of axijally
compressed shells.

For shells of intermediate length,
the ovalization modes occur
simultaneously and one or the other will
dominate the final precipitous
collapse. These mechanisms are not
unique to the elastic regime leading up
to instability; careful observations of
the buckling behavior of relatively
thick walled (low R/t ratio) shells
show that ovalization and wrinkling
modes occur when the shell wall is
fully plastic.

The trends in bend-buckling modes
of ring-stiffened cylinders are much
less well understood due to the
greater experimental difficulties and
the vast number of possible combina-
tions of boundary conditions and
stiffener arrangements. It is
reasonable to expect, however, that
the buckling modes will resemble those
of axially compressed shells., First,
two kinds of "panel instability" or
local buckling between rings may occur:
the shell takes on a lobar pattern
with an integer number of circum-~
ferential half-waves, or it buckles
into an “accordion pleat”™ pattern.
Secondly, an overall "general
instability" mode can occur in which a
substantial length of the shell, along
with several adjacent rings, buckles.
This latter mode is somewhat akin to
the ovalization mode in an unstiffened
cylinder, except that rings are present
which tend to control the extent of
shell affected. Generally, we can
expect that the two panel instability
modes are local and will be strongly
affected by the discreteness parameters
of the rings, while general instability
will be dependent on gross structural
properties (e.g., compartmentation of a
pressure hull) of the entire shell
rather than on local details.

PREVIOUS INVESTIGATIONS

A brief review of the source of
undervater loading and dynamic response
we_are concerned with here is given in
[0). It is shown there that the low




LA TR 4

frequency flexural motion of a
submerged structure requires a blend of
methods from the fields of hydro-
dynamics, structural dynamics, and
fluid-structure interaction
approximation for its analysis. It is
shown that due to the low frequency
modal content of the motions, a
relatively simple lumped mass finite
element beam model suffices for
calculations of overall response. It
turns out also that fairly simple fluid
loading and fluid-structure coupling
models, of about the same order of
complexity and accuracy as the finite
element model, are available. 1In
recent years, more sophisticated
fluid-structure analyzers, such as the
USA-STAGS computer code, are being
applied to a variety of problems
involving explosive loads on submerged
structures. More will be said about
this later.

Numerous investigators have
conducted analytical and experimental
studies of the bend-buckling of
unstiffened cylinders beginning with
the classic 1927 paper by Brazier [2]
and_continuing until the present [3 -
[15]. A vast literature exists on the
buckling of general stiffened shells
owing to their many practical
applications within structures
requiring low weight and high
strength. General surveys of this
topic can be found in [1;]Y - hsi‘. The
literature on the narrower topic of
ring-stiffened cylinder buckling is
also large since these structures
traditionally have been used in
industrial pressure vessel and sub-

rine pressure hull design. Kendrick
T;o has summarized the state-of-the-
art of this field (at least up until
1970). On the problem of interest
here, that is, sensitivity of the
critical bending load to local discrete
ring parameters, very little if any-
thing has been published. Bushnell
[21] has carefully studied the inter-
actions of ring stiffeners with
cylindrical shells in buckling with
the aid of a version of the BOSOR
computer program. Although the primary
goal of his investigation was to
demonstrate how different analytical
models of rings (and their attachment
to a shell) can affect buckling and
frequency calculations, he also found
that local shell deformations (which
vary with choice of ring model) can
have unexpectedly large effects on
overall buckling behavior.

ANALYSIS

We review here three approaches to
predicting the sensitivity of the
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bend-buckling load of a ring-stiffened
cylinder to local discrete ring
properties. Pirst, a Dirac-$ method
developed by Baruch [22] - [23] and
applied to the special case of a ring-
stiffened linder by Singer and

Haftka [24] will be discussed. This
technique, at least for symmetric
loadings, yields results applicable to
smeared rings ("first order approxi-
mation”) and to discrete rings
("infinite order approximation®).
Secondly, the well-known “"smearing”
technique will be briefly described.
This method is widely used for design
of layered (filament wound) shells and
in situations involving closely spaced
integral or attached stiffeners. It is
also used in standard design manuals
such as [25] and [26]. sShaker [27]
has conducted detailed non-linear
analyses with this approach applied to
ring- and stringer-stiffened oval
cylinders. Lastly, a few comments will
be made about approximate shell analysis
techniques such as the STAGS computer
program which is based on a finite
difference energy formulation.

A DIRAC-§ METHOD

The theory of this method has been
developed by Baruch [22] - [23] and
applied to buckling of ring-stiffened
cylinders under s tric loadings by
Singer and Haftka [24]. Geometry of
the shell and nomenclature is shown in
Figure 3. The following assumptions
are made in this theory:

1., The shell obeys linear Donnell
shell [4] theory and is thin; thus
R/t >> 1 and higher powers of R/t can
be neglected;

2. The number of circumferential
waves in buckling is large, i.e.,

nz > 1

3. The rings have the usual "
properties of a beam cross section but
are of zero thickness; the Dirac-§
function is used to locate a given ring
at a particular x;

4. Normal strains vary linearly
in the shell wall and ring and are
continuous across the ring/shell ’
juncture;

5. The shear resultant Moo is
carried by the shell entirely; the
rings do not carry shear loads;

6. The rings have torsional
stiffness. —
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A system of homogeneous stability
equations is derived by equating the
first variation of the total system
potential energy to zero:

§u = 0 (1)

In terms of the force resultants, this
can be written:
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where, for a single ring located at
x = L/2R, the force resultants can be
specialized to the following in terms
of non-dimensional displacements and
Dirac-§ functions (these locate the
ring):
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where ( )RING indicates that the

quantities within parentheses must be
evaluated at the ring itself.
Substitution of Egs. (3) into Eq. (2)
eliminates the force resultant terms
but not the prebuckling membrane force
resultants Nxo' NOO' and NxOO’ These

latter terms must be specified a priori
by the analyst to represent the
particular loading state of interest.
Usually these terms are just set to
constants (or zero) in problems of
symmetric loading. For bending they
may be written:

N =0 (4)

80 =~ Nyeo

Nxo = -~ N cos 0

Singer and Haftka considered only
symmetry-type loadings and assumed the
following displacement function forms:
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which satisfy the simple support
boundary conditions,

v =w =0
x =0, L/R
Nx = Mx =0

Substitution of Eqs. (5) into the
displacement component form of Egq. (2)
produces a set of order 2m of
homogeneous algebraic equations in the
unknown coefficients Am, By, and Cm.

Buckling loads are calculated from the
vanishing of the determinant of the
coefficients of Am, B and Cm.

At present, it is uncertain that
the assumed displacement functions
(Egs. (5)) are applicable to the
bending problem. Fliigge [28] has
conducted a similar analysis of an
unstiffened cylinder subjected to
combined axial compression and bending.
He shows that the resultant
Nxo = - Ncos 6 leads to a

fundamentally different kind of
stability equation in the displacement
components than that derived by Singer
and Haftka; i.e., the differential
equations have variable, rather than
constant, coefficients. To handle
these variable coefficients (in 68),
Fliigge uses infinite series
expressions in 8 for the displacements.
Fligge also examined anti-symmetric as
well as symmetric circumferential
modes (by interchanging sin n6 and

cos nd terms in his series) in order to
be sure the minimum critical bending
load was found. A study of this
technique is now underway with regard
to the present analysis method.

LINEAR SMEARED STIFFENER THEORY

A traditional method in the
analysis of buckling of stiffened
shells is to ignore the local
features and perturbing effects of the
stiffeners by smoothing or averaging
them in some manner over the shell
surface, This yields a continuous but
orthotropic shell. Smearing is
satisfactory for very clgsely
stiffened shells that will likely
buckle by general instability. A
standard methodology, adopted by NASA
for shell design guidelines, has been
developed by Jones [29]. This method,
originally derived only for axial
compression of layered composite shells
with eccentric stiffeners, can be
modified for bend-buckling according to
recommended procedures given in [26].
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Accounting for differences that may
exist between bending and axial
compression buckling loads, [26]
recommends that for bend-buckling, the
shell should be designed so that the
maximum axial force resultant in the
outer fibers Nx should not exceed a

certain fraction of "x calculated for
axial compression. That is,
(6)

3
(ux)bending ST Ndaxial compression

where the factor % is based on a "lower

bound* estimate derived from rather
limited test data. Jones's expression
for the axial compression buckling load
is:

(“x)axial compression

(7)
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where (i, =1, 2, 3), (k,1 =1, 2) and
|| signifies the determinant. The
terms in the determinants are given by:
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where E = shell elastic modulus
v = shell Poisson ratio
R,L = shell radius and length
m,n = number of axial half-
waves and number of
circumferential waves.

For rings, the elastic coefficients
become:

ring spacing

ring elastic modulus
ring shear modulus
ring cross sectional area

ring moment of inertia
about its centroid

ring torsional constant

ring centroid offset
distance from shell middle
surface (positive for
external rings)

Xy

Xy

Et
2{1+)

Et
12(1-v°)

(9)

Egs. (9) clearly show the various
groupings of ring cross section
properties which enter the basic
buckling equation (eq. (7)) but the
ring spacing 4 in their denominators
shows that these "discrete" quantities
are actually smeared over the panels
between rings.

The integers m and n can be
independently chosen so that a
methodical search of all (m,n)
combinations over reasonable ranges of
m and n must be conducted to ensure
a minimum buckling load is found.
task can easily be programmed for a

computer. The term "%" in Egq. (6) is

a "knockdown" factor typically applied
in shell design work and is derived
based on experimental work. It serves
to ensure that a conservative design
results.

This

NUMERICAL ANALYSIS METHODS

Since the mid-1950's when computers
had been developed far enough to carry
out routine numerical solution
algorithms, approximate numerical
methods have come to dominate the
shell buckling analysis field. 1In the
last 15 years or so, computer programs
have been written with sufficient
generality to be applied to three
dimensional smeared or discretely
stiffened shell problems. Current
examples are STAGS [30] and BOSOR 5 \
[21) which are both primarily designed
for shell work, although STAGS, by
design, is more general in scope in
being able to handle three dimensional
branched shells. BOSOR 5, the most

recent code in the BOSOR series, is
specialized to axisymmetric shells
and can be used for very detailed
studies of local shell non-linear
response and shell-stiffener




interactions. An investigation of this
kind has been conducted by the code
author [21]. A recent STAGS version, .
named USA-STAGS [31], is equipped to
handle fluid-structure interaction
problems for submerged shells subjected
to high and low frequency loads. An
example of the use of this code for
explosion bubble-induced whipping
analysis is discussed in [1].

Given the obvious usefulness of a
code such as STAGS in determining the
bend-buckling behavior of ring-
stiffened cylinders, apparently no such
studies have yet been done. 1In the
case of unstiffened cylinders, however,
a very thorough investigation has been
published by Stephens, et al[ll].
There, STAGS was used to compute
buckling loads for long uniform
cylinders subjected to pure bending and
combined bending and pressure loads.
The "Brazier" flattening (or
ovalization) and wrinkling modes of
failure were considered for R/t = 100
and over the length/radius range
6 < L/R < 20. Since STAGS requires
some means to permit bifurcation from
the non-linear prebuckling state, a
small-amplitude wavy imperfection in
both x and 6~directions had to be
introduced at the outset. This is a
reasonable approximation since real
shells invariably have such
imperfections in a more-or-less random
pattern. In general, the results
confirmed the work of earlijier
investigators [2], [62é £9] and new
results for combined nding and
internal or external were presented.

It was found also that lower L/R cases
(L/R = 10, 6) had large deviations

(due to wrinkling behavior) from
recommended design values. These
findings are relevant to a ring-
stiffened cylinder which can be roughly
modeled as a series of short cylinders.

SAMPLE RESULT

An interesting application of the
Dirac~§ method described in Section 2.1
shows dramatically, at least for axial
compression, that ring discreteness
properties can lead to local buckling
at loads much lower than those
predicted by smearing techniques. It
should be noted that at the local shell
level, compression loading will yield a
stress state that resembles the
compression side of a shell in pure

bending. Reddy [13] - [15] has
exploited this fact in his analyses of
bend-buckling. Table 1 shows

comparisons of "smeared" and discrete
buckling loads calculated by Singer and
Haftka for R/t = 100 and for just a
single ring placed at the shell center.
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Specific ring properites are indicated
there also and represent a fairly
strong ring, somewhat like a “deep
frame” often used in pressure hull
design. The sharp differences in
smeared and discrete buckling loads
indicate that serious consideration
should be given to local buckling e
effects and the sensitivity of the
applied load to them.

SUMMARY AND CONCLUSIONS

The problem of predicting the
gsensitivity of bend-buckling loads of
ring-stiffened cylinders to discrete-
ness properties at the local ring level
has been reviewed. It turns out that
this specialized problem in stiffened
shell buckling apparently has received
little attention. It appears reason-
able to say that this problem therefore
needs attention and that a careful
study of it will yield practical design
data as well as insights into the
modeling of buckling. Three approaches
to the analysis of bend-buckling have
been briefly summarized. Of the three,
the Dirac-§ (analytical) and the
numerical analysis (STAGS, BOSOR codes)
show the most promise for yielding
useful results. Work is now in progress
on the use of these methods for the
present problem.
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Table 1

Comparison of "Smeared" and Discrete ial Compression Buckling Loads
(after [24])

R/t L/R P* (Smeared) P* (Discrete)
100 0.5 1303 533.8
100 1.0 1288 229.9
100 2.0 1281 107.4
NOTES :

(1) Por single ring at shell center

(2) Dilcrétene-l properties:

A I e
2 22 2
—t- 0.5, ?- 5.0, — = 5,0

(3) P* (Smeared) = nondimensional critical "smeared" load (see [24])

(4) P* (Discrete) = nondimensional critical "discrete" load (see [24])
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DISCUSSION

Voice: When you do your “"Hondo™ calcu-

lation, since your target is double
layer stiffened, how do you come up with
an equivalent plate thickness to use?

Mr. Bannister: We based our previous

study with a deform. We used an
equivalent thickness also and as a
matter of fact with this kind of
velocity, 2500 feet per second, the
worst case is not really when you hit
the stringer and the web. The worst
case is when you hit in between the
stringer and the wedb, or the ribs, or
when you don't have any reinforcing in
the back. The reasoning for that is
that it gives a little bit. If you have
a break where it hits the middle it
gives a little bit, where as the other
way it just runs right through because
the thickness of the material and the
ribs really don't slow this particular
projectile down that much under 2500
feet per second. So for that study we
initially looked at the ship hull
itself. This 1is contrary to our usual
studies, vhere the worst case is when
you hit against a stringment.

Mr. Rubin (The Aerospace Corp.): Many

years ago I was involved with some work
for the Navy involving water entry loads
on topedoes slamming into the sea. I
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was involved with making the kinds of
loads calculations you talked about.
After acquiring some field data and
seeing some field failures we concluded
that the kinds of calculations that we
were making then, which relate to what
you are making now, bear very little
relationship to the real world in terms
of the kinds of accelerations that one
will experience on a penetrating body. -
We concluded that it was useless to make

those calculations and we went to an

empirical approach of actually measuring

the acceleration responses of the

penetrating bodies and then going from

there. What 18 the correlations between

actual experimental results and the

kinds of calculations you are making?

Mr. Bannister: Your point is very well

taken and I am sure many of the people
that did this study found the same
thing. For this particular type of
study I refer you to the PhD thesis done
by John Baldwin from the University of
Maryland, in which he correlated some
experimental work with the analysis and
arrived with some empirical equations.
There were some tests that were run by a
group from NSWC, Ed Rzepka's group, that
actually obtained some experimental data
and John Baldwin tried to correlate that
too.
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RESPONSE OF HYDROFOIL STRUT-FOIL SYSTEMS
AFTER IMPACT WITH "DEAD-HEAD" LOGS*
Howard S. Levine

Weidlinger Associates
Menlo Park, California

and

Andrew P. Misovec
Weidlinger Associates
Chesapeake, Virginia

Hydrofoils have recently experienced debris strikes from "dead-head"

or vertical floating logs. The present study represents an initial
step in the prediction of the response of strut-foil systems after

such impact, with the eventual application being the design of com-
posite strut-foil systems. In the early stages of the investigation
reported upon here, the response of steel foils and struts was studied.
A simplified technique to determine the log-foil interaction force is
first developed. This is then applied to a beam model of a generic
strut-foil system to predict its response. A more sophisticated finite
element model is then used to study the early-time strut-foil-log inter-
action. Basic phenu. enology is studied and recommendations for improving
the analytical techniques are made.

INTRODUCTION (3) Predict the initial interaction forces
on the foil during impact using a sophisticated

Hydrofoils such as the AGEH-1 Plainview 3D finite element code and verify the model de-’
and the PCH~-1 Mod 1 have recently experienced veloped in (1), 1if possible.
debris strikes from "dead-head" or vertical
floating logs [1]). These strikes on the forward (4) Identify the prevalent structural res-
foils induced torsional oscillations and serious ponse mechanisms and failure modes.
damage to the strut and steering mechanisms. In
addition, the strut also experienced large bend- (5) Recommend an experimental program to
ing loads as a result of rapid rotation follow- verify the analytical results and confirm any
ing actuator failure. unusual findings.

The present study represents an initfal The first four of these topics are address-
step in the prediction of the response of strut- ed in the following sections. In all cases, the
foil systems after such impacts with the eventu- assumptions made are outlined and areas where
al application being the design of composite the analytical techniques can be improved are
strut-foil systems. In the early stages of the recommended.
investigation reported upon here, the response
of steel foils and struts was studied with sev- DEVELOPMENT OF SIMPLIFIED MODEL TO PREDICT
eral objectives in mind. These included: IMPACT FORCES

(1) Development of a simple model to pre- Fig. 1 shows the configuration at the in-
dict the interaction forces on the foil during stant of impact. After impact, it is assumed
impact with the log. that the hull velocity is unchanged at v, and

the foil depth is unchanged at 2z . What hap-

(2) Using the results of (1) with current- pens next depends on the relative strength
ly available finite element codes to predict the properties of the log and the foil. There are
long-term response of a generic strut-foil sys- four possibilities:
tem.

(1) The foil is weaker than the log so
that the foil sustains damage while the log
moves as either a rigid or elastic body;

#*This work was supported by David W. Taylor

I;:vnl sm w“:::;::. S.:d.;:;:;m:n]’.l.;d P:f' (2) The log is weaker than the foil, in

M"'d ‘cr :: o act to Beach. CA ouglas which case the log receives damage while the foil
tronautics Co., Huntington Beach, CA. remains elastic in the neighborhood of impact;
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(3) The impact velocity is of low enough
speed so that both the log and the foil respond
elastically; or :

(4) The log and the foil are of roughly
equal strength so that both sustain damage dur-
ing impact.

Hull —— Ly

Strut
Surface
VA
T Foil =
A )
!

b = 10 in. o

h = 0.5 in. C— [

a = 24 in, Rectangular, — Xc

Z =5 ft. Cross Section | L08

L =20 ft. a a
Ver ™ 19 ft./sec. o ae o

Section a-a

Fig. 1 - Initial impact conditions and
assumed structural configuration

The response analysis for each of these
cases is quite different. Thus, it is important
to establish which of the four cases listed above
takes place. To proceed then, we must firast de-
cide whether the log and/or the foil will receive
damage in the impact area. We then must see 1if
the impact velocity is sufficient to cause dam-
age. Then we can get on with the analysis.

The relative strengths of the log and the
foil structure may be assessed by first determin-
ing an initial interaction stress 0j and then
applying that stress over the contact area to
get the equivalent interaction force. For pur-
poses of simplification, the log is assumed to
be uniform and of square cross section. The
foil is assumed to impact the log perpendicular
to a rectangular side, as shown in Fig. 1. The
foil structure is assumed to consist of a flat
leading edge plate with an upper and a lower
plate extending back, as shown in the figure.

The initial interaction stress may be esti~
mated from acoustic assumptions as:

o = 8%, 1)
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o, = pfcf(v° - io) 2)

io - v°/(1 + chL/"fcf) (3)
(peC.) (o, C.)

01 = _.f_f_L_L_ v (4)
ofc£+ OLCL o

PL 1s the density of the log, Cj is the trans-
verse speed of sound in the log, pf 1s the foil
density and Cf 1is the speed of sound in the
foil.

Table 1 lists the strengths (compressive
yield stresses) and acoustic impedances (pC)
of aluminum, boron-epoxy and graphite-epoxy. A
typical hardwood was selected for the log and
it appears that the log yields well in advance
of the foil. Although the yield strengths of
aluminum, boron-epoxy and graphite-epoxy may
vary substantially with composition, and there-
fore significantly alter the values shown in
Table 1, these materials are still substantially
stronger than wood. Thus, it is reasonable to
expect the wood to yield first when a single
foil plate impacts a log, as shown in Fig. 1.

The most substantial log listed in {2] is
Hickory Shagbark. The log is actually aniso-
tropic, with much greater strength in the longi-~
tudinal direction. A quick calculation reveals
that the maximum impact load is not large enough
to cause yielding in the longitudinal log fiber.
Thus, we may treat the log as a flexible elastic
beam until the foil causes enough damage to sub-
stantially reduce the log section modulus.

In order to determine an interaction force,
one would consider an interaction problem be-
tween the log and the foil. The simplest forc-
ing function that can be assumed is consistent
with assuming a rigid log and a one~dimensional
elastic-plastic response in the neighborhood of
the impact. To illustrate, we will consider the
problem in Fig. 2. The assumptions may be list-
ed as follows:

(1) The log is rigid and prismatic.

(2) The log has a rectangular cross
section.

(3) The foil velocity is constant at v,.

(4) The impact duration is small compared
to the highest structural period.

(5) The foil is loaded uniformly along the
surface in contact with the log.

(6) The interaction load along a surface
parallel to the velocity is equal to zero.

(7) The log rotation (6 in Fig. 2) is
small (TAN 6 = ©).

(8) The foil is assumed to be elastic for
Vo = x<v so that the interaction force is
given by

Fu—2 (v ~x%x) forv -v
v o o
cr

]
[}
3
¢
3
¢
t




TABLE 1

Initial Impact Characteristics

Foil
Material

Yield
Stress
(ksi)

Acoustic®
Impedance
(1b sec?/ft?)

.
=
xo }vo

- 26,8
OLCL 17000 1b sec®/ft

oy /P CpY,

vo To Cause Wood Yield
(0 wood = 2000 psi)
(fps)

Aluminum 35 109355
Boron-

Epoxy 112.7 131146
Graphite-

Epoxy 60 115800

.866

.886

.872

*For wood

2000 psi Transverse

o
W

= 10000 psi Along Grain

pC = 17000 1b sec?/ft®, C = 13000 fps

(9)
tic when vy - % 2 vep
force F 1is given by

The impact zone 1s assumed to be plas-
so that the interaction

when o £ x £ v,

()

v .

F=F
[5) cr

(10) v, > Vop *

(11) The centroid of the log is assumed to
move with a virtual water mass M, in addition
to the log mass ppLA (A 1is the log cross sec-
tional area, L 1is the log length and pp 1is
the log density).

If the "yield stress" ¢
can be approximated from

o <can be estimated, F,

. ™

where A; 1is the impact area.

The interaction stress O may be approximated
from the acoustic equations as

(8)

gm= OLC x

L

9)

o= occc(vo - x)

where p¢
sound speed and p; and C] are respective log

and C. are composite density and
density and sound speed. Thus, the first as-
sumption is relaxed in order to approximate the
velocity *c -y at which the composite or
log behavior changes from elastic to plastic or
vice versa. This occurs when o = ¢ Hence,

o *

oo(pccc + pLCL)

-— - 10)
(ocCc)(oLCL)

cr
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As Impact Continues
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Fig. 2 - Assumed impact configuration
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The equations of motion of the log are taken as

H'xc-F » M-pLLA+Hv-2pLLA 11)

18 = (L/2 - 2)F , I=2pL%/12 (12)
with the constraint condition

X= Xc + (L/2 - 2)6 (13)

X, X , Z and 9 are defined in Fig. 2 and
F is defined by equations (5) and (6).

The solutions may be written in non-dimensional’
form as follows:

In the plastic response region

oSVSVlv-T and f =1 ; (14)
in the elastic region
<y < - - = (T-
VySVIV, V=1V, - EXP(-(T-T))) =
v, +1 - EXP(-(T-T,)) (15)
f= m(—(r—rl)) H
where
% cot
V-—,f-F/FoandT-V--
cr cr
[1 L L2 - z)’u] ( Ft )
Mv
I cr
(16)

Yo ~ Ver ¢ _vo- cr
»
Ver 1 Co
and ) is the time at which
2oV "% " Ver

These solutions are displayed in Fig. 3
for impact velocities v, which are multiples
of v, . The interaction force f(T) which
is consistent with assumptions (1) through (11)
is also shown in Fig. 3.

The damage incurred to the log may be es-
timated by integrating the relative velocity,
thus

t) .
§of " (v -% at 17)

[} .

146

”~~

$ud

J
£
w44
| ]
= (%)
H 3
)
4 3)
g 2]
] 2
| v, =2)

2
-
o 3]
)
F)
-l
(43
Q
2 0
9 - —
o 0 1 2 3 4 5
3
F_ (%-Z)ZM
Time T = 1+ t
Mo, 1

€
41.0
[-7]
&~
[T - 4
8 & A \W
8w (vz.z)

]
FY)
oy
('3
g 0 . -
8 0 1 2 . 3 4 5

Fig. 3 - Interaction force and log
velocity as functions of time

Substituting from equation (14) and integrating,
results in

. (18)

The preceding formulation is sorely lack-
ing in experimental verification. Equations (8)
and (9) give very good predictions’ to the elas-
tic data reported in {3]) in which a stricken
plate of aluminum impacted both aluminum and
graphite-epoxy plates edge on. These experi-
ments were conducted at low impact velocities
so that the responses were entirely elastic and
essentially one-dimensional.

Solving the problem for the geometry shown
in Fig. 1 results in § = 22,36 in. for v, =
101 fps. Premature log damage of this sort
would likely result in reduced foil damage.
Hence, lower impact speeds could increase foil
damage. It is therefore reasonable to expect
to find a range of impact speed for which foil
damage is maximized.




Bquations (17) and (14) may be combined to
give the log damage as a function of time

- - 2
§=vt y C,t 19)

and equation (18) may be rewritten as

voz - 2005 + vcr2 (20)

1f we select a damage level Gc beyond
which the log ruptures and no longer loads the
foil (a rather presumptuous fracture criteriom),
equation (20) gives the foil impact velocity
correlating with that damage level

- " 2
Yoe Zcoéc + Ver (21)

ot Equation (14) gives the time at which the log

o breaks as

i v _-v

: t = 9c _cr (22)
¢ c

H o

or from equation (19)
'»: % Vo 2
: t. = T 1- 41 - 26cc°/v°
! (23)

[\
C
or tc'v—-.

-]

The impulse J and energy E can be ob-
tained with integrations of equations (15) and

(16) as
t F v
: 3Tt
;;. co
. fT Yo Ve (26)
: - Fo vo
co
: and
3.F°vo {1- ,1_26cco }
. 2
[ - co Vo
4
f - Fodc
‘ J= . for \A > Yoe (25)
"’ [}

P
E Fodc

The energy E 1s simply v°3 for our {1-
lustrative case of constant foil velocity v, .

Impulse and energy imparted to the foil
are plotted as functions of v, in Pigs. 4a and
4b for an assumed critical damage parameter of
§. = .5 ft. It can be seen that both of these
integrals achieve a maximum at v,. = 54.8 fps
and then decrease sharply with increasing impact
energy. Fig. 5 gives the force for 3 selected
impact velocities. The simple explanation is
that the rupturing log is much less efficient
than the intact log. Since it is ressonable to
expect the foil response to follow either the
energy or impulse curves (usually the energy),
one may expect to find a range of impact velo-
city for which the foil response is maximized.

This type of response velocity relationship
is not uncommon in impact phenomena and is fre-
quently observed in penetrations into plates by
artillery rounds. Beyond a critical velocity,
the round ruptures prematurely and loses its
penetrating capability. This trend in foil-log
collisions could be sought experimentally with a
series of small scale experiments.

In these calculations, no provision has
been made to identify a critical angle of rota-
tion beyond which the log slides off the foil
and further reduces the loading into the log.

The selection of & critical angle may de-
pend upon §; in that the log may become "im-
paled" on the foil and refuse to slide off.
Also, if the log 1is struck at its centroid, no
rotation is predicted by these linear equations.
The reasons listed above, coupled with the fact
that omitting the consideration of a critical
"slide-off angle", 6., is gensrally conservative
in that the foil load tends to be overestimated,
lead us to simply omit 6; in this initial
analysis.

There are some general remarks that should
be made at this juncture. We must recognisze
that although some of the general trends we have
identified in this preliminary study should per-
sist, we cannot afford to attach too much signi-~
ficance to the included numerical results. A
more detailed analysis would consider the log
to be elastic plastic and would incorporate more
sophisticated yield and fracture criteria.

These calculations indicste that in moderate im-
pact velocity regions the impact duration is on
the order of the highest structursl period.
Thus, F becomes an "interaction" function and
is somevhat more complicated. Log fracture and
yield criteria also grow in complication due to
the log response. High frequency water res-
ponses may affect the log motion.
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Fig. 4b - Impulse imparted to foil as
a function of impact velocity (rotation
constraint is omitted)

PREDICTION OF STRUCTURAL RESPONSE
OF GENERIC STRUT-FOIL SYSTEM WITH
PORCING FUNCTION BASED UPON SIMPLIFIED
THEORY

The forcing function developed in the pre-
vious section was applied to a beam model of the
hydrofoil strut system to determine if a simple
beam theory could adequately predict the struc-
tural response characteristics of the system as
observed in operational collisions (1].

The strut and foil were modeled with a
total of 46 beam elements using the DYCAST code
[4]. This is a dynamic, large deflection, elas-
to-plastic structural code. The beam elements
were assumed to have hollow cross sections with
the dimensions shown in Fig. 6. The beam ele-
ments are based upon Bernoulli-Euler beam theory
(i.e. normals perpendicular to the cross section
remain straight and normal) and torsional ef~
fects include only those due to St. Venant tor-
sion (cross sectional warping is not allowed).
Lateral displacements are represented by
cubic functions, while axial displacements and
the angle of twist are represented by linear in-
terpolation polynomials. A constant EI and
GJ were chosen for strut and foil. The values
chosen are typical of those used in hydrofoil
design [5,6]. Again, the material chosen was
steel with a yield strength of 80 ksi. The
forcing function shown in Fig. 7 was used to
load the foil over a 24-inch span centered 60
inches from the foil centerline. No attempt was
made to model the virtual mass of the water by
modifying the density of the submerged portion
of the strut-foil system. The top of the strut
was assumed to be fully restrained.

For this problem, an impact velocity of
54.8 fps was used, a critical velocity of
Ver = 19 fps and a peak force of 75,000 1lbs
was assumed. The latter value was obtained
from [1) and was experimentally obtained from
actual impact data. The duration of the load
at peak value, tj , becomes 56 milliseconds
for a 20-ft long, 2-ft square cross section log.
A picture of the angle of twist/unit length~
time histories is given in Fig. 8. These were
essentially identical at all points on the strut
because of the uniform GJ assumed. The inici-
al peak occurs at 40 milliseconds and the tor-
sional response has a period of 80 milliseconds.
This is a factor of three smaller than the 250

500

v =54.79 fps

Vo = 40 fp

100§
- A 101 fps

0 1) 20

t (msec)

Pig. 5 - Force on foil for 3 different
impact velocities (shaded area denotes
case for which log ruptures)
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simplified analysis used in strut-foil in strut obtained from DYCAST calcu-
structural response calculation using lation
DYCAST
millisecond period indicated in the experimental plastic range and three times the yield strain in o
data [1]. The inclusion of the virtual mass of shear. Again, it must be emphasized that cross :
the water would tend to increase the period but sectional warping is neglected in the theory.
K the effect of hydrodynamic side forces on the The maximum bending stresses that occur at the
",f response is difficult to assess. The strains strut root near peak torsional response between
«' obtained from the calculation may be derived by 30 and 40 milliseconds are t 18.5 ksi. These
multiplying the torsional curvatures by the have been limited by the plasticity yield cri-
distances to various points on the cross section teria and are due to log impact alone. At no
(rig. 8). This gives a peak strain due to tor- time does any point on the foil experience in-
sion alone of .0125. This is well into the elastic response. This could only occur locally
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and be predicted by an interaction analysis.
The reaults of the previous section indicate
local inelastic behavior will not occur. The
implications of this result are that, even
though the impact load does not cause local foil
damage, or even inelastic behavior, the "longer
term" strut torsional response is critical
enough to cause inelastic strut response and
eventual actuator failure when combined with
lateral hydrodynamic fluid loads caused by large
strut rotations. This is qualitatively what is
shown in experimental data, although a quanti-
tative comparison should not be made. These
comparisons should not be made: a) because of
uncertainty of the meaning of some measurements
in the experimental data; b) the simplicity of
the structural model which was developed to il-
lustrate phenomenology and not detailed quanti-
tative response; c) the neglect of certain ef-
fects such as the water mass and side forces;
and finally d) lack of knowledge of the struc-
ture and size of the impacted log, the depth of
impact, and other such pertinent data required
for a quantitative prediction.

PREDICTION OF INITIAL IMPACT FORCES IN THE FOIL
USING A SOPHISTICATED FINITE ELEMENT CODE,
TRANAL

The prediction of the response of a strut-
foil system to impact loads is a complicated
problem involving the disciplines of impact
dynamics, elastic-plastic and geometric nonlin-
ear behavior, possible fracture, fluid-structure
interaction and structural mechanics. In addi-
tion, the possibility of fluid cavitation and
hydroelastic instability exists. The latter two
phenomena were not considered in the current
study.

For purposes of studying the initial inter-
action forces on a foil subject to impact with a
dead-head log, certain theoretical and geometri-
cal assumptions were made. In some cases, these
were necessitated by current limitations of the
computer code, TRANAL [7], that was used for
this part of the analysis.

TRANAL is a finite element code for the
nonlinear transient analysis of three-dimension-
al problems. It employs a central difference
time integration technique with subcycling capa-
bility. This allows different time steps to be
used in different zones based upon the Courant
stability criterion for each zone. It includes
material nonlinearities and a version also has
large deformation capability. The small strain
version was used for the present work. For the
purposes of the initial study, the following
problem was formulated.

A golid rectangular strut and foil were
chosen for the analysis. The dimensions were
chogen to be within the range of EI and GJ
for an actual strut-foil system [5,6]. Table 2
defines the actual values used in the calcula-
tion. The geometry was deliberately kept simple
to reduce modeling time and becausc modeling the
typical hollow sections and thicknesses employed

in real structures would have imposed severe
restrictions on the time-~step size (and hence
cost) required in the analysis. A 20-foot long
square log of 2-foot width was impacted five
feet below the water surface and 60 inches from
the foil centerline (see Figs. 9, 10). All
points on the strut and foil were given an ini-
tial velocity of 60 knots (30.9 m/sec). All
points at the top of the strut were maintained
at a horizontal velocity of 60 knots to simulate
the ship speed.

A picture of the grid used is given in
Figs. 9 and 10, The model consists of 24, 22
and 22 elements in the X , Y and Z direc-
tions, respectively. This is a total of 11,616
elements, minus some void elements, and repre-
sents over 30,000 degrees of freedom. All ele-
ments used were eight-node isoparametric hexahedra
elements using one-point integration. The steel
was modeled as an elastic, ideally plastic mate-
rial with a yield stress of 80 ksi. The wood
properties were those of Hickory Shagbark [2].
The yield stress of 2000 psi employed in the
Von Mises yield surface was that perpendicular
to the fibers [2]. The log density was assumed
to be equal to that of the water. The water was
modeled as an elastic material with a negligible
shear modulus and a tenaion cutoff of 0.0 pai
based upon the mean normal pressure. Table 2
contains a complete description of the proper-
ties used in the analysis. Because of the vast
differences in wave speeds and element sizes in
different portions of the grid, the subcycling
capability of TRANAL was used. A major time
step of .23 milliseconds required subcycling
ratios of up to 40 for stability purposes in the
steel elements versus the larger water elements.
The calculation was run for 154 major time steps
out to 35.4 milliseconds.

To simulate the impact of the steel with
the log, a gap element was used for the four log
elements adjacent to the foil at their contact
region (see Figs. 9,10). This gap element al-
lows compression stresses normal to the surface
to develop in the contact region but no tensile
stresses are allowed. An initial gap of .58
inches was assumed. This closed within .92 msec
(see Fig. 11) at the 60-knot initial speed.

One problem in the analysis is that the
forces of the fluid on the strut-foil system are
included in the analysis, and it is difficult
to isolate these from the stresses due to impact
of the foil with the log. This would require
incorporation of equilibrium "in-flight" forces
and velocities in the free-field region which is
beyond current capabilities. Transmittingbound-
aries (Lysmer-type [8]) were used on all sub-
surface boundaries to minimize reflections and
simulate a fluid halfspace.

In the discussion and related figures that
follow, all compressive normal stresses and
strains are positive and tensile stresses and
strains are negative. Shearing stresses and
strains are the negative of those in the stan-
dard elasticity conventions. Shearing strains




4.06"

TABLE 2
Geomstry and Material Properties Used in TRANAL Strut-Foil Impact Problem
STRUT# FOIL® 10G [5] WATERW®
Material Steel Steel Hickory Shagbark Water
K(ksi)* 24170. 24170. 747. 300.
G(ks1)* 11150. 11150. 1007. .3
o, (kst)* 80. 80. 2.0 N.A.
p(kip-msec?/1in*) .7322 .7322 .0935 .0935
»
I, (10" 164. (1) 219. (1) - -
. —
10 (18% 37400. (1) 20700. (1,) -
J(torsional rigidity)-in* 658. 876. -— -

#Steel values correspond to E = 29x10° psi and Poisson's Ratio = 0.3.

**Tension cutoff value of J

+

K = Bulk modulus
G = Shear modulus
9, S Uniaxial yield stress

= 0.0 used, although a value J1 = 3p = 3(P +pgh) would be more

realistic, with Po = atmospheric pressure. Probable effect on calculatgon is negligible.
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Fig. 9 - Discretization of strut-foil
system for log impact (elevation view)
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Fig. 10 - Discretization of strut-foil
system for log impact (plan view)




are tensor components. To obtain engineering
shearing strains, they must be multiplied by
two. Velocities are nodal quantities, while
stresses and strains are element-centered.

Fig. 11 shows the stresses In the log after
impact in the GAP elements immediately adjacent
to the foil, We see they are constant after an
inicial spike and equal to 4.4 ksi at both the
top and tottom elements adjacent to the foil.
This is higher than the 2 ksi yield stress of
the wood because Ox and 0z stresses present
have allowed the stress point to move on the
failure surface. This also has significance be-
cauge the actual yield atrength of the material
in longitudinal fibers is 10 ksi. Hence, 1. is
possible even larger interface stresses could
develop if an anisotropic yield criterion, such
as Hill's or Tsai-Wu's [9], were used. This al-
so has relevance for the work in the first sec-
tion where a simplified interaction force
representation was developed.

The next figure (Fig. 12) shows the strains
through the width of the log in the top elements
at the foil level. The strains in elements ad-
jacent to the foil reach almost 200 percent and
are really meaningless because the theory is not
valid for such large strains. They do say, how-
ever, that the log will crush at least twelve

inches in the front and 4 inches at the rear
during the time span of the calculation. There
is a region between twelve and eighteen inches
that has "relatively small" strain of almost
three percent. Although the calculation was
terminated after 35.4 msec, it appears that the
log velocities have peaked below the 1215 inches
per second velocity of the hydrofoil. Fig. 13
shows horizontal velocities of the log at points
through the depth. A comparison of the veloci-
ties at the top and bottom shows some rigid body
rotation has begun. However, the velocities in
between indicate "rupture and crushing" and pos-
sible log failure i{s likely at this impact
speed. If the log ruptures, the load will be
cut off reducing further strut/foil damage.

Let us now consider the response of the
foil over the initial 35 msec time span. The
interaction stress (Oyy) in the strut are only
about 7500 psi (see Fig. 14). (Remember all
stresses are cell-centered.) The corresponding
radial strains are small too and only reach 0.4
millistrain, which is well below the elastic
limit. The largest stresses in the foil are the
Ozz stresses, which are the bending stresses
(see Fig., 15). These are shown at the impact
location. These stresses oscillate with a peri-
od of about 11.5 msec (90 Hz) and reach 30 ksi,
well below the steel yield stress. The only

[’
1.50 Xt
A
8
1.00 4
A [-—0'
.50 4 P
-~ -
e
L.}
~ ]
= [’
— ia
> -50 8
>
-4
n
~1.00 4
[ ]
-1.50 4 v T Y +— v T
. n‘l. 0 005 .010 015 020 028 030 038
:":': Time (sec)
At
n?ln..
iy
3
. Fig. 11 - Interaction normal stresses in log (OYY) .

152




2.10

L7854

1.40 4

Epsilon-YY
by
[

1800.

/./ -—
" -
- - - p g
i H
- [ D
003 010 018 020 025 030 035
Time (sec)

Fig. 12 - Normal strain in log (e“)

1400.4

Y-Vel (IPS)

cesarsnens €

Y
010

Fig.

AJ .3 L]
020 025 030

Time (sec)

—_-
015 035 .040

13 - Horizontal velocity of log (VY)

WO

-L--u 44
bedbdd HitH D
11|
1L
-+ 444
444 44444
LU LLLLL

AB



[
3.00
—
———e
2.00 4
‘ r-'
<
e
n
§ 0.
>
> A
o -1.004 1
- 2.00 4 : B
-3c°° T T L LE LA v L]
0 008 .010 015 020 025 030 035 .040
Time (sec)
Fig. 14 - Interaction stress in foil (OY)
3.00
:!
2004 N
]
]
] 4 Yy
~ | [
-
e 1004 )
z ;
Iy \
- V'
€ o
R“ A 8]
2 1 4"'
» -1.00 1 ARy
-2.00 .4
-3.00 Y T T T Y T ™
0 003 010 015 020 025 030 038 .040

Time (sec)

Fig. 15 - Normal stress in foil (ozz)

154




1800.
[—01 r—v
A
, 7T - ~
; \"‘-~/ \_/’ ‘\\‘--,’.-~\~~ s
e
3 7 s ©
3 t
> [
200. 1
E
A
-200. ———
o T c
-—-
— e B
=600. T T ~T" T T T T
0 005 010 018 020 025 030 035 .040
Time (sec)
Fig. 16 - Horizontal velocity at points along foil (VY)
other relatively large stresses in the foil are percent, well into the plastic range. The
torsional stresses which reach approximately other strains €yy and €2z are smaller and
10 kel and are starting to build up at about reach 0.6 to 0.9 percent and are still increas-
23 msec. These are a result of the strut bend- ing. Torsional strains reach 0.4 percent at
ing, inducing torsional oscillations in the this location (Fig. 18) and .14 percent at mid-
foil. Their period is estimated at 50 msec, depth near top and bottom of the strut.
based upon a quarter of a cycle between initia-
_ tion and end of the oscillation. The magni- In sumary, then, the following findings
tudes of all these stresses up to this point can be reported for the first 35 msec of impact
indicate no inelastic response in the foil. of a generic steel strut-foil system with a
' dead-head log at 60 knots.
Evidence of the rotation of the foil about
s vertical axis (X-axis) is indicated inFig. 16. oThe interaction stress of 4.4 ksi is
These represent Y velocities at the bottom of higher than the 2 ksi yield stress
the foil at various locations along the length because of the actual triaxial stress
of the foil. The increase in velocity above state in the log. If a different fail-
1215 inches/second due to rotation on the side ure criterion is used, this could be
opposite impact and the decrease in velocity on expected to change.
the impact side are obvious.
oFor a 60-knot impact, the log will
Vertical stresses at the top of the strut probably rupture, based upon strain
are shown in Fig. 17. Inelastic response oc- data in Fig. 12.
curs here because of the bending due to the
water forces and impact with the log. The aft oThe foil remains elastic during the .
stress point shows bending stresses reaching time of impact, despite bending -
90 ksi compression, while the stress point for- stresses of 30 ksi and impact stresses )
ward of the centerline illustrates the bending of 7 ksi (oyy).
with over 80 ksi in tension. The torsional .
shearing stresses at these locations show no eTorsional stresses are generated in g
definitive evidence yet of the buildup of the the foil as a result of beam-like :
torsional mode of oscillation, although they do bending of the strut initiated by
reach almost 20 kei at 35 msec. impact.
Vertical dending strains in the strut in the eSome inelastic response at the top 1
aftmost position at the top reach over 1.5 of the strut occurs as a result of :
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bending stresses due to log impact and
forces of the water on the foil.

oTorsional stresses up to 20 ksi are gen-
erated in the strut during the initial
35 msec, but the slow torsional oscil-
lation of the strut is not fully develop-
ed.

POSSIBLE ANALYTIC IMPROVEMENTS

Baged upon results discussed in the pre-
vious sections, the following suggestions for
improved capability in impact prediction tech-
niques of strut-foil systems with "dead-head"
logs are presgented:

(1) Beam elements can be developed to bet-
ter represent elasto-plastic torsion of non-
circular sections through the inclusion of a
warping function. In addition, the beam ele-
ment should be capable of simulating arbitrary
composite layups and anisotropic failure crite-
ria. This capability may be sufficient in many
cases to predict the dynamic response of strut-
foil systems to impact loads. Only comparison
with test data would verify this.

(2) It is more likely an anisotropic com—
posite plate (shell) element with bending,
atretching and transverse shear effects will
need to be developed because of the platelike
characteristics and dimensions of struts and
foils. A simplified element based upon an "ef-
fective modulus” theory should prove adequate to
predict the structural response (as opposed to
wave propagation effects) of the strut and foil.

(3) The simplified interaction force func-
tion developed in the first section can dbe im-
proved and extended to composite foil impacts
with "dead-head" logs.

(4) The full 3D interaction force pre-
diction capability can be improved by incorpo-
rating large deformation effects and anisotropic
material properties and failure criteria in the
work. The expense of the calculation can be re-
duced by using approximations similar to the DAA
[10), f.e. pcv dampers and virtual mass repre-
sentation of the water, perhaps directly at-
tached to the structure and log or the log only.
The adequacy of this would have to be verified
against experimental data generated in anexperi-
mental program.

REFERENCES

[1] D. Wilson, W. Buckley, T. Nomura and
J. Snyder, "Patrol Hydrofoil, Guided Mis-
sile (PHN-1), Structural Redesign Recommen-
dations,” NAVSEC Report 6166-75-3, Mar. 10,
1975.

[2] T. Bannister and L.S. Marks, Structural
Randbook for Mechanical Engineers, 7th ed.,
pPp. 6-150 to 6-153. McGraw Hill, New York,
1978.

187

(3]

[4]

(sl

(6]

{7]

(8]

(9]

(10]

R.W. Mortimer, P.C. Chou and J. Carleone,
"Behavior of Laminated Composite Plates
Subjected to Impact,” Poreign Object Impact
Damage to Composites, ASTM, STP 568, ASTM,
pp. 173-182, 1975.

B, Armen, H. Levine, A. Pifko and A. Levy,
"Nonlinear Analysis of Structures," NASA
CR-2351, Mar. 1974.

L.B. Greszczuk and A.V. Hawley, "Applica-
tion of Advanced Composites to Patrol Craft
Hydrofoils," Final Report, Naval Ship Sys-
tems Command, Contract N00024-72-C-5536,
McDonnell Douglas Astronautics Co., Hunt-
ington Beach, CA, Apr. 1973.

L.B. Greszczuk and A.V. Hawley, "Applica-
tion of Advanced Composites to Rydrofoil
Strut,”" Final Report, Naval Ship Systems
Command, Contract N0QQ24-72-C-5536, McDon-
nell Douglas Astronautics Co., Huntington
Beach, CA, Dec. 1973.

J.L. Baylor, J.P. Wright and C.F. Chung,
“TRANAL User's Guide, Part I (Small Strain,
Small Displacement Version), Weidlinger
Asgsociates, Final Report, Contract DNAOQO1l-
76-C-0125, DNA 4960F, Mar. 1979.

3

J. Lysmer and R.L, Kuhlemeyer, "Finite
Dynamic Model for Infinite Media,”" J. Eng.
Mech. Div., Proc. ASCE, 95, No. EM4, Aug.
1969.

S.W. Tsal and E.M. Wu, "A General Theory of
Strength for Anisotropic Materials," J.
Comp. Mtls., 5, pp. 58-80, 1971.

T.L. ‘Geers, "Residual Potential and Ap- I
proximate Methods for Three-Dimensional &
Fluid-Structure Interaction Problems," -
J. Acoust. Soc. Am., 49(5), Part 2, p. 1505, &
1971.

LIST OF SYMBOLS

speed of sound in material
constant defined in Eq. 16
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initial velocity of foil

x_ initial velocity of log

€ normal strains

tensor components of shear strains

(eij = ;fyij '1*1)
o uniaxial yield stress

)

Uxx’oyy’czz normal stresses
g es
xy’oyz’ozx shear stress

v Poisson's ratio

p mass density

DISCUSSION

Mr. Skop (Naval Research Laboratory):
In one of your initial slides, when you
simplified your analysis, the first
assumption was that the log was acting
as a rigid body and then you said it
went plastic.

Mr. Misovec: That's right. The
strength of the beam, with respect to
the longitudual fibers is 10,000 psi so
it has a much larger bending rigidity
than the strength perpendicular to the
fibers which 1s only 2,000 psi. So in
order to get an interaction function for
this particular case we used a simpli-
fied acoustic approximation, a one
dimensional wave approximation, and we
found what the interaction force might
be for a simplified one dimensional
approximation. Then to get the rotation
of the beam itself we assumed that it
acted as a rigid body once we knew the
force. That was one of the approxima-
tions.
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P

The approach used in determining the transient response of a large
shipboard-mounted radar antenna to shock loading resulting from an underwater
explosion is described. The dynamic behavior of the antenna configuration,
represented by a finite element model of moderate complexity, was determined
through direct time integration, using as the "foreing" function the anticipated
motion of the ship platform on which the antenna was mounted. The location in
the antenna where the peak stresses occurred was determined by inspection of
the stress results from this transient response analysis, and a refined finite
element model of this region was used to compute more accurate stresses,

14
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INTRODUCTION

A primary concern of structural engineers is to
ascertain that, for various loading conditions, stress
levels throughout the structure being considered do
o) not exceed the strength capabilities of the materials
being used. This task, which can be difficult under
any circumstances, usually becomes more formidable
when the loading conditions are dynamic rather than
static. In the static case, any given loading condition
is independent of time, and only one solution is
. required. In the dynamic case, however, one must
. solve the differential equations of motion by some
B appropriate method or methods. This is generally
: much more difficult and more expensive to do.

~ .

" m m m

g For complex structural configurations, the finite
o element method has proved to be a convenient and

g powerful tool for performing these static and
dynamic analyses; and there are a number of
commercially-available and independently-developed
programs and program systems for treating such
problems, especially for those that can be dealt with
in the linear elastic domain. For transient response
analyses, there is a choice to be made between modal
superposition methods and direct time-integration
methods, with different consequences and

‘ complications, depending on which path is chosen. In
- either case, the solution process involves efforts to
" obtain a finite number of solutions. With the modal
iy superposition approach, the number of modes that
must be used to characterize the structure's dynamic

behavior properly can be difficuit to determine,
especially for shock losdings. For complex
structures, the computational expense for obtaining
v : all of the modes that might be required could also be
. .o

! * 9

quite significant., The direct time integration
approach is attractive because it is potentially more
accurate, does not require the analyst to extract and
select candidates from the set of modal solutions,
and because it can be significantly less expensive to
use. With the direct time integration approach, one
of the basic choices that must be made is between
the set of explicit versus the set of implieit
integration methods. Explicit methods, requiring the
solution of a set of uncoupled algebraic equations,
are attractive because of their simplicity and lower —
cost for obtaining the solution for any single time =
step. These methods, however, usually do require the "
use of very small timestep sizes (due to stability
considerations). The primary attraction of the most X
widely used implicit methods, requiring the solution "
of a set of coupled algebraic equations, is the fact
that significantly larger timestep sizes are possible,
with far fewer solutions being required in order to
integrate over a given time span, e

The primary purpose of the radar antenna
analysis described herein was to determine the
transient response of the configuration to a given
underwater shock environment, focusing special
attention on one of the highest-stressed regions, in
order to obtain more accurate stress results there.
The basic approach used in this analysis was to create
a finite element model with which the transient
response behavior of the antenna could be determined
with reasonable accuracy., Those results were then
used, in connection with a more refined finite
element model representing the region where the
highest stresses were obtained, to determine the
stresses there with more accuracy than was possible
with the original model.




Figure 1. Radar Antenna

A BRIEF DESCRIPTION OF THE RADAR
ANTENNA CONFIGURATION

The radar antenna shown in Figures 1 and 2
consists of several major structural components: a
base, a turntable, two arms, an antenna support, and
an antenna reflector. The lower surface of the base
structure is rigidly tied to the deck of the ship (or,
for shoek survival integrity tests, to the floating
shock platform). The turntable is connected to the
base through a cross-roller bearing that permits
rotation about a vertical (z) "azimutheal" axis. The
outer race of this bearing is connected to the base,
while the inner race is connected to the turntable,
An azimuth motor and gear-drive component is used
to rotate the turntable on command in a preseribed
motion to attain a desired azimuthal orientation, and
it also serves to maintain a fixed position while the
ship maneuvers,

The two arms are rigidly connected to the
turntable, as is the antenna reflector to the antenna
support structure. The support structure is
connected to the arms via bearings that permit
rotation about an "elevation” axis; and the elevation
motor and gear-drive there serve functions that are
similar to those of the azimuthal counterparts.
Various other pieces of equipment, including wiring
cables and counterweights, are also connected to the
radar antenna.

APPROACH TO THE PROBLEM

For performing detailed stress analyses from
which accurate and useful engineering information
can be obtained, finite element models that include
all significant structural elements and features, with
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cutouts, stress-concentration effects and other
niceties, are generally necessary. Dynamic analyses,
on the other hand, are usually less sensitive to the
degree of structural detail, and much useful
information can usually be obtained from "dynamic"
models that are less complex than their
static-analysis counterparts. The construction of a
detailed model that is suitable for both statie and
dynamic analyses can be quite expensive, but not
necessarily prohibitively so. The execution of
transient response analyses with that kind of model,
however, might very well be prohibitively expensive.

In order to perform the required stress analysis
for this large and complex antenna structure, which
is subjected to shock loads, the following approach
was selected:

First, the finite element model for the dynamic
analysis, herein called the "dynamie" model, was
constructed. This model is sufficiently detailed to
represent the dynamic characteristies of the
configuration accurately, but the level of detail is
not sufficient for the performance of refined stress
analyses,

A transient response analysis was then performed
using this "dynamic"” model, subjected to the
appropriate initial conditions and loading history.
Structural damping effects were not considered in
this analysis, primarily because of the lack of
available information about how it should be
characterized. The results obtained from this
analysis indicate the regions (spatial locations) and
times (temporal locations) where the stresses are
highest.
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Next, the finite element model for the
highest-stressed region (the turntable, in this case),
was refined to include the greater detail that is
appropriate for the accurate stress analysis that
was desired.

This "static" model was then subjected to
displacement boundary constraints and to interior
forces (static equivalents to the inertia forces)
that were obtained from the results of the dynamic
analysis at the selected time, t. Displacements
along the boundary at "old" node points (which are
common to.the original and to the refined model)
can be extracted directly from the results obtained
in the analysis with the original "dynamic" model.
For "new" boundary nodes, (which did not exist in
the original model), displacements can be obtained
through interpolations of order compatible with
those used in the element shape function
definitions. The interior forces can be obtained via
linear interpolations of the accelerations from the
"dynamie" model nodes to the "static" model nodes,
followed by multiplication by the "static" model
nodal masses.

Stress analyses with this "static" model yield
refined stress distributions (for the selected instant
of time) that are compatible with the degree of
refinement of the model. It should be mentioned
here that the application of displacement boundary
constraints yields boundaries that are somewhat
stiffer than would be the case when only forces are
applied there. This results in underestimation of the
stress levels near these boundaries. The stress levels
in the interior of the "static" model, however, should
be much more accurate than those obtained from the
"dynamic™ model.

Refined "static" models of other regions (which
might be portions of the major components, complete
components, or combinations thereof) may be
constructed and analyzed for several different times,
as required or judged necessary by the responsible
engineer,

DESCRIPTION OF THE COMPUTER CODES USED

The bulk of the analyses described herein was
performed with the two computer programs REXBAT
[1,2) and STINT (3,4}, and the graphic results were
generated with REXBAT and with the DEFORM
program [5). The REXBAT program, & linear elastic
in-house code the current version of which is called
REXBAT-7, is actually an ensemble of processors
(called program "stages") that are intimately related
through local and global data bases. These stages,
each of which is a stand-alone processor the internal
construction of which has been optimized for
efficiency in performing the task(s) at hand, work
together to define the finite element model; to
compute and assemble the element and other
contributions to the mass and stiffness supermatrices
[M] and {K) that characterize the configuration to be
analyzed; to impose boundary conditions and define
loading cases; to perform static and eigensolution
analyses; and to determine element forces and
stresses corresponding to the displaceinent results
that are obtained by the REXBAT program and/or by
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other programs (principally STINT, in these efforts).
Related analysis tasks, ineluding "debugging™ and
plotting of the finite element models and
substructuring operations, are performed by
appropriate members (stages) in the REXBAT
ensemble.

One of the many diagnostic and
model-verification tools employed in constructing the
individual and combined finite element models for
the antenna configuration with REXBAT-7 was its
"rigid body" checkout process, a sort of globel
"patch” test (6] in which the model is subjected to six
independent rigid body motions {r} and where the
forces {f} = (K] {r} corresponding to these motions
are computed using the assembled stiffness
supermatrix [K). For a correctly constructed model,
these forces must be zero; so the presence of any
sizeable values in {{} uncovers many (but not all)
kinds of modeling errors. The existence in the model
of non-rectangular or non-planar elements that (by
virtue of their stiffness matrix generation routines)
should be rectangular or planar, or the existence of
elements that are connected to node points that do
not have the correct number or types of degrees of
freedon, is easily discerned by examination of the
various rigid-body {f} vectors. On the other hand, it
is not possible to detect slightly incorrect material
properties and/or element thicknesses by this process;
and a variety of other model-verification checks
must also be made,

The preliminary static and modal solutions
obtained with the REXBAT program also served to
"verify" the individual and combined finite element
models by ensuring that (at least for appropriate sets
of uncomplicated static loading conditions) the
applied loads were being transmitted through the
models, without losses (which are sometimes caused
by otherwise-undetected groundings and other
modeling errors), via reasonable load paths, and that
the lowest-frequency vibratory responses (the
fundamental modes) were accurate,

The initial displacement field for { e transient
response analysis, corresponding to one g gravity
loading conditions, was also obtained via a static
analysis with the REXBAT program,

The transient response analysis was performed
with the out-of-core version of the STINT program,
which employs the REXBAT generated mass and
stiffness supermatrices for the "dynamic" model (as
discussed above) in its direct integration of the
equations of motion

(M) {a()} + [K) {x(1)} = {f(1)} (D)

(where {a(t)} is the vector of nodal accelerations) to
produce the desired displacement and velocity
histories, {x(t)} and {v(t)}, respectively. The STINT
program that was employed in these efforts is sn
implicit time-integration program, designed to treat
large problems, for which the supermatrices
describing the finite element model and required by
the integrator are too large and complex to fit within
the available core space on the computer system
being used. This version of STINT, which is
especially suitable for treating "stiff" systems of




equations that are often encountered with structural
dynamics problems, can use the trapezoidal rule or
the 3-step Park linear multistep method (3],
employing pseudo-force techniques to shift the
nonlinear contributions from [M] and [K] (and from
other sources) into the modified right-hand-side
vector {f), and using matrix-scaling techniques [3] to
avoid refactorizations with variable timestep

* computations. For this analysis, the trapezoidal rule

was used with a constant timestep size in order to
minimize the computational expenses and to simplify
the stress and graphic post-processing operations.

The DEFORM program was used to generate
"snapshot" plots of the "dynamic™ model of the
antenna configuration at various times during its
transient response (showing the deflections of the
complete antenna and showing the deformations,
which were obtained by removing the ship motions
from the entire displacement field) and to produce
motion pietures of the entire transient response
history.

CONSTRUCTION OF THE "DYNAMIC" MODEL

The "dynamic” model of the complete radar
antenna was assembled from the set of finite element
models constructed to represent the individual major
structural components: the base, the turntable, the
arms, the antenna support, and the antenna
reflector. In the construction of these individual
models, attempts were made to describe the actual
structural components that they represent as
faithfully as possiblie; but in order to keep the sizes
and complexities of these models within reasonable
bounds, and in order to keep the computational
expenses for solving the transient response problem
for the assembled antenna as low as possible, it was
necessary to omit some structural details judged to
be of minor importance in determining the overall
dynamie behavior of the configuration, Small
cutouts, bosses, stress concentration effects, and
various other details, therefore, were not ineluded in
these "dynamic” models.

These finite element models were constructed in
the usual way by definition of node points (which are
characterized by their initial spatial locations and
the sets of admissible displacements, called "degrees
of freedom", associated with them), and by
specification of the sets of finite elements which
have specified geometric and material property
attributes, that are connected to each other via these
node points. [n constructing these models, eccentric
stiffeners were represented by beams with "rigid
links*. For these elements, the beam end-point
centroids are attached to "slave" nodes, which in turn
are connected to the "primary" structural node points
via rigid links. The "slave" nodes, here, have no
degrees of freedom associated with them; the
primary nodes do. Closely-spaced ribs were modeled
with orthotropic quadrilateral plates utilizing a
"smearing” technique,

Before assembling the complete "dynamic"
model of the antenna configuration, the individual
major structural component models (see Fig. 3) were
checked, as described above, to ensure that no

Figure 3. Finite Element Models of Major
Structural Components

extraneous forces are introduced by rigid-body
motions and to validate their load-transfer
capabilities,

in the actual radar antenna, as noted above, the
turntable and its attached structural components can
rotate about the azimuthal axis, and the
antenna-support structure can rotate about the
elevation axis. In assembling the complete "dynamic"
model for this analysis, however, it was necessary to
choose a single fixed position with specific azimuthal
and elevation orientations. These orientations could,
of course, be varied, if necessary, in future analyses,

All of the bearings in the assembled "dynamie"
model were modeled in the following manner. Each
pair of nodes, one located on the outer race of the
bearing and the other on the inner race, is linked with
radial and normal springs representing the bearing
stiffnesses (spring constants) in these directions.
Additionally, one pair of nodes is linked with a
tangential spring representing the motor and
gear-drive inertia restraint against rotation. This
modeling technique is valid as long as the torques
produced by the dynamic forces do not exceed the
locked rotor torque of the motor and gear-drive
combination. [t should be noted that the radial
springs only approximate the true bearing behavior.
The actual behavior can only be accurately
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TABLE 1

VITAL STATISTICS FOR FINITE ELEMENT "DYNAMIC" MODELS
OF THE MAJOR STRUCTURAL RADAR ANTENNA COMPONENTS

MAJOR NODE BEAM TRIANGLE QUAD SOLID
COMPONENTS POINTS ELEMENTS ELEMENTS ELEMENTS ELEMENTS
REFLECTOR 37 0 12 36 0
SUPPORT 164 68 32 72 0
ARMS 195 32 20 200 16

| TURNTABLE 255 66 96 213 18
BASE 402 126 36 234 i8

represented by contact elements, which are not
available in the REXBAT program.

Non-structural equipment such as motors, gear
drives, cables, counterweights, ete., were
represented in the assembled "dynamic" model by

inclusion of concentrated mass points. These points

were located at the centers of gravity of the
equipment and were connected to adjacent structure
by a network of "rigid" bars that are only capable of
transmitting axial forces.

The complete assembled "dynamic” model has
1061 node points with 4152 degrees of freedom, and
includes 62 bars, 292 beams, 196 triangles, 755
quadrilaterals, 52 solid elements, 8 concentrated
mass points, and 26 stiffnesses representing bearing
springs. Table 1 displays some pertinent information
regarding the finite element "dynamic" models of the
individual major structural components. The
assembled "dynamic" model is shown in Figure 4, in
which some lines have been removed for clarity.

As with the individual component models, the
assembled "dynamic™ model of the antenna
configuration was checked to ensure that no
extraneous forees are introduced by rigid-body
motions, for load-transfer capabilities, and for
several of its fundamental vibration modes.

TRANSIENT RESPONSE ANALYSIS

During an underwater shock test, the shock wave
travels through the fluid medium and the ship (or
floating shock platform) to the antenna
configuration. The response of the ship (or the
floating shock platform) at the lower surface of the
base of the radar antenna was used as the forcing
function for the transient response analysis
performed here. The initial conditions for this
analysis were the displacement field that corresponds
to a one g gravitational force field (the
displacements of the antenna structure under its own
weight) and a nulled velocity vector.

The transient response analysis described here
was performed with an implicit time integration
scheme using the trapezoidal rule and a fixed time
step. The use of an implicit, rather than explicit,
integration method made it possible to employ a
relatively large time step, with the particular step
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size being chosen here to give a sufficiently large
number of steps in the lJowest fundamental response
modes. This step size choice was, of course, strongly
influenced by the conflicting requirements to
represent the higher-frequency responses as
accurately as possible, and to keep the computational
expenses reasonable.

The forces and stresses for each element in the
assembled "dynamic" model were computed using the
displacement fields for each time step during the
transient response analysis, with the appropriate
stages of the REXBAT program. The highest stressed
region was earmarked for further detailed study, as
described below. The radar antenna, in various

il
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Finite Element Model of
Complete Antenna

Figure 4.
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undeformed and deformed states, is shown in Figures
4 through 8. Figure 4 shows the undeformed
configuration at time t = 0; Figures 5 and 6 show the
undeformed configuration (dashed lines) and the
deformed configuration (solid lines) at two
representative instants of time. Figures 7 and 8 show
similar results, but here the "rigid-body" motions
(i.e., the displacements at the lower surface of the
base structure) have been removed in order to make
the deformations of the structure more apparent. In
all of these figures, the actual displacements, and
deformations, have been exaggerated in order to
illustrate the response results more clearly.

- w8 e

The displacement results for each time step of

the transient response analysis were employed, with a
slightly simplified version of the "dynamic" finite
element model, to make motion pictures of the
responding radar antenna configuration. These
movies, produced with the DEFORM program, proved
‘ most valuable in providing physical insight into and
T, confidence in the computed structural responses.
v Qualitative data about the largest deformations and
" the most rapid changes of deformations, difficult to

g extract from the large stacks of printed output
, obtained, were easily observed in the movies. It is
A 4 interesting to note, too, that for this analysis the
region of highest stress was not one in which these
motions were greatest.

Figure 6. Undeformed and Deformed
Configuration at tst,

. Figure 7. Undeformed and Deformed Con-
Figure 5. Undeformed and Deformed figuration at t=t, with Floating Barge
Configuration at t=t, Platform Motion Removed

164

BOODOSOSONIIDROGEE
‘!‘§ !“'l‘,-x?l‘?’ AL ’.
I IR !



. e e

Figure 8. Undeformed and Deformed Con-
figuration at t=t, with Floating Barge
Platform“Motion Removed

STRESS ANALYSIS OF A SELECTED REGION

Examination of the stress results obtained from
the transient response analysis of the complete
ndynamic” model indicated the spatial locations
where, and the times when, the stresses in the
complete model were highest. With accurate, useful
stress results as the ultimate goal of this analysis, a
refined finite element model containing the
highest-stressed region (which turned out to be within
the turntable structure, in this case) was
constructed. This model included many structural
details that had to be omitted in the "dynamic" model
of that component. In doing this, one naturally
wishes to ensure that the boundaries of this refined
model are far enough away from the peak stress
region that is of interest, since the stress levels at,
and very near, these boundaries are not free to vary
significantly from the levels obtained in the transient
response analysis for the original, "dynamic" model.

The boundaries for the turntable component are
located at the interfaces between it and the arms and
between it and the base structure. It is important to
be sure that the boundaries for the refined "static"
model contain at least all of the corresponding node
points in the counterpart "dynamic' model. It is most
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convenient if the spatial locations of the boundary

. nodes that are common to the two models coincide

exactly, 5o that the displacements from the transient
response analysis at those nodes can be imposed
directly on the boundary of the refined model as
displacement boundary constraints, without the need
to use a suitable (and possibly quite complex)
interpolation scheme to determine the desired
conditions from the information that is available.

The refined model constructed in this effort for
the turntable structure, shown in Figure 9, has 729
node points with 4104 degrees of freedom. It
includes 32 ber elements, 40 beams, 145 triangles and
720 quadrilateral plate elements. As usual, this
refined model was subjected to the above-described
"rigid-body" check and was examined for load
transmission capabilities by independent analyses
with the REXBAT program.

Figure 9. Refined Finite Element Model
of Antenna Turntable

Displacements obtained from the transient
response analysis for a selected time "t" were applied
as boundary constraint conditijons, and interior
forces, computed as described above, were applied as
"external” loadings. The linear elastic stress analysis
then performed, with REXBAT, produced the desired
refined stress distribution. The peak stress obtained
with the refined model was 7% higher than that
obtained in the turntable from the transient response
analysis.

CONCLUDING REMARKS

Details pertaining to the time history for base
excitation and the time increment used for the
integration scheme, and eoncerning the structural
responses (in particular the stress levels) obtained,
are given in (7). Analytical results obtained with
both the "dynamic™ and "static" models will be
compared with test results when they become
available.

-
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DISCUSSION

Mr. Dyrdahl (Boeing Co): Did this

analysis result in changing the hardware
at all? Was it a worthwhile thing to do
for that kind of equipment?

Mr. Meller: it resulted in some
improvement.

Yes,

Mr. Dyrdahl: A better understanding or
better hardware?

Mr. Meller: It resulted in a better
understanding of the structure to deter~-
mine the stress levels, but not particu-
larly that chart that I showed, &
similar analysis resulted in stress
levels which caused some modification to
the structure.

Mr. Dyrdahl: How much time did you have
to spend on this analysis?

Mr. Meller: I have done so many
together that 1 really can't tell you
exactly how much one single one would
take because we analyze a particular
loading condition.

Voice: Could it be done in a month?
Mr. Meller: It would take about between

a month and two months just to create
the dynamic model. But once you have
the finite element model then the
analysis itself shouldn't last longer
than a couple of weeks.

Mr. Urbanik (Forest Products Labora-
tory): Could you comment on the number
of slides it took to prepare or the
nuaber of computer drawn graphs that you
had to prepare for the animated mode
shape movie?

Mr. Meller: The second and fifth parts
of the movie contain somewhere around
650 slides and each slide corresponds to
one time indication point. The last
part, that was slowed down by a factor
of three, contains three times as many
slides but the additional points were
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obtained by linear interpolations other
than by direct timing conditions. The
time step is of the order of 62 micro-
seconds.

Mr. Repperger (Wright-Patterson AFB):
How do you know whether that finite
element model really replicates the
empirical data. What is your goodness
of fit, what are your criteria?

Mr, Meller: In this particular case we
knew the frequency of the complete
antenna so when we subjected the model
to the frequency search we could deter-
mine whether or not it was a suitable
representation of the actual structure,
and it was.

Mr. Repperger: Do you have any empiri-

cal data to validate the model response
and the empirical data response to show
that they were equivalent or similar in
some sense?

Mr. Meller: In some previous analysis I
predicted some reponses that were later
verified by tests.

Mr. Repperger: Did you just look at the
response modes and resonances?

Mr, Meller: Just the actual response.
The only reason I was looking for modes
i8 just to be sure that the model had
the correct fundamental or at least the
lowest fundamental resonant frequency.
But once that is done, there is no more
modal analysis.

Mr. Walchak (NSWC White Oak): I am
interested in your forcing function, did
you use the one from the at sea tests or
were they from the FSP inputs?

Mr. Meller:

This particular one was
from the FSP

tests.

Mr., Walchak:
more severe?

Did you find this to be

Mr. Meller: No.




FATIGUE LIFE PREDICTION FOR SIMULTANEOUS STRESS
AND STRENGTH VARIANCES UNDER RANDOM VIBRATION

R.G. Lambert
General Electric Company
Aircraft Equipment Division, Utica, NY 13503

Simple closed form expressions have been found to accu-
rately predict the fatigue life of structures.subjected to
random stresses where the applied stress and the material's
strength are simultaneous random variables.
are in familiar engineering terms.
analytical predictions and empirical results have been shown
to be good whenever such comparisons were made.

These equations
Comparisons between

INTRODUCTION

Many closed form analytical expres-
sions have previously been derived to
predict structural fatigue life and mech-
anical reliability for randomly applied
stresses [1-5). These expressions have
been shown to be simple, practical and
accurate. They apply to single and mul-
ti-degree-of-freedom systems as well as
to single level or step-stress load sit-
uations. Fracture Mechanics effects are
included. In all of these cases, the
stress/strength parameters were treated
as random variables independently, not
simultaneously.

In most practical cases, the stress/
strength parameters are simultaneous
random variables. Stresses vary from
part to part and subassembly to subassem-
bly due to dimensional and geometrical
differences between parts, fabrication
and assembly variances, and structural
damping and stiffness variances of adja-
cent structures. Strengths vary because
materials' fatigue curves are a scatter-
band of failure points, not single lines.

APPROACH SUMMARY

An attempt to rigorously derive a
fatigue life expression with the stress/
strength parameters treated as simulta-
neous random variables was unsuccessful
in that the final expression was exceed-
ingly complex. Therefore, a different
approach was evaluated. This approach
modified the variable strength fatigue
1life expression (1) by adding the stress
(8) and strength (A) standard deviations
in the mean-square sense and substitut-
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ing the resulting standard deviation

v = /A% + 5%

in place of the strength standard devia-
tion term (A). The reasoning behind
this approach was as follows: Fatigue
failure occurs when stress exceeds
strength regardless of whether the stress
is "too high" or the strength is "too
low". Both deviations from nominal
cause a reduction in fatigue life. Since
the standard deviations of stress and
strength are independent of each other,
they should be added in the mean-square
sense. This approach, as judged by
Monte Carlo simulation techniques, gives
somewhat accurate results but not as ac-
curate as hoped for.

Accuracy was improved by multiplying
the stress standard deviation (6) by the
term (2Np)2/8, is the median stress
cycles to failure. It is the fatigue
life if the analysis is done determin-
istically (i.e., if A and 6 are zero).

B is the slope parameter of the materi-
al's "S-N" fatigue curve. This term made
the entire expression almost identical
to the rigorously derived equation for
the case of A = 0.

Accuracy was further improved in the

region of early fatigue failures by sub-
tracting the term

(2N 1/ Bas
VEE - T|’7§

The portion /28 - 7/8 was required to
provide accuracy for brittle and ductile




materials. This worsened the accuracy
in the region of the late failures. The
above term needed to be added instead of
subtracted in that region (i.e., a sign
change for N > N,). This worsened the
accuracy in the middle failure region.
The multiplying term

£ =2 ert [20 (Nl- 1)]

.

restored accuracy to all failure regions.

The resultant standard deviation
term is:

1/8
(2N ) AS
;p = /2+(2Nm)2/852+£ ._.ﬂ__..
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Accuracy of the above expressions
was judged by comparison to Monte Carlo
simulation results. The Monte Carlo
simulation technique had its accuracy
and practicality checked by comparing
its results with those known to be the-
oretically correct and with available
empirical results.

Fatigue life is expressed in terms
of probability of failure as a function
of applied stress cycles and both aver-
age and minimum cycles to first failure.
For the most part data is presented in
the form of histograms of cycles to
failure because of the histogram's sen-
sitivity to differences between theo-
retical and tallied results.

FATIGUE CURVE REPRESENTATION

Figure 1 shows the typical sinus-
oidal and random fatigue curves for a
given structural material. These curves
are of the following form:

S = %; = A Ns'l/B stress units (1)
o=¢C Nm_l/8 stress units (2)

where A and C are fatigue curve constants
and B8 is a slope parameter [1]. AS is
the cyclic sinusoidal stress range. o
is the random rms stress. Ng is the
sinusoidal cycles to failure. Np is the
median number of random stress cycles to
failure. These fatigue curves are zero-
width (i.e., nonscatterband) lines of
failure points.

10,000

1000

STRESS (MPa)

100

1 I i B | i
100 100 10° 10* 10 10
N(CYCLE®)

Fig. 1 - Typical sinusoidal and
random fatigue curves

Table 1 shows typical parameter val-
ues for several materials. Refer to the
Symbols section for Metric-Conventional
Units conversion.

=.|x 1 1/8

C = 7-2_ -—2-7-5) stress units (3)
r(53

A= Z'I/BOE stress units (4)

where o¢ = fatigue strength coefficient
[6,7]. of may be thought of as being
the material's cyclic "true" ultimate
strength. It should be noted that 8 = 9
for ductile materials and 8~*20 for
brittle materials.

Equation (2) represents a fatigue
strength-1ife curve where both the ma-

TABLE 1. TYPICAL FATIGUE CURVE CONSTANTS

A

8 c

Copper Wire

7075-T6
Aluminum Alloy

AZ31B
Magnesium Alloy




terial strength C and applied rms stress
are deterministic. The fatigue strength
can be treated as a Gaussian random var-
iable of mean value C and standard devi-
ation A. The applied stress can also be
treated as a Gaussian random variable of
mean value ¢ and standard deviation §.

Equation (2) then becomes

el [}
N, <:) cycles (5)

[+

where

=
[]

median cycles to failure

ol
]

mean value of strength

mean value of applied stress

al
[

ANALYTICAL DERIVATION

The derivation of the fatigue life
expressions begins with the derivations
of equations for the probability density
function of cycles to failure p(Nf) and
the probability of failure at N applied
stress cycles F(N). It can be shown

o1/8y (1/8)-1 -(h%-rv)
£ m r
P(Ng) =—pzs7—— |&¥r ©
2

-{ 20 erf (a) + % /T

2h
- — erf (a,) (8)

/T 2 }

where the variables ay, ag, h, r and v
are complicated funct}ons of Ng.

F(N) = Probability that Nf >N

N
F(N) = é P(N,) dN, (7)

It can be seen by examining equations
(6) and (7) that finding a simple closed
form expression for F(N) does not appear
likely.

SIMULATION TECHNIQUE
A Monte Carlo technique was used as
the simulation method for judging the

accuracy of the proposed fatigue life
expressions. From equation (5),

Ny = (§)

where C and o are Gaussian random vari-
ables of mean values and ¢ and stand-

8 cycles (8)

ard deviations A and § stress units re-
spectively. Ng is a dependent random
variable that depends upon the parameter
values in equation (8). Np is the
median value of the random variable Ng¢.
Both Ny and Ny represent cycles to
failure.

A sample of the random variable Ny
is generated by generating a sample of
each C and o, then performing the opera-
tion indicated by equation (8). Each
sample of C is drawn from a Gaussian
distribution of mean value C and stand-
ard deviation A. Each sample of o is
similarly drawn_from a Gaussian distri-
bution of mean o and standard deviation
8. Negative values of C and o are dis-
carded. The samples of Nf are sorted
and stored in array bins according to
the sample's value. The quantity of N
samples that fall into each bin is summed
and stored. A printout of the quantity
of samples in each bin of the array rep-
resents a histogram of N¢ for specific

values of T, A, o, & and 8.

COMPARISON OF SIMULATION AND THEORETICAL
RESULTS

Theoretical results for the case
where the applied stress is not a random

variable (i.e., § = 0) are as follows
[1):

Tfn)\1/E
F(N) = 0.5 + erf|x {{w -1:i(9)
H(%) -

A histogram array bin quantity q for a
bin that extends from N, to Ny is
q = {F(Nb) - F(Na)} Q (10)

where

Q = total N¢ sample size

q = bin quantity

Q = 10,000 for all cases.

Figure 2 shows the expected excellent
agreement between theoretical and tal-
lied results for Case 1 of Table 2.

Similarly theoretical results for
the case where the fatigue curve 1is
treated as a single line (i.e., A = 0)
are as follows [1]:

1/8

= ([N

F(N) = 0.5 - erf[%{(—n-m) - 1}]
(11)

Figure 3 shows the expected excellent
agreement between theoretical and tallied




results for Case 2 of Table 2. Thus,
the simulation technique is considered
to be qualified for further use.

10“]

THEORETICAL
—-= == TALLIED

$id =0
a1 = 0.08
B =96

Nen
|

—r—— ——— —
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+

Fig. 2 - Histogram of Nf: Case 1
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Fig. 3 - Histogram of Ng: Case 2

INITIAL EVALUATION

The first proposed method of analyz-
ing cases where both the applied rms
stress and strength are simultaneous was
to add both variances in the mean square

sense and substitute this result into
equation (9) as follows:

F(N) = 0.5 + erf[%{(ni:;) 1/8- 1}]

(12)
where

y' o= /A% + 62 (13)

Figure 4 shows the theoretical and tal-
lied results for Case 3 of Table 2 and
equation (12). Comparison of the above
results indicates that ¢' gives reason-
able accuracy but not as good as hoped
for. This is especially true in the re-
gion of first failures where ' gives
results that are not conservative.

‘v 1/4' + ¥

L als e S

=t
(]

o
-
o
-
L]
8-

N¢ x 10* (CYCLES)

Fig. 4 - Histogram of Nf: Case 3

It should be noted that § is usually
less than A in absolute value by a factor
of approximately four. This is because
o is usually less than C by the same

factor for Ny in the high cycle fatigue
region (e.g., from equation (5),

T/5 = N, /8

For Np = 6.5 x 10° and 8 = 9.6, C/o=4).
Therefore, ¥' is relatively insensitive
to values of 8§ and will no longer be
considered as a candidate expression.

TABLE 2, CASE PARAMETER VALUES
C A o 8 B N,
Case | (MPa) (ksi) (Mfa) (ksi) | (MPa) ] (ksi) | (MPa) | (ksi) (cycles)
1 } 1187 (172.11}163.8 | 9.25 302 | 43.87}] o o 9.6 5 x 10°
2 | 1187 [172.11 ]| O o 238 | 34.52|11.9 |1.73 | 9.6 5 x 10°
3 | 1187 |172.11 |63.8 | 9.25 302 | 43.87[15.2 | 2.2 9.6 5 x 10°
4 | 1187 |172.11 163.8 ] 9.25 302 | 43.87 |15.2 | 2.2 9.6 |5 x 10°
5 | 93.8 13.86 4.8 | 0.70 52 7.56 | 26.1 | 3.78 |22.39 5 x 10°

NOTE: Except for zero values, A/C = §/0 = 0.05
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PROPOSED FATIGUE LIFE EXPRESSIONS

The following expressions are pro-
posed for computing fatigue life param-
eters:

F(N) = probability of failing at N
applied stress cycles

F(N) = 0.5 + erf[g{(ﬁl)l/s- 1}]

@ (14)

‘a 2
erf (a) = — [ eV /24y (15)
/21 O

Nm = median cycles to failure
T 8

Nm ={= cycles (16)
5]

T = mean value of applied rms

stress

E,B are random fatigue curve

constants
(2N )1/BA6
v o_ 2 2/8.2+ —m o890
'/“(2%) L —wE
(17)
N
E=2erf|20 (o -1 (18)
[ -]
Figure 5 is a plot of £ versus N/Nm.
1.00
to N
05 1.0 il
-1.00

\\\__ “
g
Fig. 5 - Correction factor versus N/Nm

ﬁl = average number of cycles to
first failure

8
ﬁl = Nm [1- 3’7125351]cyc1es (19)
(2 Cy)
Nl = minimum cycles to first

Min failure

- ~-4.2a
yin |5+ 4.26

PROPOSED EXPRESSION RESULTS

N ] cycles (20)

Many cases of parameter values using
equations (14) through (20) were evalu-
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ated. Only two typical ones will be re-
ported here. Refer to Cases 4 and 5 of
Table 2. Case 4 is identical to Case 3

except ¥ from equation (17) is used in-
stead of y' from equation (13).

Histograms of Ny are shown in Figs.
6 and 7. Agreement between theoretical
and tallied results are considered ex-
cellent. The following observations
can be made:

1) The material's ductility (i.e.,
B value) has a large effect on
the spread of the histogram.

2) The shape of the histogram is
nonsymmetrical. The general
shape is to rise more sharply
than to decay.

3) Agreement between theoretical
and tallied results is still ex-
cellent even when the histogram
is so spread that it appears to
be truncated at the left (i.e.,
greatly distorted).

4) Large enough values were as-
signed to A and § to cause the
first failure to occur at cycles
well below N,. From a practical
viewpoint such unreliable struc-
tural elements would most likely
be redesigned.

800
F Y
"L —— THEORETICAL
s00-4 - 9 - TALLIED -

] S 4iIC = 0.05
< - 413 = 0.05
3 i Np 8 =985

0 —r—r——1 v : —
0 - 10 15

Ny % 10 (CYCLES)

Fig. 6 - Histogram of Nf: Case 4
800
THEORETICAL
————— TALLIED

E 500 _
8IC = 0.05
slc = 0.08

3 8 =227

T
10 15 20
Ny x 10° (CYCLES)

Fig. 7 - Histogram of Nf: Case 5

Table 3 shows a comparison between
theoretical and tallied results of the
average and minimum cycles to first fail-
ure, Nl and Niyjp, respectively. Agree-




TABLE 3. COMPARISON OF CYCLES TO FIRST FAILURE RESULTS

Case Nm

ﬁl (cycles)

N]_Min (cycles)

(cycles) [Tallied | Calculated | Tallied | Calculated

agreement. Figure 9 compares theoreti-
cal and empirical data. Again large va-
riances are noted in the empirical data.
The overall histogram shapes are in gen-
eral agreement. Figure 10 compares the
empirical and tallied histograms. They
too generally are in agreement with each
other, Figure 11 shows that the variance
of the tallied data is smoothed out con-
siderably as expected by increasing the
sample size from 100 to 10,000. This
indicates that the previous relatively
large variances for the tallied and em-
pirical data are an expected result of
the small sample size of 100.

‘&Q 1 500, 000 61,916 69,356 39,116 42,749
Aﬁ@ 2 |5,000,000 ] 947,484 693, 326 800,307 706,843
4 500, 000 35,177 32,507 12,374 6,014
5 500, 000 981 734 442 17
ment is considered excellent. Equations 15
(19) and (20) are considered accurate. THEORETICAL
— ---- TALLIED
10 PR
el COMPARISON WITH EMPIRICAL DATA = M
‘(1!.( g L SAMPLE SIZE: 100
3?& The proposed fatigue life expres- 3 s ] .
&}5, sions have previously been shown to agree T
Tyt with the Monte Carlo simulation tallied P
et results. Now the theoretical and tal- ol i n T ]
'Q lied results will be compared with the 0 s 10 15 20 25 30 35
. empirical resu.cs reported in Refs. 2, 8 Ny x 20,500 (CYCLES)
tt and 9. In Ref. 8, J.T. Broch describes
RN fatigue life test results of fiberglass Fig. 8 - Histogram of Ng: J.T. Broch
&3@ single-degree-of-freedom end mass canti- example
‘V? lever beams subjected to random stresses,
R A sample size of 100 beams was used for " -
: the tests. The test parameters are as [ -
follows: i1 THEORETICAL
Y1 ...__EMPIRICAL
S _ » 10F = L
oy c = 84 MPa (12.2 ksi) E ;
0 2 |
o 8§ = 2.4 MPa (0.348 ksi) 3 st ;
i s (Y] -~ [T
i T = 228 MPa (33 ksi) L
‘ 0 N . { " A R B
J A = 12.1 MPa (1.75 ksi) (] 5 10 15 20 25 30 35
g 20,500 (CYCLES,
o E = 1.86 x 10% MPa (2700 ksi) M 20ETELED
e Fig. 9 - Histogram of Ng: J.T. Broch
e g =121 data
‘D
T Figure 8 shows a comparison of the 184
o theoretical and tallied histograms for EMPIRI
H ICAL
the above parameters. Large variances
" in the tallied are noted. However, the b A A S B B TALLIED
overall histogram shapes are in general

15 20 25 0 35
Ny x 20,500 (CYCLES)

Fig. 10 - Empirical-Tallied Histograms:
J.T. Broch example

Figure 12 is a histogram of cycles
to first failure Nj. Also shown are
calculated and tallied values of N; and
Ny empirical. Quantitatively,
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Ny = 33,983 cycles
cale'd .

ﬁl = 37,914 cycles
tallied

N, = 42,950 cycles

empirical

All of the data indicates good agreement
among theoretical, Monte Carlo and em-
pirical results.

THEORETICAL
----- TALLIED

SAMPLE SIZE: 10,000

QUANTITY

Ny = 191,705
lcvcuzs“n

0 5 10 15 20 25 30 35
N¢ x 20,500 (CYCLES)

Fig. 11 - Histogram of N¢:
Large sample size

N CALCULATED
§, TALLED
o SAMPLE SIZE : 100 Ny EMPIRICAL
: |
E 4
22 I__J‘\_\
L nn
V1 T T LA T 1
° 10 20 30 40 50

Ny x 1000 (CYCLES)

Fig. 12 - Histogram of N1:
J.T. Broch example

Figure 13 shows additional empirical
fatigue data [9). Again the theoretical
results are in good agreement with em-
pirical results for 7075-T6é Aluminum al-
loy (sample size: 100) regarding histo-
gram shape. The following parameter
values were used for the theoretical
curve:

Nm = 1.8 x 105 cycles
v/C = 0.052
8 = 9,85

SUMMARY OF RESULTS

The single expression for y provides
accurate fatigue life results for ductile
and brittle materials. All of the fa-
tigue life and mechanical reliability
equations in Refs. 1 through 5 that or-
iginally spplied to cases where strength

alone was the random variable can be used
for simultaneous stress/strength vari-
ances by substituting ¢ for A.

The Monte Carlo simulation techmnique
was judged to be both accurate and prac-
tical due to good comparisons with re-
sults known to be theoretically correct
and with available empirical results.
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o

§ 0.100
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=
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¢
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Ng x 1000 (CYCLES)

Fig. 13 - Histogram of Nfz NAVAIR data

SYMBOLS

A material constant; true ultimate
stress

[} constant of random fatigue curve

modulus of elasticity
erf (o) error function of argument a

F(N) probahility of failure at N
cycles

ksi thousands of pounds per square
inch

applied stress cycles

histogram bin width

b
Nf number of stress cycles to
failure
Nm median stress cycles to failure;
cycles to 50% failures
N1 stress cycles to first failure
ﬁl average value of Ny

Niyinp Minimum value of N,

p(a) probability density functionof a

q histogram quantity
Q total sample size
rms root mean square




S applied sinusoidal stress
amplitude

AS applied sinusoidal stress range

X,y¥,2 general variables

r,h,v

a general variable

B fatigue curve slope parameter

T'(a) gamma function of argument a

a standard deviation of material's
random fatigue curve

[} standard deviation of applied
rms stress

£ correction factor

ai fatigue strength coefficient

3 average value of random rms
stress

v resultant stress standard
deviation

v modified form of ¥

MPa mega-Pascals

6.895 MPa/ksi
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The continuous damage theory,

surface is proposed. The derived
ing the method of characteristics.

method for obtaining estimates of
as a function of time and space.

Kachanov, is extended to a dynamical problem.
characterized by a kinematic state variable defining the evo-
lution of voids and microcracks in a smoothed or statistical
sense. Concentrating on brittle cracking, a simple fracture

used to solve a one-dimensional wave propagation problem us-

several pressure pulses are presented, thus illustrating a

originally su;g:s:;i bz is
or

equations are subsequently
Numerical results for

the damage level in a solid

INTRODUCTION

In many instances of practical in-
terest the ultimate failure of a solid
body is preceded by a gradual evolution
of countless number of microcracks,
voids and defects. Failure occurs when
this process reaches a critical level at
some point or region of the solid. Away
from this region of total failure the
density of l,crocrncks, voids etc.,
gradually decresses with distance. In
this context it is appropriate to intro-
duce the concept of a "continuous or
distributed du-ngc" for the quantitative
description of the phenomenon. The con-
ventional fracture mechanics approach of
studying the initiation and propagation
of one or more well defined macrocracks
is not suitable for treating the phenonm-
enon described above.

The distinguishing characteristic
of the continuous damage theory is an
internal (or hidden) kinematic state
variable that defines the growth and

——
Work reported in this paper was con-
ducted under the support of the Argonne
National Laborstory and the National
Science Foundation throufh grants to
the University of Illino
Circle.

s at Chicago

spread of the population of defects in a
smoothed or statistical sense. The in-
troduction of this state variable makes
the relation between the theory and ac-
tual phenomenon similar to the relation-
ship between the classical plasticity
theory and the rearrangement of disloca-
tion distribution in s Klastic solid.
This phenomenological theory provides
useful results for practical applica-
tions although it does not account for
the detailed stress distribution in the
neighborhood of actual microcracks.

This subject of study has attracted
many investigators in the last few dec-
ades (Refs. fl]-[ZS]). Some of these
works have been summarized briefly in
{26]. According to the presented evi-
dence it appears unlikely that a simple
universal damage model applicadble to
both ductile and brittle types of fail-
ures could be constructed. Experimental
observations suggest, for example, that
the voids generated by plastic flow are
more or less spherical while the micro-
cracks generated at the interface of
crystals are planar.

Kachanov [17]) has proposed a model
defining damage as the loss in effective
area of each cross section in solving
problems of brittle (low strain) creep




rupture. Many other investigators have
employed the same model seeking solu-
tions for other problems. 1In most of
these cases the investigations are char-
acteristized by monotonically increasing
loads. In the present paper Kachanov's
original model is extended to dynamical
loading of a brittle rod. A simple
fracture surface is proposed in order to
study the phenomenon of spalling. Nu-
merical results for different loading
cases are obtained by using the method
of characteristics.

ANALYTICAL MODEL

Consider a one-dimensional rod made
of a brittle material. Let o(x,t) and
e(x,t) be the stress and strain respec-
tively at section "x'" at time "t." When
this rod is subjected to some dynamic
loading causing spalling to occur at
some section, the only irreversible me-
chanical process taking place is crack-
ing. 1In order to record the history of
the process an internal variable char-
acteristizing spatial and temporal evo-
lution of damage needs to be introduced.
Let w(x,t) be the damage parameter re-
lated to the density of defects such as
voids, microcracks, etc.

Based on thermodynamic and statis-
tical grounds Krajcinovic et al [26]
showed that the fracture surface (ana-
logous to the yield surface of plastic-
ity) and the differential damage law may
be written as:

F(e,w) = ¢ - % ® (1)
and
dw = % de for F=0 and ¢>0, de>0
(2)
do = 0 otherwise

where E is the Young's modulus, S the
damage constant and & the largest value
of w actually recorded at a point up to
the current time. The stress-strain
law, derived from energy considerations
(see [26]) is given by

g = E(l-w)e . (3)

The ultimate failure criterion - which
also corresponds to infinite energy dis-
sipation density rate - is obtained from
the condition that rupture occurs in a
static, monotonic test when

%g-o ) (4)

By manipulating equations (2)-(4), one
can verify that at fracture the value

of w is given by

wp = 0.5 (5)

and

S = 40F (6)

where op is the tensile strength of the
material., It may be noted that in the

above formulation no material constants
unrelated to tensile strength are in-

troduced. Damage, w, varies spatially

and temporally from 0 (undamaged) to

0.5 (fractured) in a continuous manner.

FREE-FREE ROD

As an illustration of the general
theory consider the problem of the dy-
namic behavior of a finite, brittle rod
with free boundaries subjected to a
compressive stress-pulse at one of its
free boundaries. The constitutive equa-
tions (2 and 3) for the rod in the in-
cremental form are

do = E(l-w)de - Eedw )

and
Ede  if 0>0 and do>0

de = (8)
0 otherwise

since it can be shown that ¢ > 0 and
do > 0 is equivalent to ¢ > 0 and de>0.

. The equation of motion for the rod
is

pv't = c'x =0 (9)
where p is the mass density of the rod
material (assumed constsnt) and v the
particle velocity. The subscripts t and
x stand for the time and space variables
respectively and thc comma denotes par-

tial differentiation. Making use of the
continuity relation

€t = v,x (10)

and the damage law (8), Eq. (7) may be
shown to take the form

oy - E {(1-») - ‘ST%U’} v'x-O (11)

where the notation < > is used to denote
the term that will vanish unless o and
do are both positive.




Equations (9) and (11) form a sys-
tem of quasi-linear partial differential
equations which is particularly well
suited for the application of the method
of characteristics.

The governing system of equations
can be rewritten in matrix form as

Awe+Bu, =0 ()
where
v p 0 0 -1
w = A= B = (13)
- g - 0 ¢ -
1]
with
o = (14)

1
e { (o) -<grigy)

Omitting the intermediate details,
it can be shown [27], that the wave
speeds t c are given by

cveo JT gy (9

where ¢ is the speed at which stress
waves propagate and c, = v/E/p , the uni-
axial wave speed in an undamaged elastic
rod. Note that the wave speed, ¢, dur-
ing compression or unloading from ten-
sion is constant, and equal to coll_;.
This follows from Eq. (8), and implies
nondissipative, purely elastic beﬂlvior-
with a reduced elastic modulus, E(l-w)-
if 0<0 or do<0. Further, the character-
istic conditions are

do

It oc%% =0 on g% = (16)
g% . oc%% =0 on g% = - C (17)

Since c is not constant in general, it is
not always possible to integrate the
characteristic equations (12) and (17)

in closed form. However, it is relative-
ly simple to solve them by means of a
finite difference approximation.

The rod is replaced by a series of
nodes at equal intervals ax. A typical
step in the integration procedure is to
express the solution at the n-th node
for time t + At, given the solution at
nodes n-1, n and n+] for time t. For a
given Ax, the time increment at must
satisfy the stability requirement,

(18)

AX
Ats?
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It is convenient to select a value for
At that is constant and satisfies the
above inequality everywhere in the x-t

plane. Since €sCy» the time step can be
selected as aAt=AX |
Co
t
4 nodes n-i n nel
-
q

Fig. 1. Scheme for Numerical Integration

Referring to Fig. 1 and denoting by
P the n-th node at time t+at, let Q and
R be the points at which the two char-
acteristic curvesdrawn from P intersect
the time line t, at which the solution
is known. Since the exact curves PQ and
PR are not know a priori, it is possible
to approximate them by straight line seg-
ments drawn from P with slopes
g% = cq. and g% = - Car where Q' and R'
are points at which the two approximate
characteristic lines PQ' and PR' inter-
sect the time line at t. The values c.,
and ¢,, are obtained by linear inter- Q

polltgon as
c c
B B
[J L] - H Cn,® -
Q' e <A R . < Cp
<o €o

The solutions for ¢ and v at Q' and R'
are also obtained by linear interpola-

(19)

tion as:
Cht
0 oo )
Cp
Igr = op * ("c"’a)(T:R_)
° (20)
Cas
VQ' “vg - (VB'VA)(T%T)
Cot
VRr " Vg ¢ (VC'VB)(?%T)




The characteristic equation (16) on PQ'
takes the difference form

(OP‘OQ') - DCQiVb-VQv; = 0 (21)

Similarly the characteristic equation
{(17) on PR' takes the form

(GP-UR') + DCR'CVP_VR') =0 (22)
Simultaneous solution of equations (21)

and (22) yields the solution at the n-th
node for time t+at as:

} CQ,GR,+CR,0Q,+QCQ,CR,(VR,-VQ,)
Up [CQ' + CR')
(23)
(CQYVRI + CvaQl)-(coy'OR')

v, = -
£ i"(CQI + CR')

It remains to determine the damage fac-
tor « and wavespeed ¢ at P, If 9p and

(op - o) are both positive, using equa-
tions (7) and 8 it is possible to write

o o
P B

= wp - (24)
“wp B S “up

“p T 3
Solving this quadratic equation for w
and choosing the negative sign for-
the radical, it follows that

P

A
a{0)

“p

wp = %[{1 + g m}

g 2 dap
- l-wy, + M
{ B S(I'”B) }

Subsequently Cp is obtained by Bq. (15)
as

(25)

a
P
CP CO.JI - u)p - STI-'—UT;T (26)

On the other hand, if both 9p and
Ccp-cB) are not positive

(27)

At the boundary nodes the above

procedure needs some modification. 1If

P is a node on the left boundary only
Eq. (22) is available. If P is a node
on the right boundary only Eq. (21) is
available., = In either case the addition-
al equation required for determination
of op and vp comes. from the prescribed
boundary condition at the boundary. For
instance in the case of free boundary o
iskown while fer a fixed boundary Vp
vanishes, '

E ~ PULSE 1

0.625X107*- £

PULSE 2

PULSE 3

0 05 I.0

Fig. 2. Stress Pulses
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As a numerical example consider a
rod of length L with both ends free sub-
jected to a compressive stress—pulse at
its left free end. The dngnge modulus
S is taken to be 0.5 x 10° (corres-
ponding roughly to concrete [21]) and
the peak value of the pulse is equal to
S/8 which corresponds, according to (6),
to half the rupture stress. Non-dimen-
sionalizing the lenﬁth with respect to
L, all stresses with respect to E, the
velocities with respect to ¢, and time
with respect to L/cy, the non-dimension-
al steps Ax and At are taken to be 0.0S.

The energy supplied to the rod is
equal to the work of the applied pulse
and is given by

t
Einput = A fo.‘xd(o.t)V(O,t)dt (28)

where A is the cross-sectional area and

ax the duration of the pulse. The
total dissipated energy is given (see
[26] as

ABL 2.
Eyissipated” 3 ﬁ ¢ wdt (29)
The energies are non-dimensionalized
with respect to the factor ABL. They

are computed by numerical integration
using Simpson's rule.

Results for three different pulse
shapes were computed for the illustra-
tion of the proposed model. All three
pulses (Fig. 2) had the same peak value
of S/8 and the same total impulse.
While pulse 1 is symmetric and has s
shorter duration, pulses 2 and 3 are
unsymmetric and of a longer duration.
Pulse 2 loads at s rapid rate and un-
loads at a much slower rate while pulse
3 loads at the slower rate and unloads
at the faster rate.

0.5

0.3 0.4

Fig. 3.
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182




0.9

g X/L =048

3 XA =095

[ =

A s ma—

0 0.5 1 1.8

A

2 as 3 s .
TET
Fig. 6. Evolution of Damage at Sections of Rod due to Pulse #1

Wi s 0-48

prd AN20.05

I

1.8 k] as 3 s )
TIE T

Fig. 7. Evolution of Damage at Sections of Rod due to Pulse #2

0.0

—p
0 0.3

183




0.4
2

..‘
2

.‘J
\ x,‘.."‘
AL
o
o ,’ -
e ¢ X/ =0-05 ,&ﬁ.”_.
3 : /i
. e g v A ) 4 > ¥
Mo . .s 1 he 2 a8 3 33 4
iy TIE T
el Fig. 8. Evolution of Damage at Sections of Rod due to Pulse #3
]
r‘:;l
" .
8. Se
a] x»
Eanut
b4 ) Energy Ratio
- °.< .'1
.;I;_
B o
:\,I' 6- »
2 5
= aG
{ 2 | s
- § ]
6- ~'<
H 3
N g_ ° . . ' - - : — Edissipated
et 0 0.5 ] 1.3 a a.3 3 3.3 L]
. TIE T
Fig. 9. Energy Input and Energy Dissipation due to Pulse #1
L

184




RATIO

0,01

0. ﬂ
[ .

0.03

RATIO
e nd

0.0t

u10™

.5
—

ENERGY

1.0

=0

2.3
ks

.8
.

E1nput

/ Energy Ratio

] E
dissipated
d y — m—;
0 .s 1 L3 H as 3 s H
TIET
Fig. 10, Energy Input and Energy Dissipation due to Pulse #2
be
Th
a Einput
-
. &
o
=
F 4
fad
o
!4
:'- Energy Ratio

Edissipated

L %)

Pig. 11.

b 4 g ) g

1 1.9 3
TIET
Energy Input and Energy Dissipation due

as 3 s

to Pulse #3



The distribution of damage along
the length of the rod at two different
time instants (corresponding to two and
four passages of phase through the rod)
is shown in Figures 3, 4 and 5 for the
three pulses. It is evident from these
figures that the maximum damage and its
location are dependent upon the pulse
shape even if the peak values of all
the pulses are identical. This is ex-
plained by the fact that only monoton-
ically increasing tensile stresses can
cause damage and the interaction of the
incident and reflected pulses at any
section depends upon the pulse shape.
For instance, there is no damage at any
section for t = 2, for pulse 3. This is
because for times ts2, the incoming com-
pressive pulse cancels out the reflected

tensile pulse at all sections of the rod.

It is an important point that the damage
is continuous. In other words, even
though failure will occur at the section
where w reaches 0.5, every section of
the rod is damaged to some extent.

Figures 6, 7 and 8 show the evolu-
tion of damage due to the three pulses
at three different sections of the bar.
All three figures show the damage at
x/L = 0.05 (near the loaded end) and at
x/L = 0.95 (near the far end). In addi-
tion each figure shows damage growth at
a section at which maximum gannge occurs,
this section being different for differ-
ent pulses. In each case it is observed
that the damage rate is rather large at
specific times. These times correspond
to the instants during which reflected
tensile pulses traverse the cross sec-
tion. Following the passage of these
pulses the damage remains constant until
the next tensile pulse arrives. Here
again it may be noted that the damage
in an arbitrary cross section is a con-
tinuous function of time.

The dissipated and input energies
as functions of time are shown in Pig-
ures 9, 10 and 11 for the three pulses.
In all cases the greatest dissipation
is seen to occur at the first passage
of the reflected wave. The ratio o¥ en-
ergy dissipated to energy input is seen
to be of the order of only a few hun-
dreths. In the event of an ultimate
spall (v = w = 0.5) the dissipated en-
ergy locally may provide a useful esti-
mate for the fly-off velocity.

CONCLUSIONS

The proposed model, based on the
continuum theory with internal variables,
is capable of providing estimates of the
dsmage level incurred locally along the
rod. The newly introduced internal var-
jable reflects the spatial and temporal
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evolution of damage. In other words

‘the accumulation of damage associated

with passage of tensile waves is des-
cribed as a continuous process.

It was not the intent of the paper
to fit the experimental data for any
particular material. Rather, attention
is focused on the fact that a rational
description of the spall phenomenon
should include an internal variable re-
flecting the change in material integri-
ty. Hence for a specific material it
might be necessary to establish a dif-
ferent damage law based on simple exper-
imental data.

The numerical example illustrates
how the theory may be used for predict-
ing damage in a structural member. When
generalized to a three-dimensional case
and damage laws characteristic of par-
ticular real materials this theory opens
the way for describing the damage through
out a structure subjected to severe
loading.
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VEHICLE SYSTEMS

LATERAL DYNAMICS OF C4 MISSILE

F. H. Wolff
Westinghouse R&D Center
Pittsburgh, Pennsylvania

A planar model of the C4 missile involving nonlinear
force-deflection characteristics for the seals and pads
was developed. Rigid body equations of motion based on
small angle motion were solved to calculate the lateral
motion of the missile during launch. After matching the
calculated results to a PS-80 test record, variations in

lations.

seal characteristics, pad characteristics, missile
travel time, and initial conditions were studied to
determine the sensitivity of the lateral dynamic calcu-

NOMENCLATURE

Inteval Jefloct flon oF wizaile S
angular deflection of missile (rad)
vertical motion of missile (in)
missile C.G. (in)

missile weight (1b)

missile mass moment of inertia
(1b sec2/in)

pad locations (in)

,XP%,KP? ~ linearized pad stiffness
J (1b/in)
- pad precompression (in)
- pad offset (in)
- relrtive deflection across pad (in)
- pad force (1lb} . '
- seal locations (in)

linear seal stiffness before
inverting (lb/in)

deflection at which seal inverts
(in) ’

relative deflection across seal
(in)
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st - maximum seal force (1b)
ij - seil forge (i
F - tether force (1b)

FAp ~ destabilizing pressure force (1b)

INTRODUCTION

The Westinghouse Marine Divi-
sion (MARD) in Sunnyvale, California
under contract with the Navy to provide
launch seals for the trident missile,
test the proposed designs during launch
conditions. Peashooter tests (PS) at the
Hunters Point Facility in San Prancisco
involve firing a missile from a tilted
launch tube (dock .mounted) with a gas
generator. During a launch several
variables are monitored; e.q., pressure
and missile deflections. For some of
the Peashooter tests lateral motions
were recorded which exceeded acceptable
limits. MARD then contracted the West-
inghouse Research and Development Center
to perform an analysis of the launch
dynamics. The analysis involved devalop-
ing a model of the missile to predict
the dynamics of the missile during a
launch. Supplementing the calculations
with results from a R&D analysis of the
destabilizing forces on the missile gave
insight into what caused the undesirable
motions and what could be done to reduce
them.

A planar model which represents
motion in the 90-270" plane of the

P



missile was developed. The seal and pad
characteristics were modeled with non-
linear springs acting between the
missile and launch tube. Rigid body
equations of motion were formulated to
describe the missile dynamics during
launch: x-horizontal deflection and
6-angular motion. The vertical travel
of the missile (y) was obtained from
test data. The equations were written
in terms of small angle motisn where
second order terms such as 04 were
neglected. After calibrating the model,
the calculations were validated by
closely matching the PS-80 test record.
In addition, the extreme sensitivity of
the calculated deflections to slight
variations in certain parameters was
demonstrated.

A Fortran computer program was
written to enable numerous calculations
to be made. The equations of motion
were integrated using a 4th Order Runge-
Kutta algorithm with error control.
Basically, the error control involved
calculating 2 single and a double step
solution. Then an extrapolated solution
formed from the above was compared with
the double step solution. If the solu-
tions were not within specified error
bounds, the entire algorithm was
repeated for one half the original step
size. This procedure was repeated until
either the error criteria was satisfied
or nonconvergence occurred.

MODEL

To determine the lateral excur-
sion of a C4 missile during a launch,
the planar model of Fig. 1 was con-
sidered to represent displacements
occurring in the 90-270° plane. The
near diametric symmetry of the missile~
tube configuration permitted a planar
model to be used. Considering the
missile to be a rigid body, three
degrees of freedom are involved:
lateral motion of the missile c.g., x;
missile travel along the tube, y; and
rotation about the missile c.g., 6.
However, the y motion was eliminated as
a degree of freedom by using empirical
data on the vertical travel.

The shock isolation pads which
vary in height from 7 in. to 14 in.
concentrically enclose the missile at
various elevations. The pads were con-
sidered to be nonlinear springs acting
at 8 elevations with the force-deflec-
tion characteristics shown in Fig. 2.

A conduit which extends the length of
the missile in the 255° plane causes a
slight asymmetric affect on the pad

force-deflection characteristic; i.e.,
there is more stiffness from the pads
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Fig. 1 - Model for calculating lateral
excursion of C4 missile during
launch (PS-80 Test Model)
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Fig. 2 - Pad force-deflection charac-
teristics (symmetric pad
arrangement - no conduit)

in the plane diametrically opposite the
conduit so that at the tube centerline*
there is a net pad force towards the
270°* plane (Fig. 3). The actual para-
meters values used for the base case
(Table 1) were taken from static deflec-
tion tests reported in reference 1. The
force-deflection characteristics con-
structed from tests on neoprene and

.ZQto displacement




urethane pads are shown in Fiqg. 4.

These characteristics are based on a
precompression of 0.15 in. of the pads
by the missile. Dashed lines represent
test results while solid lines repre-
sent resulting composite characteristics
which were used in this analysis (Fig's.
2 and 3). Bottoming characteristics of
the pads were not included in the simu-
lation.
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Fig. 3 - Pad force-deflection charac-
teristics (Azimuth effects -
conduit in 270° direction)
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Fig. 4 - Composite spring constants for
22-1/2*, 14 in. high neoprene
and urethane pads

TABLE 1

Neoprene and Urethane* Pad
Characteristics for Base Case #80-17
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Although the pads have shown
to exhibit hysteresis effects effects by
test, this complicated behavior was not
included in the model. The damping
mechanism of the pads would tend to
remove energy from the lateral response
so the occasional oscillations present
in the calculations could be eliminated
by including pad hysteresis.

The seals which are located at
6 elevations were also modeled as non-
linear springs. Briefly, the seals
exert a destabilizing force on the
missile; i.e., as the missile moves
towards the tube the force on the missile
is in a direction to produce even greater
motion. The very complicated behavior of
the seals was the ,usject of extensive
analytical studies<’?., Figure 5 used in
this analysis represents the approxima-
tion of these results for the net lateral
destabilizing forces from a pressurized
launch seal.

EQUATIONS OF MOTION

There are several external
forces which act on the missile during
launch:

1. A tether force (Fp) which simulates
a hydrodynamic load on the missile
as the submarine moves through the
water is applied to the migsile nose
via a cable during the pea shooter

'Zero displacement
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characteristics

TABLE 2

Seal Characteristics for
Base Case #80-17
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tests. This load was modeled as a
linearly varying force starting when
the missile first enters the water
(y = 30 in.) to full valve 4400 1b
(PS-80 test) at y = 120 in.

- (y-30)
Py = 4400 -19-6—

and (1)
y > 120

30 <y <120

Fp = 4400

2. Since the missile and tube are
tilted 5° (PS-80 test) there is a
component of weight which acts in
the horizontal direction

W; Sin 5° = 70,000 Sin 5° % 7000 1b (2)

The gravity load and the
initial pad forces due to the conduit
cause the missile to misalign initially.
Although there is a retainer force (the
exact nature of which is not known) there
is some unknown initial condition which
for this analysis was considered to be 0.

From the free body diagram
(Fig. 1) the 2 differential equatjons of
motion can be written. The horizontal
motion equation is

Wb i 6
g k=Fp- )

8
i FP, (3)
i=1

i=1

where the pad (FP) and seal (FS) forces
are defined in Fig's. 2, 3, and 5. From
a balance of moments about the missile
c.g., the angular rotation egquation is

FSj -

w 6
I6 = (YT-YG) F, + jzl (ywc-vsj) FS,

(4)

8
+ 321 (ywc-vrj) ij

where I is the mass moment of inertia.

UNBALANCE PRESSURE FORCE

The additional load needed to
account for the lateral dynamics after
the 6th seal is passed appears to be due
to the unbalance of pressure around the
missile. Once the missile passes the
6th seal the missile-eccentricity in the
tube causes gas flow past the muzzle
seal. This gives an unbalance pressure
around the missile which is a destabiliz-
ing load. Figure 6 shows 3 pressure
readings taken during the PS-80 shot
vhich helps to identify the magnitude of
the load. Pl was recorded at an




elevation of 250 in. while P7 and P9
were taken at 340 in. Since P7 and P9
are diametrically opposed and at the
same elevation they can be used to

estimate the subsequent unbalance force.
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Fig. 6 - Pressure loss in upper tube
annulus (PS-80 test)

Assuming a sinusoidal distri-
bution of pressure around the missile
periphery of

{97 ; P9 . (P9 %97) Cos ’}

where ¢ is measured from the 90-270°
plane, the differential force d(FAP) at
any position ¢ is then

4 (FAP) ={ }h r dé

where h is the height over which the
unbalance pressure acts. The component

:f force acting along the 90-270° plane
s

27
FAP = I d(FAP) Cos ¢ = hr ;- (P9-P7)

(]

Using average pressures of P7 ¥ 35 psi
and P9 ¥ 50 psi (Fig. 6) acting over
the entire height of h=YM-YSg = 125 in.
gives

FAP % 125x37 x3 (50-35) % 100,000 1lbs

The destabilizing pressure
force which decreases linearly as h
decreases was applied at a location
halfway between the c.g. and the skirt
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(y-¥8,)
FAP = 100,000 1l - i-vs
6

for Y56 £y <YM

The equations of motion (eq's. (3), (4))

then become

g
m *'FT - jz‘ st (5)

8
- ] FP, + FaP
=] 3

and

. 6
18 = (YT-YG) F, + ! (y+¥G-¥s,) FS
j=1 J b
(6)

8
. YM-
+ j=§1 (Y+YG-YP,) FP, - (YG =) rar

COMPARISON OF PS-80 TEST AND
CALCULATED RECORDS

After adjusting parameters,
the results of the PS-80 trajectory cal-
culation compared favorably with the
PS-80 test record (Fig. 7). The initial
pad forces due to the azimuth effects
yield a transient sufficient to cause
the first seal to go onto the pads;
e.g., in PS-80 where the pad forces
oppose the gravity load, the initial pad
offget must be great enough
(e4 > .04 in.) to cause initial motion
towards the 270° direction. Hence, the
1st seal destabilizing force causes the
initial 0.2 in. peak. The 2nd and 3rd
seals also go onto the pads; if they did
not the response would show oscillations.
These destabilizing seal forces oppose
the restoring pad forces preventing the
skirt from swinging beyond the reference
axis.

The missile lateral excursion
recovers until the 4th seal inverts at
about y - 120 in. The 4th, 5th, and 6th
seals all go onto the pads causing the
skirt and muzzle deflections to reach
0.55 in. and -0.3 in., respectively,
before the pads begin to limit them.
However, when the skirt passes the 6th
seal (y > 235 in.) the effects of the
large destabilizing pressure forces
become evident.

The best match to the PS-80
test record (Fig. 7) is labeled Run
#80-17 which is referred to as the base
case. The base case pad and seal para-
meters are shown in Table 1 and 2. All
of the computer runs made are listed in
Table 3 which describes their deviations
from the base case.
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Fig. 7 - Calculated and test deflec-
tions of C4 missile skirt and
muzzle during simulated launch
(PS~-80) (Tether Load = 4000 1b)

SENSITIVITY OF LATERAL DYNAMIC
CALCULATIONS TO PARAMETER VARIATIONS

The lateral motion calculations
exnibit a significant dependence on
choice of pad and seal parameters,
initial conditions, and vertical travel
curve. Figures 8 through 12, which
dramatize these effects, suggests that
as a predictive tool for launch dyna-
mics, the calculations without suppor-
tive test data are questionable.

The pad asymmetry due to the
conduit near the 270° plane appears to
be largely responsible for the initial
transient by causing the first seal to
go onto the pad. Figqure 8 shows the
PS-80 calculated deflections for 3
different pad force-deflection curve
offsets (.04, .05, and .06 in.). For
an offset of .04 in. (Run #80-6), the
pad forces are not sufficient to overcome
the gravity load (7000 1b); accordingly,
the initial large deflections are absent.
The subsequent response is also smaller.
Runs #80-4 (.06 in.) and #80-7 (.05 in.)
illustrate the initial transient when
the pad offset is great enough to cause
the first seal to go onto the pad. Pad
offset of .05 in. was choosen as base

1%
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Fig. 8 - Effects of various pad offsets
(.04, .05, .06) on PS-80 calcu-
lated lateral deflections

case because it gave the best overall
match to the test record, particularly,
the initial deflection.

Figure 9 shows the influence
of slight changes in maximum seal
forces £S: refer to Table 3 for exact
description of computer runs. Run
#80-10 with the 2nd seal at 12,000 1lb
while all others at 10,000 1b has the
largest initial peak, bhecause the 2nd
‘seal is largely responsible for the
response between y - 35 in. and 70 in.
For Run #80-1l1 the 2nd seal was reduced
to 10,000 1b while the 4th seal was
increased to 12,000 1b, hence, the
smaller initial excursion but larger
motion when the 4th seal dominates
(y = 105 in. to 145 in.). Run #80-12
shows all seals at 10,000 1lb (base
case). When all seal maximum forces
are 9000 1b (Run #80-13) the response
is smaller.

Because the sxact position
of the missile at the initiation of
the launch is not known, the base case
initial condition was selected to be 0.
However, consider what happens if the
missile is given an initial displace-
ment of .03 in. (PFig. 10); there is a
significant difference in the lateral
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deflections, particularly, during the
early portion of the record.

Knowing the exact missile
vertical travel curve is important.
Figure 11 shows two slightly different
travel curves both of which would be in
the physical range. FPFigure 12 illus-
trates a significant difference in the
trajectory motions for the tvo travel
curves. Run $80-17 (base case) where
the missile moves slightly faster shows
significantly smaller deflections
because the seal destabilizing forces
are acting for slightly shorter time.

" The faster missile travel gives lower
maximum deflections which also occur
later in the travel variations in this
parameter could explain different tra-
jectories measured during "identical”
test shots.

ADDITIONAL TRAJECTORY CALCULATIONS

FPigure 13 which shows a poor
comparison between test record PS-93
and calculation Run #80-23 illustrates
the difficulty in predicting trajectory
calculations. However, when the
unbalance pressure was arbitrarily
halved the calculated motions compared
well with the test record.

Regardless of the quantitative
merits of the calculations, the effect:
of varjations can be studied. For
example, Fig. 14 shows the favorable
influence of removing the 4th seal (Run
#80-20) and removing the first 4 seals
(Run #80-18) when compared to the base
case. The lateral deflections are
reduced by removing seals.

TABLE 3
Data for PS-80 Computer Simulations (Tether = 4000 1lb, Tilt = 5°)
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Figure 15 shows how the
lateral deflections are reduced to
acceptable levels when stiff upper pads
(pads 7, 8) are considered. 1t is
likely that a fix such as this would
correct the stability problem regard-
less of the seal designs. The lateral
excursions are only slightly greater
than the optimum case when all 6 seals
are removed (Run #80-22).

Figure 16 contains test and
calculated deflections for shot #413
where tilt and tether load are directed
towards conduit (270° plane). The com-
parison is good for most of the trajec-
tory with the calculated response
showing some oscillation that most
likely would be eliminated if pad
hysteresis were included. Also, the
calculation is somewhat over-predictive.
The tilt and tether load in the direc-
tion of the conduit appears to improve
the lateral motions.

CONCLUSIONS

The investigation reported
herein establishes that C4 missile
trajectories can be calculated with
sufficient accuracy to match Peashooter
tests in spite of the complicated
destabilizing seal forces if calibrat-
ing the model is permitted. By adjust-
ing certain variables over a narrow
range of physical values a close match
can usually be obtained. The extreme
sensitivity of the calculations to
slight variations in key parameters,
which are not precisely known, make it
virtually impossible to predict exactly
the trajectory motions without cali-
brating. However, qualitative effects
can be studied confidently and with
available test data trajectory calcula-
tions can be a valuable design tool.

Both test and calculated
trajectories indicate the factors which
adversely affect the lateral stability
during a launch:

1. Destabilizing seal forces caused by
seals inverting onto the pads (par-
ticularly the 4th and 6th seals).

2. Destabilizing non-uniform pressure
load which occurs once the missile
passes the 6th seal because of
migssile eccentricity in the tube
and flow past the muzzle seal (this

force may be small and insignificant

in a tactical underwater launch).

3. The azimuth effects of the pads
strongly influence the initial
transients.

Removing seal forces resulted
in significant reduction in lateral
deflections: eliminating all 6 seal
forces and the destabilizing pressure
load gave deflections less than 0.2 in.

Increasing the stiffness of
the top 2 pads provides a possible
method of limiting the missile deflec-
tions even with destabilizing seal and
pressure forces present. Preliminary
calculations indicate that the forces
exerted on the missile by the stiffer
pads are less than present design.
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ANALYSIS OF SUBCRITICAL RESPONSE MEASUREMENTS FROM

AIRCRAFT FLUTTER TESTS

J. C. Copley

Royal Aircraft Establishment
Farnborough, Hampshire, England

Transforms are discussed.

data are given.

This paper describes a method for the analysis of sub-
critical response measurements obtained during aircraft
flutter tests. Suitable forms of input signal, and the
derivation of transfer functions using Fast Fourier

The transfer functions are
subsequently analysed to give frequency and damping
estimates., Because the effects of atmospheric turbu-
lence degrade the measurements, and hence the estimated
parameters, a method for assessing the magnitude of the
accuracy of the estimates is developed. Examples of the
application of the analysis method to typical response

INTRODUCTION

An important part of the design of
an aircraft is the avoidance of flutter
within the intended flight envelope.
Initially the designer must rely on
theoretical calculations, but these are
followed by wind-tunnel model tests and
eventually a flight flutter test to con-
firm that satisfactory flutter margins
have been achieved.

In the simplest form of these
tests, the aim is to determine the
critical conditions at which flutter
occurs. One experimental approach is
the 'peak hold' technique, in which the
power spectrum of the response to turbu-
lence is monitored. This can provide an
indication of the critical conditions,
and possibly of system frequency and
damping trends. An alternative approach
is to measure the trend of significant
system properties at a set of subcriti-
cal conditions. A known excitation is
applied, and various responses are
measured. The data may then be analysed
to provide numerical values for system
frequencies and dampings. These allow
the approach to flutter to be monitored,
and allow an assessment of the validity
of theoretical calculations.

The analysis may be performed in
many ways (see for example [1];
this reporxt describes a technique of
fitting to system transfer functions in

199

the frequency domain. This is similar
to the approach adopted in modal analy-
sis of structures but the nature of air-
craft flutter makes the analysis more
difficult. The modes may be close in
frequency and/or highly damped, and in
some cases a lightly damped mode obscures
a significant heavily damped mode. A
further complication is that atmospheric
turbulence introduces errors into the
response measurements which affect the
accuracy of any estimates of frequency
and damping. A method is given here for
the estimation of the magnitude of
possible errors.

TRANSFER FUNCTION MEASUREMENT

Before considering the problems of
transfer function analysis it is appro-
priate to examine how the transfer
functions may be measured. The avail-
ability of Fast Fourier Transform tech-
niques applied to digitally sampled in-
puts and outputs has contributed to the
achievement of short test times. Many
possible input signals may be used, the
commonest being slow or fast frequency
sweeps, pseudo random or periodic random
noise, or impulses. Use of pseudo ran-
dom noise requires the introduction of
windowing [2]and possibly overlapping of
successive records during the data pro-
cessing in an attempt to minimise the
effect of leakage. Slow sweeps may be
similarly treated [3]. The effect of
these additional operations on the
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measured transfer function is not easily
calculable, but empirically it has been
found to introduce errors. For periodic
random noise, fast sine sweeps, and
impulses, it is usually possible to
ensure that, for practical purposes,
conditions for a leakage free measure-
ment are met. Fast sine sweeps and
periodic random inputs are normally pre-
ferred because it is relatively easy to
control their spectral energy
distributions.

Calculation of transfer functions
from input and responses may be perfor-
med using standard techniques [2]. It is
desirable to use as many independent
records as flight conditions and consid-
erations of test time permit. The
coherence function may be used as a
method of assessing the accuracy of the
transfer function measurement, but in
aircraft flutter testing there is
usually little that can be done to
improve measurements where the coherence
is low.

TRANSFER FUNCTION ANALYSIS

The aim of the analysis process is
to determine numerical values for the
parameters of a suitable theoretical
expression so as to provide the best
representation of the measured transfer
function.

Using the British form of flutter
equations, the response of the system to
a sinusoidal input Qelvt may be
calculated from

(- Iw2 + iwB + C)g = Q (1)

where B and C are square matrices,
g 1s a column of generalised displace-
ment coordinates and Q is a column of
generalised forces. Eq. (1) is the
usual equation of motion for an n de-
gree of freedom system with viscous
damping. The transfer function of the
?ystfm it represents may be written
4,7

F + iuwG
Hp(im) = i pj pj (2)

2 2
+ 2 Wwe + oW
j=1 w iwCJwJ wy

for any position p on the structure.

Eg. (2) includes all the modes of
the system, but the experimental data
may only contain a few of them. The
modified form
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F + 1uwG
Hp(iu) = Z -3 Pl pi 2
j=1 -u" + 21ucjuj + mj
X + iwY
+ Fy + 1uG + £ P (3
»

i8 therefore used as the model. The sec~
ond and third terms on the right hand
side represent contributions to the
response in some frequency range from
modes above and below that range. The
difference between the measured transfer
function Hk at frequency wye and the

theoretical model is

e = H

K " Hp(iwk) . (4)

To obtain estimates of the model
parameters the weighted summed square e
is minimised

n

*
e = éi e ¥, er (5)

is the number of data points,
and Wy is the weight attached to point

k . If measurements of more than one
transfer function have been made, the
summation is taken over all available
data to ensure consistent frequency and
damping estimates. To minimise ¢
requires solution of

where n

€ = 90

9
7%, 1 €1 < n, (6)

where x represents the n, distinct

parameters of Eq. (3).

Egs. (6) are nonlinear, and are
solved iteratively by the Gauss-Newton
method. 1If the solution is & , and the
current estimati< of x 1is x , write
X = x+48x . Then

de A €
O=—(x)=_(x+5x)
ax1 ax1 -
32 -
L3 € )
= .5 (X) + 6x, ——— (Xx) e
X, 3 axiaxj .d
4
or - e
sx = - R lp (7 e
where R 22 (x) and P = -3 (x)
ij axiaxj ax, ‘
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Hence x is updated, and the pro-
cess repeated until convergence is
achieved. The convergence is determined
by monitoring the error ¢ , rathsr than
the individual values x; . This itera-
tive solution is numerically well behaved
provided suitable initial estimates for
frequency and damping values can be
obtained. It may be possible for the
engineer to supply satisfactory initial
estimates, but in some circumstances (eg
close frequencies) this is difficult. In
such cases estimates are found using the
polynomial ratio method proposed by
Sanathanan and Koerner (5]. This
linearises the least squares fit equa-
tions, and therefore allows estimation
of parameters directly without any prior
knowledge of the system. Experience has
however shown that the equations invol-
ved may become ill-conditioned for
systems with many modes. To avoid this,
each frequency range where the transfer
function has a large amplitude is anal-
ysed separately, and the estimated fre-
quencies and dampings assembled to pro-
vide initial estimates for the subsequent
iterative solution.

ACCURACY OF RESULTS

Transfer function measurements
obtained during flutter tests are
inevitably dggraded by the effects of
atmospheric turbulence which will affect
estimates of frequencies and dampings.
The coherence function gives an indica-
tion of the accuracy of the basic
measurement, but this indication cannot
easily be extended to the parameter
values. Useful results may however be
obtained from an analysis of the statis-
tical properties of the least squares
fit.

If the errors e at each separ-
ate data point are uncOrrelated, their
covariance matrix may be written

Vie) -= E(e*el) = o2y (8)

where V is a diagonal matrix express-
ing the expected magnitude of the errors
at each point. 1If the matrix W of
Eq. (5) is taken to be V-1 , then it
may be shown [6] that

E(x - x) = 0 (9)

where x, is the true solution and x
the 1den§1f1ed solution (ie the results
are unbiased),

2 2¢
A T (10)

v

is an estimator of o2 , and the covar-
iance matrix of the parameters

Vikx) = z[(i "c’(i'“c’T] = sr7! (11)

Egs. (10) and (11) allow the esti-
mation of the variance of the ith

parameter
fo=1
3y = S Rii . (12)
If then x is assumed normally distri-

buted, con*idence intervals may be
calculated, eg

pr{ii -2, Sx; Sk + 2oi} > 0.95 .
t

In practice, V is unknown, and
scme arbitrary choice must be made. For
flutter tests, the effect of turbulence
may be represented as an additional
unknown input to the system. As a first
approximation, the response to this extra
excitation will be large at frequencies
where the response to the known forcing
is large, thus we may take

Je « |H

Kl !

or
1
W, = TR .
k Hka
RESULTS

The analysis method described has
been applied to data from several
flutter tests. The two examples presen-
ted are both wind tunnel model tests in
which a control surface was used to pro-
vide the forcing. The first results were
obtained from a low speed binary model
in a low turbulence tunnel, with fast
sine sweep excitation. The transfer
function measurements are of good
quality (Fig 1), and this is reflected
in the estimated frequency and damping
values (Fig 2).

The second set of results are from
tests on a high speed model (M = 0.8)
where the excitation signal was periodic
random. This aeroelastic model has many
degrees of freedom, but results are
presented only for the two modes concer-
ned in the flutter. The transfer
function measurements are obviously
badly degraded by the response to tur-
bulence (Fig 3), but the estimated fre-
quency and damping values show good
agreement with theoretical calculations
(Fig 4).




To assess the validity of the
estimated confidence intervals, the
transfer fumction of the low speed model
vas measured one hundred times at a
fixed condition, and each transfer 2.0
function was analysed. The variance of ‘
each paramster was calculated from the
separate sstimates, and compared with
the estimated variance. EKach separate
analysis also gives a confidence
interval; the aumber of times this
failed to include the true value was

counted. Por a 93% confidence interval, Transducer A Numbers against
there should be about five such failures points are frequencies

in one hundred msasurements. The results in Hz

of these calculations are given in
Table 1, and indicate that the estimated 22

variance and confidence intervals are (\
valiad.

CONCLUSION 7.6

This paper has described a method
for the analysis of transfer function
measurement obtained during flutter
tests. The information available from
this analysis gives valuable insight Transducer B X
into the behaviour of the system, and
provides guidance in the conduct of the

test. The analysis gives quantitative Fig 1 Transfer function plots for low speed

data that may be compared directly with model V = 0.78'IVF
earlier theoretical calculations, and

provides quantitative estimates of the

accuracy of that data. .
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SYMBOLS o

B modified damping matrix °
(o] modified stiffness matrix - SF °
E() statistical expectation £
F_,G terms describing residual
p P contribution of other modes at

position p ; :
F 57 effective forcing of mode j at “
Gp position p

~N -

P

H_(iw) theoretical transfer function at 0 N 1 s L N
P position p oS 06 07 08 09
measured transfer function at

frequency Wy sop l

-]
L

unit matrix
defined by Eq. (7)
column of generalised forces "1
defined by Eq. (7) l
defined by Eq. (10)
diagonal matrix defined by
Eq. (8)

() statistical covariance matrix
a diagonal matrix whose terms
are W,

terms describing residual con- L] ¢ i
PP tribution of other modes at . . ¢ i,
position p '
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np number of experimental data Scaled speed
points

n, number of parameters in Eq. (3) Fig 2 Subcritical frequencies and dempings

for low speed mode!




column of generalised
displacements

vector of parameters of Eq. (3)
element of x

estimated value of x
true value of x

sum of squares of errors
damping ratio of mode 3j

measure of experimental variance
angular frequency
frequency of mode Jj

Superscripts
* complex conjugate
T matrix transpose
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TABLE 1
Standard Deviation Estimates for Measurements on Low Speed Model

Standard Deviation

Failure
Mode Mean
Measurement | Prediction Count
1 Frequency (Hz) 5.24 0.0730 0.0795 5
Damping (% critical) 24.8 1.66 1.48 10
2 Frequency 7.20 0.0099 0.0097 11
Damping 3.41 0.127 0.133 4




AIRCRAFT RESPONSE TO OPERATIONS ON RAPIDLY REPAIRED
BATTLE DAMAGED RUNWAYS AND TAXIWAYS

Tony G Gerardi, Aerospace Engineer for the Structures and Dynamics
Division, Air Force Wright Aeronautical Laboratories
at Wright-Patterson Air Force Base OH

and

Lapsley R Caldwell, Lt Col, HAVE BOUNCE Project Manager, Air Force
Engineering Services Center at Tyndall AFB FL

In a theater of war, airbases will be prime targets of attack. 1In
order to launch and recover our aircraft in retaliation, rapid repair of
damaged surfaces is required. Current Air Force Requirements (AFM 93-2)
call for the repair of a 15.26m x 1524m (50 x 5000 ft) Minimum gpetatlng
Strip (MOS) within four hours after the ‘attack, These rapid repairs will
be made using aluminum AM-2 mats and will result in a surface that is
rougher than normal and consequently higher than normal loads will be in-
duced into the aircraft. The question of how much surface roughness can
a given aircraft configuration tolerate, arises. To answer than question
Air Force preoject HAVE BOUNCE was born. The goals of project HAVE BOUNCE
are to determine the ground loads capabilities of each aircraft. The .
planned approach for reaching these goals is through computer simulation,

of this paper is to summarize the Rapid Runway Repair/aircraft response
effore.

flight testing, and subsequent repair criteria development., The objective

CTION

In a theater of war, airbases will be prime
targets of attack. 1In the European theater,
threat analysts suggest very extensive damage
to runwavs, taxiways, command posts, choke
points and other important targete. As illus-—
trated in Figure 1, hundreds of craters result-
ing from general purpose t 'mba, cannon and
rocket fire damage, delayrd fuse bombs above
and below the surface, live anti-personnel
weapons littered on the surface and other
special runway denial weapons can be expected
during an attack. In order to launch and
recover our aircraft in retaliation, rapid
runway repair teams must construct a Hxnimum
Operating Strip (MOS).

Before the repairs can begin, however,
damage ansessments must be made, the unexploded
ordinance must be removed, a command post muat
be set up and a site for the MOS must be
gelected, This is all part of the Air Force's
Rapid Runway Repair (RRR) Program which is a
subset of a Base Recovery After Attack (BRAAT)
Plan.

Current Air Force requirements (Reference
1) call for the repazr of a 15.24m x 1524m
(50 x 5000 ft) MOS using aluminum AM=~2 mats. ~—
The repaired surface will result in a runway
that is rougher than normal and consequently

TARGETS
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Fig. 1 - Airfield After An Attack

higher than normal loads will be induced into
the aircraft. The question arises as to how
much surface roughness can a given aircraft
configuration tolcrate, To answer that ques-
tion, Air Force project HAVE BOUNCE was born.

HAVE BOUNCE is a subset of the Rapid Runway
Repair Program and its objective is to estab-
ligh rumway repair "smoothness" requirements.
Figure 2 typifies an AM~2 mat bomb crater




repair. After backfilling with debris, select
fill materisl is compacted in the last .3048m
(12 inches) of the repsir. Finally, the AM-2
mat, vhich is assembled off the rumway, is
towed into place and anchored to the rumway
with bolts on the leading and trailing edge
tamps. A full size AM-2 mat is 23.77m (78 ft)
x 16.46m (54 £t) x 3.8cm (1.5 inches) high.
The leading and trailing edge ramps are 99. cm
(45 inches) long. Notice that some upheaved
pavement vill remain and that crater settling
vill occur compounding the roughness problem.
Other types of repairs, such as crushed stone
with membrane covers are also being considered,

Fig. 2 - Cross Section of Repaired Crater

The objective of this paper is to describe
the approach being taken in HAVE BOUNCE, pre-
sent the status and plans for the future and to
solicit fresh ideas relating to the problem
from the shock and vibration community.

APPROACH TO HAVE BOUNCE

The goals of project HAVE BOUNCE are to
determine the ground roughness capability of
wost aircraft currently in the USAF inventory
and to establish surface "smoothness" repair
requirements based on those aircraft capabili-
ties. The planned approach for reaching these
goals is through computer simulation, flight
testing, and subsequent development of repair
criteria.

SIMULATIONS: Unvalidated or partially
validated computer programs mathematically
describing the dynamic response of an aircraft
traversing rough surface profiles are used to
identify potentially unsafe test conditions.
In addition, these models limit the testing by
eliminating unnecessary (low response) tests.
Finally, they are used to identify suspected
critical sircraft structures.

FLIGHT TESTS: Armed with the knowledge of
vhere and how to instrument the aircraft and an
established matrix of test conditions, a fully
instrumented aircraft is used to validate the
mathematical model. In addition, testing pro-
vides for a dynsmic demonstration of sircraft

capabilities in the ground enviromment.

REPAIR CRITERIA: Using the fully validated
computer program, surface repair criteria can
be established and distributed to the RRR crews
in the operational commands. The repair
criteria will be designed to provide maximum
repair speed and flexibility.

SIMULATIONS

Mathematical modeling of aircraft during
ground operations is not new. These models vary
in complexity from simple linear single degree
of freedom systems to very complex, flexible
models incorporating all of the tire and strut
non-linearities. Reference 2 from the 47th
Shock and Vibration bulletin contains a mathe-
matical model developed at the Air Force Wright
Aeronsutical Laboratories. Figure 3 is the free
body diagram used to develop that mathematical
model. This computer program known as TAKI is
one of those being used in the HAVE BOUNCE
program.

Fig. 3 - Simulation Mathematical Model

F-4E TEST EFFORTS

Most of the work done so far has been on the
F-4 aircraft. Beginning in 1977, a simulation
study by the Boeing Company (Reference 3),
indicated that the F-4 aircraft could exceed
certain structural limits when traversing AM-2
mat repairs. Multiple bomb damage repairs in
particular could produce excessive loads when
traversed at speeds that tune the bump wave-
lengths to the aircraft's natural frequencies,

The results of this study generated a great
deal of interest in the operational commands
USAFE, TAC, etc. This interest led to more com-
puter simulations and finally to two F-4E test
programs. The first test program (Phase I)
completed in 1978, (Reference &) verified that
excessive loads could be induced into the air-
craft as predicted. In addition, Phase I tests
verified that certain changes in strut servicing
could dramatically improve the F-4's ability to
traverse rough surfaces.




Pigure 4 shows a time history of measured
vertical load for the left main landing gear
for standard and modified strut servicing.
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Fig. 4 - Comparison of Measured Response for
the Standard and High Pressure
Strut Servicing
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By increasing the wain landing gear upper
chamber precharge pressure, the F-4's tolerance
to rough runways is dramatically improved. The
F-4 main landing gear (MLG) was designed for
high sink speed aircraft carrier landings, not
for taxiing. These two design conditions work
in opposition to each other. When taxiing, the
F-4 MLG strut has only 1.27cm (.5 inch) of
stroke remaining which results in a very stiff
suspension with little energy absorbing capa-
bility. By servicing the upper chamber of the
strut with higher pressure so that 7.62cm (3
inch) of stroke remains, the aircraft is sus-
pended on a much higher (softer) portion of the
load stroke curve sgs shown in Figure 5. This
increase in pressure lowered the F-4's heave
(vertical translation) frequency from 1.9 to
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Fig. 5 - F~4 Main Landing Gear Load
Stroke Curve

Phase II testing of the F-4E (Reference 5
and 6) was completed in 1980, Using more soph-~

isticated instrumentation in Phase II, dynsmic
response of aircraft components such as exter-
nal stores was measured. Simulations (Reference
7) predicted that high loads would be measured
on the outboard pylon carrying either fuel or
bombs. Figure 6 shows that for all speed ranges
pylon loads were well under those predicted.
There is still uncertainty as to why the exter-
nal store predictions were incorrect, but
improper representation of pylon preload is
suspected. Computer predicted vertical loads
for the landing gear compared favorably to
wmeasured values. Figure 7 is a plot showing
peak main landing gear vertical loads, pre-
dicted curves and measured data (dots and
squares), for the full ground roll speed range
of the F-4E,
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Fig. 7 - Measured vs Predicted
Main Landing Gear

A great deal was learned with the extensive
F-4E testing and simulation efforts:

1. Rough runway repairs can induce exces-
sive loads in the F-4 aircraft.

2. Simulations can accurastely predict F-4
rigid body response.

3. Strut servicing changes can improve the
F-4's rough surface operational capability.




4, Current simulations did not predict
F-4E pylon response accurately.

OTHER TEST EFFORTS

The C-141B and C-130K aircraft have also
undergone HAVE BOUNCE testing. Both aircraft
show a greater tolerance to opersation on rough
surfaces than the F-4. Unlike the F-4, the
nose landing gear (NLG) vertical load was the
parameter that was most critical for these
aircraft. Both the C-141B and the C-130K
responded primarily in pitch rather than heave
and therefore, NLG loads were of concern under
resonant conditions. In addition, the large
pitching moment caused by hard braking, as
during landing rollout, will result in high NLG
loads, which when coupled with a repair mat
encounter can cause excessive NLG loads. The
braking condition is difficult to simulate
because of anti-skid and pilot inputs. The
spproach taken hss been to assume a constant
hard brakes application. It is conceivable
that the pilot would attempt to control the
pitching during landing impsct by proper brake
applications.

Results indicate that significant engine
pylon motion occurred during some of the C-1618
testing and some relatively high response was
measured on the C-130 wing. This was expected
for these more flexible aircraft structures.
Plots of predicted and measured values for the
rigid body and flexible responses of the C-141p
and C-130K aircraft are shown in Figures 8
through 11, Figure 8 is a plot of peak NLG
load versus velocity for the C-141B traversing
two full length AM-2 mats spaced 21.3m apart.
The predicted values were acceptable below 80
knots, but above 80 knots test data shows that
NLG peak loads bsrely exceqd static value.
Figure 9 shows the engine pylon response for
the same test conditions. Here braking tests
produced pylon responses well in excess of
those predicted particularly at 57 knots. The
C-141B simulation program will be modified
based on test results so that more accurate
predictions can be made.
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Fig. 9 - C-141B Engine Pylon Peak Vertical
Response

The C-130K simulations were more accurate
as can be seen in Figure 10 and 11 where sim-
ulated (dotted) and test (solid) time histories
are compared for the NLG vertical load and wing
root vertical acceleration respectively. Peak
values are within a few percent.
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Fig. 10 - Measured and Simulated C-130K
Nose Landing Gear Loads
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RAPID RUNWAY REPAIR (RRR) CRITERIA

Based on the test results and thousands of
simulations using F-4 computer programs, in-
terim rapid runway repair criteria (Reference
8) was prepared and delivered to the operas-
tional commands for the F-4E aircraft. Repair
criteria for the C-141B and C-130K have not
been generated at this time.

The F-4E repair criteria were designed to
give repair crews maximm flexibility in an
effort to reduce repair time to & minimum and
as a result, these criteria are somewhat com-
plex.

The basis for the repair criteris is de-
tuning the F-4E to the bumps. Knowing the
aircraft's speed versus distance down the run-
way for a takeoff roll, certain limitations can
be established. Figure 12 is a plot of an
F-4's speed versus distance down the MOS. The
repair quality and multiple repair spacing
requirements depend on vhere they are located
on the MOS.

Fig. 12 - F-4/MO8 Repair Criteria

Repair quality ranges from an "A" where no
upheaval or settling are permitted to "E" where
7.6cm of settling (sag) and upheaval are per-
nitted. The mat height will add another 3.8cm.
For the F~4E sample shown in Figure 12, in the
first runway section sag in a full length
repair would act as a second bump encounter and
therefore resonance could cause excessive
losds. Beyond the initial section, the air-
craft’s speed and frequency of response will
allow the aircraft to "fly" over the sag,
therefore a "C" (3.8cm high with sag permitted)
quality repair is sufficient.

During the period where rotation is initiated
and until a full 12° angle of attack is achieved,

lift is building fast. As the struts are being
unlosded, the sircraft becomes more and more
tolersnt to rumway roughness thus permitting
rougher (D" or better in Pigure 12) and
consequently faster bomd crater repairs.

The spacing between repairs was based on a
four second “time to damp" criteria. Test data
show that four seconds after an initial bump
encounter sufficient damping takes place that a
second bump encounter can be treated as a
single bump.

Since this repair guidance is based on the
speed of the aircraft as it traverses the MOS;
density ratio, wind, aircraft gross weight
and center of gravity will affect the repair
procedures. In fact, as shown in Figure 12,

the MOS applies only to the F-4E aircraft.

" This interim runway repair criteria, which
was delivered to the operational commands is
tailored to specific conditions, it is complex
and somewhat conservative. It was designed to
provide the officer in charge with MOS selec-
tion criteria and the repair crews with maximum
flexibility so that an acceptable MOS can be
constructed in a minimum length of time.

One of the major stumbling blocks associ-
ated with the HAVE BOUNCE Project is the trans-
formation of predicted aircraft dynamic
regponse into runway repair criteria. Consid-
ering that many different aircraft types and
configurations will operate from a variety of
runway repair shapes and sizes, establishing
repair criteria for a MOS that is acceptable
to all of these variations is increasingly
difficult. One purpose of this paper is to
solicit fresh ideas from the shock and vibra-
tion community on how to present MOS selection
criteria and repgir procedures to the opera-
tional commands.

NATO INVOLVEMENT

The RRR problem is in reality a NATO prob-
lem. Following an attack, aircraft from many
nations will be operating on various types of
repairéd surfaces. The British use aluminum
class-60 repair mats, the Federal Republic of
Germany (FRG) uses the U.S. built AM-2 mats,
etc. It becomes evident with the large air-
craft/repair matrix, that an "international"
roughness criteria needs to be established

This subject was addressed at the Advisory
Group for Aerospace Research and Development
(AGARD) specialists meeting in Williamsburg,
Virginia in the Spring of 1979 and in Cologne,
Germany in the Fall of 1979. The enthusiatic
tresponse from all nations represented has led
to two AGARD specialists meetings on the sub-
ject. 1In the Spring of 1981, a half-day
"precursor” meeting which highlights the run-
vay/airfield aspects of the problem is plenned
to be held in Turkey. A full two-day wmeeting
in the Spring of 1982 which will complete the
treatment of runway/airfield aspects and add
considerations of: landing gear, structural
and dynamic analysis and testing, ground and
flight operations, and design criteria. The
Spring 1982 meeting is planned to be held in
Portugal. AGARD's intent is to provide a
clearinghouse of informstion on the subject,
bring the experts together and help define
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solutions to the runway denial problem within
NATO.

ness", Gerardi, Tony G, Wright-Patterson
Air Force Base OH, September 1977

ROUGH RUNWAY TEST PACILITY 3. "Roughness Criteria for Bomb Damage Repair
of Airfield Pavements", Kilner, J R, Boeing
The Air Force Wright Aeronsutical Labora- Commercial Airplane Company, Seattle WA,
tories is considering the development of a Report CEEDO-TR-77-30, February 1980
large facility (Figure 13) capable of simula-
ting an aircraft traversing a rough surface. 4. "“HAVE BOUNCE Phase I Test Results”, Redd,

The project called Aircraft Ground Induced
Loads Excitation (AGILE), will counsist of

L T, and Borowski, R A, Major, Edwards Air
Force Base, California, AFFIC-TR-79-1, 6510

large computer controlled hydrsulic shakers Test Wing, California, April 1979.
capable of inputing large amplitude, multi-

ple bumps into each landing gesr of am instru- 5. "HAVE BOUNCE Phase 1I Test Results",
mented sircraft. AGILE could not completely re- Edwards Air Force Base, AFFIC-TR-80-4,
place flight testing, but could significantly David C Lensi, Captain and Borowski,
reduce it as well a3 add some capabilities that Richard A, Major, June 1980, Final Report

are unattainable from flight testing. 6. "HAVE E Phase IT Test Results Spall _

Tests", Edvards Air Force Base, AFFTC-TR-
80-4, Redd, L Tracy, September 1980, Final
Report

7. "Digital Computer Program for the Predic-
tion of Taxi Induced Aircraft Dynamic

Loads", Boeing Military Airplane Develop- ol
ment, F08635-76-C~0102, July 1979 -
8. "Interim Guidance For Surface Roughness
Criteria", Caldwell, Lapsley R, Lt Col, and
Jacobgson, Frederick J, 2Lt, ESL-TR-79-37,
October 1979
rig. 13 ~ Aircraft Ground Induced Loads
Excitation (AGILE) Pacility
SUMMARY ) &
In summary, the Surface Roughness Portion of
the BRAAT problem carries a high U.S. Air Force
priority and has stimulated interest within
NATO,
The approach of using flight test validated -

computer programs to generate rapid runway re-
pair criteria has proven to be acceptable,

slthough slternate methods of presenting that
criteria to the repair crews are being sought.

Planning is underway to evaluate most air-
craft in the U.S. inventory with emphasis on
the tactical sircraft (F-15, P-16, A-10, etc).
Testing on the P~15 is scheduled to begin in
the Summer of 1981.

T
o
.

1. "Disaster Preparedness and Base Recovery
Plamning”, Department of the Air Force,
Washington D.C., AFR 93-2, July 1974

2. Shock and Vibration Paper, "Digital Simula- —
tion of Flexible Aircraft Response To
Symmetrical and Aeysmetrical Runway Rough-
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DISCUSSION

Mr. Seville (Structural Dynamics
Research Corp.): 1Is it just the noise
gear loads that establish the limits for
the aircraft? Or is it perhaps ride
quality or the ability of the pilot to
see?

Mr. Gerardi: It is going to be
dependent on the aircraft. For F-4 it
was the main landing gear that was
respounsible. In the C-130 and the C-141
the noise gear was the problem. We've
also other considerations for example in
the C-130, we had some fairly high wing
root loads. Also, pylons and stores are
things that have to be looked at. So it
is not just one item.




A METHOD FOR DETERMINING THE EFFECT OF TRANSPORTATION

VIBRATION ON UNITIZED CORRUGATED CONTAINERS

Thomas J. Urbanik, Engineer
Forest Products Laboratory,* Forest Service
U.S. Department of Agriculture

loads.

A unitized stack of containers in tramsit is susceptible to dynamic over-
loading due to vibrations in the transporting vehicle. The boxes' compressive
stiffnesses interact with the content masses to amplify or attenuate the vehicle
motions through the height of the column.
degree-of-freedom vibration system provides a method for evaluating it based on
its sensitivity to the frequencies inherent to the transportation environment.
This report presents the theoretical analysis of the analog that represents a
stack of containers and an example that carries the mathesatics through a package
design problem. To supplement the manual computations which are too time-
consuming for practical packaging design, a computer program--not imcluded
herein--is discussed. This program plots the transmissibility in each container
over a range in frequencies. An example using the program shows how to interpret
the plots and compsre the effects of transportation vibration on differeat unit

Modeling a unit load as a multiple-

ABBREVIATIONS USED

CPS = cycles per second

G = gravities

Hz = hertz

kN = kilonewton

kN/m = kilonewtons per meter

kN-s/m = kilonewtons x seconds per meter
1bf = pounds-force

Ibf/in. = pounds-force per inch

LBF SEC/IN. = pounds-force x seconds per inch
LBM = pounds-mass

Mg = megagram

" = millimeter

-I-2 = meters per second squared
N = newton
s = seconds

INTRODUCTION

Shipments of like packages have come
increasingly to be unitized for reasons of
economy. Mechsnically srranging and stacking
containers on a single pallet or other platform
offers the sdvantages of msechanized transfer
and storage with protection from the hazards of
manual handling. Thus, effective methods of
packaging can be used which do not require
dealing with the levels of shock typical with

*Maintsined at Msdison, Wis., in coopera-
tion with the University of Wisconsin.
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manusl handling. The unit arrsngesent,
although reducing the potential for shock
damage, requires greater consideration of the
damage which might be caused by vibration.

Even vhere dropping or impacting a package
does not occur, the product is still exposed to
transit vehicle vibrations enroute between the
manufacturer and recipient. And this most
probable source of damage becomes an environ-
ment over which the package designer has little
control; his option is to design vibration pro-
tection into the package system.

Shocks and impacts acting on single pack-
ages in simulated small parcel shipping envi-
ronments have been well analyzed in numerous
reports [5]. Some studies [3,4] have also
examined the damage susceptibility of corru-
gated shipping containers due to vibrationms.
But all these publications, although accurate
documentation of the pertinent vibration
theory, were still aimed at the single package
environment and are limited to a single-degree-
of-freedom analysis.

Where quantities of similar packages are
shipped as a unitized lot, a new approach to
the vibration anslysis is required. The vibra-
tion theory developed for the single parcel
environment may grossly underestimate the
severity of acceleration levels in a unitigzed
load. For example, the dynamics in a stack of
containers ten high on a pallet may approach a
modeled ten-degree-of-freedom system with ten
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critical frequencies, each being potentially
damaging.

Because corrugated boxes compress due to
their contained weights, they act like springs
and the resulting stack oatural frequencies may
fall within the range of the transportation
enviromment [3]. The weight of the product
supported by the resilient container behaves
like an analogous spring-mass system to amplify
or attenuate the vibratory sotion delivered to
its base. It is thus reasonable to evaluate
the effectiveness of a unit load based on how
well it protects both the product and the con-
tasiner from transportation vibration damage.
For instance often a product's component sub-
assemblies will necessitate avoiding accelera-
tion levels within certain frequency bands. Or
frictional holding forces must be maintained to
insure protection from load disarrangement and
subsequent stack toppling and product impact
damage. Also, the lower containers may require
protection from dynamic crushing.

This report was thus written to demon-
strate for package engineers how to apply the
fundamental theory for analyzing vibration
forces in a unitized load. It deals with the
most common shipping container, a corrugated
fiberboard box, and shows how to evaluate s
unit load of boxes for protection against
vibration damage. In essence, it presents a
theoretical method for predicting the criticsl
frequencies of s uait load, the saxisum sccel-
eration level, and the dynamic compression of
the bottom boxes.

To do this, this report uses the results
obtained by Godshall in the investigation of
the effects of vibration on single boxes [3]
and extends thea to a stack of boxes. It con-
siders the stacking configuration where boxes
on a rigid pallet are vertically stacked with
their corners alined, snd the box, not the
product, supports the load. It next uses the
theory in a computer program for plotting the
containers’' responses to vibrstion. Graphs
produced via this progras show how the damage
susceptibility of a unit load changes when
properties of box compression resistance, cor-
rugated damping chsracteristics, weight per
box, and stack height are changed.

I. DESIGN CONSIDERATION

The hazards of tramnsportation frequently
reveal themselves with toppled stacks and
crushed containers. Sometimes the damage is
concealed until the packaged product is put
into service. Given enough resources a shipper
can make trial snd error adjustments to the
package system until an effective method of
unitizing is determined. But analysis rather
than trial and error would improve efficiency.
Solving s typical problem shows how the results
obtained from an snalysis can be used to evalu-
ate the effectiveness of a unit load. The

214

appendix carries the problea through the de-
tailed mathematics; only the results are pre-
sented here.

A manufacturer finds his containers
totally disarrayed when unitized and shipped
via a particular carrier. The transportation
environment is monitored and he learns that a
significant input occurs at 0.25 G acceleration
at 5 Hz. Before adopting a new design and
suggested antiskid treatment, he requests an
analysis to learn if the new approach will
indeed solve the problea.

The new design calls for vertically alined

~boxes stacked four high on a pallet with each

box containing a rigid, fixed, nonload-
supporting content W weighing 246 N (55.3 1bf)
and an antiskid treatment applied to the top
and bottom flaps of each box. All boxes are
identically constructed, and from cyclic top-
to-bottom compression tests on similar boxes
the box stiffnesses are estimsted relative to
their equilibrium supporting loads. Also, from
vibration test observations it is estimated
that the box material contributes about 30 per-
cent of critical damping. To analyze the unit
load, first the contents are characterized by
lumped masses and the boxes, by spring and
damping elements. The pallet in this case is
effectively rigid compared to the stiffness of
the boxes. Thus, the four high stack (fig. 1)
is represented by a 3 degree of freedom model
where the weight in the bottom box and the
stiffness of the top box do not affect the
stack.

Then using the cyclic compression test
procedure given by Godshall in (3) the com-
tainer stiffnesses are linearized fros the com-
pression curves at

1 135 kN/a (771 1bf/in.)

106 kN/m (607 1bf/in.)

87.6 kN/m (500 1bf/in.)

These values and the weights of the contents
are used to predict the natural frequencies of
the system.

4.84 Hz

)
[}

-
"

12.7 Hz

18.5 Hz

o]
n

The excitation frequency at 5 Hz is close to
the first natural frequency of the box stack.

*
L]

+
Al
*

v T T e

R




Xetbtsin) ctivt-g/in)
88.3 Ipm
883 /om L4 [:[ $ - &89
&3 pm m 3 j.-' 83

=

Figure 1.--Schematic diagras of s four-high
stasck arrangement, showing the relation-
ship between a column of boxes and the
vibratioa sodel.

(M 146 029)

The analysis is therefore coatinued to deter-
mine if the dsmping sdequately reduces the
stack respomse to the S5 Hx wibration. A solu-
tion to the equations of motion with damping
considered gives the accelerstion level in each
container.

X - 6 oaed 141 268) 2 L g g 6 cos (31.48-1.168)
;z 2 8376000050 2 0 ks G ces (31.48-1.500)

Ky o 100 0141000 52 1y 13 6 cos (31.40-1.609)

The response ia the top box exceeds 1.0 G in
scceleration and bouwncing would occur, thus
sskiag the sntiskid trestment ineffective.
The design must either be sltered, or more
effective but costly methods of unitizing be
employed.

Oae cea also determine if any box has been
loeded beyond its seximum compression streagth

by exsmining the compressing load ¥ on a box
due to dynamic compression plus the equilibrium

supporting veight. With ksowledge of the rela-

tive displacements, D, between adjacent
containers’

P = ‘1'.’1 + 3 W =1307 ¥ (293.9 1bf)
P, = KD, + 2 W = 966.2 N (217.2 1bf)
P, = KD, + v - 501.3 N (112.7 1bf)

If no force exceeds the load-csrrying capacity
for the respective contaiser, the design is not
likely to fail from dynamic compression over-
losding.

I1I. COMPUTER PROGRAM FOR EVALUATING
UNITIZED LOADS

One can exsmine the response in a con-
tainer stack by repeatedly solving the egua-
tions of motion at different frequencies.
However, it can be more useful for design pur-
poses. to observe bow the response of the unit
load changes as one or more of the parameters
vary. Computer-plotted graphs can show verying
levels of product damage susceptibility acroas
a range of packsging options~-for imstaace,
with containers differing in mechanicsl proper-
ties and contained weights. Vibretional asmaly-
sis computer programs like thoge commercislly
available [6] are ususlly written to deal with
general problems beyond the preseat need so as
to have broad spectrums of sC.ptsbility. For
this reason, we have developed a specialized
program for the multiple-degree-of-freedom
snslysis described in this paper. (Due to
limitations of space, our program is not repro-
duced in this article, but may be requested
from the author along with all necessary defi-
nitions and subroutines.) The following dis-
cussion illustrates the utility of our progress
and say suggest the bepefits to be derived from
this and sisilar computer programs.

To illustrate the computer program iam a
quantitative comparison, consider again sn
example wvhere a package designer desires to
weigh the advantages between two palletiszed
loads for protection against a S5-Hz imput at
0.25 G acceleration. The situstion is similar
to that in the previous example--that is, four
vertically alined boxes, each containing 246 N
(55.3 1bf). Another alternative is to package
the product in stronger, larger boxes able to
contain 328 N (73.7 1bf), but vertically alined
in a three-high stack. Therefore, the pallet's
loaded weight is conserved slthough the product
is packaged and unitized differently.

The designer tests the two box types in
top-to-bottom compression to establish their
stiffoesses relative to their equilibrium sup-
porting loads, as suggested by Godshall {3];



figure 2 illustrates the results. On the
three-tier pallet, the boxes support 328 N
(73.7 1bf) at the second layer and 656 N

(147.4 1bf) at the bottom layer. Tangents
drawn to the solid line curve in figure 2 at
these ordinate values suggest relative stiff-
nesses of 117 (666) and 142 kN/m (810 1bf/in.).
For the boxes on the four-tier pallet sup-
porting 246 (55.3), 492 (110.6), and 738 N
(165.9 1bf) from top to bottom, their stiff-

trends are observed regarding the major ampli-
fication and attenuation ranges for the

0.3 critical damping analysis and are summa-
rized in table I.

The potentially damaging frequencies,
those amplifying the input by at lesst two,
have broadened from a band of 3.23 to 6.23 Hz
for the four-tier pallet to a band of 4.40 to
7.63 Hz for the three-tier pallet. Reducing

nesses may be similarly assumed from the dashed the stack levels has made the load sensitive x|
line curve in figure 2 to be 87.6 (500), 106 to higher frequencies. The attenuation region
(607), and 135 kN/m (771 1bf/in.). Each box is has also shifted to the higher frequencies for
roughly estimated to absorb energy at 0.3 times the three-level stack. However, the transmis-
its critical damping ratio, and the analysis is sibilities at the resonsat levels are changed.
supplemented with a comparison between 0.1 and Although the three-high stack is sensitive to
0.7 times the critical damping ratios. a wider frequency range, a greater input magni-
tude would be necessary to cause damage.
These physical parameters thus define the -
computer program input and are subsequently The decision to choose between the two
organized on cards following two executions. designs would be based on experience with
present designs and inferences from this
The plotted output from the two analyses experience regarding anticipated transportation
is produced in figures 3 and 4. The damping inputs. If the designer feels confident that
ratio used in an analysis may be recognized by the S-Hz vibration is the most prominent, a
extending a horizontal line from the last point decision to accept the three-high stack to -
in a dashed-line curve to intersect the bottom avoid high-level transmissibilities would be 2
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!
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Figure 2.--Top-bottom compression curves for two box types. Solid curve is for a box
designed to contain 73.7 pounds in a three-high stack; dashed line is for a box -
designed to contain 55.3 pounds in a four-high stack. -
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‘ % ,( %\ \ ” The significance of damping becomes appar-
s TN 2 RN | ent at the higher frequencies. At these fre-
e 3 - T " S - Y quencies, damping, which is proportional to the -
N 3 P base velocity, dissipates energy at an in-
H et \ i® creasing rate. It can be seen from the plots
= TSI ex for all masses that even for a lightly damped
7 *Pa ;g system of 0.1 critical, the responses at
N 8 natural frequencies beyond the first do not
B R e L 5 even approsch the severity of the first reso-
nant response. To the designer this suggests
FREQUENCY ThPuT (cre) that he may safely abbreviate his analysis by e
¢ Figure 3.--Vibrational analysis of a four-high examining only the first natural frequency.
stack arrangement using three containers
with different stiffness values and equal Further analyses can be performed by
masses. (Actual computer plots, but with determining if the bottom containers can with-
redundant labels deleted.) stand the dynamic compression-loading condi-
tion. The user may do this by adjusting cer-
(M 145 684) tain subroutines in the computer program to

LI

generate the relative transmissibilities be-
tween adjacent masses. The plotted output
would then be interpreted as the factors by f -
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Table 1.--Summery of 0.3 critical analysis es 3 and 4
Stack Klement Amplification, Atteauation, i
beight Mo. transmissibility > 2 transaissibility < 1 sibility
[ K
3 boxes 1 5.23-6.46 7.713 ,2.20
3 boxes 2 4.40-7.63 9.80 3.32
4 boxes 1 4.26-4.90 5.59 2.15
& boxes 2 3.58-5.64 6.61 3.63
4 boxes 3 3.23-6.23 8.23 4.72

which to multiply a displacement input magni-
tude to obtain contsiner compressions.

The dynamic compression loading value can
be conservatively determined by considering the
limiting csse of relative displacement between
the base and mass one. Adding this to the
statically supporting weight gives the maximum
force experienced by the bottom box. For an

ioput magnitude Y in G's at & frequency £ in
Hz, and a bottom container stiffness ‘1 in kN/m

the critical load CL can be determined from the
transmissibility in the bottom mass r:l.

.
9807 K. Y (Tr, + 1)
= ! 1 . ™
(2nt)

If this value is greater than the load-carrying
capacity of the bottom box, it will obviously
csuse failure and the design would be rejected.

For the four-high stack example, the
transmissibility at 5 Hz and 0.3 critical
damping is 1.82. Thus the critical load is

907 - ozsg;azox),,u',“””
(z $)

= 1684 N (378.1 1bf)

This compares safely with the exact value of
1307 N (293.9 1bf) determined in the previous
exsaple. Becsuse the msxisum compressive
strength of this box (fig. 2) is at least
3069 N (690 1bf), the critical load of 1684 N
(378.1 1bf), is well below the failure level.

II1. MULTIPLE-DEGREE-OF-FREEDOM
VIERATION THEORY

A mechanical structure may often be
modeled as s multiple-degree-of- feedom system
of lumped masses with adjscent linear cou-
plings. The solution to the system becomes an
expression for the displacement of each element
relative to time t in terms of some known
input. For the dynsaic systea shown in
figure 5, the input is a base displacement with
a harmonic motion of a constant amplitude Y at
the frequency w.

Y= ¥ cos (w) Q)

The snalysis will consider only the steady
state response that occurs after the imput has
been applied long enocugh for the transients to
dissipate. If linear stiffuess and viscous
damping are assumed, the output at each element
i will be a similar harmonic displacement at
the same frequency w with an amplitude X and
phase 0 from the input.

X = ii cos (wt + . ) )

For design considerstions it is usually desir-
able to express the selution in terms of the
transmissibility ‘rr‘ at each element, where

Tr, = X /Y 3)

By differentiating equations (1) sad (2) with
respect to time, it cam be shown that the dis-
placement truutnibuuy is equl to both the

velocity (X IY) and acceleration (X IY) trans-

-uuuuun Therefore, the response ratios
developed from a displacement iaput definme also
the response ratios when the input is expressed
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Figure 5.--Schematic diagram of a box stack modeled as a vibration system with

N degrees of freedom.
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in its acceleration mode. The modal shape or
pattern may also be of interest. This becomes

@/, &/, ..., & [2)

where = is selected to conveniently normalize
the series of numbers.

Of primary significance are the natural
frequencies of the system. For n degrees of
freedom there will be n frequencies where, if
damping is neglected, the input would produce
an infinite response in each element. Where
damping is considered, the system approaches
a maximum response near these frequencies and
is said to resonate.

The dynamics of the system may be modeled
by s series of differential equations ex-
pressing the summation of forces existing at
each element.

mX, = K (X)) ¢ €y (H-K)) - Ky (X -Ky) - €y(k, k)

My = KO X)) * €08, 5K = Ky (oK) - Coy Xy Kiay)

i

) .

HXy = KX X) ¢ 6Ky

Here, Ki is the resisting force due to a unit
compression, Ci is the resisting force due to
compressing at a unit velocity, and Hi is the

mass lumped at an infinitely small poimt.
Rearranging and collecting terms into & more
desirable form produces

(xlolz)xl * "l‘l * (cl . (:’)x1 - lzxz - czxz = '1' * c‘l

L LIREER R A AL TR R LR A CALINEA
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Expressing the hsrmonics in the real co-pouhta

of their complex notation equivalents (7) makes [(x,#K,) - ol ¢ ,u(clocz)]ile”l - [xzqu:z)ize-"z
the systes solution more readily attainable.
Accordingly:
= ll‘ojmllt
Y = iejm
- [li'jw‘]i‘_le"hl
¥ = ;|m§e‘m't

o LEKy) - wih, o sulc ec ) 1% 3%

x, =% oI (W)

i
% .
S LR RO E L
X, = ju!.l ej (M'“i)
i i
ii = -wziiej (we+o, ) - “-’-"“.linq'j:"l M "‘n‘”n"'z‘j"c-)i-‘j"' =0
If this system of equations is expressed
where j denotes the imaginary umit. in its equivalent matrix notation, matrix
With these substitutions, the system becomes algebra may be applied to extract the solution.
! The component expressions become:
. xR ed 00 - B S The (n x 1) output displacement matrix -
[ . |
< flwtee) | s jluned,) s j(wtes,) . N,
o guiepsc kel ) L xR SO0 L juc keI (%2 (x] = xlej.l
ok FeiWt F I -
K, 7el™ o juc,Fe % %2 i
2 .
o -k E SO TR B B Y :
v < jnee) < J(utee) % eI
i oK, ORI ) L TR 1
M j“'(cx’cux’it'“m“i) :
=
R s Je ) £ ei®n
- K”’X”le iel” - jut“lx“lc i*+1" = 0 L n B
the (o x 1) input displacement matrix
- Knin_leﬂm’.ﬂ-l) - Juﬂni._xe“"’n-l) _ - ‘
H v)=| ¥ &

% Wt ) | g J(were )
* l-xne .} uznnx.. a

‘. JuC X !j(m’.l) =0
) 0 %)

[

Collecting terms again snd dividing through

& each equation by ejm produces the final equa- the (n x n) diagonal mass matrix b e
tion system form.




the (n x n) stiffness matrix

— —
x]1 = ‘1"2 -Kz
-Kz K2+I3 -‘3

Kie1 5%y K

i+l

n n (6)

and the (n x n) demping matrix
[c] = C1¢C2 -C2 T

-02 (22"(23 -C3

“Ci-1 €4*Cie1 “Cim

n n ()]

The final mathematical model for the
dynamic response of the idealized vibrating
system becomes

[m - W)+ :-m] (x) = (X, + juc)) (Y] ®

wvhere the system displacement may be expressed as
-1

(x) = [m - win) + J-[c_;, X, e3uc,) (¥} ®

Because accelerstion transmissibility is equal
to displacement transmissibility, an equivalent
expression for the acceleration response
becomes

-1
ix) » [lll-’(n) . J-lcl] (%, + suc)) (1) a0

To express the response of each mass in the
form of equations (2) and (3), an element from
the displacement matrix of equation (9) takes
the form

- j.
xie i= a ¢ jbi

where a and b are resl nusbers. The amplitude
is calculated as

< 2. .2.1/2
X = (ay + b))

and the phase difference as
e =tan) (b,/a)
i i1

With damping neglected in equation (9), the
response becomes infinite when, according to
matrix theory (1), the expression

{x} - W)

is equivalent to the zero-filled matrix. The
values of w that satisfy this condition then
become the natural frequencies of the systea.

Appendix

The problem presented in the main text cam
be analyzed once the physical parameters and
systea input are defined.

The 3 degree of freedom model is subjected to
an input of 0.25 G acceleration at 5 Hz. Esch
element has a weight W of 246 N and it is esti-
mated that the box material comtributes sbout
30 percent of critical demping CCR vhere

_ 1/2
¢ r = 2M4K)

for each model element. The stiffnesses are
linearized from the static compression test
curves to be

135 kN/m

106 kN/m

3 87.6 kN/m

The matrices for solution may be set up
with appropriate units for compatibility. The
mass matrix is

M = wt(mn.u(-/-z)



ul s "2 = ua = 0.266/9.81

= 0.0251 Mg

(M) = |o.0251 o 0
0 6.0251 0

(] 0 0.0251
The stiffaess matrix is

[x) = | 260 -108 °
-106 194 -~87.6
4] -87.6 8.6

The demping metrix is
172
C, =0.3 x 2(0.0251 Mg = 135 kii/m)

= 1.10 ki - s/a

1/2

C, =0.3 x 2(0.0251 = 106) = 0.979 &8 - o/n

C, = 0.3 x 2(0.0251 x 87.6)1/2 = 0.888 M - o/m

(C}=| 2.08 -0.979 o
-0.979 1.87 -~0.888
o -0.888 0.888

The natursl frequeacies of the system mey
be calculated from the matrix formed by

(x) - wi(n)

Rquating the determinsat of this matrix to

zero, the values for Uz may be solved from one
of numerous techniques (8). Accordingly,

243 - 0.0251 -106 °
-106 194 - 0.0231 0.6 =0
0 -87.6 87.6 - 0.0251 »°

from which

-1.57 x 10°%8 + 3.28 x 107 1% - 1.65 x 10%2

v1.27210% =0

where the roots .2 become

‘12 = 930.5 o2

022 = 6,612, l-z

w2 1.3 x 10% 472

In appropriate units the natural frequencies
are

fl = 4.84 Nz
‘2 = 12.7 s

f, = 16.5 Rz

3

To iavestigate the effect of damping,
equstion (10) can be solved wvhen the values
with compatible umnits are substituted. Gom-
tisuing the snslysis,

w=3 Nz x 2r redisns

=31.42 8}

w! = 987.0 472

Y =0.25 G x 9.81 a/s2/C
= 2.45 w/s? a1)

The input acceleration matrix decomes

(r} =| 2.45
0
0

Real end imaginary components may be collected
separately.




(X) -t ] = | 217 -106 )
-106 169  -87.6
0 -87.6 62.9

wC] =| 65.4 -30.8 0
-30.8 58.6 -27.9

o -27.9 27.9

xlm =1 331

The matrix algebraic expression for the accel-
eration response is now formed:

(x) = By j65.6 -106 - §30.8 0
2106 - §30.8 169 ¢ §S8.6  -87.6 - 321.8
0 -87.6 - j21.9  62.9 ¢ j21.9
331+ §84.9
2 0
°

Without demonstrating the calculations, the
indicated matrix is inverted (2,8) and the
response becomes

(x] =] 19.7 - 120 -43.6- 3238 -92.3 - 3310

~63.4 - j238 -83.0 - j488 -3181. - 3§63

-92.3 - j310  -181. - §636 -201. - j877

0.0331 + j0.00849
x|o0

Finally

(x] = 1.75 - j6.10
0.587 - §8.24

-0.421 - §11.0 (12)

K, = 0.aee? OVATTI)L,2 4 g 6 6 cos (31.60-1.168)
X, = 8976330413000 2 £ g g5 6 cen (31.4¢-1.500)
iis = 11,00 (314816090, 2 L ) 13 6 cos (31.4t-1.609)

To determine if any box has been loaded
beyond its maximum compression strength, com-
bioe equations (11) asad (12).

x3-§2 = 2.3“.1(31-‘t-1.929)-/.2

;2_;1 = ‘.‘oej(Sl.bt-l.Su)./.z

X,-Y = &.16ed (31.4¢-1.741 )-/.2

From these the boxes' compressions may be ex-
pressed in terms of relative displacements, D.
Because harmonic displacement is a constant
sultiple of harmonic accelerstion, the con-
stants of integration are equal to zero.

$(31.6t-1.741)

D, = xl-y s -4.22¢ am = -4.22 um cos (31.42-1.741)

1

1.838)

D, = X,-X, = -¢.4bed 0184 = -4.46 ma cos (31.4t-1.838)

2 2

D, =X

g ® Xydy 229103 030-001.920) 5 91 me con (31.40-1.929)

The compressing load F on a box then becomes
the force due to dynsaic compression plus the
equilibrium supporting weight. Accordingly:

Po=KD +3w=1307 N
rz-xzﬁzozwcsu.zn

L x353 + W =S01.3 N
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ACOUSTIC ENVIRONMENT OM THE SURFACE OF A LARGE-SCALE
POMERED MODEL OF A VECTORED-ENGINE-QOVER-THE-WING
STOL CONFIGURATION

L. L. SHAN and S. Y. LEE*

Air Force NWright Aeronautical Laboratories
Flight Dynamics Laboratory
Wright Patterson, AFB 45433

ed conditions.

This paper presents the results of an acoustic measurement program on a
Targe, powered, highly maneuverable, supersonic STOL fighter model. The
mode! incorporated vectored-engine-over-the-wing (VEO) concept including
spanwise blowing to provide 1i1ft augmentation. This concept exposes portions
of the wing and flap structure to high fluctuating pressure levels. Twelve
microphones were installed on the surface of the model to define this en-
vironment. Six of these were specially developed high temperature trans-
ducers capable of withstanding up to 1093°C. The model was tested at NASA
Ames Research Center. Test parameters included engine pressure ratio, wind
tunne! dynamic pressure, angle of attack, yaw angle, flap angle and canard
angle. The effect of each of these parameters on the fluctuating pressure
environment was defined. The results show that levels as high as 167 dB
exist on the upper surface of the flap.

Levels resulting from a prediction
method in the 1iterature agreed with the measured values for only very limit-

INTRODUCTION

Several concepts exist which can augment
the life of an aircraft and thus provide STOL
capability. One such concept is the vectored-
engine-over-the-wing (VEQ). Over-the-wing na-
celles vector the exhaust over the flap giving
1ift augmentation. The concept includes span-
wise blowing which strengthens the leading edge
vortex thus delaying wing flow separations.
Both of these concepts were combined in a large
powered scale model, representative of a highly
maneuverable supersonic STOL fighter configura-
tion which was tested by NASA Ames in the 40X80

foot wind tunnel.!’) The model was powered by
two General Electric J-97 turbojet engines.

The exhaust was vectored by means of a two-di-
mensional, half-wedge convergent-devergent noz-
zle. The nozzle preturns the flow to 25° and
exhausts over the flap uppersurface, providing
exhaust vectoring capability. Sixteen percent
of the flow ahead of the nozzle was blown span-
wise (SWB) over the wing at an agle numinally
parallel to the 40° wina leading edge. Each
engine developed 9340N of thrust at a pressure

*Visiting scientist from the Agency for Defense
Development of the Republic of Korea under a
scientist exchange program.

ratio of 2.0 and exhaust temperature of 593°C.
The VEO concept has been jointly developed by

General Dynamics, USAF, and NASA. (2,3)

One penalty associated with 1ift augmenta-
tion by directing exhaust over wings and flaps
1s a significant increase in the fluctuating
pressure and temperature on these surfaces and
other nearby structure. It is necessary to de-
fine these environments so that the structure
can be designed to withstand them. Based on
this need an acoustic survey was performed to
determine the fluctuating pressure levels on
the surface of NASA's large scale powered
VEO/STOL model. The port side was instrumented
with twelve microphones. Six of the micro-
phones were capable of withstanding tempera-
tures up to 1093°C and temperatures as high as
704°C were observed. The main test parameters
and respective ranges were engine pressure ra-
tio (EPR) 1.1 to 2.Z, tunnel dynamic pressure

(q) 527 to 3016 N/m, angle of attack -8° to
36°, yaw angle -10° to 30°, and flap -10° to
30°. Acoustic data were obtained for most lo-
cations and test parameters. The data were re-
duced in the form of one-third octave band
spectra. The highest levels were measured on
the flap where overall levels of 167 dB were




recorded for the highest EPR. Levels on the
center section of the wing near the spanwise
blowing nozzle were as high as 150 dB. Total
variation of the levels over the range of EPR
values was typically 20 dB. The effect in in-
creasing dynamic pressure was to increase lev-
els approximately 4 dB. Angle of attack had
only a small effect on the levels. Variations
at all locations were less than 2 dB. Yaw an-
gle variations also had a small effect on the
Tevels. Flap angle affected the overall levels
approximately 3 d8. Comparison of the measured
data with existing prediction methods showed
only fair agreement.

MODEL DESCRIPTION

The NASA model tested was a highly maneuer-
able supersonic STOL fighter.
ported vectored-engine-over-the-wing (VEO)
which includes spanwise blowing (SWB), two-di-
mensional nozzles, canards, and an aft fuselage
control surface (beaver tail). Figure 1 and 2

show the model installed in the NASA Ames 40X80

‘4

A

Picture of Model in the NASA Ames
40X80 Wind Tunnel

FIGURE 1

The model 1ncor-.

foot wind tunnel where it was tested. Figure
3 illustrates the model and propulsion system
geometries. The model was powered by two Gen-
eral Electric J-97 turbojet engines. As shown
in Figure 4 16% of the exhaust was diverted in-
to the SWB duct where it blows spanwise over
the wing upper surface. The main flow is
through a2 2-D nozzle which preturned the ex-
haust 25° onto the upper surface of an adjust-
able trailing edge flap, providing total ex-
haust vectoring of -10° to +40°. Further de-
tails]about the model are available in Refer-
ence 1.

Picture of Model! Showing Nozzle
and Flap

FIGURE 2
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FIGURE 3 Details of Model and Instrumenta-

tion Location
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FIGURE 4 Sketch [llustrating Spanwise Blow-
ing Nozzle
INSTRUMENTATION

The port side of the model was instrumented
with twelve microphones. Six were standard
of f-the-shelf Gulton microphones Model number
10010028, and six were specially developed high
temperature microphones developed by Kaman Sci-
ences Corp. model number KM-2000. The low tem-
perature microphones can operate in tempera-
tures up to approximately 177°C while the high
temperature microphones can withstand tempera-
tures up to 1093°C. Approximate locations of
the microphones are shown in Figure 3. Two low
temperature microphones were installed on the
fuselage near the engine inlet, (number 1 and
2) two were on the vertical tail (3 and 4), one
was on the strake aft of the wing/flap trafling
edge (6), and one on the beaver tail control
surface (5). Three high temperature micro-
phones were installed on the wing, (10, 11,
12), two on the flap behind the exhaust nozzle
(7 and 8), and one on the aft strake (9). High
temperature microphone number 10, mounted near-
est to the SWB nozzle was inoperable during the
entire test. All of the other microphones were
operable most of the time. A complete descrip-
tion of the type of high temperature micro-
phones used is presented in Reference 4.

TEST PROCEDURES

The model was tested in the 40X80 foot NASA
Ames wind tunnel facility. The parameters dur-
ing the test were wind tunnel dynamic pressure,
angle of attack, yaw angle, flap angle, canard
angle of attack, and engine pressure ratio.
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During the test one parameter was varied while
all others were fixed, and the data recorded
for the range of the parameter. The ranges of
each of the test parameters are presented in
Table I.

TABLE I
DATA CLASSIFICATION
DYNANIC ANGLE OF SIDESLIP FLAP CANARD ENGINE
PRESSURE ATTACK ANGLE ANGLE ANGLE RATIO
o (PASCAL) | o (occaEe) | o (oesaee) | & (oEees) | ¢ (oecaee Y PORTRTRRBOAR
0 0 [} 30 1] 11 1.
to to
2.2
551~3040| -8 to 36 ] 30 0 1.9 1.9
2.1 2.1
s51, 1762 O, 20 -10 to 30 0 [] 1.9 1.9
2.1 2.1
5511 1762 | -8 to 36 [ k] 0 1.9
2.1 ouT
1106 0to12 0 3 410 to 20 2.3 2.1
551 3040 -8 to 36 [ -10 0 1.9 ;?
2.1 ;
851 20 -10 to 30 B[] ] 2.1 2.1

LOCATION EFFECT

HMicrophones were Yocated at twelve posi-
tions on the model as shown in Figure 3. The
overall acoustic levels from the eleven oper-
able transducer locatiuus showed as much as
40 dB variation. This is shown in Figure 5
where data for two jet Mach numbers of 0.70 and
0.78 are presented. The data spread for one
specific Mach number includes data for all
other parametric variations. The variation in
the overall sound pressure level from most of
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FIGURE § Comparisons of Data Spread from

all the Microphones
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the microphones was less than 9 dB. Micro-

phone locations 11, and 12 exhibited 12 dB data

spread. As would be expected the highest aver-

age levels occur on the flap, microphones 7 and °r
8. However, microphone 9, located adjacent to
the exhaust flow, shows average levels about
the same as on the flap. The lowest levels
occur at microphone 1 and 12 1located near the
cockpit and outer wingtip respectively. A sig-
nificant change in level between microphone
pairs 6-9 and 11-12, can be observed in the
figure. An explanation for the large change
between locations 11 and 12 is the spanwise
blowing. The levels clearly indicate that mi-
crophone 11 was in the spanwise flow while mi-
crophone 12 was not. The difference in the "
levels between microphone 6 and 9, both located
on the aft strake, is due to microphone 9 being
nearer to or in the edge of the jet flow while .
microphone 6 was inboard of the flow. Yo ) s

STROUMAL NO - td/V)
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-
]

1/3 OBSPL -~ OASPL

Figure 6 shows typical one-third octave

band spectra for each of the measurement loca- FIGURE 7 Typical Spectra Normalized with
tions. Variations in the spectrum shapes are Strouhal Number
. readily apparent. The peak frequency is seen
b to vary with location. The peak frequencies
L3 have been normalized with Strouhal based on JET VELOCITY EFFECT
: flap length, and typical spectra shapes are
, shown in Figure 7. In general, the spectra The model was powered by two J-97 turbojet
. display, a 20 dB/decade slope below the peak engines. They wer operated at jet exit veloc-
. Strouhal value and -8 dB above it. ities from 116 m/s to 458 m/s corresponding to
‘ Jet exit Mach numbers from 0.23 to 0.82. The
levels on the flap from microphone 7 are shown
in Figure 8. The first observation is that the
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overall levels increase 20 dB over this jet
Mach number range. The variation of the levels
with jet Mach number will be discussed more
below. A second observation is that the fre-
quency of the peak broadband level increased
with jet Mach number. The frequency for the
peak level corresponds to a Strouhal number
near 1.0, where the Strouhal number is based on
the flap length. The same value, for a similar
Tocation, was observed in Reference 5.

In order to evaluate the effect of jet ve-
locity on the OASPAL value of n, from the ex-
pression .

2 . n
P av‘i

was determined for all microphone locations.
The result was that n varied from 3.0 to 4.0
considering all locations. Reference 5 dis-
played n values of 3.4 to 4.2 from measurements
on the flap directly behind the nozzle and the
nearby fuselage. The agreement is very good.
As discussed in Reference 5 the deviation of
the calculated slope from the generally accept-
ed value of 4 may be due to a nonlinear rela-

tionship between the value V:l at the exit,
which 1s used to calculate n, and the local
velocity at the transducer location.

The measured levels were compared to the
results of a prediction method for USB noise
given in Reference 6 where

OASPL = 10 log (p2V®D?) + 30 - 20 log(r)

+0.016F
1 +siny e+6F
+10 %09 | ——— c¢cos | ———
2 2
where
p = Jet Density

V = Jet Velocity

D = Effective jet diameter

r = Distance between center of flap
trailing edge and observation
point

v,0 = Angles Tocating observation

point

GF- Flap angle

Measured and predicted levels for microphones 3
and 4 are shom in Figure S-a, It is evident
the prediction method is more accurate at the
higher Mach mumbers. The predicted levels are
more than 10 dB too Tow st the low Mach number.
Predicted Tevels for the other locations, ex-
cept 9 and 12, showed similar comparisons. At
microphone 9 the predictions were about 15 dB

to low, and at microphone 12 they were 15 dB
too high.

The microphones located on the flap, 7 and
8, and microphone 9 were exposed to high speed
flow. A second prediction approach is given in
Reference 6 for measurement locations in the
jet flow. This approach consists of using
three different normalized spectra and inter-
polating these for specific locations. Spectra
from microphones 7 and 9 are compared to the
second approach in Figure 9-b. At first look
it appears that the agreement is very bad but
the major variations is a difference in the
peak broadband frequency. If the predicted
spectra were shifted to a peak broadband fre-
quency of approximately 0.5, the agreement
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MACH NUMBER

FIGURE 9-a Comparison of Measured and Pre-
dicted Levels
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FIGURE 9-b Comparison of Measured and Pre-
dicted Spectra
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would be much better. The maximum predicted
level at the jet edge is only 2 dB lower than
the measured level from microphone 9 while the
predicted level on the jet centerline is 4 dB
below the measured value. No explanation for
the difference in the frequency of the peak
broadband levels is apparent.

FORWARD VELOCITY EFFECT

Acoustic data were obtained for forward
velocities from 0 to 70 m/s. Higher veloc-
jties were not obtained because of wind tun-
nel limitations. In general, the effect of
forward velocity was to reduce the sound pres-
sure level. This reduction is illustrated
clearly in Figure 10 for the microphone 9 lo-
cation. The data shown are for the maximum
jet velocity and flap angle of 30°. A 10 dB
reduction is obtained going from 0 to 7 m/s.
Most other locations experienced reductions
less than 10 dB. Specifically the levels on
the flap were reduced 4-5 dB which agress
with the reductions presented in Reference
5.

An equation is given in Reference 6 to
predict the forward velocity effect on the
sound pressure level. This equation is

SPL = 10 K Tlog [1 - v,,/vj]

where K is a coefficient depending on relative
location, VF is the forward velocity, and Vj

is the jet velocity. For the microphone 9
location this expression predicts less than 1
dB effect for a forward velocity of 71 m/s.
For this location, poor correlation is ob-
served between the prediction and the current

MICROPHONE : &
FLAP ANGLE : 30°
JET vELOCTTY : 436 M/S
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FIGURE 10 Data ITlustrating Forward Velocity
Effects
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test results. An explanation for this is that
increasing the forward freestream velocity re-
duces the spreading of the jet flow and thus
reduces the acoustic energy reaching this lo-
cation.

Somewhat different resuits were obtained
for this location at angles of attack other
than 0°. Figure 11 shows that the effect of
forward velocity is much less at the angles
of attack above 20°. This trend was observed
at other locations also.

185 ¢ MICROPHONE: §
JET VELOCITY: 436 M/S
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FIGURE 11  Data Illustrating Forward Velocity
Effects and Different Angles of
Attack

FLAP ANGLE EFFECT

Acoustic data were obtained for two flap
angle settings of, 30° and -10°, which repre-
sents nominal takeoff/landing and cruise/man-
euver configurations respectively. In the
-10° position the engine exhaust impinges on
the flap at a 25° angle. Figures 12-15 dis~
play typical variation of the spectra from the
different locations. Flap setting had very
Tittle effect on the levels at microphone loca-
tions 1 and 2 because they were so far from the
engine exhaust. Microphone locations 3 and 4,
on the vertical fin, displayed 4 dB increases
in the overall level as a result raising the
flap to the -10 setting. Fiqure 12 shows that
the increase in energy is above 250 Hz. Mi-
crophone locations 5, 6 and 9 located on the
aft strake and beavertail, showed variations
from 0 to 7 dB. Figure 13 illustrates an in-
crease of 7 dB at microphone 9 with most of
the energy being added at the lower frequen-
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cies. Microphone 7 and 8 were located on the
flap directly behind the exhaust nozzle.

These were not symmetrically located on the
flap. Microphone 8 was twice as far from the
nozzle centerline and outboard of microphone
7. Variations in the acoustic levels on the
flap were larger than anticipated, Figures 14
and 15 display the results from the surface of
the flap. The results reveal that the overall
level at the microphone 7 location decreases
when the flap is raised to the -10° position
while at the microphone 8 location it in-
creases. It is seen in Figure 14 that the
spectrum shape changes at microphone 7 but in
Figure 15 at microphone 8 the shape is essen-
tially the same. It appears that a frequency
band from approximately 200-1000 Hz {is ampli-
fied due to impingment of the exhaust on the
flap. No flaps-up data were obtained from
microphones 9, 10 and 11.

SINGLE ENGINE EFFECT

Data were recorded for the port engine
only, starboard engine only, and both engines
operating. The results in general showed what
was expected, that is, both engines operating
gives the highest level and the port engine
only is higher than starboard engine only.

The data in Figure 16 are from Microphone 9.
Two of the other measurement .locations did not
show this trend they were on the beavertail

e BOT4 ENGINES
& POA” EXG. OMLY
+ STAPROARD ONLY
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FIGURE 16

and near tiie cockpit. Figure 17 shows that on
the beavertail the levels were about the same
as for either engine operating. The reason
for this is that microphone 5 was nearly equi-
distant from both engines. Microphones 1 and
2 showed siwilar results.

If one tries to sum the acoustic power
from each of the engines to obtain the both
engines level, it is evident that the measured
both engines level does not always agree.
Since the engine exhausts are relatively close
together, flow interactions could easily cause
the both engines level to differ from the sum
of the individual engine noise sources.
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FIGURE 17

ANGLE OF ATTACK EFFECT

The mode! was tested at angles of attack
from -8° to 36°. Data from each microphone
for the various angles of attack are shown in
Figure 18. Increasing the angle of attack
generally increased the sound pressure levels
around 2 dB except at the two measurement lo-
cations near the cockpit. At these locations
the levels increased as much as 9 dB. Most of
attack which indicates that separation was oc-
curring. It was noted in Reference 1 that
separation on the wing leading edge also oc-
curred at approximately 20°.
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FIGURE 18 One-Third Octave Band Spectra Show-
ing Angle of Attack Effect

CANARD ANGLE EFFECT

Acoustic data were obtained for various
canard angles (-10° to +20°). No significant
change in levels were anticipated. The over-
all levels from all the microphones showed
les? than 2 dB varfation for all of the canard
angles.

YAW ANGLE EFFECT

The mode] was tested at yaw angles from
-10° to 30° where positive yaw is nose to the
left. Figure 19 presents the overall levels
from each of the microphones for the various
yaw angles. It is clearly seen that the
acoustic levels were not affected significant-
1y with yaw angle. The only microphone loca-
tion that showed more that 1 dB change was nu-
mber 1. It is belfeved that a larger yaw ef-
fect would have been experiences if the model
was yawed to larger negative values. This is
because all of the microphones were located on
the port side thus they were partfally shield-
ed from the free stream flow when yawed in the
position direction.

SUMMARY OF RESULTS AND CONCLUSIONS

The following results and conclusions were
observed as a result of this investigation.

1. The high temperature microphones were
successful in obtaining acoustic data in a
high temperature enviromment.

2. At some Tocations the measured level
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FIGURE 19 One-Third Octave Band Spectra Show-

ing Yaw Angle Effect

from only the port engine was as high as the
level from both engines.

3. Higher levels are experienced on the
afrcraft when the flaps are in the cruise con-
f:guration as opposed to take-off configura-
tion.

4. A significant portion of the aircraft
structure is exposed to levels high enough to
result in acoustic fatigue if not properly
destigned.

§. Forward velocity reduced the acoustic
Tevel at most positions on the aircraft.

6. The angle of attack of the aircraft
normally affected the levels around 2 dB ex-
cept near the cockpit where flow separation
may have occurred,

7. Canard angle and yaw angle variations
had only a small effect on the acoustic en-
vironment.

8. The acoustic levels were shown to vary
gi;h Je: gxit velocity raised to the power of

.0 to 4.0.
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DISCUSSION

Mr. Getline (General Dynamics-Convair):
What microphones were you using?

Mr. Shaw: The high temperature micro-
phones?

Mr. Getline: Yes.

Mr. Shaw: They were developed by Kaman
Sciences, Inc. for the Air Force about 5

years ago. They are called Kaman 2000.

Mr. Getline: What was the diameter of
the sensitive face of the microphones?
Mr. Shaw: Half inch.

Mr. Getline: Were these microphones
flush mounted in the structure?

Mr. Shaw: Yes.

Mr. Getline: Was there any attempt made

to separate the acoustic field from the
flow field. You have both in there and
with a half inch diameter it seems to me
that you have lost a lot of your high
frequency response from the flow fileld
and I just wondered if any attempt was
made to separate these two because you
have two different phenomena going on at
the same time,

Mr., Shaw: No, that might be an area of
improvement.
Mr. Getline: I think you might get a

little better correlation with your
predictions and your test results
because it seems to me that you didn't
get within & 10 db even at the closest
and 1{f you separate out these two
effects you might find you get a little
better correlation with your prediction,

Mr.
you.

Mr. Seville (Structural Dynamics
Research Corp.): I have two questions
for you that relate to the slides which
showed a comparison of the one engine
on, two engines on and then both engines
on. The plot showed that with one
engine on there was a significant
difference between one engine on and
then the other engine on.

Shaw: A point well tsken. Thank

Mz, Shaw: Right.

type transducer,

Mr. Seville: OK, but when you had them
both on it was only a minor change from
the situation with the single one on.
In one plot you showed both of those
having the same level vwhen they. were
both turned on the level didn't change,
it was all combined. Can you explain
that?

Mr. Shaw:

Yes, do you want me to answer

your question?

Mr. Seville: OK, the second question is

can you go into a little bit of detail

on this microphone that you have that
goes up to 2000 degrees Fahrenheit?

Mr. Shaw: The special high temperature
microphone? Yes there was a need about

5 years ago to develop these microphones
because at the Flight Dynamics Lab we
felt that we did desire data at the
higher temperatures so one of the
branches went under contract with Kaman
Sciences to develop these. They, in
turn investigated and found some special
material that could be used to construct
these microphones. They did so and we
acquired six microphones. I believe
these were the only six made at that
time. At that time they cost $5000. Ve
went back and asked to repair these and
the possibilities of purchasing more and
they said no way because the sane
material was not available.

Seville:

Mr. Are they cold or what is

the construction?

Mr. Shaw: No, they are an inductive
Internally they have
two coils and the facing of the coil
varies with the fluctuatng pressure thus
changing the inductance between the two
coils. I could give you more
information or refer you to a document

on the microphones, if you wish.

Mr. Seville: Ok, {1t sounds like we need
to talk.
Mr. Shaw: Kaman Sciences are con-

sidering developing these microphones

again or trying to develop the material
to be used in them to make them avail-
able to the public., Since we've done
the work there have been a few people
expressing interest in obtaining this
type of microphone but they are not
availadle at the present.




ACTIVE STABILIZATION OF A SHIP BORNE CRANE
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This paper presents the dynamic performance of an active-stabilizer

for controlling a ship-borne crane under heavy weather. The governing
equations are derived and solved using digital simulation. The math-
ematical model served as a basis for the dynamic design study of the
crane syStem. The active-stabilizer for the crane uses a heavy compen-
sating boom to decouple the submersible from the motion of the support
ship. The motion compensation system uses an active servo-control sys-
tem operatin {in parallel with a soft hydro-pneumatic spring. The crane
boom maintafns fts position in respect to the share by monitoring both
the acceleration of the boom tip and the boom angular position. The
active compensation system consisting of a l1inear hydraulic servo actua-
tor coupled in parallel with a hydraulic accumulator allows for adjust-
ment of the gas prechange pressure according to the l1oad. The study
indicates that the sizing of the actuator system and its adjustment
capability affects significantly the energy requirements of the active

damping servo actuator system.

The effect of varying system parameters

on the dynamic performance of the active-stabilizer is also studied. A
multi-variable optimization technique is used to select the optimal
gains of the PID controller so as to achieve the minimum movement of the

crane boom tip.

INTRODUCTION

Increased offshore activities of the recent
years resulted in greater demand for suitable
equipment. The safety and performance of off-
shore operations are severely limited by wave
induced vessel motions. As a result, there is
2 demand for systems or techniques that can make
operations possible in higher sea states without
sacrificing safety or performance.

Motion compensation systems represent one of
the most important equipment design areas., The
generalized criterion of performance of a motion
compensation system is the amplitude ratio of
the dynamic fluctuation of the controlled vari-
sble to its steady state value. In other words,
the purpose of such systems is to retain a con-
stant position of certain ship-borne equipment
camponent - ¢.g. & ship-mounted 200-ton derrick
(11, a platform [2], or a crane hoist [3]. Thus
a safe and efficient operation even in rough seas
conditions s possible.

This paper discussed the design and amalysis
of a motion compensation system for ship-borne
crane. The system in question is a 1-axis, act-
ive electro-hydraulic system with feedback cont-

rol, compensating for heave and for the vertical

components of the ship roll and pitch movement.
The design is aided by digital computer using
the MIMIC language. The system control strategy
is presented and the performance of the system
tn response to wave input is predicted. The
effects of various parameters on the compensator
is also shown. The feasibility of application
of a formal design optimization procedure s
briefly discussed.

SYSTEM DESCRIPTION AND MODELLING

The schematic of the system s shown in Fig.
1. The system is based on a similar design des-
cribed in [3] and operates as follows. The
crane boom attached to the crane mast at a pivot
point (A) 1s moved by the hydraulic actuator in
such a way that the vertical motion (;g) of the
crane tip (B) is kept to a minimum. is s
nchievad by sensing the tip vertical accelera-
tion ( !). The acceleration signal is fed into

ontroller where it {s processed and comp-
ared with the reference signals. It results in a
correction signal (Ig) which drives the actua-
tor via an electro-hydraulic servovalve in ord-
er to minimize the discrepancy. The design of
the controller is shown in Fig. 2. The measur-




ed boom tip gcceleration signal (¥g) is twice
integrated (Yp, Yg). These three signals are
cgmpared with the corresponding acceleration
(Ygr)» velocity (?55) and position (Ygr) refer-
ence signals. The discrepancies are multiplied
by the acceleration, velocity and position gains
(Kas Ky, Kp) and summed into the contronsr out-
put (IR). Thus, when the boom velocity (Yg) is
considered as the controlled variable, a PID-
controller is fo . To keep the boom tip
steady, the Ygp = “ = 0 and Ygg = const. Obv-
jously other controller configurations, such as
P, I, D, PI or PD, can be formed, simply by omit-
ting the irrelevant variables. Also, it is con-
ceivable to expand the system to achieve 2 - or
even 3 - axis motion compensation,

The function of the accumulator and the bal-
ance valve is to reduce the hydnaulic power nec-
essary for the above described active motion
compensation. The pressurized oil stored in the
accumulator is acting on the actuator piston
area (A3) thus compensating for the load force.
The accumulator pressure (Pp) is re?uhted by
charging the accumulator via the balance valve,
The valve senses the pressure difference (P1-P3)
at the servovalve output and charges or bleeds
the accumulator (Py) balancing the servovalve
output.

The equations forming the mathematical model

of the crane system are as follows (refer to
Figs. 1 and 2):

The_crane geametry:

¢ = a - arctan (TD,/AC) (1)
a = arc cos [(AC2 + AD2 - %) / (2 °C AD)] (2)
Yg= A0 - cos 6 + A - sing (3)
T =1Thy + Y (4)
The_hydraulic actuator displacement and velocity:
AR ()
= (M) J* (F-FL) dt + By (6)

where Yyo and fyo are the initial values of

Yy and §y respectively.
The actuator and load forces:
Fiu = Py (A)1-Ay2) - P2 - Ap ¢ Pp-A3 - Fp (7)
FL =W - A8 - cos (¢-0)/(RC - KD - sin o/TB)(8)
The actuator pressures and flowrates:
Py = (8/V1) - J* [01-(A13-A1z) 1] dt + Py (9)
Pp= (8/Vp) = % (A By - Qp) dt + Py (10)

where P, and Pag are the initial pressures of
P and 38 respectively.

Q) = Cp * Ay -V (2T (Pg-Fy)...if Xxy>0 (1)
Q = Cp Ay 7 (2/0)-(P2-Pg)...1f Xy<0  (12)

The servovalve dynamics:

Xy = (V/ty)of Slxyp-2y) -dt + Xyg (13)
where Xyo is the initial value of Xy.

The motion compensation controller:

Ig = Ka(Vgp-Yg) + Ky(Par-Tg) + Kp(Ypr-Yg) (15)

Xyr = K * IR (16)
The accumulator gas pressure and volume:

Pa = Pag * Vao/VA an
Va = oSt (A3 - Yy - Gg) dt + Vpg (18)

where Vpo is the initial value of Vj.

The balance valve operation:

Xyg = Kg (Py-P2) (19)
Ayg = Kxg * XyB (20)
Qg = Cp * Ayg -/T2/p)-(Ps-Pa)...if Xyg>0 (21)
Qg = Cp * Ayg "YTZ/o)-(PA-Po)...if Xyg<0  (22)
The hydraulic power:

AN (AR Y LR YL (23)

In addition, the model contains several log-
ic controls for the orientation of the friction
forces and flowrates and for 1imiting of the
pressure values. Table 1| gives the crane siz-
ing parameters used in the design example.

ACTIVE STABILIZER PERFORMANCE

The active stabilizer model is used for the
evaluation of the system feasibility. This {s
followed by the adjustment of some important
parameters and sizes for the performance evalu-
ation, Thus the preliminary system design {s
accomplished prior to scaled model experiments.
It is feasible, as a next step, to consider
employment of a formal optimization procedure,
to further improve the system performance.

To accomplish the preliminary design task,
the system model is subjected to the ship roll
movement described as:

@ =Cy sin(Cy - t)

where the constants (Cy, Cp) are so chosen,
that the amplitude and frequency of the roll




are + 15° and 0.25Hz respectively. First a sys-
tem without an accumulator and with the acceler
ation control only (recall Fig. 2) was investi-
gated. The acceleration gain (Kp) is adjusted
to obtain the best motion compensation of the
boom tip (minimum Yg).

Equations (1-23) governing the dynamics of
the crane are solved using MIMIC programming
(Continuous System Modelling Lanuage) on a COC
Cyber 172. The Runge Kutta numerical integra-
tion method with variable step size is used in
the MIMIC language for solving the non-linear
system differential equations. It should be
noted that the gains Ky and Kp in equation (15)
are set to 2ero for this case. The results ind-
icate that the acceleration of the tip is maint-
ajned close to zero; however, the maximum posi-
tional error, (Yg- B%)'mx increased with increa-
sing values of Ky. The acceleration gain (Kp)
is adjusted to obtain the best motion compensa-
tion of the boom tip, i.e. minimum (Yg-YgR).
This procedure was repeated for the velocity
control Kv; only and again for the position
control (Kp) only. In both cases, increasing
the gain Ky or Kp decreases the maximum position-
al error. However, it should be pointed out that
decreasing Kp or increasing either Ky or Kp be-
yond certain values introduced instability in
the system. Because of the above facts, a feed-
back scheme that has acceleration, velocity and
displacement controls (PID Control) is proposed
in this paper. The value of gains Ky, Ky and Kp
calculated based on individual controls only, are
then used as the gains for a PID control and the
simulation of the active crane system was repeat-
ed. It was found that the positional error con-
siderably reduced in comparison to the case when
only one control was used.

In the following step the accumulator is
added and the volume (Vap) and precharge press-
ure (Ppg) are selected. Finally, the balance
valve is connected and valve gain (Kg) selected.
Here the adjustment is more arbitrary, since
both the quality of the motion campensation (Yg)
and minimization of the hydraulic power (Wy) has
to be observed.

The effect of feedback gains Kp, Ky and Kp
on the performance of the active stabilizer is
difficult to be envisaged from the non-linear
set of coupled differential and algedbraic equa-
tions (1-23) describing the dynamic behavior of
the system. In order to appreciate the signifi-
cance of each of the feedback loops, an active
isolator of a one-degree of freedom system as
shown in Fig. 3 is considered. It is represen-
ted by an fdealized controllsble force genera-
tor and a conventional spring. Here the force
generator {s controlled by an isolated mass ac-
celeration signal and velocity signal generated
by integrating the acceleration signal,
acceleration and velocity gains are Kp and K
respectively. The integration is represen
by the 1/s tem,

Nriting the equations of motion and taking

the Laplace transform gives the transfer func-
tion of the active system (displacement trans-
missibility ratio):

X K

Yo (mekpsZekys +K

From the above equation it is evident that
the undamge? gatural frequency is given by
[k/™ + Ka)J1/2, Since Kp can be arbitrarily se-
lected to a positive or negative value, the sys-
tem natural frequency can be adjusted to any de-
sired value. Positive K will produce a low
natural frequency and increase the isolation
region. Thus K can be selected to produce the
desired static deflection.

The damping ratio 75 the active system is
given by KWZ[(M#K&K]‘ . Thus, any desired
damping ratio can achieved by selecting an
appropriate value of Ky. From the active sys-
tem transfer function, the high frequency trans-
missibility is asymptotic to a slope of -40db/
decade of frequency as shown in Fig, 4a. Thus
the use of the active isolator allows control of
the resonant amplitude without compromising the
high frequency performance.

From Fig. 3, the relative displacement
transmissibility ratio, T, of the active system
can also be expressed as

X=X, ) Zw,s 1 + ts]
4

T =
r Xy s2+2£mn$+mn

where w2 = K/(MKp)

£ =Ky/2 [(mKa)K]' /2
T = 1/2¢8,

It is evident from the above equation that
Tp reaches unity for w>w, and has a slope of
+[Odbldecade of frequency in the neighbourhood
of the natural frequency especially for w<<w
as shown in Fig. 4(b).

The effect of gains in the PID controller
on the Crane's performance is presented in Figs.
5, 6 and 7. The results indicate the absolute
maximm positional error of the boom tip Ieme
at a constant roll amplitude of +15° and a
frequency of 0.25Hz. It can be seen from these
figures, for a constant value of K, and K,, the
value of |e | tnitially decreases for ihcrea-
sing Ky and™Men increases with Ka. A similar
performance behavior resulted for variation in
Ky as shown in Fig. 6. However, in the case of
Ky, increasing the gain, monotonically decrea-
s8s the vatue of le .. |. A typical time res-
gon:_: ofatm crane M8¥ion compensation is showm
n 9- .

In order to study the influence of Kp, Ky
and Kp for various excitation frequencies, the

n
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system simulation was repeated with a constant
roll amplitude of +15° and the frequency var-
ied from 0.025 Hz to 25 Hz. The results are
presented in Figs, 9, 10 and 11 which indicate
a characteristic similar to the relative dis-
placement transmissibility plot of the single
degree of freedom active system as shown in
Fig. 4(b).

OPTIMAL SELECTION OF Ka, K, AND Kp IN PID
CONTROLLER

The design objective in the active stabili-
zation of a ship borne crane is to minimize the
vertical movement of the boom tip, Yg by adjust-
ing the gains, Kj, Ky and Ky of the BID control-
ler. Although the ships' roll motions induced
by wave action are complex, they are typically
dominated by sinusoidal motions with +15° amp-
litude and 0.25 Hz [2]. Then, it is proposed
in this paper to identif; the optimal gains, for
the motion controller, Ky, K¥ and K* using the
sinusoidal motion outlined above. P Mathemati-
cally this probliem can be posed as a non-linear
programming problem as:

Objective Function:
Min [ {t (YB'YBR)Z dt ]
* »* "
Kas KV' Kp
where t = 8s, (two wave cycles)

Subject to Constraints:

* * *
(KA)Iower £ KA 3 (KA)upper
* * *
(K jower < Ky < (Kv)upper
* - *
(Kp)lower < Kp < (Kp)upper

The lower and upper bounds in the constraints
are selected in such a way that the system
stability is not affected.

OPTIMIZATION ALGORITHM

In this work, a modified sequential simplex
optimization method is used which has a flexible
rather than a rigid geometric simplex of points.
This method is also referred to as the 'complex’
method and is attractive not only because of its
ease of programming, efficiency, and flexibility,
but also because of its ability to provide glbal
information [4, 5, 6]. The optimization proced-
ure is outlined below:

1. Minimiz: F(X), (X} = {x].xz.xs..... xp}
where {X} 1s a vector of varfables

Xy Xgs coes xp to be optimized subject to

8 <xg<by st =1,2, ..., p
9(X) 20 33=1,2 ..., 9

2. The method requires the use of k > p + 1
vertices, each of which must satisfy all the
imposed constraints. These vertices may be in-
itially found by starting at a point that satis-
fies all constraints. The remaining k - 1 points
in the first complex are obtained by the use of

pseudorandom number rj in the relation

[
1

Xy = aj + ri(bj-ay) ;i =2, ..., k

where r; are uniformly distributed over the in-
1nterva1 [0.1]. These points satisfy the lower
and upper bound constraints. If some implicit
constraints are violated, then the trail point
is moved halfway toward the centroid of the al-
ready accepted points. The centroid XX is given
by :
~ S A
1 or X
k=1
where X', X2, ..., X° are available feasible
vertices. The superscripts represent vertex
number, For example, in a two-dimensional opti-
mization,

i.e.,
{x} = {xq, %2} 3 x* represents (x%. xg).

3. The objective function F(X) to be minimized
is evaluated at each yertex and the vertex XV at
which the function F(X) assumes the largest val-
ue is reflected by computing

X s (14X - XY ja> 1

where X° is the centroid of the remainihg vert-
ices and calculated from

K

] rY

X0« L X
=T 0

A recommended value for the over-reflection co-
efficients a is 1.3 but the choice is not crit-
ical [4]. :

4. If the function value F(R") (F(XY) and
fr is feasible, replace point Xr with K,
and repeat Step 2, If F(X') > F(XV), the over
reflection is reduced to /2, and the new X' is
computed and tried, ;his is repeated until

a < B, where 8 = 10-9 is a s;sisfactory value.
If the reflection F(fr) (F(XV) does not hold
even for tha& small valye of a, then the proj-
ected point X' is replaced by the original val-
ue XV and the second worst vertex is reflected
instead. This process keeps the complex moving
toward the minfmum unless the centroid is very
close to it.

5. For a nonconvex function, the centroid of
211 the feasible points may not itself be feas-
ible. In this case all thg points of the com-
plex are discarded except X, the point at
which the objective function was the lowest val-
ve., Then a new complex is generated by using

2

.




x'i‘ = x: + r‘_(x: - x:) s 1 =1,2, ..., p

where [X°: x:, x;. cees x:] is the old infeas-
ible centroid.

6. The process is terminated when the complex
shrinks to an acceptable small size; such a
termination criterion can be expressed as

) . X 172
H oz ) - (12 < e

where € > 0 is a predetermined small convergence
number.

OPTIMIZATION RESULTS AND DISCUSSION

The optimization technique outlined was pro-
grammed in Fortran and used as a function retrie-
val in Mimic main programming. The optimal val-
ues obtained are listed in Table 2. The optimal
adjustment of the controller resulted in the im-
provement of the motion-compensation. The int-
egral of the square of the error calculated over
a period of 2 wave cycles (8 s) listed in Table
2 indicate that the performance is quite impress-
ive and has improved almost 94% over the initial
chotce. If it is further desired to reduce the
steady-state misaligmment of the crane boom, one
can introduce an acceleration feéed-forward com-
pensation. Such a study will be extended in our
future investigation,

CONCLUSION

The computer-aided design study of a simple
1-axfs active stabilization of a ship-borne
crane is successfully accompiished. The system
is simple and uses a single variable sensing of
boom tip, i.e., acceleration of boom tip. The
study serves as a basis for a scaled hardware
model. It is shown that when a PID controller
is employed, a satisfactory performance can be
expected. The system can be easily expanded to
2- or 3-axis motion compensation. The study
also indicates an optimization strategy for min-
imizing the integral of square of error between
the instantaneous vertical position of the boom
tip and a reference position. The results show
that by selecting optimal gains of the PID Con~
troller, the performance index can be improved
over 94%.
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NOMENCLATURE

A,12,2,3 © actuator piston areas (nf)

Ay = servovalve metering area (mz)

“va = balance valve metering area (mz)
AB = boom length (m)

AC = boom portion length (m)

AD = mast height (m)

= actuator length (initial) (m)
CD = valve discharge coefficient

f = actuator friction force (N)

FH = actuator net force (N)

FL = load force (N)

Ip = controller output {Amp)

KA = acceleration gain (Pmp-szlm)

Kg = balance valve gain (m/Pa)

Kp = servovalve gain (m/Amp)

K_ = position gain (Amp/m)

Ky = velocity gain (Amp-s/m)

Ky = servovalve spool gain (mzlm)

Kyg * balance valve spool gain (mzlm)
M- reflected load inerttia mass (kg)

PA = accumulator pressure (Pa)




¥g = boom tip vertical displacement (m)

return pressure (Pa)
supply pressure (Pa)

actuator pressures (pa)

= balance valve flowrate (m3/s)

actuator flowrates (m3/s)

time (s)

accumulator gas volume (m)
actuator volumes (m)

load weight (N)

hydraulic power (W)

servovalve spool displacement (m)

l(»a;ance valve spool displacement
m

Yer

servovalve spool displacement ref-

erence sighal (m)

= boom tip vertical displacement

reference signal (m)
actuator displacement (m)

boom tip vertical velocity (m/s)

.boom tip vertical velocity refer-

ence signal (m/s)
actuator velocity (m/s)

boomztip vertical acceleration
(m/s€)

boom tip vertical accsleration
reference signal (m/s¢)

angle between TD and AB (rad)
0il effective bulk modulus (Pa)
boom angle (rad)

ofl density (kg/mz)

ship roll angle (rad)

servovalve time constant (s)

TABLE 1: PARAMETERS OF THE MOTION COMPENSATED SHIP-BORNE CRANE

A1-Aqp = 1.89 x 1073 m?
Ay = 13.82 x 1073 m?

Az = 15.71 x 10~3 m?

AB =8.0m

A0 = 15.0m

Cp = 0.6

Py = 20.7 x 106 Pa
VAnax = 50 x 10°3 m3

V; =15 x 1073 3
Vo = 15 x 1073 m3

W=19 x 103 M
8 = 700 x 103 Pa
TV'O.OZS

TABLE 2: OPTIMAL VALUE OF Ky, K, and K,

QUANTITY

INARY ADJUSTMENT

OPTIMUM ADJUSTMENT

P
2
Error = f"r"an) dt

(over 2 wave cycles)

PARAMETER
PRELIM
Acceleration gain Ka 5.7 x
Velocity gain Ky 0.1056
Position gain K 7.27 x

103 Amp-s2/m
Amp-s/m
10-3 Amp/m

750.0 x 10°3 m

20.6 x 1073 Amp-s&/m
0.1990 Amp-s/m
85.4 x 1073 Amp/m

85.7 x 1073 m
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Fig. 1: Schematic Diagram of Motion Compensated Crane

Fig. 2: Crane Controller Design
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Fig. 4a: Absolute Displacement Transmissibility of a 1 DOF Active System
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Fig. 4b: Relative Displacement Transmissibility of a 1 DOF Active System
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K, = 0.200 (Amp-s/m)

Kp = 0.075 (Amp/m)
f w = 1,571 rad/s
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Fig. 5: Effect of Gain K, for Constant K, and Kp
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Fig. 6: Effect of Gain K, for Constant K, and Kp
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Fig. 7: Effect of Gain Kp for Constant K, and K,
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Fig. 10: Plot of |e, | vs w for K Variation
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Fig. 11: Plot of e, | vs w for K Varfation
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