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' ABSTRACT

5 To assess the dependence structure in a stationary bivariate point process the second-order
distribution (Ripley 1976, 1977) can be very useful. We prove that the natural estimates of
this distribution, based on a realization A; < 42 < ... < 4,,,B, < B, < ... < B, are
asymptotically normal, and we present a method for constructing approximate confidence intervals

W] for this distribution.
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1. INTRODUCTION AND SUMMARY.

Let (N4, Np) be a stationary bivariate point process on R. This article is concerned with
statistical methods for discovering and quantifying an association between the two processes from
a realization A; < A2 < ... < A,,,B; < B; < ... < By, over a long period of time T.
The paper is motivated by certain problems that arise in neurophysiology, which are very briefly

described as follows (for further details see e.g. Bryant, Ruiz Marcos, and Segundo, 1973).

Two neurons, A and B, are monitored over a period of time T during which each neuron
fires a sequence of impulses. The problem is to determine whether or not the impulse times are
associated. An association between N, and Np may be construed as evidence that either the

two neurons are communicating, or that they both share input from a third source.

Another problem arises in certain neurophysiological studies of learning and memory. An
animal is to be taught (trained) to perform a certain task. Now consider two “connected” neurons,
A and B, which are essential in the performance of this task. Record the impulse times during
a period before the learning experience, obtaining a realization of (Nf"f N };" i '), and during a
period of time well after the learning experience, obtaining a realization of (N:“’, Ng“'). The
processes Nf"" and Np/' may be dependent. The problem is to determine whether or not this

dependence is “stronger” for the processes N::! “ and Ngl ‘. A neurophysiologist may consider

a change in the strength of the dependence as evidence that learning has taken place.

The two problems have very different statistical character. Let S be a statistic that “mea-
sures” the dependence between two point processes. The first problem is one of testing the
hypothesis that N4 and N are independent, and requires only knowledge of the distribution of
S under the assumption that N4 and Np are independent. The second problem is much more
difficult: to compare S across two situations we must know the distribution of S when the two

point processes are dependent.

In a more general context, Ripley (1976, 1977) introduced a measure K, defined on an
appropriate space, that summarizes the second-order properties of the process. Before describing
this measure, we need to state some assumptions and introduce some notation. Let N;(s,t) denote

the number of events of type ¢ occurring in the interval (s,¢], for ¢ = A, B. Assume that cach

process has no multiple occurrences, and that the intensities
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\ = lim -,I:P{N.-(t,t +h)>0) for i=A,B (1)

are finite. (The existence of these limits was proved by Khintchine, 1960). The );’s then have an

interpretation as mean number of occurrences per unit of time: for t; < t3,
EN.'(tl,tg) = X.’(tg—tl) for 1= A,B (2)

(this follows from Dobrushin’s Lemma and Korolyuk’s Theorem; see Leadbetter, 1968).
We now give an informal description of the measure K, adapted to the present context.

The measure K is defined on the Borel subsets of R, and for t; < t3, writing K(t,,t2) for
K{(t1,t2)}, we have

K(tl,t2)=rl;E{NA(tl,t2)| a B pointat t=0)
(3)
(=5=E{No(~t2,~t:)| an A pointat t=0}).
Ap

Note that if N, and Ng are independent, then
K(tl,tg)ztz—tl, (4)

regardless of the values A4 and Ap; thus, K represents Lebesgue measure on R.

Ripley proposed the estimate of K(t;,t;) given by

T npg na

DD HA; - Bie (i, ta)}, (5)

i=1j=1

K(t 1s tg) =

nanp

where I{-} denotes the indicator function (actually, the estimate proposed by Riplcy has an edge
correction for points near the boundary of the period of observation; this edge correction will not

concern us).

Previous work on the estimator K is concerned with spatial processes. The results center on
using K totest thata single process in Poisson (Ripley, 1977; Chapter 8 of Ripley, 1981, Silverman,
1976) and on using K to test for independence of two processes (Lotwick and Silverman, 1982;

Diggle and Milne, 1983).




) ‘ In this paper we study the asymptotic properties of K (t1,t2). The contributions of this paper

4 are two-fold:

first, a proof that under certain regularity conditions, as np — oo

. 4 (6)
vne(K(t1,ta) — K(ty,t2))>N(0,0%(ty,t2)),

and second, a method for constructing consistent estimates of o2(t;,15). (7)

PR

Besides providing the basis for a test of independence between N4 and Np, (6) and (7) enable

one to test whether or not K(t;,t2) has changed in the experimental situation described earlier.

:: The cross-intensity function defined by
- 1
' Ap(u)= lim —~—— P{Njs(u+t,u+t+h;)>0;Np(t,t+hy) >0} (8)
A hiha—0 hih,
’: is related to K by
[} l ts

K(tl,tg) = —_— AAB(u)du. (9)
S '\AAB ty
} Under the independence hypothesis, A,p(u) = AsAp for all u. Brillinger (1976) considered the
b random function

np na
T
. Jipw) =) Y HA;-Bie(u-hu+h)} (10)
~ =1 y=1
+ and showed that under suitable regularity, if h — 0 and T — oo in such a way that hT re-
s mains constant, then for u] — ug, [ul —ul| > 2h,1 <k < k' < M, JT5(ul) are asymptoti-
~ cally independent Poisson random variables with means 2hTA 4p(ux), for k = 1,..., M. Thus,
' kY T [T . . .
g Aap(u) = —142‘,%.‘,.——' can be used to estimate A 4p(u) at a finite number of points.
') In practice one would graph the two functions :\AD and K over a finite range, say |- L, L} (i.ec.
) graph R(—L,t) for —L <t < L). Although from a mathematical viewpoint A4p and K contain
K)
N essentially the same information, the statistical properties of their estimates are quite different:
‘l
o estimation of A4p is akin to estimating a density, and from Brillinger'’s result the variance of
) A ap is of the order ;‘—‘7—.; on the other hand, estimation of K is akin to estimating a distribution
:: function, and from (6), the variance of K is of the smaller order ﬁ A graph of XAB may,
(]
N however, indicate features (spikes, location of maxima and minima, etc.) that cannot be easily
seen in the graph of K. Clearly the two approaches are complementary.

1)
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2. ASYMPTOTIC DISTRIBUTION OF THE K — FUNCTION.

; Let

. Uap (t1,t2) = E{N4(t1,t2) | a B point at t =0}. (11)
N

': We may estimate U, p(t;,t2) by

. Oap(tists) = — E Z I{A; — B € (t1,t2)}- (12)
N i=l j=1

:
& Letting

; X = % for 1 = A, B, (13)
E‘: we note that

"

: K(ty,tz) = — Uw(tl,t,) and K(t;,t5) = Xl,: Uap(ts,ta). (14)
R

. To prove asymptotic normality of K (Theorem 2) we will prove joint asymptotic normality of
) (0Ag(tg,tg),3‘,4). We will in fact find it necessary to first prove joint asymptotic normality of
‘ (0AB(tl,t2), iA/:\D, l/:\n). The delta-method (i.e. a first term Taylor expansion) applied to the
: : function f(z,y,z) = ? then yields the asymptotic normality of f{(tl,tg). We also obtain the
2 joint asymptotic normality (lep(tx,tg),j.A,:\D) by applying the delta-method to the function
,- o(z,,2) = (z,9/2,1/2).

::' We now need to give the statistical setting of our asymptotic investigation. The functions
::‘ Uap(ti,t2) and K(t;,t2) involve the notion of the Palm measure. That is for € > 0, we consider
" the conditional distribution of the process (N4, Np) given that there is a B point in the interval
,:E (0,€), and take the limiting distribution of (N4, Np) as € — 0. Intuitively, this corresponds to
:: selecting a B point “arbitrarily”, and considering the process with that point labeled the origin.
_v This notion is discussed for univariate processes by Leadbetter (1972) and for bivariate processes
::.E by Wisniewski (1972). We will assume that the process is observed during a period of length T
E:! starting immediately after the occurrence of an “arbitrary” B point, say B (thus, we will be
A working with the Palm measure). This mode of sampling is called semisynchronous sampling by
B Cox and Lewis (1972); see Wisniewski (1972) for some fundamental properties related to it. Also,
‘:" for the sake of convenience, we will assume that the period of observation ends with a B point.
:\l

-.: .
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We now consider two subfields of the o-field on which the Palm measure is defined. Let 772,

denote the o-field generated by the events

{Bx, € (Bo + v1,Bo + w1),..., Bk, € (Bo+ vm,Bo + wn);

NA(BO + rl’BO +31) = hl’“')NA(BO + rn’BO + Sn) = hﬂ}

forv; < w; <0,k; =-1,-2,...,s=1,...,m;r; < s; <0,h; =0,1,2,...,5=1,...,n,and m

and n nonnegative integers. For u > 0, let 57, denote the o-field generated by the events
{Bx, € (Bo +v1,Bo +w;),..., B, € (Bo+ vm,Bo + wn);

NA(Bo+r1,Bo+sl) = hl,...,NA(Bo +7',,_,Bo+sn) = hn}

foru<v; <w,k;=1,2,...,6=1,....mu<r; <s;,h; =0,1,2,...,5=1,...,n, and m and

n nonnegative integers. Let :

a(u) = sup{|P(E;y N E3) — P(E\)P(E2)|; E1 € F2%,E2 € F50.4,}- (15)

If a(u) — 0 as u — oo, then the distant future is virtually independent of the past. We will

actually need stronger conditions on «f-).

Let 8> 0,7 > 1,0 < 7 < 1 be any constants satisfying

(U—Zii)r>l. (16)

Assumptions:
, Al / [(t)]"t? dt < oo
- 0

A2 sup E{[Nn(j,j+l)]"| a B point at t:O}:D(.oo

—oc0<jy< oo

A3 E{[NA(tl,tg)‘(”ﬁ“vH a B point at t=0}<oo

A4 E[(Bi- Bo)*1+75)] < oo

4(1+755)
A5 E[NA(BO,B,)] <o
)
Before stating our theorems we discuss our assumptions, and compare them with those of :
Brillinger (1976). Any theorem giving asymptotic normality of the normalized partial sums of a
5 )

....................
-------------
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stationary sequence {7;} must assume a moment condition on T, and also a mixing condition on
{T:}. In general, wer kening of the moment condition must be compensated by strengthening of
the mixing condition, and vice versa. Assumptions A3, A4, and A5 provide moment conditions
on the sequences {U;}, {Na(B;-1, B:)}, and {(B; — B;-1)}, respectively. Assumption A2 ensures
that the B process “moves along” rapidly enough so that A1, the mixing condition imposed on
the point process, translates into a mixing condition for the sequences {U;}, {N4(B;-1,B:)}, and
{(B: — Bi-1)}. Relationship (16) describes in a technical way the interplay between the mixing

rate on the point process and the moment condition on the sequences {U;},{Na(B;-1, Bi)}, and

{(B; — B;-1)}-

The conditions assumed by Brillinger (1976) neither imply nor are implied by A1-A5 of the
present paper. Brillinger assumes a mixing condition on the bivariate point process and also
that the “second order moments” A;;(-) (¢,7 = A, B) exist and are continuous (he also assumes
existence and continuity of the “third and fourth order moments” ; see equation (2.2) of his paper).
This condition on A 4p(+) is not satisfied by the following process: Np is a Poisson process, and Ny
is Np shifted to the right by 1 unit. In this case, A4p(1) = co. This process does however satisfy
A1-A5. Conversely, it is easy to find processes (N4, Np) satisfying all of Brillinger’s conditions,
but not those of the present paper. Perhaps the simplest example is the following. Let N4 and
Np be independent, N4 being a Poisson process, and Np being an equilibrium renewal process
on (—o00,00) (for a definition and a construction see pp. 517-519 of Karlin and Taylor, 1975) with
interarrival distribution having a first moment but no second moment. Then A4 is violated, and

it is not difficult to check that this process satisfies all of Brillinger’s conditions.

THEOREM 1. Assume Al and A2. Let UAB(tl,tg),(jAB(tl,tQ), and ); for i = A, B be defined
by (11), (12), and (13), respectively.

(i) Under A3, we have as np — oo

VAo (Uan(ti,t2) = Uap(tist2)) > N (0,72 (t1,12)).

Furthermore, any estimate 4%(t;,t;) of the form (25), satisfying (27) and (28), is a

consistent estimate of 42(t;,1z).

(ii) Under A4 and A5 we have as ng — o0

Vao(Aa = Aa,Ap — Ap)' SN (0,A).
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Furthermore, any estimate A of the form (57) (refer to equations (49) and (51)-(56)),
satisfying (27) and (28) is a consistent estimate of A.

(i) Under A3-A5 we have as np — oo

VrB(Uas(t1,t2) = Uap(ti,tz), A4 — As, Ap — '\B)'_d*N(O, Y (t1,t2))-

Furthermore, any estimate i(tl,tz) of the form (56) (refer to equations (49) and (51)-
(55)), satisfying (27) and (28), is a consistent estimate of }_(¢;,%5).

PROOF of (i). We begin by showing asymptotic normality. Let U/ and U; be defined by

Y. I{Aj € (Bi+1t1,B;i +12)} I{Bo < A; < Bn,}

j=-—o0
and
©0
Y I{Aje(Bi+1t,Bi+15)}.
J=-o0
Note that
Uap(ts,ts) = ZU' (17)

It is clear that 3 02 U; — Y"1 U! = 0,(1). Thus, it suffices to prove the result with U;’s instead

of U’s in (17). Observe that the sequence {U;}& is stationary, with mean U,p(t,t2) and

i=—o0
finite variance (by A3). The U;’s may be far from independent: for small k,U; and U,,x may be
nearly identical. If, however, U; and U, are “nearly independent” for large k, then one can still
hope to have a Central Limit Theorem effect. The proof consists of translating Al, the mixing
condition on the point process, into a mixing condition on {U;} that allows the application of an

appropriate central limit theorem for stationary sequences.
Let u(k) be defined for £ = 1,2,... by
p(k) = sup{|P(E; N E3) — P(E{)P(E2);Ey € o(...U_,Up), E3 € 0(Ug,Ury1,...)}  (18)

(Here, o(...U-,,Up) denotes the o-field generated by {...,U_;,Up}, and similarly for
(Ui, Uk+1,...)). The function u(:) is called the mixing coefficient of the sequence {U;}. Our

goal is to prove that 32  [u(k)]” < oo. It will be more convenient however, to show instead that

Y re;[1(2k)])7 < co. The two conditions are equivalent since u(-) is nonincreasing.




Let k > 1 be fixed, let E, e o(...,U_x), E2 € 0(Ux,...), and consider P(E, N E;). Let

C_ix={B_x —~Bo < —[k"/*!]} ‘and Ci={Bi- Bo 2 [k"/\"*1]}.

We may write
hY
. P(ElnEg)=P{(E1nc-k)n(EzﬂCk)}-f-P{(ElnEg)n(CikUC:)}, (19)
" where ¢ denotes complementation.
J
Consider the first term on the right side of (19). For all large k, since B_x — By < —k!/(F+1)
L)
N implies that B_; +t5 < By, we have E;NC_ ¢ 7_‘3&. Furthermore, E;NCy € 71?3+[kw+n1+z.-
' Therefore,
; P{(E\ N C_i) N (E2 N Ck)} < P(E1)P(E3) + a([kPHY)] 1 t,). (20)
N The second term on the right side of (19) is obviously less than or equal to P(CS,) + P(Cf).
! These last two probabilities are dealt with in the same way. Consider P(C}). Observe that
P(C§) < P{one of the intervals (Bo+7,Bo+j+1),5=0,1,...,[k*/(F+1)} —1
. (21)
N has at least [k#/(P+1)] points }.
-
by By A2, Chebyschev’s inequality and Boole’s inequality, the right side of (21) is less than or equal
to [k!/(B+1)] D [kP/(B+1)]=n_ Combining this with (20) and handling the opposite inequality in
a similar way, we obtain
u(2k) < a(k/A+1) 4 ) 4 kI/(ﬂ+1)D[kﬁ/(ﬁ+l)]—n.
b
N Assumption Al implies that
- o]
N Y {a(kMPHD 4+ 41)} < oo, (22)
* k=1
) Combining (22) and (16) we obtain that Y ;.  [u(2k)]” < oo, and hence that
i
Y lr(k)]" < oo. (23)
. k=1
. Assumption A3 implies that
. E[uf"* ™)) < .
This, together with (23) allows us to apply Theorem 1.7 of Ibragimov (1962) to conclude that
. the series ) 5>, Cov(Up, Us) converges absolutely, and that as np — oo
. A d
X Vrp(Uas(t,t2) — Uap(t1,t2)) = N(0,7%(t1,t2)),
)
‘ 8
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where

o 7*(t1,t2) = Var Up+2 ), Cov(Uo, Us). (24)
h, h=1

Consider next the estimation of 42(t,,t;). Let v, = Cov(Uy,Uy) for h = 0,1,2,..., so that
'72(11,t2) =y + 22:’___1 vp. Let

M

) ~ ~ 'S
1, ‘72(t1,t2) =9+ 2 Z Chlh (25)
h=1
O where ¥y, is the sample covariance at lag h:
[y
: 1 ng—h-1
: by = U; - U)(Uisn - U 26
e Y (U= O)(Uia D) (20
1=0
o - .
3 (here U = ;‘: 02, U:). We will assume that
: . Mna o
. M =M, satisfies T — 0 as np — oo, (27)
; np)*
'
.
9 and that the ccastants ¢ = c}_"”) satisfy the following:
.
b, for each ng =4,5,6,..., 1> c(l'”’) > c(;”) > c&';’) =
(28)
)
3 and for fixed h, c,(:"’)—»l as np — oo.
E The choice of constants M and ¢y, ca,...,cas is discussed at the end of this section. We will show
[}
' under (27) and (28) that
» E[3%(t1,t2) — v2(t1,t2)] — 0. (29)
"
* This will imply that 4%(t;,t2) converges to ¥2(t;,t2) in probability.
b ]
o Since KDy, is not in general equal to vy, it is more convenient to first work with
)
y 1 na—h—l
: Dy = U; = Uap(ty, t2))(Uign —~ Uap(ty,t 30
| n = Zo ( an(t1,t2))(Uign — Uap(ts,t2)) (30)
'| =
. and
: | L
N F(tr,t2) = Do + 2 Z Chin. (31)
; h=1
p Since Eiy = vy, if we define
M
'7'2;.(t11t2) =yt 2 Z Chlp, (32)
5 h=1
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. we have

: E¥*(t1,ta) = 43, (t1,t2). (33)

From now on we drop the arguments ¢; and ¢; whenever convenient. The triangle inequality gives
A - ~2 ~2 2 2
W EA* - < ER? - 3?1+ EF® = 13,1 + e, — 77l (34)

Thus, our objective is to show that each of the three terms on the right side of (34) converges to

h . 0 as np — oco. It is easy to see that under (27) and (28), |2, — 4% - 0 asnp — ooc.
i
n
; We now consider E|52 — 2 |. Let ¢o = 3. We have
T
. M M
o EF*—22,|=El2 ) ealon—va)| <2 Elon - val
.J h=0 h=0 (35)
b M 3 M
y <2 Z{E(Dh - u,.)’} =2 ) {Var g},
- h=0 h=0
S
[ We now examine the variance terms. It is well-known (and easy to see) that if {};} is a stationary
-: sequence, then
b 1 & 1 1|
Var (= YY) == ) (1- ) Cov (¥,Y140)- (36)
- i )
() Equation (30) shows that Iy, is of the form vy, = % Yo, Yi,where Y; = (U; - U)(Uisn - U),
¥ with {Y;} stationary. We can thus obtain the exact variance of y:
: ) 1 1|
\ \Y = - 0), 37
e ar = ——p 2 (1- =)o) (37)
e |ll<np—h
4
\ where
. on(€) = Cov((Ui — Uap)(Ussn = Uap), (Uive = Uap)(Uisn+e = Uan))- (38)
O\
0 To obtain a useful bound on Var 7;, we will show that
.
4 loa(0] < (18- m)4+)] c (39)
," where a4 = max{e,0} and C is a constant not depending on h or £. The key ingredient in
D)
the proof of (39) is the use of a lemma of Ibragimov (1962) that gives an explicit bound for the
covariance of two random variables £ and n satisfying £ e o(...,U-,,Up) and n ¢ o (Ux,Ux 41, .. .),
jf. in terms of u(k) and certain moments of £ and 7.
1)
y 10
w
"
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For any ¢ such that |¢| > h, Lemma 1 3 of Ibragimov (1962) implies that

on(l) < |u(lg] - h)]'{‘ +6 E|(U, - Uap)(Ussn - UAB)!"”‘—!_"}» (40}
The Cauchy-Schwars inequality implies that
E|(U, - Uap)(Usan - Uap) P * T < E|(U, - Uap)|*** 77! (41

By A3 the right side of (41) is a finite constant not depending on h or {. This proves (39) for
|¢] > h. For |¢| < h the proof is even simpler, and is omitted. We now combine (37) and (39) to

obtain

Var s Y a0 e (X w0 s Y )

fl<ng—h ifl<h 1. >h
(42
1
ng - h

iA

((2h + 1O+ i wlf) ()
/-1

Next, we use (23) and (27) to see that there exists an integer J. not depending on h or £~

that
{

Var vy < n‘; for all np - J. (43,

We now return to E'32 42 1 (see (35)). Combining (27) and (43) we arrive at

E3? 73. s 00 us np . R
To complete the proof of (29) we need only show that F 3% 3% .+ 0asnp - x Wetae
A Y]
E“Sz :72; - E2 L Clu(l-/l. Ly ) o 2 L L i, A0
h_—o0 h_0
We will presently show that
- - - (‘l
Eion vn - —,
np R

where C’ is a constant not depending on h

Referring to equations (26) and (30), it is easy to see that

bh=n+ (0 —Uap)(Uap - U)+ (U Uap)(Uan U)o (0 Capi’ (a0




where

g~ 1 "—Z’H v, o® "il UL,
npg—-h = v "B - =

Thus, E|os — | < E|(UY) — Usp)(Uap — 0)| + E|(0P = Uap)(Uas — U)| + E(U — Uas)*.
Consider first E(U — U,p)3. From (36) we have
|t‘ Cll
E(0-Uss)’= (= 3, (- =)uves —,
|tl<ng
where C" = yo +2 } 2, Vel < 0o. Similarly,

Cl‘ Cl'
—5 and E(0® -U,p)? < T h

E(U“) - UAB)’ < .

The Cauchy-Schwarz inequality now yields (46), which together with (27) imply that E|q4,—4,| —

0 as ng — oo. This completes the proof of (i).
We next prove (iii), since the proof of (ii) proceeds in a very similar way.

PROOF OF (iii). For £1,62,6 € R, let X; = € Us + & Na(Bi, Biy1) + €3{Bis, --B;). The
sequence {X;}72__ is stationary, and if x(-) denotes its mixing coefficient, it is clear that (23)
holds for x(-) as well. This give a central limit theorem for {X;}. It is simple to argue that
E N4(Bo,B,) = As/)Ap and that E(B, — By) = 1/Ap. By the Cramér-Wold device we now have
that

e U; n Aa T 1\/
i _Z;s_u_ ZA_24A -
nB( np UAB'nB Ag’'np )\B> (48)

is asymptotically normal with mean 0 and covariance matrix, say V. To identify ¥ and describe

consistent estimates of it, it is convenient to introduce additional notation. Let
vil=u,, V¥ = N(Biy1,B), V! =Biyy—B; for i=...-2,-1,0,1,2,... (49)

Let
v = cov(V? V") for p,g=1,2,3, h=...-2,-1,0,1,2,... (50)

Note that d:““ = vp. It is clear that the asymptotic covariance matrix of (48) is equal to the
matrix whose pgth entry is Ww(r?) = 3~ w""’) (note that ¢;(.M) is not necessarily equal to
dJ(_',f’, unless p = g). Next, for p,¢g = 1,2,3, define

s Tttt v vy - P9y forh=0,1,2,..., M

w(”' (51)

s Tt v vy -v@)  forh=,-1,-2,-3,...,-M

12




Jled) = Z

h=—M
where M and {c,} satisfy (27) and (28), respectively. Also, let

¥ = matrix whose pqth entry is \i/,(.m). (54)

The same argument that was used in the proof of (i) now applies and we see that ¥ converges to

¥ componentwise in probability as ng — oo.

Consider now the function g(z,y, 2) = (z,y/2,1/2), which maps
(2::1 U,-/nB,nA/nB,T/nB) into (Z?:Bl U.-/nB,XA,XB). The derivative of g evaluated at
(z’yaz) is
1 0 O
Dg(z,y,z) = (0 1 —:-i‘) (55)
0 0 =

An application of the delta method (with the function g) to the vector (48) gives the asymptotic

normality result asserted in Part (iii) of the theorem, with
So(t1,t2) =Y. = Dg(Uap,Aa/Ap,1/28)Y(Dg(Uap,Aa/2p,1/2B)]"
Defining ’Z\: = ’i(tl,tz) by
S = Dg(Uap,Xa/Ap,1/35)¥(Dg(Uap, Xa/Ap,1/25)], (56)

it is clear that under (27) and (28) ’i converges to ) componentwise in probability as ng — oo.

PROOF of ii. As was mentioned above, the proof of (ii) is very similar to that of (iii). We

: =(rq) . o~
now consider the variance estimates. Let E(p 9 and Y. denote the pqgth entries of }_ and > _,

respectively, and let =(22) «(29)

. (X >
A= (E(sz) ,i(ss))’ (57)

with a similar definition for A. Obviously, this is the same A that appears in the statement of Part
(ii) of Theorem 1. It is clear that under (27) and (28), as np — 00, A — A componentwise in prob-

ability. This completes the proof of Theorem 1. ]
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HEOREM 2. Let K(t;,t2) and K(t1,t2) be defined by (3) and (5), respectively, and assume
Al-A5. Then, as np — oo 1

VB (K (t1,t2) — K(ty,t2) S N(0,0%(t1,t2)).
Furthermore, any estimate 6%(ty,¢;) of the form (58) (refer to equations (49) and (51)-(54)),

satisfying (27) and (28), is a consistent estimate of o2(t,,t;).

PROOF. We apply the delta method to the vector (48) with the function f(z,y,z) = £2. The
derivative of f at the point (z,y,2) is Df(z,y,2) = (’,-‘—’55, ‘;) Evaluated at (Uap,Aa/AB, -'\ia—)

R
t' A kY N . > 3 .
s and (Uap,Aa/AB, r‘;), this is (Tl:,K%i-,K Ap) and (T;’K'Xi" K Ap), respectively. The asymp-
3 totic normality asserted in the theorem follows from the asymptotic normality of the vector (48),
L)
'}
:: with
i
1y 2 1 AB 1 AB ]
‘ t),t2) = (— K Ag) ¥ JHK A
" and it is clear that under (27) and (28), if &2(t1,t2) is defined by
1.4
:‘ - '
! ;2 e S RY TR LIy
) o (tl,tz) = (.—,K. K AB) v (-.— K. JK )\B) (58)
v Aa s Aa s
:: then as np — 00,62(ty,t2) converges to o2 (t1,t2) in probability. This completes the proof of The-
[}
": orem 2, B
"
‘ Results giving the asymptotic normality of estimates of A4 and Ap (under varying sets of
\/
. assumptions) already exist in the literature; see e.g. Theorem 8.6 of Daley and Vere-Jones (1972).
i » It was necessary to establish joint asymptotic normality of ) 4 and Uy p(t1,t2) in order to obtain
A -~
asymptotic normality of K (t;,t5).
) We now discuss the choice of the constants M and ¢;,c¢s,...,ca, which enter into the esti-
b mates 42 and ¥ given by (25) and (53), respectively, and for the sake of simplicity, our discussion
N, is in terms of 42 only. It is appropriate to discuss the choice of these constants within the
w framework of spectral density estimation. Defining
g
l. 1
U
X f(w) = -é—uo+ — Z vpcos wh,
, h=1
:‘ we see that 42 = 27 f(0). To estimate f (w) we must effectively estimate v}, for each k. For fixed
[}
;: np,v, may be estimated for h = 0,1,...,np — 1. However, because of the fact that for fixed np
N
d 14
b
N
h
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K the variance of £y, increases with h, it is standard to consider estimates of the form

t . 1 1 &
, ' f(w) = -2700 + - Z chip coswh
h=1
where M is much smaller than ng, and ¢, decreases as h increases. For a given value of M
the constant c), are usually given by ¢, = w(2) for some function w (called the “lag window”)
defined on |0, 1], satisfying the following: w(0) = 1,w(1) = 0, and w decreases smoothly. Two
commonly used choices are the Blackman-Tukey and the Parzen windows; see pp 514-516 of
Anderson (1971) for a definition of these. Also, see Chapter 9 of Anderson (1971) for a general
discussion of estimation of the spectral density. It is clear that as M increases the bias of f(w)
decreases while its variance increases. For both the Blackman-Tukey and the Parzen windows as
1

) well as for most of the commonly used windows, a value of M of the order n is usually used, since

(under certain conditions on the stationary series) this minimizes the asymptotic mean squared

ol

error. See Section 9.3.4 of Anderson (1971). Thus, condition (27) is not at all restrictive.

It should be noted that the part of the proof of Theorem 1 that gives the consistency of

ol I 4 o

f(O) applies equally well to the estimates f(w) for any w, and similarly for the spectral density
estimates of the series {N4(Bi+1, B;)} and {B;;, — B;}.

It was necessary to give a proof of the consistency of f (0) because the currently available

consistency results for spectral density estimates are valid under conditions on {U;} that are not

S "

implied by Assumptions A1- A5 (e.g. existence of all moments in Brillinger, 1975; {U,} is a lincar

process as in Anderson, 1971, and in Hannan, 1970).

. 3. DISCUSSION.

The methods described in this paper enable the construction of asymptotic confidence inter-
vals for K (t,,t2), for fixed values of t; and t,. The function K{-,-) will usually be of interest over

: a continuum of values, say —L < t; < to < L, where L is some number much smaller than T.

One can plot f((—L, t) for —L <t < L or, what is sometimes more useful, plot K(t - '2—',t + g) for

-L+ g <t<L- ‘E’ Here, d is some small number representing the experimenter’s gucss at the
duration or likely duration of the effect of a B point on the A process. The function K (t— '5', t+ '5')

is identically equal to d if N4, and Np are independent.
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;:, R(-L,t) £ 22" (~-L,t)/\/ng -L<t<L
» and

§ f((t-—g,t+g)ﬂ:z("ﬁ)&(t—g,t+g)/\/ﬁ —L+gst$L—g
; where &(t1,t2) is an estimate of o(t;,t2) and 2(2/2) s the upper 2 ¢ 100 percentile point of a

A standard normal variable. These bands of course are not simultaneous confidence bands. To form

E simultaneous confidence bands one would need to carry out two distinct steps:

4
\ (i) Establish weak convergence of the processes

/ V(1) = VAB(K(-L,t) - K(~L1))

t

A

; and

:.: W,,,(t):,/rT.S(f{(t—g,t+g)-K(t—g,t+g—))

':';: to Gaussian processes V (t) and W (t), respectively.

S (ii) Obtain v(®) and w(®), the upper a e 100 percentile points of sup_r<i<r |V (t)| and
E SUP_ L4 g<e<r—4 [W (t)), respectively.

o

N The bands

: K(-L,t) £ v*) /\/np -L<t<L

E: and
'5 }‘{(t—;—i,t+g)iw‘“'/\/'n‘5 —L+gst§L—;

:,:: are then asymptotic simultaneous confidence bands.

:: A proof of weak convergence appears extremely difficult. Although desirable from a theo-
] retical point of view, weak convergence is not useful statistically unless the distribution of the
‘ supremum of the absolute value of the limiting process can be obtained. Unfortunately, this is in

A general a very difficult problem even if the Gaussian process is stationary (see Cressie and Davis,

3 1981).

:
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