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1. Objectives

The basic goal of our research effort has been the development of computational methods

and tools which optimally exploit the analytical procedures natural to aerodynamic theory. This has

resulted in a variety of procedures of non-standard form for treating a wide range of problems in

gas dynamics. We believe that our research effort has made significant advances in subsonic,

transonic and supersonic gas dynamics.a

Specific objectives of the program have been; the use of natural coordinates, e.g. streamlines,

characteristics, "potential" lines and so forth in the formatting of compressible computer codes;

solution of general inverse or design problems in aerodynamics; use of machine algebra to format

codes and deal with non-standard problems; the development of a method of parametric

differentiation to extend generally existing codes (in addition to ours) to continuous ranges of

validity in parameter space (i.e. Mach number, thickness ratio, camber and more general

parameters specify'ing a body shape.)

All of the stated objectives in the original three year proposal have been accomplished. In

addition, as described in the following section, we have also achieved a number of extensions and

additional results not anticipated in the original proposal.

V% 10

0 X I



2. Research Narrative

Our research effort began with a method for treating two-dimensional supersonic flows past

airfoils. This is based on transformation to streamline and principal characteristic coordinates, and

results in a rapidly convergent and accurate solution. Both body-fit and shock-fit coordinates are

generated by this method. The codes produced by our method are perhaps the most efficient

now in existence. A typical calculation takes a small fraction of a second on a mainframe.

[reference 1]

This method was next extended to the inverse or design problem for two-dimensional

supersonic flows. Through analytical procedures the inverse problem was transformed to a direct

problem of different type. The result is a speedy accurate procedure for determining shape from

a given pressure distribution. [reference 2]

A method based on streamlines, characteristics and Riemann functions has also been

introduced for supersonic flow over axisymmetric bodies. Starting from a simple approximation, an

iterative procedure is developed which converges rapidly to the exact solution. The scheme is

both body-fit and shock-fit. As a result, the procedure is computationally efficient, inherently

accurate, and requires relatively few points to calculate the entire flow field. Both the direct and

inverse design problems are treated. For a thin axisymmetric body traveling at low supersonic

Mach number, our results show the presence of a pressure minimum on the body, a phenomenon

which seems to have gone unnoticed. [reference 31

The method described for the axisymmetric case, has been adapted to the treatment of

non-axisymmetric bodies. In particular, we consider flow in azimuthal planes and develop a

procedure based on near characteristics and projected streamlines. The cross-talk between

azimuthal phases defines the basis of an iteration procedure which is rapidly convergent. As is

the case for axisymmetric flow relatively few computational points are required. Both the direct

and indirect flow problems have been treated. [reference 41

We have treated subsonic gas dynamics in the tangent gas approximation. Using a highly



analytic basis a very fast and accurate method of solution has been developed for the numerical

solution of subsonic problem. Comparison of tangent gas and exact flows show that the former is

extremely accurate except at locations that are critical. Tangent gas solutions when used as the

first step in the iterative solution of the excat flow field are shown to give substantial reduction

in computation time. [reference 5]

The inverse problem in the tangent gas approximation has also been considered, and an

exact method for designing airfoils developed. Constraints on the speed distribution are easily

implemented. A simple numerical algorithm which is fast and accurate has been obtained.

Comparison of designed airfoils using the tangent gas method with exact Euler results is found to

be excellent for subcritical flows. [reference 6]

The methods used in the treatment of the tangent gas have been extended to the full

two-dimensional potential equations. A powerful combined analytical and numerical procedure now

permits the treatment of both the direct and inverse problem for subsonic and transonic problems.

This method, which still needs further implimentation, may have a significant impact on the way

that transonic airfoils are designed in the future. [references 7 and 8]

The flow of an inviscid, irrotational and compressible perfect gas in the upper half plane is

used as a model to investigate the transonic controversy. The solution of the complete potential

equation for the velocity potential O(xy), with boundary condition: 0 + c Oy = U sin x on y = 0.

is developed as a regular perturbation series. 36 terms of the series are determined by computer.

The effective boundary condition is varied with the choice of c; and for each of the velocity

series, its nature and the location of the singularity nearest to the origin are investigated using

the ratio method of Domb and Sykes and Pade approximants. The result of the analysis shows

that the phenomenon of shockless transonic flow is dependent on the imposed boundary

condition-which for this example is the constant c. The relationship of series convergence to

local sonic conditons shows no obvious pattern. Cases for which convergence lies below, above or

is at critically were found. Moreover, the connection of divergence to the appearance of shocks

is also not apparent. For one class of flows divergent series could be resummed to yield

.4



shocidess conditions for all Mach numbers. Significant use of the machine algebra code, Macsyma,

was used in this study. [reference 91

We have also treated steady, inviscid supersonic flow over three dimensional wing-like bodies

numerically as a coupled set of two-dimensional characteristic problems. Shock fitting is used in a

.1boundary fit coordinate system and the calculation is second order accurate. The difference

equations are solved iteratively and the use of an accurate approximation step results in rapid

convergence. A variety of different iteration methods are considered and compared. Incorporation

of a flexible data structure in the program allows for an efficient use of memory and allows a

wide range of wing geometries to be handled. Results for tapered, delta and swept wings at

several Mach numbers are compared with two-dimensional theory. The technique is applied to

both the direct and inverse problems. Derivations are carried out in a general manner allowing

extensions of the method. [reference 10]

We have developed a method using parametric differentiation which can significantly extend

any numerical study. In brief flow past a body is in general specified by a variety of parameters

such as thickness, angle of attack, camber, Mach number as well as others. A particular flow is,

therefore, characterized by a single point in the corresponding parameter space. Conversely, the

.4 numerical calculation of a particular flow field yields information at just one point of the

parameter space. However, the nature of a continuous range of nearby flow fields is of

fundmental significance in the design and performance of aircraft. To treat this generally, one can

consider the variational equations (which are linear) obtained by differentiating the exact equations

with respect to each of the relevant parameters. The resulting matrix of derivatives of flow

quantities is referred to as the Jacobi matrix. The subsequent procedure is in principle now

straightforward. One integrates the nonlinear governing equations -- which results in the

determination of just one point in parameter space -- and simultaneously the variational equations

governing the Jacobi matrix. The last is then used to describe the neighborhood of the already

determined point of the parameter space. Since the variational equations are linear the additional

computational time required for their integration is modest.
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Frequently, when calculating the flow about a body, one is interested in how the flow will change

if the base configuration is altered. For example, one may want to know what will happen at a

slightly different angle of attack, wing loading, camber or thickness. To answer such questions

each parameter change is traditionally considered as a separated case and flow simulation code is

repeatedly run. It could be argued, quite effectively, that in many instances this is not an

efficient use of resources. Why undertake an entirely new calculation of the flow when we know

the results at a nearby state? The method which we have developed allows efficient generation

of solutions in the neighborhood of a base solution.

Thus far we have applied the Jacobi matrix technique to five problems. The direct calculation of

inviscid supersonic flow about; two dimensional airfoils of varying thickness, angle of attack and

camber; axisymmetric bodies of varying thickness and taper: and the design (inverse) calculation

of inviscid supersonic flow past; airfoils described by a given family of pressure distributions;

axisymmetric bodies described by a given family of pressure distributions. Also to subsonic

*potential flow about two dimensional airfoils by modifying FL036. Results of these calculations

show that Jacobi method allows for the efficient and accurate generation of parametric solutions

in the neighborhood of a known solution. [references 11 and 121
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An approximate solution is developed for two-dimiensional, steadlv, iiiviscid sutper-

sonic flow over an airfoil. T]his approximlatio rodu~ces accu rate results for a "Nidle
ranuYe of Maclh numbers and airfoil thicknesses. It, is uisedl as thle stalling point for a
rap~idly convergent iterative numerical solution of the exact, equat ionis. A co-ordinate

system consisting of the principal characteristics andi strearuliles is em lplovedl
Examples computed for a symmetric airfoil reveal sevcrl interesting feituiires in t lie
tail shock and the flow behind the airfoil.

1. Introduction

In this paper we consider the computation of inviscidl supersonic flow\ over a two-
diniensional airfoil. While the final step in ouirinv-estigation is numiierical,we attempilt
t~o incorporate as much as possible our analytical and p)hysical knowledg, of suci
flows. The approach is well suited both for numerical integration Arid for the inter-Ipretation of the resulting flow 'phenomena. A prelimninary version of this approach
for the case of one-dimensional. unsteady flow has already beeni reported (Sirovich &
Chong 1980; Chong & Sirovich 1980). in thle present investigration several new or
little-known effects concerning the tail shock and flow behind a two-dimiensional air-
foil emerge. These are discussed in § 6.

There are two main nonlinear approximations for this problemn. SmialI lamnplitutde
theory gives solutions valid provided the airfoil thickness is not too great anl(l the
Mach number is riot too high. Under these conditions the leading shock wa~ve is fairly
weak and tile solution is applroximately given by a simiple waeinvolving Only thle
characteristics emianating from thle airfoil (Friedrichs I 948: ,iglithill 1960). Vziriations
in the entropy and in thle Riemann invariant which is carried alonga thle. down. running
cha,,racteristics aric oinl of third order in the shock strengthI, sothle resulting aliproxilna-
tion is valid to second order. A correction in the tail shock regrion is iiecessa;r\- to ohtl am
a second -order solution there (Caughey I 969).

The second type of approximation, shock expansion theory, originated by Epstein
(1931), emiploys thle fact, that, even for flows wvithi strong shocks, for which thle tssunnip-
tions of small p~ertuirbaItioni theoryd(1onot hold, Ohlfeto tedw-unigcaatr

I ~istics reliiains smnall. This leads to an analYtic solution ait the airfoil, whliclilhas beenl

g4eliera Iize sI l several authors (11'ggers, S yvertson & Krauis 1953; Mleyer 1957) to
pirovidle apprxinriate soluitions for the ent ire flow hield. lit another appllll Jones;

%Ir Ir W W rP rI
% % %



266 7. 8. Leis al L. Sirovich

(1963) has derived by a perturbation method an approximate solut ion ,et ween simple

wave theory and generalized shock expansion theory.

In § 4 we derive an approximate solution which is closely related to these, hut which

applies its assumi)tions more consistently and is somewhat inore accurate. This

approximation includes both shock expansion theory and the sCcond-order theories

of Friedrichs and Caughey. The derivation and the fi Iuerical (.omputation of the

solution are facilitated by the use of the principal characteristics and the streamlines
as co-ordinates (§ 3). Adamson (1968) has used a similar co-ordinate system in another

context. For a problem in which the down-running characteristics are also inportant

(e.g. flow in a nozzle), this approach is less appropriate.
The approximate solution is used as the starting point for an iterative numerical

comiputation of the exact solution (§ 5). The high accuracy of the approximation leads

to the exact solution after only a few iterations. This procedhure is different from most
numerical methods for hyperbolic prol)lcms. Typical met hods apply one of a variety

of differencing schemes (for a comparison of several such schemes see Taylor, Ndefo &
Masson 1972) to the equations in their standard form and coipite the solution by
'marching' along in the downstream direction. One disadvantage of these methods is

that at low Mach numbers short step sizes are required for stability. The met hod of

characteristics (Liepmann & Roshko 1957, cha. 12) cain also be used for this problem,
although it is considered in general to be somewhat unwieldy for machine computation.

The BVLR method (Babenko et al. 1966: Holt. 1977) is a finite-difference method
which is partly based upon the method of characteristics. The transformation of co-

ordinates employed here also results in a method which is closely related to the method

of characteristics.
Special account must be taken of the appearance of shock waves in this type of

problem. In finite-difference methods this can be done through shock-capturing

difference schemes, or through explicit shock fitting (e.g. Salas 1976). In the present 'I

method the shock waves can be naturally incorporated in the new co-ordinate system wit
as fixed boundaries of the flow field. JU

titi.

2. Formulation of problem

We consider uniform flow of Mach number M10 > 1 incident upon a two-dimensional

airfoil (see figure 1). It is assumed that there arc attached shocks at the leading and Th

trailing edges, and that the flow remains supersonic everywhere. The flow fields above

and below the airfoil can be computed independenlv, up to the appearance of the

tail shocks. The tail shock and the flow behind it for the case of a symmetric airfoil
are treated in appendix B.

The co.-ordinates x and y are scaled by the airfoil length; the pressure p and the
density p by their upstream values P, and P0 ; the velocity (u, v) = (q cos 0, q sin 0) and xvI

the speed of sound a by the upstream speed of sound a,; and the entropy s, which is

set to zero upstreami, by the gas constant R. \Ve consider a perfect gas with constant
specific heats c,, = R/(y - 1) and c', = yr,., for which the e(luation of state is Th

p = pvexl)((y - 1)s]

an( the speed of sound is given by a'2 = P/p. Tile calculations here were done for
y = 1.4. Modifications for the ease of a gas with a general equalion of state are out - t i

lined in appendix A.
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0-5 -

I o teatupstreamMachnnberM,= 25.ar_

The quaion ofinvsci tw-dimnsinalstedy lowareconveniently written
withtheentopys, te fow ngl 0, nd he achangle ut = sin-' (Il1,4 (where

M = la s te loal achnumer) s dpenentvariables. All other physical quail-
tiiscan bc obtained from these and Bernoulli's equation V

a2+ i -_q +Y -Ms._(12

2 2 3

Teequations of motion in characteristic form are (Meyer 1960, p. 273)

ds = 0 on streamlines -= tan 0; (2)

d(O±+P(#t)) 4 on sif±/ d Y- = tan (0±z+ (3)
dx

where P(u) is given by

The streamlines and the C+ characteristics are shown in figure 1. The quantities
M = 0 + P(It) are called the Rimann invariants.

If the airbil strface is specified as y =f(x), the appropriate boundary condition
there is

tin =f(x) on y =f(x). (4)

a -dO+_Pt.))=-+----as o*--- =.~- -s ~r V V'.



268 T. S. Lewis and L. Sirovich

The jumps in 0, it and s across a shock are governed by the Rankine-Hugoniot con-
ditions (Liepmann & Roshko 1957, p. 85). All three quantities can be written as
explicit functions of M0, y and the shock angle, 71.

3. New co-ordinate system
As mentioned in the introduction, in a problem with weak shock waves deviations

in s and r- from their upstream values are third-order quantities. This is shown in
figure 2, where As and Ar- are plotted on a logarithmic scale against the deflection
angle 0, for several Mach numbers. As 0 -+ 0, the curves approach straight lines
of slope 3. While As and Ar- are both third-order quantities, for a given Mach
number the jump in r- is always significantly smaller than that in s. This suggests
that for weak to moderate strength shock waves the flow field can be considered
primarily an interaction between a simple wave and an entropy variation, with r-
playing only a small role.

This leads us to introduce a co-ordinate system (a,ft) consisting of the streamlines,
a = constant, and the principal (C+) characteristics, ft = constant. Taking a andft as
the independent variables, x and y must satisfy

y8 = xfltanO, y = xtan(0 +p). (5)

The entropy equation (2) becomes
sp = 0, (6)

or s = s(a). Equations (3 + ) and (3-) become

(0+ P(#)). = s2 s'(a) (7)
2y

and

+I+IV ( - P ( 1))  
-in2s'(a), (8)

where

IV 1 - tan 0 tan /t  " (9)

Using (7), equation (8) can be simplified to

(O- P(t))f = (I - tan 0 tan l ) 6 O. (10)

Equations (5)-(7) and (10) are five equations in five unknowns: 0,/L, s, x and y.
The boundary and shock conditions in the aft plane can be simplified by normalizing

a and ft appropriately. We let the airfoil surface be the streamline a = 0, and normalize
ft by setting ft = x at a = 0. The boundary condition (4) then becomes

x(0,fl)=fl, y(O,fl) =f(ft), 0(O,fl) = tan-'f'(fl). (I1)

One convenient way of normalizing a is to take the front shock angle 7(a) to be given by

tan 71(a) (1 - a) tan /(0) + a tan to, (12)

where 7(0) is known from solving the shock conditions at the leading edge, and /, is
the upstream Mach angle, which the shock approaches far away from the airfoil.
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Hence a = 1 corresponds to x, y -+ o. If q is not a strictly decreasing function, a
different normalization must be used. The flow field in the upper half-plane is mapped
into a finite region in the a#i plane, as shown in figure 3. The principal characteristics
become vertical lines, and the streamlines become horizontal lines. The front shock

2maps into some curve 8r(a), and the left- and right-hand sides of the tail shock into
two separate curves /?2(a) and f(A). The discussion of the tail shock is left to appendix

o. With the shock angle 7(a) a given function, the shock conditions can be immediately
solved for O(a(a)), li(afl(a)), and s(a). The shock fl(a) itself will in general depend
on the rest of the solution, however.

It is possible to eliminate y from the equations by setting yl = T in (5). Using
(10), this gives

0 = separae+ (# + P#)), cot + (o +fth) tan (0 +ise), (13)

which ca be integrated to

x(a,fl) = x(O, )+ A(a)a Acos(O+,t)da, (14)

-ai_ ~ '. . .
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08,

0-6 /4 F

TX--

S0.5 t 1.5

FxGURE 3. Flow field corresponding to figure I in ,fl plane. Streamlines ifal) into horizontal
lines, a = const., and C+ characteristics into vertical lines, f = const. Front shock maps into
f1(a), and left and right sides of tail shock into fll(a) and fl,(a), respectively.

where A(a) is an arbitrary function to be determined later, and we recall

A = (Y + 1)/(y- 1).

Similarly, from (5) we get

y(a~fl) = YAMO, fl A (a) a-A sin (0+#) da. (15)

Atfl = 8(a) the condition

tan V1 = dx = X. + Y,6,8,(a )  (6dxy. + x.y ft(a)
-(16

must be satisfied. Elimination of y using (5) and substitution of (14) for x produces a
linear integral equation for A (a):

A(a)Q(a, ft(a))+b(a) 1+f A(&)Q,(&,fl(a))di= 0, (17)

where Q = a-A cos (0 +/), and

b (a) tan il - tan 0tan ? - tan (0 + /t) 1,6

If the solution for 0, #u and s is known in the aft plane, this equation can be solved for
A(a), and the transformation back to the physical plane computed with (14) and (15).
In general, however, the solution in the aft plane depends on x, through (10).

Up to this point the equations in a/3 co-ordinates hv been derived without ap-
proximation, and hience are equivalent, to the original set (2) andl (3).
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4. Approximate solutions

If the third-order changes in s and r- are neglected, that is, it is assumed that
s = 0 and r- = - P(it0 ) everywhere, the solution of (2) and (3) is a simple wave, in
which all quantities are constant on the principal (C+) characteristics, which in turn
are straight lines:

0 = tan-f'(fl), ts = P- 1 (O+P(u,)), s= 0 onC+:

y =f(fl)+(x-fl)tan(0 +).

This apl)roximation is due to Friedrichs (1948). (Friedriehs further simplified the
problem by neglecting terms of third and higher order throughout the calculation.)

Because simple wave theory takes s and r- constant at their upstream values, it
can be expected to be least accurate near the airfoil, where the shock is strongest and
the deviation from upstream conditions is the greatest. An improved approximation
in this region can be obtained using shock expansion theory, in which s and r- are
assumed to be constant at their values just behind the shock at the leading edge, say
s = s, and r- =r . This leads to a slightly modified version of the simple wave
solution:

O = tan-1 f'(?), s = P- 1 (0-r o ), s =s.

This approximation produces a very accurate solution at the airfoil, even for flows
with strong shocks, in which sand r- are not at all constant globally. Hayes & Probstein
(1966) explain that the down-running waves, which can be considered reflections of
the outgoing simple wave by the bow shock, are fairly weak and are nearly cancelled
by reflections from the entropy (or vorticity) layers. Mahony (1955) gives a similar
explanation. The shock expansion solution rapidly loses accuracy as the distance
from the airfoil increases. This is in contrast to simple wave theory, vhich is more
accurate at infinity.

The only assumption in the shock expansion solution at the airfoil is that r- is
constant. Mahony & Skeat (1955) and Meyer (1957) have pointed out that, since any
streamline is a potential airfoil, r- should be approximately constant along each
streamline, that is r- = r-(a). In the literature this assumption has been employed
in various ways. If r- = r-(a), then by (10) 0 = 0(,8), i.e. 0 is constant on C + characteri-
stics. This in turn implies that the pressure is constant on C + characteristics, as can
be seen from the following form of (3 + ):

dO+=0 2  n C = tan(0 +#). (18)
iY_ _ dx

Taking both 0 = 0(f8) and p = p(fl) along with r- = r-(a) overdetermines the problem
however, since any one of 0, P and r- can be written as a function of the other two
(and 8). This was noted by Eggers et at. (1953). In their generalized shock expansion
method it. is resolved by everaging results assuming r- = t-(a) and 0 = 0(fl) with
those assuming r- = r-(a) and p = p(f#) (see Hayes & Probstein 1966, p. 498). Meyer
(1957), on the other hand, implicitly drops the assumption p = p(fl), and uses the
solution r = r-(a) and 0 = 0(fl), which satisfies (10) exactly, but does not satisfy (7).

In the present formulation, it appears to be more consistent to approach the prob-
lem in either of two ways: in equation (10) assume either (i) the left-hand side or (ii)
the right hand side is zero. Then solve (10) together with the remaining equation, (7).
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In case (i), the solution becomes 0 = 0(fl), p = p(fl) and s = s(a). The function 0(/8)
is determined by the boundary condition, and p(fl) must be determined by the shock

conditions. It then happens that over the rear half of the airfoil, fl > fl( ), p(/) cannot

be found, since no data is specified on the rear shock. This difficulty does not arise in

approach (ii), which is the one we adopt..
This approach can be thought of more simply as arising from the assumption that

0 is constant on C+ characteristics, rat her than the assumption that r- is constant on

streamlines. If 0. = 0, then (10) reduces to

(O- P(s))l = 0 or 0- P(I1) = -l(a.), (19)

where P(a) = P[/(a, 8(af))] - 0(a, fl(a)). Substitution of 0 = P(/t) - P(a) in the remain-
ing equation, (7), then gives

2P(/i). - P ='(a) s'(a). (20)

P0 (a) and s(a) are both given explicitly by the shock conditions, so (20) can be re-

garded as an ordinary differential equation for/t, in whicli / enters onlv as a parameter.
It is nonlinear, but can be readily solved using standard numerical methods. The
initial and final values of It along a given C clharacteristic are both given, by the

boundary condition and the shock conditions, respectively, which allows us to solve
for the free boundary /(a). The solution in the aIf plane is then completed by com-

puting 0(a,/) = P(#j(a, fl))-P(a). The solution for 0, It and s in the aft plane is
independent of x and y, because (10), the only equation in which x or y appears, is
neglected. The transformation back to the xy plane is found by solving (17) for A(a)
(also a simple numerical calculation) and evaluating the integrals (14) and (15). The
solution obtained from this approximation will satisfy the boundary condition and
all three shock conditions, but will satisfy (10) only approximately.

This approach requires more work (the solution of an ordinary differential equation

on each C+ characteristic) than approach (i) or the generalized shock expansion method,
but has been found to be more accurate. Additional support for this choice is lent by
the fact that the factor multiplying 0. in (10) is in general quite small. Approach (i)

has however been found useful for calculating the flow behind the tail shock, where
method (ii) is difficult to employ (see appendix B).

5. Numerical method
Our approximate solution does not satisfy (10), or, equivalently, the C- equation

(8). In this section we present a simple iterative method for correcting the solution so
that it will satisfy all the equations and conditions.

The approximate solution is computed on a rectangular grid in the a/3 plane (as

shown in figure 3), which is then used in the numerical method. The front shock /(a)
is therefore kept fixed throughout the iterations. This fixes the normalization of a,

so for every iteration beyond the original apl)roximation V(a) is not given by (12)
and must be found as part of the solution. This also implies that a = I no longer will

correspond exactly to x, y -). co.
Given the approximate solution for 0, I t , s and x in the afI plane, a corrected value

of r- is computed from the C- equation (3-), or (S), starting at the shock with the

........................--~'--''
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value given by the shock conditions and numerically integrating downward along the
C- characteristics:

r- sin 2ds (21)
r- hock-f- 2(

In particular, this determines a new value r-(O,fl) at the airfoil, which determines
a new value of r-(O, fl) there, since r+ = 20-r-, and 0(0,1i) is given by the boundary
condition. With this as an initial value, a new r+ is computed everywhere by numeri-
cally integrating (3 + ), or (7), along C + characteristics:

r+(a, f) = r+(o, .) +f s s'(a) da. (22)

With r+ and r- thus determined, the solution given by

0 = 1(r++r-), 1u = P-l[ (r+-r-)],

and s will satisfy the differential equations and the boundary condition. However, the
new value of r,'(a,fl(a)) will not in general satisfy the shock conditions, and hence
will imply a different value for the shock angle j(a). This can be used to determine a
new initial value r-(a, fl(a)) for integrating (21), and the procedure can be repeated.

The transformation back to the xy plane is found by numerically solving the integral
equation (17) and evaluating the integrals (14) and (15). This must be done at each
iteration, since x and y enter into the computation of the integral in (21). The C-
characteristics are oblique to the (a,f) co-ordinate system, so at each point a small
section of the C- characteristic through that point is extended backwards to intersect
a grid line, and a one-step integration is used to compute r-. We might, in place of
equation (8), have integrated (10), which has the advantage that r- is differentiated
only with respect to fi, so that the integration would be along the co-ordinate lines,
as in (22). In practice, however, this has been found unadvantageous. The solution does
not converge as quickly, and may not converge at all without modification (see Chong
& Sirovich 1980). We attribute this to the fact that small variations in r- are naturally
propagated along the C- characteristics.

This scheme has been implemented using second-order numerical methods (trape-
zoidal rule, improved Euler method, etc.). Some results are given in the next section.

6. Results

Calculations have been performed for several airfoils over a range of Mach numbers.
The results presented in figures 1 and 3-7 are for a symmetric circular arc airfoil with
thickness ratio 0.25 at upstream Mach number M0 = 4. In figures 8-10 results from
the additional cases M 0 = 2.5 and 7.5, for the same airfoil, are included as well. These

cases were chosen in part for the interesting effects they exhibit.
The iteration scheme converges quite rapidly, based on a comparison of the solutions

at successive iterations. In table I, the maxima (over all grid points) of the differences
in the values of 0,/u and x are given for the case M0 = 7.5 (the most slowly convergent
of the three cases). The greatest differences are in x and usually occur near a I,
where x - ao. The errors in x are smaller closer to the airfoil. For thinner airfoils or
lower Mach numbers, fewer iterations are required for the same accuracy. In thc ease

S- - . .. . .
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Iteration AO/O(O, 0) A/'//4 Axr/X

I 0-0595 0. 1170 03701
2 0-0141 0.0096 0.1221
:1 0-0008 0.0007 0.0112
4 0.0 02 0.0006 o-0017

5 0.0001 0(003 0-0009

TABI.E I

of a 10% thick parabolic arc airfoil, for example, even at 310 = 10 the difference

between the approximate and exact solutions is less than one per cent in 0 and ut and

six per cent in x. In such a case there is little reason to go beyond the approximate

solution.
The case M, = 2-5 is discussed in Hlolt (1977). Figure 4 contains a comparison of the

leading shock when computed by our approximate and exact methods, the BVLR
method (an exact numerical method), and generalized shock expansion theory (the
latter and the BVLR solution are taken from lhalt 1977, p. 77). In this case, our

approximate solution is indistinguishable from the exact solution. The small difference
between these and the BVLR solution is probably attributable to copying errors.

Figure 5 contains plots of pressure contours in the xy l)lane and the value of logp

on the airfoil surface and on the line of sym mctry behind the airfoil. Comparison wit h
figure 1 shows that the contour lines between the lead and tail shocks are nearly
identical to C+ characteristics, i.e. the pressure is approximately constant on C-
characteristics. This was seen in § 4 to be related to the fact that 0 is approximately
constant on C + characteristics, which in turn is related to the fact that r- is approxi-
mately constant on streamlines. The latter two assumptions are illustrated in figures
6 and 7.

In figure 6, the deflection angle 0 is plotted versus a on each of the C+ characteristics

shown in figure 3. In the region behind the tail shock 0 is very nearly zero (101 < 0-005)
everywhere. The variation in 0 along each characteristic is quite small, with the most
serious departure occurring on the characteristics originating from the rear part of
the airfoil. These characteristics tend to intersect the tail shock fairly close to the air-
foil, however. A related phenomenon is that the principal characteristics are nearly
straight. This however does not remain true in the region behind the airfoil.

Figure 7 shows the variation of r- with fl on each streamline of figure 3. Somewhat

remarkably the assumption r = - P(a) is better at the airfoil than a short distance
away. The assumption is less satisfactory behind the tail shock. The rapid downstroke
of the r- curves also indicates a large value of 0., although 0 itself remains quite small.

The entropy jumps created by the lead and tail shocks are given in figure 8 for the
three cases M. = 2.5, 4.0 and 7-5. The entropy variation along the tail shock has a
two-scale appearance, especially at, the higher Mach numbers, which shows a x-ery
rapid decrease in strength in the initial portion of the shock. The slower variation in
entropy follows that induced by the front shock. Looking at figure 1, we see that the
streamlines spread apart rapidly as the flow passes the midchord position. The incli-
nation of the flow incident upon the tail shock therefore decreases rapidly, which
causes a correspondingly rapid decrease in shock strength.

Another important effect is also at work in this region. The gas, which is compressed

VI
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FIGURE 4. Front shock for flow field of figure I as computed by: present approximate and exact
methods (- ), BVLR method (- - -), generalized shock expansion method (- - -.

at the front shock, in following the profile past the midehord experiences a rapid

expansion, which is strong enough that the local Mach number at the trailing edge

exceeds the upstream value (M = 9-83 for the M0 = 7-5 case). This recovery process
is largely cut off by the tail shock, however, since the large negative value of 0 on the
after part of the airfoil causes the principal characteristics to have negative slopes,
so that waves originating there must intersect the tail shock near the airfoil. As a
result the Mach number along the tail shock falls off rapidly, which augments the
rapid decrease in strength of the tail shock. For the case M= = 7-5 the Mach number
along the shock even falls below 7.5.

The pressure field behind the airfoil (figure 5) also contains interesting features. In
spite of the very high shock strength at the trailing edge, the pressure jump through
the shock does not quite bring p up to the equilibrium pressure p = 1. There is a rapid
pressure increase immediately behind the trailing edge, in which p increases above the
equilibrium value, reaching a maximum about one chord length out. The return to
equilibrium from this point is very gradual. The total variation in pressure behind the
tail shock is quite small compared with that along the airfoil surfaces.

Far behind the airfoil p -* I and 0 - 0. It then follows from the equation of state
that

(- = exp [-(y - 1) S3()/y],

where s,(a) is given by figure 8. From (1), we can then compute the velocity q at
infinity. This is shown in figure 9 for M 0 = 2.5, 4.0 and 7-5. As a result of the non-
uniform entropy, the flow at infinity has a vorticity distribution.

A feature which is difficult to perceive from figure I or figure 5 is that the tail shock
angle is not monotonic. In figure 10 the variation of the slope of the tail shock is
given for the three eases we have discussed. In each case the shock angle decreases
on leaving the trailing edge. (This result has been verified independently by J. C.
Townsend 1979 (private communication), using a numerical method developed I)y

|% ,r *
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bodies. We have seen that the inclination of the incident flow decreases along the
shock. If the Mach number upstream of the shock were constant, this would predict
a decrease in shock angle. The Mach number actually decreases along the shock hiow-
ever, which tends to increase the shoek angle. At high Mach numbers the shock
angle is more dependent on the flow~ angle than on the Mlach number, as can be seen
from the fact that the shock polars for different Macli numbers approach a limiting
curve as M Go (see e.g. Liepmann & Roshko 1957, 1). 87). In these cases, near the
trailing edge the decreasing flow angle dominates. Farther away from the airfoil, or
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0-4 -l~ .41
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FIGURE 10. Tall shock slope. tant 712a) for M0  5, 4- d
Dashed lines are asymrptot ic valties, tarn li,

in problems with lower Maclh numbers or thinner airfoils, the cffec of decreasingz Macli
number dominates.

*InI the case 11,= 7-5 the shock angle undlergoes a second oscillat loll if) whIlch it rises
above the Mlach angle at infinity, /t, This is explainied by the raidi~~ fa' -off of Marlh
number along the shock, below its value at inifinit v. A final iteni of note ini fiuire 1t)

*is that for -41 = 7-5 the shock angle actually starts off withI a valuie whIichI is ur-eat c
than #,.* As 31, --* o the upstream Maclh angle l, goes to zero, as does thle Maclh and~e
at thle trailing edge, since the Macli number there also increases. The shiock slope at

the trailing edge ap)proaches a finite value hiowever, whichi depe)nds onl thle airfoil --

slople at the trailing edge.-

* ~ The mehds we have presented are usefulI in (omut o ing two a II fneiinl ow field,
about airfoils. The iapprox iiate solii loll is accurate enoughi for moanY c ases of imten (-
and t he numerical metlhod furn ishies a raptid correct ion to the solution in those cases
where it- is not. Thfle cli aracten st ic-st meanII linie co -ofn liiate sN-ste ili is ulseful bot hi1,
the comp~utation of thle apphroximnate soluition and the corrections, anid is also I
venient, for dhisplayinig find interpreting thle results.
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Th'le use oft the streamilines as one co-ordinate and the iterative na! tire of the( nuieri-

cal calculatrionl make the met hod convenient for the incorp~oiationI of a boundar 'y-layer

correction. Iii a bound-ary thickness method, for example, a sucecession of inviscid

Calculations are pecrformied with a clianginia airfoil shapc. rfli changing sliape could

be easily jinled in the present iteration method.
]in response to a referee's request for comparison with other integraltion schemes,

* wNe asked lDr James C. Townsend of the NASA Langley Research ('enter to run somec

speed trialIs onf t I ei r ('I)(! Cyber 175 coin p)tter coniparinag our codIe wvIthI a mnarchI ing

met hod developed there. At fihe lowest Mlacli numiber, A10 = 1-25, our scheme runs

about sevenl t li ns, faster than the marching method, while at the highest Mach

nmbuer, Al,) = 10, ouir s(Iche ws slighItly -slower. Thie present methiod is most efficient
at, low Ma~h numbers where the aJ)pro~iinatc, solution is most accurate and the fewest
iterat ions are required. This is in contrast to the marching method, where low Maclh

wlnier neessitates.a short step size for stability, and hence longer computation times.

Wh Ii Ic thlese t rials give( softe idea of relative speced they cannot he considered definit ive.

'li s ork wa-:s so pported 1)* thle National Aeronautics and S)paoe Ad iiinistriat 101

under NASA Grant no. NSG I (6t7. The authors -wouild like to thank D)r James C'.
Towl iserirl for carr , ing out a n umber of compuntations which wvere very useful fii the

((10 1st of, thlis reseamrci.

Appendix A. Case of an arbitrary gas

For an arbit rary gas, the equations of motion in characteristic formn can be written

(HIaves; (V Iroihstein 1966, 1). 484)

(is 0 on dy/dx tanO0, (A I)

dO + )dp 0 on dy/dx =tan (0± If), (A 2)

Xu'hcre (1) = p,/(p~a~pq2 tanj/t). JWe can consider (1 to be a function of p and s. By

introducing tie( variables

w(p, s) =f (1)(p, s) dp and Q(p, s) = Ow(p, s)k,

which are defined s;o trhat dw = Ddp + ads, (A 2) can be w..ritten as

dO +t dwd + f2ds on dy/dr = tan (0 + It). (A 3)

If w and Q2 are now% regyarded as functions of/i and s, (A 1) and (A 3) are three equations

- inm thr ee iimknowns: 0, It and s. Equations (3) are a special case of (A 3) in whichi

w'' and 12 (sin 2pi)/2-,,.
T[he tranrsformat ion to a/I co-or(Iinates goes thIroughi for the most p)art. as before.

Elqumat ions5 (6;) (S) ill t lie general easge become

s. 0, (04 w± , Qs()

whore icis sill VI ven by () Thre counterp~art of (13) is

Co 14(0 taI1 0 /)
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This equation can in principle be solved in the same manner as (13), but, depending
on the form of w, we may not have an explicit integral like (14).

The assumption 0 , = 0 in the general case implies (0-o)? = 0 or 0- = -Wo(a).
The resulting approximation can be expected to be valid at least in cases in which the
behaviour of the gas does not differ too greatly from that of a perfect gas with constant
specific heats and y = 1.4. In particular, it has been shown (see Hayes & Probstein
1966, § 7.2) that shock expansion theory tends to lose accuracy if y is allowed to
approach 1.

Appendix B. Tail shock for a symmetric airfoil

In general, the solutions above and below the airfoil can be computed independently,
up to the appearance of the tail shocks. The flows from the top and bottom interact
behind the airfoil, which complicates the computation of the tail shocks and the flow
behind them. The upper and lower regions behind the airfoil are separated by a
contact discontinuity, or slipstream, across which 0 and p are continuous, but the
other variables jump. In the case of an airfoil symmetric with respect to the x axis
the slipstream coincides with the x axis, and can be considered a rigid boundary.
The problem is still quite different from the front shock problem, because the flow
upstream of the tail shock is not uniform.

The transformation to a,8 co-ordinates behind the tail shock can be chosen differently
than that ahead of it. In particular, it is more proper to regard the C- characteristics
as the principal characteristics, since the C + waves are only produced as reflections
of the C- waves, which originate at the tail shock. The approximate solution is some-
what more accurate if the C- characteristics are used. On the other hand, for numerical
work it is better to take the C + characteristics as the / co-ordinates, because this has
the effect of putting more points near the trailing edge, where a rapid variation in the
solution occurs. We keep a constant on streamlines as they cross the shock, and
normalize P1 behind the tail shock so that the infinite region behind the tail shock is
mapped into a finite region in the a13 plane. In the calculations presented here, this
was done by setting fl3 (a) = 1 + Ja, producing the triangular region shown in figure 3.

The approximate solution used for the flow over the airfoil cannot be conveniently
employed for the flow behind the tail shock, because the non-uniform flow to its left
makes it impossible to calculate P0(a) and s(a) a priori for use in (20). Therefore the
simpler of the approximations given in § 4 is used: 0 = 03(fl), p = p,(fl), and s = s,(a).
All the characteristics intersect the x axis, where 0 = 0, so 0(fl) = 0, and hence in this
approximation 0 = 0 everywhere. This turns out to be quite accurate (see § 6). Given
that 0 = 0 behind the tail shock, it is possible to solve the shock conditions for the tail
shock angle 1,(a), in terms of the solution upstream of the tail shock, which we
assume has been previously computed. This also determines p,(fl) and S3(a), and gives
an ordinary differential equation to solve for the tail shock fl(a). It is possible to
derive expressions for x and y similar to (14) and (15) for the region behind tie tail
shock, which will involve a new function A,(a). An explicit solution for A 3(a) can be
found in this case, involving the coml)uted tail shock trajectory.

The iteration scheme proceeds essentially as before. Given r-(a, fl(a)) from the
shock conditions, we integrate (21) along C- characteristics down to the slipstream

1. X-)
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= 0. Then we reset r1(0,/1) = -r-(0,fl), and integrate (22) upwards to fl3(a). The
new r+ and r- define a new 0(a, 13(a)), which is used to solve for a new shock fl3(c) and
new functions 711(a), s3(a), and r-(a,f3 (a)), with which we start the next iteration.
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Inlrodtictioni Equations (4-7) are to be ittgtiicittd b% tile shock retalioii'.
%s Iich arc not repeated hereC andIL b\ (Ilti Luis ci itffil prevutI C

IIF itiscrwt wt rtcsiini prtthtcit l tile' cai'c itt tiit distribuionl/) =11,,( \x)

\Iii o i le ht m oiii lt l st iilc (It tie tilidec i li! ekiliitiitli. [ciis itpciilx it arhitrai I tiiictioii. ()Ilc lit tIICC I' tI\Ccd hi'
tic catfciuatiittl I, sttItttci Iltii tie Cttttipotiimi szibsitnic wtitig

ploithcti. Ill a rccciit papc., tlic aiittitti dciclopcd at x~).~ I~'
liliii icia proi.tc cd l oti lii clini tlic difect probile tile
,:Atlatlioii of sillmcrsilii Hos ictitt tistl -tIi C piithtics. ri oni thle sncaiic vi 0. \%is \\~t C take it) be tile as sci

Pt~~~~~~~~~~~~~ itlut tac i. r tcittic.u tt 1iie Cotstiilics. iiitknox it dIirtoit. As I W1cItiti C0titttliitti %iC I Ctj(itC t11iit i.
\aI rcsill. it is cspeciautt mitoii tic imowis prioblem. S incc silock anlei Jafit fiiicrt a irt

tile adaplation ll t[ic IrcItiodil ttile peseNtI probtemi is, \cr
,muliiar it) (lie itiitat tformuilaitin. xc \%ill go c out ict tj[icl) V tJ(Ol + lit, - 1t0t 111 (( - t I 1 0)
tlihiic of tice pi ,tcsttic Ill t his NoIt. I-or pttptses of

prttbicni. otic at simpItticatne itcii sCtI on tiiICaji1Cd M1tt1\vsis appromiittate s1ttittt. Ihis appi tilittitit is, illied t i,,,tk

MIW lice 0111t0 bas cit toii hotck c\paiisioli tici. Ftice latter e\flan,,iot tiheor\. ' Fiur I coittaitns at sketch oh tlic plic kit
u ~~~ptims it) be hiiutit ;icciruCai ~isttticiciiicm n 'akol ill ~ t iitcgratiot. -Fil citric tik(,) tcprcsettts ttclifteiikti it, c 1,1%1

strock trajectorv .As indicatcI Ill I'-c. 1, a ilt11'ri 1 t ,ti t itic'tt
Ouilline of file Miethod chosetn. thict %%ill tlt Lhclticritet (lie 43 trtCstt 15Cr tice t r'l

Uoiisdci tNoi-dictionjiti tispcisoitic tlo\%s %iicti "ic port ion oht h le tigire. [til c ihcintinat iott it t lie sitt ion Ii at 1
descr ib b\c hltife t4 t tIitc(cil Ott nitIC I. fice Miacht at g c i tt f ile replaccmttr tf 01. I (6) h t(tic a pprom\ ita Ii ot

sill f I '),.iid s, tice ctiropy di% IilCd It, (ie gas cil-

I ttc equlaitins of mttion f11 hi tractcistic ltrtit are'
%kthere - P,, (ot) i', tile ittic dICWtMtiffed atl the ,thock. I IIq

s~t ~ t r1l0) is fs Ii Itittcd in11 t lq, 15. \%ic obtitt 1

drl I. ijit tI ± Ih

i'iti %, an n ( ,; re b t n \n k i:

coli dxli til shoc con iton and tilet ticstle Iaii0
1  

I)21

Istct It Col'[ and [li Cs also~m IL: 0ccittc i tltit ticil- stIkilt

equation I5ci hhis~t II ai (itartotikllttl i ic

sil I-$-4

Ic:lelll .1 8 . +lll c ek d M rh2 , 9 3 p iic %() is k l \I n ) 0 j) 1 I \ ti l , til

'ItticC iltill s kiiitii iit ttlotitikll -ndidllis cix cit10,Io
offtci [its JX.li(I ()IX k~lltt 0~~ii \lirct 22.IL t'1r1 .til(flophok.t\%

- - ItilitIANIN11lr t oeilloi XI)11L M ivll ICstilttt cose ittt iouttiBmh\eIN 1 1)t II111

(p e CIItil I )..,a 'l Ia m o % lo al o a ( , ) 3 1 II iI C IL. (II) tt T- 11 1 0 1111 h
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ill ile lanc Filallv FA. (7) are intteratd~ ito find( [ti obtained lroml hqs. (13) and (7). 1 ie ic atioll k~ thcn icp~c;tlcd

transtowimaion to tile phlysicall platel c~crN%%Ihcrc. il par- muil a tconmrucncc ciiteron is net.
lienilal f*ile body hla pcR ( i) iw n b\

Appromimnale C'alculations

M( 11 =/( 0) + tanfl( 0.1) do (13) 1 incviri/ed Appro~imin
lPcrhliN t le simplcst clclati onl for I(y &i ell (fie IlC-l I c

dixtrbution /o,, (\) I(0110w'. f'rom liicaiicd ilicoi - Inl oill
Wich Comtplete', file Comput at ion of' [Ie .tppromitiatc iornali/at ion, Ii[MniCaucd Iicor\

I lic iteration prOcdie '.art'. W.ith (Ie nletC~d I (s.(6).,~)
which %%crc rcpl aced inl thle apprimnate .oliorl b Eq. (10)./() p,( -II

Wc numecrically ntciiratceqs (6) downstrcan alonlg tlic U(
eha ract cr i '.1i .'. la i-i m at t he shoc k. FIn' produ.cc'. tic\%
val I cs of* r ( . ) eicryw hcrc. F ronm r (Oj(). %\c canl-
deteininc /( = (0) + I k/,()d~ )(6

r' ( 03) =r ( 0. i) + 21 I v ( 0.i) 1 Nh) tock VI-ai):ii4 A pprujimai m

since 14(0,3) kx gi'.cn by Eq. (12). Eqjuation (5) kx thcnii - Onc mia'. aio baxe an appro\iriit calcuilation (ot /)onl
t cgracd uip hiorn tce body along (lie C' chiaractcristics. to Liikc hock c\pailxiol thcor'. Wc rcalil ihij if 1), I arid
*. In.J) c'.crywhtcrc. We can thenl obtain intpro'cd %aluc'. of' dcnotc '.alncs on thc aioil. then ill thin' alpio\1111,iioi hi ix 1

(/ a it c'.cr vwhcrc f'ront a1-liiiicd Iha

1) =112 (r -rf), pP V2 (r -r )j (I5) fh./'PjIhl ',t)

AIlc\%'. xhock angle ??((V) i% dctermiincd from the Nhock M' icic I',, is tile \aliic al tile Icadiii c':, bchlid lieC xio' k
rclaiions, andt a new\ traNIsforiliation to the physical planec I. l-unauioii (12) dcwci iiinc' /,, X I tonitilt Ii'. ciel Iprcxsiirc

., t\) iil tilec ciltrop\ al I cl tdiii thic .(LC ,. old [tll I

al liil loll 01Mi'. x.I 0 c iciliicd iil 1111 Xa'. ii I'

sriIh fil lit isi jippi oiiiai iu in ltilew ilcia di ' Atilso) i otli mcd
A ''il ii lit'p re\ otis scl loin.

0 / i

S0 h

ti. irof vpttopl------- i,- 2alarolpesie Iw fo hltstipir o f,4 n ehi ft
disrimiio ipcv 0115( 20'
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Resulls
Sample calculations are shown in Figs. 2-4. In each the

results obtained from linearized theory, shock expansion
theory, and the exact numerical calculation are compared.

Figure 2 contains the results for a low Mach number
(Mo = 1.2) and small pressure jump. As should be expected,
all of the results are in close agreement. For Fig. 3, the Mach
number is moderate (M. = 2.5) and the jump in e.,p at the
leading edge is unity. In this case, linear theory is poor in
predicting an overly thick body. The result based on shock
expansion theory, on the other hand, is virtually in-
distinguishable from the exact case. In the final example (Fig.
4), both the upstream Mach number (M0 = 5) and the pressure
jump are relatively large. Linearized theory is now very poor.
Shock expansion theory still does quite well for most of the
derived airfoil and begins to depart significantly only near the
trailing edge.

Conclusions
A method for the design of two-dimensional supersonic

airfoils has been presented, which incorporates available
physical and mathematical knowledge of the problem (e.g.,
shock expansion theory and characteristics), in order to
facilitate the numerical computation. A similar approach
should prove useful in the more complicated problem of the
design of real airfoils in which three-dimensional flow.
boundary-layer effects, etc.. lust be considered. The iterative
nature of the present method, in particular, makes it well
suited to the inclusion of boundary-layer corrections.
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Direct and Inverse Problem by, tl. the position of' the shock is governed by

in Supersonic Axisymmetric Flow dr ln ~ 3

Jefflerson Fong* and Ilawrence Sims icht We introduice ttesi coordintates (.,1i I tinouI)

B-rowili Universilv. Providence, Rhotit Islund
r , kt;ItiU (4)

Iniroducfion I -sX, I a idtI4 1,

UURSONIC irri icid flows call genteralk% be soft ed hs the
Itnet hod of characterisics or by shock -captuIring so that contstanit It refers to st reatnltttes. and contstant j$ re-

methods.' 'The method of characteristics computes thie floss Iers to C ciharacteristics. l-'.ptessed itt these coorditnate,.

along characteristics and uses the Rankine- Hugoniot cotidi- -q. I I) is sllllpls 0, %. (ile l-.q. (2) becomes

tions at the shock. This nmethod has the adsantagc of at- '112j, taitlr,
curacy, but is regarded as complex and cornputationally inel R II P, (" 1 (0)
ficient. especially in regions of* near coalescencee of the two d.2-, tailli 4 tanp r

sets of characteristics.' ' In shock -capturittg methods the
shock is smeared over several grid points. s\%here oscillat tons !) /1, ii 2,t ittll" /i C)
can occur and the scheme loses acctiracs I losseser , due to 1 4 ~ ,

their directness and cotmputatitottal case, shock -captiite
methods have been preferred in reert seat'. \%r P ) itt (X) tari 1 1, is c l'i.iiidil

Itt this Note, we deselopi an efficient rttetliohf usinp (the atrle. X )( It it
characteristics and streamh~nes of a fi'l I licse ate used as
coordinates and the flow quantities are esprcssed III terms of .

Riemarnm functions. A schemei ts obtained Mshicli s, swiiih i-I
cant ly more efficient and accurate titan shock -capt (irIni!
met hods for flow over axisymmetric bodies. Siitcc streamlines M
form one of the coordinates, we naturally obtain at body-ftt
ss\stein.- It is also a truly shock -fl coordina te sysreli - Not onlR

are the Rankine-Hugonion conditions used. bilt tine sflock lies 0
esactly onl grid points also.

rie suctcess of the present method in the two-dhimensional z
case rests; on the diwcrs- oif an accurate and sitmple mppros < a
thiat oll - In the awislimineir c case, a similarls alccurate and
itmple approximnatitont has ci tded u . file a ppr tiii at ott 0

presented herein is simple. but generally tto(tas accit ate as )
tit for the two-dimiensional case. A better itcratiSc Pto 0- j
cedure has been developed to compensate for this weakness., 0 0 -o - i--' . . I, -

As was the case for the two-dimensional foour methoid 0 01)II

is %%ell suited for the inserse design problem (i.e.. giselt
Xf,- I and the pressure distribution on th ft ody, find the 1-ig H..d% and hi...1 4.1 0 - lh,.-k tjrablt thod\i :it %,, -

shapie oft the body and the flow everywhere).

W ~Formulalion M
J'%c ctisider as~isttntn c f-low& with Itntcident Macit 31 T

iiiimber Ml, I aitd shock attachedf at the tip. I hie
chfiacteitwic equJiationi, cani be written Iiii, eiit o nttrop 5, 4
titus atrgle 19, Macft aniiil 1, sitt I (I %I I it local Macit
iiiiiherl. pressure /?, kfici t ,, aiid %eloC its It is lillo\%s'I /T-

If 0

d% 0 i
d\ 0 (99

d .iii 4 suit II 0 1 n 0 I0(

2(l1

*~ ~ ~ ~~\ (tfte hods r /(\) \% sis ipose tue futuiiiiii ociliilotilt ?
1.u11 1 1f I lifinps icnoss, at shouck atle ciset hs the I 30% Thic

Rmiikifie Iligorniot cirtditiiins It we. denote tire shock anle 0
00

0 5
Hsi~tI etl 8. 1101 , lS. o ilS lirec, Ati Is, 198'1 ( ,ipsiili

un ic,,.iii Iiislilir of Aciiiiiiiu. ii,f n A~irniaimi,. miI - 145W 00 1..... ......
Altt fight% icwi,ed 0 02 0 4 06 086

* *~Rc-searsh Assotgate, lDnsiin of Apptied Slaiitieiw' ,,enikt
*~~~~~~1 ii uperonrpuicr ( oniptit iiinnis Rew.ar ch lnit i i i i i

1, tm.. .'iit y. t attahassee. I- t hii. 2 Prrsure dimitnhutoi on the bod~t for t0'& rind _101.hick
* I irlssNoi - isision oh Apppined Mati erntiL n parshit hodies at %f, 2.

'd 4* * .- *.* ~*



MAY 1986 IFCHNI('Al No'll-S 3

Here -) - 1.4. Ani alternate f'orm of itt. (7) used flter Is as dimienasionral arid. hence, shock -espanslon t licor \ ( R con-

f-Voss ria gl anl entire steamrline) as sahd. Indeedl. for hvper-

(I 1antan ) k~ Soi tang% alon (Ot kilke rat kl'Ot) larige and r' stiall so
,=Itninp r that Iaqs. (7) and (8) are \%ell appiosinaled b\ t\%o-

dimnensional t heor At los ci Ni a i nin herN thIis a ppro s
It is importani to note that the dynamnical equiations must be ntation iso no longr talid. I 1ossese In our inatchini-t
auigmented by the coordinate equations (4) and (S) lhtits schie %-e need oilli to appi osimate one grad point ia a

Irairsforat onis til u deterin ne upto woa rbitr aI and to assuirrc that R changes slots lkk along a Streamline.
functions. We fix one of these futnctions by takting 0u(,0) = l Uonihiriri Fqs. (7)ard()
at the body' , -0. 11 therefore follow that

r(0.j3) =J(iU). 1)(0.0) tan 1.1(ji) (k9) R ii-l SItt 112,Q

To dci nn tietie Second a rbit ra ry kincron te It\ tile Shock

by dil (mI) . : ~ .. it

1ie at)os e torriuatioti trust be miodified sligliitll older li(crc 0. 0i is fii aPIpptorrttliroit 5 onrsitellt \%liti Hlie appro\-
rttt1iiiort R w these are (tiIre to rira lii icrelliral eqtud-

to lrcal rite irerse design Problem, loft irls problem,. in rtict t i iiia rcssi r e o etri
li esn re i, Specitied oait art .unnk iotr both . to acc1i1, trod ate t ie1111loi~' l ieleato cinc

flthi irotadar\ coriditoir \%e obtain (tout lictinotilli' 5 eqira Resuilts and IDiscunsionkS
nolland[liepelec( as m (alenalatiwn irof Ilost oser bodies ot sat urns, shapes for a

I lalriCo 01 MaC iIit iihers lIa\C beenI p~er or iredI lie as eravae
At Sin ririritber of rIerattoirs 12litall, beisseeti 2 anrd 4 tot air error

t1ilerAIITc of 10i ) tised er 1)(1iri1 de-:Ceases as tire total
filI )10 I ipf) 1 11111 01 ri)0111be of tsUsed t11ilk Ilas li e\s of Outl special coor-

I ' t2I.Ali es~pl I (kI fH p1 iri s\sIiit test pornts are requiredL to) describe tire entire
lost Id. (Intl points .ate Spaced appiopmiatck according to

Sance thre entropy st is constant alorert reamrlinres arid IS thre natural silat rs ot fite flos thIis is deioirsrated irt

kttoss it heaind fle rip Shock, (ie rglitlhnrd Sile al Fiq. (ItI I art. I ssl tit a 3t"OtltiCk pa~arlrcl bod\ atl M~, 2. \t here \%e
as deCreraiited. therefore, irsicad of I q. (9), ste base Eqs tornpate at calcitllatiorlt isinL '48 poitr, ill (lie %% hrole flowield
(4) lilt] (11) otir tire hodik, fle f'lost abose the bOid c~art be to lir ulsing X29 portIs.
calcutlated esatas bef'ore. lentt [lite irserse *prirbleri I rjtire 2' sho\Ns tire pressure disni buttons ort tsr s parabolic:
beeran tes a ditaci problear; h\ fite rirer10 It fSllC odIC piic [Ise ri' i'd[ liee i11 11 :11.1 ele pes

cor~istr thlrnc Iie presirlce oit a pressure arrrrrrrrrnrri rit tlire

Numerical Procedumre boil Shtld t lie rioted.i Noi Silt i i t i ut i appears iii itt o-
Near fil III-ti of the bti&, the fit\ is fae to bic flost k iiaeisrtonal par abolic \tSt us Rrrsster ss tl itt~s V, the faCt

fl at i lei nit ra 1t ii i I\C Wi iste ithter do\lisri aline r ig l~e bod\ as A,acie. [r tire rest of' tile liks se [Ise at iarclra sctrearre li'~ettiktestatess eas ikrbodies aremr
along cacti colirin of 0. A good appruasirarior as first oh- isso-ditrretsiottal I tits shouild hi'(it Sortic inercst %nirce the

taaiel a rte irrris tttha crtirrrt li gt eirtigeqlatots ics'rrie sit a pressure rrrrrrrritt Siomte cases catl be air iii-
are their iterated uintil air error tolerance is saitst iii beloreC thslatsit of flsiss Separation.
%%t, prfoceed ili tire nest crltirirt. I nwtric I slriss rthe cliatiges of- R utrsrrrrraltud to its salite

If is sittr niting ilia! ste are free it, chouose airs itisli si/i itrclrc lar ietrii i ibt~i -,
nI ~ e er ssher t~e C ari C cbharacteristics ire riearli. th lt-i anriltinc shotsit lieol uailte both antI ,i absitr .1...

trarallcl Oi)re to i-ri - (Ill). stie are also trat liied to take t it anrd I btid\ lerrenlr arssa\ fronti thre ati NS Otte cart see. R

stirall iresli s/es ittis earlir - cluanices rsrtilr mn tmali aloneril~e liokls I lie appt otirnationi
Approximalio luiA :Oiriawt using t ile ss (tle busts is pooir tibrlt R dsres

Soluhionc lttsiie nieatl Is ,iiaitt at less thlan jt hotds lengoth assas\
I rVCts arid Sat11 art ntied that fl[)tiersotrc (iss 1%lt1\ l asi Iti test ltie rt1ilriid (ii stilie tile titter se piolilrr. a

IrretI t builtes Cart lie appr-ostinaiet as localls ttii dJict isubNlr 55.15 Skilleid, d. ' *aws t leestilfiit pressirre
slItrrl iraisr tl Thre hklt \\.I, used itl fite ittsttse irerlisid. IlIe

tiertet 101CH tsI iCllerti ild flt korIllt 1it 0Itrttal iite is Coin-
i'' l '' ' . T 1t0bl a tir lit itt'1 ItIOlli

Cuonclumsioan

0s ririrteti1M itICI (lslid iet it\eetel iiin ssrait

0~~s sternl flet bods Its a11lri ti iisotirlate. arid fite Shock as at
sitari itre tsc kit ih vml ptiN t~illmt,\tr tsa il l it Ranikine-

root tlt c sctoi us~ lh riitii cir.ai Rl\Ieldarsl 'les l iiirtt, tint
1 0 resI'tiit1110tislstlit t flit irtl (sits o t l Ih s ie gIth p \iti re

iii ittlt body tIa Illls sties'1 (ii lit.1 0I C ( arid ( Cliii

095[ -- 1 \a, ,i stcs \Cte in1111 t'l ii~~ i est ai 1 
t <It SUis

. . .I . . . . . . . . sattc fut a stiss ututl iis. (s sitt is tt(I t? 04 0)6 06 1 tilpildkl" iii esis 11,llt 11i,i'i55 oi it\ pointts .1,10

F eg I R rt,,ng sirv ivit to~r aIIItt ,,s iti p araiuit tii Iimf iot, W11 )1 1ii 1iii 11s k 0Mt i .11k iii c sts il si S 11 55 iS ill

Cilt It irsh e 11%C '-sL-1s1'1 Itll1iCtit \ 1s l 'ilee Midtitl e J( i lt
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coordinate system the inverse problem becomes a direct pro-
blem. Our results for thin bodies at low Mach numbers show
there is a pressure minimum on the bodies, which can imply
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Supersonic inviscid (toA over nonaxisymmetric hodies is considered. A nev. version of the

method of reference planes I, used. In this version, a near characteristics-streamlines coor-
dinate system and a highly efficient numerical integration scheme is developed. The CFL con-
dition is rigoroiusly satisfied on the flow.r Several sample calculations are presented. 119

1. INTRODUCTION

The method of characteristics for three-dimensional flows has been developed in
a number of ways. Surveys of this method have been given [ 1, 2, 3], and the
leading approaches have been compared [14]. The main advantages of such
methods lie in their intrinsic use of characteristics as well as their accurate
calculation of shockwaves. Generally these methods, which require consideration of
characteristic conoids and bicharacteristics, are regarded as complex and comn-
putationally inefficient compared to the more popular finite difference shock captur-
ing and shock fitting methods, e.g., [5, 6, 7].

Another class of schemes allied to the characteristics method but much simpler to
apply is generically referred to as reference plane methods [8-12, I ]. Another
designation is method of near characteristics, a terminology which reflects the idea
that characteristics are employed in an approximnate fashion. In this paper we apply

*Work supported in part by grants from the National science F-oundation (11i 8 3 040211 and tlfc
U.S. Department of Fnerg), MET I('t5-85FR250OOI.

Work supported by the Air Ilorce Office of Scientific Research IAII)SR 5 29320),

378
0021.9991 87 $3( M

Io .ir ir? 5, A-.ric-ir I'r, In,

Alli ng t- n llIP.....



StiI'IRS( SNI(" INVIS( II) IA()\V 379

a variant of this approach to the problem of flow past nonaxisymmetric bodies. Our
approach is most closely related to that of Sauer [1 ] and Rakich (12].

For the case treated here, flow past a body is divided into a set of azimuthal
planes. In each plane a highly successful two-dimensional characteristics method
[13. 14 ] is applied. The "cross-talk" between such planes created by azimuthal
derivatives and velocities then serve as forcing terms in the equations. Unlike earlier
treatments that we are familiar with %%c are able to rigorously consider domains of
dependence follow the Courant Friedrichs -Lewy (CFL) condition. The result is a
method which is extremely fast without loss of efficiency or accuracy.

2. FO(R MULATIO)N

Since the form of the governing equations is not standard, we now outline their
development. Flow in cylindrical coordinates (x. r. 0) is governed by the followsin.
equations:

U " (u) ' ( 'U I c

112
ci ci - w i u 1~ I 'p 321 -- + u

cr (A r r ) .crIv 11 i v 'll I F'p

--+ . .. (4)
'r Vx r ( 0 r pr (V

In addition to the continuity (I) and momentum equations (2), (3), (4). wc have
Bernoulli's relation

U' + 1' + it a M I

2 ,,-1 2

The gas is specified by the state equation

- 'S = constant, (6 1

where the entropy S satisfies

u VS = O, (7 )

between shocks while (5) is also valid across shocks 151 We nornlli/e u. 1, i.
and the speed of sound a by the upstream speed of sound a, \:, r by the bod\,
length, p by its upstream value p.: p )h\ yp,,; and S is replaced by (S ,,) R. where

R is the universal gas constant.
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We introduce

J 0(.x, r, 0) tan (8)
["

the flow deflection angle in the projected plane, qS = constant. Similarly

,,.,-, , , sin ' -k . (9)

is the projected flow Mach angle, where

14A
2 

+ 1,
2

m2 = (10)a-

In Appendix A it is shown

(0 P(11)) + sin 2p (d d It)

G, T (tan 0 tan p + G,) r

tan 0 + tan p r

where

C d -, -+ tan(0 +p)-- (12)

denotes differentiation in the (' -directions, i.e., in the near characteristic direc-
tions. 0 + P(u are the corresponding "Riemann invariants." The various terms
appearing in (I I ) are defined in Appendix A. In what follows we also use.1 -I,, -II+,('

alnp- In-- I I M2 I + S-In (13)
2-I ()/ o- -sin - .

where (i) wiq. The second form for a in (13) follows from (5) and (6). It should be
noted that for axisymmetric flow, we have (j = 00 = UO =0, and (I I) reduces to the
appropriate axisymmetric equations.

Next we define new coordinates (a, (A () such that

r, =x, tan(0 +), rt,= x, tan0, = (14)

This mapping is further fixed by the condition at the body

V(7=-0, fl, = ,(15)

-e
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Sa nd the condition that the shock have unit slope at each constant I- plane, i.e..

(16

at the shock. fnder this transformation the C form of ( I I becomes

,_2 if G -(!an 0 tanl +(,lr
R in (U ~i' 171

tan0 +tan r

.hille the (" form

sin 211 G, + tan 0 tan ji -i ;, [r

OR + I i n-ta Iv

where diflerentiation in ( direction i,, now aicen by,

2 ll 0 r,

(:y tan 0 + tan p r, ,/

As shown in Appendix B the 0 and J derivatives are related b

(I tan 0 .x (i !)- (1t1r)(0-+-l). -/ ' ) \,(* 0l/

- -- 4- -1)9110 (tan 0 taiil() + 1) -v, V\'

If we combine 17) and ( 18). then

RP I tan 0 tan -xr sin 2 11 I-S/

A sinl 2p s", ,' ,c C, -; (-- L '2

P' 0

_(__ 2 _ __ / In -t
.sinl 2p ' Isu

Ihe cnltrop\ equation as slim n in ,\ppcndi\ A is nio\

19)
.S ,, -.%', ( 1
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while the @ component of the momentum equation is

sin2 21 cos 0 (-- 7" + - (U1, +- - €

(j) sin- it cos 0
-7t0- (I +4-w -sil0.

With the use of (13) a can be eliminated from (22) to give

= to tan t P1( - i' (() sinl 0 + tall /I P')
rcos (

tanj 2 /1 S i'i. .
+ +tan 2 t r cos -(

" 1)( r" (w l + (D2 sin (I I. (23)
r CoO#

The dependent variables x, r, 0, i, !, and S are determined by (14), 17). 18) or
(20), (21 ). and (23). On the body x, r, 0 are specified by the boundary conditions

x(O = 0.fh, (24)

r()(=ofi,)=f(fl, 4. (25)

00:=0, f.(tan ( (i,)). (26)

In addition to the shock conditions, we also apply (16) at the shock.

3. NUMrRICAL PROi)(IURES

The following scheme is an extension of the one used in the axisymmetric case
[13]. Each azimuthal section ( , = constant: k = 1.2,...) has the (Y, ti) grid shown
in Fig. 1. In the neighborhood of the tip, 0 < /; [ i, the flow is taken as flow past a
cone, not necessarily circular. For f1> >#, a marching scheme described next is used.

Regard the flow as determined for all columns up to fi = fl, for all -, sections. We
first indicate how the flow is determined at the body of the fl,, column, denoted by
at in Fig. 1. When integrating in the C direction as it explicitly appears in (I ), we
trace this near characteristic back to the f/,, column, the point 1) in Fig. Flow
variables at h, are found by a second order accurate intcrpolation scheme.
derivatives are taken as the averages of the center differences at a, and it 1)'. All
other equations are integrated by appropriate elementary grid points difference.
since they only involve a and fl derivatives. The values of the flow for the entire row%

k = I.of body points are now iterated until a convergence criterion is met.

6r, del 4

Z-a.I
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a

C

b,,

- C
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i01 body n

F ;. 1 0 fJ) coordinates.

Above the body, instead of the boundary conditions (14) (26) we have (14), (17).
Again values for an entire row are iterated together. We proceed in this manner
until the point a,, of Fig. I is reached. At this point the C near characteristic
strikes the shock before hitting the I, i column. All remaining rows in fl, are now
iterated simultaneously.

To consider stability denote the true Mach angle by p . It then follows that

sin a sin:i
+ w - I - (!f

and hence

At each constant C plane, the true domain of dependence for the flow projected
onto that plane lies inside the domain of dependence determined by the two near
characteristics. As for the , derivatives, let b in Fig. 2 be the point to be considered,
and let S and , be the angles (in (-v. r, 0) space) between r,,,, and r,, and between
r,,,, and rh,,. We want f >i and '., > -i. This requirement is easily satisfied unless
the aspect ratio (the ratio of the largest to the smallest radius at the cross section) is
large, in which case a smaller step size of 1; is required.

Fui:. 2. (B, ) coof'dinates ilh :,rresr' nding angular \a~iluc Inl x\.r, 1 space

% % ,
'06 6
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Some mention of the calculation over a noncircular cone is ordered. Near the tip
(0 < /I - fl, ) at each section ', we approximate the flow as being the flow over
a circular cone with half angle O = tan ='( I,, , I--, )). We then compute the
rest of the 3ow (1i > fl, ) by integrating the (nonaxisymmtric) equations using the
numerical scheme described above. Note that flow over a noncircular cone is con-
stant along the shock and the body at each section = I. Hence we compute the
flow along the #I direction until this constancy condition is met within a prescribed
error tolerance.

Since many of the steps in our procedure are iterative, a good first approximation
can significantly accelerate convergence. To motivate our choice of a first
approximation observe that ( 17), (18), and (21) differ from axisymmetric flow in
the "'second order" terms,

(*) -. (t) - -

where as (19) indicates. i/> , ()(VJJ). Thus if a body can be regarded as locall\
axisymmetric taking the flow as axisxmmetric should he an excellent
approximation. In any case locally axisymmetric flow is the first approximation
adopted by us.

4. Ri.SIITS AND )ISUSSIONS

For purposes of exposition wc have performed calculations of flow over bodies
with elliptical cross sections and azimuthal parabolic profiles. Relative few points.
planes. and iteration, are needed to compute the entire flow field. = 0, 7T and
= 7r/2, 3n2 arc planes of symn-ctry which are nt assumed in the calculations.

and are used as a check on the correctness of the results. Throughout the entire
flow field, all grid points with such symmetry are found to have values in agreement
within the same order of magnitude as the prescribed error tolerance.

Figurc 3 shows the body and shock along the half planes 4 0 and 4 7 Ti for flow,
at AM, =2 over a body with 30% thickness at =0 and 20%, thickness at =z 2.
To carry out this calculation we took 32 azimuthal sections each having 164 grid
points. 20 on the body. The result of reducing the number of azimuthal planes to 16
is shown by .Vs and + 's. 4or calculations with the fine mesh size. the lines for 4 = 0
and 7 rt are indistinguishable in this figure. For calculations with the coarse mesh
size, + signifies a point at 0 4 0 and x signifies a point at 4 i t. Fach pair of +
and x appearing together in the figure have the same values of x and fl and hence
they have the same flow values. Figure 4 shows the body and the shock for the
same flow along (A = 7T'4 and 4, = 3r,'4. Again. for calculations with the fine mesh
size. the lines for the two half planes are indistinguishable. |-or calculations \%ith the
coarse mesh size, +- signifies a point at r 4. and x signifies a point at : 3it 4.

h
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with each pair of + and x ha ,ing the sanie 7 and /i In Ihese two figiures.
agreement is escellent with respect to both sx mnetr , and the different grnd ,,izes.

F'or the same flow, the pressure distribution on thle body alt g, 0, ir 4. r. 3 r 4 is
shown in t-ag 5. t-or ¢ = O. nr the agreement n, escellent. Ior /,-r 4, 3,' 4 thc
agreement is good with respect to symmetr.,, hut there is a small discrepancy
between the coarse and thc fine grid calculations. Since the grid site in the 2direc-
tion is quite large, about n,'S, the discrepancy is certainly tolerable. ,

The cross flow on the body is given in Fig. 6. A,, the figure shows, the cro,,s flow
,,anishes in the symmetry plane. At q = r 4. 3zr 4, there ix some discrepancy between
the coarse and fine grid calculations due to the largeness of the ,C grid site. I-igurc 7
shows that cross flow at the shock. The result, are again quite good. F-igure,, X and
9 show the same body at two degree angle of at tack t ravecling at Al,, - 2.

As an indication of the computational speed. e mention that for thle w~ho.,c-fh ,
field. thle time of a typical calculation is, roughly It) ,,co on anl I HM 3051.

AIpi.NIix A. [;QAtiI(N5 iN No()N,\\Ix1klM IRI ii(x

We wish to express thle governing eq uationibl I? 7) in rir characteri,,tic, Iorm
"Since p = p( p. S). using (6) and (7). (I) becorne,

u I/ f)/VU (I (Al)

4

n%

rn 45

0C
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Decnote

q=(ur) and V, - Y

lhen (2) and (31 become

Ii

q.%),q +-V, p Cf (A2)

f - q +

In a constant half-plane with 0 and )i defined by (8) and 19), let t(0) be the
tangent, and n( ) be the normal on the projected streamline. e)note .v and n as the
arc length and normal coordinate I hen (A I) becomes

and (A2) becomes

q - - - ± - sin U, (A4)
1.1, /1 IA r:I - 14) r .

q, 4 - - -_4- - cos/. (A5)
A 1) e7/ r P4

I)enote a - In p and wi w 'q. Rearranging A3). (A4). and (A).

( A1I I A) IA-- 'In' A

I ') sin U

(A6) can then he written as; sin 2t ,l F) c~~s l1+l) i ,( 7

d. (+ I _r - (I (Mr

where dis given in 112).

-,,.. x ., ,. -5.,,:.'.,--.-'-;-,-- . --'-,,.-,.7,,.

_', -'' .'"*ii'" .," '':'.,."'" ." ""*.. . .. .." " -" "...%'
, ar~~~~r-,r~ %"l 'P l'a r , , u t j . '-.k .t t'P ,, . . ..
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Rewriting (5). we have

- + - - 1 - I
S _s2 sin 

Combining (6), (AS), and p -p , we then obtain (13). Rearranging (AS), Nxe get

I + - - sin 21 + +

Now define

In I + (-y-(~ ).AO)

Since the derivative of the Prandtil function is

i(p) --Cos,/ (p 4 sin,

using (131, A7) becomes (I) with

G, (! (1 - " (A 10

6 1, /1(on tan 0 + w (w' () a

Cos 1)

Next, we wish to express the entropy equation (7) in a form useful to us. 17) can

be written as

(q .Vj + r - 0.

In the natural coordinates s and n, this become,,

(IS - s' q' 121

CS r ?

If we define ( , fi, C) by (14) and use the fact that Ns is the arc length, we Vet

I 0 1 C osO Al3

(A] 2) then becomes (21).

I%

a ) '' a a
,V. .

,aJ 
~ a a,'.. ~ a a-f
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Now we give a similar treatment for the 0 momentum equation (4). This can be
written as

(q- V,) w +

p "/rp r , o r

In natural coordinates, this becomes

q) a' ('(T -- quf) ((Jo) (1) Sinl 0q - +-- -- q---
CS c r ".(7 r rOI

Using (A4) and (A] 3), this then becomes (22).

AI'IINI)IX 13. (O X))RDINAnI "[RANSI(RMAII(ON

IFor v v 2y. f . =. r r(y, f H .. L, uSin the chain rule we obtain

Since ( S ,.. and 0,-- ( bO. I,

P, I, ft, : - . , 0) 0 1 0 .-l

D~ 0

where

D x,r( - r, (tan () - tan(+ 4*,m/ .

Then

(A Cy oj3 D o cfi

0, 0 , - / : 0 7I ' c-;

Sr:-, 4 fl, -:f - ,

--±--
/) ?

('. tan ( \)\-/0(" 0.,14 (tan(()-4 p! r ) ('fl)
D) +'
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Exact and Approximate Gas Dynamics
Using the Tangent Gas
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Steady, invlscid, irrolational flow of a perfect gas in two dimensions is considered in the
tangent gas approximation. A fast and accurate method of solution is proposed and solved
numerically. Comparison of tangent gas and exact flows are presented. Tangent gas solutions
when used as the first stcp in the iterative solution of the exact flowfield are shown to give
substantial reduction in computational time. I 19X6 A, idc.... P-, 1-r

I. INTRODU('TIoN

The computation of steady flow past an airfoil is crucial to the determination of
aerodynamic characteristics such as lift, drag and moment coefficients. In many
instances potential theory suffices. Neglecting viscosity it is exact for shockless flow
and is a satisfactory approximation for transonic flow with weak shocks. For two
dimensions the calculations are usually carried out in a conformally mapped plane,
an approach used by Sells [I], Garabedian and Korn [21, and Jameson [3].
Similar techniques have been used for multi-element airfoils [4, 5] and nacelles
[6] Three dimensional potential theory has been treated by Caughey [7].

Since the equations are nonlinear, the potential equation is usually solved
iteratively. In some instances the potential equation does not admit unique
solutions [8-10] and in addition becomes a poor approximation for increasingly
strong shock strengths. As a result more recent investigations treat the full Euler
equations. Finite differencc and finite volume methods have been successfully
implemented by Jameson [ II ] and Lerat and Sides' [ 12]. Because of slow rates of
conlkcrgence considcrable effort has been directed towards accelerating these
methods [ 13]. Convergence rales depend on factors such as the grid, initial guess,
time stepping scheme and method of solution.

* Present address (ourant Intitulc of Mathematical Sciences. 251 Mercer Street, New York,
N.Y 11)012.
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In this paper we present a set of flow dependent grid systems and initial flowfield
guesses which substantially improve convergence rates when applied to the Euler
equations for flows past an airfoil. These are based on solution of the tangent gas
equations introduced by Chaplygin [14] and further developed by von Kitrm~n
and Tsien [ 15, 16 ].

Woods [17], who extensively studied these equations, proposed certain iterative
methods for solving both the analysis and design problems for flows past an airfoil.
The methods developed in this paper are substantially different and offer a method
for a fast and accurate solution to a problem. (We have also addressed the inverse

problem and presented an exact method for its solution [18].)
As will be seen the tangent gas solution lies close to the Euler solution even for

high subcritical flows. This is used as a basis for iterative solution of Euler equation
for flows past an airfoil by means of FLO52S (written by A. Jameson, F. Turkel
and M. Salas). The grid used is the natural one generated by the tangent gas
equations and the starting guess is the tangent gas solution. As will be seen this
results in substantial computational reduction even for supercritical flows.

a,. 2. BASIC FQ;ATIONS

Considcr steady. imiscid, irrotational low of a perfect gas in two dimensions.
then in the usual notation

V (pq) - 0, V x q - . p, p'=l . (1)

The variables are normalized by their free stream values and linear dimensions by
an appropriate lengthscalc.

'The stream function Ip and potential 0 are introduced in the usual way

pq=cVx( /ik), q = VO, (2)

where k denotes a vector perpendicular to the plane of motion. The constant c has
been introduced for later purposes.

If s and n are local distances along streamlines and potential lines, respectively.
(2) can be written as

d% +-id d/I (1+ -d .1 (3)

If equations can be derived that map the space of . g, on to the space of the
velocity magnitude and direction (q. 0), then one can take advantage of the fact
that the tangent of the flow direction, tan 0, is the same as the slope of the airfoil
surface where 1 = 0. Then if q vs. 0 can be found corresponding to t/ =0 on .

.A . . J - 50.. ~ . J ~ .
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plane, the state of flow on the airfoil surface will be known. Foward this end, we
write Eq. (3) alternatively as

d: =dx idy=- A d+i ,1fi (4)
q (

where x, v are cartesian coordinates and 0 flow direction angle. With q and 0 as
independent variables, it is easy to derive from (4)

p Pq

If dependent anrl independent variables are interchanged and the Prandtl Meyer
function

,€ dq
,fI AIq (6)

-i q

is introduced in place of q, then

(,, Oi 0 0 K(v)vo =(0. 7)

The -t sign refers to subsonic and supersonic conditions, respectively and

A'(r} / - -. ,(8)
,o(q( At))

' here

[ pica] phiysical x i v) and potential w( = qS + iOk ) planes are shown In Fig. 1.
The ,,irfoi! maps into a slit in the w-plane. The gap BB' in the potential plane
corrcponds to . where circulation about the airfoil is - I.

The ',,stcm (7) should be solved subject to the density speed relation obtained
Iroill (II and Bernoullis relation

- 4 I ( - constant. (10)

3. I.T( I G {x A'i'IoIXIMAI RN

I i4.,lii, 1 7) aic inioii n ,li and ,irc theiclore difficult to Tve. A good
A*(pi,,\llnalilil to' thoc C(lnatilo , nnl.ci ccrliir conditions can be obtained by

!%.. ,..,...,.,.....,.............,...,.,-..., ,..'r *: ,. .,, ,., -: . .,..,...<..-:.-:
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A €0

Fi(c 1. Airfoil in physical ---plane an(]J potential iv-ph, ne

introducing the so-called "tangent gas approximation" [ 17 ], in which the isentropic
relation between p and 1) given in I-q. (I ) is replaced by a tangent to the curve of p
vs. 1/1). This approximation is then given by

&p - -

From (10) we obtain

; , I ,11,.( 12 )

With the constant c in (8) taken as

c~ li[I,,(13)

we obtain from (8)

K(v)= 1. (141

Then for subsonic flow (7) becomes the ('auchy Piemann equations

O0- v -- O, (0 , + %. 0 01. (15)

Equations (15) are exact for the tangent gas and also for incompressible flow
(M = 0). In addition, it will be seen that it can be a very good approximation to the
original equations. In the above formulation the tangency point has been taken to
the freestream

p , -1I , 16)
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With this selection of tangency point the following relations hold for the tangent
gas [17]

q= sinh *cosech(v* - v), Il - tanh(v* v, c,, j , h, (17)

where the contant v* is given by

A,

From (6) it is seen that v = 0 and at stagnation points Idenoted b, /ero subcript

2

V.= - ._f ( - , (119)ro I + f

4. St) i1TION f'R(XI'I)IRfi

It follows from (15 that

T v + if) 120)

is an analytic function of w. It will be useful to map the w( 4 + toi I plane onto 'he
plane of a new variable a = 1(71 e" such that the body in the w-plane which is a slit
(a part of the line 0 = 0) maps onto the unit circle a = e", 0 < or _< 2n and the rest of
the w-plane maps onto the exterior of the unit circle. This is accomplished by

w =a(ae "' + a e'"') + i2a sin ot,, In(oe '') (21

which allows for angie of attack and circulation about an airfoil surface, to be
related to lal = 1. Circulation - I is related to the constant a by

F= 4na sin 0 . (22)

Here constants a and 7,, are as yet unknowns.
From (21 1 one obtains

tilt -a (''(1-a i)(e "'-a i). (231
da

On the body a = e": 0 ( Y -_2 2n, 0 and q, are given by

0 = 2a[cos(. - o ) - (0 -- 7(,) sin 7J] q(.7) =0. (24)

ot, in (23) is given by

Y, = 7r + 2t.. (25)

, %"



.. r .:.. -:_ .w ,u , v wj v W ,, WV, wV,, . ,,- 1 ., WLW . , ,.w ., iO , -," ,t (,

EXACT AND APPROXIMATE GAS DYNAMICS 405

Thus the rear and front stagnation points map into a = I and a = e"', respectively.
Since r is an analytic function of a, a convenient representation of r(a) is given

by (see also Ref. [19])

exp(r())=(l-a ') e "-a ' xp c,,a "), (26)

where (5 = 0,/n, 0, the trailing edge angle. The complex constants c,, are represented
by,

b= A,, + iB,,. 
(27)

Note that (26) contains the Kutta condition. Two Schwarz Christoffel factors
appear in (26) because of the discontinuity in 0 at the two stagnation points.

From (26) the relationship between upstream flow direction 0, and o is given
by

0, =B0+n+2,,. (28)

The free stream condition is given by

A0 = 0. (29)

On the unit circle, (26) reduces to

exp(t(e" )) G(o!) e")~ exp cc"'.(30)

where

2
2 2 21

U(ot- a,) in (32) is the unit step function. The tangent angle 01, of the body is
related to 0 by

0(a() = t(() -- IT - ITnU(I -.- ,). (33)

Separation of (30) into real and imaginary parts leads to

'(Ot) = (A,cos nax + B,, sin it:() (34)

J(ot) = (B,, cos n -- A,, sin 11t) 4 71 + 0(,, (35)

,-.'-.'-.'-,:- ¢ ;,- .,..,..-.. ,. .-. ,., -.... - , .- ,-. -.... , .- . .. . •... ... .... . .. ..-.. ... ... .. . . . . . . . . ,I
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where

ix)= - -j2) InG(t), (36)

and

0'(a1 - I ( ,)(7 - -of) + .r (37)

The closure condition of the airfoil is related to the leading terms of the series by
(Appendix A).

A =(I -i)--(lI -/, )2sin ,, (38)

B =(I -fl, )sin 21,. (39)

5. ANAIYSIS (DIRICT) PRiOiI M

Here the flow past an airfoil is sought. An iterative method of solution similar to
the one for incompressible flow (15) is found to converge with good accuracy. The
method of solution goes as follows.

An initial estimate of arclength as a function of circle angle, s(a), (e.g., of a flat
plate in incompressible flow) is made. From the given contour 08(s), (1)( is
estimated and J(o) is calculated from (37). o is obtained from (28). After the
closure conditions (38) and (39) are imposed, a new form of t(1) is generated and
then its conjugate i(a) is obtained from (34). v()) is then obtained from (36) and
speed q(2) is obtained from (17). The updated value of s(o) is now obtained from
q(7) using the relation

I~ Idol
.s(2)= p i d.L(1

2a Isin 0 + sin(ot- 2oJ d2. (40)0o q

where the constant a is now given by
s(27z) = .(41)

The above procedure is repeated until convergence is obtained. [he criterion for
convergence was taken to be that maximum difference in arc-length between suc-
cessive iterations be 0( 10 '). Typically the number of iterations required was no
more than eight and the computation time was roughly one second on an
IBM 3081 with 128 points taken on the unit circle. The actual numerical calculation
is facilitated through the uc of the fst,., fourier transform (FFT) and the fact that
(34) and (35) are conjugate fourier series. The fourier constants, c,,, are also
obtained easily during FF1T which arc used for generating grids.

I*1"

U.U *
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6. GRID GENERATION

The physical plane is related to the circle plane through [17]

iw dw 4d=2z - (IfL, - du-(l - ,l e da (42
2f_1da da

Here an overbar denotes complex conjugate. Note that for incompressible flow z is
an analytic function of a, as it should be.

From (21) and (26) it is easily seen that

diw 7' N II
ed" -at, I - ) exp c,,o , (43)

-a p
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F;. 2. Comparison of tangent gas solution and Euler solution over NACA()I2 Airfoil at

Mach 0.6 and angle of attack - 0.0. tangent gas solution: + + Euler solution.
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and

"=-ae+°(- a al'( ... T)exp - ca . (4

Equations (42), (43) and (44) are used to map the circle plane into physical plane
and the flowfield variables are obtained from (26), (17), and (18).

Observe that the grid generated is flow dependent. Since the mapping from a
plane to z-plane is not conformal except when M = 0, the grid generated in physical
plane is not in general orthogonal. The grid produced by this method appears to be
more natural than the incompressible conformal grid.

-05 1

,. 00
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0 0.2 04 06 08 1

0 10
005 - -

000
-005
-0 10 , . -

0 02 04 06 0a

x

FiG. 3. Comparison of tangent gas solution and Euler solution over NACA OW12 Airfoil at Mach 07
and angle of attack = 0.0. --- , tangent gas solution; + ++ Euler solution.
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7. Rt:suLTs

Figures 2-5 compare the tangent gas solution with the converged Euler solution
(as calculated by FLO52S). The tangent gas solution is seen to be remarkably
accurate even at the near critical case.depicted in Fig. 3 and the slightly critical casc
shown in Fig. 4. Even when a clear shock is present as in Fig. 5, the tangent gas
solution only fails in a relatively small neighborhood of the shock.

Figures 6 and 7 indicate for two typical cases the number of iterative cycles to
achieve a convergence criterion. The criterion used is the enthalpy error introduced
by Jameson [20]. In each figure we indicate the number iterations required to
reach the indicated criterion. The first column of each figure refers to use of the
tangent gas grid and the tangent gas solution as a starting flow. The second column

0 0- 04 06 Ob

T - -- NT

10~C) - --- T

Fi 4 ('omparison of tangent ga. sohhlumn and I-uler moluion over NA('A(X)l2 Airfoil X

Mach - 0.50 and angle of a t .tck 5.0 (kgree, t angent gas oluition. 4 4 . ilulr solution

%-I

V V %



410 I)ARIPA AND SIROVICH

gives the analogous values using the conventional grid, viz., that generated by con-
formal mapping and a uniform flowfield as the starting guess. (Little change in con-
vergence was observed if incompressible flow was taken as the initial guess.) As is
seen the reduction in cycles is substantial. In this same vein if the convergence
criterion is reduced by a factor of 10 the comparison becomes more dramatic the
tangent gas approach leads to a 10-fold reduction in cycles over the usual approach.

In order to distinguish whether the grid or the tangent gas approximation was
more significant in speeding convergence, we also ran the programs using the
tangent gas grid with a uniform first guess. Although some improvement resulted,
the clear implication from this was that the tangent gas solution as a first guess was
the most important factor.
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Fi(;. S. ('omparison of tangent gas solution and Euler solution over NACA (XHI2 Airfoil at
Mach - 0.758 and angle of attack -0.14 degrecs. - tangent gas solution ( +, , ) Fuler solulnon +.

upper surfacc;( , lower surface.
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Fit;, 6. Euler solution (FLO52S) for near critical flow past an NACA 0012 Airfoil at Mach 0.50 and
angle of attack 5.0 degrees. (+. 0): grid, 64*32; grid type, tangent; initial guess, tangent; number of
cyclccs, 344. ( -- ): grid, 64 *32; grid type, conformal; initial guess, uniform; number of cycles 913.
Average error in enthalpy. 0.1385E-03. +,upper surface; C), lower surface.

-0 5

U- 00

05

o0 02 04 06 0~ 6

FIG. 7. Euler solution (FLO52S) for supercritical flow past an NACA 00 12 Airfoil at Mach 0.758 and
angle of attack =0.14 degrees. ( +. ()): grid, 64*32; grid type, tangent; initial guess, tangent; number of
cycles. 38 1. ( -- --- ): grid, 64 # 32; grid type, conforma initial guess, uniform number of cycles. 715.
Average error in enthalpy. 0.2454E-03. ±.upper surface; : lower surface.
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APPENDIx A: CLOSURE CONDITIONS

If C is a closed contour around an airfoil, the the closure condition is

f, d =O. (Al)

Hence from (42) we obtain (see also Ref. [17])

(I + er dido = (I e - -i da. (A2)

From (43) and (44) it follows

e'--= -ae '  I +--'+O(a 2)1 (A3)da (T

e dw +ae'l Iioi [ 2 ,+K 2 +( 2)1 (A4)

do L - +

where

K, +=c+6- 1, K,=(l +6+c,)e 2 ' +2e (A5)

Use of residue theorem, (A3) and (A4) reduces (A2) to

(I+ #, ) e'2K, =(I-[fl,)e,"'K2. (A6)

Equating real and imaginary parts wc obtain

(A, +6- l)cosan=B, sin o, (A, +6+1 -2fl, )sinao=B, cosao. (A7)

From (A7) we obtain
A, =(I -6)-(I - # 2 sin1 ot,, B, =(I -f, sin 2-3 (M)

For the incompressible case (fl, = I) this reduces to

A, =(I - 6), B, =0. (A9)

ACK NOWLEDGMI NTS

ihis research was supported by the National Aeronautics and Space Administration under Grant
NSG-1617 and the Air Force Office of Scientific Research under Grant AFOSR-83-0336 The authors
would also like to thank the reviewers for helpful criticism.

%



IXACT AND APPROXIMATE GAS I)YNAMI(S 413

REIFEREN (-S

I. C C, L. SIIs, t'roc. R. Soc. A 3N (1968), 377 401
2. P. R. (iARABIDIAN AN) 1). G. KORN, Comm. Pure Appl. Math. 24 (1971), 841 851
3. A JAMIPS.N, in "Proceedings, AIAA 2nd Computational Fluid I)ynamics Conf. IlarItord, ('onnc-

ticut, 1975," pp. 148 161.
4. B GROSSMAN ANt) R. E. MELt.NIK, in "Proceedings, Fifth International (Conference on Nurnerical

Methods in Fluid Dynamics,- I.ecture Notes in Physics Vol. 59. pp 220 227. Springc-Verlag.
Irlin, 1976

5. I) C. IviEs AND J. F. LIJIIRMOZA, AIAA J. 15 (1977), 647 657
6. B (. ARkIN(;i, AIAA J. 13 (1975), 1614 1621.
7. D. A. ('AtI(,ttLtY, in "Transonic Shock and Multidimensional 1~lows Advances in Scientific (om-

puting" (R. F.. Meyers, Ed.), pp. 71-105, Academic Press, New York,'London. 1992
8. J. SIrNIIOFF- ANt) A. JAM-,ON, in "Proceedings, AIAA 5th ('omputatlional :luh( l)ynaminc ('on-

fercnce. Palo Alit), Calif.. June 1981," pp. 317 353.
9. M. 1). SAIAs, A. JAMIPSON, AND R. Fi. M.I.NIK, in "Proceedings, AIAA 7th ('omputal onalI lind

Dynamics Conference, June 1983." pp. 48 60.
10. 1'. tMID, J. (iOMAN, ANi) A. MAJOA, SIAM J. Sci. Statstf. ('oiqut 5. No I ( 19Y,4)
II A JAMISON AND 1), A. ( A;ilIFY, ill "Proccedings, Third AIAA Conference on (onpit.lilonal I him

)ynamics, Albuquerque, 1977."
12. A. IA RAI AND J Sis'. im "Numerical Methods for Aeronautical Flid I)ynanics," (IP I Roc. Id 1.

pp 245 288, 1982.
13. I: "uRKI.i, "Fast Solulions to the Steady State." IWAS- Report No. 84 2X. June 1984
14. S A. ('tAPI YtIN. "On Gas Jets." NASA Technical Memorandum No. 1063 (1944)

15. voN KARm N. J. .4ero. Sni. 8 (1941), 337 356.
16. I1 S "sil N, J Aero. Sci, 6 (1939). 399 407.
17. 1. ( W()is. "The Theory of Subsonic Plane Flow," Cambridge Univ. Press. London Ne, N orL.

1961.
18. P. K. DARIt'A AND L. SIROVICH, J. Comput. Phys. 62 (1986). in press.
19. F. BAiLR, P. R. GARABI I)IAN, ANt) D. G. KORN, "Supercritical Wing Sections II." I.ecture Note, in

Economics and Mathematical Systems Vol 108. Springer-Verlag, Berlin/New York,'licidelclrg. ('7"

20 A. JAMI )N, in "Transonic Shock and Multidimensional Flows: Advances in Scientific ('ompulwL"
(R. I. Meyer, Ed.), pp. 3 7 70, Academic Press, New York/London, 1982.

Printed by the St. ('atherine Press .d , I empelhof 41. Bitruges, Belgium

%3



rVR rag Fib

-AFOSR 83-0336

Reprinted frome Jul R%* 'AI (OMi'A1 ONirA1 11INiiS Vii 0t. No 2. April 19M1
All Right, Resersed h, A-c.id n:i Pic,,. New Yrk and tondon-~ii n&Iii

An Inverse Method for Subcritical Flows
PRABIR K. DARIPA*

flirimotn of Engineering, Brown Unve'rvitv. Provtiden,ii Rhoide 1%s/red 02V 12

AND)

LAWRENCE, SIROVIC14

IDittsuion of Applied Mathiemiatics, Brom,, (Inwrit'r , rv.Iride'nce. Rhoide bl~and (1291/2

Received IX)ember 13. 19X4. revised March 29). 19X5

The inverse problem in the tangent gas approximnatioun is considered. Ani evact method (or
designing airfoils is presented. Constraints on the speed distrihution are easily implemented. A

v simple numerical algorithm which is fast and accurate is presented. Comparison of designed
airtoils using the tangent gas method with exact 1Euler results i, found to be excellent for sub-
critical flows. -i t Aitcicmic ir-. iris

1. I NTRODUCJTION

As is well known (see [1]) certain types of pressure distributions achieve
aerodynamically desirable features Such as, delay of transition and boundary layer
control. The determination of art unknown airfoil from at specified pressure dis-
tribution is known as the inverse problem.

Numerous methods for the two dimensional incompressible case exist [2 -5].
Compressible inverse methods are for the most part based on some kind of iterative
procedure, relying on either a Dirichlct or Neumianni-type boundary condition. In
the Dirichlet formulation [6 -Il] a sequence of boundary value problems for the
velocity potential, with wing geometry updated at each step, is solved. The updated
condition arises from the normal velocity resulting at each unconverged step. For
the Neumann formulation [ 12 151 at sequence of analysis problems are solved over
a corresponding series of geometries. Each geometry is provided by some rational
method depending on the error being driven to zero. A complete survey of such
methods has been given by Slooff [16].

In this paper we present an exact method for two-dimensional subsonic flow
within the limitations of thle (tngent gas approximation (17 19]1. Woods [ 20]
extensively studied these equations and proposed certain iterative methods for solv-
ing both the analysis and inverse problems. We presented a substantially different

Present address~ Courant institute of Mathemiatical Sciences. 251 Mercer street, New York,

N. Y. I W12.
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312 DARIPA AND SIROVICH

method for the anal,.;is problem [21 ]. The inverse method developed here is non-
iterative and exact.

As is shown in [21 ] the tangent gas solution lies very close to the Fuler solution
even for high subcritical flows. Therefore the design of an airfoil in this regime by
our method should be an almost correct airfoil.

In this paper, we have been able to show that the direct Euler solution over the
" designed airfoil is very close to the input speed distribution. Moreover, the con-

*" straints necessitated by upstream condition and closure requirements are very casikl
incorporated.

2 BASI( [OtUAIONS

(onsider stead, two-dimensional flow, then in the usual notation

V '(pqI--). V\ q -1), 'p (I1

Ihe Nariables are normallied b% their free streain vaIluCs and linear dimensions h\

an appropriate length scale.
[he stream function q, ind potential (s arc introduced In the usLI a a

pq , V ' t k . q \', 2

xMhere k denotes a \ector pcrpcldicular to the plare of' motion. The constant ( h l,
bccn introduced for later purposes.

If .s and ii are local distances along streamlines and potential lines, respccti el\.
*2) can be written as

t. + I dn )(3)

Alternately, we can write

k diX d. (,05 + i -'i0). (4

where x and v arc cartesian coordinates and P the flow angle. If q and 0 are taken
as independent variables, then it is easy to derive from (4) that

q I

p pc

If dependent and independent variables arc interchanged and the Prandtl Meyer
function

I m 10

p A S .- A A.. ...t.& A
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A8

A 4 B
B

I'ip I Airfoil in ph ,,ica.i --planc and poitcim l i-planc

is introduced in place of q when

O 0" 1,( .)

The t sign refers to subsonic and supersonic conditions, respectively, and ,

,,(q( ll)) "

,N hcrc .

l 'il ". (9)

Ikpical physical : v iv and potcntial wi i t/, ) planes arc shown in Fig. 1.
The airfoil maps into a slit in !he w plane. lhc gap BB' in the potential plane
corresponds to I, where circulation about the airfoil is - '..

The system (7) IS a umCIented bv the dcnsiiy speed relation obtained from I ) and
Bernoulli\s relation

I . S-(-- ! ci !Thtantl~ll. (1(01

N NI A I'I', s "

The n -planc is mapped onto the cxterior of the unit circle in the 7 plane by

It aI(¢(w " ( ,, , 4 1241 111I )r'' 111(re. .. ,(l ).

%-;



314 DARIPA AND SIROVICH

where circulation - I' is related to the constant a by

I= 4a sin a. (12)

From ( 11 ) one obtains

elw
-= -ae ( -a I )(e "' a ).(13)

da

On the body a = e'" (0 < or 27r), q0 and #P are given by

0(o) = 2a[cos( - - (o - o,) sin ,], 0() = 0. (14)

o, in (13) is given by

a , = n i- 2:o0 ( 15 )

Thus the rear and front stagnation points map into T = 1 and a =e"', respec-
tively.

4. lhrTR.MINATION (OF Si'EED) IN Ti-1 CIRCLE PLANE

Equation (2) suggests that speed q,(s) on the body is related to the potential
function q by

q,(s) d(I do l, (16)

where the subscript s refers to surface values. Equation (14) reduces (16) to

q'js) & 2-11sin " + sin(7 - aj,)1 d2. 0 . 2r. (17)

which is simply an ordinary differential equation for s(y ). To integrate ( 17). wc
introduce

dQ - ("(V) d'. (

from which.

{ 2a[o sin x,, 4 cos a,, cos(2 10)]. 0 -x X,

2a[ 2(1, sin ),, + cos Y,,) - 2 a sin l, - cos(ot 7(,) - cos I t ], 2, -- 2n.

(19)

Observe that

Q(N I ) Sa( , Sill Y, COS )), Q(. .v,) 2a( , sin , f 2 cos q,) (2))

0 0 . W
%;
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I' is related to Q(s = I) and Q(s = s,) by

I'= 2Q(s = s,) - Q(s = I )=4a sin '. (21)

Here sr denotes the distance of the front stagnation point from the upperside of the
trailing edge. Q(s = I ), Q(s = s,), and hence I' are known from the given surface
speed distribution q,(s).

From (20) and (21)

Q(s=lI) 2
(2o + cot 2). (22)

After (22) is solved for aot we obtain the constant a from (21 ). Next 0(0) is com-

puted from (19) and s(A) is obtained by inverting (18)

V(7)=Q (()) (23)

and Oji)=q,(.N )) is obtained from (17).
Thus far our deliberations are exact. Ideally system (7) should now be solved to

determine the body shape. [or the tangent gas approximation considered next the
problem can be solved by an exact method similar to the one in the incompressible
case 4 1.

5. |AN(itN I (jAS API'ROXIMA IN

The tangent gas approximation is given by (see 21])

(p - I = ;' 1 - .(24)

From (10) we obtain

P = , (25)

where the subscript a denotes a suitable reference point. With the constant c in (8)
taken as

c I '1i,. (26)

we obtain from ( l

K(v) I. (27)

Then for s ubsonic los. tile sh st em (7) become,, the (aLJch R iemann equations

Q, v, O 0, 4 0. (28)

. .
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Equations (28) are exact for both the tangent gas and also for incompressible flow
(M=O). Henceforth, we take the tangency point (p,,, /p) to be the free stream,

p.,=p, =1, p,,=p, =I. (29)

With this selection the following relations hold [21 ]

2
q=sinh v* cosech(v* -v), fl=tanh(v* -v), 2,i fohv, (30)

where the constant v* is given by

In M, (31)

From (6) it is seen that v, = 0 and at a stagnation point (denoted by zero sub-
script)

%o = -,Y, C,,<= 1 +f!, (32)

It follows from (28) that

ki (33)

is an analytic function of w and hence of a. A convenient representation of r(a) is

given by (see also [8]),

exp(r())=(0 -a a - ) exp( ca "). (34)

where 5 = 0,/iz, 0, the trailing edge angle. The complex constants c,, are denoted by

,= A,, + iB,,. (35)

Note that (34) contains the Kutta condition. Two Schwarz Christoffel factors
appear in (33) because of the discontinuity in 1) at the two stagnation points. On
the unit circle, (33) reduces to

exp(z(e")) = G(a)e"'' exp (, cV "). (36)

where

G(a) =2 sin 12(sin ao + sin(o - a,,)) ' (37)

S(l)= (I - -7)+ I(+ 7T /1 n - x,) + 1,,. (38)
2

-I
.I
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U(t-oxj in (38) is the unit step function. The tangent angle 0, at the body is

related to 0 by
0(a) = O"(0t) - nr - n U(at - aj . (39)

Separation of (36) into real and imaginary parts leads to

I
(a) = Y (A,, cos nor + B, sin not) (40)

- 0

and
J1a)=" (B. cos na -A,, sinno) + 7T+ o (41)

,0

where
i(o) = v(a) - In G (0a) (42 )/

and

0J(o) =0'((a)- I (I - 6)(7r - 0c)- ot+ 70 (43)
22

Notice from (34) the upstream flow direction 0, is related to B0 by

0.,= B, + 7 + 2a,, (44)

where B is given by

B,,_ J= O + (.) I - 7- oo . (45)

The free stream condition (q., = 1) is given by

A,=0. (46)

The condition for closure of the airfoil is related to the leading terms of the series

(40) and (41) by (see [21])

A, = (I -6) - (I - fl .) 2 sin 2 010, (47)

B, = (I - #,,)sin 21o. (48)

6. BIEHAVIOUR AT STAGNATION POINTS

It is both interesting and useful to study the behavior of speed at the stagnation

points. From (30) and (42) we obtain

q, f e for q,-0. (49)GI
I+/1 I
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From (37)

I _1 j o' (2 cos a) for a-0

G(ca) lot,- a(2 cos oo)6 for a (50)

From (49) and (50)

K, for c0 (51)K'/g lot, - o for a o,,

where

K, 2f ',)(2 co -- K, e , ...)(2 cos ao)'. (52)I+#. l+fl.,

If a and a, are close to o (-0. then from (51) we obtain

(j In(a,/ (53

From (51), (52), and (53) we obtain

t (=0) -- I(qj ! - (2cos 0 ) (54)

and

,Y = Y.J - -In 4 2fl -
i:,( = :z, - --I (9 --( 5! l2 fl (2 Cos 'I ,)") ( ,

where o, is close to x, and i, is close to /ero.

7. MEMIOl) OF SO(II I()N

The speed distribution q,(s) is usually giken at a finite number of points s,. /=
0, 1, 2,..., in the interval 0 <s-<. I. From this the integral in I q. (18) can be evaluated
to obtain Q(s,) as a function of q,(s,). Next the circulation F is computed from the
relation

F= 2Q.s- ) Q(s= I

Equation (22) is then solved to obtain . The second equation of (20) is next used
to calculate the value of the constant a. In general ix, and a so obtained do not
satisfy the first equation of (20) exactly because 1,, is calculated numericallx. If

Q(s - Q . - q, .
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differs slightly from Q(s= s) -47ra sin a, (see Eq. (21)), the speed q,(s) is modified
by a constant factor over the interval s. < s < I to adjust the above integral to this
value.

The values of (C(a,) at N (a power of 2) equally spaced points on the unit circle,
j = 2nj/N, j=O, 1.N, are calculated using Eq. (19). The value of speed 4,(a,) at

the grid points a, are now easily obtained by interpolation since q,(s,) is already
known as a function of Q(s,).

The approximate value of the trailing edge angle 6 is obtained from Eq. (53).
i,(2) is then obtained from Eqs. (42), (37), and (30) and its value at a stagnation
point is calculated from (54) and (55). If ,Ja) satisfies the constraints (46), (47),
and (48) then the conjugate function fl(a) is calculated from (41) using the fast
fourier transform. In .ase i%(J) does not satisfy the constraints, the prescribed speed
distribution must be modified. This is discussed in the next section.

The value of the constant B0 in (41) which is also needed to calculate J(0 is
obtained from (44) by setting the free stream direction 0 , to zero. The tangent
angle O, at the body is now obtained from J('() using the relation (43). The body
coordinates are then calculated from

"' dx

X(O2) = Cos 0(0() d, (56a)

.000 = f-sin O'() 1", (56b)

where ds/d2 is given by

d 2 Isin r,) + sin(o - o(,,)-- =2a (57)

The value of (57) at a stagnation point (7 =0, ot = -7,) is given by (see E~q. (51 )

2a Cos )Ci for 7 = 0
ds K , 582I cos for)2a - for =(),

K,

Instead of calculating 6 from Eq. (531 as was done above, one can prescribe (

because the constraints (46), (47), and (48) depend on 6. Modification of the speed
distribution subject to these constraints will automatically satisfy the Eq. (53)
because this equation is valid if the speed distribution is consistent with those con-
straints. In either case if i,() obtained from a given speed distribution does not
satisfy the constraints then the prescribed speed distribution must be modified
according to the method discussed in the next section.

Even though the above method is exact theoreticall\ . there are numerical sources
of error. These errors depend on the kind of interpolation and intcgration scheme,

V.I



320 DARIPA AND SIROVICH

the number of data points, the number of grid points, the evaluation of a(, from (22)
and the use of the approximate expressions (53), (54), and (55) to calculate trailing
edge angle 6, ,a = 0), and iJot = a,) respectively.

In view of the simplicity of the procedurc no attempt was made to incorporate
highly accurate computations. Simpson's rule with evenly spaced grid points and
trapezoidal rule with unevenly spaced data points were used for integration. The
interpolation scheme used was linear. The speed q,(s) was prescribed at 129
unevenly spaced data points on 0 <. s < I and the number of grid points on the unit
circle was taken to be 128. ao was obtained within an accuracy of 10 6 by solving
Eq. (22) by regular falsi method and the trailing edge angle 6 used was calculated
by using the approximate relation (55).

The program was run on an IBM 3081 in single precision and the computation
time was about a half second in most cases.

8. M()I)IIiWA lON 01 SI'E DISTRIBUrio.IN

Constraints (46). (47), and (48) must be satisfied by the prescribed speed dis-
tribution to find a closed body solution. Therefore in general any arbitrary speed
distribution must be modified subject to these constraints. These constraints can be
written in terms of surface values i,( ) given by

d- - P,(59

where g,(a) and P, are given by (see (4 , (47), and (48))

g,()= cos 2. / - 60)

sin . 3

and
0,/ I

P, , 12 s0n' . 2 (61)

I ti , )',111 3,I in .,. / 3

Linearity of (28) implies the fol low inc im oI imodificaton of prescribed values
,,(a) (see [41)

i ,( y) ! -i \I' ).1 2

S I k

%-

'I
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where )-,, k = I, 2, 3, are constants to be determined and ./k(a), k = I, 2, 3, are
suitable correction terms. The correction terms can be set to zero outside a specified
interval (at, o,) leaving speed distribution same as the prescribed one outside this
interval. This is extremely useful when designing an airfoil where in general no
modification of speed distribution over the suction side is desired. The speed dis-
tribution can be modified in various ways depending on the choice of functions
.fk(i), k -I, 2, 3, and the correction interval ()f,, j

Substituting (62) in (59) one obtains

ikalk = h, 1=1,2,3, (63)
/, I

where

(," = .=A(?( ,( ) dcx = I 1Alz) i,(2) d1. (64)

h, = rtP, - ,,(2)!,2)d)[= 7Z' -I ,,(a) g'(g d2( . (051

Constants 3k, k = 1, 2, 3, are obtained by inverting (63) and the corrected ,(is
then obtained from (62). The corrected speed distribution is then obtained from
(42) and (30) and the body is found from (55).

The matrix a,, in (65) must be positive definite to be able to invert (63) which
restricts the choice of /k(), of, and a,. These should be carefully selected so that
the correction to a prescribed speed distribution is mininiium. This can be done in
the same spirit as in Strand [22] and Arlingcr [4].

For our purpose we choose o, = 0. o, = 27z and /(Y.) = g(7), k = 1. 2. 3. This
modifies the speed distribution over the whole interval. In this case (63) gives

= - 2 =', and - (66)

and hence (62) becomes

21i'() -='() + _ (h1 + 2t,, cos 2 +1 2/,, sin 2). (67)

9. R sui. s

A basic test of the inverse method is the recovery of a known airfoil from its
pressure distribution. Figures 2 and 3 provide a verification of the method within
the tangent gas approximation. Here a pressure distribution is computed in tangent
gas approximation over a NACA 4412 airfoil (see 121]). Speed distribution is col-

*
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FiG. 2. Comparison of pressure distributions on NACA 4412 airfoil (input) and on designed airfoil
from tangent gas solution at free stream Mach number 0.7 and zero angle of attack.

puted from this pressure distribution using Eqs. (30). Then the airfoil is designed
from this speed distribut',n by the method discussed in Section 7. In Fig. 2 we show
the pressure distribution over a NACA 4412 airfoil as calculated by the tangent gas
and compare it with the pressure over the designed airfoil. The error is less than
0(10 -). Figure 3 compares the given airfoil with the designed airfoil. The error is
less than 0(10 4). (The origin of these errors is numerical and was discussed in
Section 7.)

Figure 4 shows a pressure distribution which did not satisfy the constraints (46),
(47), and (48). The pressure distribution which results from the correction
according to (67) is shown in the same figure. The resulting body along with its
design and analysis pressure is shown in Fig. 5.

io3. Comparison of NA( A44 I airfoil and thie airfoil dlesigned by tangent gas approximation
from input pressure distribution oif F-ig 2.
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Fio 6. Speed distribution on NA('A0012 airfoil from Euler solution (FLO52S) at M ,=0.6 and
x0.0.

Next, we wish to evaluate the usefulness of the tangent gas method by comparing
its results with comparable results gotten from the exact Euler equations. For this
purpose we use FLO52S written by A. Jameson, M. Salas, and E. Turkel. Thc 4

pressurc distribution obtained from the Euler code is used to compute the speed
distribution according to the relation

2 P(/Po P/P)

which is the same for the tangent gas and ideal gas. The subscript 0 referes to the
stagnation point values (normalized by free stream values) as mentioned in Sec-
tion 5. The pjp) in (68) is given by the ideal gas relations (see [23])

PuM2 (69 1

010'-

01 0.... .' 0 - -04 . o 6 0 '

- AIRFOIL NALA. 0012

DE.111NE AIRF0;1.

FIo. 7. Comparison of NACA0012 and the airfoil designed by tangent gas approximation from.

speed distribution of Fig. 6.
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This speed distribution is used to design the airfoil by the method mentioned
before. Figure 6 shows the speed distribution on a NACA0012 airfoil as calculated
from the Euler equations at free stream Mach number 0.6 and zero angle of attack.
Figure 7 compares the NACA0012 airfoil and the designed airfoil in the tangent gas
approximation. It is seen that the airfoil is almost exactly recovered along with the
zero angle of attack. The pointwise error is less than 3 % and this only occurs in a
small neighborhood of the leading edge. Figure 8 compares the Euler pressure with
the pressure over the designed airfoil. Again the comparison is excellent except near
the leading edge where the error in C. is 0(10 2). It is to be emphasized that this
error occurs as a result of using the tangent gas approximation and is in no way
numerical. We believe on the basis of this discussion that this recommends the use
of the method presented here for airfoil design especially since it is computationally
very efficient.

In the next example we push the method beyond its limits by considering a
supercritical case. We show in Fig. 9 the Euler speed distribution over a NACAOO12
airfoil at free stream Mach number 0.5 and angle of attack 5". Figure 10 shows that
we recover the correct angle of attack and the airfoil except over a small region

O . , . -' , CP ON DESI(,NED AIRFOIL
- . - - (FP ON NACA 001e AIRFOIL

N? 0

1 02 0 O F

OO, - 1 -Ob -'

'N~~ 0 (0 00i

00
0(0o!.. . ..............-

O (2 (4 06 o
DE(. 1NLII AIRFOIL

MACII 0,60 AN IE OF Ar7 V.oo

E066R NOLUIMONS iFL'Lf, )

FIn. X. Comparison of Iuler pressure distributions over NACA()I2 airfoil and the airfoil desiqncd
from speed distribution of Fig. 0 ii %, ,06 and - 0.0.
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i, 9 Speed disirihurion on NACA(X)l2 airfoil from Euler solution J1lO5",; al it, ii " amd

near the nose where the error is within 2%, and where the flow is actually super-
critical. Again the error is nonnumerical and gives a measure of the deviation of the
tangent gas approximation from the exact Euler result. In Hg. II we compare the
Euler solution over the NACAO012 airfoil and designed airfoil. Note that tihe
agreement near the leading edge is not as good as elsewhere because the designed
airfoil suffers maximum deviation from the NACA001 2 airfoil near the leading edec

Finally a useful application of our approximate method is to provide a startine
airfoil in a design procedure in which the Euler equations are used directlx to gic
the corrected pressure distribution. At successive stages the pressure distribution 1,

0 10; - . . .- 1 . ; " -. - " "

00 o ..... ...................... "........

0 0 . . . . 0 4 O'b "0' I

- AIRFOIL NALA 0012

DESICND AIRFOIL

:1(; 1t. ( omparison of NCA( A' t2 and the airfoil designed bN tangent ga al. apsrmituition iim

speed distribution of Fig 9.
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. . IP ON [H~sIINED AIRFOIL

-- CP ON NACA 001 AIRROIL
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000[~

o Oh( .... -

0 . .0 " 0. -"

DE,E:IG NED AuWNOL ii
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II, I (olpar t (if F uler pressure distributions 1ivCr NACA()OI2 airfoil and the airfoil d ,,IL'icki
ro~m ,pCt- d <ih,,[l utiln of 1u, 9 at A' 0 (5 and 7- 5 -

modified to meet the design criteria and the inverse method reapplied and so forth.

lhc imteractisc iteration should go quite quickly for subcritical fows. However, he

%aIuc of such a procedure remains uncertain for supercritical flows.
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Abstract

A ne' inver'e method for aerodynamic design of budr'ae eaain aeda n t uc'

airfilsis rcsn~c fo sucritcalflos. he resurcwith this mtethod in designing cost efficient airfoils has
d~~uicn n his method can be prescribed in a natural made this approach useful in airfoil design.

way ~e. asa tnctin o arienth o th asyetThe mathematical theory behind solving- the inverse
ur.zon oy hs nvreproblem is shown to be

rca-zernaz~czlly equivalen, to solving only one nonlinear problem is somewhat more difficult than the correspond-
ing analysis problem for the following reasons: a) diffi-

bo.urdar, value problem subject to known Dirichlet data clywt omlto fpoe ifrnileutos
oni :rie rt>'a. The solution to this problem deter- c~ywt omlto fpoe ifrnileutos

mine th aitoi. :re srea Nlch nmbe M~andthe b) lack of existence of a solution for arbitrarily
prescribed pressure data: c) the difficulty in imposing

uas~ram o. rec:-;on 3. The existence of a solution
closure constraints (a -specified zap at the trailing edge of

'rc..r jirtiut~n i dicused.The the desiened airfoil). For incompressible flows the

.;:~~~Q~r::.cmr~tan exremlycffctet. theory o3f hrarmonic functions" makes thie above issues,

'C :-~:sfor .,thich comparisons are easilv tractable due to the linearity. of the problemn Here '

7. 7..T-~'. 71:,the existence and the closure constraints can easilv be %-

established. The specified pressure distribution can be

modified apriori to satisfy these constraints \lost of the Q

1. lIntroduction solution techniques for this case have been based tin ana3-

makes the inverse problem for subsonic flows similar to
-~~~~~~~~~~1 !,h *(Itex Of vi ucinteoy 3  h aen gsJpoint

.'-~"-, i~n ~ tica inc the incompressible case~o it

* '. ~s~cicj ti acienNonlinearity' in compressible flows makes this prob- 1
lerm difficult. Mvost of the inverse methods rely on etiher

a Dirichlet or Neumann formulation depending on the
S'' .. 2 con- 11ichoice of the dependent variable 12sand usualls

involves solving a series of nonlinear elliptic problems
-- ' '' ' r-.'rcl in the

An excellent account of these methods can be found in
Slooft.9 Formnulation of the closure constraints and the

esistence of a solution for such flows, similar to the case

of !,-compress~ible tio%%s, may prove useful in des elo-noi

it . '~~Kc ;'~i. ne-s numerical techniques The constraintneeiac '

the existence 'ti a solut ion in the suhsonic .kse'sas -'

h lished :n Datit',. 0  It !, sho'o n h(ci that Icc~~

nonlinear;ts. of :he o'~~'h eitne: .s.

R z'-.,,'.'.'.<r i~htn i~rn :~ce~ i



paraicter t inake the problem solvahIe in venerail. The variables are norniali/ed hv their sonic iltiii, mid

This free parameter will be determined by the solution. linear dimensions by some appropriate linear dimension.

Such an attempt has been made in two dimensions 12 for Here p is the pressure. p is the density and q is the .S

transenic lows speed. These equations imply the existence of a stream

The case of transonic flow is more difficult than the function si and a potential (h given by N

other cases owing to the mixed elliptic-hyperbolic nature pq = V x (tr) - V . (2a.b)

of the transonic flow equations. The mathematically where Z denotes a unit vector perpendicular to the plane

e .an; ..method of complex characteristics, w,,,as success- of the motion. The above equations can alternatively be
tudy used ov Garabedian 2 "24 to generate supercritical put in the form

airfojis Tn this method the boundary is unknown and

:eration on :he boundary is used to generate the airfoil.

There ire also cost effective methods based on the ficti- - (K(M)- t vo = 0 4- (KIM )v,: = 0

timus ,a, concept to generate supercritical airfoils'-5 An (3a.bj

excellent review on the design of supercrtical airfoils Here K and v are functions of Mach number NI onl%2 7

and ,*nc',can be found in Sobieczky. 6  and 0 is the flow direction. v is known as the Prandtl-

%'oe _iscuss our method in this paper for subsonic Meyer function. The body maps onto a slit in the poten- :.r-

tlooi on;:. In our formulation, the equations of motion tial (w = ( +i oi) plane as shown in Fig. 1.

are ca: i.to one boundary value problem in the poten- Differentiation and elimination reduces the sxstem

tiai D1are To asoid dealing with the infinite potential (3a.b) of first order partial differential equations PDEs)

plane. we map our potential plane into the interior of a to an equivalent second order PDE in v only.

anitr crcle and sol.e our equations there. To render the (K-1(*.l)v,), + (K(M1)V6).5 = 0. '

problem solvable we choose :he Mach number distribu- (".

tion. comouted from the prescribed pressure distribu- A little algebra shows that this equation can alterntatvel,

ton, as :-;e boundary data. By doing this we have at our be written in the form 27 ,

d~sposal the free ,tream Mach number as free parameter +f _ "0,.r =( - K-)v,, + f(AIX,l 2 o- K~ft,%l),,'- (5) -

•hch :, determined as part of the solution of the boun-

dar,. a'ue problem. The solution also determines the wi o f n

shape o a orofile. This free stream Mach number and The appropriate boundary condition is seen to he

the inout Mach number distribution together determine (see Fig. I)

..te e distribution over the designed profile. In
for ol 0-. 0 : d : 6

general -he prescribed and computed pressure distribu- M =M(d) for ii 0 0 - 6)

tzin i ,: nt be same except in cases where there exists

a -,lun), t , the prescribed pressure distributions, where (6(. ) = ((:A 0.0) corresponds to the cront

O.r method requires solving only one nonlinear stagnation point and (di.o) = i B.0 and per

o-, -d a; value problem as opposed to solving a (do.'b) = fdia..0) correspond to the upper and loAer side
,eq ucrce ot such problems In addition a proile is of the rear stagnation point respectively see Fig Il

alwka%, _emnerated by our method The designed airfoil Bernoulli's law gives q = q(Cp) and M MI(Crl g.-Q

hoever may have a gap at the trailing edge. To be able that are used to determine q s) and M(s) from the :nput

to des mn an airfoil with any prescribed gap we need to pressure distribution CP(s); 0 : s - 1. Here s

do further 'Aork that :s currently in progress An obvi- parametrizes the arclength. The equation ('b) imp'ies
ou, approach is to use this method in some iterative 4= fIq(s~dsi T7i
m -)de ' S

wkhich together wit-i known q(s) and N(I). 0 S - I

II. Prohlem Formulation determines the boundary condition (6) and the boundar.

(the slit) in the potential plane

Vh. ;u'.:O' 1 nti)(hn ire

S0 p :-p (labl

2-



The solution of the boundary value problem (5) and

(6) determines vi. on the slit that is subsequently used in IV. Results

(3a) to compute 0 on the slit. Integrating this and

using (7) determine the flow angle as a function of To validate our method we present a series tf

arclength on the body and hence the profile is known, results which recovers a known airfoil from its prcssure

To aoid dealing with infinity in the ((, - i) plane distribution. We generate pressure distributions over a

we map this plane into the interior of a unit circle such series of closed airfoils at a given tree stream Miach

that the body map; onto the unit circle. We carry out our number M. and angle of attack 9 by using an Euler

calculations in this circle plane 27 code ( flo52s written by A. Jameson. E Turkel and M

Salas ). This pressure distribution is then used in ourThe solution of this boundary value problem also

method to generate the airfoil. Numerical sources ofdetrerminesz the up-stream Mach number. Pressure o n the

dsigne d ody can be computed using the comri-Led Nh error in practice may introduce some error and o e

monitor the following as a measure of accuracy of our
and the invur Mach number distriburion. The :low

method: E(.M)= IM,-.M E(B.)= :,0-8ei
direction at nMiitv with respect to the bod. can be cal-

culated by in2tegrating either (3ai or (3b) from the sit to E("B)=max IOB(sJ) -Bs.) . veap =y(=0) - I

and xgap = !x(s=0)-x~s=l)j . where xgap and %gap
infinitv in t e potential olane. This integratton p)rocess

becomes much easier in the mapped circle plane. See (normalized by chord length) measure the gap at the

Darpa 27 for details trailing edge of the airfoil and OB refers to the body

angle. In the above a superscript refers to the computed

111. Method ofSolution value. Here we Aresent a few results for cases where the

trailing edge is not a stagnation point. The case w ith rear

As mentioned earlier, the boundary and the boun- stagnation point has been excluded here because ome

difficulties was encountered in removing the singularity
dary data in the potential plane and hence in the mapped

at the trailing edge .27 This case will be taken up
circle plane are known from the input pressure distribu-I future.zon. The equaivo (5) is solved numerically inside the

unt circle suhiect to the known Dirichlet data. In solv- Fig. 2 shows the Euler pressure distribution over a

ing equation (g) numerically, a general linear Heimholtz 12% thick Kutta airfoil at M. = 0.5 and angle of atack

equation solver 30 is used iteratively. An initial guess of 2.0 degrees. The application of the above method

the flowfield inside the unit circle detcrmines the right then generates the body and also gives the computed

hand side of equation (5) within the unit circle. The values of the free stream Mach number. M. and :he

so'ver then updates the values of v inside the unit circle angle of attack, @ ' The number of iterations i ec , I11)

by soising the linear Poisson equation and the process is required to converge to the solution using the hnear

repeated until a given convergence criterion is met elliptic solver were only five in this case. In Fig. we

The solution is considered to have converged if the compare the designed airfoil with the exact airtoi and

difference in the maximum value of Prandtl-.Mever func- find that the agreement is excellent. We find he co.m-

tt!on v inside the unit circle between two successive puted free stream Mach number NI = 0 -,)0iS and he

iterations is less than 5x 10- 6 . We never needed . -e angle of attack 9, = 2 05 degrees The aiue, ., he

than six iterations in any of our calculations when the error diagnostics in this case are E(MI = i) 00005 ,,

initial guess was taken to be that of uniform flowfield. ) = 0.00087. E(6B) = 0.009, xgap = 0.0003 and \gap

The iolutton values of v inside the unit circle are then 0.00010. The gap at the trailing edge is ithin 0 )%

used to compute the estimate of the normal derivative on of the thickness of the airfoil which is negligibly ,mall

the unit circle This estimate is then used to compute the A more important quantity is the body angle which !s

body angle through the use of equation (3a and the likely to suffer maximum error near the leading c4.-e

mapping function Similarly the tlow direction at infinity since the body angle is a rapidl% varying tunction if

is calculated by integrating equation (3a) along an arclength there. Fig. -' compares the computed and es.,t

appropriatc ray in the circle plane. The qolution ot the values of body angle as a function of arclencth F

nonlinear elliptic equation (5) also determines the compares the same in the leading edge rewio

upstream lach number again we rind the error in the hody angle i,
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Fig. 2 Pressur-e distribution over a 1276 thick Kutta airfoil
frorn Euler solution (fio52s) at M. = 0.5 and a=20 degrees. Fig. 4 Compaison of the body angle of the designed airfoil

and of the Kutta airfoil as a function of arlength of the air-
foil. The input pressure distribution of the designed airfoil is
shown in Fig. 2 -
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Fig. 7 Designed airfoil from input pressure
distribution of Fig. 6. The airfoil is open

at the trailing edge.
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