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20. Abstract.

‘*’ﬁ\ ; Singular control problems with dirfusion or Wiener process systems have
been occuring with increasing frequency as models of a wide variety of
applications; e¢.g., storage, inventory, finite fuel, consumption and investment,
limits of impulsive control problems, etc. Here, the increment of the control
force is not of the usual form  u(t)dt, but is the differential of a
non-decreasing and suitably adapted process. The models used (Wiener or
diffusion proccsses) are only approximations in some sense to some ’'physical’
process - perhaps a ’'wideband’ noise driven system or a suitably scaled discrete
parameter process. The optimal controls for these ‘physical’ processes are
usually nearly impossible to obtain. Thus, it is of considerable interest to know
whethcr,_l the optimal (or 6-optimal control for the diffusion model is ’'nearly’

3

~Aptimum {'lvh‘cn applied to the physical problem, when compared to the optimal
B AEIte : _

. ‘or " @~optimal’ control for the Ilatter problem. This is tru¢, under broad
A

T AU O . N

"&;chditions. The discounted and average cost per unit time problems are treated.

The mai'x'x; methods are those of weak convergence theory. . But the usual weak
convergence analysis via the Skorohod topology on D[0,®) \ is not appropriate

here, due to the nature of the singular controls. A combination of the

Skorohod and ’pseudopath’ topology is adapted to our singular control problem

)

to give the required results. /
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Abstract

Singular control problems with diffusion or Wiener process systems have
been occuring with increasing frequency as models of a wide variety of
applications; e.g.,, storage, inventory, finite fuel, consumption and investment,
limits of impulsive control problems, etc. Here, the increment of the control
force is not of the wusual form u(t)dt, but is the differential of a
non-decreasing and suitably adapted process. The models used (Wiener or
diffusion processes) are only approximations in some sense to some ’physical’
process - perhaps a ’wideband’ noise driven systcm or a suitably scaled discrete
parameter process. The optimal controls for these ‘’physical’ processes are
usually nearly impossible to obtain. Thus, it is of considerable interest to know
whether the optimal (or 8-optimal control for the diffusion model is ‘nearly’
optimum when applied to the physical problem, when compared to the optimal
or 6-optimal control for the latter problem. This is truc, under broad
conditions, The discounted and average cost per unit time problems are treated.
The main methods are those of weak convergence theory. But the usual weak
convergence analysis via the Skorohod topology on D[0,») is not appropriate
here, due to the nature of the singular controls. A combination of the
Skorohod and ‘pscudopath’ topology is adapted to our singular control problem

to give the requircd results.

Key Words: singular stochastic control, approximately optimal control, weak
convergence, pscudopath topology, control of widcband noisy
systecms, modelling of physical systems by singular control processes.
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1. Intr ction

Let Y,(-), i = 0,1, be non-decreasing processes with Y,(0) = 0 and which
are non-anticipative with respect to a Wiener process w(-) . Define x(-), Y(:)

and 2(-) by x(0) = x, Z(0) =0, Y(-) = Y(-) - Y,(-) and (which defines Z(-.))
(1.1) dx = b(x) dt + o(x) dw + dY, - dY; = dZ + dY

We assume that there .is a Be (0,%) such that we are obliged to keep x(t) €
[O,I—i]. Unless otherwise mentioned, we always assume that the Y(.) process is
such that x(t) € [0,§] . The process (1.1) has bcen widely used as a model
of storage and dam processes, both with and without control [1] - [5). The
Y,(-) might denote the ’withdrawal’ process, whereby actual use is made of the
system’s contents.  Y4(-) might simply denote a process which is used solely as
a modelling device to guarantee that x(t) # 0 (in that case, dY,(t) = 0 if
x(t) # 0). Sce, e.g. [4]. The process 2(-) might denote the difference between
the ’natural’ inputs and ’natural’ demand. See, in particular, the discussion in
[4] on this point. Many other interpretations are possible and are discussed in
the references.

Let ky > k; > 0 and lct k(-) be a bounded continuous function. Define

the two types of costs (E, denotes the expectation under initial condition x(0) = x)

Vo(x,Yo,Y,) = E, [ Bt [kodYo(t) - K dY, (1) + k(x(1) dt],
(1.2) 0
V(x) = inf V. (x,Y,Y,)
Yo Y,
and
_ T
Yo(%.Yg.Y,) = n;: E, j‘ [kodYo(t) - K dY, (1) + k(x(t))dt]/T
0
(1.3)

Yo(x) = inf  %,(xY,,Y,) .
Y,.Y,
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In (2.1), the inf is over all non-anticipative Y,(:) such that x(t) € [O,E]. The class

over which the inf is taken in (1.3) will be described in Section 7.

Reference [1] gives an elegant presentation of the optimal control problem
(L.1), (1.2), and of the properties of the associated Bellman equation. Most of
the other current literature seems to concern the case where 2(-) is a Wiener
process (perhaps with drift). Since it is highly unlikely that there are problems
in the applications which are perfectly modelled by (1.1) or where 2Z(.) is
actually a Wiener process, one must look at the model in the sense that it
approximates in some way an actual physical problem. Generally, the model
(1.1) would be simpler than the ‘physical’ process which it approximates. In this
sense, it is an attractive object to use for purposes of calculating a contro! for
use on the actual physical process. But the ‘quality’ of such a control when
used on the physical process is far from clear. E.g, how good is it in
comparison with the optimal control for the physical process.

Modecls such as (1.1) often arise as limits of suitably interpolated discrete
parameter processes. Consider one type: For each € > 0, let (i = 0,1) Yi‘(-) be
non-decreasing processes, piecewise constant on the intervals [ne¢, ne+¢), and define
8Y£(n) = Yf(ne+€) - Yé(ne). For appropriate functions F and G, define (X§, z&) by

€ _ € _
Xo =%,2; =0, and

XEp= XS+ (28, - 28 + 8YE (ne) - 8YE(ne)

n

€
(1.4) CATE

z€ = eG(XE, 19 + vE F(XE, &9

EF(x, l,:) =0,
where {{ﬁ) is some correlated sequence of random variable. We say that the
controls SYi‘(ne) in (1.4) at time n are admissible if they depend on the ‘full

information’ {(X§, i € n, Yj‘(ei), j=0,1,i €n, tj‘, j < n) available at time n. Decfine

the interpolated processes X(t) = X& and 2%(t) = Z€ on [ne, ne+e) and the costs

|
|
|
i
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(using admissible controls)

Vi, YS Y9 = ES fo'B‘ [kedY§O) - K dY§D) + k(XE(1)dt]
(1.5) °

VE(x) = inf V&(x, Y§ Y} .

oY1

In general, we know virtually nothing about the optimal or 8§-optimal policies for
(1.4), (1.5). Suppose that, for reasonable Y{(-), the set (X€(-), Y§(:), Y5(-)}
converges weakly in some sense to a solution of (1.1). It is of considerable interest
to know just how good (compared with the optimal controls for (1.4)) are the
optimal (or S6-optimal) policies which we obtain for (1.1), (1.2), when suitably
adapted to and applied to the system (1.4), (1.5). Consider the following example.

Let ?i(-), i=0,1, denote the optimal or (for some given 6 > 0) &-optimal
controls for (1.1), (1.2). Frequently [1], [4]), they are of the barrier form: there
are 0 ¢ L* < U* < @ such that ?0(-) is used only to keep x(-) from ‘falling
below’ L‘ and ?1(-) is used only to keep x(-) from going above U‘. The policy
Y,(-) adapted to (1.4) (call it YE(-)) is a policy which returns X€(-) to L or to U*
immediately if it ever drops below L‘ or exceeds U‘.

From the point of view of optimal control, one wants to show that the costs
VE€(x) and VE&(x, Y§, Y—f) are close for small €, whether or not the optimal
controls for (1.1), (1.2) are of the barrier policy type. It is such a result which
justifics the usc of the limit model (1.1) to get policies which might be used in
applications. Similar comments apply to the cost function (1.3), and also to the
continuous parameter analogs of (1.4). This is the class of problems dealt with

here. The basic tools are those of weak convergence theory. The work here

extends that in [6], [7]. The results in these references cannot be used here.
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Owing to the generality of the assumptions on the physical system, there is in
general nothing known about the properties of the optimal Yi‘(-). Because of
this, we cannot (in general) prove tightness or weak convergence of
(X€(-), YE(-), Y{(-)) in the Skorohod topology on D%0,%). E.g., the jumps in
the Y§, Y§ might be quite ’'wild’--relative to the Skorohod topology. A
weaker topology must be used, and it is described in Section 2. In Section 3,
we obtain a weak convergence result for a continuous time model, and we show
how to extend the results to the discrete time case in Section 4. Section 5
contains some auxiliary results which are needed later. The optimal control
problem for the discounted cost casc is dealt with in Scction 6, where it is
shown that the suitably adapted policy for the limit is indeed ’nearly’ optimal
for the actual physical process, under appropriate and reasonable assumptions.
Section 7 concerns the average cost per unit time problem. Here, owing to the
natural rcquirement of stationarity, we impose a Markov structure on the
problem.

The basic methods work just as well for many non-scalar models--and
several extensions to such models are discussed in Section 8. Applications to
queueing and manufacturing nectworks require a somewhat special development,
which will be published scparately. There are extensions of the results to
cases where the dynamical terms are not smooth or the noise is statc dependent.
One would then adapt the weak convergence technique and assumptions of [8,
Chapters 5.3, 5.5 and 5.8] to the problem here. The methods are quite similar,
but the assumptions are more complicated. Our discussion is confined to certain
singular control problems. But it is also possible to work with controls which
have both a singular and an ‘absolutely continuous’ component. One simply
combines the mecthods developed here -- with those used in [6] for the

non-singular case. The cxtensions should be straightforward. Possible extensions
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in another dircction concern the problem of [9], where the singular control

problem appcars as a limit of impulsive control problems: Let &, decnote the
fixed cost per impulse and (for some K > 0) ElY‘(t) - Y&(t)| the variable cost,
for an impulse at time t. Then we can let 6, ~ 0 as the noise bandwidth goes
to @, to gct an approximation theorem for small fixed impulsive cost and wide
bandwidth simultaneously. The method is a simple adaptation of the scheme of

this paper.
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2. The Pscudopath Topology
In this section, we discuss the topology on D[0,*) (replacing the Skorohod

topology) which will allow us to obtain the desired weak convergence results.

Let the physical system be modelled by

b XE(t) = 26(t) + YE(1)
\
i; where  X€(0) = x, Z%0) =0, Y(:) = Y&() - YE() and  define
4 - -
XE() = (X6C) YEC), YE() 28)).  The X¥(:) can be viewed cither as a
,\
;: continuous parameter interpolation of a discrete paramcter system as discussed
{
)
)
:n in Section 1, or it might be an actual physical model for a continuous

parameter system. The Yie(-) can be taken to be either left or right

; continuous, but we suppose that they (and X€(-) and Z€(-)) are right

k continuous,

= We suppose that the i‘(-) take values in D%0,@) , the space of

é: R*valued functions which are right continuous and have left hand limits. [We

N could let the Yi‘(-) take values in a space of measures or of distribution

‘! functions, but this is actually not more helpful]] The appropriate topology for .
our purposes on D*0,#) is what Meyer [10] and Meyer and Zheng [11] call the

E{ pseudopath topology. For completeness, we state some definitions and results from

3 [11] which will be needed in the sequel. The results are stated for a scalar

,. valued process, but the natural extensions for the R'-valued case should be

f, obvious and are used below.

Let y(-) € D[0,) and dcfine the measure () on the Borel subsets of

' [0,2) by Xdt) = e-tdt. Let b3 denote the compact space of probability measures

: (with the weak topology) on the compactified space [0,%] x ﬁ, where R is the

. closure of the real line. The pseudo-path of y(-) is defined to be the

X

B e e g e e e e o e R AL e
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compact. If P is a limit measure of any weakly convergent subsequence, then for
K|
) -
a: the convergence to be useful we need at least that P be supported by (D4[0,%)),
)
[ —_ -
i since then the limit P would correspond to some process X() =
(X() Yo(), (), Z(-)) with paths in D*0,) , via the mapping ¢ A
:l convenient criterion for this is given by Meyer and Zheng [11], and will now be
3
1
]
| described.
]
Let 7 denote a finite partition (t;, i € n} : 0 = to<ty<.<t, = .  Let U(.)
¥,
R denote a process with paths in D[0,#) and adapted to a non-decreasing sequence
“: of o-algebras (F,}, and with E|U(t)| < ® for each t< « ., For convenience in
comparing with [11], let U(t) = 0 for large t . Decfine the variations
)
‘l
‘t
”\
'l
X
‘0
¥
) W ”. e K. . \ », \ - “a R -, " - -
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probability measure on the Borel subsets of [0,2] x R which is the image of
\(-) under the map t — (t,y(1)) of [0,%] into [0,%] x R (i.e., it is a point
in ;). Let § denote the map which takes y(-) into its pseudo-path, the
corresponding point in l=> If we write P = {(y(-)), then the pseudopath P is the
measure defined by (A and B are Borel sets in [0,%] and I_{, resp.)
P(A x B) = [,e™ (ep)dt.

¢ is 1:1 on D[0,~), since it identifies all paths which are equal a.e.
(Lebesque measure). The topology which ; induces on D[0,®) via ¢ is called
the pseudo-path topology. The associated o-algebra on D[0,%) is the same as one
gets with the Skorohod topology. In fact ([11], Lemma 1 and comment after its
proof), the pseudo-path topology on D[0,®) is the topology of convergence in measure.
The same result holds if R and D[0,) are replaced by R' and D0,=),
where ¢ then maps points y(-) € DF[0,#) into a measure on the Borel subsets of
[0,*] x R. Let Fr denote the space of probability measures on the Borel subsets of
[0,%]  R",

-—

The process 5(‘(-) induces a measure (which we denote by Fe) on P, via

the pseudo-path mapping . The sct (Ee] is obviously tight since P, is

KT

LS \‘
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o Varp (U) = L E|Ep UG, - UG
. 13
Var (U) = S¥p Vary (U) .
If Var (U) < @, then U(-) is said to be a quasimartingale.
For u<v, let NY(U) denote the number of upcrossings of U(-) on .
[0,2) between the levels u and v. If U(-) is a quasimartingale, then

|u| + Var (U)

(2.2) EN"Y(U) ¢ ,
v-1u

an extension of the usual result for martingales ({11], Lemma 3). The main

result is ([11], Theorem 4).

Theorem 2.1. For each n = 1,2, .., let P_ be a probability law on the Borel® subsets of
D[0,») with the associated process U_(-) being a quasimartingale with sgp Var(U) < =
Then there is a subsequence Pnk which converges weakly on D[0,%) (with the pseudo-path
topology) to a law P, and the associated process U(-) is a quasimartingale.
[Alternatively, let Fn be the measure induced on ; by the map ¥ acting on U_(-). Then

{f’n) is tight on P and there is a weakly convergent subsequence {i;"k) with limit denoted

by P. Pis supported on D[0,®) and the associated process is a quasimartingale.]
Combining this with the prcvious results, we have:

Theorem 2.2. Assume the conditions and terminology of Theorem 2.1 and let h(-) be
any bounded real valued function on D[0,®) which is continuous (w.p.1 with respect to
P) when the topology of convergence in measure is used on D[0,®). Then there is a

subsequence (n.} such that Eh(Unk(-)) = Eh(U(.)). Also ([11), Theorem 5) there is a

*The Skorohod topology and the pseudopath topology gencrate the same o-algebra
on D[0,=).

, L .'.'l\‘-' _'.{ [ 2%
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further subsequence (m,} C (n,} and a set 1 of full measure (depending on P) such that
the finite dimensional distributions of {U_, (t), t € I} converge to those of {U(t), t € I}.
Let £(-) be bounded and continuous on [0,2). Then ({11), Theorem 6) the function

(tys s tq) - Ef(Unk(tl), - Unk(tq)) converges in measure 1o the function

(g - tQ) = EF(U(L, ... U(t)).

Ay QIS AN SR SUICIAR,
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3. The Quasimartingale Property and Weak Convergence of
XE(-) = (XE(-), ZEC-) YE(), YE(-)

A continuous parameter case will be done in this section. The discrete

parameter case requires only a few modifications and is discussed in the next

section.  For concreteness, we use a specific model which is of a widely used

form [8], [12], [13], for representing wide band width noise driven systems (with

or without the driving Yf(-) process). The techniques are usable for a much

broader class of systems--just as for the case where Yi‘(-) = 0 dealt with in [6]
or the various continuous parameter models in [8]. The model to be used is
(3.1) dX€ = G(XE, £€)dt + F(X5,t€)dt/e + dYE(t) ,
where £€(t) = §(t/e®) and &(-) is a right continuous random process.

Let E; denote the expectation conditioned on (X€(s), ¢5(s), Y§(s), YE(s),
s ¢t )}, and E, the expcctation conditioned on ({&(s), s € t} . Dcfine

zf(t) = Jt G(XE(s), t(s)ds + :- J‘t F(X*(s), t5(s))ds .
0 0

We will use the following assumptions. Various extensions (vector case,
discontinuous dynamics, state dependent noise) are possible, as discussed in the -
introduction, via the appropriate extension of the methods in [8] for these cascs

to the problem at hand.

A3l. G(-,.), F(-,-), and F,(-,-) are bounded continuous functions and the

latter two are continuous in x- uniformly in §.

Al2. For each scalar x, EF(x, &(s))

0 and ¥(-) is right continuous

and sufficiently mixing such that there is a K < = Jor which for each T < =

T

(3.2) Sup | I E, 8(x, §(s)ds| ¢ K,
x t&T t

where g(-,-) represents either F(-,-) or F.(,).
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Theorem 3.1 Assume (A3.1) and (A3.2) and let sup[EYS(®) + E Y (0] <=
for each t. Then (with the addition of a process whose maximum value goes to zero as
€ ~0), (XE(-), YEC-), YE(+), Z8(-)} are quasimartingales with uniformly (in €) bounded
variation on each bounded time interval. [We need not assume that XE(t) € [O,I-S] in this

theorem.]

Proof. Since the mean variations of the Yi‘(-) are bounded, they are
obviously quasimartingales with uniformly (in €) bounded variation on each
interval [0,t]. Thus, we need only work with the 2€(.). We will use the
so-called perturbed test function method [8], [12], [14] but adapted to our present
needs. For some arbitrary--but large--T, define the process Zf(-) for t € T, by

T/e?

T
j EEF(XE(1), t5(s)ds = e j E€ F(XE(1), 4())ds
t

Z5(t) =

N

t/e?

The change of variable s/e? — s will be used frequently, in the averaging and
bounding in the sequel, when working with integrals such as zf(-). By (A3.2)

Sup |Zf(t)| = 0(e) .
t€T

We will show that the function defined by f&(t) = 2%() + Zf(t) is a
quasimartingale with uniformly (in ¢) bounded variation on each interval [0,T).
The calculations will be done in a slightly indirect way so that they can be
re-used later. Let f(-) denote a ’test’ function with bounded and continuous
derivatives up to order three, and define f€(t) = f(25(t)) + fE(t), where f5(-)
is the ‘perturbation’ defined by
1 ¢T
f5(t) = . J" f(Z5ES F(XE(1), t4(s))ds

T/€?
= ¢ I \ f(ZE(D)ES F(XE(1), 4(s))ds.
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Write  Yf(-), Yf ) and YE&(:), Y§(-) for the continuous and jump

components of YS(-) and Y€(-) resp. By our convention on the right continuity of
the Y{(-), we use dYf,(u) = YS (u) — YS,(u). By integrating the derivative of
£(Z(-)),

Ef £(28(t + 8) - £(25(t) =

t+4
(3.3) . .
E§ j f,( 2¢(u)) [G(X‘(u), t€(u) + F(X6W), ¢ (“»]du.
€
t

Similarly, by evaluating [ESf§ (u+4) — £§(u)]/A and letting & = 0, we get

t+A
(3.4) EEfE(t+0)- & = -1 I f, (2€(w)) E{ F(X(u), £¢(u))du
t
t+4 T

+ [ du L EE I dsf,, (Z¢(u)) E¢ F(XEw), )
€

t u

[F(XE(U)’ e + G(X%(u), r.‘(u))]

€
t+4 T
+ E§ J dyfw) L J f,(2%(u) E§ F(X%(u), £&(s))ds
t u

+

v\_.:;

a
E€ [F(X‘(U), W) 4 G xE), E‘(U))]du :

€
x

T
JES £(ZE(u)) F(XE), tées)ds

€
T
1
+ E T Ef I f,(2%u)EE [F(x‘(u‘) + dY§(u), £4(s))

t<ust+A

- F(X(u), z‘(s»]ds

L& Ly Y » - | SaL % n"'&\ l.'-'n_l‘l'\\l-'l'-_‘ A ‘," B P IS TS TS ".'f"l"'{
‘.‘l.,'.'\.s'i..-'h N IS L\a EN I I W AN TR M RN AW N RNV RN CAC I 5
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Recall that dY(u) = Y(u) - Y(u").

By a change of scale s/e¢? — s and the use of (A3.1) and (A3.2), the sccond
and fourth terms on the r.hss. of (3.4) are seen to be O(4) . By a similar scale
change, the third term is seen to be O(€)ES (YS(t + s) - YE(1). The first term
of (3.4) is the negative of the ’l/¢’ term in (3.3). For the evaluation of the last

term in (3.4), first use the law of the mean to rewrite it as

e

T 1
(3.5) E 7 Ef Idsf'(ze(u)) E¢ Jd‘r [Fx(X‘(u')+‘rdY§(u), 2E(s) - dYS(u) .
t<u$t+A u 0
Now, by a change of scale s/e?—s and the use of (A3.1) and (A3.2) again,
we see that this term is O(e) ES[YS(t +8) - YS(O)).
Putting all the estimates together and cancelling the 'l/¢’ term on the r.hs.

of (3.3) and the first term on the r.hs. of (3.4), we get

(3.6) ESfE(t + 8) - £€(t) = O(8) + O(e) Ef (YE(t + 8) - YE(1)

+ O(e)EE (Y§(t+8) - Y§(1)).

Eqn. (3.6) yields the quasimartingale and the uniformly (in €¢) bounded in variation
property on each interval [0,T) for f€(.). By letting f(z) = z and noting that
Zi(t) = O(e) , we see that the thecorem holds for the {(26(-)) component. Hence, it

also holds for {X€(-)}, since sup E(Y5(t) + Y§(1)) < = for each t and

XE(t) = (25(1) + ZE () + YE(t) - ZE(1) . Q. E. D.

We summarize (3.3) to (3.6) for future use:

i
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(3.7) EE £€(t + 8) - £€(1) = I E¢ f(2€(u)) G(XE(u), t¢(u))du

t
t+A

T
+ L E, f du ] £, Z€(u) ES F(X6(u), t4(s)ds F(X%(u), ¢€(w))
t u

t+4

T
¢ S Ef [ auEg [ r (20X, tenas Fx@LEw) + 0
t u

+ O(ES(YE(t+8) - YE(1)) + O()EE(YS(t+8) - YS(1)).

Theorem 3. implies that (X€(-) - 2§, YE(-), YE(.), 26-) + 2§8(-)) are
quasimartingales with uniformly bounded variation on each interval [0,T] and
are tight on D*[0,#] in the pscudo-path topology. Hence, the same tightness
in the pseudo-path topology on D*0,%] holds for (X €(-)}. [To be consistent
with the usage in [11] and in Section 2, we should set (w.log) X€(t) = 0 and
2(t) = 0 for sufficiently large t, but this is just a technicality which is
convenient for the statements in [11] and does not affect the rcsults.] In the
next thcorem, we choose and work with a weakly convergent subsequence, also
indexed by € and with the limit denoted by ;((-) = (X(-), Yo(o) Y,() &)
Clearly, the sample functions Y,(-) can be taken to be non-deccrecasing clements
of D[0,®). Although Yf(O) = (0, the limits Y;(:) might not have value zero at
t = 0. To account for this possible jump in the integrals, we use the
normalization Y(07) = 0 in defining integrals with respect to the Y ().
(Recall that we are using dY(s) = Y,(s) - Y,(s), since the Y,/(.) are taken to

be right continuous.)

Since the pscudo-path topology is equivalent to convergence in measure, for

almost all w, t,
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(3.8) X() = Z(t) + Yy (1) - Yy (1) .

In fact, (3.8) holds also at all t at which the functions are continuous. In the
next theorem, we obtain the stronger and more useful result that there is a Wiener
process w(-) such that i(-) is non-anticipative with respect to w(-) and (X(-),
Yo(-) Y,(-) satisfies (1.1) for that w(-). The limits ?i(-) would not be too useful

were this not the case. We use the following ‘ergodic’ type assumptions.

A3.3. There is a continuous function (_3(-) such that for each x ,
u+N

1 R
N I E G(x , §(s))ds G (x)

u

as u and N goto = .

A34. For g equal to either F or F, and T > u + N,
T

E Sup )j E g(x, &(s)ds | — 0,
X
u+N
as u, N, T goto~.

A3.5. There is a continuous function o(-) such that for each x

“+T1 T+T
— J’ E, F(x, ym)dr [ F(x, §(s)) ds
T, a
u
P
— 0%(x)/2
as T, uand T, go to = . Also, there is a continuous 60(-) such that for each x
u+'l‘l T+T
1 F L G
T E F(x , {T)dT | FE(x, tsNds— G, (x) .
u T

> . AT At Amma =g .. e, -
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Remark. If §(-) 1is stationary, then

o(x) = j EF(x,2(0)) F(x.t(s))ds,

Ggx) = | EF(x,10) Fyxk(s)ds.
0
The requirements in (A3.4), (A3.5) are simply conditions on the rate of convergence

as T - u = @ of the conditional expectation of functions g(T), of the noise data after

time T, given the data up to time u.

Theorem 3.2.  Assume (A3.1) - (A3.5) with sup E[Y5(t) + YE(1)] < = for each
t < ® Then {(Z€(-)} is tight in the Skorohod topology on D[0,®). Any weak limit
process is continuous w.p.l.  Let {X€(-),Y§(-),Y{(-)Z%(-)} be a weakly convergent
subsequence in D*[0,®)., with the pseudopath topology used on the first three
components and the Skorohod topology on the last. Denote the limit by 5((-) =
(XY ()Y (()Z(-)). There is a standard Wiener process w(-) such that 3((-) is
non-anticipative with respect to w(-) and
t_ t _ t
(3.9) Z(t) = LG(X(S))ds + JIO G (X(s))ds + Io o(X(s))dw(s) .

Also, for all t, w.p.l,

(3.10) X(t) = Z(1) + Y1) - Y,(1) .

[We need not require that X€(t) € [0,B] in this theorem.]

Proof. For purposes of the proof, the x-support of all functions can be taken
to be compact, and the Y.f(-) uniformly bounded (i.e., are stopped on first
reaching some large value N_). The general casc follows from this by taking
appropriate limits on the bounds. Furthermore, we can now assume that

Z€(-) is bounded, and that the z-support of all functions is also compact.
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Part (a). Tightness of (Z€(-)} in the Skorohod Topology. Let f(-), ff(-) and

f€(-) be defined as in Theorem 3.1. We use the perturbed test function method
. of [8] or [14] for proving tightness. Since ff(t) = O(e), Theorem 3.4 of [8] or

Lemma 1 of [14] applied to the perturbed test function f€(.) vyields the tightness

of {f(z€(-)}) in D[0,=) (Skorohod topology) for each smooth f(-), hence {Z¢(-))
. is tight on D[0,=) in the Skorohod topology.

(b) The limit of (2€(-)). Fix and work with a weakly convergent
subsequence of (X€(-), YS(-), Y§(-),Z%(-)) also indexed by €. The first three
components converge in the pseudopath topology and the last in the Skorohod
topology. Let h(-) be a bounded and continuous function. For 0 < k < = and
A >0, t; 3 0, lct us define H(-) by

tj tj tj
H(e,8.t,) € k) = h(k.'[ Y§(s)ds, i = 0,1, JA~_I X€(s)ds, jj Z4(s)ds, j € k).
J tj-Aj J :J.-Aj J ‘j'Aj
Let t €t<t+s, for all j. We have (See (3.7))
t+s
(.10 HmEH(e.8;t; j € k) [[€(t+s) - £5(1) - f E{ (Tf(u) + T§u) + Tgu))du] = 0,
t
where
(3.12) Tiu) = £ (Z€)G(X(u), t¢(u))
T
Ts(u) = &, J f,(Z%(u)) ESF (X¢(u), §4(s))ds - F(XE(u), t€(u))
€

u

T
T§w = 4, j FL(ZEW) ESFXE(u), £€(s)ds F(X(u), £5(u)

u

Fix s. Let 6, = 0 such that €?/6, = 0 as ¢ = 0. Write s = m_6, and suppose
(w.lo.g.) that the m are intcgers. For the purpose of evaluating the limit in (3.11),
we can drop the f5(-) components of the f€(.) (since they are O(e)). Also, for
the same purpose, we can replace the integrals I:*'Ef'l‘i‘(u)du by

m, t+iB+8,

(3.13) E€

t t+j5€

ol € €
r - . B¢ E T (u)du .
85 t+j'c‘>e

j=0

" T e
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We work only with T§(-), since the others are treated in essentially the same

way. Rewrite (3.13) (with i = 3) as

m - t+j 5 .+8,

1
(3.14) E§ r 5, - ———zf ms f (Z‘(u))duIF(X‘(u),E (s))dsF(X &(u),£€(u)).
I j=0 b€ 438

Now, change scale u,c2 = u,s/.2 =s and define sje = (1+j6,)/€* and let (for .
notational convenience) ﬁf denote the expectation given (Yi‘(s). s €t + jbe, i=

0,1, &(s), s € sj‘). Then (3.14) can be rewritten as

(3.15) e "L et [ e (e
: Ef ¥ - £ [TVE, @4etw) FOX(etu), tw)du
j=0 € €

'j T/ez

[ Foxeceuneenas -

u

Due to (A3.4), the upper limit T/ez can be replaced by any large T, and
limits on T, takcn after limits on ¢ are taken.

Fix &-small. Let {B;} be disjoint intervals covering the range of X€(-) and
with diameter less than and let x; denote an arbitrary point in B, Due to the
upcrossing result for {X&(-) + Zf(~)} implied by (2.2), and the fact that
Zf(-) = O(e), the fraction of the number of intervals in the set of intcrvals
([t+j6¢, t+j6,+8,), j € m¢}  for  which usggJX‘(ujsew) - XE(1+j8¢)| 3 85 -
holds goes to zero in probability as € = 0. Using this, thce tightness in

D[0,=) (Skorohod topology) of ({Z®(-)} and (A3.4) yiclds that the limit of (3.16) as

€ -0 is the same as the limit of (3.15) as € = 0.
2 %+
£

j=0 € lj
€ € T/é :
f(Z5(t+j6 ))E F(X,.l(U))j F(x,,{(s))ds ;
u *d
x
3
L
.
v
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Now, (A3.5) implies that the limits are the same with (3.17) used in lieu

of (3.16).

me-1 o%(x.) )
L6 LI £, (Z6(t + j8,))

17 E¢
(3.17) =0 i {xe (t+i5¢)€B;} 2

t

Define the operator A(x) by
(3.18) AX)(2) = f,(2)G(x) + £(z) Gg(x) + f,(2)0%(x)/2 .

Finally, using the upcrossing result again to approximate the sum of the (indicator
functions times 6.) by an integral, and putting the above estimate together, and

using a similar method for T{ and T; yiclds

(3.19) liem EH(e,At;, j €k) [f(Z‘(t+s)) - £(Z8(1) -

-

t+s
. I A(X‘(u))f(Z‘(u))du] = 0.
¢

Since Z€(-) converges in the Skorohod topology on D[0,#) (and we have not
yet proved the continuity of the limit Z(.)) the set I of t-points for which P{Z(t) #
Z(t™)} > 0 is countable but need not be empty. Let t and t+s not be in I. The triple
{XE(-), YS(-), YE(-)) converges in the pseudopath topology and the integrals in H(-)
and in the brackets in (3.19) represent functions which are continuous with respect
to convergence in measure. Then, taking limits in (3.19), we have

t+s
(3.20) EH(8,t,j € k) [f(Z(t4s)) - £(2(1)) - J A(X(u)f(Z(u))du] = 0

t
where the function H(Aj,tj,j € k) is defined to be just H(e.Aj.tj,j € k) with all
functions replaced by their limits as € = 0.

Owing to the arbitrariness of k,tj,A‘i and h(-) and of the points s and t+s

(not in f), (3.20) implies that for each smooth f(:.), the process defined by

e .|... I“‘
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t
£(Z(1)) - J AXI(Z(W)du = M)
0

is a martingale with respect to the sequence of o-algebras generated by
{X(s),Y(5),Y(s), Z(s), s € t). The fact that the operator A(x) is 'local’ implies
the continuity of Z(-). (See a proof of a related continuity result in [8), [14].)

If f(z) = z, the quadratic variation of Mg-) is IBOZ(X(u))du. Owing to
these facts we can construct a standard Wiener process w(-) such that
X(-),Z(-),Yo(-) and Yl(-) are non-anticipative with respect to w(-) and

tr_ _ t

(3.21) Z(t) = L[G(X(u)) + G, (X(u))]du + L o(X(u))dw(u) .

It follows from the continuity of Z(-) and the non-decreasing property of the Yi(+)

that we can define the limit X(-) of {X€(-)} by (3.10).

Q.E.D.
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4. The Discrete Paramecter Problem.

The discrete parameter analog of Theorems 3.1 and 3.2 is obtained very
similarly to the schemes used in those theorems, and we discuss only a few of the
details, for one discrete parameter form. Just as for the continuous parameter
case, the general ideas are applicable to a much broader class of processes than used

here. Define {X§} by X§ =x and

4.1) X¢

= € € € €
fi1 = XE+ eGXELY) + vEF(XSED + Y],

where we define 8YS = 8YS - 8Y[, and 8Yf 2 0. Let Ef denotc the
expectation conditioned on {Xj‘,j € n, Sng, Sij, (j‘, j < n). Define the
n-1
processes YS(-) by YS(t) = L 8Y;, i = 0,1, and X€(t) = X& for t € [ne,ne+e).
j=0
We will use
A4l sup E (Y§() + Y§(1)) < = for each t. G(.,-), F(-,-) and F(-,")

are bounded and measurable and the latter two functions are continuous in X,

uniformly in E.

A42.  For each x, EF(x,t5) = 0. There is a K < © such that for all N
and n € N,

N
(4.2) sup | L Ef g(xt)] €K

n,€,x j=n

where g equals either F or F,..

Thcorem 4.1. Under (Ad.]l) and (A4.2), (X‘(-),Yf(-), i = 0,1} is (with the possible

addition of a process X${(-) = O(v&) to XE(:)) a quasimartingale with variation

uniformly bounded in € on each intcrval [0,T).

e e T e
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Proof. We proceed as in Theorem 3.1, and let f(-) be a function that is
continuous and has bounded and continuous derivatives up to order three. Fix T,
large. For N = T/e' define

N
£5,= ve I E; [(ZOF(XEED),

j=n

where we define Z€ by Z§ = 0 and Z

€1 = 28+ eG(XERD) + ve F(XSLH.

Define the processes f$(-) and Z$(-) by ff(t) = f§  and Z&(t) = Z& on the
interval [ne,ne + ¢). Define (as in Theorem 3.1) f&(t) = £(Z&(t)) + £§(1). We
show that f€(.) is a quasimartingale with the appropriately bounded variation.
As in Theorem 3.1, we can suppose that X€(-), Z¢(-) and Y{(-) are bounded on
[0,T].

With a rearrangement of terms, we can write

(4.3) Eff€(ne+e) - f(ne) =
ESIF(ZE + eG(XSLS) + ve F(X5LE) - £(29]
- vE £, (ZOEEF(XELH
N
+ve L Eff(Z,) - £(Z)] - FXgp08))
j=n+1
N
+VvE (28 I Ef[F(XF,.t) - FXSE
j=n+1
Via a truncated Taylor expansion, we see that the sum of the first two terms

on the r.hs. of (4.3) equal

(4.4) ¢ f, (26 ES GXELH) + € £, (29 EE FAXE19/2 + O(e). -

Via a truncated Taylor expansion and (A4.2) the third term on the r.hs. of (4.3)

equals

Eﬁmmm:-mmmms}m}n@n}:}mmm‘ :



(4.5) e f,, (25 f Ef F(X5,,8HF(X5ED) + O(e) = O(e)

n
i j=n+1

Similarly to what was done in Theorem 3.1 to the ‘corresponding’ integral, the last

: term in (4.3) can be written as

'

“

"t

. N

@ (4.6) ve f(ZHES L rE:+1Fx(x: + T(X5,, - Xph gf)dr - (XprXp)
L) j=n+1 °0

«

[}

A

i = O(ve)EZ(O(v®) + |8Y;|) .

K)

: Putting all the estimates together yields.

V)
X

L)

N ES f€(ne+e) - £€(ne) = O(e) + 0(«?)1-:§|8Y§|.
! Letting f(z) = z yields the desired result, since f§(-) = O(v€) and
‘4]

< sup E(YS(T) + YE(T)) < =

- € Q.E.D.
b

R

;
(' -

' Theorem 3.2 can also be carried over to the discrete parameter case. We
N will use the conditions.
i'
)

‘ Ad43. G(-,kt) is continuous in x, uniformly in ¥, There is a continuous
5 6(.) such that for each x

f n+N P -

4 ¥ I Ef G(x§) — Gx)

i n
i)
~: as n and N go to =,
X
o

!!
|'

i!

‘l

’)

Y,

1)

1)

.'
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A4.4. There are continuous R(j,x) and Ry(j,x) such that for each x

N m+N c c ¢ P )

N L EL F(x, )F(x,8) — RG.X)
n=m

N m+N ¢ ¢ ¢ _j: R (i

N nEm E F (X8, JF(x.80) o(dx)

as m, N and n-m go to * .
AA45. For g equal to either F or F,

N
E sup| L E:g(x,tf)l -0
x n+N1

as N, and N, go to © (with N > n+N,) .

Define

o¥(x) = R(0,x) +2§ R(j,x) = E R(j.x)

1 -0

Ggx) = T Rei) -
i

n n
It can be shown that (A4.5) implics that the sums I R(j,x), I Ry(j,x) converge
1 1
uniformly in x as n = < (not nccessarily absolutely).

A proof parallel to that of Theorem 3.2 yiclds

Theorecm 4.2. Assume (A4.1) to (A4.5). Then the conclusions of Theorem 3.2 hold

Jor the model (4.1).
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5. Auxiliary Results

In this section, we obtain some estimates which will be useful in Section 6,
for the proofs of the convergence of the costs VS(x,Y§,YS) to either cost
Vo(x, YY) or V(x). We will show, for several reasonable classes of control
policies, that Sl€1p ElYi‘(t)lk < » for each k > 0 and t < # . This implies the uniform
integrability property needed in the next section: In Section 6, we will need to
know that the sequence of optimal or &-optimal controls for x(-) are uniformly
integrable. similarly, we will need to know whether the sequence of optimal or
s-optimal controls for x€(-) is uniformly integrable.

The symbol T, will denote a stopping time with respect to either of the
"data’ o-algebras B(t€(s), s € t}) = B or B({S, en <t} = Bf depending on the
case, and we write E§€ and P.‘re for the expectation and probability, conditioned

on the data up to time T.

Thcorcm 5.1.  Assume either (A3.1), (A3.2) or (Ad.]), (A42). Let Q¢ (-) and Q¢ be

bounded and BE measurable (for ne < t, in the latter case). Define X€(-) and X; by

(5.1a) dX€ = [G(XE,L€) + F(X€,8€)/¢ + Qg/€ldt
(5.1b) XE 1= XE+ eG(XERE) + vE F(XEE) + vEeQq, .

Define Z€(-) as in Section 3 or 4 (continuous and discrete parameters case, resp.). For

integer k and t < @, there are »> K, , = 0ast~ 0 such that (for small € > 0)
(5.2) E sup |Z€(T¢ +5) - Z6(T) |®* € Ky,
s

for all finite (W.p.1) T.




Proof. For arbitrary T < =, define

T
£Ik€(r) = L 2kZ€()*1EE F(XE(1),8¢(s))ds/e = O(e)|Z€(t) |21,

The right hand equality is a consequence of (A3.2) and the change of variable
s/€? = s. We do the proof only for the continuous parameter case and for T,=G=
Z€(0) = 0 for simplicity. The proof of the other cases is essentially the same.

Analogous to what was done to get (3.4) and (3.7), we have

t+s
(5.3) Ef [2€(t+9)% + £2€(145)] - [2€(1)* + £3€(t)] = E€ I c2k€(u)du,
t

where

T
W) = o3 | 2KKDZE @M IESFX )4 OIS (w)

u

T
+ l—;j 2kZ€(u)?*TEEF, (x€(u),8€(5))ds[Q (u) + F(X€(u),t¢(u))]
T/€?
= O(l) I , Z€(u)**2EEF(X €(u),(s))ds
u/€
T/€?
+ 0(1) I ) Z€(u)TEEF (x€(u),t(s))ds.
u/€

By (A3.2), we can write this expression as
Zi(u)2k-2 Cng(u) + zi(u)ﬂt-l Cike(u)
(5.4)
= O(1) (1Z€u) %2 + |Z€qu) |31,
where the C:“(-) arc defincd in the obvious way and arc bounded.
By (5.3), (5.4) and the bound f2*€(.), there are @ > K, (T) ~0as T =~ 0 and

constants K, , such that, fort €7,

t
E[Z¢(n)™ + (3%€()] € K}, IO E[1 + [2€5)|%]ds € K, (7).

Dcfine

t
M2kE(t) = [Ze(t)zk + fzke(t)] . I [Z‘(s)“"zcg"‘(s) + Z‘(s)"‘"ka‘(s)]ds.
0

............................

....... .

.
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By (5.3), M2k€(.) is a martingale. From the above estimates there are functions

K3,(t) = 0 as t = 0 such that (use Doobs inequality [15, Theorem 7.3.4]
(5.5) Esyp [M*€(s)|? ¢ 4EIM™¢(0)]? € K00,

skt
By the bound on f3*¢(.) and (5.5), we get (5.2) for T, = 0. Q.E.D.
Thecorem 5.2. Assume the conditions of Theorem 5.1, except with Q(t) = 0 (or Q. =
0) for t » T,. Given B, > 0, there are 8, > 0 and Ty > 0 such that for all small €

€ € €
(5.6) £ {fg{_)o |z8r e+t - 28T )| 3 8} €1 -8,
Proof. The result follows from Thcorem 5.1,

Recall the definition of B in Section 1. We now describe some classes of

controls and obtain some estimates of path excursions under the controls. Let L

and U be numbers such that 0 € L < U ¢ § Define

&
b
4):
[

"

dY§( = [FXE0.E41)/€ + GIXE(,L4)]dr T

.-
-’

{x€(t)=L)
(5.7)

€0\ = € € € € +
dY) = [FOX@acw)e + GXmeca] aet -

For obvious rcasons, we call this the (L,U) barrier control (following the usage in
[4]). Define the discrcte parameter barrier policy in the analogous way: the in‘(-)
and 8YF_arc just large enough to keep X€(-) and X¢ in the set [L,U]. The dY§/dt
will be one of the candidates for the C{e in Theorem 5.1.

Let 8, < §/2. We define a specific control policy - called the (I-B,AO)-control
(for the continuous paramcter case) as follows. If X&(t") = B, immediately set Y5t
= Yf(t‘) + 4, and X&) = B - 4, Also, Yg(-) increascs just fast cnough to kcep

X&) 3 0; ic., Yg(~) is given by (5.7) for L = 0. There arc analogous definitions

h N L
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and results for the discrete parameter process. The (E,Ao)-control has some nice

properties which render it uscful for the discussion in the next section.

Thcorem 5.3. Assume the (AO,I-B)-conlrol and either (A3.1), (A3.2) or (A4.1),
(A4.2). For each t and integer K,

(5.8) sup E|YS(Te+t) - Y{T)|* < =,
€,T
> E

Rcmark. Owing to the conditioning in (5.6), the estimates for Yie are proved
almost as if the ‘’return’ process from the point (I_B-AOJ to (either B or

B-24,), then back to §-AO, etc., were constructed from a Bernoulli sequence.

Proof. We do the continuous paramecter case only, and i = 1. The case i = 0

is treated by an arguracnt based on Theorems 5.2 and 54. W.lo.g., sct Te = 0.

Define the stopping times:  of = min{t 3 0 : X&) = B - 8,} and for

i>0, pf = min{t > of | : |X‘(t) - (B - 8| 3 &), of = min(t > pf : X€(t) =

B - 8,). We will estimate the k™ moment of N&(t) = max{i : of € t). Define
the (0,1} valued random variable Uf as follows. Usc the T, of Thcorem
52. If pf - of | < Ty set Uf =0 and call the event a ’failure’. If pf-of |

3 T, sct Uie = ] and call the event a ‘success’. Let Nf denote the number

of successive passages of X€(-) from B-AO to either B or B - 24, which

are failures, after the i*M success. Then

; t t/Ty1 .
N®(t) €« — + L NFf.
T 1
0 0

There are Kk < ® such that

k t/Ty-1
Né(* ¢« K, /)% + K(/T) T (NHK.
0
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We will bound E(Nf)X. Let of denote the return time of X€(.) to
31

B - 4, immcdiately after the ith success. Then, by Thcorem 5.2,

Pge (N2 n) =

5

. € € . € :
Po‘ {o-i+j+l o'i‘hi < Ty j < n)
| I

. < (1 - syt

This yiclds E(Nf)k ¢ (constant)/8;, and the proof is concluded, since Y&(1) ¢

A NE(v).
QED

Thcorcm 5.4. Assume  either (A3.1), (A3.2) or (A4.1l), (A4.2) and the
(L,U)-barrier policy. Then for each t

(5.9) sup [E(Y§(+T) - YETH? + E(YE(WT) - YET)] < = .
€T

Proof. Again, we do only some of the details for Yg(-), and for the
continuous paramcter case. Drop the G(-,-) for notational simplicity. Denote

the initial time by ty and let A; < (U-L)/2 and define the stopping times

og = min{t 3 t, : X¢(t) = L)

and for i > 0,

]
of = min{t > pf: X¢(t) = L}, pi = min{t > of  : X(t) = L + &) .
Set the stopping times to = if they arc not otherwise decfined. All the needed
E estimates can be shown to be uniform in ty and we set t; =0 for
i simplicity.
§ ’ We can write (and simultancously define Z€(.))

D R ",
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(5.10) L [Xef, 00 - XE(ofn )] =

L [28pf, 0 1) - Z€(of 0 0] + Y&

= E‘(t) + Y§(0) .

The mean square value of the term on the left of (5.10) is bounded above by
A} times the expectation of the square of the number of i for which pf € t. By
an argument very similar to that used in Theorem 5.3, this can be shown to be
bounded uniformly in € for each t.

Define ME(t) = Z§(1) - Ing(s)ds, where Z{(-) is defined in Theorem 3.1
or, equivalently, it is the f}€(:) of Thcorem 5.1. The Cj(-) is defined in
Theorem 5.1. The C;‘(~) defined there doesn’t appear here, since 2k = 1 here.
Define N€(-) as in Theorem 5.3. Then, since ME(.) is a martingale on the

interval where dY5(-) =0 we have,

E(Z[ME(pf,, 0 1) - ME(af A y])?
=L E|Mépf, N 1) - Mé(of Nty |?
(5.11)
= O(1) E(sup |Z¢(s)|® + 1) N€(D)
s €t

= O(DE® (sup |Z5s)|* + 1) B NE(O)]? €K, <=
s€t

The last incquality follows from Theorems 5.1 and 5.3. Since C}¢(-) = O(1), and
Zi(-) = O(¢), and sup E(N€(1))? < =, there are K, < =, Ky < = such that the left
side of (5.11) can bc boundcd below by

K, E (Z [2%0, n ) - Z280f 0 n])? - K,

= K, E|Z¢1)|? - Ky .

The proof that sup E|Z€(1)|% < = follows from these incqualitics. QE.D
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6. Convergence of the Costs and Controls.

In [1], it is shown that there are 0 ¢ L* < U* < « such that (under

appropriate conditions) the optimal control for (1.1) is a (L*,U*)-barrier control. We

. assume that B is large enough so that U* ¢ B. Let i’i(‘), i = 0,1, denote this optimal
é control. The set of increments of the ‘local time’ control processes (?i(n+l) - ‘—li(n),
E: i = 0,1, n < =} are uniformly integrable. Let ?i‘(-), i = 0,1, denote the
i (L*,U*)-barrier control for X€(-) (continuous or discrete time). The following

thcorem says that the optimal control for X(-) is ‘nearly’ optimal for X€(-).

Thecorem 6.1. Assume either (A3.1) to (A3.5) or (A4.1) to (A4.5). Let (1.1) have a
unique weak sense solution for the (L*,U*)-barrier policy, and let this policy be
optimal. Then (X€(-), Y§(-), YE(-)) 3 (X(-), Y(-), Y,(-)) in the pseudopath
topology, and there is a Wiener process w(-) such that (X(-), _Yo(-), ?1(-)) is

non-anticipative with respect to w(-), and (1.1) holds. Also

(6.1) VEx, YE, YE) = V(x, Yy Y)) = V(x).

For & > 0, let ?é('), ?f(-) be 8-optimal policies for X€(-) such that (6.2) is

uniformly integrable.

(6.2) (Y{(n+1) - Y§(n), € > 0, n < =)
Then
(6.3) 6 + LML veEy) 3 UM vE(x Y EYE) 3 V(x) .
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Remark on (6.2). The uniform integrability is used basically to ass ire that the cost
associated with the limit process is the limit of the costs associated with X¢(-). We
have not been able to prove the theorem without it, unless all cost terms are
positive (see Theorem 6.2). With the cost structure used here and in [1], it is
conceivable (in that we have not yet proved otherwise) that as ¢ - 0, the increments
in both ?5(-) and ?f(-) grow without bound. But, (as shown in Section 5) this
won't happen for a large class of reasonable controls. The uniform integrability
holds for a wide variety of control processes: E.g., for (1) Combinations of the
(L,U)-barrier and (§,A0)-policies (Theorcms 5.3 and 5.4); (2) these thecorems can be
extended to cover the case where there are numbers LY, UP, A, A) where Ay + A <
(U® - L9/2 and YE(-) acts only in [LOLO + Ajl, Y§(-) only in [U? - A, U, and with
maximum jump € A;; (3) Let Yf(-) denote any admissible policy and fix N.

Dcfine
TE = min{t > n: (Y§(1) - YS(R)) + (Y5(1) ~ Y{(n)) 2 N} N (n + 1).

On the interval [n, n+l), use Yi‘(-) on [n, Tﬁ), then switch to a barricr or (E,Ao)
policy on [T:, n+l). In Theorem 6.2, it is shown that (6.2) is not neceded if -k, dY,(t)

is replaced by the positive cost increment k,dY,(t).

Proof. We do only the continuous paramecter case. Let X€(-) denote the process
with the Y€(-) used. By Thecorem 5.4, (YE(n+]) - YE(n), € > 0, n < =) is uniformly
integrable. Extract a weakly convergent subsequence of (X¢(-), i’g(-),
?f(-)} (pscudopath topology) and denote the limit by (X(-),Yq(-),Y,(-)). By
Theorem 3.2, this triple satisfies (1.1) for some w(-). Clcarly, the ?o(-),?l(-) is
the (L‘,U.)-barricr policy, since it can only increase when X(t) = L or U‘t as

appropriate. Hence Y, (0) = ?j(-). By this and the uniquencss of the solution to

(1.1), the limit does not depend on the chosen subscquence.

|

y_#

(




«33e
By the uniform integrability asserted in the above paragraph,
(6.4) lim VEx,YEYE) = lim E I Bt [k, dY (D - k,dYE(D) + k(X (n)dt]
(i}

¢ < E Jo eBt [Id V(1) - k,dYy(0) + k(X()dt]

= Vy(x.Y,Y) = V(x) .

To get (6.3), repcat the procedure with controls Yg(-), Yf(-). Here, the

ot limit (X(-)Yo(-)Y,(-)) might depend on the chosen subsequence. But, for any

3 convergent subsequence {€;} we get €liem_.z)/g(x,‘{‘,Yf) = Vo(x,Y,Y,) 2 V(x). Hence,
= n

Py by the definition of 8-optimality and thc weak convergence,

* 6 + WML vex) » LM vex ye v
M 3 ‘i{t;'f;’l Vo(x,Yo,Yl) = V(x).
o

- Q.E.D.

'::, Thecorem 6.2. Assume the conditions of Theorem 6.1, except for the uniform

o integrability of (6.2), but let the cost be

-]

E, I e Bikgd Y o(t) + ky dY (1) + k(x(0)dt] = Vo(x,Y,Y,),
0

A) and similarly define V§(x,Y§,Y5), where k, > 0. Then the conclusions of Theorem 6.1

W (with the ® in (6.3) replaced by 28) hold.

Proof. Lect ?i‘(-), i =0,1, denotc a 8-optimal policy. We can suppose that
o sgp[ExYS(t) + E,Y5(1)] < = for each t < = and

lim sup f e Pk dYEQ) + k,dYE(t) + k(XE()dL = 0,
T
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since this holds for any barrier policy. In fact, there is a Ng < =« such that if we
switch to the (L*U*) barrier policy (or to any barrier policy) once the Yf(n
exceeds Ng, we change the cost by less than 6. But, then the set (6.2) is uniformly

integrable, and Thcorem 6.1 holds.

Q.E.D. .

a f 2 MRS S L . C ERER

> AEm v » s .

P AV A Y B N

l .

- TR WAL POV .’-.IA{-“"'v'4"<"‘,‘A'-.\~$'i
QGG R VNG OO NS P N RN SOV A0, 0, M NN

1A%




-

7. Avcrage Cost Per Unit Time.

© =

R
L}
¢

The methods of Sections 1 to 5 can be used to adjust the proof of Theorem 8
in [6] to get the result which is analogous to Theorem 6.1 for the average cost per
unit time problem. Only an outline of the method will be given. The rcader is

. referred to the reference for more details on the structure of the approximation for
the average cost problem for the non-singular case (and which can be carried over
to our case).

For the average cost per unit time problem, we wish to work with feedback
controls and, hence, use only Yf(-), i = 0,1, or Y,(-), i = 0,i, for which the
associated processes &€(-) and (X€(-),t€(-)) or X(-), resp, are bounded
Markov-Feller processes. Also, let (£€(t), € > 0, t < =} be bounded. The cost

criteria are

_— T

lim E %j [kodYo(t) - kydY () + k(X(1)dt] = 7(Y,Y)
0

@ E %J'T [kod Y& - kydY (1) + k(XE@)d] = 74(Y,Y)) -
.

For simplicity, we do only the continuous parameter case. The discrete
parameter case uscs very similar assumptions and proof. Let PM (PME resp.)
denote the class of feedback control processes for which  X(:) (resp,
(X€(-),t€(-)) is a Markov-Feller process. Let NA (resp., NA€) denote the class of

non-anticipative controls. We will use the following assumptions.

A1), There is an €y > 0 such that for each © > 0 and ¢ ¢ €y there are

8-optimal controls € PME of the form

1

-

|
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(7.1) dY§ = Qf (x,8)dt, i=0,,

where the Qf(-,-) are continuous.
Note: If Qf(x,8) is Lipschitz continuous in x, uniformly in t, then YE(-) € PME. ‘
See the remark below where it is shown that the barrier and (B,4;) policies can often be -

smoothed to yield a continuous QFf(-,-).

Al2. A (L*,U‘) barrier control .\—(i( ) is optimal for (1.1), and (1.1) then has a unique
invariant measure. This control is in PM and its adaptation ?i‘(-), i=0,1,1 X¢()is
in PME. When applied to PME, (X€(-),t€(-)) has a unique solution and invariant |

measure. ‘

A73. inl 7(Yo,Y,) = inf 2(Y,Y) .
Y,€PM Y,eNA

Thecorcm 7.1. Assume (A3.1) 10 (A35) and (A7.1) 1o (A7.3). Let G(x,t) be
Lipschitz continuous in  x, uniformly in §. For & > 0, let Yi‘( ), i = 1,2, be a sequence

of 8-optimal controls in PM® (for X€(-)) and let (the Y£(-) are of the form discussed

in (A1.1)) with Qf associated with Y §
(7.2) (Yf(n+1) - Y&n), € > 0, n < = X(0) = x, £5(0) = &)
be uniformly integrable. Then

6 + U 5 (YEYD 2 lim 745, ¥§) = x%Y).

Remark. The (L‘,U') barrier control can be approximated for X€(-) in such a way

that it is of the form in (A7.1). In particular, let &, = 0 as € = 0 and define
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- +
dY {0 = de[FXE(),840)/¢ + GXE(),L4(1))]

(7.3)

P —

1 [XE(t) - U* + A,)
xS (eur-a,,u0) A

€
and similarly for YE(-). It can be shown that
7.4 E§YEYH — 78(YEYS),
(7.4) 75( D 2,0 75( 1)
where the ?i‘ is the (L‘,U‘)-barrier policy for X€(-). Clearly, the ?i‘(-) are
) of the form used in (A7.1). By (7.4), for each ¢, we can choose A, so that the
left and right sides of (7.4) are as close as desired. By using techniques of
Section 5, it can be shown that (?f(nﬂ) - ‘?i‘(n), i=01 n<e ¢€¢>0,
X€(0) = x, ¢€(0) = t) is uniformly integrable.
- [
Proof. For each ¢, 6, T, define the measure

T
; PES() = HE [ PESXEOLEO ),
0

where P&® is the transition function for (X€(-),t€(-)), under the &-optimal

control Y{(:) (or Qf) of (A7.1). Then '
a POEYE) = T [ PES@xdt) (kg QD) - K,Qfx,0) + k(oL

Choose a subscquence T = e such that both the lim is attained and
P.i.’s converges weakly (with limit denoted by  pu¢9). Then, by the

Markov-Feller property of (X€(-), t&(-)) for (YE(-), Y&(-)) € PME, u®® is an

* invariant measure for (X€(-),§%(-)) and (by the continuity of the Qf and the

weak convergence,

(7.4) FEYEYH = | uoB(axdt) [k,QExb) - kQfxb) + k()] .

N |
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Let (X€(-).2¢(:)) denote the Stationary process associated with the controls
A
Qi‘(-,-) and measure u"s(-) and let Yi‘(-) denote the corresponding stationary

control processes. Then we can write (7.4) as:

1 A A A A ~
YEYEYS = E Idt[koog(xem,z‘(t» - K QEXEM.T4(1) + k(X ().
0
(1.5) T, A N
=E I k(X€(1)dt + Ek,Y5(1) - Ek,YE(1).
0
By the uniform integrability (7.2), (Yg(l), Yf(l), € > 0) is uniformly integrable.
Now, choose a weakly convergent subsequence of {X€(-),YE(-),YE(-)), with

limit denoted by (X(-),Yo(-),Yl(-)). The limit is stationary, satisfics (1.1) and

(indexing the subscquence by € also), we have
YEYEYE) = YY) 3 7Y, X)),
where the optimality of Y(-), Y,(-) is used.

The proof is concluded by applying the same procedure to ?é(-), ?f(-),
where the ‘smoothing interval’ 4, (sce remark above the thcorecm where -\.’f 1s

defined) goes to zero fast enough as € = Q.

Q.E.D.
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8. The Vector Case. Formulation and Quasimartingale Estimatcs

o e e . r
L N
Py "

and the Approximation Theorem

oo
)
- o

¥l B

Most of the foregoing analysis and results can be carried over to the

0

case of vector (x € R®, Euclidean r-space) valued G, F in (1.4) or (3.1). Since

- the details of the proofs are essentially the same as in the foregoing sections,
only an outline will be given. Only the continuous parameter case will be
discussed, but under the obvious changes in the assumptions (A3.1 to A3.4) and

(A8.1) used below, the discrete paramecter results also extend to the vector case.

f,% Applications to queueing and production networks require a somcwhat more
)

special development, and this will be published spearately.

Tl

We use the model (vector F, G)

-

2
,0
2: (8.1) dX€ = [G(X,t€) + F(XE,5€)/eldt + dYE(1),
2
" with cost
w (8.2) Vix, Y¢) = J e‘B‘[kol dY€(t) + k(XE(t))dt], B> 0,
0

.l
;" - The results of Section 7 can also be extended to the vector case.
w
‘:" Thorcm 8.1. Assume (A3.1, A3.2) with vector G, F used, and let supEEIgldYe(t) < ®
3
X for each T < ®.  Then (with the addition of a process whose maximum value goes to
Ky
' zero as € = 0) (X€(-), 2¢(-), Y&(-)) are quasimartingales with uniformly (in €)
D)
o bounded variation on each bounded time interval.
Ry
4
)

: Rcmark. The proof is essentially identical to that of Theorem 3.1. Similarly, the
i" proof of Theorem 8.2 below is essentially identical to that of Theorem 3.2.
«':

We will next use (A8.1), the vector form of (A3.5).

WA Wy oy TP R I R LT N A AT R PES Lr RN . ¢ e
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A8.}). There is a matrix I(-) with a continuous and bounded square root o -)
such that for each x,
T+T

1 u+T1
= EFenar j F'(x,4(s))ds
Tl u T

u+T, T+T ‘'p
+ —U E F(x,&(T))dT I F'(x,:(s))ds] — I(x),
Tl u T

as T, u and T, go to = . There is a continuous E}o(-) with components E‘vm(-), i €r,
such that for each x,

T+T

P -
Fixj(X.E(S))ds — Gy(x)

Tlu

1 u+T,
p— J LE F(x,8(r)dt J
i T

as T,uand T, goto = .

Thcorem 8.2. Assume (A3.1) to (A3.4), and (A8.1) and let supeEngldY‘(s)I < « for
each T < = . Then {Z%(-)) is tight in the Skorohod topology on D'0,*) and any weak
limit process is continuous w.p.l. Let {X€(-),YE¢(-),Z¢(-)} be a weakly convergent
subsequence in D30,=), with the pseudopath topology used on the Jirst two components
and the Skorohod topology on the last. Let )—(( ) = (X(-)Y(-),Z(-)) denote the limit of *
a weakly convergent subsequence. Then the conclusions of Theorem 3.2 continue to hold,

with the limit Y(.) replacing Yo(-) - Y,(-). In particular, the limit satis fies
(8.3) X(t) = Z(t) + Y(t) + X(0), dZ(¢t) = [E}(x) + C-Ivo(x)]dt + o(x)dw,
Z(0) = 0.

Dcfinition and Assumptions. Below, v(-) will be a continuous vector field on RF

with |v(x)] = 1, and S a compact set with a piecewise differential boundary and

with the following property: There is a A, > 0 such that for x € 8 and 4 € 4, the

points x + Av(x) arc interior to S. Dcfine the (S, 4, v(-))-reflecting policy for
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X€(-) as the (admissible) policy which sets X€(t) = x + Av(x), if X¢(t)) = x € 8S.
Then, of course, dYS(t) = Av(x). The same definition is used for the (S, 4, v(-))-
reflecting policy for the X(-) of (8.3).

A policy Y(-) for (8.3) is called a (S, v(-))-reflecting policy if the
associated process X(-) is a reflected diffusion in S, with continuous reflection
direction v(-) on 8S, and there is a Ay > 0 such that for & € 4, the policy which
sets X(t) = x + Av(x) if X(t?) = x € 3S is an admissible (S, 4, v(-))-reflecting policy.

Theorems 5.1 and 5.2 continue to hold. Here, we would require that the
Q¢ of these thcorems be such that it guarantees boundedness of the X¢(.); eg.,
choose a boundced sct S, and let Q, simply just push ‘enough’ to keep X€(-) from
leaving that sct. In the approximation Thcorem 8.5, we use a different approach,
based on the use of a (S,A,v(-))-reflecting policy to approximatc a ‘rcflecting’

diffusion. Wc¢ will us¢ only the following two theorems.

Thcorem 8.3, Assume (A3.1) and (A3.2) (vector case), and let Y"A(-) denote a
(S,a,v(-))-reflecting policy for X€(-). Then for each T < = and integer k
T A k
(8.2) eiu&o E"[L |dY € (S))l] < ®
x€ES
Thcorem 8.4. Assume e model (8.3) with bounded and continuous 6(.), E}o(-) and
o(-). Let YA(-) be a (S,8,v(-))-reflecting policy for x(-). Then, for each T < * and

integer k,
T

4 ®
gl‘lgo Ex[ Io Y (s)|J <.
x€S

Wec will prove Theorem 8.4 only. The proof of Thecorem 8.3 is similar, and
uses the (vector casc) estimate (5.6) for the process Z€(t) + Z{(1), where Z§(-) is the

appropriate ‘vector® case replacement for the Z¢(-) used in Sections 3 to 5.
1
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Proof of Thecorem 8.4. Let YA(-) denote the (S,4,v(-))-reflecting policy and XA(-)

the associated solution to (8.3). Fix « > 0 and small. Let N_(x) denote the
a-neighborhood of x. There are x,, .., Xq On dS such that Ui‘lea(xi) D 0S and

(8.5) su lv(x) - v(y)l <«. "

xy€Nyolx;)

Let op denote the first time of entry of XA(-) into I—sla(xm). Define .

p™ = min(t > o : XA(t) € N, (x_))

o" = min(t > p" : XA(t) € -I\.Ia(xm)}.

Define N2 = max(i: o™ € T), YA™T) = Y80, n T) - Y™ N T) and YA™T) =
LYAm(T).
Owing to (8.5) and the smallness of « there is a K, < = (depending on o«

but not on A) such that
T q
I lay®s)| ¢ Kk, I |y2m(m)l.
0 m=]

Hence we need only evaluate E[YA™T)J%. We have
NA
m A A
Y&m = 57 [XAem A T) - XA0™, N T))

(8.6) ! .

; ET [Z%p™ A T) - Z80™ N T)).

A

The absolute value of the first term on the rhs. of (8.6) is € aK,N -

, for some
constant K, < ® . The absolute value of the last term on the r.hs. of (8.6) is

bounded above by

(8.7) N8 . sup |z2(t) - z%s) .

m 5,

Since zA(-) is just the sum of an ordinary intcgral and a stochastic integral

whose integrands arc bounded uniformly in A, all the moments of the last factor in
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(8.7) are bounded uniformly in A. Hence it is enough to show that sup ExlNﬁP’ <®
X€ESs,A
for all integers p.

This last problem is similar to that dealt with in Theorem 5.3. Owing to
the nature of the (5,4,v(:)) - reflecting policy there is an a' > 0 (not depending on
4) such that in order for XA(-) to move from the exterior of N, (x ) at time p[" to
I-Qa(xm) at time o{“, we must have sup IZA(t) - ZA(pi"‘)I 3 «'. Let T be a finite

tso"
stopping time. For each &, € (0,1), there lis a Ty > 0 such that for all small & > 0,

A 4
(8.8) e P { fé’%’olz (t+7) - 281)| 3 «'/2} €1 - 8,

The inequality (8.8) and an argument like that used in Theorem 5.3 (to get the
upper estimate on E|Nf|" there) completes our proof.
Q.E.D.

Dcflinitions. We now add an additional qualification on the control problem. It is
supposcd that there is a compact set S, with a piecewise differcntiable boundary
such that X€(-) and X(-) arc to be confined to S,. Let there exist a (S,,4,v,(+))-
reflecting policy for small A and somc continuous v,(-). As noted in thc rcmarks
after the theorem, the approximation thcorem is casicr to prove without this
restriction.  In the thcorem, we assume that the optimal control for X(-) is
(S,v(-))-rcflecting for some S (compact, since S, is compact). This will often be the
case. But, as noted in the introduction, other forms are possiblc: combined singular

and non-singular controls, true impulsive controls, etc.

Thcorem 8.5. Assume (A3.1) - (A3.4) and (A8.1), and the condition in the above
paragraph. Suppose that the optimal policy ?(-) for X(-) is a (S,v(-))-reflecting policy
for some bounded S. Let ?A(~) denote its (S,8,v(-)) reflecting form. Let (8.3) have a

unique weak sense solution under both policies. for all small &. Let Y"A(-) denote the

= ‘_--',.v,n I -.‘f~~¢--{‘-.;~.‘*-,-',_, -r'-r“ -.\.-._x._,\_- R \4‘.""\ .‘\_' - ‘ ~ ’x_. - .'-.‘ ~
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(S,4,v(-))-reflecting policy adapted to X€(-). Given & > 0, there is a & > 0 such that

?"A(-) is 28-optimal for X€(-) and small € in the sense that

(8.9) 5+ lim V() 3 lim V§(x, Y = Vix, Y8, V(x, Y3 ¢ V(x) + .
Proof. The method is that of Theorems 6.1 and 6.2. Let Yé(-) denote the optimal .

(or &/4-optimal, if there is no optimal policy) policy for X€(-) and X€4(.) the
process corresponding to ?"A(-). By the argument of Theorem 6.2, there is no loss
of generality if we suppose that the second set of

n+1 " n+1
U ldY €4s)], e>0,n<°}, U ldY€s)l, € > 0, n<°°}

n n

is uniformly integrable. The first set is uniformly integrable by Theorem 8.3. Let
¢ index a weakly convergent subsequence {(X€4(.), Y€A(.)} and (X€(-), Y€(.)} with
limit pairs (X2(-), ¥24(-)) and (X(-), Y(-)). Then X2(.) is the (S,Av(-)) - reflecting
diffusion and ?A(-) = ?A(~). Thus, by the weak convergence
B/ + Lim VE&(x) 3 lim V&(x, Y&) 3 V(x, Y) 3 V(x, Y) = V(x),
€ € >

lim VEX, YD) = vix, YD)

Another wcak convergence argument and the uniquencss assumption on
the reflecting diffusion X(-) under policy ?((~) yiclds the convergence of
(X8, Y2)) to (X(-), Y(-)). Also, the set (frriaYAs), & € By, n < ®) s
uniformly integrable. The thcorcm now follows by choosing A small cnough so

that YA(.) is 8/4 optimal for X(-) and using the optimality of Y(-) for X(-).

Q.E.D.
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Rcmarks and Extcnsions. If the bounding set S, is dropped, then we might assume
that the optimal control is a (S,v(-))-reflecting policy, but where S is not necessarily
compact. In this case, given 6§ > 0, there are numbers Kg and 8/4- optimal policies
for X€(-) and X(-) for which dY®(t) (resp., dY(t)) equals zero after the first time
that the variation exceeds Kg. In this case, we have the required uniform

’ integrability and the theorem is easier to prove.
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