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INTRODUCTION

In the area of model selection, various procedures have been proposed

in the literature and their properties are examined. In this paper we con- .

1%

sider a generalized information criterion (GIC) obtained by the information "

,

theoretic approach According to this procedure, we find the model which

minimizes i..c-
GIC = -2 log L(e) + CNP.'"

where L(e) is the maximized likelihood and p is the number of parameters.

Akaike (1973) proposed to take cN 2, and Rissanen (1978) and Schwartz

(1978) proposed cN = log N where N denotes the sample size (see also Akaike

(1978) and Hannan and Quinn (1979)). Recently Zhao, Krishnaiah and Bai (1986)

considered the GIC such that (i) bl CN/N = 0 and (ii) Cr/lOg loguNd

The above criterion is sometimes referred to as efficient detection (ED) cri-

teion. They used the criteri onsrtede n n of the number of signals

under a signal processing model."-

In the present paper, we propose to use the ED criterion for certain

problems of multivariate analysis. Sometimes statistician is expected toi

predict the explanatory variables using some of the response variables underm-

the multivariate regression model. This problem is treated in Section 2 by

using the ED criterion, and its consistency is established. Here we may

note that Nishii (1986) pointed out the inconsistency of Akaike's AIC in .<

calibration. In Section 3 we discuss the selection of variables in discriminant

analysis. Our interest is to find the variables which contribute for discrim-"'-

ination between the populations. Section 4 is concerned with the selection of )i

variables in canonical correlation analysis, i.e., among two sets of variables

we want to find which subsets are important for studying the association be-

tween two sets. The investigations for the above cases are made under a mild

condition on the underling distribution.
.. .-%

,-- , " ,- y : ",," ' w " "., ,, 'W • ."" ",, " " . w % % '.'",,.% ", " % -. , ", ., . ,,,,%, % ,, ,,, %' " % % r, , " , w "...-.,,.-. ,, "", 1



2

2. MULTIVARIATE CALIBRATION

Let q explanatory variables x (xi, -, x )' and p response variables

Y- (Y' ""', Yp)' have the linear relation:

y = + 'x + e (2.1)

where e follows N [O,Z], a: pxl, 1: qxp and E: pxp are parameters. Suppose
p -

we are interested in estimating x by using observed X. If all parameters are

known, the maximum likelihood estimate of the unknown explanatory variables

x is obtained by

x (a8-B') -), (2.2)

where (BE- I') - is a G-inverse of n_ 1 . However, if the last column of

BE-l is zero vector, the response variable yp would supply no additional in-

formation on x in the multivariate linear model (see §4 of Rao (1973)).

Hence, we want to obtain the best subset of response variables such that each

of its elements has some information. For this problem, criteria based on

information theory can be used. For a review of the literature on multivariate

calibration, the reader is referred to Brown (1982).

Let J be a subset of indices of response variables (1, ..., p}. We say

that "the assumed model is J" when we regard that y1 (j eJ) provides informa-

tion for x whereas yj, (j' 4J) does not. We assume the existence of the

true model {I, ..., pt} Jt but it is unknown and let Pt < p. This assump-

tion is equivalent to

%t (2.3)
< f :

~t t



a.

3 -

Ca.'

and tr6~~6 < tr if J it where 6 a.qx #J and z #J x#J are

submatrices of : qxp and z: pxp corresponding to a subset J, #J denotes

the number of elements of J, and 6t: q xPt and Ett: pt xpt are, correspond-

ing to dt' are similarly defined (see McKay (1977) and Fujikoshi (1983)).

When all parameters are unknown, and N independent observations Yi at

x (i = 1, ..., N) with the relationship (2.1) are given, we use the esti-

mates of a, 6 and NE as

a y -B'x, B S S and S = S -B'SxB (2.4)

where

Sj( S Nxx i -xxi - (2.5)

Syx SyyJ

Note that S and B'SxxB follow the Wishart distribution W [N-q-l, E] and the
XX p

noncentral Wishart distribution W [q,z ;'Sxx ] respectively. The likeli-
p X

hood ratio for the model J against the full model Jf {l, ... , p} for N

calibration samples is expressed by Fujikoshi and Nishii (1986). Hence,

GN(J) GIC(J) - GIC(Jf) A(J) - q(p- #J)cN (2.6)

where

ISjjI S BI
A (if; J) = N log -SIISjj+B3SxxBjI (2.7)

We select the model JN such that

GN(JN) = min GN(J). (2.8)
J

Recall the criterion function (2.6) is derived when Yi are normally dis- .

0 %
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tributed. However, we apply this procedure when we relax the assumption of

normality. Nishii (1986) studied the asymptotic behavior of the AIC for the

case cN - 2 in (2.6) under a weak assumption and he showed that the AIC is

not consistent in multivariate calibration problem. If we use the ED cri-

terion, cN is chosen such that

(i) lim (CN/N) = 0, (ii) lim (CN/loglog=N)N+- N N__

We will show that the MDL criterion is strongly consistent under the follow-

ing mild conditions:

ASSUMPTION 1. The error vectors ei of Yi (i = 1, ..., N, ...) are

independently and identically distributed (i i.d) with

EeI = 0, Eelei = E and E(eje I)Y/2 < 0 (2.9)~1-

for some y e [2, 3].

ASSUMPTION 2. The sequence of the vectors of explanatory variables

{xi  = (xil .... , xiq)' i 1, ..., N, ...} satisfies

(i) 0<mI(x -< N-)(x - )' < MI

q - XX il i -N -i -N - q(

N FN12( 3/2

(ii) ) x rN( _(loglogN) 2 , (2 < y < 3)
i-l Nk - rN3/2/log N, (y = 3)

where xN N-1(XI + .'" + XN) = (XNlf .... 9XNq)', m, M and r are positive

constants, and y is given in Assumption 1. Here k runs through 1 to q.

The proof of the following lemma is given in the Appendix.

W'S



LEMMA 2.1. Under Assumptions 1 and 2, it holds that

Nl2
T= -(x x 4 )e! : qxp = O((N log log N) 2 ), a.s. (2.12)

N Xi NI

THEOREM 2.1. Under Assumptions 1 and 2, the model selection procedure

based on the ED criterion is strongly consistent in multivariate calibration

problem, i.e., lim JN = it, a.s.
N-w |

Proof. Fro.n Assumption 2, S O(N). Lsing Lemma 2.1 and the law cf

iterated logarithm, we have

N-B'SxxB = N 'Sxxs + TNB + 6'TN + TN1xxT

-N-I'SxxB + O(zN), a.s., (2.13)

N1 S - N-(Syy - B'SxxB)

N
- N I Y (e.-e N)(- i -tN) X' -Ni=I 1i

= . + O(zN) a.s., (2.14)

where TN: qxp is defined in (2.12) and 9N= (N- Iog log N)1 2. If 4 t,

by (2.5), (2.13) and (2.14), we have

GN(J) tr{(-)Sxx}- q(P-#J)CN+O(NI/2 a.s. (2.15)

The first term of the right hand side of (2.15) is positive by (2.3) and

it increases with the order N by (2.10), which together with lim N- c N = 0

implies N-

GN(J) > 0 for large N, a.s. (2.16) 4.

0I
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On the other hand GN(Jf) 0 for any N by the definition of GN. This

yields that MDL criterion asymptotically prefers Jf to J if J h Jt" When

Jf i t' the proof follows. If Jf Jt, at first we consider the case

J J J Denote S Stt tli : pxp, St: PtxPt B = [Bt,9Bl]:qxp,

Bt: qxp t. Let S1 1.t = S11 -SitSttl and define (S+B'SxxB) 1 1 -t in a

similar way. Put U = S1/2B = [Ut'Ul ] : q x p and Ut: qxpt- From Fujikoshi

(1983), we know that

(S + B'SxxB)I1.t - S11.t = (S + U'U)11It- SIit

= (U1 -UtS-stl)'(Iq+UtS-U))-I (Ult- utss-1 )

By the law of iterated logarithm and Lemma 2.1, we have

N-s II-t = Ell t + O(kN), a.s.,

UtSt1Uj = N- N-l1.el/2 + 0 (z, a.s.,

= 0(), a.s.

U1 - UtSJlS = S 1/2 - l/2 12 1E + o(N1/2 z)

XX ttttl O( tN), a.s.,

= O(N1/2 zN), a.s.

-l whcisotie
The last equality follows from the relation B 6 Ztt1 E which is obtained

by (2.3). Hence

GN(Jt) = A(Jf, Jt - q(p - pt)cN

: Nlog I(S+Uu)l.t q(p-P)cN

NlogI + S-lt(S+Ulu)l1.

:O l oggPP 11 t 11- t - , ( N 1 ),I - (2.17c

=O~log log N) -q(p -Pt)cN *-c, (N-') a.s. (2.17)
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'

because p - Pt > 0 and lim cN/loglog N = +. This implies that the ED

criterion will not asymptotically select the model J When J *'J follow-

ing similar lines as in the above, it holds that U.

A(Jf, J) = O(loglogN), a.s.

Hence,
(j"

GN(Jt) - GN(J) = -df, St - A(Jf J) - q(p-#J)c N

= O(log log N) - q(p-#J)cN - - , a.s.

This completes the proof.

However, we must calculate 2P - 1 GN(-)'s to obtain JN of (2.8). When

p is large, this would involve extensive computation. To overcome this

problem, we propose an alternate procedure, which is also based on the MDL

criterion. Let J = , .... i-l, i+l, ... , p} for i 1 1, ... , p. Define

JN {i e JfIGN(Ji) > 0 = GN(Jf)}. (2.18)

This subset is obtained by calculating only p+l GN(-)'s, but this is still

a strongly consistent estimate of Jt (See Zhao, Krishnaiah and Bai (1986).)

THEOREM 2.2. Under Assumptions 1 and 2, we have

lim JN Jt a.s.

N-*w

-,oo '. If i e Jt, then d i _ t.  By (2.15), GN(J-i) tends almost

surely to infinity. Hence ND i for large N, a.s. If i J dt , then

d-i 1t' By similar discussion as (2.17), we have

GN(J-i) .. .. as N - , a.s.

This implies i 0 JN for large N, a.s., and this completes the proof.

"0

* %..**...-. -- U..'.*... ...
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3. DISCRIMINANT ANALYSIS

The discussion on multivariate calibration can be applied to the

variable selection in multiple discriminant analysis. Consider q+l

p-variate normal populations II with mean vector V and common covariance

matrix z (a = 1, ... , q+l). Assume N samples x, ... , x are drawn
CaNa

from n T. We are interested in interpreting the differences among the

q+l populations in terms of only a few canonical discriminant variates.

Let o be the population between-groups covariance matrix as

= - q + l
Z=N Nc (i~ - )( - )': pxp'

X la -a -t pP

where N- =-l and N =IN.. Let J be a subset of {l, ... , p} =_ J We

say that the model is J when unknown parameters satisfy

tr- trj > tr j3 jQjj, for j' J (3.1)

where o and E are #J x#J submatrices of Q and E respectively. We assume

that the true model exists and denote it by J t = {l, ..., pt}. The maximum

likelihood function under the model J is known (see Fujikoshi (1983)). Hence,

we have

GN(J) = GIC(J) - GIC(Jf)
IwjjllIw+uIl32

= N log iwI iJWj +UjL q(p -#J)c N  (3.2)

where

q+l Na
W=  (z i-z z- (33)

a=l i=1 -

- , ,~~~~~~~~~~~~~~~~~~~~~~~. ..-.. ,.-......- -...... ....... ........... ).-... - ".-.........'.;.-
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q+l
U X N ( -f )( - 2)': pxp (3.4)

'.

N a: =N 1 f - 1 l

-a Na z Na7 . Here W and U-respectively denote the
a o=l

within group sums of squares and cross products (SP) matrices. Note that

W - W p[N-q-1, E] and U - W p[q, .;NQ], and recall that S - W p[N-q-1, E] and

= s(N)} be a sequence satisfy-
B'SxxB W [q z; in (2.5) Let {Sxx XX

ing Assumption 2 with y = 2. Then we can find a = N q xp such that

aisxxa = NQ since rank Q < p,q. Put S = W and B'Sxx = U in (2.5). This

gives the correspondence between (2.5) and (3.2) except that o depends on N.

Let JN be a subset of Jf minimizing (3.2) and let JN be a subset of

Jf defined by (2.18) in this situation.

THEOREM 3.1. Let z - (i = I, ... , N ; a = 1, ... , q+l) be i.i.d

with E(zi-1  ) : 0 and E(zi i- )(z i-Ei)' = z. Assume that the data

increases satisfying the condition

0 < m' <N N < 1 (a 1, ... , q+l), N IN
a ai

where m' is a positive constant. Then both JN and J N are strongly con-

sistent estimators of J.

a,

.5,
S
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4. CANONICAL CORRELATION ANALYSIS

In this section we treat the variable selection problem in canonical

correlation analysis. Let z = (x',y')' follow Np+q [,Z] where x: qxl,

y: pxl, (',)': (p+q) xl, x: qxl, XX XY : (p+q) x(p+q)

and X qxq. Suppose we are interested in summarizing the relationship

between x and y by using a small number of variables. Let If = {l, ... , q}

and Jf = {l, ... , p) be sets of the indices of x and y respectively. Con-

sider subsets I f and J c Jf. We say that the model is (I,J) when, using

submatrix rjj of ZXY and so on, we assume that

1 - -1 -1 (4.1)tr yxX -YY I Iiljijj

Further we suppose the existence of the true model (It,Jt) which consists

of the smallest number of parameters satisfying (4.1) when It = {1, ... , qt}

and Jt = {l, ..., pt}. Also, let (xi',y) be N independent observations of

z' and put

S XX XY N xi xi

S S) i (p+q) x (p+q).

Consider the model (l,J) where I = {, ... , q1} and J = {1, ... , p1}. Corres-

ponding to I and J, we partition S into 16 submatrices (S ij); i, j = 1, ... , 4

/ S
IIas llS2 ,w, sXY =('1 Sl4) qx p, Sy 33x34asl Sxq Al SK1S 223 S 24) S43 S 44) p

S ql xq,, Sl3 q xPl S33 : P1 xPi and Si. = Si. Then the like-

lihood ratio test statistic of the model (1,J) and the full model is given

by Fujikoshi (1982) as

'I

m . . • • • . • -
•

- -• i . .. . . . . .. g ° """q""
°

.t.'°
- ,

- '. °"
N " "

-" - -'. "w



-( -21logx N S i S22.13 S 22.13 (42
If~Jf;IJ) I g logf 22.11. 44.3 S 42 1 s44 13(

where

S. S -S S- S - S -S Sij.13 ij.l Q3.1 33 .1 3j.1 5 ij.3 Sil.3 113 j3

S . S -S S 1S
ij-k ii ik kk kj

If I I t and J Jt or ql > qt and p1 > Pt, then (4.1) is true

which yields (z41.3, E42.3 ) = 0 and (E23-1 E24.1) = 0. Hence, by the law

of iterated logarithm, using iN = (N- log logN)I/ 2,

N-I E + ~ N-Is44+Oz ~ .

22,1 22.1 + O(NN44.3 44.3 + O(N)' a.s.,

N 1 ( 22.13 S24 .'13\ -( 22.13 S24.13) ( 22."1 0a s",$4.N $4. S21 E '4.3 E O ( N )  E + O(z N), a.s., ;.
(4 42 .1-'44,

42.13 S44.13  K2.3 4.3}\ 44-3/

and a-

A( IfJf;1 9J) N logf E2. +4. /~ 22. 0 .,
:i = j2l 21 + 0(z )}, a.s., "f I 21J4. 0 E44.31 N .

- O(loglogN), a.s., if I I and J =jt (4.3)

t t

If ql < qt or p1 
< pt (which implies I I t or J Jt), then (z23.1,z24.1)

or (z41.3'42.3) 0. Hence, I22.11144.31 > 1'22.1311'44.131. Therefore,

Ja.I22.11 IE44.31 ~
A(IfJf;,IJ) I N log z 44 T + 0 (log logN), a.s. V

~22.13 11'44.131

+9 (N eo) a.s. (4.4)

This discussion is applicable in the general case of I_ I or J In
-t f t

this case let I* I U I and Jt = J U Jt When we restrict the variablesf 3 t*ticaeet I UI and y.j 4.

of x and y as x.(i e I*) and yj(j e J*), the true model remains (ItJt).
, f f

lei
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Recalling the definition (4.2) and using (4.3) and (4.4), we get

A(IfJf;I*,),) = O(log log N), a.s.,

lim N A(I*,J*;I,J) > 0, a.s.

Hence,

A(If~df;IJ) = A(If)Jf;IfsJ) + A(IJ*;IJ) - -, a.s.,

if I PI t or J tJt" (4.5)

To prove (4.3) and (4.5), we need only to assume the finiteness of the

first two moments of x and y.

Now define (INJN) which minimizes

GN(I,J) = A(IfJf;I,J) - (pq - #I#J)cN

and

IN : {i 6 IfIGN(IisIf) > 0), N = { j edfIGN(Jf'J-j) > O}

where I- = I f - {i} and J = jf - {j}. Combining (4.3) and (4.5), we obtain

THEOREM 4.1. Let {zi = (x!,Yi)': i = I, ... , N, ... } be i.i.d. with

mean vector( , and variance covariance z. Then (IN,JN)
mea vector ) and(IW N

are strongly consistent estimators of the true model (It'dt).

.- *.~~--.
_(' ' '. "-" . -.-. ".' . m .(, -. , - .. - •.- ,, % • , '• % .° , ." . "," w"' %"r ' . ,- . -'. t" ', "- '
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APPENDIX

Proof of Lenna 2.1. We prove that the (k,z)-th element of yN=(x - -''

is O(AIloglogN), a.s., (1 , k <q, 1 < £ < p). Hence, we do not lose gener-

2ality by assuming q = 1 and Ee = 1. We prove

n ,'--

n
(x -x )e. - O(/nloglogn), a.s. (A.)

iP1 1 "-1

To prove (A.), we need to show ,'

n J

P[ U {I (x i -n)e i > Kr'n log log n]
k=l 2 k-l <n<2k i=l

k- 2k
for some positive constant K > 0. If 2  < n < 2, --

-- I k) < {n-1  (x- k)2}1 / 2 < A.

2 =1 2 i=l 2

Hence by the law of iterated logarithm,

n

(x -x 2 ) Y e o/n og og n), a.s.
k 

., 
k

Thus we shall prove ,.

P[E k] < (A.2)

where E =n (k/
k 2k-l 2 k i 1 x 2 k " >

Define ,.

e if le i l  2 k/2

k 0 otherwise.

Then,

AIL~

04:

"* j
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2 
k

P(Ek) < P(E ) + P[ J (e i  ek
i=1  k

where

nU ((Xi- k )e' K2k/2 ok}
2k-l<n< 2k i=l 2kek 2

So,
® k

2 CO2kp COkel2
P[ U (eie.k)] : 1 2 [e e2] p[ell 2k/2]k=l i=l 1 k 

_ 1 -

2k P[29/2 < je1 < 2 (z+I)/2] : Z [ jell < 2/(2+) 92 2k
k=l =k = k=l

< 2e+ 2(12+2)/2]
- :z < jell <  2<z/2 2 02 E e I[21 k 1 eZ :I 1 < jell 2(+ )2

< 2Ee 2  2,

lEe' iEke-el)' EleI i -k/2 -k/2 2=2
n 2-1 -k// 2 k/2Ixlk -Ee~ elx < (n~ (x 2/2 < 2 4eI =

2 I I i - 2 1/n n-i=1 2

for large n. If we let ek - Ee! and T = j (x - ), we obtain
fo lre f ele ik 1k 1k n i~ i 2 k

, n

P(Ek) = P[ U {Tn > K2k/2log k - -xi x klEe ]
2 k<n<2 k k1 21

< P[ U k {T > K2k/2 o - 2k/2 R]

2k<n<2

< P[ U {T n > K-2k/2 ogk}] P[F], say,
- 2kl <n< 2 k k

where we can take a new constant K' > 0 if K > 0 is sufficiently large.

I ,. . '-.r' ,.- N ,_'. N". W ', -,".,. .",w" ,..', ' ,.. " . ' ' . ", '".' " .".'-. .'- -,
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Therefore,

2k k/
P(E ) P[ii (x i - -xk)ek[ = K-2k/2l°-]k]

i= 2 k 2k

2{1 - (K'/1og k)} + CoRk

where Rk = I k x i  ' x k 3E elk 3/ 23k/2(1 + /Tgk)
3} where 4(x) is the

k~ 2 k k

standard normal distribution function and C0 is a constant independent of

n. The last inequality is due to Bikelis (1966). If K' > F2, then we know

that

k = 1 --

If y : 3,

I Rk < C , {k logk} < .

k=l - K=2

If 2 < y < 3,

~ Rk < r 2( 3 -y)k/2EIelk 13

k-1 k=l "I"

k
C 2 -(3-y)k/2( E 3el/3)
k~l z=I [2( I ) 2 < jell < 2 / 2  + l

<C 3V 2 -(3-y)k/2 (Ele3 </2 ] + 1)
<'=[2( )/2 Je < 2 1

C-3 I Ee [2( - )/2 < Ce < 2  C4 . C3Ejelly + C4 <

because EleI' < -, where C1, ..., C4 are positive constants. Thus we

complete the proof of (A.2).

"S

• .. , ,- -'",' ''' '' ' ''' '='*''*'-' " ''' ''' ' '' ''''" ', %  ,r " % " '" '' ' '.-% - .% -#,'w ' %,w*w .,,, " ,0

• - IF ° - " " i - | i b iF " .- | %
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