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1. Objectives

The basic goal of our research effort has been the development of computational methods
and tools which optimally exploit the analytical procedures natural to aerodynamic theory. This has
resulted in a variety of procedures of non-standard form for treating a wide range of problems in
gas dynamics. We believe that our research effort has made significant advances in subsonic,
transonic and supersonic gas dynamics.

Specific objectives of the program have been; the use of natural coordinates, eg. streamlines,
characteristics, "potential” lines and so forth in the formatting of compressible computer codes;
solution of general inverse or design problems in aerodynamics; use of machine algebra to format
codes and deal with non-standard problems; the development of a method of parametric
differentiation to extend generally existing codes (in addition to ours) to continuous ranges of
validity in parameter space (i.e. Mach number, thickness ratio, camber and more general
parameters specifying a body shape.)

All of the stated objectives in the original three year proposal have been accomplished. In

addition, as described in the following section, we have also achieved a number of extensions and

additional results not anticipated in the original proposal.
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2. Research Narrative

Our research effort began with a method for treating two-dimensional supersonic flows past
airfoils. This is based on transformation to streamline and principal characteristic coordinates, and
results in a rapidly convergent and accurate solution. Both body-fit and shock-fit coordinates are
generated by this method. The codes produced by our method are perhaps the most efficient
now in existence. A typical calculation takes a small fraction of a second on a mainframe.
[reference 1]

This method was next extended to the inverse or design problem for two-dimensional
supersonic flows. Through analytical procedures the inverse problem was transformed to a direct
problem of different type.  The result is a speedy accurate procedure for determining shape from
a given pressure distribution. [reference 2]

A method based on streamlines, characteristics and Riemann functions has also been
introduced for supersonic flow over axisymmetric bodies. Starting from a simple approximation, an
iterative procedure is developed which converges rapidly to the exact solution. The scheme is
both body-fit and shock-fitt As a result, the procedure is computationally efficient, inherently
accurate, and requires relatively few points to calculate the entire flow field. Both the direct and
inverse design problems are treated. For a thin axisymmetric body traveling at low supersonic
Mach number, our results show the presence of a pressure minimum on the body, a phenomenon
which seems to have gone unnoticed. [reference 3]

The method described for the axisymmetric case, has been adapted to the treatment of
non-axisymmetric bodies. In particular, we consider flow in azimuthal planes and develop a
procedure based on near characteristics and projected streamlines.  The cross-talk between
azimuthal phases defines the basis of an iteration procedure which is rapidly convergent. As is
the case for axisymmetric flow relatively few computational points are required. Both the direct
and indirect flow problems have been treated. [reference 4]

We have treated subsonic gas dynamics in the tangent gas approximation. Using a highly
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analytic basis a very fast and accurate method of solution has been developed for the numerical

solution of subsonic problem. Comparison of tangent gas and exact flows show that the former is
extremely accurate except at locations that are critical. Tangent gas solutions when used as the
first step in the iterative solution of the excat flow field are shown to give substantial reduction
in computation time. [reference 5]

The inverse problem in the tangent gas approximation has also been considered, and an
exact method for designing airfoils developed. Constraints on the speed distribution are easily
implemented. A simple numerical algorithm which is fast and accurate has been obtained.
Comparison of designed airfoils using the tangent gas method with exact Euler results is found to
be excellent for subcritical flows. [reference 6]

The methods used in the treatment of the tangent gas have been extended to the full
two-dimensional potential equations. A powerful combined analytical and numerical procedure now
permits the treatment of both the direct and inverse problem for subsonic and transonic problems.
This method, which still needs further implimentation, may have a significant impact on the way
that transonic airfoils are designed in the future. [references 7 and 8]

The flow of an inviscid, irrotational and compressible perfect gas in the upper half plane is
used as a model to investigate the transonic controversy. The solution of the complete potential
equation for the velocity potential ¢(xy), with boundary condition: ¢ + ¢ ¢y = U sin x on y=0,
is developed as a regular perturbation series. 36 terms of the series are determined by computer.
The effective boundary condition is varied with the choice of ¢; and for each of the velocity
series, its nature and the location of the singularity nearest to the origin are investigated using
the ratio method of Domb and Sykes and Pade approximants. The result of the analysis shows
that the phenomenon of shockless transonic flow is dependent on the imposed boundary
condition-which for this example is the constant c. The relationship of series convergence to
local sonic conditons shows no obvious pattern. Cases for which convergence lies below, above or
is at critically were found. Moreover, the connection of divergence to the appearance of shocks

is also not apparent. For one class of flows divergent series could be resummed to vield
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shockless conditions for all Mach numbers. Significant use of the machine algebra code, Macsyma,
was used in this study. [reference 9]

We have also treated steady, inviscid supersonic flow over three dimensional wing-like bodies
numerically as a coupled set of two-dimensional characteristic problems. Shock fitting is used in a
boundary fit coordinate system and the calculation is second order accurate. The difference
equations are solved iteratively and the use of an accurate approximation step results in rapid
convergence. A variety of different iteration methods are considered and compared. Incorporation
of a flexible data structure in the program allows for an efficient use of memory and allows a
wide range of wing geometries to be handled. Results for tapered, delta and swept wings at
several Mach numbers are compared with two-dimensional theory. The technique is applied to
both the direct and inverse problems. Derivations are carried out in a general manner allowing
extensions of the method. [reference 10]

We have developed a method using parametric differentiation which can significantly extend
any numerical study. In brief flow past a body is in general specified by a variety of parameters
such as thickness, angle of attack, camber, Mach number as well as others. A particular flow is,
therefore, characterized by a single point in the corresponding parameter space. Conversely, the
numerical calculation of a particular flow field yields information at just one point of the
parameter space. However, the nature of a continuous range of nearby flow fields is of
fundmental significance in the design and performance of aircraft. To treat this generally, one can
consider the variational equations (which are linear) obtained by differentiating the exact equations
with respect to each of the relevant parameters. The resulting matrix of derivatives of flow
quantities is referred to as the Jacobi matrix. The subsequent procedure is in principle now
straightforward.  One integrates the nonlinear governing equations -- which results in the
determination of just one point in parameter space -- and simultaneously the variational equations
governing the Jacobi matrix. The last is then used to describe the neighborhood of the already
determined point of the parameter space. Since the variational equations are linear the additional

computational time requircd for their integration is modest.




Frequently, when calculating the flow about a body, one is interested in how the flow will change

¢ .

by if the base configuration is altered. For example, one may want to know what will happen at a
0 slightly different angle of attack, wing loading, camber or thickness. To answer such questions
‘s

) each parameter change is traditionally considered as a separated case and flow simulation code is
repeatedly run. It could be argued, quite effectively, that in many instances this is not an

efficient use of resources. Why undertake an entirely new calculation of the flow when we know

Vo S e

vy the results at a nearby state? The method which we have developed allows efficient generation
0

[y

" of solutions in the neighborhood of a base solution.

N Thus far we have applied the Jacobi matrix technique to five problems. The direct calculation of
I

3 inviscid supersonic flow about; two dimensional airfoils of varying thickness, angle of attack and
;: camber; axisymmetric bodies of varying thickness and taper: and the design (inverse) calculation
] of inviscid supersonic flow past; airfoils described by a given family of pressure distributions;
5

“ axisymmetric bodies described by a given family of pressure distributions. Also to subsonic
)

K- potential flow about two dimensional airfoils by modifying FLO36. Results of these calculations
n show that Jacobi method allows for the efficient and accurate generation of parametric solutions
K in the neighborhood of a known solution. [references 11 and 12]

N

"

A

n

l

B

"

¥

#

)

i

N

]

(]

by

.
.
.
° . - - P S . “ e .. g -'J
[ AT I I DA S N RS S T SRR I ST - T e e ~-‘."._-'-‘._-.‘~..\~.“.
RS _".. RSRERRR , . S A e ,'_\__\-{ R R N -~
A

s R . Yol . ,._.. _‘-‘_:. _-.._’._, - \'.’.'.:J
K " a P a A s A A A A - A W Syl A S Ol Sy P, Yol S S SR, Y. S S, Sy, S, S, S, S SR, S, S, V. . S i



IR ] " i 9w & 9 AP v b 3 » Be¢ §pb #,° WL WAWUWLIIRTS

References

Lewis, T. & L. Sirovich, Approximate and exact numerical computation of supersonic flow
over an airfoil. Jour. Flu. Mech. 112, 265 (1981).

Lewis, T. & L. Sirovich, The inverse problem for supersonic airfoils, AIAA Jour. 22, 295
(1984).

Fong, J. & L. Sirovich, Supersonic flow over axisymmetric bodies, AIAA Jour. 24, 5, May
1986, pp. 852.

Fong, J. & L. Sirovich, Supersonic flow over non-axisymmetric bodies

Daripa, P. & L. Sirovich, Exact and approximate gas dynamics using the tangent gas.
Jour. Comp. Phys. 62, 2, February 1986.

Daripa, P. & L. Sirovich, An inverse method for subcritical flows. Jour. Comp. Phys. 63,
2, April 1986.

Daripa, P. Exact Inverse method for subsonic flows, Quar. Applied Math. (to appear).

Daripa, P., A fast approach for designing airfoils from given pressure data, AIAA (to
appear).

Kwok, Y. & L. Sirovich, The transonic controversy, SIAM J. Applied Math.,, 47, 2, April
1987.

Pratt, M., Analysis of near characteristic methods in the study of steady 3-D compressible
flows. (Ph.D. dissertation, May 1988).

Sharp, T. & L. Sirovich, Parametric differentiation and the integration of the gas dynamic
Equations, (submitted for publication).

Sharp, T., The Jacobi matrix method in computational fluid dynamics, (Ph.D. dissertation,
May 1988).

", i S
{a ‘../'.-J' Nt .r.-':-:.r\a -_-\J',\_.r,\'.r A .r - .\_.r';.r\.:._.\‘.\u o



S Bl £ HpF 1TV S 37U 404"t p'h aV3 NN AT Ut Ba¥ et $ OBt B0.0°0 870408 . 6°2.8%0 8% B's 2720V )4 20034, 4 el PO R Y s ). e" S8 aVh' aPh 4 08" But Bnt Bat Bat &

¢ .

! 4. Ph.D.s Supported by the Grant.

J. Fong, (May 1986) "Supersonic Flow over Axisymmetric and Asymmetric Bodies".

o

P. Daripa, (May 1985) "Direct and Inverse Problems in Gas Dynamics”.

Y. Kwok, (May 1986) "Transonic Controversy and Regular Pertubation Methods for Sub
Critical Flows".

el

, T. Sharp, (May 1988) "The Jacobi Matrix Method in Computational Fluid Dynamics”.

M. Pratt, (May 1988) "Analysis of Near Characteristic Methods in the Study of Steady 3-D
Compressible Flows",

a s ALAA &K

AR

[ §

a . w - - .-.'. et e T et e * .t DR NN \' . ~
R : :.. . "7y \ﬁ,. ~° ~. _'._. ‘-"4-‘. T e T .,_ J, - }.. - ,\,\_ S e ’ e ', -~ J,': , .. .\.\N,, .r-"‘\ \.,
AN 5 K A A M 0 YR



R

r—-wn\ﬁw:m\.mmmlﬂum

AFOSR  83-0336 o %
™o '

Approximate and exact numerical computation of
supersonic flow over an airfoil

By TIMOTHY S. LEWIS AND LAWRENCE SIROVICH




i LB S o

E B i ac A ahi . gl A B 4

J. Fluid Mech. (1981), vol. 112, pp. 265- 282 265

Prented tn Great Britain

Approximate and exact numerical computation of
supersonic flow over an airfoil
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(Received 24 January 1980)

An approximate solution is developed for two-dimensional, steady, inviscid super-
sonic flow over an airfoil. This approximation produces accurate results for a wide
range of Mach numbers and airfoil thicknesses. It is used as the starting point for a
rapidly convergent iterative numerical solution of the exact equations. A co-ordinate
system consisting of the principal characteristics and streamlines is emploved.
Examples computed for a symmetric airfoil reveal several interesting features in the
tail shock and the flow behind the airfoil.

1. Introduction

In this paper we consider the computation of inviscid supersonie flow over a two-
dimensional airfoil. While the final step in our investigation is numerical, we attempt
to incorporate as much as possible our analytical and physical knowledg. of such
flows. The approach is well suited both for numerical integration and for the inter-
pretation of the resulting flow i)henomena. A preliminary version of this approach
for the case of one-dimensional unsteady flow has already been reported (Sirovich &
Chong 1980; Chong & Sirovich 1980). In the present investigation several new or
little-known effects concerning the tail shock and flow behind a two-dimensional air-
foil emerge. These are discussed in § 6.

There are two main nonlinear approximations for this problem. Small-amplitude
theory gives solutions valid provided the airfoil thickness is not too great and the
Mach number is not too high. Under these conditions the leading shock wave is fairly
weak and the solution is approximately given by a simple wave involving only the
characteristics emanating from the airfoil (Friedrichs 1948; Lighthill 1960). Variations
in the entropy and in the Riemann invariant which is carried along the down running
characteristics are only of third order in the shock strength, so the resulting approxima-
tion is valid to second order. A correction in the tail shock region is necessary to obtain
# second-order solution there (Caughey 1969).

The second type of approximation, shock expansion theory, originated by Epstein
(1931), employs the fact that even for flows with strong shocks, for which the assump-
tions of small perturbation theory do not hold, the effect of the down -running character-
istics remains small. This leads to an analytic solution at the airfoil, which has been
generalized by several authors (Eggers, Syvertson & Kraus 1953; Mever 1957) to
provide approximate solutions for the entire flow field. 1n another approach, Jones
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. . . . . i
(1963) has derived by a perturbation method an approximate solution between simple i
wave theory and generalized shock expansion theory. i

Sk

<\ In §4 we derive an approximate solution which is closely related to these, but which
applies its assumptions more consistently and is somewhat more accurate. This
approximation includes both shock expansion theory and the second-order theories
of Friedrichs and Caughey. The derivation and the numerical computation of the
solution are facilitated by the use of the principal characteristies and the streamlines
as co-ordinates (§3). Adamson (1968) has used a similar co-ordinate system in another '
context. For a problem in which the down-running characteristics are also important
(e.g. flow in a nozzle), this approach is less appropriate. ‘

The approximate solution is used as the starting point for an iterative numerical
computation of the exact solution (§5). The high accuracy of the approximation leads
to the exact solution after only a few iterations. This procedure is different from most
numerical methods for hyperbolic problems. Typical methods apply one of a variety
of differencing schemes (for a comparison of several such sehemes see Tavlor, Ndefo &
' S Masson 1972) to the equations in their standard form and compute the solution by

\ ‘marching’ along in the downstream direction. One disadvantage of these methods is
o that at low Mach numbers short step sizes are required for stability. The method of
; characteristics (Liepmann & Roshko 1957, cha. 12) can also be used for this problem,
N although it is considered in general to be somewhat unwieldy for machine computation.

The BVLR method (Babenko et al. 1966; Holt 1977) is a finite-difference method
'_‘ which is partly based upon the method of characteristics. The transformation of co-
ordinates employed here also results in a method which is closely related to the method
- of characteristics.

Special account must be taken of the appearance of shock waves in this type of
problem. In finite-difference methods this can be done through shock-capturing
difference schemes, or through explicit shock fitting (c.g. Salas 1976). In the present y!
method the shock waves can be naturally incorporated in the new co-ordinate system wit
as fixed boundaries of the flow field. : M
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2. Formulation of problem \

We consider uniform flow of Mach number M, > 1 1ncident upon a two-dimensional
airfoil (sec figure 1). It is assumed that there arc attached shocks at the leading and
trailing edges, and that the flow remains supersonic everywhere. The flow fields above
and below the airfoil can be computed independentlv, up to the appearance of the
tail shocks. The tail shock and the flow behind it for the case of a symmetrie airfoil
are treated in appendix B.

The co-ordinates x and y are scaled by the airfoil length; the pressure p and the
density p by their upstream values p, and p,; the veloeity (v, v) = (gcos 0, ¢sin0) and
the speed of sound a by the upstream speed of sound agy; and the entropy s, which is
set to zero upstream, by the gas constant R. We consider a perfeet gas with constant
specific heats ¢, = R/(y — 1) and ¢, = ye,, for which the equation of state is ' 1

p = prexpl(y —1)s) \
and the speed of sound is given by a® = p/p. The calculations here were done for i .
v = 1-4. Modifications for the case of a gas with a general equation of state are out- ! the 1
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Numerical compulation of flow over an airfoil
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Freure 1. Supersonic flow over a symmetric 25 % thick circular arc airfoil
at upstreain Mach number M, = 2-5.

The equations of inviscid two-dimensional steady flow are conveniently written
with the entropy s, the flow angle 6, and the Mach angle 4 = sin~!(1/Af) (where
M = q/a is the local Mach number) as dependent variables. All other physical quan-
tities can be obtained from these and Bernoulli’s equation

-1, -1
e+ gt = 1+”TM.2,. (1)
The equations of motion in characteristic form are (Meyer 1960, p. 273)
ds = 0 on streamlines z—:{ = tanf); (2)
d0+Pu) =+ %4 onct ¥ - tan(0+ p); (3)
R == 2y dr S

where P(u) is given by
P(u) = Attan-t(Adtang)—pu, A= (y+1)/(y—-1).

The streamlines and the C+ characteristics are shown in figure 1. The quantities
rt = 0 + P(u) arc called the Riemann invariants.
If the airfoil surface is specified as y = f(x), the appropriate boundary condition
there is
tanl = f'(x) on y = f(x). (4)
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The jumps in 0, 2 and s across a shock are governed by the Rankine-Hugoniot con-
ditions (Liepmann & Roshko 1957, p. 85). All three quantities can be written as
explicit functions of A, ¥ and the shock angle, 7.

3. New co-ordinate system

As mentioned in the introduction, in a problem with weak shock waves deviations
in s and r~ from their upstream values are third-order quantities. This is shown in
figure 2, where As and Ar— are plotted on a logarithmic scale against the deflection
angle 0, for several Mach numbers. As 0 —» 0, the curves approach straight lines
of slope 3. While As and Ar~ are both third-order quantities, for a given Mach
number the jump in 7~ is always significantly smaller than that in s. This suggests
that for weak to moderate strength shock waves the flow field can be considered
primarily an interaction between a simple wave and an entropy variation, with r-
playing only a small role.

This leads us to introduce a co-ordinate system (a, f#) consisting of the streamlines,
a = constant, and the principal (C+) characteristics, £ = constant. Taking o and g as
the independent variables, x and y must satisfy

Yp=tptanl, y, =x,tan(0+ ). (3)

The entropy equation (2) becomes

or s = s(x). Equations (3 + ) and (3— ) become

sin 2,u

0+ P)), = s'(a) (7)
and
o ~n2/t s
(+egp) 0P = -5 Es@, ®)
where
_ 2 z, 9
©= _l—tanOtan/c(@)' )

Using (7), equation (8) can be simplified to
(10)

Y

(0= P(p)); = (1 —tanOtanp) £0,.
Equations (5)-(7) and (10) are five equations in five unknowns: 0, #, s, v and y.
The boundary and shock conditions in the a8 plane can be simplified by normalizing
a and # appropriately. We let the airfoil surface be the streamline « = 0, and normalize
B by setting # = x at & = 0. The boundary condition (4) then becomes

(0,8) = B, y(0,8)=[(B), 0(0,5) = tan~'f'(f). (11)
One convenient way of normalizing a is to take the front shock angle 7(a) to be given by
tann(a) = (1 —a) tan (0} + a tan s, (12)

where 7(0) is known from solving the shock conditions at the leading edge, and s, is
the upstream Mach angle, which the shock approaches far away from the airfoil.
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Froure 2. Jumps in entropy s and Riemann invariant r— across a shock wave as functions
of deflection angle €, at various Mach numbers: , Ag; ———, Ar-.

Hence a = 1 corresponds to z,y — co. If 3 is not a strictly decreasing function, a
different normalization must be used. The flow field in the upper half-plane is mapped
into a finite region in the af plane, as shown in figure 3. The principal characteristics
become vertical lines, and the streamlines become horizontal lines. The front shock
maps into some curve f(a), and the left- and right-hand sides of the tail shock into
two separate curves fB,(a) and B,(a). The discussion of the tail shock is left to appendix
B. With the shock angle 5(a) a given function, the shock conditions can be immediately
solved for O(a, f(a)), pla, fle)), and s(a). The shock f{a) itself will in general depend
on the rest of the solution, however.

It is possible to eliminate y from the equations by setting y,, = ¥4, in (5). Using
(10), this gives

0 = z,5/x,+ (u+ Pp))gcot pu + (0 + p)gtan (6 + p), (13)

which can be integrated to

x(a,fl) = x((),/})+faA(a)a“*cos(0+/t)da, (14)
0
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Ficure 3. Flow ficld corresponding to figure 1 in af planc. Streamlines map into horizontal
K lines, @ = const., and C+ characteristics into vertical lines, # = const. Front shock maps into
/ Bla), and left and right sides of tail shock into fy(a) and f,(a), respectively.
p
"
1 where A(a) is an arbitrary function to be determined later, and we recall
y A=(y+1)/(y-1).
o+
! Similarly, from (5) we get
e & A -
« “ Y ) = y(0,0)+ [ Ale)asin 0+ 1) da. (15)

by At f = f(a) the condition

dy = xa+yﬁﬂl(a) ;

Y = G2 T ot 2, B ) (16)

must be satisfied. Elimination of y using (5) and substitution of (14) for z produces a

: linear integral equation for 4 (a): :
o CEEN A(a)Q(a,ﬁ(a)Hb(a)[1+f:A(&)Q,(&,ﬂ(a))d&] =0, (17)

H where @ = a~*cos (0 + ), and

:g'; bla) = £'() ta:aun:lt;rﬁ;zp) = pla)- |
::: If the solution for 0,  and s is known in the aff plane, this equation can be solved for |
f:' A(a), and the transformation back to the physical plane computed with (14) and (15). ‘

In general, however, the solution in the aff plane depends on x, through (10).
! Up to this point the equations in aff co-ordinates huve been derived without ap-
proximation, and hence are equivalent to the original set (2) and (3).
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4, Approximate solutions

If the third-order changes in s and r- are neglected, that is, it is assumed that
s = 0 and r— = — P(u,) everywhere, the solution of (2) and (3) is a simple wave, in
which all quantities are constant on the principal (C+) characteristics, which in turn
are straight lines:

0 =tan"'f'(f), p=PY0+P(u)), s=0 onCt:
y =f(B)+(x—pB)tan (0 +p).

This approximation is due to Friedrichs (1948). (¥riedrichs further simplified the
problem by neglecting terms of third and higher order throughout the calculation.)

Because simple wave theory takes & and r— constant at their upstream values, it
can be expected to be least accurate near the airfoil, where the shock is strongest and
the deviation from upstream conditions is the greatest. An improved approximation
in this region can be obtained using shock expansion theory, in which s and r— are
assumed to be constant at their values just behind the shock at the leading edge, say
s = 5o and r~ =75. This leads to a slightly modified version of the simple wave
solution:

0=tan"1f'(B), u=PN0-r5), s$=s,

This approximation produces a very accurate solution at the airfoil, even for flows
with strong shocks, in which sand r—are not at all constant globally. Hayes & Probstein
(1966) explain that the down-running waves, which can be considered reflections of
the outgoing simple wave by the bow shock, are fairly weak and are nearly cancelled
by reflections from the entropy (or vorticity) layers. Mahony (1955) gives a similar
explanation. The shock expansion solution rapidly loses accuracy as the distance
from the airfoil increases. This is in contrast to simple wave theory, which is more
accurate at infinity.

The only assumption in the shock expansion solution at the airfoil is that r— is
constant. Mahony & Skeat (1955) and Meyer (1957) have pointed out that, since any
streamline is a potential airfoil, r~ should be approximately constant along each
streamline, that is r— = r—(a). In the literature this assumption has been employed
in various ways. If r~ = r~(a), then by (10) 8 = 6(8), i.e. 8 isconstant on C+ characteri-
stics. This in turn implies that the pressure is constant on C+ characteristics, as can
be seen from the following form of (3 +):

d0+m%f'l—t%=0 onC+: g—i:tan(0+,u). (18)
Taking both @ = 6(f) and p = p(B) along with r— = r—(a) overdetermines the problem
however, since any one of 0, P and r— can be written as a function of the other two
(and ). This was noted by Eggers et al. (1953). In their generalized shock expansion
method it is resolved by averaging results assuming r— = r~(a) and 0 = 0(8) with
those assuming 7~ = r~(a) and p = p(f) (see Hayes & Probstein 1966, p. 498). Meyer
(1957), on the other hand, implicitly drops the assumption p = p(f), and uses the
solution r- = r-(a} and 8 = 0(f), which satisfies (10) exactly, but does not satisfy (7).

In the present formulation, it appears to be more consistent to approach the prob-
lem in either of two ways: in equation (10) assume either (i) the left-hand side or (ii)
the right-hand side is zero. Then solve (10) together with the remaining equation, (7).
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In case (i), the solution becomes @ = 0(8), p = p(#) and s = s(a). The function 0(8)
is determined by the boundary condition, and p(ff) must be determined by the shock
conditions. It then happens that over the rear half of the airfoil, # > (1), p(#) cannot
be found, since no data is specified on the rear shock. This difficulty does not arise in
approach (ii), which is the one we adopt.

This approach can be thought of more simply as arising from the assumption that
0 is constant on C* characteristics, rather than the assumption that r— is constant on
streamlines. If 0, = 0, then (10) reduces to

O=P)y =0 or 0-P(r)=—Dya), (19)

where Py(a) = Plu(e, f(a))] — 0(a, f(a)). Substitution of @ = P(u) — Py(a) in the remain-
ing equation, (7), then gives

2P(n), — Fy(a) =

sin Z/L

s'(a). (20)

Py(a) and s(a) are both given explicitly by the shock conditions, so (20) can be re-
garded as an ordinary differential equation for s, in which § enters only as a parameter.
It is nonlinear, but can be readily solved using standard numerical methods. The
initial and final values of y along a given €+ characteristic are both given, by the
boundary condition and the shock conditions, respectively, which allows us to solve
for the free boundary f(a). The solution in the «f planc is then completed by com-
puting O(a, f) = Pu(a, B)) — Py(a). The solution for 0, #« and s in the aff plane is
independent of x and y, because (10), the only equation in which x or y appears, is
neglected. The transformation back to the a2y plane is found by solving (17) for 4(«)
(also a simple numerical calculation) and evaluating the integrals (14) and (15). The
solution obtained from this approximation will satisfy the boundary condition and
all three shock conditions, but will satisfy (10) only approximately.

This approach requires more work (the solution of an ordinary differential equation
on each C* characteristic) than approach (i) or the generalized shock expansion method,
but has been found to be more accurate. Additional support for this choice is lent by
the fact that the factor multiplying 4, in (10) is in general quite small. Approach (i)
has however been found useful for calculating the flow behind the tail shock, where
method (ii) is difficult to employ (sec appendix B).

5. Numerical method

Our approximate solution does not satisfy (10), or, equivalently, the C- equation
(8). In this section we present a simple iterative method for correcting the solution so
that it will satisfy all the equations and conditions.

The approximate solution is computed on a rectangular grid in the aff plane (as
shown in figure 3), which is then used in the numerical method. The front shock f(a)
is therefore kept fixed throughout the iterations. This fixes the normalization of a,
so for every iteration beyond the original approximation n(e) is not given by (12)
and must be found as part of the solution. This also implies that « = 1 no longer will
correspond exactly to z,y —» oo.

Given the approximate solution for 0, s, s and x in the aff plane, a corrected value
of r~ is computed from the C- equation (3 —), or (8), starting at. the shock with the
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value given by the shock conditions and numerically integrating downward along the

C- characteristics:
8in 2u
= r., —_ . 21
r shock J-C‘ 27 ds ( )
In particular, this determines a new value r~(0, 8) at the airfoil, which determines
a new value of r+(0, B) there, since r+ = 20 —r~, and 0(0, #) is given by the boundary
condition. With this as an initial value, a new rt is computed everywhere by numeri-
cally integrating (3 4 ), or (7), along C+* characteristics:

r(a,f) = "*(0,,3)+I¢m—2'us’(a)da. (22)
o 2y

With 7+ and 7~ thus determined, the solution given by

0=yt +r), p= Pt —r)],

and s will satisfy the differential equations and the boundary condition. However, the
new value of r*(a, f(e)) will not in general satisfy the shock conditions, and hence
will imply a different value for the shock angle #{(a). This can be used to determine a
new initial value r—(e, f(a)) for integrating (21), and the procedure can be repeated.

The transformation back to the zy plane is found by numerically solving the integral
equation (17) and evaluating the integrals (14) and (15). This must be done at each
iteration, since x and y enter into the computation of the integral in (21). The C-
characteristics are oblique to the («, ) co-ordinate system, so at each point a small
section of the C~ characteristic through that point is extended backwards to intersect
a grid line, and a one-step integration is used to compute r—. We might, in place of
equation (8), have integrated (10), which has the advantage that r— is differentiated
only with respect to 8, so that the integration would be along the co-ordinate lines,
asin (22). In practice, however, this has been found unadvantageous. The solution does
not converge as quickly, and may not converge at all without modification (see Chong
& Sirovich 1980). We attribute this to the fact that small variations in 7~ are naturally
propagated along the C- characteristics.

This scheme has been implemented using second-order numerical methods (trape-
zoidal rule, improved Euler method, etc.). Some results are given in the next section.

6. Results

Calculations have been performed for several airfoils over a range of Mach numbers.
The results presented in figures 1 and 3-7 are for a symmetric circular arc airfoil with
thickness ratio 0-25 at upstream Mach number M, = 4. In figures 8-10 results from
the additional cases M, = 2-5 and 7-5, for the same airfoil, are included as well. These
cases were chosen in part for the interesting effects they exhibit.

The iteration scheme converges quite rapidly, based on a comparison of the solutions
at successive iterations. In table 1, the maxima (over all grid points) of the differences
in the values of 0, u and x are given for the case M, = 7-5 (the most slowly convergent
of the three cases). The greatest differences are in z and usually occur near a = 1,
where 2 -»> 00. The errors in x are smaller closer to the airfoil. For thinner airfoils or
lower Much numbers, fewer iterations are required for the same accuracy. In the case
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Iteration A0J0(0, V) Aufp Av/z
1 0-0595 01170 0-3701
2 0-0141 0-0006 0-1221
3 0-0008 0-0007 00112
4 00002 000006 0-0017
) 0-0001 0-0003 ¢-0009
TarLe 1

of a 109, thick parabolic arc airfoil, for example, even at i, = 10 the difference
between the approximate and exact solutions is less than one per cent in 6 and ¢ and
six per cent in 2. In such a case there is little reason to go beyond the approximate
solution.

The case M, = 2-5is discussed in Holt (1977). Figure 4 contains a comparison of the
leading shock when computed by our approximate and exact methods, the BVLR
method (an exact numerical method), and generalized shock expansion theory (the
latter and the BVLR solution are taken from Holt 1977, p. 77). In this case, our
approximate solution is indistinguishable from the exact solution. The small difference
between these and the BVLR solution is probably attributable to copying errors.

Figure 5 contains plots of pressure contours in the ay plane and the value of log p
on the airfoil surface and on the line of symmetry behind the airfoil. Comparison with
figure 1 shows that the contour lines between the lead and tail shocks are nearly
identical to C+ characteristics, i.e. the pressure is approximately constant on C-
characteristics. This was seen in §4 to be related to the fact that 0 is approximately
constant on C+ characteristics, which in turn is related to the fact that r= is approxi-
mately constant on streamlines. The latter two assumptions are illustrated in figures
6 and 7.

In figure 6, the deflection angle @ is plotted versus a on each of the C+* characteristics
shown in figure 3. In the region behind the tail shock 0 is very nearly zero (|6| < 0-003)
everywhere. The variation in 0 along each characteristic is quite small, with the most
serious departure occurring on the characteristics originating from the rear part of
the airfoil. These characteristics tend to interscct the tail shock fairly close to the air-
foil, however. A related phenomenon is that the principal characteristics are nearly
straight. This however does not remain true in the region behind the airfoil.

Figure 7 shows the variation of 7~ with £ on each streamline of figure 3. Somewhat
remarkably the assumption r~ = — Py(a) is better at the airfoil than a short distance
away. The assumption is less satisfactory behind the tail shock. The rapid downstroke
of the 7~ curves also indicates a large value of ,, although @ itself remains quite small.

The entropy jumps created by the lead and tail shocks are given in figure 8 for the
three cases M, = 2-5, 4-0 and 7-5. The entropy variation along the tail shock has a
two-scale appearance, especially at the ‘higher Mach numbers, which shows a very
rapid decrease in strength in the initial portion of the shock. The slower variation in
entropy follows that induced by the front shock. Looking at figure 1, we see that the
streamlines spread apart rapidly as the flow passes the midchord position. The incli-
nation of the flow incident upon the tail shock therefore decreases rapidly, which
causes a correspondingly rapid deerease in shock strength.

Another important effect is also at work in this region. The gas, which is compressed
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Figurk 4. Front shock for flow field of figure 1 as computed by : present approximate and exact
methods ( j, BVLR method (- - -), generalized shock expansion method (— - —).

at the front shock, in following the profile past the midchord experiences a rapid
expansion, which is strong enough that the local Mach number at the trailing edge
exceeds the upstream value (M = 9-83 for the M, = 7-5 case). This recovery process
is largely cut off by the tail shock, however, since the large negative value of 4 on the
after part of the airfoil causes the principal characteristics to have negative slopes,
so that waves originating there must intersect the tail shock near the airfoil. As a
result the Mach number along the tail shock falis off rapidly, which augments the
rapid decrease in strength of the tail shock. For the case M, = 7-5 the Mach number
along the shock even falls below 7-5.

The pressure field behind the airfoil (figure 5) also contains interesting features. In
spite of the very high shock strength at the trailing edge, the pressure jump through
the shock does not quite bring p up to the equilibrium pressure p = 1. There is a rapid
pressuré increase immediately behind the trailing edge, in which p increases above the
equilibrium value, reaching a maximum about one chord length out. The return to
equilibrium from this point is very gradual. The total variation in pressure behind the
tail shock is quite small compared with that along the airfoil surfaces.

Far behind the airfoil p > 1 and 0 — 0. It then follows from the equation of state
that

a® =exp[—(y—1)sy()/7]

where s;(a) is given by figure 8. From (1), we can then compute the velocity ¢ at
infinity. This is shown in figure 9 for M, = 2-5, 4-0 and 7-5. As a result of the non-
uniform entropy, the flow at infinity has a vorticity distribution.

A feature which is difficult to perceive from figure 1 or figure 5 is that the tail shock
angle is not monotonic. In figure 10 the variation of the slope of the tail shock is
given for the three cases we have discussed. In cach case the shock angle decreases
on leaving the trailing edge. (This result has been verified independently by J. C.
Townsend 1979 (private communication), using a numerical method developed by
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log p (v, 0), x> 1

logp (x,f(x)), x <1

Ficure 5. Upper graph: pressure contours in flow field of figure 1. Lower graph:
log pvs. z at @ = 0. Note different scales for 0 < r < t and x > 1.

M. D. Salas.) This is contrary to what is observed for lower Mach numbers or thinner
bodies. We have seen that the inclination of the incident flow decreases along the
shock. If the Mach number upstream of the shock were constant, this would predict
a decrease in shock angle. The Mach number actually decreases along the shock how-
ever, which tends to increase the shock angle. At high Mach numbers the shock
angle is more dependent on the flow angle than on the Mach number, as can be seen k
from the fact that the shock polars for different Mach numbers approach a limiting '
curve as M — oo (see e.g. Liepmann & Roshko 1957, p. 87). In these cases, near the l
trailing edge the decreasing flow angle dominates. Farther away from the airfoil, or
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Fioure 6. Flow angle 0 vs. @ on each C* characteristic of figure 3. Dashed lines are constant

values § = tan-! f*(f) for comparison. Values along front shock f(a} and tail shock f#,(a) are
also given.
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Figure 7. Riemann invariant r~ vs. # on each streamline of figure 3.
Dashed lines are constant values r = — Fy{a) for comparison.
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' Ficure 8. Entropy s(a) (——) in region between front and tail shocks, and sy(2) (- - -) in ‘

region behind tail shock, for 259, circular ace airfoil at upstream Mach numbers M = 25,
4-0, and 7-5.

15
-
- . o c Ty =1
Skt i
] .
Moz 25 4 75 |
i
1 |
' ;
. | y !
i .' >
h i
. . l
_ . | : | |
- | I !
; l ; . N
~ | ! |
ool | ' i ’"
S { i ;
| ! I ‘ '
_{ | | ! ! .
| ! | . N
] : I ! : .
t ! i !
1 1 ] 1 -
- | | [ . .
{ { | N
- } ) ! ¢
] I | |
0 —df e ] ;
15 15 5% 75
qloo v

Ficure 9. Velocity profiles far behind aicfoil for M, = 2.3, 4-0 and 7-5.
Dashed hines are asymptotic vaines, M.
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Ficure 10. Tail shock slope tan g,(a) for My = 2-5, 4-0 and 7-5.
Dashed lines are asymptotic values, tan g,.

in problems with lower Mach numbers or thinner airfoils, the effect of decreasing Mach
number dominates.

In the case M, = 7-5 the shock angle undergoes a second oscillation in which it rises
above the Mach angle at infinity, go. This is explained by the rapid fal’-off of Mach
number along the shock, below its value at infinity. A final item of note in ficure 10
is that for M = 7-5 the shock angle actually starts off with « value which is greater
than g,. As M, - oo the upstream Mach angle s, goes to zero, as does the Mach angle
at the trailing edge, since the Mach number there also increases. The shock slope at
the trailing edge approaches a finite value hiowever, which depends on the airtoil
slope at the trailing edge.

7. Conclusions

The methods we have presented are useful in computing two-dimensional flow fields
about airfoils. The approximate solution is accurate enough for many cases of intevest,
and the numerical method furnishes a rapid correction to the solution in those cases
where it is not. The characteristie-streamline co-ordinate system is useful both "
the computation of the approximate solution and the corrections, and is also -
venient for displaying and interpreting the results.
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280 T. 8. Lewis and L. Sirovich

T'he use of the streamlines as one co-ordinate and the iterative nature of the mumeri-
cal calculation make the method convenient for the incorporation of a boundary-layer
correction. In a boundary thickness method, for example, a succession of inviseid
caleulations are performed with a changing airfoil shape. The changing shape could
be easily included in the present iteration method.

In response to a referee’s request for comparison with other integration schemes,
we asked Dr James C. Townsend of the NASA Langley Research Center to run some
speed trials on their CDC Cyber 175 computer comparing our code with a ‘marching’
method developed there. At the lowest Mach number, My = 1-25, our scheme runs
about seven times faster than the marching method, while at the highest Mach
number, M, = 10, our scheme was slightly slower. The present method is most efticient
at low Mach numbers where the approximate solution is most accurate and the fewest
iterations are required. This is in contrast to the marching method, where low Mach
number necessitates a short step size for stability, and hence longer computation times.
While these trials give some idea of relative speed they cannot be considered detinitive.

"This work was supported by the National Aeronautics and Space Administration
under NASA Grant no. NSG 1617. The authors would like to thank Dr James €.
Townsend for earrying out a number of computations which were very useful in the
course of this research.

Appendix A. Case of an arbitrary gas
For an arbitrary gas, the equations of motion in characteristic form can be written
{Haves & Probstein 1966, p. 484)
ds=0 on dy/dx=tan0, (A1)
d0+ ®dp =0 on dyfdr = tan (0 + ), (A2)

where & = p,/(pyaZpg®tan ). We can consider @ to be a function of p and s. By
introducing the variables

w(p,s) = f(l)(p,s)dp and  Q(p,s) = dw(p,s)/és,
which are defined so that dw = Odp + Qds, (A 2) can be written as
df+dw = +Qds on dyfdx =tan(0+u). (A 3)
If wand Q are now regarded as functions of z and s, (A 1) and (A 3) are three equations
in three unknowns: ¢, # and s. Equations (3) are a special case of (A 3) in which
w = P(p)and € = (sin 2pu) /2y,
The transformation to af co-ordinates goes through for the most part as before.
Fquations () (%) in the general case become

.\'/;‘ = 0, (0 +- (U): . &25"(1)‘

¢ @
(, i +“._) (- w) = - Qs'(2),

ea o

where ae s still given by (9). The counterpart of (13) is

>
0 —:/] 4 (14 w)yeotye 4 (04 i), tan {0+ 40).
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This equation can in principle be solved in the same manner as (13), but, depending
on the form of w, we may not have an explicit integral like (14).

The assumption 0, = 0 in the general case implies (0 —w); = 0 or § —w = —wy(a).
The resulting approximation can be expected to be valid at least in: cases in which the
behaviour of the gas does not differ too greatly from that of a perfect gas with constant
specific heats and y = 1-4. In particular, it has been shown (see Hayes & Probstein
196G, §7.2) that shock expansion theory tends to lose accuracy if vy is allowed to
approach 1.

Appendix B. Tail shock for a symmetric airfoil

In general, the solutions above and below the airfoil can be computed independently,
up to the appearance of the tail shocks. The flows from the top and bottom interact
behind the airfoil, which complicates the computation of the tail shocks and the flow
behind them. The upper and lower regions behind the airfoil are separated by a
contact discontinuity, or slipstream, across which 0 and p are continuous, but the
other variables jump. In the case of an airfoil symmetric with respect to the z axis
the slipstream coincides with the 2 axis, and can be considered a rigid boundary.
The problem is still quite differcnt from the front shock problem, because the flow
upstream of the tail shock is not uniform.

The transformation to af co-ordinates behind the tail shock can be chosen differently
than that ahead of it. In particular, it is more proper to regard the C- characteristics
as the principal characteristics, since the Ct+ waves are only produced as reflections
of the C~ waves, which originate at the tail shock. The approximate solution is some-
what more accurate if the C— characteristics are used. On the other hand, for numerical
work it is better to take the C+* characteristics as the f co-ordinates, because this has
the effect of putting more points near the trailing edge, where a rapid variation in the
solution occurs. We keep a constant on streamlines as they cross the shock, and
normalize £ behind the tail shock so that the infinite region behind the tail shock is
mapped into a finite region in the af plane. In the calculations presented here, this
was done by setting f;(e) = 1+ }a, producing the triangular region shown in figure 3.

The approximate solution used for the flow over the airfoil cannot be conveniently
employed for the flow behind the tail shock, because the non-uniform flow to its left
makes it impossible to calculate Fy(x) and s(a) a priori for use in (20). Therefore the
simpler of the approximations given in §4 is used: 6 = 04(8), p = p4(f), and s = s,4(c).
All the characteristics intersect the z axis, where 8 = 0, s0 6,(#) = 0, and hence in this
approximation § = 0 everywhere. This turns out to be quite accurate (see §6). Given
that 0 = 0 behind the tail shock, it is possible to solve the shock conditions for the tail
shock angle 7,(x), in terms of the solution upstream of the tail shock, which we
assume has been previously computed. This also determines py(f) and s,(), and gives
an ordinary differential equation to solve for the tail shock f,(x). It is possible to
derive expressions for z and y similar to (14) and (15) for the region behind the tail
shock, which will involve a new function A,(a). An explicit solution for A4(a) can be
found in this case, involving the computed tail shock trajectory.

The iteration scheme proceeds essentially as before. Given r—(a, fy(a)) from the
shock conditions, we integrate (21) along C- characteristics down to the slipstream
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a = 0. Then we reset r+(0, #) = —r~(0, 8), and integrate (22) upwards to fy(x). The
new r* and r~ define a new 0(a, f#,(a)), which is used to solve for a new shock fy(a) and
new functions 5,(a), s3(a), and r—{a, f5(@)), with which we start the next iteration.
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The Inverse Problem
for Supersonic Airfoils

Timothy S, Tewis® and Lawrence Sirovicht
Brown University, Providence, Rhode stand

Introduction

HE inverse o design problem tor the case ol two-

dimensional supeesonic autorl shapes 1 considered. In
view af the hypeibolic structure ot the underiving equations,
the calcwdaton s sunpler than the corresponding subsonic
problem. In o recent paper.’ the authors deseloped a
numerical procedure tor treating the direct problem, the
cleatation of supersonic flowtields past ziven profiles. This
procedure mahkes use of streambines as one ol the coordinates.
A result, s especially suired 1o the inverse problem. Since
the adaptation of the method 1o the present problem is very
sunilar 1o the onginal tormulation, we will give only a bricl
outline ot the procedure in this Note. For purposes ol
comparison, we abo prosent two approsinite solutions of the
problem, one a simple tecatment based on linearized analysis
and the other based on shock expansion theory. The latter
proves to be highty accurate and tapts only i extreme cases.

Outline of the Method

Consider  two-dimensional  supersonic flow,  which we
deseribe by the flow dellecnon angle #, the Mach angle
poosin (AAD)L and s, the entropy divided by the gas con-
sttt R.

T he equations of motion in characteristic form are”

SR Loody
dr ds on O =and o) (h
2y dh
dy
ds — 0 on streamlines: tanf! ()

(CRY

and where 0y Py oand £y, the Prandtl anele, s
detined by

POy =N tan TON ang) g Ny Dy oD (Y
Wemntroduce a cootdimate system made up of the streamlines

(o consty and the € charactenstios (3 const). The
cguations then become

s 0 (4
\l"..)/l _

- 5
v 2 S ()
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iR 2 v
rodwr = - LSRR TR (6)
2y [ —tanftango v

I this tormulation, the coordinates (vv) i the physical
plane become dependent variables and are governed by the
cquations

vo= v tanfl, vomvoan(t + o) (

Equations (4-7) are to be augmented by the shock relations,
which are not repeated here. and by the given airtoil pressure
distribution p=p, (V).

The transformation from the physical to the (o,3) plane
leaves open two arbitrars Tunctions, One ot these is fised by
seeling

v(n..3y =3 (N}

on the streamline o 00 which we take 1o be the as vear
unknown airfoil. As g second condition, we require that the
shock angle paary finearly witly o,

NGy =M + L, D) L, </ (V)

The method of solution s dterative and begins with an
approsimate solwtion. This approvimation is afhied o shock
expamsion theory. ™ * Figure T contains a sheteh of the plane ot
integration. The corve «(3) represents the as yet unknown
shock trajectory. As indicated in Figo 1 a umiform o meshas
chosen, which with «¢(43) generates the 3 mesh over the tirst
portion of the figure. The detertination ot the sofution staris
with the replacement ot B (6) by the approximation

ro=t-PGa = - Po(a) (1m

where = P, («) is the value determined at the shock. 1 by
(HO) i substituted into Eg. {8), we obtain

d sin2p
R A FT0 R A FTR I s ) (rh
ey <

where s () is also determined trom the shock relanions.

For cach given vatue ot 50 this s an ordinaey ditterential
cquation Tor g, which can be solved numericalty . tal and
final values pla) 2] and (0.3 are both known, which
alfow s us to determine the shock a0} The values o sy, 30
come from the shock conditions and the values (0,5 from
the tallowing relation between s, and the normalized
prossure g

enp

{
(v 4 ) l

L. Y
s = (12

vl
I+ M, -exp

(v 4 () I
)

Since oM i hnown and p(0L3) =p (3) v enen, this
determines ju(th ).

On the porton of a0 not ving under the front shock o we
choose a umitorm 3 mesh. We use Bg. (12) to determne
0,3 and antegrate bgo (1) up from o O to tinsh the
determination of (o3 Egquation (10) s used 1o deternnne

O¢ s). The approvanmite salution s then known everswhere
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in the (ev3) plane. Finally, Egs. (7) are integrated to find the
. transtformation (o the physical plane cverywhere. In par-

obtained from Fgs. (13 and (7). The iteration is then repeated
until a convergenee criterion is met.

t ticular, the body shape f(x) is given by
Y Approximate Caleulations
1 .
': f(v) =/(0) + \ tanti(0,3)ds3 (13) Lincarized Approvimation
S0 . . . .
* Perhaps the simplest caleulation tor f(v) given the pressure
. . . R distribution p, () tollows from lincarized theors .t In o
which completes  the  computation  of  the approximate Lo . ) ) k
) normalization, tincarized theory
v solution. ’
N I'he iteration procedure starts with the neglecied Bgs. (6), T,
4 which were replaced in the approximate solution by Eq. (10). (v = L () =1
;' We numerically integrate Eqs. (6) downstream along the € RRID)
,: characteristics, starting at the shock. Fhis prodoces new o1
qalue tr ,)) ~vervwhere, F - 0 f) sy e (YA
X values of r (w.?) everywhere. From r (0.3) we can . NAY /)
2 determine (0 =£(0) + (\ Pt ©dE ~v) (16)
VMG
[ ro03)Y=r (0,3) + 2P (0,3) | (14) . . o
' ! Shock Expansion Approsvimation
& since w{0,3) is given by Eq. (12). Equation (5) is then in- Once mayv also base an approviniate calealation ot /(v) on
b tegrated up from the body along the C* characteristios to give shock expansion theory.? We recall that it 7, vy and po (v
» r* (m.03) everywhere, We can then obtain improved salues of denote values on the airfoil, then in this approximanon it as
‘ #and g evervwhere from assamed that
H=t(r* —r ), u=P '[¥(r -r )] (I5) ) = Plu, oy |- =Py (I
-
' ; ; : where 22, 18 the value at the leading edee behind the shock
¥ A new shock angle pa) is determined trom the shock cre sy ©Aie ¢ leading cape behimnd The Sho.
r . - . . . . . hl A ' \ . v . B N
! relations, and a new transformation to the physical plane is bauation (12) determines i, () trom the given pressure
K 2,00 and the entrops at the leadimg edee s, and then /()
\:. tollows trom
3‘- / I | L.
) 1/ Coes Fiv) = 1o v | an P iy e (8
// } H -
S ) Acan exammation shows, fovy caleulated i thas wan agiees
{ // P with the first approvimation in the iteratine solution outlined
K B “/,' ! : m the previous section.
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Results (

Sample calculations are shown in Figs. 2-4. In each the
results obtained from linearized theory, shock expansion
theory, and the exact numerical calculation are compared.

Figure 2 contains the results for a low Mach number
(M, =1.2) and small pressure jump. As should be expected,
all of the results are in close agreement. For Fig. 3, the Mach
number is moderate (M, =2.5) and the jump in fp at the
leading edge is unity. In this case, linear theory is poor in
predicting an overly thick body. The result based on shock
expansion theory, on the other hand, is virtually in-
distinguishable from the exact case. In the final example (Fig.
4), both the upstream Mach number (M, = 5) and the pressure
jump are relatively large. Linearized theory is now very poor.
Shock expansion theory still does quite weil for most of the
derived airfoil and begins to depart significantly only near the
trailing edge.

Conclusions

A method for ihe design of two-dimensional supersonic
airfoils has been presented, which incorporates available
physical and mathematical knowledge of the problem (c.g.,
shock expansion theory and characteristics), in order to
facilitate the numerical computation. A similar approach
should prove useful in the more complicated problem of the
design of real airfoils in which three-dimensional flow,
boundary-layer effects, etc., - ust be considered. The iterative
nature of the present method, in particular, makes it well
suited to the inclusion of boundary-layer corrections.
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Direct and Inverse Problem
in Supersonic Axisymmetric Flow

Jefterson Fong® and Lawrence Sirovicht
Brown University, Providence, Rhode Island

Introduction

UPERSONIC inviscid tlow can generally be solved by the

method  of  characteristics  or by shock-capturing
methods.' © The method of characteristics computes the flow
along characteristics and uses the Rankine-Hugoniot condi-
tions at the shock. This method has the advantage ot ac
curacy, but is regarded as complex and computanonally net-
ficient, especially in regions of near coalescence of the two
sets of characteristics.' ' In shock-capturing methods the
shock 1s smeared over several gnd points, where oscillations
can occur and the scheme loses accuracy. However, due to
their directness and computanonal case, shock-capturing
methods have been preferred in recent years,

In this Note, we develop an efficient method using the
characteristics and streaml:ines of a flow. These are used as
coordinates and the flow guantities are expressed 1 terms ot
Ricmarn functions. A scheme 1s obtained which v signifi-
cantly more efficient and accurate than shock-captunng
methods for tlow over axisymmetric bodies. Since sreamlines
torm one of the coordinates, we naturally obtain a body-fit
system. It is also a truly shock-fit coordinate svstem. Not only
are the Rankine-Hugoniot conditions used, but the shock hes
cxactly on grid points also.

The suceess of the present inethod in the two-dimensional
case rests on the discovery of an accurate and simple approy
mmation.® In the axisymmetric case, a similarly accurate and
simple approximanon has cluded us. The approvmation
presented herein is simple, but generally not as accurate as
that for the two-dimensional case. A better aterative pro-
cedure has been developed to compensate for thiv weakness.
As was the case for the two-dimensional flow,” our method
in well suited for the inverse design problem (e, given
M, > 1 and the pressure distribution on the body, find the
shape of the body and the flow everywhere).

Formulation
We  conuder  avsvmmetric flow  with nadent Mach
number A, > 1 and <hock attached at the np. The

charactensne L‘l‘lliﬂlﬂl]\ vdn hL‘ written imn terms of cnlrop) 5,
How angle ¢, Mach angle ¢ sin ' (1 A (A7 local Mach
number), pressure g densy g, and veloaty ¢ as follows?

dv 0 on tan# )
dp st dr .
o e . an (' Tan (e )
g tang suMt e ) r ah
(N3]
Al the body 7 (v} we impose the boundary condition
tant £ (V) Jumps across a shock are given by the

Rankhine Hugonmaot conditons ™ If we denote the shock angle
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by 7. the position of the shock s governed by

dr
0 - tany (3
We introduce new coordinates (a3} through
rooovtanf (4)
roon a4 ) (%)

S0 that constant « refers to streamlines, and constant 3 re-
fers to O characteristics. Expressed in these coordinates,
Fq. (1) s simply s 0, while Bg. (2) becomes

A sy tanfftang r,
. R {1 /’l e s (a [£4Y]
dax 2y tanf + tang -
NIINT tanttan [
DR D P AP " (
2y tantt - tang s
where Pop) = (A tan DAY tang ] o the Pranddd
angle, A (o 1y @y Thoand
i 2tantt roo
I .
iy tané o« tang 7 i1
Mo
20F— v ~ =71 v v v v p orr oy vy v
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Here v - 1.4, An alternate form of bEg. (7) used later is as
follows:

R,=(1 - mn()lanp)'—\i’——(in +1ang fr"— (%)
It is tmportant 1o note that the dynamical equations must be
augmented by the coordinate equations (4) and (5). This
transformation is still undetermined up to (wo arbitrary
functions. We fix one of these functions by taking x(0,8) =43
at the body « = 0. 1t therefore follows that

0.3 =S(8), 808 =tan 'f () "

To determine the second arbitrary tunction we fin the shock
" e ! 10
dis uo

Fhe above tormulation must be moditied shightly in order
to teal the anverse design problem. For this problem,
prossute s specilied onan unknown body . To accommaodate
this boundary condition, we obtam trom Bernoulin's equa
tion and the perfect gas law

7 1
' -
)oosin | ( 5

epily Dyl o by ) l
x . (1)
ol Gy D21 expll Gy D) s+ ) |

Since the entropy s is constant along streambimes and s
known behind the tp shock, the night-hand side ot Eq. (11)
is determined. Therefore, instead of Fg. (9), we have bgs
(4) and (1) on the body. The flow above the body can be
calculated  exactly as before. Hence the inverse problem
becomes a direct problen: by the method presented here.

Numerical Procedure

Near the up of the body, the flow s 1aken to be flow over
a cone. For the rest of the flow, we use a marching scheme
along cach column of 4. A good approvimation s first ob-
tained at the points on that column, The governing equations
are then iterated until an error tolerance is satistied before
we proceed o the next column,

It s worth noting that we are tree 1o choose any mesh size
of 3, even when the 0 and € charactenistics are nearly
paralicl. Due to Fg. (10), we are also not toreed to ke veny
small mesh sizes 1 cither

Approximation Solution

Freecrs and Savin' noted that hypersonie flow over asvim

metne bodies  can be approvmated as locally iwo
Mo
B T T T
110
W oy
zZ O
- 0
FI
a 105
wo
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b
v o
o N \\':05 r=t
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z 100
21': r201
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x body
095 —
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big 3V R alonag strcambines tor a0 10" calnck parabolic body
v, 2
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dimensional and, hence, shock-evpansion theory (R con-
stant along an entire steamhne) s vahd. Indeed, tor hyper-
sonic flow, along C* we have s () large and r, small so
that Fygs. (7)) and (RB) are well approximated by two-
dimensional theory. At lower Mach numbers, this appron
mation s no longer vahd. However, o our marching
scheme, we need only 1o approvamate one gnid poaint awas,
and to assume that B changes slowly along a streamline.
Combiing Egs. (7) and (9).

sin2p

R. vl antang) s

Y ‘.

o - 1}.(I‘ ! ‘l)
RO | 2an g

Here 0 Oas an approsimation consisient wath the appros-
imatton R 0. These are the two ordinany ditterental equa-
tons which give us the minal guesses e the teration scheme.

Results and Discussions

Calculanons ot flow over bodies of various shapes for a
tange of Mach numbers hinve been pertormed. The average
number of teranons (penerathv between 2 and 3 108 an error
tolerance ot 104 used per pomnr decreases as the total
nutmber of pomnts used tncreases. Tnoview ot our speaial coor-
dinate system, few poimnts are tequited to desenibe the entite
Howticld. Grid pomnts are spaced appropnately according to
the natural vanignons of the flow . FThis s demonstrated in
Fag. 1 with a 30%-thick parabohe body at M, 2, where we
compare a calculation using 248 pomntein the whole flowfield
to one ustng 829 points,

Figure 2 shows the pressure distiibutions on two parabolic
bodies. The tlow near the tp as comcal, hence pressure i
constant thete. The presence of a pressure mimnmum on the
body should be noted. No such mimnmum appears in two-
dimenstonal patabolic wings, Conststent with this s the fact
that the mommum moves further down along the body as A,
or the thickness increases, because thicker bodies are more
two-dimensional. Fhis should be of <ome interest since the
Presence ol @ pressure NMInmmum i some cases can be an in-
dication of flow separation.

Fipure 3 shows the changes of R (normalized 1o its value
ab the shock) along streambhine for a 10% body at Af, 2.
Lhe streambines shown e on the body and at about 0.1, 0.5,
and 1 body fenpth awas teom the avis As one can wee, R
changes monotomcally along the bodv The approvmation
R constant along the whole body as poor, but R does
become nearly constant at dess than a body fength away .

To test the method tor solving the inverse problem, a
direct problem was solved, and  the resufting pressure
distabution on the boady was used in the inverse method. The
dereement was exeellent and the computanional time s com-
patable 1o the diedt problem

Conclusion

A streambimes chaninctenisties coordimate ssstem for axe
svmmetne How  has been presented  Inour coordimate
suatem the body fies alone one coordimate, and the shock s a
stranght hine swaith end pomts talling exactly on it Rankine-
Huyonmot condimons are used at the shock - Conseguent!y
the schewe s anherently accurate Relatively few pomits are
requared 1o desanbe the ennire tlowteld since gnd pownts ace
spaced accordioe 1o the natural vanatnon ot the tlow . Bven
moremons ol neat coalescence ot the € and ¢ chan
darenisties, we are not toreed to take vers small soosh azes
Stattme trom a sinple gl vuess, the scheme converges
vapediy to e exact solution s Bedanse o few poantsy and
etations are nevded ) the mcthod s computationa s vers ¢
fraent - O body i coordimate svstem albso allows sy 1o

solve the iverse desien problem with case, and Jdue to own
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coordinate system the inverse problem becomes a direct pro-
blem. Our results for thin bodies at 'ow Mach numbers show
there is a pressure minimum on the bodies, which can imply
flow separation in some cases.
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Supersonic Inviscid Flow—
A Three-Dimensional Characteristics Approach
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Supersonic mvisaid faw aver nonaxisymmetric bodies 1s considered. A new version of the
method of reference planes 1s used. In this version, a near characteristics-streamlines coor-
dinate system and a highly efficient numerical integration scheme is developed. The CFL con-
dition is rigorously satisfied on the flow. Several sample calculations are presented. ¢ 1987

Academic Press, Ine

1. INTRODUCTION

The method of characteristics for three-dimensional flows has been developed in
a number of ways. Surveys of this method have been given [1,2,3], and the
leading approaches have been compared [4]. The main advantages of such
methods lie in their intrinsic use of characteristics as well as their accurate
calculation of shockwaves. Generally these methods, which require consideration of
characteristic conoids and bicharacteristics, are regarded as complex and com-
putationally incfficient compared to the more popular finite difference shock captur-
ing and shock fitting methods, e.g., [5,6,7].

Another class of schemes allied to the characteristics method but much simpler to
apply is generically referred to as reference plane methods [8-12,1]. Another
designation is method of near characteristics. a terminology which reflects the idea
that characteristics are employed in an approximate fashion. In this paper we apply
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178
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SUPERSONIC INVISCID FLOW 179

a vanant of this approach to the problem of flow past nonaxisymmetric bodies. Our
approach is most closely related to that of Sauer [4] and Rakich [(12].

For the case treated here, flow past a body s divided into a set of azimuthal
planes. In cach plane a highly successful two-dimensional characteristics method
[13.14] s applied. The “cross-talk™ between such planes created by azimuthaij
derivatives and velocities then serve as forcing terms in the equations. Unlike carlier
treatments that we are familiar with we are able to rigorously consider domains of
dependence follow the Courant Friedrichs-Lewy (CFL) condition. The result ts a
mcthod which is extremely fast without loss of efficiency or accuracy.

2. FORMULATION

Since the form of the governing equations is not standard. we now outline their
development. Flow in cyvlindrical coordinates (x. r. ¢) 1s governed by the following

cquations:

V- (pu)=10. (1
Cu Cu wdiu 1ép

S Qe e Vi 2
cr cx r ¢ ncex

.o

C - war owm 1 ¢p

AT S (3)
Cr Cx réd r  paor

n e wow o ow 1 op

Ut = - — (4}

In addition to the continuity (1) and momentum cquations (2), (3). (4). we have
Bernoulh's relation

o 22l 2 2
et wrotw @@ My 1 3)
2 -1 2 y-1
/ /
The gas is specified by the state equation
Lo 'S = constant, (61
Iy
where the entropy S satisfies
u-Vs=0. (7

between shocks while (5) is also valid across shocks [15]. We normalize w1, w.
and the speed of sound a by the upstream speed of sound a,; x, r by the body
length: p by its upstream value g2 p by ypoand Sis replaced by (S 8,) R where
R is the universal gas constant.
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We introduce

O(x.r. ¢)=tan ' (;) (8)

the flow deflection angle in the projected plane, ¢ = constant. Similarly

1
wlx,r,¢)=sin ' (V*) (9)

is the projected flow Mach angle, where

M= (10)
—

In Appendix A 1t is shown

sin2u/d, S d., 4
d, (0t P =+ —; T

G, F(anOtan u+ G.yd, r
tan 0 + tan y r’

(1)

where

- -

C'id, =— 4 tan(0+ p)— (12)
X or

denotes differentiation in the ' -directions, 1.c., in the near charactenistic direc-
tions. ) + P(u) are the corresponding “Riemann invariants.” The various terms
appearing in (11) are defined in Appendix A. In what foliows we also use

7 y—1 7= 11+’
n:Inp:“ilIn(l+'TM(2,)/<I+7—(U)—S—In‘,’. (13)

sin’

where ¢ = w/g. The second form for o in (13) follows from (5) and (6). It should be
noted that for axisymmetric flow, we have w =0,=0,=0. and (11) reduces to the
appropriate axisymmetric equations.

Next we define new coordinates (x, 8, {) such that

r,=x, tan(0 + u), rp=xgtan 0, { = ¢. (14)

This mapping is further tixed by the condition at the body

x(x=0,80 =4 (135)

P . e = e
’I (:' s -d‘. ’-\"’( "’ Yy
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and the condition that the shock have unit slope at each constant { plane, ie.
2
o (to)
cp
at the shock. Under this transformation the C* form of (11) becomes
sinu /S H G, - (tan O tap u+ Gohr,
R: - ;(_1 7)+’l / ,_" “7)
2 -l tan 0 + tan u r
while the € form
DR - sin 2/} ( L)_S ,, QII_) G+ tan0tan o+ G, Bi (s
2 AR tan U - tan r
where differentiation in ¢ direction 15 now given by,
¢ Qtan b r ¢
Do oo — 2
Cx tandAtanurgcp
As shown in Appendix B the ¢ and O derivatives are related by
-.(— A tan x)x(fca)+(anf0+ ) xo-r v (¢ cff) . (; (19
Co (tan 0 - tan(t + p)) v, v, N
If we combine (17) and (18). then
vosin2u ]S, I, .
R, =1l rlun()lun/:)\—’ 5 -—<—-._|4"H“H’
T - L /
SN sl W Sy N
?'7(I|'+‘ > (ﬁT) (20
where
. P I ' o
Fuo= 2| = i l‘H-’:‘—'IH(]-4 e
S 25t o . 2N g
The entropy equation as shown mn Appendix A s now
5 N o
S, — = SV (2
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while the ¢ component of the momentum equation is

sin? p cos 0 w
o Wy+—m
wr ¢ Xy pT e

w sin’ g cos O

RO
6, (1 +w7)—sin 0. (22)
,

7 Xp

With the use of (13) ¢ can be eliminated from (22) to give

Xy .
=wtan u P, — —- 0 +tan p P
Wy=wlan @y rcos(}(msm mnpb,)
tan” p X S o0 W, 5
e b [t (Se Moy (M S
l+tan“ufrcosO\ v+ -1 v
N w{w, +w’ sin b) (23)
rcosl ¢ | ‘ :

The dependent variables x, r, 0, . @, and S are determined by (14), (17). (18} or
(20), (21). and (23). On the body x, r, 0 are specified by the boundary conditions

Ma=0,0.0)=4. (24)

rx=0,B. =12 (25)

x=0,p.)=1tan '(%(/ﬁ.()). (26)
L0

In addition to the shock conditions, we also apply (16} at the shock.

3. NUMERICAL PROCEDURES

The following scheme is an extension of the one used in the axisymmetric casc
(13]. Each azimuthal section ({, =constant: k =1, 2,...) has the (x, ) grid shown
in Fig. 1. In the neighborhood of the tip. 0 < /i < f8,. the flow is taken as flow past a
cone. not necessarily circular. For f# > f#, a marching scheme described next s used.

Regard the flow as determined for all columns up to f# = f§, for all [, sections. We
first indicate how the flow is determined at the body of the 5, column. denoted by
a, in Fig. 1. When integrating in the C  direction as it explicitly appears in (18), we
trace this near characteristic back to the ff, |, column, the point A, in Fig. 1. Flow
variables at b, are found by a second order uccurate interpolation scheme.
derivatives are taken as the averages of the center differences at «, and at . All
other equations arc integrated by appropriate elementary grid points differences
since they only involve « and f§ derivatives. The values of the flow for the entire row
oi k=1.., of body points arc now itcrated until a convergence criterion is met.
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- C
0 O
shock b, _
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o, ¢

A 02
/] 4.C
0,

B, bt;dy Bnd Bn

— g

FiG. 1t ) coordmates.

Above the body, instead of the boundary conditions (14} (26) we have (14), (17).
Again values for an entire row are iterated together. We procced in this manner
until the point «,, of Fig. 1 is reached. At this point the ¢ ncar characteristic
strikes the shock before hitting the ff, | column. All remaining rows in f§, are now
iterated simultancously.

To consider stability denote the true Mach angle by ji. Tt then follows that

a’ sin”

Sin i = ——— = ——.
g +w 4w

and hence

At each constant { plane, the truc domain of dependence for the flow projected
onto that planc lics inside the domain of dependence determined by the two near
characteristics. As for the { derivatives, let b in Fig. 2 be the point to be considered,
and let &, and ¢, be the angles (in (x. r, @) space) between r,, and r,, and between
r, and r,,. We want &, > and &, > . This requirement is easily satisfied unless
the aspect ratio (the ratio of the largest to the smallest radius at the cross section) is
large, in which casc a smaller step size of ff is required.

1. 2. (. ) coordinates with corresponding angular value in (v, r, @) space

N N NN N N e e N T R PR A e e G T AT 5T G S T S P
thga.m@mﬁmﬁﬂmfﬁmmmm R TIT Gs




$an Vel v

NS

v

384 FONG AND SIROVICH

Some mention of the calculation over a noncircular cone 1s ordered. Near the tp
(0 1< B, ) at cach section (=, . we dpprmlmdu the flow as being the flow over
a circular cone with half angle 0, =tan '(f (i =f,..=2,)). We then compute the
rest of the Jow (fi > f,,) by integrating the (nonaxisymmtric) equations using the
numerical scheme described above. Note that flow over a noncircular cone is con-
stant along the shock and the body at each section = (. Hence we compute the
flow along the f§ direction unul this constancy condition is met within a prescribed
error tolerance.

Since many of the steps in our procedure are iterative, a good first approximation
can significantly accelerate convergence. To motivate our choice of a first
approximation observe that (17), (18), and (21) differ from axisymmetric flow in
the “second order”™ terms,

o

¢
1. -
o Co

where as (19) indicates. ¢'0¢ = O(&¢8). Thus if a body can be regarded as locally
axisymmetric  taking the flow as axissmmetric  should be an  exeellent
approximation. In any case locally axisymmetric flow is the first approximation
adopted by us.

4. RESULTS AND DISCUSSIONS

For purposes of exposition we have performed caleulations of flow cver bodies
with elliptical cross sections and azimuthal parabolic profiles. Relative few points.
planes. and iterations are needed to compute the entire flow field. ¢ =0, 7 and
¢=m/2, In'2 arc plancs of symmetry which dre n-t assumed in the calculations.
and arc used as a check on the correctness of the results. Throughout the entire
flow field. all grid points with such symmetry are found to have values in agreement
within the same order of magnitude as the prescribed error tolerance.

Figurc 3 shows the body and shock along the half planes ¢ =0 and ¢ = = for flow
at M, =2 over a body with 30% thickness at ¢ =0 and 20% thickness at ¢ =n 2.
To carry out this calculation we took 32 azimuthal sections cach having 164 gnid
points, 20 on the body. The result of reducing the number of azimuthal planes to 16
1s shown by v's and +s. ¥or calculations with the fine mesh size, the lines for ¢ =0
and ¢ = n arc indistinguishable in this figure. For calculations with the coarse mesh
size, + signifies a point at ¢ =0 and x significs a point at ¢ = . Each pair of +
and x appearing together in the figure have the same values of x and ff. and hence
they have the same flow values. Figure 4 shows the body and the shock for the
same flow along ¢ =n'4 and ¢ = 3n/4. Again. for calculations with the fine mesh
size. the lines for the two half planes are indistinguishable. For catculations with the
coarse mesh size, 4+ signifies a point at ¢ =z 4. and x significs a point at ¢ = 3 4.
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with each pair of + and x having the same x and fi In these two figures.
agreement is excellent with respect to both syoumetry and the different gnid sizes.

For the same flow, the pressure distribution on the body at ¢ - O, 7 4, 1. 3nd s
shown in Fig. 5. For ¢ =0, n the agreement s excellent. For ¢ =n 4, 3z 4 the
agreement 1s good with respect to symmetry, but there s a small discrepancy
between the coarse and the fine grid calculations. Since the gnd size in the [ diree-
tion is quite large. about /0, the discrepancy 1s certamly tolerable.

The cross flow on the body is given in Fig. 6. As the figure shows, the cross flow
vanishes in the symmetry plane. At ¢ = 74, 3 4, there is some discrepancy between
the coarse and fine grid calculations due to the largeness of the { grid size. Figure 7
shows that cross flow at the shock. The results are again quite good. Figures 8 and
9 show the same body at two degree angle of attack traveling at M, = 2

As an indication of the computational speed. we mention that for the whose-flow
field, the time of a typical calculation 1s roughly 10 sec on an iBM 3081

APPENDIX AL EQUATIONS IN Nosavisvsst rrie Frow

. We wish to express the governing equations (1) (7)1 near characteristios form.
~Since p=p(p.S) using (6) and (7). (1) becomes

u-Vp i pVou o (A1)
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Denote

q=(ur) and V.

1f
P
“‘.JI ~
-
::’[ -
W

Then (2) and (31 become

. !
qV.q+-V.p=1L
)

where

f wo ¢ ()u")
merlo)

389

(A2)

In a constant half-plane with 0 and j defined by (&) and (9). let t({}) be the
tangent. and n(#/) be the normal on the projected streamline. Denote s and n as the

are length and normal coordinate. Then (A1) becomes

op 4 kL wip oypro oypdws
S (T Y (i
Oy s n roCe ' roce

and (A2) becomes

Gy Lep WG
,_I ‘_/_-__I —sml)
Cypes r 4'¢ r

LA G swg WS
g — - = =—— = +—cos (.
s opin rocegor

Denote o = In p and o = w'q. Rearranging (A3). (A4). and (AS).

o 1 oy (ML 1) T /la |
( + . - - )+"“
ST el

F.

NV N T

where £, = (o0 ricos 0 (writ,,

| ) sin ¢

Foev-w, t —a,+ (1 + @)
or !
(A6) can then be wrnitten as
sin 2 Fycos ¥ 1 sinp
d, 0+ /l/A(T: ’ A/ - ‘lJ‘.
2 sin(f + )

where o, s given an (12).
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Rewriting (5). we have
o] i -1 1
> / > 2 !
a A(\l HEm (MG ))/( EES Smjﬂ)

T N B
:<l+'——~M;.) <1+’—— il ) (AK)
2 . 2 osinTp

- Combining (6), (AR). and p = vpia’. we then obtain (13). Rearranging (AR), we get

2

v LUV N A )
u-‘:«)’(l + /W(,) <sm‘/1+——7—(l #w')).
Now define

- R
W ln<l + L—‘)*(AL“, '\\“)). (A9)

Since the derivative of the Pranddd function s

. PO L
Pl =cos (' S s /1).

“ J

using (131, (A7) becomes (1) with

0
(i,:m(m~ e, (A1)
cos
R w, +{w3)a
G.=tanp (m’ tan 0 + ~[—”-(——'——¢) (AL
- cos )

Next. we wish to express the entropy equation {7)in a form uscful to us {7) can
be written as
WS
q-V.)S+—-——=0
. r ¢

In the natural coordinates s and n, this becomes

&S~ w s ALY
e e (AT
1% r o¢

If we define (x, 1. $) by (14) and use the fact that s is the arc length, we get

¢ | ¢ 1 ¢ ocosth ¢
. T Y T TR T T i T A T (A13)
s ()t o a4 tan” m'-oft g O

(A12) then becomes (21).
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Now we give a similar trcatment for the ¢ momentum ecquation (4). This can be
written as

ol ép wew e

* In natural coordinates, this becomes

Cgery a” o - gwlqu L wsin g

— +t— - — - (
cs o oyr e ro ¢ f r

Using (A4) and (A13), this then becomes (22}

APPENDIX B. COORDINATE TRANSFORMATION

For v=xtx .o r=r(x B 00 ¢ pla. i 2). using the chain rule we obtain

S T U U S T )
r, r/), r If‘ /f’ /f’:’ . [
lvl’v ¢) I (4/’ \/\ ;y : o N
{
Since ¢ = and ¢, =¢,=0. ¢. =1 3
X%, A, l o X, 0 I 0 —x.
Bob B =gl o oo n
a4, 0 0 D 0 0 1
where
D=x,ry—r,x,=tan 0 —tan(f + u)y x, x,
Then
¢ 3 o p c o1 ( ¢ F‘) \
TTT XS ey el BT r.=; 1 P
Cx ' D\ oy cf
~ + —— ﬁ + ‘ :
— =X,z Py — 'y — Ny, = | 4
o ca op n( "oy op 3
1]
l.' { /‘ 3 . f []
— =%, —+ P+ .= )
g 0 R BN .
\
( rpx A ngr WOloo) 4 (rox, — xor  Mecpy ¢
- D o )
(ro tand v )y o)+ (tan(0 + gy ro) \»’1(’/,?/;)+ é "
) D (R'JA :
i
{
»
®
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Exact and Approximate Gas Dynamics
Using the Tangent Gas

PraBiR K. DARIPA*
Division of Engincering, Brown University, Providence, Rhode Island 02912
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LAWRENCE SIROVICH
Division of Applicd Mathematics, Brown University, Providence. Rhode Island 02912

Received November 13, 1984; revised March 1. 1985

Steady. inviserd, arrolational flow of a perfect pas in two dimensions s considered in the
tangent gas approximation. A fast and accurate method of solution is proposed and solved
numerically. Comparison of tangent gas and exact flows are presented. Tangent gas solutions
when used as the first step in the iterative solution of the exact flowfield are shown to give
substantial reduction in computational ime. ¢ 1986 Academic Press. Tnc

1. INTRODUCTION

The computation of steady flow past an airfoil is crucial to the determination of
acrodynamic characteristics such as lift. drag and moment coefficients. In many
instances potential theory suffices. Neglecting viscosity it is exact for shockless flow
and is a satisfactory approximation for transonic flow with weak shocks. For two
dimensions the calculations are usually carried out in a conformally mapped plaae,
an approach used by Sells [1], Garabedian and Korn [2]. and Jameson [3].
Similar techniques have been used for multi-element airfoils {4, 5] and nacelies
[6] Three dimensional potential theory has been treated by Caughey [7].

Since the equations arc nonlinear, the potential equation is usually solved
iteratively. In some instances the polential ecquation does not admit unique
solutions {8-107 and in addition becomes a poor approximation for increasingly
strong shock strengths. As a result more recent investigations treat the full Euler
cquations. Finite difference and finite volume methods have been successfully
implemented by Jameson {117 and Lerat and Sides’ {12]. Because of slow rates of
conmvergence considerable effort has been directed towards accelerating  these
methods [13]. Convergence rates depend on factors such as the grid, initial guess,
time stepping scheme and method of solution.

* Present address: Courant Institute of Mathematcal Sciences. 251 Mercer Street. New York,
NY 10012
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EXACT AND APPROXIMATE GAS DYNAMICS 401

In this paper we present a set of flow dependent grid systems and initial flowfield
guesses which substantially improve convergence rates when applied to the Euler
equations for flows past an airfoil. These arc based on solution of the tangent gas
equations introduced by Chaplygin [14] and further developed by von Kiarmin
and Tsien [15, 16].

Woods [17], who extensively studied these equations, proposed certain iterative
methods for solving both the analysis and design problems for flows past an airfoil.
The methods developed in this paper are substantially different and offer a method
for a fast and accurate solution to a problem. (We have also addressed the inverse
problem and presented an exact method for its solution [18].)

As will be seen the tangent gas solution hies close to the Euler solution even for
high subcritical flows. This is used as a basis for iterative solution of Euler equation
for flows past an airfoil by means of FLOS52S (written by A. Jameson, E. Turkel
and M. Salas). The grid used is the natural onc generated by the tangent gas
equations and the starting guess is the tangent gas solution. As will be seen this
results in substantial computational reduction even for supercritical flows.

2. Basic EQUATIONS

Consider steady. invisad, irrotational flow of a perfect gas in two dimensions,
then in the usual notation

Voipgl=0. Vxg=0. pp=1L ()

The vanables are normalized by their free stream values and linear dimensions by
an appropriate lengthscale.
The stream function ¥ and potential ¢ are introduced in the usual way

pg=cVx(yk). ¢=Vg, (2)

where k denotes a vector perpendicular to the plane of motion. The constant ¢ has
been introduced for later purposes.

If s and n are local distances along streamhnes and potential lines, respectively,
(2} can be written as

l .
dy +»idn:—<(1¢+ i < (/d/). {3)
q P

If equations can be derived that map the space of ¢, ¥ on to the space of the
velocity magnitude and direction (¢. #), then one can take advantage of the fact
that the tangert of the flow direction, tan 6, is the same as the slope of the airfoil
surface where = 0. Then if ¢ vs. # can be found corresponding to ¢ =0 on ¢, ¥
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plane, the state of flow on the airfoil surface will be known. Toward this end. we
write Eq. (3) alternatively as

3

0 .
::dx+id}‘:(—<d¢+f(‘d‘l’>7 (4)
q 4

N where v, » are cartesian coordinates and ) flow direction angle. With ¢ and 0 as
independent variables, it is easy to derive from (4)

]
I
u 1M
b=t b= (5)
P Py
If dependent and independent variables are interchanged and the Prandtl Meyer
: function
' i
R
i v= [P M (6)
S q
’ 1s introduced in place of ¢, then
1
hy - == v, =0, 0,+K(v)v,=0. (7)

Av)
The + sign refers to subsonic and supersonic conditions, respectively and
Ky ff —v-  / (8)
! ;'((/(M)) ’
where
(=11 A3 (9)

Typical physical z{ = v + iv) and potential w(=¢ + i) plancs are shown in Fig. 1.
The wirfoil maps into o slhit in the w-plane. The gap BB in the potential planc
corresponds to /7 where circulation about the airfoil is - 1

The system (74 should be solved subject 1o the density speed relation obtained
from (1) and Bernoullr's relation

1 (/?
yML

= constant. (10)

/
2

TAaNGENT GAS AVPRONIMATION

Fguations o7 are nonlinear and are theicfore difficult 1o Yve. A good
approvimation to those cquations under certaun conditions can be obtained by

y
:

«’a - 2 MU o a a4 & A 8 & _CPIW.
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Frc 1. Airfoil in physical z-plane and potential w-plane.
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introducing the so-called “tangent gas approximation™ [17], in which the isentropic
rclation between p and p given in Eq. (1) is replaced by a tangent to the curve of p

1/p. This approximation is then given by

(p—l>=r(l—%)

p=p8,

With the constant ¢ in (8) taken as

From (10) we obtain

c=1fB,,
we obtain from (8)
Kv)=1.
Then for subsonic flow (7) becomes the Cauchy Piemann equations

Y

04—v, =0, O, +v,=0

()

(13)

(14

(15)

Equations (15) arc exact for the tangent gas and also for mcompressible flow
(M = 0). In addition, it will be seen that it can be a very good approximation to the
original equations. In the above fermulation the tangency point has been taken to

the freestream

(16)

.‘f“f «
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With this selection of tangency point the following relations hold for the tangent
gas [17]

5

4 = sinh \ * cosech(v* - v), B = tanh(v* v), = m (17)

where the contant v* 1s given by

t1%8)

M,
i ﬁ:)

From (6) it 1s seen that v, =0 and at stagnation points {(denoted by zero subscript)

v :ln(

~

PTTYR

{19)

Vg = — U C

. 4. SOt UTION PROCEDURE

It follows from (15} that

T = v o4 i) (20)

1s an analytic function of w. [t will be useful to map the w(=¢ + iyy) plane onto the
plane of a new vanablec o = |g| ¢” such that the body in the w-planc which 15 a sht
(a part of the line ¢ =0) maps onto the unit circle 0 = ¢, 0 < 2 < 2n and the rest of
the w-plane maps onto the exterior of the unit circle. This 1s accomplished by

I exy

w=a{ge ™ +a e} + 2asma,ln(age ) (21

which allows for angle of attack and carculation about an airfoil suiface, to be
related to |a| = 1. Circulation — /" is related to the constant a by

I'=4nasin 2,. (22)

Here constants a and z, arc as yct unknowns.
From (21) onc obtains

dw

da

= —aet™1l -0 "Ye -0 ') 23

On the body 0 =¢”: 0 <2< 2n, ¢ and ¢ are given by

Py = 2alcos(x — ay) — (2~ 2,) sin %], Y(x)=0. (24)

x,in (23) is given by
2, =1+ 21, (25)
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Thus the rear and front stagnation points map into ¢ = | and o = ¢'™, respectively.
Since t 1s an analytic function of g, a convenient representation of t(g) is given
by (see also Ref. [19])
exp(tioN=(l—-0 ') “(e "=a ") 'cxp( Y oc,0 ">, (26) L
n U0 .
where & =0, /n, 0, the trailing edge angle. The complex constants ¢, are represented :
by, N
c,=A,+1iB,. (27)
Note that (26) contains the Kutta condition. Two Schwarz Christoffel factors .
appear in (26) because of the discontinuity in ¢ at the two stagnation points. X
From (26) the relationship between upstream flow direction 0, and %, is given -
by ;
0, =B,+n+2x,. (28)
o 1
The frec stream condition is given by '.0
'I
Ae=0. (29) -
]
On the unit circle, (26) reduces to %
exp(t(e”)):(i(oz)v’""’exp( Y e ) (30) ¢
n u :
where X
o N
G(x)=12sin5|  |2(sin 2+ sin(x ~ 2,)) L (31)
1 . m , '
ﬂ(1)=§(1-0)(n—a)+ 245 ) -l —2)+ %, (32) -
U —2,) in (32) is the unit step function. The tangent angle 6, of the body is X )
related to 0 by
0(2)=04(x) — 1 — nl(x--x,). (33) T
Separation of (30) into real and imaginary parts leads to .
Vo) = Z (A, cos nx+ B, sin nx) (34) A
n -0
. L\
Mx) = Z (B, cosnx— A, sinnx}+ n+a, (35) ::
n 0 -
e,
¢
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where
va)= —v(a) - In G(a), (36)
and
1 .
(7(0:):(),,((1)~§(I~(>)(n-—a) ,(1+g>_ (37)

The closure condition of the airfoil is refated to the leading terms of the senies by
(Appendix A).

A;=(1-8)—(1=f,)2sin" 1, (38)
B,=(1—f,)sin 2x,. (39)

5. ANALYSIS (DIRECT) PROBIFM

Here the flow past an airfoil is sought. An iterative method of solution similar to
the one for incompressible flow (15} is found to converge with good accuracy. The
method of solution goes as follows.

An initial estimate of arclength as a function of circle angle, s(x), (e.g.. of a flat
platc in incompressible flow) is made. From the given contour f4(s), @4(x) is
estimated and @(«) is calculated from (37). %, 18 obtained from (28). After the
closure conditions (38) and (39) arc imposed, a new form of J(x) is generated and
then its conjugate ¥(x) is obtained from (34). v(x) is then obtained from (36) and
speed ¢(«) is obtained from (17). The updated value of s(x) is now obtained from
g(x) using the relation

Loy (1 dg
s(z)-J‘na i dx

iy r [sin 2y + sin{x — x,)} da. (40)
0 q
where the constant « is now given by
s2n) = 1. (41)

The above procedure is repeated until convergence is obtained. The criterion for
convergence was taken to be that maximum difference in arc-length between suc-
cessive iterations be O(10 ©). Typically the number of iterations required was no
more than ecight and the computation time was roughly one second on an
IBM 3081 with 128 points tuken on the unit circle. The actual numerical calculation
is facilitated through the use of the fust fourier transform (FFT) and the fact that
(34) and (35) are conjugate fourier series. The fourier constants, ¢,, are also
obtained easily during FFT which are used for generating grids.
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9 6. GRID GENERATION
)
4 The physical plane is related to the circle plane through [17]
1 dw dw
Iz = 1+p,)e  —do—(1—-f,)e " — doy. 42
‘ 2[3,,.{( +B.)e el (1-f,)e e 0} (42)
) Here an overbar denotes complex conjugate. Note that for incompressible flow - is
an analytic function of g, as it should be.
From (21) and (26) it is casily scen that
c'iw= —ae (1 - ") ”cxp(i c, o " (43)
(10. n—0 " ' ’

1vvv[vvv1(1fvxT‘Tﬁ_Y—‘r‘r1_v—m
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Fig. 2. Comparison of tangent gas solubon and Euler solution over NACA 0012 Airforl at
Mach = 0.6 and angle of attack =: 0.0. -, tangent gas solution; + + +, Euler solution.
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and

e—r if;. ﬁae+lao“ —0g l)loO(() " _ g I)Zexp(_ Z c,0 n>. (44)
do n=0

Equations (42), (43) and (44) are used to map the circle plane into physical plane
and the flowfield variables are obtained from (26), (17), and (18).

Observe that the grid generated is flow dependent. Since the mapping from o
plane to z-plane is not conformal except when M =0, the grid generated in physical
plane is not in general orthogonal. The grid produced by this method appears to be
more natural than the incompressible conformal grid.

’
¢

-10

"'YIVVTT'VYTﬁTVYY_'_T‘T'v-v‘ﬁ—

FiG. 3. Comparison of 1angent gas solution and Euler solution over NACA 0012 Arrforl at Mach 0.7
and angle of attack = 0.0. —, tangent gas solution; + + 4+, Euler solution.
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7. RESULTS

Figures 2-5 compare the tangent gas solution with the converged Euler solution
(as calculated by FLOS2S). The tangent gas solution is secen to be remarkably
accurate cven at the near critical case depicted in Fig. 3 and the slightly critical case
shown in Fig. 4. Even when a clear shock is present as in Fig. 5, the tangent gas
solution only fails in a relatively small neighborhood of the shock.

Figures 6 and 7 indicate for two typical cases the number of iterative cycles to
achieve a convergence criterion. The criterion used is the enthalpy error introduced
by Jameson [20]. In cach figure we indicate the number iterations required to
reach the indicated criterion. The first column of cach figure refers to use of the
tangent gas grid and the tangent gas solution as a starting flow. The second column

} 1 T —_

L —
s 1
0 —
b
}
| i 1 1
0 0z 04 06 06 i

i

[VRVEY ‘r’* - —T . ! ’}J
000 T
0.0% .- - ‘j
00 B e e . - .__._‘._i
g 1€ (LY Y
X

Fig. 4. Companson of tangent gas solution and Fuler solution over NACA 012 Asrforl o
Mach - 0.50 and angle of attack 5.0 degrees . tangent gas solutton, + 4+ . Euler solution
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gives the analogous values using the conventional grid, viz, that generated by con-
formal mapping and a uniform flowfield as the starting guess. (Little change in con-
vergence was observed if incompressible flow was taken as the initial guess.) As is
seen the reduction in cycles is substantial. In this same vein if the convergence
criterion is reduced by a factor of 10 the comparison becomes more dramatic  the
tangent gas approach leads to a 10-fold reduction in cycles over the usual approach.

In order to distinguish whether the grid or the tangent gas approximation was
more significant in speeding convergence, we also ran the programs using the
tangent gas grid with a uniform first guess. Although some improvement resulted,
the clear implication from this was that the tangent gas solution as a first guess was
the most important factor.

-

TN T BTN IR I

02 04 06 08

Fi. 5. Comparison of tangent gas solution and Fuler solution over NACA 0012 Airfoil at
Mach = 0.758 and angle of attack = 0.14 degrees. — -, tangent gas solution; ( +, ) Euler solution; +.
upper surface; (0, lower surface.
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Fi. 6. Euler solution (FLO52S) for near critical flow past an NACA 0012 Airfoil at Mach 0.50 and
angle of attack = S0 degrees. (+, O): grid, 64+32; grid type, tangent; initial guess. tangent; number of
cyclees, 344, (—-): grid, 64+32; grid type, conformal; initial guess, uniform; number of cycles 913.
Average crror in enthalpy. 0.1385E-03. +, upper surface; O, lower surface.
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Fi. 7. Euler solution (FLOS2S) for supercritical flow past an NACA 0012 Airfoil at Mach 0.758 and
angle of attack = 0.14 degrees. (+, O): grid, 64 32; grid type, tangent; initial guess, tangent; number of
cycles, 381. (—-—): grid, 64¢32; grid type, conformal; initial guess, uniform: number of cycles. 715.
Average error in enthalpy, 0.2454E-03. +, upper surface: O, fower surface.
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APPENDIX A: CLOSURE CONDITIONS

If C is a closed contour around an airfoil, the the closure condition is

§ d-=0.

Hence from (42) we obtain (see also Ref. [17])

' u+ﬂ)§e——m_u—ﬁ)§ 53w (A2)

From (43) and (44) it follows

. o dw= —ge'tho am[] +£'.+ Ofo Z)J (A3)
do g
- : K ’
¢ :a_,".z +ae'™ ”“’[~<’ gy +0(G -)] (A4)
dao

Ki=c,+6—1, Ki=(14+84¢,)e " 420 (AS)

Use of residue theorem, (A3) and (A4) reduces (A2) to
(14 )e™ K, =(1—-f,)e *K,. (A6)
Equating real and imaginary parts we obtain
(Ay+d—1)cosay= B, sinag, (A, +5+1 -2, )sinay= B, cosa,. (A7)
From (A7) we obtain
A=(1=6)—(1—-f,)2sin’ay, B, =(1 —f)sin 2a,. (A8)
For the incompressible case (8, =1} this reduces to

= (1 -9), B, =0. (A9)
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The mverse problem in the tangent gas approximation s considered. An exact method for
designing airfoils is presented. Constraints on the speed distnibution are casily implemented. A
simple numenical algorithm which is fast and accurate s presented. Comparison of designed
airtoils using the tangent gas method with exact Euler results 1 found to be excellent for sub-
cntical Mows. 1986 Acadermic Press, Inc

1. INTRODUCTION

As is well known (sec [1]) certain types of pressure distributions achieve
aerodynamically desirabie features such as delay of transition and boundary layer
control. The determination of an unknown airfoil from a specified pressure dis-
tribution is known as the inverse problem.

Numerous methods for the two dimensional incompressible case exist [2-5].
Compressible inverse methods are for the most part based on some kind of iterative
procedure, relying on either a Dirichlet or Neumann-type boundary condition. In
the Dirichlet formulation [6-11] a sequence of boundary value problems for the
velocity potential, with wing gecometry updated at cach step, is solved. The updated
condition ariscs from the normal velocity resulting at each unconverged step. For
the Neumann formulation [12 157 a sequence of analysis problems are solved over
a corresponding scries of geometries. Each gecometry is provided by some rational
method depending on the error being driven to zero. A complete survey of such
methods has been given by Slooff [ 16].

In this paper we present an exact method for two-dimensional subsonic flow
within the hmitations of the tangent gas approximation [17 19]. Woods [20]
extensively studied these equations and proposed certain iterative methods for solv-
ing both the analysis and inverse problems. We presented a substantially different
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312 DARIPA AND SIROVICH

method for the analvsis problem [21]. The inverse method developed here 1s non-
iterative and exact.

As is shown in [21] the tangent gas solution lies very close to the Euler solution
even for high subcritical flows. Therefore the design of an airfoil in this regime by
our method should be an almost correct airfoil.

In this paper, we have been able to show that the direct Euler solution over the
designed airfoil is very close to the input speed distribution. Moreover, the con-
straints necessitated by upstream condition and closure requirements are very casily
incorporated.

Y Basic EQUATIONS

Consider steady two-dimensional flow, then in the usual notation

Vopgr - 0. Vg0 popo |l ()

I'he variables dre normalized by their free stream values and hinear dimensions by
an appropriate length scale.
The stream function ¢ and potential ¢ are introduced 1in the usual way

l'(l (\v x (U/l\ ). q-= \"t/’. ‘: )

where k denotes a vector perpendicular to the plane of motion. The constant ¢ has
been introduced for later purposes.

If s and n are local distances along streamhines and potential lines, respectively.
(2) can be written as

l B
ds +l(/n:-((/¢:+i(—(/d/>. (3)
q P
Alternately. we can write
dz = dx + idy ::(I—((l¢)+i‘—.(/w>. (4)
d I

where v and v are cartesian coordinates and ¢ the flow angle. If ¢ and ¢ are taken
as independent variables, then it is casy to derive from (4) that

« -
¢ ‘U’q- f,os o T S/ (3}
‘7
If dependent and independent variables are interchanged and the Prandtl Meyer

function

g s d
vl A (0)
- ‘l
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1s ntroduced in place of ¢, then
{ ——— v =) 0,+ Kivyv, =0

The + sign refers to subsonic and supersonic conditions, respectively.

8
KNevy = ff o —oeme
Mgt M
where
[ R I ¥ A (9)
‘-
Typical physical z( = x +4v) and potential w( = ¢ + nf) planes are shown in Fig. 1. -
The airfoil maps into a slit in the w plane. The gap BB in the potental plane S
corresponds to 1 where circulation about the airfoil 1s - 7
The system (7) 15 augmented by the density speed relation obtained from (1) and .
Bernoulli's relation
g I -dp
{‘ 4= < | il constant. (10 o
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314 DARIPA AND SIROVICH

where circulation — 7" is related to the constant a by
I'=4na s a,. (12)
From (11) onc obtains

dw

E:*(u‘ (- We *—a ') (13)
On the body g = ¢ (0 <a < 2mr), ¢ and ¢ arc given by

@¢(a) = 2afcos(x — a,) — (& — a,) sin a,, |, Y(x)=0. (14)
o, in (13) is given by

2, =T 2o, (15)

Thus the rear and front stagnation points map into ¢ =1 and o = ¢, respec-
tively.

4. DETERMINATION OF SPeeD IN THE CIRCLE PrLANE

Equation (2) suggests that speed ¢ (s) on the body is related to the potential
function ¢ by

g (s)ds = {d|. (16)
where the subscript s refers to surface values. Equation (14) reduces (16) to
g As)ds = 2alsin 2, + sindr - 2,)f dx. 0<2<2n, (17)

which 15 simply an ordinary differential equation for s(x). To integrate (17). we
introduce

dQ--d | gAs ) dy'. (1%)
Yo
from which,
Ola) = Qs(a))
2a[ 7 sin x, 4 cos 2, cos{a x,) ] O<la< x,
- {2(1[ 2(a, s11 %, 4 Cos 2g) - {asin xg, - cos{a — xy) —COS Ay ], A, L 2 € 2n

(19)

Obscrve that
Qs - 1) Ralx, Sina, + Cos 2,), Ofs =5,) = 2alx, sinz, + 2cosx,) (20)

FTO NP TENF TN NP AR SF N
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I is related to Q(s=1) and Q(s=s,) by
=20(s=5;)— Q(s=1)=4nasin x,. (21)

Here s, denotes the distance of the front stagnation point from the upperside of the
trailing edge. Q(s =1), Q(s=s), and hence /" are known from the given surface
speed distribution ¢ ().

From (20) and (21)

s=1) 2
QLSI,——):; (2 + coOt ag). (22)

After (22) 1s solved for a, we obtain the constant g from (21). Next Q(z) 1S com-
puted from (19) and s(x) is obtained by inverting (18)

sta)=Q "(Qtx)) (23)

and ¢ (x) = ¢,(s(2)} 1s obtained from (17).

Thus far our deliberations are exact. Ideally system (7) should now be solved to
determine the body shape. For the tangent gas approximation considered next the
problem can be solved by an exact method similar to the one in the incompressible
case [4].

S. TANGENT (GAS APPROXIMATION

The tangent gas approximation is given by (see {21])

1
(/lﬂl):‘,'(l »~). (24)
‘)/
From (10) we obtain
f ,
=—. 25
P 5 (25)

where the subscript ¢ denotes a suitable reference point. With the constant ¢ in (8)
taken as

c=1'f,. (26)
we obtamn from ()

K(v)= L (27)
Then for subsomie flow the system (7) becomes the Cauchy Riemann equations

, v, =0, 0, +v, 0O (28}

¢
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316 DARIPA AND SIROVICH

Equations (28) are exact for both the tangent gas and also for incompressible flow
(M =0). Henceforth, we take the tangency point (p,. !/p,) to be the free stream,

pa=pr.=1 p.=p, =1 (29)

With this selection the following relations hold [21]

¢ = sinh v* cosech(v* - v), fi=tanh(v* —v), C (30)

"1 —f,cothy’

where the constant v* is given by

M,
v =t () (31)

From (6) it is seen that v, =0 and at a stagnation point (denoted by zero sub-
script)

By

Vo= — L o= m—‘

s

4

(32)

It follows from (28) that
= —v+if) (33)

is an analytic function of w and hence of o. A convenient represcritation of t(a) is
given by (see also [8]),

exp(t(o))=(l-c ') (¢ " =0 ') cxp( Y c,0 ">. (34)

nooQ
where & = 6),/n, 01, the trailing edge angle. The complex constants ¢, arc denoted by
":::An+i8n' (35)

Note that (34) contains the Kutta condition. Two Schwarz- Christoffel factors
appear in (33) because of the discontinuity in 0 at the two stagnation points. On
the unit circle, (33) reduces to

cxp(r(c"))zG(a)('"“"cxp( Y e, “"). (36)
i 4
where
o |
G(x) = ZSinE [2(sin oo + sinfax — a1}, (37)
1 3 n
n(a) = 5(] —O0)m—2)+ (a( + ;) —alllx—2)+ 24 (38)

g
3
~
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~
~
®
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U(a—a,) in (38) is the unit step function. The tangent angle 0, at the body is
related to 0 by

O(a)=0g(a) - —alU(o —a,) (39)

Separation of (36) into real and imaginary parts leads to

#a)= Y (A,cosna+ B,sin na) (40)
n=0
and
O(a)= Z (B,cosna— A, sinnx)+n+a, (41)
n=0
where
#a) = —v(a) — In G(«) (42)
and
1 . n
(7(0:):(),,(@:)—5(1—0)(n—a)—(a+5>. (43)
Notice from (34) the upstrcam flow direction 0, is related to B, by
0, =By+ 1+ 2, (44)
where B, is given by
1 2n
B(,=—I Do) da— 70— . (45)
21 o

The free stream condition (g, = 1) is given by

Ae=0. (46)

The condition for closure of the airfoil is related to the leading terms of the series
(40) and (41) by (sec [21])

A, =(1-6)—(1—-B,)2sin?a, (47)
B,=(1-4,)sin 2u,. (48)

6. BEHAVIOUR AT STAGNATION POINTS

It is both interesting and useful to study the behavior of speed at the stagnation
points. From (30) and (42) we obtain

2, ¢ "
“T1Y8, G

for ¢,~0. (49)
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318 DARIPA AND SIROVICH
From (37)
1 {a"(Z €os o) for a~0
G(a) o, —al(2 cos ap)’ for a~ua,.

From (49) and (50)

. (K& for a~0
YK e, —af for a~a,
where
2 o v = 2 o v
=T fﬂ, e =92 cos ), K,= l fﬁ’i e M =)(2 cos agy)’.

If 2, and «, are close to a~0, then from (51) we obtain

o In(2,/2,)

From (51), (52), and (53) we obtain

~ q,\(ql) l /;;
(a=0)~ —
v (a ) ln( < 0

(2 cos ) ’>

and

., 144,
%, %) 28,

T(r=2)~ ~ln< - (2 cos 1) ").

where 2, is close 0 x, and x, is close 1o zero.

7. METHOD OF SOLUTION

The speed distribution ¢,(s) is usually given at a finite number of points 5,. /=
0, 1, 2,.., in the interval 0 < s < 1. From this the integral in Eq. (18) can be evaluated
to obtain Q(s,) as a function of ¢ (s,). Next the airculation /7 is computed from the

relation
I'=20(s=ys,) Qs =1).

Equation (22) is then solved to obtain x,. The second equation of (20) is next used
to calculate the value of the constant ¢. In general 2, and @ so obtained do not
satisfy the first equation of (20) exactly because %, is calculated numerically. If

-1
QU= 1) Q15— 8, )= | g, ds

\
!

aB Bab Bab Bob (o8 0,0 0.0 gt 8o 8a¢ RV ho¥ 657 3oV F5¥ oV Ja¥ Ut Ne' Na' g

(50)

(51)

(54)
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differs slightly from Q(s=1s,) — 4na sin a, (see Eq. (21)), the speed ¢ (s) is modified
by a constant factor over the interval s, <s <1 to adjust the above integral to this
value.

The values of J(«,) at N (a power of 2) equally spaced points on the unit circle,
a,=2nj/N, j=0, 1,.., N, are calculated using Eq. (19). The value of speed §,(«,) at
the grid points a, are now easily obtained by interpolation since g (s,) is already
known as a function of Q(s,).

The approximate value of the trailing edge angle & is obtained from Eq. (53).
7.(a) is then obtained from Egs. (42), (37), and (30) and its value at a stagnation
point is calculated from (54) and (55). If ¥ () satisfies the constraints (46), (47),
and (48) then the conjugate function f(a) is calculated from (41) using the fast
fourier transform. In case ¥ (x) does not satisfy the constraints, the prescribed speed
distribution must be modified. This is discussed in the next section.

The value of the constant B, in (41) which is also needed to calculate M) is
obtained from (44) by setting the free stream direction 0, (o zcro. The tangent
angle 8, at the body is now obtained from #(a) using the relation (43). The body
coordinates are then calculated from

~x (s
x(a =J :cos 0 yla) du, (56a)
o da
sy
,1'(ot)=J’ — sin O y(a) d2, (56b)
o (/1

where ds/da is given by

ds , {sin 2, + sin(o — 2, )|

— = 57
d q.(a) =7

The value of (57) at a stagnation point (x =0, 2 = x,) is given by (sec Eq. (51))

cos %,

2u Lo for x=0
ds K,
& (58)
dx cos x,,

2a e for v =a,.

Instead of calculating o from Eq. (53) as was done above, onc can prescribe 8
because the constraints (46), (47), and (48) depend on 4. Modification of the speed
distribution subject to these constraints will automatically satisfy the kg. (53)
because this equation is valid if the speed distribution is consistent with those con-
straints. In either case if ¥ (x) obtained from a given speed distribution docs not
satisfy the constraints then the prescribed speed distribution must be modified
according to the method discussed in the next section.

Even though the above method is exact theoretically. there are numerical sources
of error. These errors depend on the kind of interpolation and integration scheme,
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the number of data points, the number of grid points, the evaluation of «, f[rom (22)
and the use of the approximate expressions (53), (54), and (55) to calculate trailing
edge angle d, v (a =0), and ¥ (o = a,). respectively.

In view of the simplicity of the procedurc no attempt was made to incorporate
highly accurate computations. Simpson’s rule with evenly spaced grid points and
trapezoidal rule with unevenly spaced data points were used for integration. The
interpolation scheme used was lincar. The speed ¢,(s) was prescribed at 129
unevenly spaced data points on 0 < s < | and the number of grid points on the unit
circle was taken to be 128. «, was obtained within an accuracy of 10 ° by solving
Eq. (22) by regular falsi method and the trailing edge angle d used was calculated
by using the approximate relation (55).

The program was run on an IBM 3081 in single precision and the computation
time was about a half sccond in most cases.

8. MODIFICATION OF SPEED DISTRIBUTION

Constraints (46), (47), and (48) must be satisfied by the prescribed speed dis-
tribution to find a closed body solution. Therefore in general any arbitrary speed
distribution must be modified subject to these constraints. These constraints can be
written in terms of surface values v (x) given by

~‘ \\(Ijg/(l)(h:’—l’,. f 12038 (59)

T

where g (x) and P, arc given by (sce (40), (47), und (4X))

t, j=1
gla)= ( cos 1, j -2 (60)
sin a, /=3
and
1 0 ;1
} Po=( (1 -85 (1 i, )12sin" %, ;=2 (61)
(L f, s 2y, ;3

Linearity of (28) implies the following form of modification of prescribed values
() (see [4])

NP E2 R O A E2) (62;

& !

4-..-..

ety
o _fjf!-“!l‘ 4\\, AN
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where y,. A =1, 2, 3, arc constants to be determined and f,(a), k=1, 2,3, are
suitable correction terms. The correction terms can be set to zero outside a specified
interval (a,, «,) leaving speed distribution same as the prescribed one outside this
interval. This is extremely useful when designing an airfoil where in general no
modification of speed distribution over the suction side is desired. The speed dis-
tribution can be modificd in various ways depending on the choice of functions
Sila), k=1,2,3, and the correction interval (x,, x,).
Substituting (62) in (59) one obtains

3

Y yeau=h, =123 (63)

Ao

where

adm

”"‘:J '_/;(1);:,(1)111 =| fulx) glx)da, (64)

sy

h,=npP, - '.J v () glaydy=nP, - “’: Vo) g () d (65)

S e

Constants y,. Ak =1, 2, 3, are obtained by inverting (63) and the corrected v (x} is
then obtained from (62). The corrected speed distribution is then obtained from
(42) and (30) and the body is found from (55).

The matrix «, in (65) must be positive definite to be able to invert (63) which
restricts the choice of f,(«). x,, and x,. These should be carefully selected so that
the correction to a prescribed speed distribution is minimum. This can be done in
the same spirit as in Strand [22] and Arlinger [4].

For our purpose we choose a;,=0. a,=2n and f (%)= g, (x). k=1,2.3. This
modifics the speed distribution over the whole interval. In this case (63) gives

h b, b
}'l_,)—;z» }'::?, and }'J:;] (66)
and hence (62) becomes
1
V() =V, (2) + 5= (b 4 2bycos x4 2h, sin x), (67)
2n

9. RESULTS

A basic test of the inverse method is the recovery of a hnown airfoil from s
pressure distribution. Figures 2 and 3 provide a verification of the method within
the tangent gas approximation. Here a pressure distribution is computed in tangent
gas approximation over a NACA 4412 airfoil (see [21]). Speed distribution is com-
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FiG. 2. Comparison of pressure distributions on NACA 4412 airfoil (input) and on designed airforl
from tangent gas solution at frec stream Mach number 0.7 and zero angle of attack.

puted from this pressurc distribution using Eqgs. (30). Then the airfoil is designed
from this speed distribution by the method discussed in Section 7. In Fig. 2 we show
the pressure distribution over 4 NACA 4412 airfoil as calculated by the tangent gas
and compare it with the pressure over the designed airfoil. The error is less than
O(10 *). Figure 3 compares the given airfoil with the designed airfoil. The error is
less than O(10 *). (The origin of thesc errors is numerical and was discussed in
Section 7.)

Figure 4 shows a pressure distribution which did not satisfy the constraints (46),
{47), and (48). The pressure distribution which results from the correction
according to (67) is shown in the same figure. The resuiting body along with its
design and analysis pressure is shown in Fig. S.
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Fi6. 3. Comparison of NACA4412 wirfoil and the airfoil designed by tangent gas approximation

from input pressure distibution of Fig. 2.
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Fi16. 6. Speed distnibution on NACA0012 airfoil from Euler solution (FLOS2S) at M, =0.6 and
2 =00.

Next, we wish to evaluate the usefulness of the tangent gas method by comparing
its results with comparable results gotten from the exact Euler equations. For this
purpose we use FLOS52S written by A. Jameson, M. Salas, and E. Turkel. The
pressurc distribution obtained from the Euler code is used to compute the speed
distribution according to the relation

qz _ (Pn//’o - I’/I’) (68)
Polpo—1

which is the same for the tangent gas and ideal gas. The subscript 0 referes to the
stagnation point values (normalized by free strcam values) as mentioned in Sec-
tion 5. The po/p, in (68) is given by the ideal gas relations (see [23])

(- ] y
I’()/I’():<]+}TM§>' (69)
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FiG. 7. Comparison of NACAOOI2 and the airfoil designed by tangent gas approximation from
speed distribution of Fig. 6.
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EXACT METHOD FOR DESIGNING AIRFOILS 32§

This speed distribution is used to design the airfoil by the method mentioned
before. Figure 6 shows the speed distribution on a NACAO0012 airfoil as calculated
from the Euler equations at free stream Mach number 0.6 and zero angle of attack.
Figure 7 compares the NACA0012 airfoil and the designed airfoil in the tangent gas
approximation. It 1s seen that the airfoil is almost exactly recovered along with the
zero angle of attack. The pointwise error is less than 3% and this only occurs in a
small neighborhood of the leading edge. Figure 8 compares the Euler pressure with
! the pressure over the designed airfoil. Again the comparison is excellent except near
the leading edge where the error in C, is O(10 ?). It is to be emphasized that this
{ error occurs as a result of using the tangent gas approximation and is in no way

numerical. We belicve on the basis of this discussion that this recommends the usec
. of the method presented here for airfoil design especially since it is computationally
\ very efficient.

In the next example we push the method beyond its limits by considering a
| supercritical case. We show in Fig. 9 the Euler speed distribution over a NACA0012
g airfoil at free stream Mach number 0.5 and angle of attack 5°. Figure 10 shows that
we recover the correct angle of attack and the airfoil except over a small region

w =6 3
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O Fi. 8. Comparison of Euler pressure distributions over NACA0012 airfoil and the airfoil desipned
from speed distnibution of Fig. 6 at M, - 0.6 and x 0.0,
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<
-, near the nose where the error is within 2%, and where the flow is actually super-
:." critical. Again the crror is nonnumerical and gives a measure of the deviation of the
tangent gas approximation from the exact Euler result. In Fig. 11 we compare the
. Euler solution over the NACAOQ0012 airfoil and designed airfoil. Note that the
- . .
. agreement near the leading edge i1s not as good as elsewhere because the designed
. airfoil suffers maximum deviation from the NACAQ012 airfoil ncar the leading edye
X Finally a useful application of our approximate method is to provide a starting
- airfoil in a design procedure in which the Euler cquations are used directly to give
\‘ . . . . . .
the corrected pressure distribution. At successive stages the pressure distribution s
g
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o 16, 10, Companson of NACAOOI2 and the airfoil designed by tangent pas approvmaton from
j speed distnbution of Fig. 9.
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maodified to meet the design criteria and the inverse method reapplied and so forth. e
. . . . . . [ |
I'he interactive iteration should go quite quickly {or subcritical flows. However, the . ®
. . .. N
value of such a procedure remains uncertain for supercritical flows. N
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Abstract

A new anverse method for aerodynamic design of

esenied for suberitical flows. The pressure

Z:siributicn in this method can be prescribed in a natural
wav. 1e.. as a function of arclength of the as vet

unknewn zody. This inverse problem is shown to be
mathematczlly equivalent to solving only one nonlinear
boundary value problem subject to known Dirich'et data
The solution to this problem deter-

Tunes the airioni, free siream Mach number M. and the

Yiow direction B, The existence of a solution

discussed. The

upstream

Q2 gLt oressare

distribution s

and extremely afficient.

[. Introduction
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boundary layer separation, wave drag and lift  Success
with this method n designing cost efficient airfoils has

made this approach useful in airfoil design.

The mathematical theory behind solving the inverse
problem is somewhat more difficult than the correspond-
a) diffi-

culty with formulation of proper differential equations:

ing analysis problem for the following reasons:

b) lack of existence of a solution for arbitranily
prescribed pressure data; ¢) the difficulty in imposing
closure constraints (2 specified gap at the trailing edge of
the designed airfoil). For incompressible flows the
theory of harmonic functions!'2 makes the above issues
easily tractable due to the linearity of the problem Here
the existence and the closure consiraints can easiy be
established. The specified pressure distribution can be
modified apriori to satisfy these constraints. Most of the
solution techniques tor this case have been based on ana-
lytic function theory3® The tangent gas spprouimation
makes the inverse problem for subsonic flows similar to

the incompressible caseld-11

Nonhnearity in compressible flows makes this prob-
lem difficult. Most of the inverse methods rzly on e:ther
a Dinichlet or Neumann formulation depending on the
chowce of the dependent vanable 118 3nd  usualh
involves soiving a series of nonlinear elhiptic problems
An excellent account of these methods can be found
Stoof?? Formulation of the closure constraints and the
existence of a solution for such flows, similar to the case
of tncompressihle tlows, may prove useful in developing
new numerical technmiques  The constraint necessiated by
the existence ol 3 solution in the subsonic case was oz
bished @ Darpal [t s chown there that hecause of e
acnlinearits of the constraing, the castence ol a soiLton

trom the preadrited s

can not te astablinhed aprien
sare disttibution However o suwvests thar the Geoee
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parameter to make the problem solvable in general
This free parameter will be determined by the solution.
Such an attempt has been made in two dimensions!? for

transentc tlows.

The case of transonic flow is more difficult than the
other cases owing to the mixed elliptic-hyperbolic nature
of the iransomic flow equations. The mathematically
ziegani method of complex characteristics, was success-
fully used by GarabedianZ!'?* to generate supercritical
airfoiis  In this method the boundary is unknown and
itzratien on the boundary is used to generate the airfoil.
There are also cost etffective methods based on the ficti-
tlous 3as concept to generate supercritical airfoils 23 An
cxcellent review on the design of supercritical airtoils
and wings can be found in Sobieczkyid

We discuss our method 1n this paper for subsonic
tiows oniz In our formulation, the equations of motion
are cast :nto one boundarv value problem in the poten-

nai plarnz To avoid dealing with the infinite potential

plane. we map our potential plane into the interior of a
anit circle and solve our equanons there. To render the
oroblem solvable we choose the Mach number distribu-
tion. computed from the prescribed pressure distribu-
©on, as the soundary data. By doing this we have at our
disposal the free siream Mach number as free parameter
which s determined as part of the solution of the boun-
dary vaiue problem. The solution also determines the
shape of a2 profile. This free stream Mach nember and
the 1nput Mach number distribution together determine
ine pressure distribution over the designed profile. In
general the prescribed and computed pressure distribu-
Gions wiil ang be same except in cases where there exsts
a solution ‘o the prescribed pressure distributions.

Our method requires solving only one nonlinear
coundary value problem as oppased (o solving a
sequence of ~such problems.  In addition a protile s
alwave gencrated by our method. The designed airfoil
however mayv have 4 gap at the trailing edge. To be 3ble

0 des

gn un airforl with anv prescribed gap we need to
do further work that s currently in progress. An obvi-
ous approech 1s to use this method tn some iterative

mode

{I. Problem Formulation

The vguaran ot -notion are

=0, p = pY tlab)

The variables are normalized by their some values and

linear dimensions by some appropriate linear dimension.
Here p is the pressure. p is the density and q s the
speed. These equations imply the existence of a stream

function b and a potential ¢ given by
pG = Ix(WR) : §=VYé. (2a.b)

where K denotes a unit vector perpendicular to the plane
of the motion. The above equations can alternatively be

put in the form

By — (KOMDY vy, =0 B, + (Ki{M)ivy = 0

(3a.b)

Here K and v are functions of Mach number M onl_\‘:7

and 8 is the flow direction. v is known as the Prandti-

Meyer function. The body maps onto a sht in the poten-
tial (w = ¢ +1 ¥) plane as shown in Fig. [.

Differentiation and eliminadon reduces the system

(3a,b) of first order partial differential equations (PDEs)

to an equivalent second order PDE in v only.
(K7UMvy)g + (K(M)vg)s = 0. (1)

A little algebra shows that this equation can alternatvely

be written in the form?7

Vi oy = {1 — KDuge + T, — KM vs” (9

an

where f(M) is a function of Mach number=’

The appropriate boundary condition is secn to be

(see Fig. 1)

for w=0". 0

M=M(S) for v =0". 0

(6)

il

1A
6
1A
G ©
w

1A
6
tA
&

where (b)) = (b4 = 0,0) corresponds to the ({ront
stagnation point and (b)) = 1dg M and
(d.0) = (dg.0) correspond to the upper and lower <ide
of the rear stagnation point respectively (see Fiz D)
Bernoulli’s law gives g = q(Cp) and M = M(Cp 38.29
that are used to determine q(s) and M(s) from the :nput
pressure  distribution  Cp(s); 0 = s = 1. Here s

parametrizes the arclength. The equation (2b) impiies
o= [lq(s)dsi (7

which together wita known q(s) and M{v). 0 =, = |
determines the boundary condition (6) and the boundary

(the sht) in the potennal plane
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The solution of the boundary value problem (5) and

(6) determines v, on the sht that is subsequently used in
(3a) to compute By on the slit. Integrating this and
using (7) determine the flow angle as a tunction of
arclength on the body and hence the profile is known.
To avoid dealing with infinity in the (¢ = ) plane
we map this plane into the interior of a unit aircle such
that the body maps onto the unit circle. We carry out our

caleulations in this circle plane 27

The solution of this boundary value problem also
d2iermines the upsiream Mach number. Pressure on the
dzsigned hody can be computed using the computed My
and the input Mach number distribunion. The ilow
direction at infimity with respect to the body can be cal-
culated by integrating either (3aj) or (3b) irom the siit to
infinity in the potennal plane. This integration process
pecomes much zasier in the mapped circle plane. See

7 . .
Dar:ipa =/ {or derails.

II1. Method of Solution

As mentioned earlier, the boundary and the boun-
dary dara in the potential plane and hence in the mapped
circie plane are known from the input pressure distribu-
woa. The equaticn (3) is solved numerically inside the
unit circle subject to the known Dinchlet data. In solv-

g 2quaticn (3) numerically, a general linear Heimholtz
equation solver 20 is used iteratively. An initial guess of
the flowfield inside the unit circie determines the right
rnand side of eqguation (3) within the unit carcle. The
soiver then updates the values of v nside the unit circle
bv soiving the linear Poisson 2quation and the process is
repeated unul 2 given convergence Critenon Is mex

The solution is considered to have converged if the
difference in the maximum value of Prandtl-Mever func-

-~

wn v onside the unit circle between two successive
ierations is less than 3X107% . We never needed . re

I

than sit iterations in apy of our calculations when the
initial guess was taken to be that of uniform flowfield.
The solution values of v inside the unit circle are then
used to compute the estimate of the normal derivative on
the unit circle  This estimate is then used to compute the
bedy angle through the use of equation (3a) and the

apping functon. Simlarly the tlow direction at infinity
s calculated by integrating equation (3a) along an
appropniate rav i the arcle plane. The solution of the
noniinear elliptic equation (3) also determines the

upstream Mach number
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1V. Results

To validate our method we present a series Of

results which recovers a known airfoil from its pressure
distribution. We generate pressure distributions over a
scries of closed airfoils at a given free stream Mach
number Mz and angle of attack 8. by using an Euler
code ( floS2s written by A. Jameson, E Turkel and M
Salas ). This pressure distribution is then used in our
method to generate the airfoil. Numerical sources of
error in practice may introduce some error and o we
monitor the following as a measure of accuracy of our
method:  E(M)=[M,~M$§| . E(8:)=i0.-8%]

E(8p)=max|8p(s)—8f(s)| . veap = [y:=0)—yis=1),
and xgap = |x(s=0)-x(s=1)| . where xgap and rgap
(normalized by chord length) measure the gap at the
trailing edge of the airfoil and 8g refers to the body
angle. In the above a superscript refers to the computed
value. Here we present a few results for cases where the
trailing edge is not a stagnation point. The case with reac
stagnation point has been excluded here because some
difficulties was c¢ncountered in removing the singuiarity
at the trailing edge.?’ This case will be taken up

future.

Fig. 2 shows the Euler pressure distribution uver a
12% thick Kurta airfoil at M= = 0.5 and angle of auack
= 2.0 degrees. The application of the above method
then generates the body and also gives the computed
values of the free stream Mach number. MZ. and the
angle of attack, 85 The number of iterations (~ec ¥ b
required to converge to the solution using the hincar
elliptic solver were onty five in this case. In Frg. 3 we
compare the designed airfoil with the exact airioi and
find that the agreement is excellent. We find the com-
puted free streami Mach number ME = 030005 and the
angle of attack 8% = 205 degrees  The vaises o1 the
error diagnostics 1n this case are E(M) = 000005, £ H,
) = 0.00087, E(8g) = 0.009, xgap = 0.000:3 and rc2p
= 0.00010. The gap at the trailing edge 1s within 0 )%
of the thickness of the airfoil which is negligibly ~mall
A more important quantity is the body angle which s
likely to suffer maximum error near the leading vidve
since the hody angle is a rapidly varving function of
arclength there. Fig. < compares the computed and cxadt
values of body angle as a function of arclength Foo S
compares the same in the leading edge region  Hore

again we tind the error 1n the body angle v O3t




everywhers except near the leading cdee where ot s
maexvimuin and 18 given by E (8g) = Q00U In zenceral
Jlosure can not be expected unless exphiath imposed
erther by ome werauve or exadt method. (We will
renort en the design of closed airfoil in the acar future))
The ~source o these errors s numerical as has been dis-
Cuased bt e

Nexr wez Show a more Vigorous test case for gen-

2orford from an arbirary pressure disimitunion

rrary pressure distrtbution (sohd ine) s
shownoin £rp 6 The asymmetric pressure distribution

in Fig Az minor vaniauon of the pressure Jdistribution

in Froo Ioindoas we shall oser there a0 airfoil

4

cecresponding o this qaput pressure disinibution The

“orl designed wiath oar nverse method s

7. Thas arrforl has 2 himite gap ot the rail-
g 2dge. We {ind the computed Mach number ME =

1) 3362 and angle of attack 8§ = 2 degrees. The pressure
disizibution on the Jesigned usirfoil obtained by our
inverse code atr this Mach number and angle ot attack is
2lsg shewn 2 Fig. A (+ sign) which is different trom the
input oressure distribution (solid hine). This 18 due to the
ract ihat therz is no airforl asceciated with this nput

pressute diinhution. [noorder to pave a specitied gap at

“

. trs method can pe used in an teranve

V. Discussions and Conclusions

We have developed a fast approach 1o soive inverse
nrosiem™ for szhenitwal flows. We have shown that solu-
flon of the nverse problem tequires <olving oniy one
aoniinear beoundary value problem in an appropriate
slare. Mach aumber distribution is used as the boun-
darv . 2iues which are in wrn used to generate the air-
teai s aprroasch leaves the upstream Mach number as

4 frez parameter which s also deterrmned by the sofu-

The numencal sources of error may introduce a gap
at the rarhing edge even in cases where adeaily there
“heuid 2e acorap Therelore it s necessary to incor-
corate some crd ot Cosare procedure i our present
vettan Doy e cantentien chat thiy methed dan
eantin Teoexienead todeal with the design of o supereniti-
cab sirren noan eticent manner However such oan

Jttemiot has nes vet heen siade
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