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I. Goals of the Research

g - This Grant aimed at an understanding of the strongly
nonlinear electrical properties of charge density wave (CDW)

conductors.

Some progress had been made, in understanding weakly
h nonlinear properties, with models which retained the spatial

randomness of the pinning potential (due to crystal

inhomogeneities). The complexity of a random potential (when
combined with the dynamic, many-body and nonlinear nature of the
1 problem) meant however that progress into the strongly nonlinear
; regime was extremely slow, despite the attentions of numerous
? researchers. The PI adopted what was at the time a somewhat

unfashionable approach. It was decided to see whether the
randomness in the pinning potential might not in fact be an
unnecessary complication. It was decided to attempt to solve for
. the dynamical properties of incommensurate chains. These have a
. periodic rather that a random pinning potential, but they retain
: the collective, or many-body, aspect as well as the nonlinearity
of sliding CDW's. Once their dynamic properties are solved we

must compare with experiment to see whether these models really

contain the essence of CDW conduction.

-4
"
“
» The results are summarized in the next section (II). A more
<
o complete account of the progress under the grant is contained in
M 2
~
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the publications (Section III), with some ongoing work described
in the final section (V). In section IV, I outline a new
perspect:ive that has emerged from the results of all these

projects taken as a whole.

II. Theory vs. Experiment

From the publications (in many cases from the Figures) it is
seen that incommensurate chains give a surprisingly good account
of the following dozen measurements: both components of complex
ac conductivities as functions of field and frequency, in both
metallic and semiconducting CDW materials; dc characteristics;
scaling of ac and dc conductivities’ elastic properties -
Young's Modulus and Q-factor as functions of voltage; bulk
oscillations; and both amplitude and phase of both the second
and third order mixing properties. In addition, incommensurate
chains have been seen to exhibit complete mode locking over the
entire range of dc fields and external frequencies. (These
results resolve a dispute between the Illinois and the AT&T Bell
Laboratories groups. The manuscript is being prepared for

Physical Review Letters and the abstract is included in section

III.)
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]

Publications

1. Sliding Dynamics of the Incommensurate Chain

Physical Review Letters, 52, 65 (1984).

2. Dynamics of Incommensurate Structures: An Exact
Solution

Physical Review (Rapid Communications), B30, 2974

(1984) .

3. Electromechanical Properties of Charge Density Wave
Conductors
Physical Review Letters, 56, 1194 (1986).

4. Oscillatory 1Instability in the Dynamics of
Incommensurate Structures

Physical Review Letters, 58, 1903 (1987).

5. Mixing in Charge Density Wave Conductors
Physical Review (Rapid Communications) 35, 7745
(1987).

6. Mode Locking in Charge Density Waves: a Classical
Theory

to be submitted to Physical Review Letters.
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Sliding Dynamics of the Incommensurate Chain

| Leigh Sneddon
' Mavrtin Fisier school or Physics, Brandeis University,
(Received 8§ July 1953)

Waltham, Massachusetts 02254

The dc dynamics of the sliding incommensurate chain is reduced to a purely static prob-
lem. The sliding system is described by a static hull functicn which becomes singular,
above the critical pinning strength, as the velocity approaches zero. Both ac and dc
sliding dynamics are determined numerically for the cases of weak and strong pinning
and short- and long-range interactions. Excellent agreement is obtained with experiments
on sliding charge-density waves near threshold, both in NbSe, and in TaS,.

PACS numbers: 72.15.Nj, 72.15.Eb, 72.20.Ht

Incommensurate structures, such as charge-
density waves (CDW’s) and adsorbed monolayers,
are now familiar in solid-state physics.! The dis-
covery® of electrical conduction due to sliding
CDW's raised a wide range of questions concern-
ing the dynamics of sliding incommensurate struc-
tures. This article reports progress in the ana-

: Ivtic study of such dynamics and in the under-
standing of related experimental results.

The incommensurate system studied here is a
simple extension of the model of Frenkel and
Kontorova,? and the dimensionless equations of
motion can be written

U+ 2, Ky iy =y, =1y, )
= f+PcosH(j+u,), 1)

where j=1,2,...,.N, Pis the strength of the pin-
ning force, and 27/4 its wavelength., The case of

N = and #/27 equal to an irraticnal, p, was
studied by considering #/27 =13, '\, where W,
is an integer, having no common factor with .\,
and W,/ N-pas V- w.

Equation (1) was Fourier transformed to re-
place the u,’s by phase-shifted Fourier compo-
nents «,=a, exp(ia,):

N
w, =exp(=imthw )N 3 exp(~ imHjlu, (2)

i=1

for m=0,1,2,...,N~-1, Using Bessel functions
to expand the cosine in (1) gives terms with an
explicit vV dependence. As N- = for a bulk veloc-
ity v > 0, these terms can be shown to vanish

to every finite order of perturbation in P and
oscillate at arbitrarily high frequencies about
zero. To treat the limit V= =, only those terms
with no explicit \ dependence were retained.

This gives

vaf-PE ) (3a)
w, ==(2i1 -2, k,cosuhp) - itlw |+ PF“‘;IUM} (3b)
forl1  u- N2, where
, .
, Flw, =N e eosdy-2 37, a,cosltmty - )|, (3¢)
' =1 1L me N2

TROCPeRaent of 1w,
For constant », static solutions, with ic =0
for . -1, were found. A finite number, .
re of the #  were retained and the corresponding
» coupled equatinns ‘3b) were solved numercally,
treating the retained w | to all nrders, The coup-

ma vy

2 lings in (3c) were computed with A large enoush

:' that nereasing it had no siemificant effect. These
solitions were tested in two wavs, Firstly, the
de characterisnhice was caleulated. With weak pin-

. nine, clear eonversence with inereasing

.; b, 4 nedr respanse at o 0 ocwas found, with no

N thre-bol 1o For strons pinning the emerconee -t

: A threshnld singalaritty - with inereasing

Ve

[ Y T B

Ca g fa Q™
\,-l;'._,,\-‘

o, o

was clearly indicated. The results thus agree
with present knowledge' at low velocities and are
also eorrect to all orders in perturbation theory
at moderate and hich velocities, Secondlv, the
solutions were tested for stability to small per-
turbations and were found to be dvnamically
stable,

Sinee these sotutions are statie, exploting
translatinnal nvariance has transformed the de
shiing fhnonmues o the infimte menmmensurate
chun

Fr
distortions then have a4 simple nime dependence

v purely statne problem,

m 2, the Foarer components, o a1 the

oy
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v, =constx '™ (A corresponding result for
excitations about the v =0 limit was obtained by
Novaco.?) Further, there is a static hull function
describing de¢ sliding solutions with ¢ > 0. That
is, u, - vt is a function of a single variable:

u, =vt =g U -vb), (4)
where the periodic function g  is given by

g,(x1=2 25

1Zme<N/2

cancos(imbx+a ). (5)

Much attention has been given' ® to the way, at
f=v=0, g, changes from being analytic, for weak
pinning, to singular, for strong pinning. The
present studies showed the amplitudes a, de-
caying exponentially with m when v >0, even with
strong pinning. The function g, is then analytic
for v >0. Thus for strong pinning a breaking-of-
analyticity transition occurs in the new hull func-
: tion, as the velocity approaches zero at thresh-
old. The complicated time dependence of the
u,(¢) near threshold is expressed, by (4), com-
pletely in terms of the emergence of singulari-
ties in this new hull function.

Linear ac response, in the presence of a dc
field, has been studied experimentally’ in the
CDW systems NbSe, and TaS,. At fields a few
times threshold low-order perturbation theory®
is not useful; but this region is the most common-
ly studied experimentally because the nonlinear
effects are larger than in the high-field region,
and sample heating is not a problem, The pres-

0060

02 o4 06
d ¢ bhias ($/P)
FIG, 1. ae response of dixtold -conrdination incom -

mensurate chain, showing interterence featires,

66

ent techniques were therefore used to determine
the ac response of the sliding incommensurate
chain near threshold. Having reduced the dc
dynamics to a static problem is very useful. The
ac response of a time-dependent solution is much
more difficult to obtain than that of a static solu-
tion, for which the ac response, like the dc char-
acteristics, can be determined without numerical
integration.

The CDW’s in NbSe, and TaS, are three-dimen-
sionally coherent,” One effect of higher dimen-
sionality is to increase the coordination of the
system, To mimic this increased coordination
crudely, a sixfold-coordinated chain was con-
sidered with K, = A, = K, =%; &,=0, p>3.

By considering in (3) a small perturbation about
a static dc solution, the ac response, o{w)=0’
+1i0’’ was determined, for'®@=(5"%?+1)/2 and
HP=3.0. The results (with . ,,=15) for ¢’ and
the dielectric response - ¢’‘/w are shown in Fig.
1. The basic features in Figs. 1, 3, and 5 are
preserved with increasing i ,, The threshold
force was estimated from the dc results,

Figure 2 shows experimental results’ for
Reol(w) and €(w) of the sliding charge-density
wave in NbSe,. Figure 1 is seen to account well
for the voltage and frequency dependence of both

s

=E=0)
@

Rea'o,(w)/a,o'(u)

Tz242K

10" % xdielectric const

dc bias (mvV)
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FIG. 3. ac response of incommensurate chain with € I E.T * "
infinite-range interactions; c.f. Fig. 4 and text. = oo*r '
o] 80 160 240
components of the ac response. This may not bios valtage Vy, {mV)
have been expected since CDW dynamics are FIG. 1. ac response (Ref, 7} of Ta$,.

dominated by randomly positioned defects! while
the chain is in a periodic potential.

In experiments” performed on TaS, at 130 K,
the sharp interference features seen’ with NbSe,
(Figs. 1 and 2) were not observed. TaS, becomes
a semiconductor® below the CDW transition,
while NbSe, is metallic.” At 130 K the conductivi-
ty of TaS, has fallen two orders of magnitude
from its value at the transition. As discussed
earlier, ' this reduces the screening capacity
of the normal electrons and can allow long-range
Coulomb interactions of the CDW with itself.

The sliding dynamics of Eq. (1) with long-range
interactions, K, =2/\ for all p, was therefore
determined. The results (with I, =20) are
shown in Fig. 3, and can be compared with the
experimental results in Fig. 4. Not only does
including long-range interactions account for the
absence of interference features, but the proper-
ties of the incommensurate chain are seen to
match those of TaS, extremely well. The «ir-
rerence between the ac properties of NbSe, and
TaS, can now be understood for the first time as
being due to the presence in TaS,, as suggested
eartier,'® of long-range Coulomb interactions
of the CDW with itself.

The ac response was also determined with s
=0, and compared to the dc conductivity » 1.

The results ‘with ;.. ,, =20) are shown in Fig, 5
for long-range interactions. Similar results
were obtained for the sixfold-coordinated chain.
The experimentally observed'' ' scaling, of
firld- and frequency -dependent conductivities,

PO S e Ve

is thus exhibited by this classical model, and can
no longer be regarded™ as evidence for a quantum
mechanical theory of CDW conductivity.

Although these calculations do not probe asymp-
totic low-frequency threshold properties it is
interesting to speculate that the detailed form of
the potential becomes less important as one ap-
proaches threshold. In any case, the comparison
of theory with experiment seen in Figs. 1-5 shows
that, in fields comparable to threshold, the in-
commensurate chain gives a much better pic-
ture of CDW dynamics than might have been sus-
pected.

10~ ‘Oxo‘oxo;oxOXOlO (o]
x 2
o}
X
08+ 0
&
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frequencv=dependent (eirclest conductivities in the

Sealing of field-dependent (crosses) and

classical chain,
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prior to publication.
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Dynamics of incommensurate structures:

VOLUME 30, NUMBER 2

. SEPTEMBER (484

An exact solution

Leigh Sneddon
The Marun Fisher School ot Physics. Branaeis University,
Waitham, Massachusernts 02254
(Received 13 March 1984)

A simple exact soiution of the incommensurate chain with infinite-range interactions 1s obtained with the

use of both analyuc and graphical technigues.
Results are derived for the depinning transition,
function of pinning strength and appited ficid

The ground states and all metastable states are idenufied.
the sliding threshoid. and the excitation spectrum as a
The ac response 1s also obtained and has a low-frequency

singularity at threshold, but the dielectric constant is bounded. as seen in charge-density-wave experiments

Incommensurate structures, such as charge-density waves
(CDW's) and adsorbed monolayers, are well known in
solid-state physics.! The incommensurate harmonic chain
has recently been seen? to provide a useful model of CDW
conductivity and long-range interactions have been seen™?
10 be important in semiconductor CDW systems, e.g., TaS;.

If every parucle in a chain interacts equally with every
other, the equation of motion can be written

d—['i =rr)+

7 Psin(Hj+ U) + () = U

(1)
Here ;=1,2, ...,

<L/=1|m NT

Z U,
J=1
P is the strength of the pinning force, and 2nw/H its
wavelength. an irrational. Fisher* has studied the related
problem where Pis replaced by a randomly distributed vari-
able. The purposes of this Rapid Communication are to
provide a considerably simpler exact solution of the incom-
mensurate case {(fixed P) and to derive a number of new
£xact results.

Solutions to 1) can be written

U/(f)=u({)"L’(l{j*(x(l)'.() (2)
where’ v(x = 27.t)=¢lx1). and
fley=— “1f dx gtx,t) (3}
-
Subsututing 12) 1n (1) and using the idenuty
N i
im NS Fiy= [ FCo
N — = - ~
tor - jrrational and Flx~1)=F{x) gives
,.(/;lht&*m‘ Psintyx~v¢)—vy (4)
[P ol
where, for hulk veloaty v(r) =d (L7, dt x saushies
vlgy =ty — i) t5)
Thus, ‘he tnrm t2) wields an equation of motion which
tepends on v 20 Urdn, but not on Uy, exhibiting the

ranslational nvarance ot the incommensurate syslcm.“
The sransient and hystercuc properues of (1) are current-
The rest ot this article will consider

Yomnaer o nhvestatation

30

constant f, in which case a and v are constant, and one can

search for solutions’ with 9g/8¢=0. Equations (2). (4),
and (5) then simplify® to
Uty =a+g(Hj+a) (6)
v(l+g)=Psin(x+g)—¢g 7

When v=0. (6) is a simple transcendental equation which
can be solvea graphically. For P < 1 ‘here is a unique solu-
tion [Fig. 1(a)]. It is continuous and odd so that. using (3),
when v=0, f=0, and there is no sliding threshold. For
P > 1 there are multipie, discontinuous solutions, g, many
with nonzero means [(Figs. 1(b) and l{c)]. The threshold
force is clearly

fremax=(2m)~ [ gxac (8)

Thus the critical value of P defining the depinning transition

08 (a)
04 4
-v -w/2 X
v/ 2 v
L-04
-0.8
ANy 28 (b)
-r \ X
Xy Xy r
(1) (o)
g, iX7)
(c)
X
v
-08 *
FIG | Stationary states vte) gt =05 b =13 yround
states tor =il ) Ne e = e e s gp ) o) P

4 metastable state.
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below which the sliding threshold and multiplicity of solu-
tions disappear,’ is immediately seen to be £, =1.

The threshold force can be determined graphically, using
(8), for all P. Further, in the limit P— P.* the mul-
tivalued region in Fig. | shrinks towards the origin where
(7} gives

x—g6+(P-P)g=0, (9)

and (8) gives, with elementary calculus, fr=1[9/(4m)](P
- Pr)"r as P— P.*, where ¥ r=2. For large P one obtains
Jr=P—-7+0(P~YY),

Further, it is immediately clear from Fig. 1(b) that at
/= fr there is only one stationary state.* gr.

Turning to dc dynamics. a=vrin (6) and g is continuous.
As v— 0, g will approach gr as f— f7". It is easy to see
from (7) that for x away from the critical value xr,
g—gr=0(v). In the vicinity of xr, putling x=xr+y,
x+g(x)=xr+gr(xf )+ h(y) and considering (7) in the
limit of small v and h(p) gives'® vdh/dy =y + ah?, where

= —gr(xy )/2. Transforming by

D an(Bz)w(z) | (10)
dz

where a={(a¥v)¥? and 8= (v¥a)V? gives w'= —zw(z),
the solutions of which!! are the Airy functions Ai( ~z) and
Bi{ —z). The boundary condition that h(y) be finite and
negative for y < 0 as v— 0 means, integrating (10), that
w(z)— 0 as :— —o. This eliminates Bi( —z), which
diverges as z — —oo. Thus

" Ai'( = (a/v))V3y)
Ai(— (a/v)¥3y)

Y

hiy)= =

and the limiting value of y = x — xr for finite A, as v— 0, is
(v¥a)¥3zy where zy is the first zero of Ai(—z). This
result is seen graphically to give a dominant contribution
~v¥ to f~fr in (3). Thus v=B(f—fr)¥? where
B=02ma"?(z,4)1¥? and A=gr(x7) —gr(x7). Further,
as P— P.* using (9) gives

B=[2V3m/(3z,))2(P-P,)" 2 |

Thus the depinning transition, and the -;- threshold ex-

ponent with a coefficient which diverges as P— P.*, in
agreement with Ref. 4, can be obtained quite straightfor-
wardly for the incommensurate chain. The simplicity of the
present calculation is due to the elimination of the center-
of-mass coordinate ( U) leaving a function of only one vari-
able to be determined in solving incommensurate dc dynam-
ics.

Further, it is possible to determine the energy and stabili-
ty of each stationary state and thus specify, for P> P,
which is the ground state, which are the metastable states,
and which are the unstable states. The energy correspond-
ing to Eq. (1) is

H=T Pcos(Hj +U)) + (4N)=' S (U, - U)? .
/ ¥

Using (6) and choosing g to minimize A shows that the
ground state has a single discontinuity, which moves from 0
to xr as f increases from 0 to /r [Fig. 1(b)].

To distinguish metastable from unstable states the linear
stability of stationary solutions fU,} of (1) must he studied.
Replacing U, by U+u, in (1) gives, to Oluiu

Cr T A T A T e e e e N N e
i -. -7 w.’\\"'\"-' \».."' e WSROI

=(My+ M)y, where MgV =(Pcos(H;+L,1~1)5, any
M{ =N-L" The Green's function G(:z)=1(z~M,
—ﬁ,)" is easily calculable by summing the usual e¢xpan-
sion in powers of M. With

Go¥ (2)=1(z=x))7"8;, Ayj=PcostHj+L,)—1

one obtains G=Go+ GoIlGo, where T'/=[{N(1-pu)]"
and u{(z)=N"! 27(: ——A,)_—“. Thus the poles of G, which
are eigenvalues of the stability problem. are the roots ot
w(z)=1 A plot of w(\) for real A then immedia‘ely
shows!? that any g which occupies a finite part of the middle
branch (dashed line in Fig. 1) wiil be unstabie. Further. as
N — oo, the largest root of w(z) =1 remains an isolated ex-
citation. Transforming sums to integrals, it is straightfor-
ward to show that this eigenvalue is negative for any state g
which avoids the ‘‘unstable’” middle branch. Thus any such
state which 1s not the ground state 1s metastable. An exam-
ple of a metastable state is shown in Fig. 1(c).

Since the Green'’s function is known, the exact density of
relaxational [(1) is massless] excitations, p{A) can be deter-
mined in the usual way. For P < P,, transforming sums to
integrals, and writing 5(A) = —A(P2~ (A+1)*)""Yn _ one
obtains for large N

p(\)=p(M)B(PI—(A+ 1))+ N718/A)

which is shown in Fig. 2(a). The isolated excitation at A =0
is the sliding mode of the unpinned chain.

For P> P., f=0, the excitation spectrum p(A) was
determined for the ground state shown as curve (i} in Fig.
1(b). The resuit for large N is

p(M) =M1+ P+N)0(Xg— A+ N7'8(A —=2p) ,

where Xg= —1+ Pcos{g(0*)] <0, and g < Xp< 0. This
spectrum is shown in Fig. 2(b). As P— P, (9) gives
Ao=—2(P—P.). Further, as P— P, Xp=—b(P-P.)
where b is between 0 and 2 and is the root of

12 172
3 3(1+b)
——| =coth|—F—
1+b6
(a) P
1.5
oS
A
1 1 1
-2 -1 o]
(b) pix) (c)
1S
ost
A . A
1 1 J — i
-4 -3 -2 -4 -3 -2
FIG. 2. Excitation spectra p(A). (a) P =05 /=0, th) P =3

f=0.(c) P=3,0< 1< /7.
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Thus as P— P* the gap in the ground-state excitation
spectrum cioses as (P — P, )*! where oy =1

For P > P., the excitation spectrum was aiso determined
for /> 0. For the ground state shown as curve {(ii) in Fig.
1(b), one finds

pA). —1=P<A<NK. .
pA)=15(A)/2. Xo <A<,
NTIBA=X,) A<\,

where X » = — 1+ Pcoslx,~glx, )] and X_ < X, < 0. As
S=IF A == A4lyr— IV where 4(P)— (/)2
as P— P* This spectrum is shown in Fig. 2(c). Further,
as

= 7. Ke=a_=Dexpl—=Clsr—f)""} |

where D=2(P'— i)' Pand C=[A3(P1-1)/(4a)]V2. That
1s. as /' — f7 . the 1volated excitation collapses exponentially
rapidiy onto the edge of the continuum. Moreover, the gap
in the excitauon spectrum closes as (fr—f)*z where
'112 - '{r

Finally, knowing the Green’s function gives the exact
i

2 P+1-:

0.2 04 06 o8 10

FIG. 3. dc characteristic for P=1x5 (Q): also (with matched
thresholds and large v slopes) for single-particie mode! (Ref. 12)
(+) and NbSey CDW (Ref. 16) (3).

linear ac response of the pinned lattice. For P > P. the

result is

olw fiP)=iw{l =2n{A,—iwu( Eliw.X_)
+EGw, X )17 . aD

where A= g(x/*) —g{(x) and

P—1-\

E(z AV = coth™!

[Pz_(l_:)Z]lll

The result (11) may be compared with CDW experiments
for both the real and imaginary parts of a(w) for ali
f1=< /7 and for all w. The single-particle model'? is easily
seen to have the property limg . ¢—Imao/w— o as f— fr.
No such divergence has been observed experimentally !> As
w— 0 and / — fr, the term in square brackets in (11) be-
comes

\- o IP(lX-i—,w)
(pr—1)\2 2PI-1)

While |Ix_]— 0 as /— f7, the dielectric constant, €= 1o/ w.
nevertheless remains finite near fr even as w — 0. The en-
tire spectral weight of the single-particle model is at one fre-
quency which approaches zero at threshold. The pinned
many-body system considered here has a broad spectrum of
excitations, only one edge of which approaches zero at
threshold. This is the first explicit demonstration that in
such a case the singulanty in o is weaker than in the

(PP—(1—=z) ]2 [P+ 14V

f
single-particle case and € can remain finite, as is observed

experimentally.!?

For nearest-neighbor interactions, the ground state g is
more singular and some numerical determinations of depin-
ning exponents for a stationary center of mass have been
made.>'* Equation (1) can be considered a mean-field
theory for the incommensurate chain with finite-range in-
teractions. The present straightforward solution may be
useful in the ultimate analytic solution of sliding threshold
dynamics with short-range interactions. For constant /> fr
outside the threshold region, the :runcation procedure of
Ref. 2 gives an accurate solution of Eq. (1), including the
response (o small ac perturbations. As seen for exampie!®
in Fig. 3, this combines with the present results for f < fr
to give a complete steady-state solution of this system.

The author thanks E. Gross for stimulaung disctssions
and the Air Force Office of Scienufic Research for support
under Grant No. 84-0014.
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Electromechanical Properties of Charge-Density-Wave Conductors

Leigh Sneddon

Department of Physics, Brandeis University, Waltham. Massachusetts 02254
(Received 31 October 1985)

A model of two mutally incommensurate, interacting, dynamical, many-body systems is present-
ed and solved. Quasiperiodic forms are shown 1o describe both the dc properties and the complete
set of linear excitations. By use of one system to represent the crystal lattice and the other a
charge-density wave (CDW), all the recently discovered, and as yet unexplained, electromechanical
properties of CDW conductors are shown to occur in this model. The internal degrees of freedom

of the CDW are shown to be of central importance.

PACS numbers: 72.15.Nj, 72.15.Eb, 72.20.Ht

Until recently the widespread interest in charge-
density-wave (CDW) conductors has centered on their
nonlinear electrical properties.! Elegant experiments
by Brill and Roark? and by Mozurkewich er al..’ how-
ever, have now shown that the motion of a CDW also
changes the mechanical properties of the host crystal.
Speculation as to the origin of these phenomena has
included CDW domain-wall refaxation® and phason-
phonon interactions®; and a satisfactory calculation of
the current dependence of mechanical properties is
still lacking.

This Letter addresses the. question of whether
singie-domain, noncommensurate, classical, many-
body models, which have exhibited a variety of non-

m(BQ+ zAB(DU‘B+"L2j W(Xaj)(d)a— Uj)= _"“EJF(XGJ)_EL’

S, D,U_p+ Z WX U~ D) = 3 F(X,,) +E

where m is the ionic mass, the inertia of the CDW is
negligible, @, and U, are the displacements of particle
a in the crystal lattice and particle j in the CDW,
respectively, and 2ma and Hj are their respective
undisplaced positions, so that

(3)

is the distance between them. The coefficients 85 and
D, are the spring constants of internal, harmonic re-
storing forces in the lattice and the CDW, respectively.
The function W(x) is a weighting function centered
at x =0, and represents the spatial range of the dissipa-
tive interactions. The force F between particles a and
J also depends on their separation X,;. £'is the electric
field acting on the CDW and — E; is the force which
keeps the lattice stationary. The incommensurate limit
is approached by a consideration of M particles in the
crystal lattice chain, vV in the CDW chain, and M/N
= H/2m — a fixed irrational. The parameter u is a
formal expansion parameter ultimately to be set equal
to 1. This model thus treats the lattice and the CDW
4s two separate entities, each distorting the other.” In

XGIEZTTG+(DQ_[Hj+ Uj]
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linear electrical properties of CDW's*® (e.g., dc
characteristics, ac response, ac-dc interference, and
voltage fluctuations) can also give a satisfactory ac-
count of these new electromechanical properties. A
model is solved which includes both the host-crystal
degrees of freedom and the internal degrees of free-
dom (IDF’s) of the CDW. It consists of two interact-
ing mutually incommensurate chains, one representing
the crystal lattice and the other the CDW. Conserva-
tive and viscous interactions between the chains are
used to represent respectively the pinning force which
produces the CDW threshold, and the dissipation
which results from CDW motion through the crystal.

Dimensionless classical equations of motion for this
model can be written:

(1)
(2)

f

the stiff-lattice limit (A >> F), &, = (d,),? and the
crystal lattice simpiy produces a rigid incommensurate
potential through which the CDW moves, exhibiting a
variety of experimentally observed nonlinear electrical
properties.**

The first general result, which can be checked by
substitution for any A, is that stationary states, and
states of dc relative motion of the centers of mass of
the two interacting chains, are described by quasi-
periodic forms

&, (1)=0(y),

y=2mra—vi

U()=vi+Gl(x),

x=Hj+vy (4)

Qy+H)=0(y), G(x+2m)=G(x),

where v=(U;), the CDW center-of-mass velocity.
Thus the quasiperiodic form first shown to describe
the statics of a single incommensurate chain.’ and sub-
sequently shown to describe its dc dynamics as well.* is
now seen to describe both the statics and dc dynamics
of two interacting dynamical systems.

© 1986 The American Physical Society
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Further, the linear fluctuations of the dual interact-
ing system, both when static and when undergoing dc
! relative motion, are likewise characterized by quasi-
periodic forms. If &, =d,expl —iwt) and ;= y
xexp( — iwt) are fluctuations in the crystal lattice and
CDW chains, respectively, a complete set of linear
fluctuations is given by

- e e

PN

- o

(AN N Ll Jar

dalt) =€ (y), G(1)=enix),

(5)

riy+HY=r(y), hix+2m)=h(x),

L ¢

where xand yafe as in (4). The normal modes of the

dual interacting system thus resemble Bloch waves.'?

If the two chains do not interact, r and h are constant

and the excitations are simple traveling waves. Inter-

. chain interactions produce a quasiperiodic modulation

of each wave. In the special case of the stiff-lattice

. limit these excitations reduce to those of incommensu-

. rate single-chain systems, which have been studied nu-

merically in the static case (v=0)% We now see that

these excitations are ‘‘quasiperiodic Bloch waves.”

] Further, the exponential factors in ¢, and u; are waves

with phase velocities, respectively, of w/q in the crystal

: lattice and w/q —v in the CDW. Since the CDW is

: traveling at v relative to the grystal. both waves are
(. traveling at the same velocity in the laboratory frame.

: To compare the properties of this model with exper-

( imental data, a small force f,e~'*! will be considered

XL L A

verse displacement amplitude at resonance is then a
measure? of “‘internal friction,” Q™.

Since the effect of the CDW on the Young's
modulus is of the order of a percent.? Eqs. (1) and (2)
will be studied as an expansion about the stiff-lattice
limit. This is most clearly done by expansion of the
solution in powers of the formal parameter u, which
premultiplies the forces distorting the lattice.

The caiculation begins by replacement of U, by
U+a(t)e™', &, by d,+d,(1)e” " and - £, by
— E, + foe” ' in Eqgs. (1) and (2), of which the U,’s
and ®,’s form a dc solution; retention of only terms
linear in & ¢, and /; and consideration of &, of the
form, to O(u?), of a normal mode, i.e.,

b, =explig2ma)l. (6)

Muitiplied throughout by exp(— ig27a). and aver-
aged over a, Eq. (1) then gives

fHme’—A(g)=puM~'3Z, =5/ (M
aj

where!!
Zy=F(X,) =i WX, )1(1 - Ge~42=) (8)

To determine fto O(w) in (7) only requires that
Z,;, and hence U, ®,, and u;, be determined to
0([-&0), i.e., in the rigid-crystal-lattice limit, for which
we may put &, = (d,) =0. To determine U, and u;,

o to act on the crystal, and the resonant frequency, wy, the case of infinite-range internal CDW interactions®
. defined as the frequency at which the driving and the (**‘mean field theory’”) will be considered:
b displacement are 7/2 out of phase.? will be determined ~ $,D,U,_,=U;—(U). Use of Egs. (3)-(6) and
. as a function of the voltage across the system. The in- linearizing of (2) then gives (for ¢=0 so that
p-. uZGW(X,,)h’(x)+[1+X{Ca+iqu(Xa)}]h(x)=EaCaexp[iq(Zna-x)], (9)
-{' where X,=2mra—x—g(x), Co,=F(X,)~iw

- x W(X,)—vW (X )[1+g(x)], and g(x) is the
» solution to
4

g(x)+v I WX )1 +g(x)]=3 F(X,). (10

subject to g(x +2m)=g(x). [The electric field £ is
L givenby—(21r)"fzwdxg(x).]

Equations (9) and (10) were solved numerically and
the results used with (5), (7). and (8) to determine &/

-4 above threshold. Below threshold, Eq. (2) was in-
g tegrated numerically to a stationary state and then
. linearized to calculate 6 to O(un) in (7). Since the
. relative shift in resonant frequency is smail, the real
W and imaginary parts of 5/ directly give dwj and Q7.
! respectively, each to within a multiplicative constant.
These quantities are shown in Fig. 1 as a function of
- voltage. or E. W was chosen to be a Gaussian of
- height 1 and width 6 and F had a maximum value of
> 2.2 and resulted from a repulsive Gaussian potential of
o width 3, with ¢ = 57 and m =0.12.
4

S R e A R A e e
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FIG. |. Electromechanical properties of the incommensu-
rate latuce-CDW model: relauve shift 1n the Young's
modulus { Awh/wd) and internal friction € Q™). both plotted
in arbitrary linear units.
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FIG. 2. Electromechanical properties of TaS; at 96 K
(Ref. 12). The vertical bars indicate the maximum scatter in
the data points.

Experimental results'? are shown in Fig. 2. The cal-
culated Awj reproduces the general form of the data.
It also contains a peak, however, which is not apparent
in these data, although much smaller peaks have now
been seen in some samples.!>!3 This difference
between theory and experiment may be due, for exam-
ple, to the existence of a phason gap in the mean-fieid
theory (see below), to the one-dimensionality of the
model. or to inhomogeneities in the crystal.

The rapid rise of Q™' above threshold is clearly
seen, with Q7! reaching a maximum well before w}d
has leveled off, a feature emphasized in the original
experimental report.2 The gradual decline of Q™! at
higher voltages was not reported prior to these calcula-
tions, and has by now been repeatedly observed.'? 13

A qualitative interpretation of the Young’'s-modulus
results is that, for small ¢, the rigidity of a CDW
pinned to a lattice enhances the rigidity of the lattice.
For fields larger than threshoid, this mechanical cou-
pling of the two systems,'* !5 and hence the enhance-
ment of the Young’s modulus, diminishes.

This decoupling of the sliding CDW from the lattice
excitations can be demonstrated particularly dramati-
cally with the choice of infinite-range CDW internal
interactions. In this case the CDW’s bare excitation
(phason) spectrum has a gap: wphason 7 0 35 ¢ — 0.
When the CDW is pinned to the lattice this resuits in a
gap in the spectrum of the combined lattice-CDW sys-
tem. {This was checked numerically by determining
that #f/(w.gq— 0)7 0 below threshold.] Above
threshold. comparison of (9) to the negative of the
derivative of (10) with respect to x shows that
hix)— —g'(x) as qw— 0. Use of (4), (5), (7,
and (8) then gives

Atig,m—10)

=" ux

d
dx

2/"(271'!1 —xv—glx))=0,

since g is periodic and continuous above threshold.
Thus the rigidity of the CDW s coupled strongly to
the lattice below threshoid, in this case producing 4
gap, but less strongly above threshold. as indicated
here by the disappearance of the gap.'¢

When we turn to the internal friction, below thresh-
old many IDF's are suppressed by the pinning, whiie
above threshold more can be excited. These dissipate
energy and enhance 0~'. As the CDW velocity in-
creases further, however, the coupling between the
lattice and the CDW weakens and the excitation of
IDF's, and hence Q ™!, decreases slowly.

The importance of CDW IDF’s can also be demon-
strated by our leaving them out, for example, by mak-
ing the CDW stiffness coefficients D, in (2) very
large, so that U;,~(U) and u; vanish. One then re-
covers a model similar to that studied!’ to illustrate a
symmetry-breaking effect of the CDW current. From
(7) and (8). &f in this limit is. to Of(u).
- iw(Zn)"f_"dx S.W(Q2ma—x), a constant. Thus
to O(w) arigtd CDW produces no voltage dependence
in the crystal’s mechanical properties; hence, the ef-
fects calculated in Ref. 17 were O(u?). The presence
of IDF’s, however, allows a first-order contribution. as
shown in Fig. 1. Since the crystal lattice is much
stiffer than the CDW, first-order effects are much
larger than second-order effects, and IDF’s of the
CDW thus produce voltage-dependent shifts in
mechanical properties of magnitude larger than those
predicted with no IDF’s.

The dependence of lattice properties on the CDW
velocity, v, is also of interest. Without IDF’s the
sound velocity, s, is found!’ to be an analytic function
of v at v=0, with an antisymmetric, linear leading
term and higher-order corrections that are much small-
er if, as is the case in CDW experiments, v << 5. The
exhancement of the Young's modulus studied in this
Letter, however, will produce a symmetric v-
dependent component'® in s(v), which should there-
fore deviate from antisymmetry over observable CDW
velocity scales much less than s. The inclusion of
IDF’s also results in the v— 0 limit being a singular
limit, the threshold at which, for example, the electric
field is related to v in a nonanalytic fashion.’ and the
function g becomes singular. It is thus possible that 6
in (7). and hence the sound velocity. will also be non-
analytic functions of v. Thus, in addition to strongly
enhancing the current-induced shifts in lattice proper-
ties. the CDW IDF’s will contribute a significant sym-
metric component to, and possibly also change the
analyticity of, the sound velocity as a function of CDW
current.

A single-domain, incommensurate, classical, many-
body model of the type that has exhibited a vanety of
electrical properties of CDW conductors*™ has been
soived and seen 1o account for electromechanical prop-
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erties as well. As is the case for the electrical proper-
ties. the internal degrees of freedom'* !> of the CDW
were seen to play an essenual role.
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(8/80)1 WX, 3[1 -4, expt - qlrall

When v =0 11 vanishes. When v=0, 115 contribution to the
sum in {7) can be seen sull 1o vanish as toilows Using 13)
(4).and (5), and writing x, = H; ~ v we can write (his con-
tribution 1n the form

u/ll"(a/al)z,)'( X )
='[.LN(2'IT.U)-'(6/81)J._' Yixbde =0,
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Oscillatory Instability in the Dynamics of Incommensurate Structures

.

-~ !
.::: | Leigh Sneddon
! Murtin Fisher School of Physics, Brandeis University, Waltham. Massachusetts 02234
Y i
L and
N'n ‘ Kenneth A. Cox
~
’-. ' Philip Morris Research Center, Richmond. Virgima 23261
:.\ ‘ (Receved 27 March 1985)
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Fh-
v We report the discovery of an oscillatory instability in the dynamics of incommensurate structures.

i
|
. | The sailations survive the thermodynamic imit. The instability occurs for both long- and short-range
Jl interactions  The frequency and stability of the oscillations are studied.

o

S _ iy e

‘; i PACS numbers 72.70.4m, 7215 Eb, T2.18 Ny, 7220 Ht

‘5

L f Quasiperiodic or Incommensurate systems have at- pletely random phase variable g, is irrelevant.) [t has

"~ E tracted considerable interest in a wide variety of con- also provided® accounts of ac-dc interference experi-

| texts, tncluding adsorbed lavers, structures of solids. the ments in the CDW compound TuS», and the scaling of

onset of chaos. and localization (see, for example. Refs. tield- and frequency-dependent conductivities.

. I-2). They also exhibit? a variety of the nontinear prop- The exact dc solution of this model is* U, (1) =t

. erties of sliding charge-density waves (CDW's), includ- +g(Hj+cr) where g(x) is the solution of the bound-
ine de characternistics. ac response, ac-de interference, ary-value problem

ind ¢lectromechanical properties.

We report the discovery of a new phenomenon. a bulk
ascillatory instability, in the dynamics of sliding incom-
mensurate structures: and we study some of its proper-
nes. The existence of bulk oscillations is surprising since
the weneral beliet has been that the phase of any oscilla-

v(l+g)=Plx+g)—g. glx+2x)=g(x).

This solution was used here as the initial configuration
for a numerical integration of (1), with .V particles, and
it was checked that the numerical procedure was stable.
By addition of any small perturbation the dynamic sta-

RN N £ The 2
NS @

"

o

= tons in a shiding noncommensurate system would vary — pijity of this solution can be studied. The voltage (F)
v through the sample. thus cancelling the oscillations in versus time plot in Fig. | shows the result of such a
~ the thermodynamic limit, as indeed occurs in perturba- study. The results presented in Figs. 1 and 2 are'* for
- tion theory. *® The instability is therefore breaking the P(x) =8sinx+12sindx.
.y translational symmetry of the bulk noncommensurate It is immediately apparent that the dc solution is
ssotem. Finally. in the light of this new result. we dis- dynamically unstable. with oscillatory fluctuations grow-
:': cuss the long-standing problem of oscillatory voltage ing exponentially at first and then saturating. The ap-
- Huctuations in CDW conductors.”™!! - ’
S ! The tirst model we consider 1s one for whose dc prop-
‘:: ! erties an exact solution is available,* namely. a set of V ‘ x 7
: particies, all interacting equally with each other. subject
: ' to a pinming force PCx) and a uniform force F: ”
g U,=PUHj+0 )+ U =U,+F ()
- Here Hoas the lattice spacing: U} is the displacement of =
‘_ the jth particle {so that Hj+U, is its position); g 0F
.‘ L o=N"T'Y U, Plx+2z)=Pl(x); and we study the s}
- himit v = o0 and H/2x=un irrational. Because CDW's
. are overdamped.™'* purely refaxational dynamics s 19
. ased. Thiy model can be thought of as a mean-field
e theory for the incommensurate chain. Following a sim- | _ ) . |
':' ple construction ' 1t can be shown, however, that it can a4 8 12 16 20
- 1o he considered o mean-tield theory of 4 CDW subject TIME {t}
e Yo spatally random distnibution of adentical pinning FIG. 1. Voltage vs time for mean-field theory, with = [0,
': centers. (With inhimite-range interactions, the distinction Note the exponential  divergence followed by saturation,
. hetween the guasiperiodic phase varable Hyand a com- charucteristic of annstability 1in a4 nonhnear system.
s
. : @ 1987 The Amencan Physical Society 1903
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The instability was observed for a wide range of o,. with
v, decreasing as o, increases. '

The solution of the linear fluctuation cquation at c.,
Ut =n(Hj+rvt)e ™, provides some rudimentary in-
sight into the origin of the instability. The exact solution

)

v
P
Pl

s o B i o el

"

et by
P T TN T

s

L s
@
.

FREQUENCY (w)
&
I
-

0 2 4 6 8
COW CURRENT(v)

FIG. 2. Frequency vs velocity for the Frenkel-Kontorova
modei. The segments satsly v/w=(H/2z)" where n=2 for
the largest segment and cascades through n=1,2,3.4 as the ve-
locity 1s decreased further.

pearance of hurmonic content in F(r), as well as satura-
tion. are both due to nonlinearity and they are seen to
oceur at the same time. as expected. Time series ob-
tuined with V=144 233 and 377 are essentially indis-
unguishable. Thus the results shown in Fig. 1 describe
the thermodynamic limit and are not a finite-size effect.
Moreover, a finite-size effect would not be expected to
show the exponential divergence seen in Fig. 1, which is
instead the signature of a dynamic instability.

[n addition, we performed a stability analysis of the dc
solution to (1) in the limit ¥ — oo, CDW experiments
are often current driven, and so we considered (1) in the
presence of “normal electrons™ by keeping fixed a total
current, v+ o,F. where o, is the conductivity of the
linear, normal channel. It can be shown that, for any
pinning potential, oscillations at {complex) frequency w
will occur under conditions of fixed total current v + o, F
only if w is a root of o(w)=—0, where o{w) is the
linear response function of the sliding structure. Thus,
while an instability under conditions of fixed voltage F
would correspond to a pole of o crossing into the upper-
half complex @ plane, the instability shown in Fig. 1, at
fixed current v, corresponds to a zero of o crossing into
the upper-half plane. We solved the linear-response
equation and obtained the zeros of o for different veloci-
ties. At ¢ =10 the result was a normal-mode frequency
whose real and imaginary parts both agreed precisely
with the diverging oscillation seen in Fig. 1, confirming
that 1t shows an oscillatory dynamic instability inherent
in the mean-field theory of the dynamics of incommensu-
rate structures.

We calculated the complex normal-mode frequency at
ditferent velocities. As the velocity decreases below 11,
the zero moves into the upper-half complex plane. signal-
ing ananstability of hifurcation. There is thus a critical

of the de¢ motion® showed that there are values of the
pinning potential (essentially the peak values) which a
locally stable static solution avoids by having discon-
tinuities in the function g{x) defined above. Static solu-
tions do exist with particles in these regions, but such
solutions are unstable.® A sliding system. however, must
have particles in these regions and a continuous g(x),
with dg/dx sharply peaked in these regions for small v.
We tind that the unstable fluctuation n(x) has || larg-
est just where dg/dx is peaked. Thus the oscillatory in-
stability of the dc solution may be in some measure a dy-
namic consequence of the existence of unstable static
states.

To see whether the oscillatory instability exists in
finitely coordinated systems we studied a minimally co-
ordinated system: an incommensurate chain with only
nearest-neighbor interactions, !

Uy =PH,+U)+U,-; =2, +U, 4\ +F (2)

The incommensurate chain has been shown® to give an
account of the difference between the ac and dc interfer-
ence properties of NbSey and TaS;. A previously ob-
tained® dc solution to (2) was wused as an initial
configuration in a numerical integration with .V particles.
Increasing .V sufficiently produced identical plots, ensur-
ing that the results represented the thermodynamic limit.
Different pinning potentials were studied. So long as
P(x) produced a threshold, whether or not P(x) con-
tained harmonics, resulting voltage-time plots showed
precisely the exponential instability, followed by satura-
tion. that was seen in Fig. | for the mean-field case.

Thus the instability occurs at coordination number
infinity and two. It is therefore expected to occur in in-
commensurately pinned systems at all intermediate coor-
dinations in one, two, and three dimensions.

The oscillation frequency as a function of v, for
nearest-neighbor interactions and the same P(x) as in
Fig. 1, is shown in Fig. 2 and has some interesting
features. It is predominantly linear. Further, although
the large-r limit has transients with the trivial frequency
w=r which would be exhibited by a single particle in
P(x), once the instability takes over (v <9Y) a new
chuaracteristic frequency and length appear which are
determined not only by Plx). but also by the sliding
structure itself. In the large linear region in Fig. 2.
¢lo=(H/2x)° That is. the oscillatory instability re-
veals the length scale #1 provided by the lattice spacing.,
which is the length scale corresponding to the wave-
length of a CDW.

g velocity v, above which the de solution is stable (oscilla- Further. as r is decreased. there are a number of first-
. tons decay) and helow which the osaillations persist. order transitions, where /w changes abruptly, bheing
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"o =2.1.2.3. . as the veloenty is de-

gen Dy (A7)
credsed.

The properties of the Frenkel-Kontorova model (Eq.
2] have attracted a great deal of attention (see, e.g.,
Ref 2). It s now clear thut its dynamic properties are
considerably richer than previously realized.

Turning 1o CDW conductors. the dominant source of
pinming 1> believed to be 4 random potentiai due to lat-
nee defects. While Eq. (1) 1s also a mean-tield theory of
random pinning, we do not vet know whether a bulk os-
cilatory instabiiity also vecurs ain systems with random
pinning and short-range interactions.

No critteal velocity, ¢, has been reported in the exper-
imental literature.  Some  experiments in the tume
domain have. however, revealed transient oscillations.'®
While the existence of transients has no clear explana-
tion within the tinite-size' ' or contact *® theories. a nat-
ural interpretation in the present context is that in these
experiments ¢ > ¢ so thut fluctuations oscillate but de-
cay.

The origin of CDW voltage oscillations remains an
open yuestion. The unexpected ohservation of bulk oscil-
lations in models which have exhibited a wide variety of
other properties of sliding CDW’s may be the basis for
the answer. or merely a tantalizing coincidence.

In conclusion. we have reported the discovery of new
phenomenon—an oscillatory instability—in the dynam-
ics of incommensurate structures. )
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1s grateful to Philip Morris, Inc., for the hospitality of
the Philip Morris Visiting Scientist Program, and to the
Air Force Office of Scientific Research for support under
Grant No. 84-0014.
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Mixing in charge-densitv-wave conductors

Sen Liu and Letgh Sneadon

The Marun Fisher Schooi of Physics, Brandets Unicersiny

Wotham Massacnuserts 02254

fRecerved 13 November (9867

Harmonic and direct ac mmixing properties ot the Fukuvama-lee-Rice model and the tncom-

mensurate chain are determned and compared with expernimental data.

field and frequency

dependences of both the amplitudes and phases of hoth of these responses are examined. Agree-
ment with experiment s generaily good. For exampie. classical models can vieid low harmomc-
miung guadrature components simultaneousiy with substantial frequency dependence in both

components ot the linear response.

An interesting series of experiments, involving the non-
linear muxing of ac signals in charge-density-wave
(CDW) conductors. was initiated by Seeger. Mayer. and
Philipp® and thoroughly extended by Miller and co-
workers.*”* These experiments merit theoretical study in
therr own right as probes of the unique properties of CDW
conductors.

Further, the suggestion has been made that the results
may prove difficult to reconcile with amv classical
theorv.”* It is thus important to determine the ac mixing
properties of classical models of siiding CDW's to see
whether there is indeed a failure of the classical picture of
buik CDW motion. and whether these experiments give us
evidence for Bardeen's fascinating proposai® that CDW
conductors are exhibiting macroscopic quantum tunnel-
ng.

The principal experiments=™ are direct mixing (or
rectiication) and harmonic mixing. The sample 1s driven
by a voltage of the form

El)=E4+E costat+0)+E:cos(wat) , (1)

where £, and E, are generally small compared to the
threshold voltage Ey. The two measurements consist of
detecting the component of the current with frequency w,
where wp=wmy — w; for direct mixing, and wy=2w; — w-
for harmonic mixing. The frequencies are chosen so that
wn ts much smaller than w, and w-.

The properties of two different models are reported
here: the Fukuvama-Lee-Rice (FLR) model” of random
pinning and the incommensurate chain.® Perturbation”
theory was used to obtain analytic information for the
FLR model at large bias fields £4. The incommensurate
chain was simulated numerically to obtain solutions in the
strong-coupling region closer to the sliding threshold tield
£ ;. The equation of motion for the incommensurate

chain with infinite-range interactions ™' is
du, . \
I—='u,,—-u,+Psm(Hj+u,)+E(t) . 2)
ot ’

where w15 the disptacement of the jth particle, w. 1s the
center-of-mass displacement, P is the pinning strength,
and /(27 1s chosen to be (VS —=1)/2.

By simuiating Lg. (2) in systems up to 377 particies in
size we were able to restrict tinnte-size etfects to the region
very close to threshold and ensure that the results ob-
tuned at il other fieids reliably reflected the thermo-

i3

A SRS

dvnamic hmit. The applied frequencies were chosen to
have a rational ratio so that the response (in the thermo-
dynamic limit) 1s periodic. Transients were allowed to de-
cay for a time ty=T sutliciently long that tg=T and
17 =2T give results that are indistinguishable within nu-
merical error. The sampling rate of the time series was
chosen high enough that increasing it further produced no
noticeable changes.

We now compare the theoretical results with those of
experiments. examining each feature of the data in turn.

I. HARMONIC-MIXING PHASE SHIFT

The experimental result which has been most em-
phasized=** is the failure of some experiments to observe
an “internal”™ phase shift in the small difference-frequency
harmonic-mixing response. Classical models were conjec-
tured® to yield nonzero phase shifts at high applied fre-
quencies w,. Wonneberger'” then showed that the classi-
cal single-particle mode!l exhibits a zero phase shift for all
wy at lurge dc bias fields. He proved this result to leading
order in perturbation theorv and argued in an appendix
that the result 1s valid evervwhere above threshoid.
Nonetheless. 1t was claimed that the nonobservation of a
phasc shift above threshold. where n uddition both com-
ponents of the /inear uc response have substantial frequen-
cv dependence. may he difficuit to reconciie with any clas-
sical theorv.* It was further claimed that this experimen-
tal observation provided particularly significant evidence
for CDW tunneiing.”

We determined the harmonic-mixing properties of the
FLR model using perturbation theory at large de bas
tields. The principai resuit s that the response com-
ponent at frequency wy is proportionad to costwal + 200 1n
the limit of small wa tor targe de hias ticlds £, and all w1
The sine component »anshes hincariy with wa. Thus the
classical FLLR modei also exhibits 4 sero internal phase
shift at large has tields.

In that region, however. the hinear ac response has no
strong frequency dependence. 1t s theretore necessany to
probe the regron of lower de bias closer to threshold. For
this purpose. we iurn o the results Tor the incommensu-
rate chain.

Freure 1 shows some tvpicat fickd and o dependences
o hoth components of the harmonmic-imivang sienal. 1t o
seen that the out-al-phise component s considerabi
7748 19%7 The Amerncan Phyacal Socety
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Sor e meommensurate chain, Freure 2(h) shows the ex- 9025+ TEEIT S
serimental dataT and Figo 2(er shows the resuits= NOTWMENELRETE Cie
Anien nave been presented based on quantum tunneling 0520

0204 ~ -

ATULMents.

ie) The peaks In Fig. 240, the positions (felds) and
ne neents ol the peaks change tn the same sense with tre-
cueney asseen expertmentallv, The present resuits tor the
imcommeenserate chain change somewhat more rapidly
Aith frequency than do the expertmental data.

b) The threshoid. The incommensurate chain is seen
in Figs. 20a) and 2(b) 1o give the experimentally observed
gquunitauve forms in the wvicinity of threshold. The
threshoid-lowering etfect of an appiied ac feld is also ap-
narent 1n the incommensurate chain results, the erfect in-
creasing as the ac trequency decreases, as observed expert-
mentally ®

A comparison with Fig. 2(c) then shows that these
threshold {eatures reveal substantial differences between
the properties of the classical chain and the resulits of the
Jquuntum tunneting anaivsis.

(cs The negative dips. The experimental data [see Fig.
2th} show that for lower frequencies w; the harmonic-
musing  response  goes negative above a  (frequency-
dependent) tietd (the phase switches rapidly from a value

U or near zero to one at or near 180°). Thereafter the
response approaches cero from below. Above a certain
frequency, however, this no longer happens and the
Narmonic-mIXIng response is alwavs positive.

This points up another gualitative difference between
ine twosets of theoretieal results: While the incommensu-
rate chain, hike the experimental results, shows an w,
thene which the response no longer changes sign, the
Gudantum tunneiing analvsis appears to show a sign change
tor all e

1d) Beiow threshoid. The calculated amplitude of the
harmonie-mixing signal 1s about two or three orders of
magnitude less than the peak above threshold. which is
comsistent with the experimental data [see Fig. 2(b)].

d

1. DIRECT-MIXING PHASE

Experntmentaily. =™ the response at wp=wm; — w- to the
costne nput signal of Eq. (1) is found to he proportional
o costwn +0) tor small wo. A leading-order perturbative
wotition of the FI R model'? showed this same feature.
This conclusion can be seen to be true to all orders as fol-
wmes Consider the case 0 =0. Equation (1) is then sym-
metric aath respect to interchanging wy and wi. The total
“esponse current at frequency pius or minus we.Jpy. then
viso aas this svymmetry, Wriling oM =/ sinlwnr )
=i costaot ! then requires [ lanwy) = =1 tws,wi ), o
tat L =0 as wme sy Even of the input nelds are
Conged o osnes Oy shitting the origm of time. the fow-
rounenct drrect-mixine response s stil cosine,
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FIG. 3. dc tield (£4) and frequency (wi) dependencies of the
direct-mixing current (N 'Yy, /dr) magnitude: (a) the in-
commensurate chain, V=233 P=10, and £ =£-=0.30; (h)
experiment {Ref. 2).

perimental data are scen to he reasonably weil reproduced
by the incommensurate chain,

V. CONCLUSION

The classical incommensurate chain has been seen o
provide a fairly complete account of the fieid and trequen-
¢y dependencies of both amplitude and phase components
of the direct and harmomc-mixing responses of shding
CDW’'s.

For exampie, the challenge 1o chissical theories posed
v osome nonobservations of the “urmonic-mivng Phuse
Sttt has been resoived by the observations that fud phase
Shitts have heen seen expoomentais. ana thr clasacad
THCOTIES Can aCcount 1o PRdse shils as s as the earer-
mmental ancertainties. Tt may he mteresting now o fave
Hoth exrenmentar ana Theoretical onase smiis determined
MOTE Dreciedy to provide o more teihing Jomparsons o
“eanes ard oxperpuent
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smaller than the in-phase component. but appears 1o be
approaching a nonzero limit as wa approaches zero. s wo
decreases through 0.05. 0.023, and 0.0123 the out-or-
phase component shows practically no change on the scale
of the plot.

This limit 1s generaily small. For the data shown in Fig.
. woy/wy is about V.01, it corresponds to a phase shift of
about 10°. which 1s the reported resolution of the exper:-
ments.*> Experimentally wo/w, was chosen to be about
0.001. We tound that this phase shift decreases as £, and
E, are increased with the other parameter fixed. The
value of @ in Fig. | was chosen approximately to maxin:-
ize the phase shift.

Earlier work'' has established substantial frequency
dependence in both components of the linear ac response
in this region. One mayv thus conclude that classical
theories can indeed account for the absence of strong
quadrature in the harmonic mixing and simultaneous
presence of strong frequency dependence in the linear
response. '

The above classical results do appear to show a nonzero
quadrature, however, and if a classical picture were ap-
propriate, one would expect to see a phase shift under
some experimental conditions. A harmonic-mixing phase
shift has. in fact. been reported.'> The ratios £,/E7 and
E,/Er were smaller than in the experiments™> that saw
no phase shift. This is consistent with our observation
above that the phase shift decreases as £, and E; in-
crease. g

Turning to the region below threshold. the calculated
out-of-phase component is found to be much larger than
the in-phase one for small wy. This is consistent with ex-

perimental reports* of an internal phase shift of about
/2.
HARMONIC MIXING
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. HARMONIC-MIXING MAGNITUDE

Since the harmonic-mixing phase shit is zeneraily
smail. we focus now on the magnitude. Figure 2(a) shows
the tield £q) and frequency (w) ) dependencies of the
mugnitude of the harmonic-mixing response. J4s calcuiated
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MODE LOCKING IN CHARGE DENSITY WAVES: A CLASSICAL THEORY

Kenneth A. Cox* and Leigh Sneddon*#*

*Philip Morris Research Center

PO Box 26583, Richmond VA 23261

**Department of Physics, Brandeis University

Waltham, MA 02254.

ABSTRACT
A substantial disagreement between mode-locking experiments, and
predictions based on a classical model, were previously
interpreted as proof of the fundamental deficiency of the
classical model. We report classical calculations which disprove
the predictions, and agree with the experimental data. Contrary
to the two previous reports, classical models exhibit complete
mode locking at high fields and frequencies. The importance of
nonlinear resonance is stressed. We present results for the

differential resistance, spectral response and phase boundaries.

PR RS QLR

) i " Y 0
I'o Wy “b“ 't'. Q'; l'q i'('i".i Lo "l‘ "‘Q," ‘l.g, k l ‘q X ‘t O‘a, N0 l", ‘!‘0 G'h R s I‘\ ¥ .' i M




-

NN YL

e Y

"

-

~

ISSSMMA

ap

.

g >

B LS R RAL

- o

- -

. ,
¥ &
o B

o0
FRras oy |

/
A Ay

- Pl
& et ty

N

T TV YA e b gl

4

(X

IV. Collective Nonlinearity in Solids

When nonlinearity drives many degrees of freedom in dynamic
incommensurate systems, these models reproduce the properties of
charge density wave conductors (CDW's) in an unexpectedly wide
range of experimental situations. The collective and nonlinear
properties of these dynamical systems are thus frequently much
more important than the precise nature of the pinning potential.
In this section, the role of the internal degrees of freedom is
elucidated in a variety of experimental observations, for example
the existence of the threshold; the shape of the 1I-V

characteristic; ac/dc coupling and interference; dissipative

effects; and elastic phenomena.

a) The Threshold.

The fundamental issue of the existence of a threshold in
non-commensurate systems can be thought of rather naturally in
terms of collectivity. In an incommensurate system, a weak
pinning potential excites distortions with the wavevector(s) of
the potential, and also their harmonics. The harmonics decay

exponentially in strengthl, however, so that an infinite number

':.' .’.’;.. 'u'\(\- "b..,‘\ \-'I,'-_’

1 S. J. Shenker and L. P. Kadanoff, J. Stat. Phys. 27,
631 (1982)
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of degrees of freedom are not excited. There is no threshold?.

As the pinning strength 1is increased, the regime of

; exponential decay gets pushed out to higher and higher harmonic
.i number (through the nonlinearity). At a finite critical pinning
[}

i strength, the harmonics never decay exponentially, but only as a
fi power law. At this point all harmonics are contributing and the
h problem is a collective one. It is precisely at this point that
o the threshold becomes finitel.

%

‘ﬁ‘ A random pinning potential excites all fourier components,
.g no matter how weak it 1is, because it contains all fourier
o, I . .

> components. Thus random pinning 1is a collective phenomenon, no
-

Yo matter how weak the potential. Correspondingly, a random pinning
h potential has a finite threshold, no matter how weak the
L.
2 potential.
f\ <
-

b b) The I-V curve.

-,
7
) '.".
fi We can also see collectivity "turn on" in the I-V curve.
_t Consider a straight line, S, through the origin with slope equal
T

o to the high field differential conductivity (see Fig 5). The
Y

N actual I-V curve is offset below S. This "dc offset" can be
af S

”ﬁ understood as due to the excitation of a continuum of internal
ij\

)

) 2 Peyrard and S. Aubry, J. Phys C 16, 1593 (1983) and
ﬁ references therein.
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degrees of freedom (IDF's). The idea in the above discussion of
E + -2 threshold works here too. At high fields the potential is
e fectively weak (since the CDW is moving over it too fast to
deform appreciably). The random potential is always collective

and produces an offset even at high currents.

The incommensurate potential does not. It can be shown from

" perturbation theory that the I-V curve approaches the line S at
high fields. That 1is, the offset is not present in low-order
; perturbation theory. When IDF's are treated to all orders,

however' the offset is seen to develop as the field is lowered.

This is of course also when the nonlinearity is exciting many

N
b IDF's and making the problem truly collective.
F
'
“ c) Interference Effects.
L.
The effect of 1long range interactions on interference
effects provides two slightly more interesting examples of the
y role of collectivity.
y
&
4
3 i) "Universality"
:
L. First, there 1is an interesting comparison between the
f properties of the randomly and incommensurately pinned systems.
Y
j‘ In the weakly nonlinear regime (weak pinning or high fields) it
b
4 can be seen from perturbation theory that long range interactions

y 14




How can NbSe3 get around that? By having strong short-range

elastic interactions. Short-range elastic interactions favor
distortions at long wavelengths. If the dominant distortions are
at wavelengths much larger than the CDW wavelength, the washboard
frequency will remain relatively well-defined, and the system can

behave non-linearly and yet avoid the "catch 22".

Having 1longer-range interactions, for example Coulomb

interactions, however allows shorter wavelength distortions to

|' l‘l

ot

play a larger role. An infinite-range interaction which is

- ”l '.l".

independent of distance, for example, offers a restoring force
which 1is independent of the wavelength of the distortion, and
thus does not favor 1long wavelength distortions at all. The
short wavelength distortions will then smear out the microscopic

frequency, and the interference features will fall victim to the

"non-linear catch 22".
iii) Experimental Results

In a similar fashion to the theory of vortex flow,
perturbation theory was used to predict interference features in
- the frequency-dependent conductivities of sliding cDW's3,

Experimental confirmation came immediately in studies of NbSej?

3 L. Sneddon Phys. Rev. B29, 725 (1984).
4 A. Zettl and G. Gruner Phys. Rev. B29, 755 (1984).
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wash out the ac/dc interference features of randomly pinned

systems (see below). In the same regime, however, perturbation

theory shows that an incommensurate chain will produce ac/dc

T

Eﬁ interference features whether the elastic interactions are short-
%
N or long-range.
)

o5
N What happens to incommensurate chains in the strongly non-
N, J

)
’\: linear sliding regime, where the interference features are
* strong? The features become vulnerable to 1long range
fti interactions (see Publication 1). Thus again, as we approach
iﬁ threshold in FK systems we enter a collective regime in which
+"d

:; their properties imitate those of randomly pinned systems.

Fd
:5 ii) "Non-linear Catch 22"

" Why do 1long range interactions wash out interference
3; features in randomly pinned systems? The answer 1is that the
;) interference is subject to a "nonlinear catch 22". Interference
;: is of course a nonlinear effect, and the source of nonlinearity
;i: is the pinning, so for interference to exist the system must be
A

2: being distorted by the pinning potential. This distortion,
iﬁ however, locally and incoherently modulates the CDW wavelength,
gﬁ and hence smears the washboard fregquency. Thus, to get ac/dc
ef coupling at all, the system must suffer a smearing out of the

R frequency that defines the interference feature.
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The experimental results showed what were called inductive
dips: the dielectric constant can become strongly negative at the
interference feature. The non-perturbative solution of the
incommensurate chain then showed us (Publication 1) that these
inertial dips,as well, could be understood as the nonlinear,

collective response of a classical, massless system.

TaS;, however, did not show these features?, and the
suggestion was made that long- range Coulomb interactions in the
semiconducting TaS; were responsible (Publication 1). The
}; mechanism may be precisely the non-linear catch 22 outlined
above. This proposal can be probed a little further, however.
;?‘ Coulomb potentials will be easier for the conduction electrons to
' screen away if the underlying charge fluctuations occur at low
frequencies; and also if the normal conductivity is high.
Mihaly et al® examined both the frequency- and temperature-
dependence of the interference properties of TaSjy. They found
that sharp features did indeed re-emerge at 1lower applied
frequencies and also at higher temperatures, where the normal
conductivity is enhanced in the semiconductor. While careful
qualitative tests still remain to be performed, these results are

clearly qualitatively in agreement with the "catch 22".

5 Mihaly et al
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a) Viscosity Enhancement

-
s

=

Collectivity also has dissipative consequences. Because a

-l.

CDW carries condensed charge, whenever it is deformed there will

-l‘l ri
v e S s

®
2" e

be, as noted above, charge accumulation, which the normal

-

e

carriers will then strive to screen. Normal currents are

-
L ]

dissipative, however, and these normal screening currents were

-

-
[P g b o RV

-

) predicted® to enhance the viscosity or damping of the CDW motion,
[ X

s& the effect predicted to grow larger as the temperature is
\ >

:R decreased, roughly proportionally to the normal resistivity in
D 3

:M the semiconducting materials. The predicted effect on the
_; temperature-dependence of the I-V characteristics was first
i qualitatively verified by Monceau. About two years after the
Q theoretical prediction, another series of experiments by Fleming
(c et al. also confirmed that the viscosity had essentially the same
&' temperature-dependence as the normal resistivity.

;:

. e) Elastic Phenomena

. The collective nature of CDW transport also plays an
? inportant role in the elastic properties of CDW conductors. A
’. .

o rigid CDW can couple to the lattice modes”, enabling a sliding
-

iﬁ CDW to make the sound velocity anisotropic. The effect would be
L8

.‘ —

L 6 L. Sneddon Phys. Rev. B29, 725.

:: 7 S. N. Coppersmith and C.M. Varma Phys. Rev. B30, 3566
& (1984) .
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very small, and an analytic function of the CDW current. When
_i{ the internal degrees of freedom of the CDW are taken into
et account, however, the effect becomes much larger (see Publication
_1{ 3). Mathematically, the effect becomes first order in the
hf lattice-CDW coupling, while without the IDF's, only second order
.Lf effects are possible. Physically, the IDF's are enabling the CDW
’§$ to get a "grip" on the lattice, so that to deform the lattice,
;Ei one must also deform the CDW, and this contributes to the lattice
e stiffness. As the CDW starts to move relative to the lattice, it
?;} has less time to for the IDF's to adjust, and the grip of the CDW
i;& on the lattice is not as strong, and the stiffness of the lattice
,;4 diminishes, as seen experimentally. Further, the IDF's produce a
%Ej sliding threshold at which the dynamics is singular. This 1is
:ﬁ% consistent with the experimental observation® of a fractional
‘ ‘ exponent in the Young's Modulus.

- The collective nature of the CDW transport also plays an
important role in the internal friction of elastic vibrations.

o Below threshold, many of the IDF's are pinned by the pinning

‘;E potential and their response to an external driving is limited.
-:- It is 1likely that there is a gap in their excitation spectrum.
,}i As the applied electric field passes above threshold, the gap
r%} would vanish, and the IDF's suddenly become more easily excited.
;:f The excitation of IDF's dissipates energy, and thus leads to a
EEE’ marked increase in the internal friction.

f& 8 J.W. Brill and W. Roark, Phys Rev. Lett. 53, 846 (1984).

19




ON

NS f)  Conclusion

L

f; If the function of randomness 1is only to introduce
inell collectivity and nonlinearity, then we have a rather satisfactory
:?f situation. At high fields, incommensurate systems are not
ﬂf: collective, and so randomness 1is essential. At high fields,
.KT however, we can use perturbation theory to solve random pinning.
t& At low fields, incommensurate systems become collective as well
:} as nonlinear and thus much more realistic. Further, it has
A proved possible to solve for many of their properties in this
?ﬁ regime. Thus incommensurate systems may well be, when combined
?i with the HIGH-field solutions of randomly pinned systems,
n completing a solution of sliding CDW's by providing a theory
ii which includes the most important physical features, and yet
i& which is also soluble, in the LOW-field, or strong coupling,
(_ sliding regime.

-ﬁx V. The Threshold: a Surviving Challenge
b :_ N

L?: When the threshold field for conduction is approached, the
:ﬁ: incommensurate chain becomes strongly distorted at all length
L9 _%

?; scales. As a result, the threshold combines the all the richness
fj of critical phenomena (such as singular responses with universal
-:'_/

o exponents) with the additional challenge of being a dynamic
:E process, far from equilibrium.
T
- The ideas of the renormalization group have been used
M
,-A -
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successfully to construct a transformation which has a fixed
point describing the depinning transition in incommensurate

o dynamicsg. This transformation establishes the full universality

Ny

" class of this transition. The work 1s particularly novel and

»
£ d

S will, it is hoped, provide a basis for a theory of the threshold

ad

2 of CDW dynamics. This extension, to the asymmetric, dynamic case

o
' &
fo e

,/l

of the conduction threshold, is the subject of ongoing work.
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L. Sneddon, A.J. Kassman, S. Liu manuscript in
preparation.
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