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Abstract

A simple linear calibration function can be used over a wide concentration
range for the Inductively Coupled Plasma (ICP) spectrometer due to its linear
response. The random errors over wide concentration ranges are not constant,
and constant variance regression should not be used to estimate the calibration
function. Weighted regression techniques are appropriate if the proper weights
can be obtained. Use of the calibration curve to estimate the concentration of
one or more unknown samples is straightforward, but confidence interval
estimation for multiple use of the calibration curve is less obvious. We
describe a method for modeling the error along the ICP calibration curve and
using the estimated parameters from the fitted model to calculate weights for
the calibration curve fit. Multiple and single-use confidence interval
estimates are obtained and results along the calibration curve are compared.

Keywords
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Brief

Iteratively weighted error modeling for nonconstant variance ICP
calibration curves is examined. Contributions of calibration bands and unknown
sample measurement uncertainty intervals are combined to obtain multiple-use
confidence intervals. The effects of weighting are examined at both ends of
the calibration curve.
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Introduction

A widely used method for determining inorganic elements in aqueous samples

ris the Inductively Coupled Plasma (ICP) spectrometric technique [1-3]. One of

the principal advantages of the ICP technique is its wide range of linear

response to analyte concentration. This feature, together with relative

freedom from interelement interferences, often allows the analyst to determine

a given element in a variety of sample matrices with only infrequent

recalibration of the instrument. Although the variability of the calibration

process is sometimes assumed to be negligible compared to sample measurement

variability, it is desirable to establish procedures whereby this assumption

* may be conveniently tested. If calibration is indeed a significant contributor

to the overall variation of the measurement process, this source of variation
.J.

should be estimated and included in the overall uncertainty statement.

The calibration curve for ICP spectrometry is an example where weighted

regression should be used because the measurements may exhibit non-constant

variance (heteroscedasticity). In general, if the calibrated region includes

the widest range of concentration for which straight-line response is assured,

non-uniform precision of measurement is evident. Agterdenbos [41 approached

thq problem of "ICP type" calibration curves by dividing the !'ange of

calibration into segments that exhibit either constant standard deviation or

constant relative standard deviation characteristics. Maessen and Balke [5'

also compared the effects of treating ICP calibration curves as combinations of

linear and logarithmic segments. The usefulness of simple weighted linear

regression was mentioned, but not considered. It was stated by these authors

.. 2
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that no suitable method exists for obtaining the confidence interval for an

unknown analyte concentration calculated from a weighted linear regression.

A More recently, Bubert and Klockenkamper (6] have considered the effects of
[.

heteroscedasticity in ICP and x-ray fluorescence (XRF) calibration curves. They

outline a scheme for using established tests for the normality of the

* •distribution of the measured values as well as the homogeneity of variance. An

algorithm for evaluating the sources of variance was used, and a weighted

linear regression was carried out. Confidence limits for the concentration of

an analyzed sample can be calculated using their approach. Schwartz [7) and

Oppenheimer, et al. [8] have given methods for weighted regression of

O calibration curves with nonuniform variance. Confidence intervals for a single

a. determination of an unknown are given using propagation of error in the case of

Schwartz [7]. Although the main focus was to treat weighted calibration curve

estimation of detection limits, single-use intervals can also be obtained by

adapting the approach described by Oppenheimer, et al. [8) to higher

Aconcentration levels. A multiple-use procedure has been presented by Garden,

et al. [9] that often results in intervals wider than those developed by the

methods described in this paper. Garden, et al. acknowledge the conservative

nature of their interval estimates, which allow for some nonrindom error that

often occurs-in spectrometric measurement. We prefer to res'rict our

estimation of confidence intervals to include random error n.2ly. Assessment o

systematic errors should be carried out separately, using techniques

specifically designed for this task.

We describe here a simple mer -od for charact *:zing the variance along a:

ICP calibration curve due to the principal sources of noise in this specific

3
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technique. Our approach is philosophically similar to that of Garden, et al.

.9] except that we use calibration data only as a starting point to model the

error along the calibration curve. Our method involves standard regression

techniques, and can be incorporated into routine analytical schemes due to its

simplicity. A flow chart of the procedures is presented in Figure 1. We model

both the standard deviation and the variance of instrument noise as a function

of sample concentration over the range of straight-line response. We use a

quadratic model of concentration as suggested by Oppenheimer, et al. [8] rather

than a quadratic model of intensity as used by Bubert and Klockenkamper [6] and

• Schwartz [7]. We choose to model the error in terms of concentration rather
a,.

than intensity, since we are dealing with a specific technique whose linear

* response is well documented. A particular feature of our approach is that each

iteration of ttn noise model fit is itself a weighted fit using estimates from

4- the previous iteration. This procedure differs from the unweighted modeling

used by Oppenheimer, et al. [8]. The final set of fitted standard deviations

or variances is then used for the weighted regression of the straight-line

4calibration curve. Confidence limits for concentrations obtained using the

calibration curve are calculated in a straightforward manner.

a Algorithm

The method we use for characterizing the ICP calibration curve assumes the

model

Yij - a + bxi + errorij

V.
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where Yij - measured intensity for

i - 1., 2 ...... I calibration standards of concentration

X i ,

and j - 1, 2 ......, J 2 2 instrumental replicates.

The calibration function is a + bx, and the random errors have mean 0, and

variance a2 (xi). The errors are independent and normally distributed. The

model for the standard deviation is

a(x) - c + dx + ex2  (2)

The estimate of standard deviation st at each calibration point, xi is

calculated by using the replicate measurements of eac tandard solution.

These si's are then fitted according to model (2) by unweighted least squares

to obtain predicted standard deviations, &(xi). We now iterate the fit using

weights, 1/&2 (xi) to obtain a new set of predicted standard deviations. Each

iteration uses weights calculated from the predicted values of the previous

step. The procedure stops when successive predicted values agree to within

* 0.1% relative.

Alternately, we also model variance in a similar manner. The model is

a2 (x) - g + hx + kx2  (3

and the s2 1 's are fitted accordinj to model (3). The iteration is performed as

5
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before except that the variance fit is now weighted by I/^4(xi). Predicted

variances are used to obtain standard deviations at each xi.

There exists a spectrochemical basis for certain aspects of models (2) and

(3). Constant noise sources such as detection electronics account for the

* concentration-independent term in either model. Shot noise expressed as a

variance is proportional to intensity, or in this case the concentration x,

which corresponds to the coefficient h in model (3). Source flicker noise

% corresponds to the second term in model (2) or the third in model (3). A

similar partition of noise sources is mentioned in reference [6].

The final set of predicted standard deviations, aw(Xi) obtained from

either (2) or (3) is used to calculate weights / 2a w(xi) for the least squares

* fit of the calibration function, a + bx. The results of this fit include an

estimate for the intercept, a, the slope, S, the residual standard deviation a,

and the standard error for the predicted mean at each x, af(x) at concentration

x. We assign degrees of freedom, 7 for af(x) by

M:

. - - 2.

The estimated calibration function is then

* f(x) - A + Sx.

To obtain a concentration value for an unknown sample, we can solve

Ze, Y0 " + 6xo the mean measured analyte intensity, for xo; i.e., we invert the

calibration function. To obtain an approximate confidence interval for the

sample concentration, we combine the confidence interval about the mean sample

6
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intensity with the confidence band about the estimated calibration function.

The interval is constructed with probability 1-a, and the band is constructed

with probability 1-6.

Let t7(1-a/2) be the I-a/2 percentile from a t-distribution with I degrees

of freedom, and F2 ,,(1-6) be the 1-6 percentile of an F-distribution with 2 and

I degrees of freedom. The confidence interval for an unknown sample

concentration is obtained by measuring its intensity, YO, and finding all x's

that satisfy the following inequalities:

f(x) t)(l-a/2) a w(x)

a :5 YO : f(x) + t (1-a/2) &w(X) & (4)

( + (2F2,.,(l-6)) xf(x)

where t(1-a/2) &w(x) ^ is the half-width of the confidence interval about Y,

and (2F2,7(1-6)) af(x) is the half-width of the confidence band at x about

f(x). Typically, equal values for a and 6 are chosen. The derivation of (4)

for the homoscedastic case is given in [10], and the resulting confidence band

,... applies to multiple use of the calibration curve. We allow here for the

inclusion of weights as determined by the error modeling. The inequalities for

calibration followed by a single use (8,11] of the curve reduce to:

f(x) ty(l-a/2) ((&w(x) &)2 + (&f(x))2 )4

S YO <5

f(x) + t7(l-a/2) & ) 12 + f(x)

The relationships of the calibration function, confidence interval, and

confidence band for the homoscedastic case (aw(x) - constant) are depicted in

7
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Figure 2. The construction of the confidence interval for an unknown sample

concentration from replicate measurements of emission intensity is readily

discernible from the figure. However, the heteroscedastic case is not so

'-. easily represented. We choose to represent the combination of the confidence

interval with the confidence band as a widened band whose upper bound, U(x) is

the right hand side of the inequalities (4), and the lower bound, L(x) is the

left hand side. The resulting band is plotted in Figure 3. The confidence

interval for an unknown sample concentration is then simply determined by the

intersection of Y with U(x) and L(x). This approach requires that the slope be

positive and sufficiently large to ensure that Y crosses the bounds, U(x) and

L(x), only once. In most applications of ICP spectrometry, these conditions

are fulfilled if analytically useful spectral emission lines are chosen.

Curves with negative slope can be treated using simple modifications to (4) and

(5). The location of the minimum calibration band width is dependent on the

particular set of concentration standards used. The dilution scheme described

in the following section results in the appearance of the bands in Figures 2

and 3.

We examine the effects of calibration in various ICP analysis schemes in
%.a

the following example.

40 Experimental

',

The measurements were performed on a sequent il ICP sp' -rometer system

with a spectral bandpass of 0.007 nm. The normal !CP spect.()meter experimen ,I'l

parameters and operating conditions were used. Various spe "ral lines were

used in this study, but we present the data for Ni at 231.60- nm as being

'p 8
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representative of the characteristics of most ICP spectral lines normally used

for analysis. The spectral background at 231.625 nm was measured and

subtracted from the peak intensity for each instrumental integration.

A total of ten standard solutions were prepared using volumetric pipets

and flasks. However, each aliquot and final dilution volume was weighed so

that the calculated concentrations of the calibration standards were based on

the gravimetric data. The concentrations of the standards ranged from 0 Ag/mL

to 5.03 mg/mL, with a reagent blank used as the zero-standard. Vials

containing these ten solutions were placed in the autosampler of the

spectrometer and the run sequence was programmed. The order of standard

solution introduction was randomized, and adequate rinsing for the widest

*concentration range was accommodated. In this case, the run sequence included

a rinse of 45 s in 1% nitric acid in distilled water followed by a washout of

30 s with the next solution to be measured. The first 15 seconds of this

washout period take place with a solution uptake rate of 8 mL/min. The sample

peristaltic pump returns to the normal rate of 1 mL/min 15 seconds before

measurements begin. Spectral intensities are measured by electronic

integration of the photomultiplier current for 0.25 seconds.

Results and Discussion

Ten replicate integrations of each solution were recorded, and the average

net intensity value, Yj. and standard deviation, si fo .:ach were calculated.

The first analysis of the data included all ten repl; *:es at each of the ten

standard concentrations. Since the ICP is often ust:, in laboratories where the

sample analysis rate is high, instrumental replicates in such situations may be

A. %
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limited to as few as four. We therefore examined this case by repeating the

fit using only the first four replicates from each set of ten. At this point

the data were examined to test the assumption of measurement independence and

outliers. The occurrence of outliers and non-random variability caused by the

performance characteristics of ICP nebulizers has been previously described

[12], and this issue has also b en addressed by Garden, et al. [9]. Extensive

experience with ICP results for Ni in our laboratory indicated that the set of

J replicate integrations at 1.01 g/mL were not representative of normal ICP

instrument behavior.

This set of ten replicates has a calculated standard deviation of 15.1,

which is the expected level of variability for this concentration level.

* However, if the ninth integration is excluded, this statistic is 6.2. These

data represent a period of measurement wherein the ICP sample delivery and

signal detection systems were atypically stable. When only the first four data

points are used, the estimated standard deviation (5.5) severely underestimates

typical variability at this concentration. Successive integrations over short

periods of time often show some degree of drift. However, the interdependence

of successive integrations at 1.01 pg/mL, and the existence of the outlier

(ninth integration) indicate that the data at this concentration cannot be used

to estimate ICP variability. Accordingly, we analyzed the rc,,aining data

excluding the entire data set at this concentration. The da- are listed in

Table 1.

The fit of the estimated standard deviation, a(x), for both the 10 and 4

replicate cases according to model (2) yields the parameter estimates listed in

Table 2. Results for unweighted, weighted by i/s2 i , and weighted by 1/a2w(x)

are given in the table. The largest differences in parameter estimates are

10
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observed between the unweighted case and either of the two weighted fits. Even

these differences are relatively small and have little effect on the remainder

of the analysis.

The fit of variance, however, is significantly affected by weighting. The

fit of estimated variance, a (x), according to model (3) results in the

parameter estimates listed in Table 3 for unweighted, weighted by 1/s4 i, and

weighted by l/&4 (x) fitting. The method of weighting has a significant effect
on the parameter estimates. The weights, 1/^w(x), for the fit of s using

model (2) range over one order of magnitude. However, the weights, 1/a4w(x),

for the variance fit of model (3) range over two orders of magnitude. Although

the high concentration points are important for estimating this fit in the

* quadratic region, they have extremely low weighting. Therefore, the weighted

fitting procedure has difficulty distinguishing between a linear and a

* quadratic model. Thus, the estimates of the linear 3nd quadratic terms will be

determined with large uncertainties, although the fit of either (2) or (3) may

be quite adequate.
a,

p. For limited sets of ICP calibration data, the iterative fitting procedure

with 1/a2 (x) weighting of model (2) or with i/a4 (x) weighting of model (3) is

preferred, since it appears to be generally applicable and reliable. The

iteratively weighted fitting procedure for a2 (x) using model 3) yields a set

• of predicted standard deviations quite similar to the set ob" ined by fitting

a(x) with model (2). Therefore, we will further examine the tit of model (2)

using parameter values from the I/&2w (x)-weighted case in Table 2.

* :The adequacy of the fit for the 10-replicate case is evident in Table 1.

where the observed standard deviations and predicted standard deviations are

listed for each of the nine concentrations. The largest difference is at

11
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0.101 pg/mL, where the observed standard deviation value is approximately 70%

of the predicted value. This deviation is well within expected instrumental

variability at the count level indicated in the table. The predicted standard

deviations for the 4-replicate case are also listed in Table 1, and the exhibit

reasonable agreement with the 10-replicate estimates. The only significant

difference between the two data sets lies in the standard error (se) of the

parameter estimates listed in Table 2. It is expected that 10 replicates are

more reliable for estimating the fit than 4. This is especially true when

problems of interdependence of data arise, as mentioned with regard to the data

for the standard at 1.01 Mg/mL.

We now examine the fit of the calibration function. A comparison of

* fitting effects on the calibration curve is presented in Table 4. Weights

equal to 1.00, i/s i, and i/^2w(X) are compared. In this case, the 1/s2

weights are derived directly from the standard deviation of the calibration

data at each concentration (Table 1). The l/a2w weights are calculated from

the final set of predicted standard deviations using the fit of model (2) for

the a2w case. The coefficient and standard error estimates for the 10-'^2

replicate data are quite similar regardless of whether 1/s2i or I/a w(X)

weights are used. The unweighted case (weights - 1.00) yields slightly

different (and erroneous) values for the standard errors. Of course,

uncertainty interval estimates for an unknown sample concenti ition should not

be calculated for the unweighted case since homoscedasticit '..ould have to beF- assumed. Data in table 1 indicate that no single value for the standard

deviation is suitable over the range of calibration.

Using only 4 replicates causes a small change in the slope and a

relatively larger change in the intercept, especially for the 1/s2i-weighting



case. However, the standard errors for these estimates are large enough to

vi minimize the significance of these differences. In practical applications

where the chief concern is trace analysis near the intercept, a more limited

range of calibration is appropriate and the standard error of the intercept is

likely to be smaller. In terms of the standard error of the estimated

coefficients, the 4-replicate data represents a minor deterioration in the

variability of the fit, except for the unweighted case.

Although the spectral background near a number of ICP spectral lines for a

variety of elements may exhibit more complex structure, the background near the

2 31.604-nm line of Ni is quite flat. Therefore, net intensity measurements for

Ni could be fitted to a zero-intercept calibration model, as is indicated by

the intercept estimates and their standard errors listed in Table 4.

Confidence interval estimation was carried out using a - 0.10. The

-* components of inequalities (4) were evaluated for the 10-replicate case and are

listed in Table 1. It is evident that the uncertainLy interval for the unknown

sample measurement and the calibration uncertainty band contribute almost

equally to the total uncertainty. Ignoring either source of variability will

result in a significant underestimation of the random error in a sample

analysis.

Comparisons of final confidence intervals obtained for the concentration

of an unknown sample are presented in Figures 4 and 5. The average value for

the last four integrations at 0.101 pg/mL and at 5.03 Mg/mL was used as the

mean intensity for each of two unknown sample measurements. Multiple-use

confidence intervals were calculated for 10 and 4-replicate calibration, and

for weighting with i/&2w(x) and 1.00 as weights at each xi. Figure 4 depicts

data at the low end of the calibration curve where the true concentration of
4,.
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the unknown is 0.1006 pg/mL. At this end of the calibration curve, each

multiple-use interval is 41% wider than its corresponding single-use interval.

When comparing intervals for 10 and 4-replicate cases, it is useful to consider

which elements in the inequalities (4) differ. Different parameter estimates

for model (2) lead to different sets of predicted standard deviations. These

are used for the weighted calibration curve fit, so that the f(x) term in (4)

,* is affected, as is the standard deviation of the fit, &. The predicted

standard deviation at the unknown concentration, aw(xi), is also obtained from

the fit of model (2), so that this term will also be affected. For the data

plotted in Figure 4, the predicted value for &w(Xi) for 4 replicates was less

than that for 10-replicate calibration. Again, this phenomenon is due to

short-term stability of 4 replicate integrations that leads to lower estimates

of variability. This underscores the need for caution when sample throughput

demands force a reduction in the number of instrumental replicates taken.

An important difference in interval width exist etween the weighted and

* unweighted cases. In the latter case, the value of &w(xi) is 1.0 and at the

low end of the calibration curve, 0 is appreciably larger for the unweighted

fit than the weighted fit. The product, aw(Xi) &, is therefore slightly large-

for the unweighted case. This causes a small over-estimation of confidence

., interval widths at the low end of the calibration curve.

Intervals for the high end of the calibration curve are depicted in

Figure 5, where the true value of the unknown concentration is 5.03 gg/mL.

this case, the predicted value for aw(xi) for 4 replicates is greater than :h&

for 10, causing the 4-replicate intervals to be wider than the corresponding

10-replicate intervals. At this end of the calibration curve, however, the

interval widths for fitting with weights 1.0 significantly under-estimate the

41



true interval widths as estimated by the weighted cases. The larger variance

at the high end of the calibration curve, as estimated by aw(xi) accounts for

this difference. At this end of the calibration curve, each multiple-use

interval is approximately 63% wider than its corresponding single-use interval.

- In summary, estimation of the error along the calibration curve is

important for weighted regression. Error modeling is more stable than using

the standard deviations of the calibration standard measurements themselves.

The iterative weighted fitting procedure is applicable to standard deviation

modeling, and is the preferred approach in variance modeling. Clearly, if

heteroscedasticity is ignored, confidence intervals will be too narrow at the

high end and too wide at the low end of the ICP calibration curve. The

* magnitude of these effects will depend on the particular dilution scheme used

-4 to make the calibration standard solutions. Estimates of both single and

multiple-use confidence intervals differ significantly. Therefore, care should

be taken in applying these procedures to a particular analysis scheme.
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Table 1. ICP data for Ni at 231.604 mu using 10 replicates, l/a2w(X) weight in

of model (2), and I/o2w(x) weighting of the calibration function. Values at

each concentration are listed for observed standard deviation, si(obs)

predicted standard deviation for 10 replicates, s(l0 reps) and 4 replicates.

s(4 reps); sample measurement interval, SI; calibration uncertainty band

CB: and total uncertainty band, Total.

Concentration Intensity si  s s SI CB

(sg/mL) (counts) (obs) (10 reps) (4 reps)

0.00 11.33 8.54 7.88 6.97 17.95

0.0101 16.60 7.88 7.98 7.03 18.17 I0 2

0.0251 37.92 9.06 8.12 7.12 18.50 10-43

0.0503 57.00 8.46 8.36 7.28 19.05 10.33 2'

0.101 149.88 6.13 8.84 7.58 20.14 10.i?

0,251 369.24 11.57 10.25 8.50 23.34 10.13 -

0.503 763.36 11.94 12.48 10.02 28.42 11-)

2.51 3688.46 26.24 25.42 22.25 57.89 3-.85

5.03 7431.08 29.12 29.30 37.55 66.74 76.67 1
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Table 2. Coefficient and standard error (SE) estimates for fit of model (2)

using 9 standard concentrations.

10 Replicates 4 Replicates

Coefficient Estimate SE Estimate SE

Unwe ighted:

c7.78 0.56 6.80 1.29

d10.28 1.17 7.25 2.67

e-1.20 0.24 -0.26 0.55

Reighted by l/s i:

c7.88 0.56 7.00 1.42

d9.66 2.63 5.84 6.82

e-1.07 0.58 0.046 1.62

Weighted by l/&2,(x):

c7.88 0.56 6.97 1.41

a9.69 2.59 6.07 6.56

e-1.08 0.57 0.0025 1.60
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Table 3. Coefficient and standard error (SE) estimates for fit of model (3)

using 9 standard concentrations.

10 Replicates 4 Replicates

*Coefficient Estimate SE Estimate SE

tUnwe ighted:

g45.6 15.1 51.0 20.3

fL 332.6 31.2 135.5 41.8

k-34.2 6.42 23.9 8.6

Weighted by l/s 4 i:

71.6 22.8 65.1 23.0

* ~-46.6 254.6 5.1 189.8

62.8 62.2 57.2 62.9

vWeighted by l/Er4 (x):

g60.6 22.9 60.6 22.9

FL42.7 148.7 42.7 148.7

50.4 56.7 50.4 56.7

02
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Table 4. Effects of weighting method on the calibration curve fit, a + bx.

10 Replicates 4 Replicates

Case Coefficient Estimate SE Estimate SE

Unweighted a 0.62 5.61 2.87 4.21

b 1476.04 2.98 1477.69 2.24

Weighted by a 0.95 3.95 -0.89 3.71

*/S 1,i b 1476.66 6.11 1481.12 9.01

Weighted by a 0.94 4.13 1.52 3.69

11a W 2(x) b 1476.30 6.16 1480.38 7.00
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List of Figures

1. Flow chart of procedures for modeling ICP calibration error, weighted

linear regression of the calibration function, and estimation of confidence

intervals for an unknown sample measurement.

2. Calibration curve, confidence bands, and construction of the confidence
5,

interval for the measurement of an unknown sample concentration for the

constant variance case.

3. Construction of the sample measurement interval band (a) and the

calibration confidence band (b) for the heteroscedastic linear calibration

function. The total confidence band is comprised of the upper bound, U(:.., and

the lower bound, L(x), so that the confidence interval for an unknown sample

measurement is defined by the intersection of YO with U(x) and L(x).

4. Confidence bands for the measurement of an unknown sample with a true

concentration of 0.101 Ag/mL. Confidence bands are constructed for calibratiC:-

using 4 and 10 replicate integrations, and with and without weighting of the

% calibration function.

5. Confidence bands for the measurement of an unknown sample with a r':e

N concentration of 5.03 jug/mL. Confidence bands are constructed for calil)-a7 -,:-

JA.

• using 4 and 10 replicate integrations, and with and without weighting of

'V. calibration function.
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