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20. Abstract.

Singular control problems with diffusion or Wiener process systems have

been occuring with increasing frequency as models of a wide variety of

applications; e.g., storage, inventory, finite fuel, consumption and investment,

limits of impulsive control problems, etc. Here, the increment of the control

force is not of the usual form u(t)dt, but is the differential of a

non-decreasing and suitably adapted process. The models used (Wiener or

diffusion processes) are only approximations in some sense to some 'physical'

process - perhaps a 'wideband' noise drivcn systcm or a suitably scaled discrete

parameter process. The optimal controls for these 'physical' processes are

usually nearly impossible to obtain. Thus, it is of considerable interest to know

whether, the optimal (or 5-optimal control for the diffusion model is 'nearly'

..AtimiUm -when applied to the physical problem, when compared to the optimal

1 7or .- optimal" control for the latter problem. This is true, under broad

14.,4qnditions. The discounted and average cost per unit time problems are treated.

The main methods are those of weak convergence theory. But the usual weak

convergence analysis via the Skorohod topology on D[0, is not appropriate

here, due to the nature of the singular controls. A com ination of the

Skorohod and 'pseudopath' topology is adapted to our singular control problem

to give the required results.
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Abstract

Singular control problems with diffusion or Wiener process systems have

been occuring with increasing frequency as models of a wide variety of

applications; e.g., storage, inventory, finite fuel, consumption and investment,

limits of impulsive control problems, etc. Here, the increment of the control

force is not of the usual form u(t)dt, but is the differential of a

non-decreasing and suitably adapted process. The models used (Wiener or

diffusion processes) are only approximations in some sense to some 'physical'

process - perhaps a 'wideband' noise driven system or a suitably scaled discrete

parameter process. The optimal controls for these 'physical' processes are

usually nearly impossible to obtain. Thus, it is of considerable interest to know

whether the optimal (or 6-optimal control for the diffusion model is 'nearly'

optimum when applied to the physical problem, when compared to the optimal

or 6-optimal control for the latter problem. This is true, under broad

conditions. The discounted and average cost per unit time problems are treated.

The main methods are those of weak convergence theory. But the usual weak

convergence analysis via the Skorohod topology on D[O,m) is not appropriate

here, due to the nature of the singular controls. A combination of the

Skorohod and 'pseudopath' topology is adapted to our singular control problem

to give the required results.

Key Words: singular stochastic control, approximately optimal control, weak
convergence, pscudopath topology, control of widcband noisy
systems, modelling of physical systems by singular control processes.



1. Introduction

Let Yi() , i = 0,1, be non-decreasing processes with Yi(0) - 0 and which

are non-anticipative with respect to a Wiener process w(.) . Define x(.), Y(.)

and Z(.) by x(0) = x, Z(0) =0 , Y(.) = Yo(.) - Y,(-) and (which defines Z(.))

(1.1) dx = b(x) dt + o(x) dw + dYo - dY1 = dZ+ dY

We assume that there is a B e (0,-) such that we are obliged to keep x(t) e

[OB]. Unless otherwise mentioned, we always assume that the Y(-) process is

such that x(t) E [0,B] . The process (1.1) has been widely used as a model

of storage and dam processes, both with and without control [1] - [51. The

Y,(.) might denote the 'withdrawal' process, whereby actual use is made of the

system's contents. Y,(.) might simply denote a process which is used solely as

a modelling device to guarantee that x(t) ) 0 (in that case, dYo(t) = 0 if

x(t) * 0). See, e.g. [4]. The process Z(.) might denote the difference between

the 'natural' inputs and 'natural' demand. See, in particular, the discussion in

[4] on this point. Many other interpretations are possible and are discussed in

the references.

Let ko > ki > 0 and let k(-) be a bounded continuous function. Define

the two types of costs (Ex denotes the expectation under initial condition x(0) = x)

Vo(x,YoY 1 ) = E,.f e " t [kodYo(t) - kjdYj(t) + k(x(t)) dt](1.2) 0

V(x) - inf Vo(x,Yo,Y 1 )
Yo, YI

and
T

7o(x,Y 0 ,Yl) - lim Ex f [kodYo(t) - kxdYj(t) + k(x(t))dt]/T
T 0

(1.3)

To(x) - inf 70 (x,Y 0 ,Yl)
Yo,Y 1
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In (2.1), the inf is over all non-anticipative Yi(.) such that x(t) E [0,B]. The class

over which the inf is taken in (1.3) will be described in Section 7.

Reference [1] gives an elegant presentation of the optimal control problem

(1.1), (1.2), and of the properties of the associated Bellman equation. Most of

the other current literature seems to concern the case where Z(.) is a Wiener

process (perhaps with drift). Since it is highly unlikely that there are problems

in the applications which are perfectly modelled by (1.1) or where Z(.) is

actually a Wiener process, one must look at the model in the sense that it

approximates in some way an actual physical problem. Generally, the model

(1.1) would be simpler than the 'physical' process which it approximates. In this

sense, it is an attractive object to use for purposes of calculating a control for

use on the actual physical process. But the 'quality' of such a control when

used on the physical process is far from clear. E.g., how good is it in

comparison with the optimal control for the physical process.

Models such as (1.1) often arise as limits of suitably interpolated discrete

parameter processes. Consider one type: For each c > 0, let (i = 0,1) Yi(.) be

non-decreasing processes, piecewise constant on the intervals [nE, nc+E), and define

WY (n) - Y (nc+E) - Y.(ne). For appropriate functions F and G, define (Xn, ZnE) by

X'E=x,Z= =0, and

n+ 1 = X n + (Z' - Z') + 6Y1 (nE) - BY(nE)

(1.4) Z" - = EG(Xn, t) + /T F(X', t)n+1 nnnnn

EF(x, k'E) a 0

where (t) is some correlated sequence of random variable. We say that the

controls 5Yf(nc) in (1.4) at time n are admissible if they depend on the 'full

information' (X, i ( n, YE(Ei), j - 0,1, i 4 n, t, j < n) available at time n. Define

the interpolated processes XE(t) = XE and ZE(t) = Ze on [nc, nc+e) and the costs

n n
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(using admissible controls)

V"(x, Y', YI) = E' fe " t [kodY1(t)- k dY'(t) + k(XE(t)) dt]

0

(1.5)

V"(x) = inf V"(x, Y", YD"

0'y 1

In general, we know virtually nothing about the optimal or S-optimal policies for

(1.4), (1.5). Suppose that, for reasonable Yf(.), the set (XE(.), Yo(.), Y"(.))

converges weakly in some sense to a solution of (1.1). It is of considerable interest

to know just how good (compared with the optimal controls for (1.4)) are the

optimal (or 6-optimal) policies which we obtain for (1.1), (1.2), when suitably

adapted to and applied to the system (1.4), (1.5). Consider the following example.

Let Yi(.), i=O,1, denote the optimal or (for some given S > 0) 6-optimal

controls for (1.1), (1.2). Frequently [1], [4], they are of the barrier form: there

are 0 4 L* < U* < - such that Yo(') is used only to keep x(.) from 'falling

below' L* and Y 1 (') is used only to keep x(.) from going above U*. The policy

Yi(.) adapted to (1.4) (call it Y (.)) is a policy which returns X((.) to L* or to U*

immediately if it ever drops below L or exceeds U*.

From the point of view of optimal control, one wants to show that the costs

V((x) and V((x, Y ,, YE) are close for small E, whether or not the optimal

controls for (1.1), (1.2) are of the barrier policy type. It is such a result which

justifies the use of the limit model (1.1) to get policies which might be used in

applications. Similar comments apply to the cost function (1.3), and also to the

continuous parameter analogs of (1.4). This is the class of problems dealt with

here. The basic tools are those of weak convergence theory. The work here

extends that in [6], [7]. The results in these references cannot be used here.

I
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Owing to the generality of the assumptions on the physical system, there is in

general nothing known about the properties of the optimal Y (.). Because of

this, we cannot (in general) prove tightness or weak convergence of

(XI(.), Y"(.), Y'(.)) in the Skorohod topology on Ds[O,-). E.g., the jumps in

the Y E, Y E  might be quite 'wild'--relative to the Skorohod topology. A

weaker topology must be used, and it is described in Section 2. In Section 3,

we obtain a weak convergence result for a continuous time model, and we show

how to extend the results to the discrete time case in Section 4. Section 5

contains some auxiliary results which are needed later. The optimal control

problem for the discounted cost case is dealt with in Section 6, where it is

shown that the suitably adapted policy for the limit is indeed 'nearly' optimal

for the actual physical process, under appropriate and reasonable assumptions.

Section 7 concerns the average cost per unit time problem. Here, owing to the

natural requirement of stationarity, we impose a Markov structure on the

problem.

The basic methods work just as well for many non-scalar models--and

several extensions to such models are discussed in Section 8. Applications to

queueing and manufacturing networks require a somewhat special development,

which will be published separately. There are extensions of the results to

cases where the dynamical terms are not smooth or the noise is state dependent.

One would then adapt the weak convergence technique and assumptions of [8,

Chapters 5.3, 5.5 and 5.8] to the problem here. The methods are quite similar,

but the assumptions are more complicated. Our discussion is confined to certain

singular control problems. But it is also possible to work with controls which

have both a singular and an 'absolutely continuous' component. One simply

combines the methods developed here -- with those used in [6] for the

non-singular case. The extensions should be straightforward. Possible extensions
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in another direction concern the problem of [9], where the singular control

problem appears as a limit of impulsive control problems: Let 6 denote the

- fixed cost per impulse and (for some k > o) kilY(t) - Yc(t')l the variable cost,

for an impulse at time t. Then we can let 6E -* 0 as the noise bandwidth goes

to ", to get an approximation theorem for small fixed impulsive cost and wide

bandwidth simultaneously. The method is a simple adaptation of the scheme of

this paper.

lZ" * S 5- S V *

]1s%5~
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2. The Pseudooath Topology

In this section, we discuss the topology on D[O, =) (replacing the Skorohod

topology) which will allow us to obtain the desired weak convergence results.

Let the physical system be modelled by

XI(t) = ZE(t) + Y(t)

where X1(0) = x, ZE(0) = 0, Y"(.) = Y"(.) - Y'(.) and define

XE(.) = (XE(.), Y"(.), Y(.) Z"(.). The X() can be viewed either as a

continuous parameter interpolation of a discrete parameter system as discussed

in Section 1, or it might be an actual physical model for a continuous

parameter system. The Y (.) can be taken to be either left or right

continuous, but we suppose that they (and XE(.) and ZE(-)) are right

continuous.

We suppose that the X() take values in D4[0,_) , the space of

R 4 -valued functions which are right continuous and have left hand limits. [We

could let the Y.(.) take values in a space of measures or of distribution

functions, but this is actually not more helpful.] The appropriate topology for

our purposes on D 4[0,_) is what Meyer [10] and Meyer and Zheng [11] call the

pseudopath topology. For completeness, we state some definitions and results from

[11] which will be needed in the sequel. The results are stated for a scalar

valued process, but the natural extensions for the Rr-valued case should be

obvious and are used below.

Let y(.) e D[0,*) and define the measure X(.) on the Borel subsets of

[,) by X(dt) - etdt. Let P denote the compact space of probability measures

(with the weak topology) on the compactified space [0,-] x R , where R is the

closure of the real line. The pseudo-path of y(.) is defined to be the
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probability measure on the Borel subsets of [0,.] x R which is the image of

)(.) under the map t -- " (t,y(t)) of [0,-] into [0,-] x R (i.e., it is a point

in P). Let 0 denote the map which takes y(.) into its pseudo-path, the

corresponding point in P. If we write P = V(y(-)), then the pseudopath P is the

measure defined by (A and B are Borel sets in [0,-] and R, resp.)

P(A x B) = fAe'l(y(t)eB)dt.

' is 1:1 on D[0,-), since it identifies all paths which are equal a.e.

(Lebesque measure). The topology which P induces on D[0,-) via 0 is called

the pseudo-path topology. The associated o-algebra on D[0,-) is the same as one

gets with the Skorohod topology. In fact ([11], Lemma I and comment after its

proof), the pseudo-path topology on D[0, ,) is the topology of convergence in measure.

The same result holds if R and D[0,-) are replaced by R" and Dr[0,_),

where ' then maps points y(.) - Dr[0,.) into a measure on the Borel subsets of

[0,-] x r. Let Fr denote the space of probability measures on the Borel subsets of

[0,] x R .

The process Xe(.) induces a measure (which we denote by P,) on P 4 via

the pseudo-path mapping i. The set CPEI is obviously tight since P4 is

compact. If P is a limit measure of any weakly convergent subsequence, then for

the convergence to be useful we need at least that P be supported by (D4[0,m)),

since then the limit P would correspond to some process X(.) =

(X(.), Yo(.), Y1 (.), Z(.)) with paths in D 4 [0,_) , via the mapping '. A

convenient criterion for this is given by Meyer and Zheng [11], and will now be

described.

Let T denote a finite partition (ti, i 4 n) : 0 = to<tl<...<tn = 0 Let U(-)

denote a process with paths in D[0,-) and adapted to a non-decreasing sequence

of c-algebras (Ft}, and with EIU(t)I < - for each t< 0 For convenience in

comparing with [I1], lct U(t) = 0 for large t . Define the variations
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E. I j U(ti, ) -U(t i )(2.1) VarT (U) i(nE tEi " t

Var (U)= Sup VarT (U)
T

If Var (U) < , then U(-) is said to be a quasimartingale.

For u < v , let NU,'v (U) denote the number of upcrossings of U(.) on

[0,*) between the levels u and v. If U(.) is a quasimartingale, then

(2.2) ENuv(U) 4 4 Var (U)
v - U

an extension of the usual result for martingales ([11], Lemma 3). The main

result is ([11], Theorem 4).

Theorem 2.1. For each n = 1,2, ..., let Pn be a probability law on the Borel* subsets of

D[O,m) with the associated process Un(-) being a quasimartingale with sup Var(U n) < *.
n

Then there is a subsequence Pnk which converges weakly on D[O,*) (wilh the pseudo-path

topology) to a law P, and the associated process U(-) is a quasimartingale.

[Alternatively, let Pn be the measure induced on P by the map 0P acting on Un(.). Then

(Pn) is tight on P and there is a weakly convergent subsequence (Pnk) with limit denoted

by P. P is supported on D[O,*) and the associated process is a quasimartingale.]

Combining this with the previous results, we have:

Theorem 2.2. Assume the conditions and terminology of Theorem 2.1 and let h(.) be

any bounded real valued function on D[O,*) which is continuous (w.p.1 with respect to

P) when the topology of convergence in measure is used on D[O,*). Then there is a

subsequence (nk) such that Eh(U k(.)) Eh(U(.)). Also ([ll], Theorem 5) there is a

*The Skorohod topology and the pseudopath topology generate the same o-algebra
on D[O,*).

] ~ .~~~.\ 4~ *~~~ :~~ *Pg ~*~4
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further subsequence (mk) C (nk) and a set I of full measure (depending on P) such that

the finite dimensional distributions of (U. (t), t E I) converge to those of (U(t), t E I).

Let f(-) be bounded and continuous on [0,-). Then ([11], Theorem 6) the function

(t 1 ... tq) - Ef(U nk(t 1) .... Un k(t)) converges in measure to the function

(t 19 .... I t q) - Ef(U(t l ), ..... U(tq)).

%A XA R*A %A W-1
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3. The Quasimartingale Property and Weak Convergence of

A continuous parameter case will be done in this section. The discrete

parameter case requires only a few modifications and is discussed in the next

section. For concreteness, we use a specific model which is of a widely used

form [81, [12], [13], for representing wide band width noise driven systems (with

or without the driving Yf(.) process). The techniques are usable for a much

broader class of systems--just as for the case where Yf(.) - 0 dealt with in [6]

or the various continuous parameter models in [8]. The model to be used is

(3.1) dX' = G(XE, tl)dt + F(X6,t")dt/E + dYE(t) ,

where tf(t) = t(t/( 2 ) and t(.) is a right continuous random process.

Let E denote the expectation conditioned on (XE(s), tE(s), Yo(s), Y"(s),

s 4 t ),and Et the expectation conditioned on C t(s), s 4 t) Define

I t
Z'(t) S G(XI(s), tE(s))ds + -J F(XE(s), t(s))ds

We will use the following assumptions. Various extensions (vector case,

discontinuous dynamics, state dependent noise) are possible, as discussed in the

introduction, via the appropriate extension of the methods in [8] for these cases

to the problem at hand.

A3.1. G(.,.), F(.,.), and Fx(.,.) are bounded continuous functions and the

latter two are continuous in x- uniformly in t.

A3.2. For each scalar x, EF(x, t(s)) -0 and t(.) is right continuous

and sufficiently mixing such that there is a K < - for which for each T <

T
(3.2) Sup f Et g(x, t(s))ds , K

x ,t(T t

where g(.,.) represents either F(.,-) or FX( .,.)

I. % %I .' ~ ~ ~ ~
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Theorem 3.1. Assume (A3.1) and (A3.2) and let sup [EYo(t) + E Y 1(t)] <

for each t. Then (with the addition of a process whose maximum value goes to zero as

S- 0), (X'(.), Y6(.), Yf(.), Z'(.)) are quasimartingales with uniformly (in 4) bounded

variation on each bounded time interval. [We need not assume that X4 (t) C- [0,B] in this

theorem.]

Proof. Since the mean variations of the Yf(.) are bounded, they are

obviously quasimartingales with uniformly (in e) bounded variation on each

interval [O,t]. Thus, we need only work with the Z(.). We will use the

so-called perturbed test function method [8], [12], [14] but adapted to our present

needs. For some arbitrary--but large--T, define the process Zf(.) for t ( T, by

T/E
2

Z,(t) = lJ Et F(Xe(t), te(s))ds = E Ec F( XE(t), t(s))ds
t

t/E
2

The change of variable s/O2 --- s will be used frequently, in the averaging and

bounding in the sequel, when working with integrals such as Zf(.). By (A3.2)

Sup IZ (t)I = 0().
t(T

We will show that the function defined by fI(t) = ZE(t) + ZE(t) is a

quasimartingale with uniformly (in e) bounded variation on each interval [0,T].

The calculations will be done in a slightly indirect way so that they can be

rc-used later. Let f(-) denote a 'test' function with bounded and continuous

derivatives up to order three, and define fE(t) - f(ZE(t)) + fV(t), where fV()

is the 'perturbation' defined by

fI(t) = 1 TfE(Z(t))E F(XE(t), t(s))ds
SE J

T/E2 f5 (ZE(t))E1 F(XE(t), k(s))ds.

I2
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Write Y ('), Yd) and Y6(.) , Y"(.) for the continuous and jump

components of Yf(.) and YE(.) resp. By our convention on the right continuity of

the Y (.), we use dY~d(U) f Yd(U) - Yfd(U'). By integrating the derivative of

f(Z ( -)),

Et f(ZI(t + A)) f(ZE(t)) f

t+A
(3.3) Et AF( ), u)

(3.3) E~~~ J ~~ ZE(u)) [G(XEt)~~)+FX(u), O(U())]

t

Similarly, by evaluating [Euff (u+,) - f (u)]/A and letting 0 - 0, we get

t+A

(3.4) E' f' (t + A) - f (t) = . J f.( Zc (u)) E' F(XE(u), kE(u))du

t

t+A T

+ r du EE F dsf 5 ( ZE (u)) EI F(XE(u), E(s))

t u

F(X u), t (u)) + G(XE(u), 4E(u))

t+A T

+ EIE Y J (u) f- J I f( (u)) E' Fx(XEI(u), E(s))d s
t u

+ f Et F(XI(u), kE(u)) + G(XE(u), E(u)) du
t E

T

Tf Eu f(ZE(u)) F(X6(u), tE(s))ds +
E

U

T

+,-E( 5 ZE u [F(Xt(u-) + dYt(u), tt(s))+ f" ft fZ((u)) EE
U

t<u(t+A

-F(Xl(u-), ts)Id

V. P '~ u
tgugt
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Recall that dY(u) - Y(u) - Y(u').

By a change of scale s/ -- s and the use of (A3.l) and (A3.2), the sccond

and fourth terms on the r.h.s. of (3.4) are seen to be O(A) . By a similar scale

change, the third term is seen to be O(E)EE (Y:(t + s) - Y'(t)). The first term

of (3.4) is the negative of the 'l/E' term in (3.3). For the evaluation of the last

term in (3.4), first use the law of the mean to rewrite it as

T 1

(35I Ec Jdsf3 ( ZE(u)) E( dT [Fx( XE(U-) + TdYE (u), t" (s)) -dY' (u)
(3.5)T dd

t<u(t+A U 0

Now, by a change of scale s/E 2 -==.s and the use of (A3.) and (A3.2) again,

we see that this term is O(e)EE [Y((t + A) - YI(t)].

Putting all the estimates together and cancelling the '1/(' term on the r.h.s.

of (3.3) and the first term on the r.h.s. of (3.4), we get

(3.6) E" fE(t + A) - fE(t) - O(A) + O(E) Et (Y'(t + A) - Y((t))

+O(E)EE (YE(t+A) - YE(t)).

Eqn. (3.6) yields the quasimartingalc and the uniformly (in C) bounded in variation

property on each interval [0,T] for fc(,). By letting f(z) - z and noting that

ZE(t) = O(E) , we see that the theorem holds for the (Z(.)) component. Hence, it

also holds for (XE(.)), since sup E(YE(t) + Yf(t)) < for each t and

XI(t) = (ZE(t) + ZI (t)) y E(t) - ZI(t) . Q. E. D.

We summarize (3.3) to (3.6) for future use:

ir

. V i- *% 5 * S . ? /, * .



t+A

(3.7) E~' f'(t + A) - 0E(t) -JE"' f1( Z'(u))G(XE(u), OEMu)du

t+& T

+ -4Et du Jf.,( Z'(u)) E" F(X'(u), VE(s))ds F(XE(u), tf(u))
t U

t+& T

" -L Ee du E' f fZ'(u)) F,( X6(u), t t(s)) ds F(XE (u),tE (u)) + 0(A&)
t U

+ O(e)EE(Y1(t+A) - Y'(t) + O(()E((YE(t+,&) - Yi(t)).

Theorem 3.t implies that (X'(.) - ZE, Y"(.), YE(.), Z'(.) + Z((.)) are

quasimartingales with uniformly bounded variation on each interval [0,T3 and

are tight on D 4 [0,03 in the pseudo-path topology. Hence, the same tightness

in the pseudo-path topology on D 4[O0,-3 holds for (R '(.)). [To be consistent

with the usage in [1ll and in Section 2, we should set (w.l.o.g.) XE(t) - 0 and

Z6(t) - 0 for sufficiently large t , but this is just a technicality which is

convenient for the statements in [11] and does not affect the rcsults.] In the

next theorem, we choose and work with a weakly convergent subsequcnce, also

indexed by c and with the limit denoted by R(-) - (X(.), Yo(.), Y1 (.X, Z(.)).

Clearly, the sample functions Y1(.) can be taken to be non-dccrcasing elements

of D[,-). Although Y (O) - 0, the limits Yi( -) might not have value zero at

t - 0 . To account for this possible jump in the integrals, we use the

normalization Yi(0-) - 0 in defining integrals with respect to the I
(Recall that we are using dYi(s) - Yi(s) - Yi(s-), since the Y,(.) are taken to

be right continuous.)

Since the pseudo-path topology is equivalent to convergence in measure, forI

almost all w, t,I
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(3.8) X(t) - Z(t) + Yo(t) - Y1(t)

In fact, (3.8) holds also at all t at which the functions are continuous. In the

next theorem, we obtain the stronger and more useful result that there is a Wiener

process w(.) such that X(.) is non-anticipative with respect to w(.) and (X(.),

Y o(.), Yl(.)) satisfies (1.1) for that w(.). The limits Yt(') would not be too useful

were this not the case. We use the following 'ergodic' type assumptions.

A3.3. There is a continuous function G(.) such that for each x

u+N

- E. G(x ,(s)) ds G (x)
N

U

as u and N go to

A3.4. For g equal to either F or Fx and T > u + N,

T

E Sup J Eug(x , t(s))ds -0

u+N

as u, N, T go to 0 .

A3.5. There is a continuous function o(.) such that for each x

u+T 1  
T+T

T1 f EU F(x, -(T))dT f F(x, t(s)) ds
T

U

, o2(x)/2

as T, u and T, go to * Also, there is a continuous Go(-) such that for each x

u+T I T+T

EUF(x (r))dr Ix( x, (s))ds- Go (x).T1 u TT f I
a-U T .~d 1- . ~I~* - . I
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Remark. If t(.) is stationary, then

o2(x) = J EF(x,t(0)) F(x,t(s))ds,

Gjx) = j EF(x,.(0)) F,(xt(s))ds.

The requirements in (A3.4), (A3.5) are simply conditions on the rate of convergence

as T - u - of the conditional expectation of functions g(r), of the noise data after

time T, given the data up to time u.

Theorem 3.2. Assume (A3.1) - (A3.5) with supEEx[YE(t) + Yf(t)] < - for each

t < * . Then (Z6(.)) is tight in the Skorohod topology on D[O,-). Any weak limit

process is continuous w.p.l. Let (XE(.),YO(.),Y1(.),Z((-)) be a weakly convergent

subsequence in D 4[0,_)., with the pseudopath topology used on the first three

components and the Skorohod topology on the last. Denote the limit by X(.)

(X(.),Yo(.),Y 1 (.),Z(.)). There is a standard Wiener process w(.) such that X(.) is

non-anticipative with respect to w(.) and

t- _ _
(3.9) Z(t) = J G (X(s))ds + J Go(X(s))ds + J o(X(s))dw(s) .

00 0

Also, for all t, w.p.1,

(3.10) X(t) = Z(t) + Yo(t) - Y1(t)

[We need not require that XE(t) e [0,B] in this theorem.]

Proof. For purposes of the proof, the x-support of all functions can be taken

to be compact, and the Y.(.) uniformly bounded (i.e., are stopped on first

reaching some large value NO). The general case follows from this by taking

appropriate limits on the bounds. Furthermore, we can now assume that

ZE(.) is bounded, and that the z-support of all functions is also compact.

N
' ~ p2.j~{4 t" s.. * * ' '- . .. *.'
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Part (a). Tightness of (Z(-)) in the Skorohod Topology. Let f(-), fE(-) and

fE(.) be defined as in Theorem 3.1. We use the perturbed test function method

of [81 or [14] for proving tightness. Since fl(t) - 0(E), Theorem 3.4 of [8] or

Lemma 1 of [14] applied to the perturbed test function fE(-) yields the tightness

of (f(ZE(.)) in D[0,-) (Skorohod topology) for each smooth f(-), hence (ZE(-))

is tight on D[O,w) in the Skorohod topology.

(b) The limit of (ZE(.)). Fix and work with a weakly convergent

subsequence of (XIE(.), YIE(.), YIE(.),ZE(.)) also indexed by E. The first three

components converge in the pseudopath topology and the last in the Skorohod

topology. Let h(.) be a bounded and continuous function. For 0 < k < -and

1 > 0, tj ), 0, 1ct us define H(-) by

H( c~.t~ ( k) = h(j. J Y (s)ds, i = 0,1, X J XE ' Z6(s)ds, j k)
J it 

J- J 
I3ji -j tj"

Let t, 4 t < t + s, for all j. We have (See (3.7))

(3.11) lim EH(E ,A,,tj, j < k) [f ((t+s) - fE((t) - ftE" (T(u) + T2(u) + T3(u))du] 0,
it 1

where

(3.12) Tf(u) - f,5 (ZE(u))G(XE(u), tE(u))

TE(u = L f(ZE(u)) EI Fx(XE(u), t'(s))ds -F(XE(u), tE(u))

Y~U) = E2 ffz(ZE(u)) E"F(XE(u), tE(s))ds F(XE(u), tE(u))

Fix s. Let 6 C -0such that e 2 / 6C -. Oas c- 0. Write s =m.6. and suppose

(w.I.o.g.) that thc mE are intcgers. For the purpose of evaluating the limit in (3.1 1),

we can drop the f (.) components of the f((.) (since they are 0(E)). Also, for

the same purpose, we can rcplacc the integrals ft+'E'T(u)du by

(3.13) VE 1 E Jt+iBE+6E EcjTi(u)du

j=O 6C t~jBE
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We work only with T6(.), since the others are treated in essentially the same

way. Rewrite (3.13) (with i = 3) as

m -1 t+j 6 E+ 6 E +6u)

(.) Y6 • E+ f3 (ZE(u))du F(XE(u),tE(s))dsF(XE(u),t"(u))"t e 6 f t ++IE Zj=0 IE

Now, change scale u/E- u, s/E- s and define 0= (t+jbE)/e and let (for
^e(

notational convenience) E denote the expectation given (Yr(s), s 4 t + j6f , i =

0,1, t(s), s s). Then (3.14) can be rewritten as

(3.15) r i j +
A 2

5 E YS * L E f (ZE(E 2u)) F(XE(E 2u), (u))du

j- T/ 2 F(X e ( E 2 U) , (s)) d s

U

Due to (A3.4), the upper limit T/ez can be replaced by any large T, and

limits on T, taken after limits on e are taken.

Fix 6-small. Let (Bi) be disjoint intervals covering the range of XE(.) and

with diameter less than and let xi denote an arbitrary point in Bi. Due to the

upcrossing result for (XE(-) + ZE(.)} implied by (2.2), and the fact that

Zf(.) = O(e), the fraction of the number of intervals in the set of intervals

([t4jSe, t+j6E+BE), j 4 me) for which suplX (t+j6C+u) - X (t+jo)I s/2

holds goes to zero in probability as c -. 0. Using this, the tightness in

D[0,*) (Skorohod topology) of {Z'(-)) and (A3.4) yields that the limit of (3.16) as

e - 0 is the same as the limit of (3.15) as e - 0.

(3.16) E -i E Ix (t+JEe)Bi} Li .

j=O e t6

A Tlf,,.(Z~t~6,E)E.i'F~x~t~)) ~xit~s)r

U %.

% N.
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Now, (A3.5) implies that the limits are the same with (3.17) used in lieu

of (3.16).

(3.17)ml (XL f.(Z(t + j6))t j=o (X (t+j6,)EBi) 2

Define the operator A(x) by

(3.18) A(x)f(z) = f.(z)G(x) + f3 (z) Go(X) + fz.(z)o 2(x)/2

Finally, using the upcrossing result again to approximate the sum of the (indicator

functions times 6 .) by an integral, and putting the above estimate together, and

using a similar method for Tf and T( yields

(3.19) lim EH(c,AE,t , j ( k) f(ZE(t+s)) - f(ZE(t)) -

- I~t+ @J A(XE(u))f(ZI(u))du] 0.

"t

Since Z(.) converges in the Skorohod topology on DIO,m) (and we have not

yet proved the continuity of the limit Z(.)) the set I of t-points for which P(Z(t) #

Z(t')} > 0 is countable but need not be empty. Let t and t+s not be in I. The triple

(X'(.), Y (.), Y"(.)) converges in the pseudopath topology and the integrals in H(-)

and in the brackets in (3.19) represent functions which are continuous with respect

to convergence in measure. Then, taking limits in (3.19), we have

t+s

(3.20) EH(Aj,tj,j ( k) [f(Z(t+s)) - f(Z(t)) - J A(X(u))f(Z(u))du] = 0

where the function H(Aj,tj,j ( k) is defined to be just H(c,Aj,t,,j 4 k) with all

functions replaced by their limits as c -. 0.

Owing to the arbitrariness of k,tj,A, and h(.) and of the points s and t+s

A(not in 1) (3.20) implies that f or each smooth f() the process def ined by
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It
f(Z(t)) - J A(X(u))f(Z(u))du - Mr(t)

is a martingale with respect to the sequence of o-algebras generated by

(X(s),Y(s),Yj(s), Z(s), s 4 t). The fact that the operator A(x) is 'local' implies

the continuity of Z(.). (See a proof of a related continuity result in [8], [14].)

If f(z) = z, the quadratic variation of M (.) is f102 (X(u))du. Owing to

these facts we can construct a standard Wiener process w(.) such that

X(.),Z( -),Yo(.) and Yj(-) are non-anticipative with respect to w(.) and

(3.21) Z(t) = f'[G(X(u)) + Go (X(u))]du + J o(X(u))dw(u)
0 o

It follows from the continuity of Z(-) and the non-decreasing property of the Y( )

that we can define the limit X(.) of (X'(.)} by (3.10).

Q.E.D.
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4. The Discrete Parameter Problem.

The discrete parameter analog of Theorems 3.1 and 3.2 is obtained very

similarly to the schemes used in those theorems, and we discuss only a few of the

details, for one discrete parameter form. Just as for the continuous parameter

case, the general ideas are applicable to a much broader class of processes than used

here. Define (X ) by XE = x and

(4.1) X6 = X6 + EG(Xn,") + vr"F(Xnt n) + BY'

where we define 6Y6 = By'n - sY6 n' and BYn ' 0. Let EE denote then On in inn

expectation conditioned on {X , j 4 n , 6Y,, 6 yE"j, t , j < n). Define the

n-1

processes Y (-) by YV(t) = E BYij' i = 0,1, and XE(t)= X6 for t E [ne,ne+e).
j=O

We will use

A4.1. sup E (Y (t) + Yf(t)) < - for each t. G(.,-), F(-,-) and F'(

are bounded and measurable and the latter two functions are continuous in x,

uniformly in k.

A4.2. For each x, EF(x,tE) = 0. There is a K < such that for all N

and n 4 N,

N

(4.2) sup I EE g(xf)l K
n,E,x j=n

where g equals either F or Fx.

Theorem 4.1. Under (A4.1) and (A4.2), (XE(.),YE(-), i 0,1) is (with the possible

addition of a process Xf(.) = O(/E to X6 (.)) a quasimartingale with variation

uniformly bounded in 6 on each interval [0,T].

pl
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Proof. We proceed as in Theorem 3.1, and let f(.) be a function that is

continuous and has bounded and continuous derivatives up to order three. Fix T,

large. For N = T/, define

N
f 1: E' f (Za)F(Xn )

j=n

where we define ZE by ZE = 0 and Z6+E = V + EG(X ,E ) + -r (XnE).

Define the processes ff(.) and Z(.) by ff(t) = fE and ZE(t) - Z on the

interval [ne,nc + E). Define (as in Theorem 3.1) fE(t) - f(Z'(t)) + ff(t). We

show that f 6 (.) is a quasimartingale with the appropriately bounded variation.

As in Theorem 3.1, we can suppose that XE(-), Z6(.) and Y(.) are bounded on

[0,T].

With a rearrangement of terms, we can write

(4.3) EnfE(nc+c) - fO(n6) =

En[f(Z n + EG(X6,t) + v-r F(Xn,'E)) - f(Zn)]

'Ir f, (Zn)EnF(Xn,tn)

N
+ En[fz(Zn+I) - ( F(Xn+p1 9j)

j=n+l
N

+ vfr f3(Zn) E E6 [F(Xn+lf) - F(XEt j )]
j=n+I

Via a truncated Taylor expansion, we see that the sum of the first two terms

on the r.h.s. of (4.3) equal

(4.4) E f, (Zn) E6 G(Xn,tl) + E f,(ZE) Ev F 2(XEt)/2 + c)..

Via a truncated Taylor expansion and (A4.2) the third term on the r.h.s. of (4.3)

equals

ph

V Ih
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(4.5) fz (z ) E F(Xn.+, )F(X.,.) + O() = O()
j=n+l

Similarly to what was done in Theorem 3.1 to the 'corresponding' integral, the last

term in (4.3) can be written as

N
(4.6) yr fz(Z")E. E J .+--(X. + T(X+ 1  X.), q )d• (X. +1-Xn)j=n+l

S0(v r)E'(o('r) + 16YI)

Putting all the estimates together yields.

E fCE(nc+e) - fE(nc) = O(e) + 0(i)E I 6Ye 1.

Letting f(z) = z yields the desired result, since ff(.) = 0(,/) and

sup E(Ye(T) + Yf(T)) < c.
E Q.E.D.

Theorem 3.2 can also be carried over to the discrete parameter case. We

will use the conditions.

A4.3. G( .,) is continuous in x, uniformly in t. There is a continuous

G(.) such that for each x

n+N p
I- EnV G(x,l G-- (x)

Nn n

as n and N go to

** h- ** ****P ''Y~- ~*..4
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A4.4. There are continuous R(j,x) and Ro(j,x) such that for each x

m+N p1: E mf F(x,n+j)F(xj" ) - R(j,x)

n=zn

m+N p
I-EEmFx(XX n+,)F(Xj{n) "- R0(J'x)

as m, N and n-rn go to

A4.5. For g equal to either F or Fx,

N
E supi E Eg(x, - 0

x n+N 1

as N,n and N1 go to ( (with N > n+N 1)

Define

02(x) = R(O,x) + 2 E R(jx)z E R(j,x)

G(x) E Ro(j,x)
I

n n

It can be shown that (A4.5) implies that the sums E R(j,x), -Ro(j,x) converge
1 1

uniformly in x as n -. (not neccssarily absolutely).

A proof parallel to that of Theorem 3.2 yields

Thcorcm 4.2. Assume (A4.1) to (A4.5). Then the conclusions of Theorem 3.2 hold

for the model (4.1).

'y ' ~ ' ~ 'i
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5. Auxiliary Results

In this section, we obtain some estimates which will be useful in Section 6,

for the proofs of the convergence of the costs Vo(x,Yo,Yo) to either cost

Vo(x,Y 0 ,Yl) or V(x). We will show, for several reasonable classes of control

policies, that sup EIY (t)Ik < - for each k > 0 and t < - This implies the uniform

integrability property needed in the next section: In Section 6, we will need to

know that the sequence of optimal or 6-optimal controls for x(-) are uniformly

integrable. similarly, we will need to know whether the sequence of optimal or

6-optimal controls for xE(.) is uniformly integrable.

The symbol TE will denote a stopping time with respect to either of the

'data' o-algebras B(E(s), s ( t) BE or B(f, En < t) = BE depending on the

case, and we write E. and P( for the expectation and probability, conditioned

on the data up to time TE.

Theorem 5.1. Assume either (A3.), (A3.2) or (A4.1), (A4.2). Let Q,() and QEn be

bounded and B( measurable (for nc < t, in the latter case). Define XE(.) and X ( by

(5.1a) dXE = [G(X1,t1) + F(X1,t1)/i + QE/E]dt

(5.1b) X( =X + G(Xntn) + / +( .

Define ZE(.) as in Section 3 or 4 (continuous and discrete parameters case, resp.). For

integer k and t < , there are * > K kt - 0 as t - 0 such that (for small c > 0)

(5.2) E sup IZE(TE + s) - ZE(TE)1 2 k 4 K 2kt

for all finite (w.p.l) TE.
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Proof. For arbitrary T < -, define

f 2k((t) - J 2kZ(t)2k'E' F(X'(t).j'(s))ds/,E- O(C) Zf(t) Ik-1.

The right hand equality is a consequence of (A3.2) and the change of variable

s/(2 s. We do the proof only for the continuous parameter case and for T€ - G =

ZE(O) = 0 for simplicity. The proof of the other cases is essentially the same.

Analogous to what was done to get (3.4) and (3.7), we have

t+4

(5.3) Et [ZE(t+s)2k + flkE(t+s)]- [ZE(t)2l + f kE(t)] - Et co k(u)du,

where

cE(u) = J 2k[(2k'l)ZVk2 E F(XI(u),k(s))ds]F( x f(u ) , E( u ))

+ I 2kZE(u) 2k-lE Fx(x((u)jE(s))ds[QE(u) + F(XE(u)j'(u))]
U

T/E
2

S0() f)(u)2k-2 EEF(XE(u),j(s))ds

T/(2i

+0(1)J Zf(u) 2k-lE(Fx(X'E(u),j(s))ds.
J u / E 2

By (A3.2), we can write this expression as

Z((u)2k -2 ck((u) + zE(u)2k -1 Cck(u)
(5.4)

= 0(1) (Iz1(u)12k2 + Izl(u)12k-1),

where the Cik( • ) arc defined in the obvious way and arc bounded.

By (5.3), (5.4) and the bound f2k(.), thcre arc > K k(T) - 0 as T -. 0 and

constants K~k such that, for t T,

E[Z((t)2k + f~kE(t)] IK f E[lI+ IZ(s)1Jk-]ds 1 gkk(T).

Define

2 k() C [z )2k 2ck(t) - z(s)2k-22k((s) + z((s)2k1c~k((S)] s
+0

P

.1
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By (5.3), M2kl(.) is a martingale. From the above estimates there are functions

KkOt- 0 as t - 0 such that (use Doobs inequality [ 15, Theorem 7.3.41

(5.5) E sup IM2kl(S) 12 ( 4E I MUkE(t) 12 4 Kk~)

By the bound on f~kE(. and (5.5), we get (5.2) for TIE - 0. Q.E.D.

Theorem 5.2. Assume the conditions of Theorem 5.1, except with QE(t) - 0 (or Q1E.

0) for t ) TC. Given A0 > 0, there are So> 0 and To > 0 such that for all small c

(5.6) PE (sup I Z'(T +t) -Z'(r,) 60 A0 .

Proof. The result follows from Theorem 5.1.

Recall the definition of B in Section 1. We now describe some classes of

controls and obtain some estimates of path excursions under the controls. Let L

and U be numbers such that 0 ( L < U 4 B. Define

dY((t) - [F(X'(t),t'(t))/c + G(X'(t),t((t))] dt I E()L

(.)dY"(t) = [F(XE(t),t(t))/c + G(XE(t),tE(t))]+dt IE()U

For obvious reasons, we call this the (L,U) barrier control (following the usage in

[4]). Define the discrete parameter barrier policy in the analogous way: the dY((.)

and WY~ are just large enough to keep XE(.) and X( in the set [L,U]. The fY /dt

will be one of the candidates for the Q, in Theorem 5.1.

Let A0 < E/2. We define a specific control policy - called the (13,6 0)-control

(for the continuous parameter case) as follows. If X((t-) - B, immediately set Yf(t)

-YI(t-) + A~ and X((t) - B - A Also, Y(-) increases just fast enough to keep

XE(t) ) 0; i.e., Y'( -) is given by (5.7) for L =0. Thcre are analogous definitions

* p ~ * p ~b ~ w, % v~ ~.,0

V. 1%,
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and results for the discrete parameter process. The (B,Ao)-control has some nice

properties which render it useful for the discussion in the next section.

Theorem 5.3. Assume the (AoB)-control and either (A3.1), (A3.2) or (A4.1),

(A4.2). For each t and integer k,

(5.8) sup EIY(TE+t) - YjjT() 1 k <
ETE

Remark. Owing to the conditioning in (5.6), the estimates for Y' are proved

almost as if the 'return' process from the point (B-Ao) to (either B or

B-2Ao), then back to B-A o, etc., were constructed from a Bernoulli sequence.

Proof. We do the continuous parameter case only, and i = 1. The case i = 0

is treated by an argument based on Theorems 5.2 and 5.4. W.l.o.g., set TE = 0.

Define the stopping times: o6 = min(t 0 : XE(t) = B - Ao} and for

i > 0, pf = min(t > of_ 1 : PIe(t) - (B - Ao)j I Ao), of = min(t p : XE(t) =

B - ao}. We will estimate the kth moment of NE(t) = max(i : of ( t). Define

the (0,1) valued random variable Uf as follows. Use the To of Theorem

5.2. If p - of.t < T O, set Uf = 0 and call the event a 'failure'. If p'-oi -1

; To, set Uf = I and call the event a 'success'. Let N! denote the number

of successive passages of X((-) from B-Ao  to either B or B - 2Ao which

are failures, after the ith success. Then

t t/T0 .1
N(t) 4T + t- N.

To 0

There are Kk < - such that
k t/To-.

NI(t)k Kk(t/T)k + Kk(t/To) E (N
0
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We will bound E(N-)k. Let o( denote the return time of XE(.) to

B - Ao immediately after the ith success. Then, by Thcorem 5.2,

P' (N 4 n) -

O~ E i+ j+0 C < T 0 , j < n )

4( - 5 )n'1

This yields E(N6)k 4 (constant)/5 o, and the proof is concluded, since Yf(t) 4

AoNE(t).
Q.E.D

Theorem 5.4. Assume either (A3.1), (A3.2) or (A4.I), (A4.2) and the

(L,U)-barrier policy. Then for each t

(5.9) sup [E(YI(t+T) - Y'(T))' + E(YI(t+T) - YI(T))'] <
c,T

Proof. Again, we do only some of the details for Yl(-), and for the

continuous parameter case. Drop the G(.,.) for notational simplicity. Denote

the initial time by to and let &o < (U-L)/2 and define the stopping times

f0 = min(t ) to• XE(t) = L}

and for i > 0,

Eo =min(t > p: XE(t) - L), pE = min{t > oa. 1 : XE(t) - L + A0 .

Set the stopping times to - if they arc not otherwise defined. All the needed

estimates can be shown to be uniform in to and we set to 0 for

simplicity.

We can write (and simultaneously define zc(.))

II

{1~

'A.).. 

~~. r
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(5.10) r [xp 1 C t- x'(" t)x t)
i+

r [z'(p" , r) t) Z1co r t)] + Yv(t)

A

ZI(t) + Y(t)

The mean square value of the term on the left of (5.10) is bounded above by

60 times the expectation of the square of the number of i for which pf ( t. By

an argument very similar to that used in Theorem 5.3, this can be shown to be

bounded uniformly in c for each t.

Define M(t) - Z6(t) - J'tC'(s)ds, where ZE(.) is defined in Theorem 3.1

or, equivalently, it is the f1 E(.) of Theorem 5.1. The CE(.) is defined in

Theorem 5.1. The C"E(.) defined there doesn't appear here, since 2k = 1 here.

Define NE(.) as in Theorem 5.3. Then, since ME(.) is a martingale on the

interval where dYE(.) = 0 we have,

E(E[MI~pCE t) _ MI(O n t )
i+

E E IM6(pE+l n t) - M'(o' n t) 1

(5.11)
- 0(1) E(sup IZ'(s)I2 + 1) NI(t)

s't
, O(1)E (sup IZE(s)14 + I) E 1NE(t)} 2  K1 <

The last inequality follows from Theorems 5.1 and 5.3. Since C'6(.) = 0(l), and

Zf(.) - O(E), and supE(NE(t))2 < , there are K2 < , K3 < , such that the left

side of (5.11) can be bounded below by

K2 E (E [ZE(p+, r)l t) - ZI(o o t)])2 -K 3

JA

K2 EIZI(t)12 - K .

The proof that sup EIZ-(t)12 < follows from these inequalities. Q.E.D

-'
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6. Convergence of the Costs and Controls.

In [1], it is shown that there are 0 4 L* < U* < such that (under

appropriate conditions) the optimal control for (1.1) is a (L*,U*)-barrier control. We

assume that B is large enough so that U* 4 B. Let Yi(.), i = 0,1, denote this optimal

control. The set of increments of the 'local time' control processes (Yi(n+l) - Y,(n),

i = 0,1, n < -) are uniformly integrable. Let Y/(.), i = 0,1, denote the

(L*,U*)-barrier control for X6(.) (continuous or discrete time). The following

theorem says that the optimal control for X(.) is 'nearly' optimal for XE(.).

Theorem 6.1. Assume either (A3.) to (A3.5) or (A4.1) to (A4.5). Let (1.1) have a

unique weak sense soltion for the (L*,U*)-barrier policy, and let this policy be

optimal. Then (X"(.), Y (.), Y 4()} * (X(.), -yo(-), Yl(')) in the pseudopath

topology, and there is a Wiener process w(.) such that (X(.), Yo(.), Y 1(.)) is

non-anticipative with respect to w(.), and (1.1) holds. Also

(6.1) V6(x, Vo, ) V0(x, Y0, Y1) = V(x).

For 6 > 0, let YO('), Y(-) be 6-optimal policies for XE(.) such that (6.2) is

uniformly integrable.

A A

(6.2) (V(n+l) - Y(n), c > 0, n <

Then
A A

(6.3) B + A V V) V(x)

I

'~*w'~-k%'% i: ~ a~%. -
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Remark on (6.2). The uniform integrability is used basically to ass ire that the cost

associated with the limit process is the limit of the costs associated with X"(.). We

have not been able to prove the theorem without it, unless all cost terms are

positive (see Theorem 6.2). With the cost structure used here and in [1], it is

conceivable (in that we have not yet proved otherwise) that as C - 0, the increments

in both YO(') and I'(.) grow without bound. But, (as shown in Section 5) this

won't happen for a large class of reasonable controls. The uniform integrability

holds for a wide variety of control processes: E.g., for (1) Combinations of the

(L,U)-barrier and (B,&o)-policies (Theorems 5.3 and 5.4); (2) these theorems can be

extended to cover the case where there are numbers L0 , U0, A0, Al where A0 
+ A1 

<

(U0 - L0)/2 and Y"(.) acts only in [L0,L0 + A0], Yf(') only in [U0 - A0, U0], and with

maximum jump 4 A1 ; (3) Let Y (-) denote any admissible policy and fix N.

Define

T min (t > n: (YE(t) - Y'(n)) + (Y'(t) - Yf(n)) )t N) r (n + 1).

On the interval [n, n+l), use YE(-) on [n, Tr), then switch to a barrier or (B,Ao)

policy on [TE, n+l). In Theorem 6.2, it is shown that (6.2) is not needed if -kdY1 (t)

is replaced by the positive cost increment kidYl(t).

Proof. We do only the continuous parameter case. Let XE(.) denote the process

with the VE(.) used. By Theorem 5.4, (Y/(n+]) - :Yi (n), E > 0, n < -) is uniformly

integrable. Extract a weakly convergent subsequence of (XE(.), Y'E

Yf(.)) (pseudopath topology) and denote the limit by (X( .),Yo( -),Yl(.)). By

Theorem 3.2, this triple satisfies (1.1) for some w(.). Clearly, the Y0( .),-Y,(-) is

the (L,U*)-barricr policy, since it can only increase when X(t) = L or U*

appropriate. Hence Yi( .) = -Yi(.). By this and the uniqueness of the solution to

(1.1), the limit does not depend on the chosen subsequence.
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By the uniform integrability asserted in the above paragraph,

(6.4) urn VOI(XYO',IY~j) - urn E r. e- [kodi,'(t) - k~dY,'(t) + k(X (t))dt]

-E 00 e-t [kod-Y(t) - kjdY1(t) + k(X(t))dt]
4Ff

-Vj(XY,Y 1 ) = V(x)

To get (6.3), repeat the procedure with controls Y(-), Y"(.). Here, the

limit (X(.),YJ(.),Y1 (.)) might depend on the chosen subsequence. But, for any

convergent subsequence (Ed) we get lrn V (x Y" Y') -V 0(x,Y 0,Yl) V(x). Hence,

by the definition of 6-optimality and the weak convergence,

6 + LI. Ex O.~.V(xY "Y)

Sinf Vj(x,Y0 ,Y1 ) = V(x).

Q.E.D.

Theorem 6.2. Assume the conditions of Theorem 6.1, except for the uniform?

integrability of (6.2), but let the cost be

EX J e-1t[kodY0 (t) + k, dYI(t) + k(x(t))dtl = V~,0Y)

and similarly define V (x,Y ,YE), where k. > 0. Then the conclusions of Theorem 6.1

(with the 6 in (6.3) replaced by 26) hold.

Proof. Let Y1() i - 0,1, denotc a B-optimal policy. We can suppose that

s[EY"(t) + E YE(t)I < - for each t < ca and
44

urn Suplf e3t[k dY"(t) + k dYf(t) + k(X 4 (t))dt] 0,
T C fT

SL
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since this holds for any barrier policy. In fact, there is a NB < - such that if we

switch to the (L*,U*) barrier policy (or to any barrier policy) once the Yi (t)

exceeds NB, we change the cost by less than B. But, then the set (6.2) is uniformly

integrable, and Theorem 6.1 holds.

Q.E.D.

%I
I
9

I

I

a'
&Lxq
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7. Average Cost Per Unit Time.

The methods of Sections 1 to 5 can be used to adjust the proof of Theorem 8

in [6] to get the result which is analogous to Theorem 6.1 for the average cost per

unit time problem. Only an outline of the method will be given. The reader is

referred to the reference for more details on the structure of the approximation for

the average cost problem for the non-singular case (and which can be carried over

to our case).

For the average cost per unit time problem, we wish to work with feedback

controls and, hcnce, use only Y (.), i = 0,1, or Yi(-), i = 0,1, for which the

associated processes k(.) and (Xc( -),kE(.)) or X(-), resp., are bounded

Markov-Feller processes. Also, let {(k(t), c > 0, t < -) be bounded. The cost

criteria are

lim E T fT [kodYo(t) - kldYt(t) + k(X(t))dt] - 7Y)
T 0

lim- E + kdY(t ) - k dY(t ) + k(X'(t))dt]

T L'

For simplicity, we do only the continuous parameter case. The discrete

parameter case uses very similar assumptions and proof. Let PM (PM,resp.)

denote the class of feedback control processes for which X(-) (resp.,

(XE(-), (-)) is a Markov-Feller process. Let NA (resp., NAG) denote the class of

non-anticipative controls. We will use the following assumptions.

A7.I. There is an co > 0 such that for each B > 0 and c 4 co, there are

B-optimal controls - PM( of the form
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(7.1) dY = Q (x,)dt, i = 0,1,

where the Qf(.,.) are continuous.

Note: If Q (x,t) is Lipschitz continuous in x, uniformly in t, then Y(-) E PM' .

See the remark below where it is shown that the barrier and (B,Ao) policies can often be

smoothed to yield a continuous Qf(.,.).

A7.2. A (L*,U*) barrier control Yi( -) is optimal for (1.1), and (1.1) then has a unique

invariant measure. This control is in PM and its adaptation Yl (.), i 0,1, to X'(.) is

in PME. When applied to PME, (XE(-),E(-)) has a unique solution and invariant

measure.

A7.3. inf 7y(Yo,Yl) = inf 7(Yo,Yj)
YiEPM YiNA

Theorem 7.1. Assume (A3.) to (A3.5) and (A7.1) to (A7.3). Let G(x,t) be

Lipschitz continuous in x, uniformly in t For 6 > 0, let Yi(.), i = 1,2, be a sequence

of 6-optimal controls in PME (for XE(-)) and let (the YI(-) are of the form discussed

in (A7.1)) with Q' associated with Yf

(7.2) {Y6(n+l) - Y(n), i > 0, n < *, XE(0) = x, 0E(0) }

be uniformly integrable. Then

UL ' EEEyE~yl) ) _i 11 !Y - O'-
B + E 7'(Y0 ,Y1 ) lm7( o Y)=7(,Y.

Remark. The (L*,U*) barrier control can be approximated for X6(.) in such a way

that it is of the form in (A7.1). In particular, let 6, -*0 as c - 0 and define
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dy 1(t) - dt [F(X'(t),(t))/ 6 + G(X(t), '(t))]+

(7.3)
[XC(t) -U* + Ajg

(xE (t)EuO.-Eo*l} A6

and similarly for Y (.). It can be shown that

(7.4) 'YE(Y ,Y 6) - 7(

where the Yf is the (L ,U )-barrier policy for X6(-). Clearly, the Yf(-) are

of the form used in (A7.1). By (7.4), for each e, we can choose A, so that the

left and right sidcs of (7.4) are as close as desired. By using techniques of

Section 5, it can be shown that (Yf(n+l) - Y (n), i = 0,1, n < -* C > 0,

XE(O) = x, t6(0) = t) is uniformly integrable.

Proof. For each e, 6, T, define the measure

pf,o(.) = # E PC,6(XE(0),t(0),t,.)dt,

where pr is the transition function for (XC(.),jC(.)), under the 6-optimal

control Y.(.) (or Q ) of (A7.1). Then

.E(y' ) , Tm f6" p ,(dxdt)[ko Q1(x,t) - k1Q,(x,t) + k(x)].
011 T j T0

Choose a subsequence T -' such that both the 1 i m is attained and

PT, converges weakly (with limit denoted by A Then, by the

Markov-Feller property of (XC(.), 96(.)) for (Y'(.), Yf(.)) e PME, gC,6 is an

invariant measure for (XE(.), E(.)) and (by the continuity of the Qf and the

weak convergence,

(7.4) 7(YY)- k' gE"(dxd)[koQ(x,) - k1Q(x,) + k(x)]

01 1~% *'6,r .Vdx'% 'V )
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Let (XE(.),iE(.)) denote the stalionary process associated with the controls
A

and measure Ae,6(.) and let Y(-) denote the corresponding stationary

control processes. Then we can write (7.4) as:

E(Y ,YE) = E adt [koQ~(EX(t),jE(t)) _ k1QE(X,(t),AE(t)) + k(Xf(t))].

(7.5) A A

= E J k(XE(t))dt + Ek 0Y'(1) - EkIY (l).
0

A A

By the uniform integrability (7.2), (YE(l), YI(I), E > 0) is uniformly integrable.
A

Now, choose a weakly convergent subsequence of (X(-),YI(.),YE(.)}, with
A A A

limit denoted by (X( .),Y 0 (.),Y,(.)). The limit is stationary, satisfies (1.1) and

(indexing the subsequence by c also), we have

1E(yoyE) _ 7(Y0,Y1) ) 7(Yo, 1)

where the optimality of Yo(), Y () is used.

The proof is concluded by applying the same procedure to YE(.), YI(.),

whcre the 'smoothing interval' AE (see remark above the theorem where YEi is

defined) goes to zero fast enough as e -* 0.

Q. E.D.

I

I
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8. The Vector Case. Formulation and Quasimartingale Estimates

and the Approximation Theorem

Most of the foregoing analysis and results can be carried over to the

case of vector (x C Rr, Euclidean r-space) valued G, F in (1.4) or (3.1). Since

the details of the proofs are essentially the same as in the foregoing sections,

only an outline will be given. Only the continuous parameter case will be

discussed, but under the obvious changes in the assumptions (A3.1 to A3.4) and

(A8.1) used below, the discrete parameter results also extend to the vector case.

Applications to queueing and production networks require a somewhat more

special development, and this will be published spearately.

We use the model (vector F, G)

(8.1) dXE = [G(X',t') + F(X",t)/E]dt + dYE(t),

with cost

(8.2) V((x, YI)= e'13t[ko I dYE(t) + k(XE(t))dt], 13> 0,
0

The results of Section 7 can also be extended to the vector case.

Thorem 8.1. Assume (A3.l, A3.2) with vector G, F used, and let supEJ'IdYE(t) < *

for each T < **. Then (with the addition of a process whose maximum value goes to

zero as e - 0) (X((.), Z'(.), Y'(.)) are quasinmartingales with uniformly (in c)

bounded variation on each bounded time interval.

Remark. The proof is essentially identical to that of Theorem 3.1. Similarly, the

proof of Theorem 8.2 below is essentially identical to that of Theorem 3.2.

We will next use (A8.1), the vector form of (A3.5).
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AS.I. There is a matrix E(.) with a continuous and bounded square root o(.)

such that for each x,

S/+Ti EuF(x,(T'))dT T+T F'(x,(s))ds

TI Ur~~ T+T
+ u+TI EUF(x,t(T))dT/ F'(x, t(s))ds P (X),

as T, u and T1 go to There is a continuous Go(.) with components Gj(.), i ( r,

such that for each x,

i ,u + T , T+T P

T- E EuFj(x,t(T))drT Fix(X,(s))ds - Oi(x)

as T, u and T 1 go to .

Theorem 8.2. Assume (A3.) to (A3.4), and (A8.1) and let supEExfJoIdYE(s) < - for

each T < . Then (ZE(-)) is tight in the Skorohod topology on Dr[O,.) and any weak

limit process is continuous w.p.l. Let (XE(..)Y'(.),Z(.)) be a weakly conmergent

subsequence in Dsr[O,m), with the pseudopath topology used on the first two components

and the Skorohod topology on the last. Let X(.) - (X(-),Y(-),Z(.)) denote the limit of

a weakly convergent subsequence. Then the conclusions of Theorem 3.2 continue to hold,

with the limit Y(.) replacing Yo(') - Yl(.). In particular, the limit satisfies

(8.3) X(t) = Z(t) + Y(t) + X(O), dZ(t) = [G(x) + Go(x)]dt + o(x)dw,

Z(O) - 0.

Dcfinition and Assumptions. Below, v(-) will be a continuous vector field on R r

with lv(x)l S 1, and S a compact set with a piecewise differcntial boundary and

with the following property: There is a A. > 0 such that for x C 8S and a 4 Ao, the

points x + Av(x) arc interior to S. Define the (S, A, v(-))-reflecting policy for
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XE(.) as the (admissible) policy which sets XE(t) = x + Av(x), if XI(t -) . x c 85.

Then, of coursc, dYE(t) - Av(x). The same definition is used for the (S, , v(.))-

reflecting policy for the X(.) of (8.3).

A policy Y(-) for (8.3) is called a (S, v( . ))-reflecting policy if the

associated process X(.) is a reflected diffusion in S, with continuous reflection

direction v(.) on 8S, and there is a A0 > 0 such that for a 4 Ao, the policy which

sets X(t) - x + Av(x) if X(t) - x E 8 is an admissible (S, A, v( . ))-reflecting policy.

Theorems 5.1 and 5.2 continue to hold. Here, we would require that the

QC of these theorems be such that it guarantees boundedness of the XE(.); e.g.,

choose a bounded set S, and let QE simply just push 'enough' to keep XE(.) from

leaving that set. In the approximation Theorem 8.5, we use a different approach,

based on the use of a (S,, v(-))-reflecting policy to approximate a 'reflecting'

diffusion. We will use only the following two theorems.

Theorem 8.3. Assume (A3.1) and (A3.2) (vector case), and let yEA(.) denote a

(S,A,v( .))-reflectinzg policy for XE(.). Then for each T < - and integer k

(8.2) su E.,*
(,AI 0 E IdYA(s))l <

xES

Theorem 8.4. Assume ine model (8.3) vith bounded and continuous G(-), Go(.) and

o(.). Let YA(.) be a (S,A,v( ))-reflecting policy for x(.). Then, for each T < - and

integer k,
TU E T

xES

We will prove Theorem 8.4 only. The proof of Theorem 8.3 is similar, and

uses the (vector case) estimate (5.6) for the process Z((t) + Z((t), where ZE(.) is the

appropriate 'vector' case replacement for the Zf(.) used in Sections 3 to 5.

VIWI
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Proof of Theorem 8.4. Let yA(.) denote the (S,&,v(.))-reflecting policy and XA(.)

the associated solution to (8.3). Fix a > 0 and small. Let N,(x) denote the

a-neighborhood of x. There are x1, ... xq on 8S such that U N (x.) D oS and

(8.5) x,su(xp ) I v(x) - v(y) I < a

Let o0 denote the first time of entry of XA(-) into Na(Xm). Define

p!'= min(t > oi _I: XA(t) N2a(Xm) }

o~m = mint > pm : XA(t) e A(Xm)p"

Define NA = max(i: oi ( T), Y-m(T) = ya(pmT} r T) - Y"(ofi T) and YA'M(T) -

m I-Am(T).

Owing to (8.5) and the smallness of c, there is a K, < (depending on a,

but not on A) such that

J T q
IdYA(s) 1 K E I yAm(T).

0 1m=1

Hence we need only evaluate E[YA'm(T)]k. We have

NA
y".m E [X6(pm () T)- XA(o 11 r) T)]

1
(8.6)

-~ £[Z(p m r) T) - Z'(o m, 0 T)].

The absolute value of the first term on the r.h.s. of (8.6) is 4 odc 2NAM, for some

constant K2 < ,. The absolute value of the last term on the r.h.s. of (8.6) is

bounded above by

(8.7) N" -s IzA(t) - ZA(s)I.

Since zA(-) is just the sum of an ordinary integral and a stochastic integral

whose integrands arc bounded uniformly in A, all the moments of the last factor in
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(8.7) are bounded uniformly in A. Hence it is enough to show that sup ExINmIP <
xES,4

for all integers p.

This last problem is similar to that dealt with in Theorem 5.3. Owing to

the nature of the (S,A,v(.)) - reflecting policy there is an a' > 0 (not depending on

A) such that in order for XA6(.) to move from the exterior of N2,(Xm) at time p~n to

a(Xm) at time am, we must have sup IZA(t) - ZA(p-)I ) o'. Let T be a finite

stopping time. For each o (0,1), there is a To > 0 such that for all small A > 0,

(8.8) sup P( {Sf IZAt+) - ZA(,) a - 1 -
xES,T x <

The inequality (8.8) and an argument like that used in Theorcm 5.3 (to get the

upper estimate on EIN Ik there) completes our proof.

Q.E.D.

Definitions. We now add an additional qualification on the control problem. It is

supposed that there is a compact set S, with a piecewise differentiable boundary

such that XE(.) and X(.) are to be confined to S. Let there exist a (SjA,vl(-))-

reflecting policy for small A and some continuous v,(.). As noted in the rcmarks

after the theorem, the approximation theorem is easier to prove without this

restriction. In the theorem, we assume that the optimal control for X(-) is

(S,v(.))-rcflecting for some S (compact, since S1 is compact). This will often be the

case. But, as noted in the introduction, other forms are possible: combined singular

and non-singular controls, true impulsive controls, etc.

Theorem 8.5. Assume (A3.) - (A3.4) and (A8.1), and the condition in the above

paragraph. Suppose that the optinmal policy Yi(.) for X(.) is a (S,v( .))-reflecting policy

for some bounded S. Let YA(.) denote its (S,A,v(.)) reflecting form. Let (8.3) have a

unique weak sense solution under both policies, for all small . Let Y'EA(.) denote the
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(S,A,v(.))-reflecting policy adapted to XE (.). Given 6 > 0, there is a A > 0 such that

yCEA(.) is 26-optimal for XE(-) and small c in the sense that

(8.9) 6 + lIr V((x) ) limV (x, i/ (A) . Vo(x, YA), Vo(x,iA) (V(x) + 6.4 E

Proof. The method is that of Theorems 6.1 and 6.2. Let Y4 (.) denote the optimal

(or 6/4-optimal, if there is no optimal policy) policy for X((.) and XE-A(.) the

process corresponding to YEA(.). By the argument of Theorem 6.2, there is no loss

of generality if we suppose that the second set of

n I dY'(s)I 1 0, n < - )I n1IdY (s)l, c > 0, n < }

n n

is uniformly integrable. The first set is uniformly integrable by Theorem 8.3. Let

c index a weakly convergent subsequence (X(,A(.), ^,E-,(.)) and (X"(.), Y((.)} with

limit pairs (XA(.), YA(.)) and (X(.), Y(.)). Then XA(.) is the (S,A,v(.)) - reflecting

diffusion and YA(.) = YA(.). Thus, by the weak convergence

6/4 + "lim V(X) ) lM V(X YO) Vo(x, Y) ) Vo(x, Y) - V(x),
E 4

A

liM V'E(x,Y .A) = V(x,Y A).

Another weak convergence argument and the uniqueness assumption on

the reflecting diffusion X(.) under policy Y'(.) yields the convergence of

(XA(-),'YA(-)) to (X(.), Y(.)). Also, the set ({f+1IdYA(s)l, A o n < is

uniformly integrablc. The theorem now follows by choosing A small enough so

that yA(.) is 6/4 optimal for X(-) and using the optimality of 7Y(.) for X(.).

Q.E.D.

%I
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Remarks and Extensions. If the bounding set S, is dropped, then we might assume

that the optimal control is a (S,v(.))-rcflecting policy, but where S is not necessarily

compact. In this case, given 6 > 0, there are numbers K6 and 6/4- optimal policies

for X((.) and X(.) for which dYE(t) (resp., dY(t)) equals zero after the first time

that the variation exceeds K S. In this case, we have the required uniform

integrability and the theorem is easier to prove.

4

A
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