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Measuring the Dependence Between Two Point Processes
Through Confidence Intervals for the Second Order Distribution

by

Hani Doss

ABSTRACT

To assess the dependence structure in a stationary bivariate point process the second-order

distribution (Ripley 1976, 1977) can be very useful. We prove that the natural estimates of

this distribution, based on a realization A, < A 2 < ... < An, B, < B2 < ... < B,,B are

asymptotically normal, and we present a method for constructing approximate confidence intervals

for this distribution.
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1. INTRODUCTION AND SUMMARY.

Let (NA,NB) be a stationary bivariate point process on R. This article is concerned with

statistical methods for discovering and quantifying an association between the two processes from

a realization A, < A 2 < ... < A,,,B < B 2 < ... < B,, over a long period of time T.

The paper is motivated by certain problems that arise in neurophysiology, which are very briefly

described as follows (for further details see e.g. Bryant, Ruiz Marcos, and Segundo, 1973).

Two neurons, A and B, are monitored over a period of time T during which each neuron

fires a sequence of impulses. The problem is to determine whether or not the impulse times are

associated. An association between NA and NB may be construed as evidence that either the

two neurons are communicating, or that they both share input from a third source.

Another problem arises in certain neurophysiological studies of learning and memory. An

animal is to be taught (trained) to perform a certain task. Now consider two "connected" neurons,

A and B, which are essential in the performance of this task. Record the impulse times during

a period before the learning experience, obtaining a realization of (NjAf", N ef'), and during a

period of time well after the learning experience, obtaining a realization of (NA , Nift.). The

processes NBeJ. and N B' " may be dependent. The problem is to determine whether or not this

dependence is "stronger" for the processes NAAft " and Nt Af '- A neurophysiologist may consider

a change in the strength of the dependence as evidence that learning has taken place.

The two problems have very different statistical character. Let S be a statistic that "mea-

sures" the dependence between two point processes. The first problem is one of testing the

hypothesis that NA and NB are independent, and requires only knowledge of the distribution of

S under the assumption that NA and NO are independent. The second problem is much more

difficult: to compare S across two situations we must know the distribution of S when the two

point processes are dependent.

In a more general context, Ripley (1976, 1977) introduced a measure K, defined on an

appropriate space, that summarizes the second-order properties of the process. Before describing

this measure, we need to state some assumptions and introduce some notation. Let N (s, t) denote

the number of events of type i occurring in the interval (s, ti, for i A, B. Assume that each

process has no multiple occurrences, and that the intensities

1-



Ai = lim h P{N , (t,t + h) > 0} for i= A,B (1)

are finite. (The existence of these limits was proved by Khintchine, 1960). The Ai's then have an

interpretation as mean number of occurrences per unit of time: for tj < t2,

E Ni(t 1 ,t 2 ) = Ai(t 2 - t) for i = A,B (2)

(this follows from Dobrushin's Lemma and Korolyuk's Theorem; see Leadbetter, 1968).

We now give an informal description of the measure K, adapted to the present context.

The measure K is defined on the Borel subsets of R, and for tj < t2, writing K(1 1 ,t12 ) for

1 we have

K(t 1 ,t 2 ) =--E{NA(tlt 2 ) 1 a B point at t = 0)
AA (3)
1~E{N (-t 2 ,-t 1 ) 1an A point at t = 0).

Note that if NA and ND are independent, then

K(ti,t 2 ) = t2 -t, (4)

regardless of the values AA and AD; thus, K represents Lebesgue measure on R.

Ripley proposed the estimate of K(t1, t 2 ) given by

-T nol Y&A

K ~ Aj, t2)jj- jE {Aj - B, (01,W2), (5)
nAntD lf-

where I{.} denotes the indicator function (actually, the estimate proposed by Ripley has an edge

correction for points near the boundary of the period of observation; this edge correction will not

concern us).

Previous work on the estimator k is concerned with spatial processes. The results center on

using K to test that a single process in Poisson (Ripley, 1977; Chapter 8 of Ripley, 1981; Silverman,

1976) and on using k to test for independence of two processes (Lotwick and Silverman, 1982;

Diggle and Milne, 1983).
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In this paper we study the asymptotic properties ofk(ti, t 2). The contributions of this paper

are two-fold:

first, a proof that under certain regularity conditions, as nB --4 oo

v j (k(t ,t 2 ) - K(tit 2)) + 2(i1 ,t2)),(6)

and second, a method for constructing consistent estimates of a 2 (t1 , t 2 ). (7)

Besides providing the basis for a test of independence between NA and NB, (6) and (7) enable

one to test whether or not K(t 1 , t 2) has changed in the experimental situation described earlier.

The cross-intensity function defined by

AAB(U) = lim P{NA(u + t,u + t + h1 ) > O;NB(t,t + h2 ) > 0} (8)h1 .h,-O h1 h2

is related to K by

K(t 1 ,t 2 ) f J A,,t(u)du. (9)
AAAIB t

Under the independence hypothesis, AAD(u) = AAAB for all u. Brillinger (1976) considered the

random function

JT (J {Aj Bi ((u -h,u + h)} (10)
Y /=1 .I=1

and showed that under suitable regularity, if h - 0 and T - oo in such a way that hT re-

mains constant, then for u. -- uk,Iu - > 2h,1 < k < k' < MJ4B(uT) are asymptoti-

cally independent Poisson random variables with means 2hTAAD(uk), for k At,...,A. Thus,

AAB(U) 2hT can be used to estimate AAD(u) at a finite number of points.

In practice one would graph the two functions AA, and k over a finite range, say 1-L, Ll (i.e.

graph K(-L,t) for -L < t < L). Although from a mathematical viewpoint AAD and K contain

essentially the same information, the statistical properties of their estimates are quite different:

estimation of AAD is akin to estimating a density, and from Brillinger's result the variance of

S)An is of the order -T; on the other hand, estimation of K is akin to estimating a distribution

function, and from (6), the variance of k is of the smaller order -. A graph of AD may,

however, indicate features (spikes, location of maxima and minima, etc.) that cannot be easily

seen in the graph of k. Clearly the two approaches are complementary.
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2. ASYMPTOTIC DISTRIBUTION OF THE k - FUNCTION.

Let

UAB (tt,t 2 ) = E{NA(t1,t 2 ) a B point at t = 0}. (11)

We may estimate UAB(tI,t2) by

UAB(ttt2) = E I{A- B c (t2t)}, (12)flB i=I .1=1

Letting

for i=A,B, (13)
T

we note that

K(t1 1t2) UAD(tlt2), and k(tt 2 ) = 71 AB(tl,t2). (14)
A AA

To prove asymptotic normality of k (Theorem 2) we will prove joint asymptotic normality of

(JAB(t1,t2), A). We will in fact find it necessary to first prove joint asymptotic normality of

(WJB(t1,t2), A/B, I/1B). The delta-method (i.e. a first term Taylor expansion) applied to the

function f(z,y,z) = then yields the asymptotic normality of K(ti,t 2 ). We also obtain the

joint asymptotic normality (CA(t,t2),LA,Ao) by applying the delta-method to the function

g (, Y,z) = (X, y/z, 1/z).

We now need to give the statistical setting of our asymptotic investigation. The functions

UAB(tl,t2) and K(t 1 ,t 2 ) involve the notion of the Palm measure. That is for e > 0, we consider

the conditional distribution of the process (NA, ND) given that there is a B point in the interval

(0,r), and take the limiting distribution of (NA,NB) as c -4 0. Intuitively, this corresponds to

selecting a B point "arbitrarily", and considering the process with that point labeled the origin.

This notion is discussed for univariate processes by Leadbetter (1972) and for bivariate processes

by Wisniewski (1972). We will assume that the process is observed during a period of length T

starting immediately after the occurrence of an "arbitrary" B point, say B0 (thus, we will be

working with the Palm measure). This mode of sampling is called semisynchronous sampling by

Cox and Lewis (1972); see Wisniewski (1972) for some fundamental pFoperties related to it. Also,

for the sake of convenience, we will assume that the period of observation ends with a B point.
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We now consider two subfields of the a-field on which the Palm measure is defined. Let TB",

denote the o-field generated by the events

{Bk, F (Bo + v1,Bo + w1),...,Bk c (Bo + v., Bo + wm);

NA(Bo + rl,Bo +s1) = h1,...,NA(Bo + rn,Bo + s.) = hy}

for vi < wi < 0,ki = -1,-2,...,i = 1,...,m;ri < s 0, hi = 0,1,2, ... ,j = 1,...,n, and m

and n nonnegative integers. For u > 0, let 7 9+U denote the a-field generated by the events

{Bk, E (Bo + vt,Bo + w1),...,B, C (Bo + v,,Bo + W,);

NA(Bo + rl,Bo + s1) = hI,...,NA(Bo + rl, Bo + sn) = h,,}

for u < vi < wiki = 1,2,...,i= ,...,m;u < ri < si, hi = 0,1,2,...,j = 1,...,n, and m and

n nonnegative integers. Let

a(u) = sup{IP(Ei n E 2) - P(Ei)P(E2 )I; El c 7Lo., E 2  (15)

If a(u) --+ 0 as u -- oo, then the distant future is virtually independent of the past. We will

actually need stronger conditions on a(.).

Let P > 0, t/> 1, 0 < r < 1 be any constants satisfying

( ' _+_) 7>1. (16)

Assumptions:

A1 j [a(t)v't dt < oo

A2 sup E{[N(jJ + 1)1" I a B point at t = 0 =D < o
-00<J<o0

A3 E{INA(tl,t 2)4('+,,) 1 a B point at t =0}< oo

A4 E[(B, - B 0 )4(1+r)] < 00

A5 E [NA(Bo, B ) ) < 00

Before stating our theorems we discuss our assumptions, and compare them with those of

Brillinger (1976). Any theorem giving asymptotic normality of the normalized partial sums of a

5



stationary sequence {T,} must assume a moment condition on T, and also a mixing condition on

{7}. In general, we'. kening of the moment condition must be compensated by strengthening of

the mixing condition, and vice versa. Assumptions A3, A4, and AS provide moment conditions

on the sequences {U1), {NA(Bi-,, Bi)), and {(Bi - Bi-_1)), respectively. Assumption A2 ensures

that the B process "moves along" rapidly enough so that Al, the mixing condition imposed on

the point process, translates into a mixing condition for the sequences {U,}, {NA (Bi- 1 , Bi)}, and

{(Bi - Bi- 1)}. Relationship (16) describes in a technical way the interplay between the mixing

rate on the point process and the moment condition on the sequences {Ui}, {NA (Bi- 1 , Bi)}, and

{(Bi- Bi-,)}-

The conditions assumed by Brillinger (1976) neither imply nor are implied by Al-A5 of the

present paper. Brillinger assumes a mixing condition on the bivariate point process and also

that the "second order moments" \ii(.) (i,j = A, B) exist and are continuous (he also assumes

existence and continuity of the "third and fourth order moments" ; see equation (2.2) of his paper).

This condition on ADA (.) is not satisfied by the following process: Nn is a Poisson procvss, and NA

is ND shifted to the right by 1 unit. In this case, AAD(1) = oo. This process does however satisfy

Al-AS. Conversely, it is easy to find processes (NA,NB) satisfying all of Brillinger's conditions,

but not those of the present paper. Perhaps the simplest example is the following. Let NA and

ND be independent, NA being a Poisson process, and NB being an equilibrium rcnewal process

on (-oo, oo) (for a definition and a construction see pp. 517-519 of Karlin and Taylor, 1975) with

interarrival distribution having a first moment but no second moment. Then A4 is violated, and

it is not difficult to check that this process satisfies all of Brillinger's conditions.

THEOREM 1. Assume Al and A2. Let UAD(t1,t2),UAD(tI,t2), and A1 for i= A,B be defined

by (11), (12), and (13), respectively.

(i) Under A3, we have as nn - oo

V (AD(t1,t2) (t (t,

Furthermore, any estimate -l 2(t 1,t2 ) of the form (25), satisfying (27) and (28), is a

consistent estimate of -y 2(t, t2 ).

(ii) Under A4 and AS we have as nB -- 001

vii(A - \A, - \B)'-+,V (0, A).

6
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Furthermore, any estimate A of the form (57) (refer to equations (49) and (51)-(56)),

satisfying (27) and (28) is a consistent estimate of A.

(iii) Under A3-A5 we have as n - oo

V/'HB(CJA(t1,t2)- UAB(t1,t2),A - AA,B - A)_)1(O,Z(t1,t2)).

Furthermore, any estimate £(t,t 2 ) of the form (56) (refer to equations (49) and (51)-

(55)), satisfying (27) and (28), is a consistent estimate of _(tI,t 2 ).

PROOF of (i). We begin by showing asymptotic normality. Let U4' and U, be defined by

U= E I{Aie (B, + t,,B, + t2 )}I {Bo < Ai < B,.,.}

and
00

,= E I{Ai c (B, + t1,B, + t2)}.

=-00

Note that

,, A0.2) = u 'l. (17)

It is clear that y] B Ui - I Uj' = 0,,(i). Thus, it suffices to prove the result with U1's instead

of U!'s in (17). Observe that the sequence {Ui}Z,._.0 is stationary, with mean UAD(tl,t2) and

finite variance (by A3). The U1's may be far from independent: for small k, Ui and U1 +k may be

nearly identical. If, however, U and Ui+k are "nearly independent" for large k, then one can still

hope to have a Central Limit Theorem effect. The proof consists of translating Al, the mixing

condition on the point process, into a mixing condition on {U,} that allows the application of an

appropriate central limit theorem for stationary sequences.

Let i(k) be defined for k = 1, 2,... by

A(k) = sup{IP(Ei n E 2 ) - P(EI)P(E2 )1 ;El c o(...U- 1,Uo),E 2 c(U,,U,+ ,...)} (18)

(Here, a(... U_ 1,Uo) denotes the a-field generated by {... ,U- 1 ,Uo}, and similarly for

a,(Uk, Uk+1,...)). The function ji(.) is called the mixing coefficient of the sequence {Uj). Our

goal is to prove that F,=j[(k)] < oo. It will be more convenient however, to show instead that

k-tfAp(2k)] < oo. The two conditions are equivalent since o(.) is nonincreasing.

7
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Let k > 1 be fixed, let El e o(.... U-k),E2 £ o(Uk,...), and consider P(E n E2 ). Let

C-= .{B-k - Bo < -[k'/f+)]} and Ck = {Bk - Bo _ [kl/I(t+')]}.

We may write

P(E, n E2 ) = P{(Ei n C.k) n (E2 n Ck)} + P{(E n E2 ) n (Cc.. u Cc)}, (19)

where C denotes complementation.

Consider the first term on the right side of (19). For all large k, since B-k - Bo < -k11flp+ )

implies that B- , + t2 _< Bo, we have El fn C.-, k 7 _o Furthermore, E2 fn C f j°+[k,/(19 }]+t•

Therefore,

P{(E, n C-,) n (E2 n Ck)} P(E,)P(E2 ) + a([k '/{ + ')] + t,). (20)

The second term on the right side of (19) is obviously less than or equal to P(Cck) + P(Ck,).

These last two probabilities are dealt with in the same way. Consider P(Ck). Observe that

P(CA,) < P{one of the intervals (Bo + j, Bo + j + 1),j = 0, 1,...,Ik" ' )} - '
(21)

has at least [k1(0+0] points }.

By A2, Chebyschev's inequality and Boole's inequality, the right side of (21) is less than or equal

to 1k / 0 + ]) D [kf/(P+')]-". Combining this with (20) and handling the opposite inequality in

a similar way, we obtain

/L(2k) < o(k'/(0+ ') + t,) + k1/If+1)Djkf/(1+1)]- .

Assumption Al implies that

o+ t,)) < oo. (22)
k=1

Combining (22) and (16) we obtain that Z'L 1[,(2k)]'< oo, and hence that

00E lzk)j'r < oo. (23)
k=1

Assumption A3 implies that

E[U2(* + - ' )] < 00.

This, together with (23) allows us to apply Theorem 1.7 of Ibragimov (1962) to conclude that

the series , Cov(Uo, Uh) converges absolutely, and that as nn oo

V/n (CJAn (t1, t2) - UAB(t1,t2)) t/(,"2(t2,t2)),

8



where
O

2(t1,t2) = Var Uo + 2 E Cov(Uo, Uh). (24)

h=1

Consider next the estimation of -y2(tl,t 2). Let to = Cov(Uo,Uh) for h 0,1,2,..., so that

-12(tl,t 2) = 1o + 2 E L'0 uh. Let

M

it't2) = P'o + 2 E Chf~h (25)
h=I

where P)h is the sample covariance at lag h:

1 n,-h- I

Ph = n -h E (i - U)(Ui+h - U) (26)

(hereU= 1 CT U). We will assume that

M = M s satisfies MnB 0 as -+l (27)
M -(nn) -3

(nD3)and that the cc astants ch = Ch satisfy the following:

for each nB = 4,5,6,..., 1 > c (nB) > (nil) > ... > =, (28)

and for fixed h, ch - 1 as nB -- oo.

The choice of constants M and c1, c2 ,. . . , CM is discussed at the end of this section. We will show

under (27) and (28) that

E i2 (t1 ,t2 ) - _2(t1,t2) -* 0. (29)

This will imply that -2(t 1 , t2) converges to -Y 2(tI,t2 ) in probability.

Since EC'h is not in general equal to vj), it is more convenient to first work with

nB-h-I

i=h ( n-h U, - UAD(t,,t2))(U,+h -UAD(t,,t2)) (30)

and
M

i2 = t2 o + 2 ChLh. (31)
h=1l

Since EfCh = 'h, if we define

232
In= t o + 2 E Ch Vh, (32)

h=I

9



we have

Ei 2(tt, , = t (33)

From now on we drop the arguments t1 and t2 whenever convenient. The triangle inequality gives

_5 -E + .n 1 (34)

Thus, our objective is to show that each of the three terms on the right side of (34) converges to

0 as nD -- oo. It is easy to see that under (27) and (28), -yn. - -. 0 as nB -- C.

We now consider E1j2 - /n. 1. Let c0 = -. We have

M M

E -li2_Y.I = E12 Ch( - vj)1 -) 2Z EI ih
h=O h=O (35)

M M

<2 Z{Eh-~LJ2 =2 E {Varifh)i
h=O h=O

We now examine the variance terms. It is well-known (and easy to see) that if {I} is a stationary

* sequence, then
1 n IlVar (- L - (--) Coy (Y1, Y1 +t). (36)
n i=1 n tl<n n

Equation (30) shows that iF, is of the form th = _ En Y, where Y = (U, - U)(U+,, - U)

with {Y} stationary. We can thus obtain the exact variance of uh:

Var Z~h- n= - h E (1 nl - h)h(1), (37)
Itl<,,a -h

where

ah(t) = Cov((U, - UAD)(U,+, - UAD),(U,+, - UAD)(U,++,- UAD)). (38)

To obtain a useful bound on Var f1h we will show that

Iah(t)I : [M((fI - h)+)] C, (39)

where a+ = max{a,O} and C is a constant not depending on h or 1. The key ingredient in

the proof of (39) is the use of a lemma of Ibragimov (1962) that gives an explicit bound for the

covariance of two random variables f and Y1 satisfying C c a(..., U_ 1, Uo) and 17 ( o(Uk, Uk+ 1 ,...),

in terms of ;&(k) and certain moments of and v7.

10



For any I such that 111 > h, Lemma 1 3 of lbragimov (1962) implies that

6 M< l ,tl - h)" ( 4 + & Ef(U, - L'A,)(,-. - UAB)12 "(rL-' } (40)

The Cauchy-Schwan inequality implies that

EI(U. - UAB)(U.I,. - UAB) 2 +r'- < E!(U7 _ UAB)I't  (41,

By A3 the right side of (41) is a finite constant not depending on h or I. This proves (39) for

III > h. For III < At the proof is even simpler, and is omitted. We now combine (37) and (39) to

obtain

n<noh <, >h

< I ((2h + 1)(" Y+ (f).c
f-I

Next, we use (23) and (27) to see that there exists dn integer J, not d.pciidilg ,. h, ,r (.

that

Var V_), < n for all nt J.

We now return to E'- 2  . (see (35)). Conbiniig (27) and (43) we arria- .it

E jj 2 -2 0 a (0 -s ran/ • a "cI

To complete the proof of (29) we need only show I tit F, -,2 • 0 a!, nt I x \ r.,

E i 2  j, E 2 > I.h(I,', 1 .
h-o h-0a

We will presently show that

,L'p

where C' is a constant not depending on h

Referring to equations (26) and (30), it is easy to set that

C# =, i+(U ( - UAB)(UA D U) + ( 1 t'AD)(I'l 1') 'A( Inp . 17

!1

- I - * a - a S.a ,



where

171 =nn, - h C7() ;7 hE U
i=O i=h

Thus, EIP16 - P'J :< EI((0) - UAD)(UAB - 6)1 + EI(( 2 ) - UAB)(UAB - L7)1 + E(C2- UAB) 2 .

Consider first E(fJ - UAB) 2 . From (36) we have

E(O-UAB) 2 .1 E (1- L-)VteS-,niB jtj<nx, nB nB

where C" = &'o + 2 Ec_- I'e1 < oo. Similarly,

E(C( 1 ) - UA) 2 < C and E(U (2) - UAB)
2 < C

- nn-h' - nB-h"

The Cauchy-Schwarz inequality now yields (46), which together with (27) imply that El'Th-jhj --

0 as nB -'+ oo. This completes the proof of (i).

We next prove (iii), since the proof of (ii) proceeds in a very similar way.

PROOF OF (iii). For CtC2,C3 c R, let Xi = ei Ui + 2 NA(BI,BI+1) 1- e3(1h+ - Bi). The

sequence {X,}jZ=_o is stationary, and if r(-) denotes its mixing coefficient, it is clear that (23)

holds for *(-) as well. This give a central limit theorem for {X}. It is simple to argue that

E NA(Bo, BI) = AA/AB and that E(B - Bo) = lAB. By the Cram~r-Wold device we now have

that
____ ~ A XAT

Vn( ' I -UB,!- A'(48)
nD'"UiUn nB T X' nB AB

is asymptotically normal with mean 0 and covariance matrix, say IV. To identify 'k and describe

consistent estimates of it, it is convenient to introduce additional notation. Let

V<=) U,, V, - NA(B,+1,B), V =B,+i - Bi for i ...- 2,-1,0,1,2,... (49)

Let

Oh :Cov(V"P', V ( 9)) for p,q = 1,2,3, h ...- 2,-1,0, 1,2,... (50)

Note that t h-'= : ,,. It is clear that the asymptotic covariance matrix of (48) is equal to the

matrix whose pqth entry is *(P) = Eh-I °o W Oh (note that " is not necessarily equal to

%0".)_ , unless p =q). Next, for p, q = 1,2, 3, define

f .. h-Z., 1 (V ') - (P))(,- ( q) for h=0,1,2,...,M
= (51)

L -i- (V*(P -. p(P))(V(), - V(')) forh =,-1, -2,-3,..., -M

12
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where
niB-1

nB (52)
i--0

Let
M

P9) = 1j c 1 1 ,j() for p,q = 1,2,3, (53)

where M and {Ch) satisfy (27) and (28), respectively. Also, let

= trix whose pqth entry is 1() (54)

The same argument that was used in the proof of (i) now applies and we see that 4 converges to

IQ componentwise in probability as n.B --+ oo.

Consider now the function g(z, Y, z) = (z, y/z, 1/z), which maps

(-'B 1 U/nB,nA/nB,T/nB)into , U/nn,AA,AI). The derivative of g evaluated at

(,yZ) is
1 0 0

Dg (, y Z) 1 # -(55)
0 0

An application of the delta method (with the function g) to the vector (48) gives the asymptotic

normality result asserted in Part (iii) of the theorem, with

E(t=,t2) = Dg(UA,AA/AB,I/AB) [Dg(UA,AA/AB,I/AB)]'.

Defining E = E(tl,t 2) by

= Dg(JAB,A/AD, 1/AB) ' [Dg((A, LAB, 1/4)]', (56)

it is clear that under (27) and (28) E converges to E componentwise in probability as nB -* o.

PROOF of ii. As was mentioned above, the proof of (ii) is very similar to that of (iii). We

now consider the variance estimates. Let E(P") and E (pq) denote the pqth entries of F and E,

respectively, and let

(32) (5)

with a similar definition for A. Obviously, this is the same A that appears in the statement of Part

(ii) of Theorem 1. It is clear that under (27) and (28), as nB -- oo, A -' A componentwise in prob-

ability. This completes the proof of Theorem 1.

13
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THEOREM 2. Let K(ti,t 2 ) and k(t l ,t 2 ) be defined by (3) and (5), respectively, and assume

Al-A5. Then, as nB -- 00

(K( - K(t,t)A (0, N(t,t)).

Furthermore, any estimate a 2(t1 , t 2) of the form (58) (refer to equations (49) and (51)-(54)),

satisfying (27) and (28), is a consistent estimate of a 2 (ti, t 2 ).

PROOF. We apply the delta method to the vector (48) with the function f(x, y, z) = =. The

derivative of f at the point (x, y,z) is Df(z,y,z) = , Evaluated at (UAB,AA/AB, -L)

and (&AB I !AI ), this is (--L, K-.A-, K AB) and (,k4,k AD), respectively. The asymp-
Aa A A A A (AA AA

totic normality asserted in the theorem follows from the asymptotic normality of the vector (48),

with

a2 (t1,t 2 ) = ( LB ,AB K AB) I\ , K AKB )

and it is clear that under (27) and (28), if a2 (t1 ,t 2 ) is defined by

&2 (t 1 
t)= (-,K -- K A B) %Y k (-, K _ AB)' (58)

!A I AI AA AA

then as nB - 0o,0 2(tl, t 2 ) converges to a2 (t I, t2) in probability. This completes the proof of The-

orem 2. 1

Results giving the asymptotic normality of estimates of AA and AD (under varying sets of

assumptions) already exist in the literature; see e.g. Theorem 8.6 of Daley and Vere-Jones (1972).

It was necessary to establish joint asymptotic normality of AA and &AD(t1, t2 ) in order to obtain

asymptotic normality of R(t, t 2).

We now discuss the choice of the constants M and cI,c 2 ,... ,CM, which enter into the esti-

mates j2 and % given by (25) and (53), respectively, and for the sake of simplicity, our discussion

is in terms of j2 only. It is appropriate to discuss the choice of these constants within the

framework of spectral density estimation. Defining

1 1 00
f(w) = -Vo +- LV cos wh,

27r 7r h=

we see that y 2 = 2irf(0). To estimate f(w) we must effectively estimate vh for each h. For fixed

nfB, Lh may be estimated for h = 0,1,... n - 1. However, because of the fact that for fixed nD

14
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the variance of Ph increases with h, it is standard to consider estimates of the form

+ + cjf'h cos wh
h=1

where M is much smaller than nf, and ch decreases as h increases. For a given value of M

the constant ch are usually given by ch = w() for some function w (called the "lag window")

defined on 10,I), satisfying the following: w(0) = 1,w(1) = 0, and w decreases smoothly. Two

commonly used choices are the Blackman-Tukey and the Parzen windows; see pp 514-516 of

Anderson (1971) for a definition of these. Also, see Chapter 9 of Anderson (1971) for a general

discussion of estimation of the spectral density. It is clear that as M increases the bias of 1(w)

decreases while its variance increases. For both the Blackman-Tukey and the Parzen windows as

well as for most of the commonly used windows, a value of M of the order ni is usually used, since

(under certain conditions on the stationary series) this minimizes the asymptotic mean squared

error. See Section 9.3.4 of Anderson (1971). Thus, condition (27) is not at all restrictive.

It should be noted that the part of the proof of Theorem 1 that gives the consistency of

f(0) applies equally well to the estimates ](w) for any w, and similarly for the spectral density

estimates of the series {NA(B,+1,B,)} and {B, I - B,}.

It was necessary to give a proof of the consistency of ](0) because the currently available

consistency results for spectral density estimates are valid under conditions on {U 1 } that are not

implied by Assumptions Al- A5 (e.g. existence of all moments in Brillinger, 1975; {U,) is a linear

process as in Anderson, 1971, and in Hannan, 1970).

3. DISCUSSION.

The methods described in this paper enable the construction of asymptotic confidence inter-

vals for K(t 1 ,t 2 ), for fixed values of t j and t2 . The function K(.,-) will usually be of interest over

a continuum of values, say -L < t1 < t2 <_ L, where L is some number much smaller than T.

One can plot k(-L, t) for -L < t < L or, what is sometimes more useful, plot K(t - ,t - ) for

-L + 4 < t < L - -. Here, d is some small number representing the experimenter's guess at the

duration or likely duration of the effect of a B point on the A process. The function K(t - L, t + L)

is identically equal to d if NA and N p are independent.

15



We may form the bands

k(-Lt) + 6'/ (-L,t)1rn- - L < t < L

and

kt-2 t+2 2 t+2)~n 2 <t<L 2

where a(tl,t 2 ) is an estimate of o(tl,t 2 ) and Z(a/ 2 ) is the upper .2 e 100 percentile point of a

standard normal variable. These bands of course are not simultaneous confidence bands. To form

simultaneous confidence bands one would need to carry out two distinct steps:

(i) Establish weak convergence of the processes

VB (t) = vrn-" (K(-L, t) - K(-L, t))

and

W,,(t) = vfn-B (k(t - d,t + ) K(t - -dt+ d
2 2 2 2

to Gaussian processes V(t) and W(t), respectively.

(ii) Obtain v(a) and w('), the upper a e 100 percentile points of SUPL<t<L IV(t)I and

SUP-L+It<L-1 JW(t)j, respectively.

The bands

k (- L,t) ±() /v/n-B - L < t < L

and
d d d d(t - -it + -) ±- w("}//nf- - L + - <2

2 2 2 2

are then asymptotic simultaneous confidence bands.

A proof of weak convergence appears extremely difficult. Although desirable from a theo-

retical point of view, weak convergence is not useful statistically unless the distribution of the

supremum of the absolute value of the limiting process can be obtained. Unfortunately, this is in

general a very difficult problem even if the Gaussian process is stationary (see Cressie and Davis,

1981).
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