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Notation

the denominator polynomial coefficients (ap = 1)
the polynomial formed by (a;)%,
the numerator polynomial coefficients

the numerator polynomial

™ _ne: the “numerator square” polynomial coefficients
: Note that b_; = b;

: the numerator square polynomial: C(z)C(z7?)
: the autocorrelation coefficients

: the time series measurements

: the standard unbiased estimates of (r;);

1: the Yule Walker estimates of (a;)¢, based on (7;);

1-1
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1. Introduction

There are various areas in engineering where the problem of finding a compact
representation of a signal arises. Reasons for using such a representation include: the
representation is directly related to the information in the signal, the representation
can be transmitted over channels with a smaller bandwidth! than would be possible
for the original signal, and the representation has noise immunity properties.

One representation that is used very widely is the ARMA model. ARMA is an
abbreviation of AutoRegressive Moving Average, meaning that the signal’s value
at some point in time is both a function of the past values of the signal ( AutoRe-
gressive ) and of the present and past values of an i.i.d. white noise signal ( Moving
Average ). That is, we can model the signal as:

Za Yk-i + ZcJek—J
=0
where (yi)x is the signal of interest, and (ex)x is a white noise signal. The reasons
the ARMA model is popular are: that it is relatively easy to compute from the
signal (y&)k, and that the a; and c; coefficients relate directly to the shape of the
spectrum of the signal.

Another way of looking at the ARMA model results from its frequency domain
interpretation: We are modelling the signal (yi)s as the output of a linear filter
driven by white noise ( see Figure 1 ). Since white noise is spectrally flat by

definition, the spectral shape of the signal is completely determined by the filter.

IThis includes memory storage, which can be seen as a transmission through time rather than

space.
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Figure 1.1: Signal Model

As an example application, consider the transmission of speech over a narrow-
band digital channel ( the situation most western telephone companies want to
convert to ). One way would be to simply digitize the speech signal and transmit
the digitized version; however, given that reliable human recognition of the speech
signal requires that the spectrum of the signal at the receiving end coincides with
the original spectrum for at least several kiloHertz, and that we need a reasonably
fine quantization for the same reason, it is clear that we need a channel capacity of
many kilobaud with this method. On the other hand, we could compress the speech,
using ARMA modeling techniques, transmit the compressed signal, and reconstruct
the speech from the compressed signal at the receiver. Transmission equipment is
available that transmits speech understandably in this way while using as little as
4 kilobaud [10]. Since state-of-the-art is not yet good enough to allow the person at
the receiving end to recognize the speaker, this method is not yet suitable for general

use; however, applications in verification/identification of authorized personel and

in voice command of machinery exist [15].




ARMA modeling techniques are used in various other areas: in communications,

including adaptive matched filters in transmission channels see [1], and in geologic

' ‘ surveying by means of acoustical procedures ( used e.g. to find oil and gas ): see
." Y .~ (2] and [13]. See [12] for more applications.

, There are various ways of estimating the coefficients a; and ¢;, but they can
? ” generally be divided into two groups: computationally simple but not of very high
:: g statistical quality ( i.e. the variance of the estimated coefficients is higher than
'.- “ necessary ), or computationally expensive but of high statistical quality. This report
E: FS is concerned with a compromise algorithm: on the one hand it is computationally
.e: o efficient, but on the other hand it asymptotically ( i.e. for the data length of the
- available signal growing to infinity ) achieves the maximum statistical quality. The
u .'j,: report studies the behaviour of the algorithm for finite data lengths.

: i The subject algorithm has been formulated in [16] and its computational as-
{; ﬁ pects have been addressed in [14]. It is known [16] that the algorithm approaches
:5: ,'.': the Cramér-Rao Lower Bound ( CRLB ) as the number of measured data points
‘.E = N ( i.e. we have measurements of yo---yny for some N ) grows to infinite ( i.e.
o 2 N — o0 ). Under these asymptotic conditions it has also been shown that the
. - algorithm is numerically well-conditioned if the polynomial C does not have roots
:. :'; with approximately unit magnitude. The algorithm as formulated in [16] and [14]
{ b leaves two freedoms of choice: the number of instrumental variables to be used
2 and the number of postiterations ( both terms will be clarified in the next chap-
f :‘Ef: ter ). Asymptotic variance expressions as a function of each of these parameters
! _ are presented in [16]

3
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In this report we investigate what effects a finite data length has on the prop-
erties of the algorithm. Numerical problems ( ill-conditioning ) for finite N, and
the behaviour of the algorithm as a function of the number of postiterations and as
a function of the number of instrumental variables are studied, and are compared
0 ) with the asymptotic expressions. We will find that several problems do exist and
i we will develop several variations on the algorithm that attempt to reduce these

problems.
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2. Background

This chapter is a short summary of the relevant material from [16] and [14]; it

e formulates the spectral model as well as the estimator and briefly discusses them.

<=8

2.1 The ARMA Spectral Model

N
T As stated in the introduction, we want to estimate the spectrum of a signal
v, (yx)x- The general formulation of a spectral estimator would be:

h

s

1. parameterize the spectral density function ( choose a model );

"

2. estimate the parameters of that model; and

3. compute the estimated spectral density function from these estimated param-

i eters.

The parameterization we will use is the ARMA spectral model defined below.

~ Consider the ARMA spectral model
* A(gMy(t) = C(g7")e(t) (2.1)
o
f: where
EE e(t) = white Gaussian noise with zero mean and variance A\? (2.2)
- ¢~! = unit delay operator ( ¢"'y(t) = y(t — 1) ). (2.3)
%
y
¢ y and e are scalars
7.
2

and the following standard assumptions are made:




- T WJITWYJH 4 W W

:i‘: Assumption 2.1

o A(2)-C(z2)=0==|2z| > 1

L Assumption 2.2
) @noe-Cnc # 0 and {A(z),C(2)} are coprime polynomials

\é Together, this means the ARMA representation is minimal, stable and invertible.
s The algorithm studied here does not extend to cases where these assumptions do
. not hold, e.g. the case of sinusoids in white noise cannot be modelled in this way,
AN as it violates Assumption 2.1. However, many practical cases do fall in the category
W described by Assumptions 2.1 and 2.2.

:g Note also that we need to know the orders na and nc of the polynomials A and
o C; here we will assume that these are given.

-, Now we can introduce:

bl

B(z) = C(z"1HC(z) (2.4)

»
)
£

"“’7”{0-
[T &%

Under Assumption 2.1, C(z) can be uniquely determined from B(z), and, as we

-
==
o

shall see below, B(z) is easier to estimate. We also define

) .
~

:‘_-; re = E{y(t)y(t — k)} = the covariance of y(t) at lag k (2.5)
P, ."J 0o
.,: &(z) = kz rez~* = the spectral density of y(t) (2.6)
o T
0 where E{-} denotes the expectation operator and z is a complex variable.
-j:.:: It is well known that

XA C(2)C(z71)
e B(2) = N2 2.7)
o &) =X amaE (

‘..',

R The problem considered here is to estimate ¢(z) from N measurements of (yi)«.
&
Ls) We intend to carry out the estimation by parameterizing the spectrum and then

\

‘l’
Faks
LEREN

(=]

I QAR AS

L 2

-
-

A A o P A T T T T 0 LA Tt o P o o g Ta L T o L ¥, T O
1'1‘ e ‘ AAUNUEKY ‘v‘i‘a."ﬂ:l K .l’l."o."ﬂ."l‘."&‘ "J’M’o.‘ 0!‘.0.‘ t .h"). "4'-‘ s M -".'4'.'0'-'-‘. K A N h R AR TR e '

-v ';-'




J A.fk"

)3

[ v

FhA

“

P s
L

s

o’

(A

R S R e i T T T L “w ) N N oy 0 e ¥)
h’?¢‘ } '. < .'- " % ’, 'l J ; ‘:"2 A .Q i) \.I.'p.:. .‘ 3 Q'! I‘,‘I.n i'? Wi

estimating the parameters from the available data. There are several different pos-

sible methods of parameterizing the spectrum. Specifically, as [16] and [14] suggest,

one can parameterize ® by

{/\2,(11,"',(1,,“61,"',C,,,_-} (28)
or by {ro, s Tnatnc} (2.9)
or by {TO)"')rnca ay, - '7ana} (2.10)

We parameterize on (2.9). Finding the a parameters from the r parameters can be

done by solving the well-known Yule Walker equation [3]:

LY e rnc+1-—ua a rnc+l
= — : , K 2 na+ nc (2.11)
TKe1 -+ TK-na Qna TK

The b parameters can then be found using the well-known equality [11}]:

Tk oo Tiina (41
be =[a0...an | : : (2.12)
rlk—Ml e Tk Ana

Thus we can uniquely convert from any of the parametrizations (2.8) — (2.10) to any
other, i.e. they are mathematically equivalent. However, as [16] discusses, there are

good reasons for using the second parameterization above; therefore we define:
0 = [7'0' "T'na+nc]T (213)

As both {16] and [14] show, this is a well-defined parameterization.
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2.2 An Asymptotically Efficient Algorithm

Obviously, the accuracy of the spectral estimate is determined by the accuracy of
the parameter estimate, so finding the parameter estimator with the lowest possible
variance i1s important to the overall accuracy.

As afirst try, we could consider either using standard unbiased sample covariance

estimation:

1 N-k
Fe= = 2 y(y(t+k) k=0,1,... (2.14)
N-—k =

~ -~

r_xg = Tk (215)

However, the 7, are in general not statistically efficient estimates, and can in fact
have very bad accuracy. We could instead consider a Maximum Likelihood (ML)
autocorrelation estimator: this will be statistically efficient, but on the other hand,
will also be computationally expensive. The idea considered in [16] and [14] is to
improve on the estimates in (2.14) in such a way that it attains some of the desirable
properties of ML; specifically, it should be asymptotically ( i.e. for N — oo )

statistically efficient, that is,
Jim NE{(R - R)R - R)T}

should be minimal. In this equation R is the vector

for some integer m, and R is the estimate of R.
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As we are going to have several different kinds of estimates, the following general

notation is used: a variable with a tilde ( ~ ) denotes the initial estimate of that

variable, a variable with a circumflex ( * ) denotes the improved estimate of that

3
rd

« s
a2

variable.

8

2.3 The Correction Step from Yule Walker to Approximate Maximum

P
»

S

Likelihood: Heuristic Presentation

The following is a plausability argument for the correction step used in the

..' 4_"/.'

algorithm: a more formal presentation is given in the next section.

Consider a scalar random variable 6 with unknown expected value §. We would

Y

like to find a new ranc m variable § with the same expected value 8, but a smaller

L el
£ 4
A, N

variance. Assume that we also have a random variable z ( called an instrumental

variable ) with expected value 0 that is a ( deterministic ) function of 8: z = z(6) and

has the property that the variance of z increases monotonically with the variance

of 6.

N

The above problem can be cast into the language of linear spaces. Consider the

i
.

Hilbert space H of all random variables with zero mean and finite second moment.

The addition and scalar multiplication operations in this space are the obvious ones;

r

. the inner product of two random variables z and y ( denoted < z,y > ) is defined
: ? to be E(zy) ( (18] shows that this is a well-defined inner product ). Note that the

) norm generated by the inner product ( /< z,z > ) is the standard deviation of the

v random variable.

R We have two vectors z, and 6 4§ _ . We would like to minimize the norm of

P

- 18], but are hindered by the fact that we do not know ||8|| ( 8 is unknown and we

2

"

9
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Figure 2.1: Geometric Intepretation of the Effect of the Instrumental Variables on

the Variance of the Estimate,

have only measurements of § ). However, since w.: know how z depends on 6, we
can estimate the inner product ( = covariance ) < 6,2 >, and standard deviation
V<22 > = |z||, from the known measurements of § and z. This gives us the
strategy of subtracting the projection on the subspace spanned by z from 6, see
Figure 2.1. To determine the projection we divide z by its norm to yield e,; now
the projection P on the z-subspace is simply the inner product < 8,e, > times the
vector e,:

PO =<8,e, >e,

If we want to express this in terms of z instead of e,, we get a factor ||z]} in the

inner product ( < 6,z >= ||z|| < 6,e, > ), and another one from the vector at the
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end ( z = ||z]le; ), giving a total of ||z]|> =< z,z >; this has to be divided out again:

po = = 0,z >,
<z,z2>
Finally, we need 6 — P#§:
9_po=g_<bz>
<z,z2>
which gives:
G-b=G-§_%2>, (2.16)
<z,22>

where fortunately the 8 terms cancel out, leaving us only with terms we can estimate

from the given data. In probabilistic terms, equation (2.16) is: again:

- = E(82)
6=60-
E(zz)z
For vectors this generalizes to:
6 =6 - E{0:T)(E{z2T}) "2 (2.17)

2.4 The Correction Step: Overview and Implementation Issues

In this section we present the correction step without proof; some proofs are
given in Appendix A.

The general strategy for the correction step is as follows: we will try to find a
random vector X, that is completely determined by the N available data samples,
and such that for N — oo the distribution of X can be completely specified from 6.
Furthermore, using A'(m, L) to indicate a Gaussian distribution with mean vector

m and covariance matrix ¥, X should be such that:

—_— dis
VR(X = X) o= N(O,W) (2.18)

11
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where

_ |
X = :
0

and where 6 is as defined in (2.13). The covariance matrix W, which is assumed to
¢ be nonsingular, may depend on 8. Finally, assume that an estimate W of W can
v be calculated from the available data, and that |W — W|is O(1/v/N) L.

p.. It is shown in [16] that under these circumstances we have

[

u Wn W

W = meome (2.19)
WL Wy

.-

LAY .‘l _'l.

A

8
X = mx 1 (2.20)

.
oL

N

“

. .— ;l-ﬁ‘ ‘. o [ ‘l"-..- \.’. d

where

'y

wp—y
-
—
I
]
—~
D2
|
D
g
—~
D
|
S oY
-
h.]
S
b )
X
&
L )

(2.21)

Wi, =Ez(6-6T nfx(m-nb) (2.22)

d
5
~

1l

o

N

N
~

(m —nb) x (m — nb) (2.23)
and

m = dimX

f . k rn (l{l."\’l.« \-’

nd = dimé

where we assume

m>na+nc+1

".“-"‘I . :’-"ﬁ:‘-":

1*O(¢)’ means the standard deviation is equal to i'¢, where K is independent of e.
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and where 2z is the same random vector discussed in the previous section. ( z is
often called the instrumental variable vector or the instrumental variables )

In Appendix A we show that
8=6- W, Wl (2.24)

is an approximate ML estimate of §. However, this is in general not implementable
since 11" may depend on 8 and therefore be unknown. However, since z is O(1/vV N),
we can replace W, by their consistent estimates W;j without affecting the order of

the approximation ( see [16] for details and proof ). This gives:

It remains to choose the instrumental variable vector z: we take 2z equal to:

z = [z21 2m-ne)T
na na

Zk = D) @ifnetnatkoiojl; (2.26)
1=0 3=0

which is clearly a deterministic function of 6 through (2.11). As [17] discusses, z
asymptotically has zero mean and normal distribution, so it fulfills the requirements
of the previous section. This specific form of the vector z leads to a relatively simple
distribution of X; it was introduced by Walker [17], who proves that it is optimal
in the sense that if one chooses a z vector of length n, there does not exist any zero
mean n-vector that is more correlated with §; in other words, this choice will take
out the maximum amount of variance from the estimate 8 ( see Figure 2.1 ).

As is shown in Appendix A of [16], this z achieves the properties of (2.18), with

(Wal; = E{[v(t—i)+v(t+i)o(t )} ,i,7=0,...,n6 =1 (2.27)

13
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s
s P CZ(q-l
s [(Wali; = E{A2(¢J'l)v(t —i)A* (¢ )o(t - j)} (2.29)
" ne
E = the coefficient of z2*~7 in [ Z biz%?,i,j=1,...,m—né
(: k=—nc
:.‘ (Wil = E{AYgH[v(t + na+ nc—j) + v(t + na + nc+ jlu(t — k)}
ey
::". = ak+j+ak_j y k=1,...,m—n0 (230)
‘o
::' a, = the coefficient of z5 in the long division of
o8 2
—('nc+na) [Zk——nc ka ]
e A3z 23D
T
o Computation of some of the elements of the W,,,,, matrices can be avoided by noting
4
5 that they are always equal to 0, see [14] for details.
¢ N It is shown in [16] that as N — oo the covariance matrix of the normalized
’. u "
i: estimation error vVN(6 — 8) is given by
oo
\ Pp =Wy - W,WR'Wh (2.32)
.’.i
e furthermore we have
(2
Pe > P? for my > m, (2.33)
e
Py
"E: From equation (2.33) it follows that (PZ)m has a limit when m — oo, which we will
*‘-
"' denote by P?. The following equality holds
ay
.
‘: ‘ where
-@,
3
o - . . 1 .
N 1-? Q; = E{CqV)[e(t —i) + e(t +1)] Az(q'l)e(t —nc—na-j)} (2.35)
X !
o~ t=0,...,n6-1,7=1,...,2n¢ j

14 ‘
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However, the asymptotic results depend on the fact that m is a negligable fraction

_3 3‘_3 of N, so for finite data lengths we must be careful not to choose m too large. This
:‘?. makes the convergence rate of (P2),, to P¢ important: it can be shown [16] that
b ? if C(z) does not have roots with approximately unit magnitude, the convergence
§ .::' will be fast; otherwise it will be slow, and we will need to use large values of m in
Z order to approach P2, which is not possible unless we have a very long data record
:Ej “\ available ( since m/N = 0 must hold ).

-: ] ‘ We can find estimates of a; by substituting our estimate 8 for the autocorre-
5 t:; lations in the Yule Walker equations (2.11). The resulting estimate will have an

asymptotic ( for N — oo ) covariance matrix which can be shown to be equal to

2
.

. Py = R (Qu - QuW5'QD)R™T (2:36)
(R
:E where
; [Qul;; = EB{A(g™)v(t - )A(g™")v(t - j)} (2:37)
> . [Quz)i; = E{A%(g v(t —)A(¢™)v(t — na - j)} (2.38)
o
o (2.39)
AL
° - and R is the matrix in the YW equation (2.11). Again we have [16]
-
.- P: > P: , for my > m, (2.40)
. -~
n ™
@ Therefore, (P2),, must have a limit P2, which can be shown to be equal to [16]
S
3 Pi =RMQu-TTR™ = p2g (2.41)
N
.
>
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33
34 where
Y
L2

1

. o 2/ -1 o _ 3 -
& T, = E{C*(¢g7")e(t z)A(q_l)e(t na — )} i=1,...,na
o
N5y j=1,...,2nc
2
i
:::: It has been shown [16] that the covariance matrices P? ( equation (2.34) ) and
o> : :
K P2 ( equation (2.41) ) are equal to the CRLB for 8 respectively a, that is, the
A algorithm is asymptotically statistically efficient. Notice however, that the proofs
N [16] assume that the limits m — oo and N — oo are taken in such a way that
P

A
-5.‘\: m/N — 0, so when implementing the algorithm, m must be a negligible fraction of
Y

il N.

L...

‘::: The correction step could of course be repeated: we could use the new estimates
o~
e to get improved values for z and W;; and use them in (2.25) ( note that we would
{ still use the original autocorrelations in the right hand side since the correction step
) -'.'.

_"f,: is designed to correct the original estimates, not the improved ones ). Since the
e %

" algorithm is asymptotically efficient, this will not improve the asymptotic properties,
e but, as [16] suggests, it could improve the short data length behaviour. This is
,:::.-: discussed in section 3.3.

‘. L]

a‘ - . . . ., . . .

-5. As is shown in [14], the algorithm is well conditioned in the limits m, N — oo.

)

‘_ The paper [14] gives bounds for the numerical condition number of the algorithm
ot

':-: ( as a function of the parameters a and ¢ ) in the limiting case.
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Table 2.1: Summary of the Algorithm

1. (a) Use (2.14) to find 7

(b) Use (2.11) with 7 in place of r to find a( in a least squares sense if we

choose K > na + nc )

(¢) Use (2.12) with @ and 7 in place of a to find b
2. Use 7, a, bto find 7 using

(2) (2.26) to find 2
(h) (2.27)-(2.31) to find Wy, and Wy,
(c) (2.25) to find 8 from %, W;; and 2

3. (a) Use (2.11) with 7 in place of r to find a ( again possibly in a least squares

sense )
(b) Use (2.12) with @ and 7 in place of a and r to find b

(c) Use a and b in (2.6) to obtain the spectral estimate (&)

2.5 Summary of the Algorithm

We can now summarize the algorithm see Table 2.5 ( for a good overview of the
computational issues see [14] ).

As an overview of the properties of the algorithm, we know that it is statistically
efficient when both N — oo and m — oo, and we know that the asymptotic
covariance matrix of both a and 6 is monotonically non-increasing as a function m,

but may converge very slowly if C(z) has roots near the unit circle. Furthermore,
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N for N — oo the algorithm is numerically well-conditioned.

For finite data lengths we know that we need m <« N, which ( in cases of slow
3 convergence ) may prevent us from getting close to statistical efficiency. Moreover,
2 the algorithm need no longer be well-conditioned. Finally, since we no longer have

efficiency, the estimates of 8, a; and b; may have different statistical properties in

the finite N case.
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$ 3. A Simulation Study of the Finite-Data Length Behaviour of the
’, q Algorithm
3
o
. =T
n
e~ This chapter reports on the behaviour of the algorithm for finite data-lengths,
‘;i v and discusses the various aspects and problems that are seen.
IR
R It is known [16] that the algorithm is both statistically efficient and numerically
o
:: g well-conditioned in the limiting case N,m — oo;m/N — 0. For finite m and
.- N — oo we know [16] the behaviour of the parameter variances as a function of m,
p -'1
N and for processes that do not have zeros close to the unit circle we know [16] that
"
." o even for “low” values of m these variances are close to the CRLB. For finite m we do
¢
::- not have any results on the numerical condition of the algorithm. For both N and
X
g ‘: m finite, we know neither the numerical condition nor the statistical efficiency of
o .n the algorithm. In this chapter we investigate the behaviour of parameter variances
{
- for the N, m finite case through Monte Carlo simulations.
'j V.
3
ol 3.1 An Overview of Finite-Data Length Effects to be Investigated
= "
ks For this study the observed behaviour of the parameter variances will depend
48 .
SN not only on the particular ARMA process, but also on two parameters which must
£
P . be chosen: the number of postiterations, and the number of instrumental variables
iR :
N (i.e. the value of m ).
g -, It is stated in the previous chapter that asymptotically, one postiteration is
MY
rq -
@ ~ enough to achieve the minimum possible variances. However, in [16] it is suggested
P : . . :
i.. that for short data lengths multiple postiterations might help to improve the sta-
LIRS
::: tistical quality of the estimate.
Y
) b
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In addition we know that as N — oo, increasing the number of instrumental
variables monotonically improves the quality of the estimate. However, this proof
\ depends on the fact that the number of instruments is an infinitesimal fraction of
the data length; therefore, for finite data lengths we can expect deviations from the
theoritically predicted behaviour if we choose the number of instruments to be too
large.
In order to get a good insight in the finite data length behaviour of the algorithm,
we need to use several data lengths, and consider several processes, of different
Ej order, and try to find out how the variances of the estimated parameters change as
’ ii:. a function of the chosen data length for each process.
oS
! A specific problem we may encounter is autocorrelation estimates that are not
E&: nonnegative definite (NND), or, equivalently, spectral estimates that are not non-
negative (NN) for all frequencies. The true autocorrelation sequences are always
NXND, and therefore the true spectra always NN, but they can come arbitrarialy
close to not being so, in which case the uncertainty in the estimates may cause the
estimated autocorrelations and spectra not to be NND and NN, respectively. As an
example: the sequence (g,0,0,...) is NND for any ¢ > 0, but is not NND for any
i :\E € <0. !
i: In section 4.2 a strategy for repairing this problem is studied. It relies on the
# fact that an autocorrelation sequence that is “close” to not being NND will have :
:z zeros ( roots of the C' polynomial ) close to the unit circle; therefore, the problem
: can be alleviated by moving all zero estimates which are too close to the unit circle

- farther away from it.
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3.2 The Initial Monte Carlo Simulations

This section details the design and results of the first simulations.

3.2.1 Design of the Simulations

The following processes have been used in the simulations ( see Table 3.1 ).
Table 3.1 shows that the processes called Example 1 and Example 2 have poles
close to the unit circle, but no zeros close to the unit circle, while for Examples 3
and 4 the reverse situation occurs. Examples 1 and 3 have been taken from [6] and
8].

We expect estimates from the data sets for Examples 1 and 2 to behave like
the asymptotic case ( N — oo ) for relatively small data lengths, and estimates for
Examples 3 and 4 to need large datas lengths for asymptotic behaviour because the
analysis of the algorithm predicts that zeros close to unit magnitude will seriously
affect convergence in m of the variances to their asymptotic values ( [16] ), thus
necessitating large N, as m/N = 0 must hold. We also expect that Examples 3 and
4 will need larger data lengths even for fixed m, as the numerical condition of the
algorithm also is affected by zeros close to the unit circle.

For the other two processes ( Examples 3 and 4 ) we expect the algorithm to
have a slow convergence, a higher asymptotic variance and less numerical stability.
these examples also have varying orders ( two are ARMA(1,1) processes, one is an
ARMA(4,3), and one an ARMA(4,4) process ). Several other processes, especially
ARMA(1,1) cases, were looked at, but are not reported on here, as the results from
conclusions from those simulations support the conclusions presented here.

Simulations were carried out using N = 75, 200, 750, and 2000 data points.
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Table 3.1: The ARMA Processes Used in the Simulations
E Ezample
1 2 3 4
d na 4 1 4 1
? ne 4 1 3 1
A 2.8271 1 0.017258 1 ,
a 1 1 1 1
3 a 0.1 -0.9 —~1.3136 -0.5 '
f_' a, 1.66 1.4401
: as 0.093 ~1.0919
' a4 0.8649 0.83527
\ co 1 1 1 1
.‘ c 0.0226 -0.5 0.1792 -0.9
c2 0.8175 0.8202
y cs 0.00649 0.2676
c4 0.07637
'. poles | —0.25+10.9314 | 0.9 [-.1253+:i0.9159| 0.5 '
' 0.2 + i0.9434 0.7821 + 10.6047 ’i
zeros | —0.00079 + i0.8425 | 0.5 | 0.0658 + i0.9256 | 0.9
—0.0034 +0.328 —0.3108 L‘
r g
\ b
- 1
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I~ Initially one postiteration was done to determine a good range for the number of
- instruments. This number was between 1...10. The effect of multiple postiterations
. for these cases was then investigated.

:::: The results of the simulations are characterized by two kinds of plots: plots of
_ the estimated spectrum and plots of an a ( coefficient of the estimated denominator
N

H polynomial ), b ( coefficient of the estimated numerator polynomial), or r ( estimated
':3 autocorrelation coefficient ) parameter versus either the number of instruments or
o the number of postiterations.

The spectral plots shown each have four curves:

) ¥

e The mean spectrum: the mean of all estimates in a given Monte-Carlo run.

- e The mean plus the normalized standard deviation and mean minus normalized

standard deviation of the spectral estimates. The standard deviation of the

. spectral estimates is computed, multiplied by the square root of the data
L length and the result added to, respectively subtracted from the mean of the

spectral estimates.

The true spectrum.

Ef The plots of an a, b, or r parameter versus nz each have at least two curves:
- the normalized variance and the sum-squared error ( any difference between these
" two curves indicates bias in the estimate ), and, where appropriate, the theoretical
e variance and the CRLB, also normalized with the the data length.
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':: 3.2.2 Results for the Four Choosen Examples at Several Datalengths
X and Different Algorithm Settings
Xy
\::-
o Below we present results from simulations of the four example processes. The
"-‘: results naturally cluster to two groups: the low order cases ( Example 2 and Example
<)
.,' 4 ) and the high order cases ( Examples 1 and 3 ).
-'\::
':5
b Low Order Cases ( Examples 2 and 4 )
! The resulting spectral estimates for example 2 confirm this behaviour. For
s
';,‘,' increasing nz, example 2 improves significantly over the pure YW estimate nz = 0;
"
M as can be seen from Fig. B.1, where we see the envelope formed by the two curves
®
D “mean minus standard deviation” and “mean plus standard deviation” become
. o)

~ narrower as nz increases, the most noticable narrowing occuring as n:z increases
RO from 0 to 1 and then from 1 to 2. Example 4 also improves, but has a much higher
{

o variance ( the envelope remains wide ), as can be seen from Fig. B.3. Problems also
b Cd
L
o occur with the spectral estimate being non positive definite, even for higher values

-

3 of nz. This is seen in the ragged shape of the envelopes (Fig. B.3 ). As can be
o seen from Fig. B.4, the variances are better at 750 data points than at 200, but the
'\v::'

:‘_; improvement is small. On the other hand, the spectrum of example 2 is still being

*

g

".“’ estimated quite well at 75 points, as can be seen from Fig. B.2. When looking at

. . o . .

"7 these Figures, it is important to remember that the variances are normalized by a
3w .
;,':‘_ factor N, so for instanace “small improvement” between 200 and 750 datapoints
-2
;‘ for Example 4 means that the variances are decreasing as 4.

—

;: Comparing N = 200 curves with the same nz for example 2 and example 4 ( .

o ~

v . v

e Figs. B.1 and B.3 ), we see that the latter curves have a far wider envelope. We

v
b
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also note the ragged shape of the envelope for example 4: this typically indicates
that some of the Monte Carlo iterations resulted in a spectral estimate that is not
positive for all frequencies; plots of selected individual estimates ( not reproduced

here ) confirm this.

Overall, we see that:
e For a given N and nz, example 2 has lower variances than example 4.

e For a given NV the variance decreases as nz increases, but the effect is much
more pronounced for example 2 than for example 4. The decrease of variance

1s greatest for low values of nz.

e For a given nz the variance decreases as N increases, rapidly for example 2,

but slowly for example 4.

The statement in the first paragraph of this subsection that this behaviour can
be explained from the zero positions, as predicted by the asymptotic analysis, is
supported by simulation results for several other first order processes, with different
pole and zero positions ( results not reproduced here ), which clearly show that the
position of the pole does not influence convergence, but the closer the zero is to the
unit circle, the slower the convergence becomes.

The ARMA parameter estimates do not achieve the same quality as the spectral
estimate. Not only does example 4 have a very slow convergence ( a problem that
apparently affects the ARMA parameters even more than the spectral estimate ),
but example 2 now also has a convergence problem; the variances go down at first,
and then, as nz is increased further, they start increasing. This is contrary to what

the spectra show. See Figures B.5-B.10. Looking at the plots we see that curves for

o
v
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o
K :-". the a and b parameters are similar in shape. For fixed N, the variance goes down
1-"
N rapidly as nz increases from 0,1 to 2. We also note that the algorithm computes
--:-'.;: estimates that have very little bias since the variance and sum squared error curves
::, are indistinguishable ( there are differences, starting in the 5th significant digit ).
‘_) A clear almost flat stretch can be seen in all curves in the nz = 3,...,8 range,
W
:f-',{ indicating that the estimator performance is insensitive to the choice of nz in this
s
- : . . . .
st range. Finally, the rise in the curves for high nz values is mainly due to a few
o
outliers, not a general deterioration of the estimates. This can be seen from a
o listing the 20 highest error norms. For each Monte Carlo iteration, the program
;o computes
‘7" Z&;—a;+ b(;b,‘
s i G i i
e, .
.l and at the end of a run, the 20 highest values are returned. For a first order process,
-,:
7 typically 18 or 19 of the 20 error norms have a value of ~ 0.5, and the remaining 1
{
— or 2 having a value of =~ 17.
! The curves in Figures B.5-B.10 show the following:
e ¥ . . .
D) e Just as for the spectral estimates, for a given N, the parameter variances
NS decrease as nz increases, with the largest decreases occuring for nz increasing
o
l‘
‘:j from 0 to 1 and from 1 to 2. This effect is stronger in example 2 than in
,
- s).
example 4.
X =
SIS
" e Just as for the spectra, for a given nz, the parameter variance decreases as N
3 . ;
ity increases, more so for example 2 than for example 4. This can be obscrved
@t
o by comparing curves for the same parameter but different data length and
"-'_:: reading off variances for the same nz. See Fig. B.5.
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e Bias in the parameter estimates is negligible.

High Order Cases ( Examples 1 and 3 )

L

= The results for example 1 are similar to those for the low order cases. ( Figure
o B.12 ) If we compare the spectra for nz = 0,1,2 we see a rapid improvement,
S

| which becomes a slow improvement for nz > 3. However, unlike example 2 and
e

C example 4, we see here that there is improvement for nz > 3; it is much slower
than for the lower values of nz, but comparing nz = 7 with nz = 3 for Example 1
™ shows a clear improvement B.12 For nz = 9,10 we see the the envelope widen again.
'2 Both examples show the ragged envelopes characteristic of non positive spectra, but

increasing nz clearly decreases the effect, as can be seen by comparing individual

spectral estimates.

Comparing different data lengths ( Figures B.11-B.17, giving spectral plots for

N = 75,200, 750, 2000 for Example 1 and N = 200, 750, 2000 for Example 3; for both

« ¢

'.l' 5!

examples results for nz = 0,1,2,3,7,10 are given. Example 3 does not have plots

for N = 75 because they are so bad that they no longer show any information ) we

e\

see slow convergence of the variance as a function of the datalength, and variances

that are clearly worse than example 4 for N = 75: we obviously need longer data

Y

o

- records for these processes.

?f As can be seen from Fig. B.15, increasing nz too much will cause the variances to
increase: the Figure compares nz=7 and 10 for 2000 data points, and the envelope

:;‘: for nz=10 is clearly wider than the envelope for nz="7.

., Considering example 3, we see that even for high data lengths there is little

improvement in the variances as we let nz increase ( compare for example nz = 0

2

»
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or 3 for 2000 data points Fig. B.17). Again this shows that whereas poles close to
the unit circle have little effect ( example 1 has poles with magnitude greater than
0.95 ), zeros that close to the unit circle cause the decrease of the variances as a
function of nz to be very slow. ( example 3 has zeros with magnitude greater than
0.95).

The ARMA parameter estimates ( Figures B.18 and B.19 ) again show the
pattern of rapidly decreasing variance for low nz, followed by an almost flat stretch,
followed by a very rapid rise: this rise is much steeper for examples 1 and 3 than
for examples 2 and 4. The plotted parameters are typical cases; Figure B.19 also

shows the theoritical variance and the CRLB.

3.3 Results of Simulations with the Algorithm Modified to Do Multiple

Postiterations

One proposed method for improving statistical quality for small N is to use
multiple postiterations. However, it turns out that this method does not work:
more than one postiteration increases the variances. Our simulations gave floating
point overflow in as few as five postiterations.

Analysis of the individual estimates of several Monte Carlo runs showed that the
problem lies in the high sensitivity of the estimated a and b parameters to outliers
in the estimated autocorrelations. As was stated above, the correction step of
the algorithm introduces outliers ( typically 3-5% of the Monte Carlo iterations ),
and when these are fed back into the algorithm for the next postiteration, the
resulting estimate poorer than the original estimate, thus causing rapid divergence

as a function of the number of postiterations.
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3.4 Summary

Based on simulations, it was shown that the algorithm shows the predicted slow
convergence for processes whose C polynomials have zeros close to the unit circle.
The requirement that m <« N was also confirmed. The simulation results indicate
that even m = 0.05N may to be “too large”.

Furthermore, we have found that the spectrum is less sensitive to the effects
of high values of nz than the ARMA parameters. On the other hand, for higher
process orders, the spectral estimates continue to improve for higher values of nz
than the ARMA estimates do; that is, while the ARMA estimates for nz = 4 and
5, say, are almost identical, the spectral estimate for nz = 5 is slightly better than
that for nz = 4.

For all of the processes considered, most of the improvement of the algorithm
over the normal Yule Walker method is gained through the addition of the first 2
instruments. After that, improvements with additional instruments are either much
smaller, or even negligible.

Also, for all processes, the variances of the estimated parameters increase with
larger values of nz; for example 2 and example 4 this increase starts gradually, but
for examples 1 and 3 it is very sudden.

One method for preventing the increase in variance for high nz is to choose a
low value for nz. For low order processes this seems no problem, as choices of 2 or
3 instruments seems to be all that is needed to achieve the minimum variance the
algorithm can realize. For high order proceses on the other hand, and especially if
one is mainly interested in obtaining accurate spectral estimates, a larger number of

instruments may be needed, leading to potential problems with the variance because
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a choice that is too high can result in a variance that is far higher than even than

1 i the initial Yule Walker estimate.

o

A second improvement method might be to use extra postiterations for lower

P

4, N
Lol

o

datalengths. However, as we have seen above, this approach has problems with

s x n

= &

variances increasing instead of decreasing that are even worse than the problems of

-
y
v
‘l
2

.4
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the original algorithm.
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After that one might consider various “repair” strategies, perhaps based on
outlier elimination, such a method would modify “bad” estimates in such a way as
to numerically stabilize the algorithm before the correction step is executed.
ey However, it was found that some Monte Carlo iterations are much more robust
T than others; in other words, if we could change the algorithm such that it would
decide on the number of instruments and postiterations for each individual Monte
Carlo iteration, performance might improve. Such a method can also potentially
- eliminate the problems associated with using a large number of instruments. An-
. other possibility is to move estimated poles and/or zeros that are close to the unit
- circle slightly away from it, so as to reduce the numerical problems associated with

poles and zeros close to the unit circle. Finally, the strategies that have been used

, o B

-{'-”'-‘_'v'. e

AR

to improve Yule-Walker methods, such as using overdetermined Yule Walker equa-

tions ( i.e. use more than the required minimum of Yule Walker equations and solve

them in a least squares sense ) can also be used. While using overdetermined Yule

_.
'y
ERIN

1
a’a

Walker equations does not guarantee improvement, extensive simulations [4], [5]

,.l I." .l. .I \

LR

have shown that improvement is generally obtained when the sequence of autocor-
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o

'
.
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relations decreases slowly. The next chapter deals with these strategies.
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4. Investigation of Algorithm Modifications to Improve the Small

Data Length Behaviour

~
& In this chapter we consider various modifications to the algorithm to improve
»P" its small data length performance. First we consider the automatic selection of the
N number of instruments and postiterations. This is motivated by the observation
:ri'-: that most of the decrease in performance for high nz and/or high number of postit-
. erations is due to outliers, therefore selecting an appropriate number of instruments
5 and postiterations for each Monte Carlo iteration separately should improve per-
,":’1& formance. Since it is possible to make the algorithm recursive in nz in a highly
- computationally efficient manner, automatic selection can be achieved at almost
' no additional computational cost. Second we consider moving poles and/or zeros
which are close to the unit circle, to avoid the numerical ill-conditioning problems.
g Finally, we study the effect of using overdetermined Yule Walker equations instead
?.;:' of minimal ones, since this improves the performance of the Yule Walker estimator
v

in many cases ( [4], [5] ).

by

4.1 Automatic Selection of the Number of Instruments and Postitera-

s

tions

Lo

w This section first discusses how to make the estimator recursive on nz so that
. . the automatic selection strategy can be implemented efficiently; then it discusses
?’ how to find the criteria for selecting values of nz and the number of postiterations .‘
- i in a self adjusting strategy. Finally it compares the performance of this strategy

with that of the fixed value strategy.

E’ )
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Making the algorithm self-adjusting in the nz and i parameters is desirable for
the following reasons: The best value of nz is dependent on the process being
estimated. There are two ways to set it manually. First, one could use a priori
knowledge of the process ( which is often unrealistic ). Second, one could tune
the algorithm by using the estimator on multiple data records of the process for
several values of nz ( which is often impractical ). A choice of nz could then be
based on the expirimental variance data gathered in this way. A self-search would
avoid both these problems. There is evidence that the optimal value of nz varies
considerably even for different realizations of the same process ( by as much as a
2-7 range ), making separate tuning for each realization attractive. In many cases
it would be desirable, or even necessary, to have the algorithm do this. Due to the
numerical instabilities described in Section 3.3 we will not realize any advantage
from postiterations beyond the first one, unless we use only those cases with low

error norms in multiple postiterations.

4.1.1 A Recursive in nz Implementation

The algorithm obtains an initial estimate ( steps 1.1 through 1.3 in Table 2.5 )
and then corrects it by first correcting the 7, ( steps 2.1 through 2.3 ) and then

revising the original ARMA parameter estimates using the corrected 7; ( steps

3.1 and 3.2 ). In step 2.3 we need to find W'z, which we compute by solving

Wtz = z for wz. It is in the second stage ( steps 2.1 through 2.3 ) that the
instrumental variables are used. It turns out that it is possible to carry out steps
2.1 and 2.2 in a recursive in nz manner, computing only z,, at step 2.1 in each stage

( the formulae for z; are independent of nz ) and moving step 2.2 out of the loop ( a
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is independent of nz ). Finally step 2.3 is computed using a version of the algorithm
described in [7] rewritten to make it recursive in the size of the matrix.

The equations for steps 2.1 and 2.2 are unchanged, the correction equation 6 =
6 — W,V z is unchanged, but it’s calculation is now different. It is implemented
by first computing wz in Wy,wz = 2z and then computing 6 from § = 6 — Wiawz,
and we can calculate the wz in a recursive way. The resulting modified algorithm

1s detailed in Table 4.1

4.1.2 Criteria for Choosing nz and ¢

We need some criteria to use for choosing nz and . Any implementation will
have finite resources ( in terms of time and/or memory ) available for the estimator.
Subject to these constraints, we want to minimize variance of the parameter or
spectral estimates, or, in terms of a single realization, minimize an error norm.
However, the error norm is not computable by the estimator, so we need some
function of the estimate that provides a reliable indication of the error.

Finding the minimum possible error would involve checking the value of the error
criterion for all allowed nz and ¢ combinations; this is not practical because it would
require a large amount of computations to implement. A more computationally
feasible ( but suboptimal ) solution is first to step nz for ¢+ = 1, until some desired
value of nz is obtained then continue to use this value of nz while increasing ¢ as far
as possible without violating an error criterion.

It was experimentally found that nearly every internal quantity became much

larger if the number of postiterations was made too large. As a result, detection of
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Table 4.1: The Recursive in nz Version of the Algorithm

1. (a) Use (2.14) to find 7

(b) Use (2.11) with 7 in place of r to find a ( in a least squares sense if we

choose K > na + nc)

(c) Use (2.12) with & and 7 in place of a to find b
2. Use 7, &, b to find 7 using

(2) Find a using (2.31)

(b) Step nz from 1 to the desired value and for each step compute '
i. (2.26) to find z,,
ii. (2.27)-(2.31) to find W,

(c) For the final value of nz use (2.25) to find 6 from z and W;;

3. (a) Use (2.11) with 7 in place of r to find & ( again possibly in a least squares

sense )

(b) Use (2.12) with & and # in place of a to find b




too large a value of ¢ is not at all difficult. We have used:

! Iziloo

<1+ 7nand: < max:

,Zi—l'oo

<' because 2 is computed early in the postiteration loop ( step 2.1 in Table 2.5 ), so

- if the error criterion is not satisfied, then the effort invested in the unsatisfactory

postiteration is still quite small.

-;:', This heuristic turns out to be quite robust. Regardless of how nz is determined,

or how the random number generator used to generate the data sequence is initial-

i 1ized. For our simulations

n ~ 0.004

1

ﬁ .

maxt = 10

o4
! was a choice which prevented more than about 4% of the Monte Carlo iterations

i from going up to max ¢, again quite independently of noise seed value and nz heuris-

tic.

e A good nz heuristic is more difficult to find because the effect of a wrong choice
. of nz on the internal variables is much more complex than in the case of a wrong
» : S . :

> choice of 7. High error norms are associated with the a and F vectors( see step

- 2b of Table 2.5, but the relation is so complex that it is not suitable for use as a

-~

criterion. The heuristic used is based on the norm of the correction vector instead.

b

o The reason for this choice is that a large correction means that ¥ was an inaccurate

o estimate, and given the sensitivity problems in the correction step, this probably

a

» means the correction will be inaccurate. So the heuristic used in step 2.3 in table

:: 2.5 1s:

= Wil |W5! ||z

(M) < € and nz < max nz

"4 IT, nz

b U

b
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experimentally we found that:

e~ 0.15

and

maxnz=7T

were good choices. However, robustness of this criterion is poor. Although the
estimated variances are fairly insensitive to the choice of max nz, changes in € by
5% result in markedly different performance. Moreover, as shown below, even if € is
chosen to minimize the variance of the estimated parameters, the resulting variance

is higher than the variance realized by fixing nz to a “good” value.

4.1.3 Differences Between the Fixed and the Recursive Approaches

How much improvement does the self-adjustment provide? Of course, in answer-
ing this question, one must decide what is meant by “improvement”: for example,
is improvement sought in the r; estimates, the spectral estimate or the estimates of

the ARMA parameters ( a; and b; )?

The estimates of the a’s and b’s do not improve with a self-searching algorithm;
while the sharp rises in variance for high nz and/or ¢ values can be avoided the
resulting optimal variance is still considerably ( about a factor 1.5 to 4 ) larger
than optimal hand tuned fixed values of nz and i. This is true for all examples
and datalengths; the factur 1.5-4 cited above is for 200 data points. This factor
decreases as the data length increases, and extensive simulations confirm this.

The r estimates do improve with a self searching strategy: the differences are in
the 2nd and 3rd digits, but they are on the order of the differences between different

fixed values, so this is a large relative improvement. Note that the differences
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Figure 4.1: A Histogram of nz and ¢ Combinations chosen by the Recursive Algo-

rithm for Example 1, with 200 data points.
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oo between r, from different the Monte Carlo simulations typically occur in the 2nd to

1st digit.

4.1.4 Conclusions

The self-adjusting strategy does improve the rapid rise in variance for high nz
that was typical for the higher order examples to the more gradual rise observed
in the lower order examples. The slow improvements in the spectral estimates for
example 1 and 3 indicate that using higher nz values may be desirable. However,
the self-adjusting strategy fails to achieve the same low variances achieved by the
original algorithm for lower values of nz. Similarly, the self-adjusting strategy en-
ables us to use more than one postiteration, but the resulting variance is higher
than that of the original algorithm with one postiteration. Contrary to the ARMA
parameter estimates and the spectral estimates, the autocorrelation estimates do
improve with this strategy.

An eflicient recursive in nz implementation of the algorithm developed as a part

of this study is interesting in its own right, and useful in applications where multiple

estimates for different nz are desired.

LA,

LYY

4.2 Pole and Zero Adjustments

N

Another way of limiting the problem of high variances for high values of nz is

Y

suggested by the structure of the algorithm; as shown in [16], convergence in nz is
slow if the process has zeros close to the unit circle. Furthermore, calculation of the
correction step involves finding the first few elements of the impulse response of the

process with transfer function /%%—:% ( see step 2.2 in Table 2.5); one would expect
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v numerical problems here if there are poles close to the unit circle.

B To alleviate these problems one can consider changing the algorithm to assure

| ) that all poles and/or zeros are sufficiently far from the unit circle. In principle
A::: there are two ways of doing this: one can move only the offending roots, or one can
& scale the entire polynomial ( which moves all the roots ). The first strategy has the
- advantage that it introduces the minimal change in the polynomial that achieves
W

the objective. The second strategy has the advantage that it does not introduce

?:'E

distortion in the pole/zero diagram, but only scaling of the entire pole/zero diagram.

r

Also, the second strategy is much more computationally efficient. As a second

N effect, either strategy can also insure that the numerator polynomial is non-negative
o
) .
definite.
;-

Since these methods tend to produce 1-2% of very bad outliers, we have gathered

statistics both with and without the outliers taken into account. Unless stated

. otherwise, the statistics presented below are those without the outliers taken into
~ account.
u 4.2.1 Individual Pole and Zero Movement

As discussed above, we can move either only the poles or only the zeros, or both.

These two cases are discussed below.

Movement of Both Poles and Zeros

The revised algorithm works as follows: after computation of @ and b, we cal-
culate new variables @ and b, the “moved” versions of @ and b, respectively. The

algorithm then proceeds using a and b in steps 2.1 through 2.3 of table 2.5. If there
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are multiple postiterations, the same is done with & and b.

The a parameters are computed by solving for the roots of A, checking how close
each root is to the unit circle, and moving any offending roots radially outward to
a circle with radius 1+ & for some chosen 8. The alteration of the b cocfficients is
slightly more involved, as the B polynomial contains both the roots of C(z) and
C(z71) ( see equation (2.4) ): the former have to be moved out, the latter in. Also,
any roots with norm equal to 1 plus or minus machine precision have to be paired
and then moved, one out, one in. Pairing of a root z; involves finding the closest
root z;, redefining both roots to be the mean "—’;zi, and then moving the one radially
out, the other radially in.

Comparison of the revised algorithm with the original shows that it does not
have the sharply rising variances for high nz in fact, for § ~ 0.001, the curve
is almost flat. This elimination of the problem with the rising variances is quite
insensitive to the exact choice of §: one needs a variation on the order of § = 0.0003~
0.003 to make an appreciable difference. However, we observe reduced performance
for the lower values of nz, varying from almost no change for the r’s to between
10% and a factor of 2 for the a’s and b’s. This is distributed over the parameters
in an irregular way, suggesting that the problem may be more pole-oriented than

parameter oriented.

Pole-Only Movement

Comparison shows that, as expected, most of the effects ( both the beneficial
and the detrimental ) come the pole movements, so we have tried moving only

the poles. The results are almost as good as the combined pole/zero movement
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case, and, of course, the computational load is reduced considerably. This implies
that non-negative numerator estimates do not make a major contribution to the
variance. The above statements are backed by extensive simulations performed on

all four examples.

4.2.2 Scaling Movement of All Poles and Zeros

In this section we consider another modification in which all poles are moved
simulataneously. Since it has been found that the location of the estimated zeros
hardly influence the results, they are not moved. The algorithm is modified in the
same way as before, except that @ and b ( b # b, see below ) are now computed in a
different way. The parameters @ are now found by checking the roots of A, and, if
any are too close to the unit circle, scaling the entire polynomial, in effect moving
all roots radially out by the same factor. B is then scaled by the same factor; this
was thought to have the effect of keeping the residues of the poles approximately
constant, i.e., if we were to do a partial fraction expansion on B/(A(z71)A(z)) we
would obtain approximately the same constants in the numerators as in the partial
fraction expansion of B/(A(z~')A(z)). Since the method did not have solve the
problems of the original algorithm, a formal proof of the above claim about the
residues was abandoned. Obviously a much more computationally efficient method
would be to use a stability test on the polynomial and then scale by the maximum
factor if it turns out not to be stable enough, but this method may move roots by a
greater extent than necessary. We want to try the maximum possible performance
method first, to see how much improvement this approach can maximally give.

It has been found that this method results in lower variances than the previous
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two. See the a; versus nz plot ( Figure B.21 ) for a typical result; for comparison,
the curves from the standard algorithm have also been plotted in the Figure. As
this Figure shows, the variances of the revised algorithm are still above those for
the original algorithm for nz greater than 1; this is typical for all parameters in
all examples. As can be seen from the spectral plot Fig. B.20, the spectral plots
become more smooth than those in Fig. B.12. Further improvement can be gained
by using the tilde polynomials, i.e. the uncorrected @ and b for the computation
of the z vector. This makes the method even more insensitive to changes in the é
radius, which is an advantage, as it reduces the need for tuning.

On the basis of the experience that the matrix inversion is not ill-conditioned
for any of our examples, we could modify only the W), matrix, i.e. the a sequence.
This again improves performance. These changes are based on an analysis of the
effects of the scaling to be detailed below. The principle used is to reduce the effects
of the pole movements on the final estimate.

Since the correction in the B polynomial to keep the residues of the poles con-
stant is only an approximation, the reduction of the effects of the pole movements
cannot be total, but the correction improves performance to a level very close to the
original algorithm for low nz values, while only deteriorating gradually for higher
values. The main problem with this method is that the pole correction step pro-

duces outliers: about 0.5-2% of the Monte Carlo iterations have an error that is

far higher than the rest. The above resnlts are based on statistics from which the
outliers have been removed; with the outliers, the statistics are considerably worse.
so much worse, in fact, that they are worse than the original algorithm. The outliers

are detected by keeping track of the 20 iterations with the worst error norms and
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reporting those, then a limit is set manually, after which the program accumulates
. both normal and no-outlier statistics ( i.e. everything worse than the manual limit

is ignored ). The error norm is

There is a considerable gap ( almost a factor 2 ) between “normal” and “outlier”
= values of this norm; the deterioration for high values of nz is accompanied ( and
partly caused by ) an increase of the number of outliers.

Our attempts to remove outliers on-line have failed, so there is currently no
way of exploiting the fact that the increase of the variances is mainly due to a few
outliers. On the other hand, the no-outlier statistics represent a behaviour that
is typical for for 98% or more of the iterations in any Monte Carlo simulation.
However, it does mean that overal, the original algorithm works better the modified
. one.

Removal of outliers from the original method has also been studied, but it has

far less effect than in the case of the modified algorithms, so much less in fact,
! that comparisons between the original algorithm with or without its outliers show
] almost no change.
- 4.3 Using High Order Yule-Walker Equations
As has been established through extensive simulations ( [4], [5] ), using high
::' order ( also called overdetermined ) Yule Walker equations usually leads to reduced

variances in the estimates, except when the autocorrelation sequence decreases very

rapidly. Therefore we should try what happens if we use High Order Yule-Walker

43

................




el

-;.

0

r=—

S
L4
>
STy

y 8t

g

1
A

1

-

s

-
i)
ﬁn 1
= "L

a4~
st
oo
PR

o5

Ly, N
S Lt .P_l '-'.',’_‘-

LRV

>5‘v""r',‘.r

@

1%
2.

)
l'! ’
v

PN [ A
(WL . PRI ) .

-

e .-‘_.'_j.

R ¥
LR

R

b

2

[ JON

e S 38 o8 2 ok & S ma gl e s ath el ate gt ol aa el g ind ad Sl ded Bl G ol 0 Gl Sad ol tel Sl Sol Gaf Spl Salh Goll Sy ata S A N T

equations (HOYW) in the algorithm under study. Specifically, in Table 2.5, we
choose I’ > na + nc in steps 1b and 3a.

Figure B.22 shows the behaviour of the a; parameter of Example 1, as can be
seen, the variances are down dramatically from the ordinary Yule-Walker method,
the sharp rise in variances around nz = 10 is replaced by a more gentle one, but the
improvements are largely gone as well: the curve is almost flat now. Unfortunately,

there did not remain enough time to investigate these phenomena in detail.
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I 5. Conclusions

We have seen that the algorithm proposed in [16] achieves high quality esti-
mates for large data lengths. For short datalengths there is a problem associated

with the number of instrumental variables: if this number is chosen larger than ap-

[
-ﬁ' proximately 5% of the datalength, the variances increase very rapidly as a function
:,“{ of the number of instrumental variables. This effect becomes more pronounced for
% processes as the process order increases. Most of the statistical improvement of the
4 ‘:: algorithm over the Yule Walker estimator is gained by the addition of the first 2 in-

strumental variables; after that, additional instruments result in small ( in the case
of spectral estimates ) or negligible ( in the case of ARMA coefficient estimates )
improvements. If the number of instrumental variables is in the range 3-0.05N the
L variances are relatively insensitive to the exact number of instruments. The sug-
' gested method [16] of improving the algorithm’s performance for short datalengths
by repeating the correction step multiple times does not work for the cases tried,
as it results in rapidly ( as a function of the number of postiterations ) increasing
i g variances of the estimates.
Using a self adjusting version of the algorithm, where each realization searches
N for best number of instrumental variables and postiterations, avoids the problem
o of finding proper values for the number of instruments and postiterations, changes
the very rapid rises in variance for high nz to a more gradual one, but increases
| the variance of the ARMA parameter estimates for lower numbers of instruments
as compared to the original algorithm.

- Using a stabilized version of the estimated autoregressive parameters in some

steps of the algorithm and approximately compensating the changes this causes in
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the partial fraction expansion of the spectrum, also is able to remove the rapid
variance increases for large numbers of instruments in about 98% of the cases, and
has only slightly worse variances for lower values of nz, but suffers from 0.5% to 2%
outliers.

Using overdetermined Yule Walker equations improves the performance of the

estimator, for the cases tried, but this work is very incomplete.

In summary the original algorithm works very well for long data records, but
great care has to be used when applying it to short records. In particular, it seems
safest to not to use more than 2 instruments and only one postiteration. Processes
with high order, or zeros close to the unit circle should not be estimated from short
data lengths ( shorter than least several hundred data points ). In many applications
this will mean that the algorithm is not suitable for estimating the parameters of
such processes. One can try to use one of the variant algorithms developed in chapter
4. If possible, one should estimate multiple records and compute experimental
variances: these clearly show for what values of nz, ¢ and N the algorithm achieves

good statistical performance.
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A. The Correction Step: Mathematics

In this appendix we give a derivation of the algorithm; it is, of course, not a
replacement for [16].

Let X be as defined in (2.18) and W as in equations (2.19)-(2.23), and assume
that an estimate W of W, such that |W — W| = O(1/v/N) can be calculated from
the available data. Since we are dealing with the asymptotic case, (2.18) is not too
restrictive, since in many cases a central limit theorem will apply.

The asymptotic log-likelihood function of X is given by (9]
m 1 N T —-1 v
L(6) = -2 ln2m - 2l [W| - (X - XTW (X - X) (A1)

The ML estimate is therefore given by solving for a 6 such that

OL(6) _

a6 =0

Differentiating (A.1) and setting the derivative to zero gives

s (X - X)T8(X - X)
— — — _1 — Y ———

N
- =0 (A2
S 0 (42)
(X - T (X - X)

Let us assume that (A.2) has a solution, §, with respect to §. Under certain condi-
tions the estimate will be consistent and |§ — 8] = O(1/v/N). Solving this equation

is a computationally difficult problem; however we can make an O(1/N) approxima-

tion without affecting the asymptotic behaviour of the estimator. For large enough
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o N we have from (2.18):

- x- |- x-]|° L ( ! ) (A.3)
SNEELENIE =0( 75 -
o 0 0 0 vN

This allows us to rewrite (A.2) as

oo 1 0L(6) _ o 1 ) B
- o =Ly 01w [ X - 0 +0(N =0 (A.4)

Now we partition X and W as indicated in (2.19)-(2.23), and use a standard result

AN on the inverse of partitioned matrices to get

. 0
L3 W= WitoI) + (Wi = W, WR'Wi) T -1 w,,W5;!
s I Wo'wl
(A.5)
oy Together with (A.4) this gives

=1 W,,W;'z (A.6)

':‘ -.‘“.l.

FNIATN
sl

as an order 1/N approximation of the ML estimate of §. This approximation is

generally not implementable because W;; are unknown ( data dependent ). Know-

gl
-

A

ing that z is O(1/V/ N) though, we can replace W;; by their consistent estimates

v
t]

-
"
]
T

.
" ;-,
b

without changing the order of the approximation:

)
¢ %)

2 i
PET Y
N o

b :,"
5

which is (2.25).
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