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I. INTRODUCTION.

Adjerid and Flaherty [1-3]* developed adaptive finite element methods for solving

m-dimensional vector systems of partial differential equations having the form

d
M(xt)u t + f(xtuVu) = I [,D(xtu)u,,, xE Q, t > 0, (la)

k=1

subject to the initial and boundary conditions

u(x,0) = u°(x), x e flu 2, (ib)

d m
either ui(x,t) = ci(x,t) or I Y DJ uj. (x,t)V = ci (x,t),

k=lj=l

forxeal, t >0, i 1,2, ..., m. (lc)

They considered problems in one (d = 1) and two (d -2) spatial dimensions with

x = [x 1, ... , xd T denoting a position vector in Rd, t denoting time, and 12 being either a

segment of the real line or a rectangle. The subscripts t and xt denote temporal and spa-

tial partial derivatives, respectively, and v = Iv1, ..., vd]T denotes the unit outer normal

vector to the boundary ail of Q. Problems were assumed to be parabolic and to have an

isolated solution; thus, M and D, k = 1, ..., d, are positive definite m x m matrices.

Adjerid and Flaherty discretized Eq. (1) in space using Galerldn's method with a

piecewise linear polynomial basis in one dimension and piecewise bilinear polynomials in

two dimensions. An a posteriori estimate of the spatial discretization error was calculated

using Galerkin's method with piecewise quadratic functions in one dimension and piece-

wise cubic functions in two dimensions. In each case, a nodal superconvergence property

of the finite element method was used to neglect errors at nodes and, thus, improve com-

putational efficiency. The error estimate was used to control global [1] and local [2, 3]

refinement procedures that added and/or deleted finite elements to the mesh in order to

References are listed at the end of this report.
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satisfy a prescribed global measure of the spatial discretization error. For one-dimensional

problems, the error estimate was further used to move the finite element mesh so as to

equidistribute the global error measure. Ordinary differential equations for the finite ele-

ment solution, error estimate, and, in one dimension, mesh motion were integrated in time

using the backward difference code DASSL (18] for stiff differential and algebraic sys-

tems.

Initially, a global refinement procedure was used in combination with mesh motion to

satisfy prescribed error tolerances in the HI norm [1]. This procedure was replaced by a

more efficient local mesh refinement strategy and some problem dependent parameters

were removed from the mesh moving scheme [2]. In particular, numerical experiments

indicated that the performance of the error estimation procedure could deteriorate when the

system of equations governing mesh motion was too stiff. Adjerid and Flaherty [2]

remedied this defect by limiting the stiffness of the mesh moving equations and using

refinement, instead of mesh motion, to equidistribute the error estimate in these situations.

They subsequently extended their finite element, error estimation and adaptive local

refinement procedures to two-dimensional parabolic problems (3] and proved that the error

estimate of References 1 and 2 converged to the true discretization error in H1 as the

mesh is refined for linear one-dimensional parabolic systems [4].

In Section 11 of this report, we review the one-dimensional adaptive procedures of

Adjerid and Flaherty (1, 2], describe some improvements to their mesh refinement scheme,

and present some examples that illustrate the relationship and interaction between mesh

motion and refinement. The essential details of Adjerid and Flaherty's [3] two-

dimensional procedure and the dynamic data structures used in its implementation are

summarized in Section I. The results of a nonlinear two-dimensional example are also

presented in Section III. Finally, in Section IV, we discuss our results and suggest some

future directions.
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IL ONE-DIMENSIONAL ADAPTIVE PROCEDURES.

The one-dimensional version of Eq. (1) consists of solving

M(x,t)u t + f(x,t,u,u.) f [D(x,t,u)ux]x, x e (a,b), t > 0, (2a)

u(x,0) = u°(x), x e [a,b] (2b)

either ui (x,t) = ci (t) or D, uj. (x ,t) =C (t),
j=1

forx=a,b, t>O, i1 ,2....m. (2c)

The unit subscripts on x and superscripts on D have been omitted for simplicity.

The procedures for discretizing Eq. (2) and estimating the spatial discretization error

of its solution are identical to our earlier work [1, 2] and are briefly summarized in Sec-

tion 111. The essential details of our current adaptive procedure are presented in Section

11.2 and some examples illustrating its capabilities and the interplay between mesh motion

and refinement are presented in Section 1M3.

[L1. Discrete System. We construct a weak form of Eq. (2) by assuming u e HE, select-

ing a test function v e H1, multiplying Eq. (2a) by v, integrating it on a < x < b, and

integrating the diffusive term by parts to obtain

(v,Mu,) + (v,f) + A (v,u) = vTD(x,t,u)u. Iab, for all v e Hd, t > 0,
(3a)

where

b b
(v,u) = Jv(x,t)Tu(x,t)dx, A (v,u) = f vD(xt,u)u1 dr. (3b,c)

a a

Recall that the Sobolev space HI consists of functions that are square integrable and have

square integrable first spatial derivatives. Functions belonging to HE are further restricted

to satisfy any essential (Dirichlet) boundary conditions in Eq. (2c), while functions in Hd I
must satisfy homogeneous versions of any essential boundary conditions.
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Initially u must satisfy

(v,u) = (v,u°), for all v E Hd, t = 0, (3d)

and any natural (Neumann) boundary conditions in Eq. (2c) should be used to replace Du.

in the last term of Eq. (3a).

Finite element solutions of Eq. (3) are constructed by selecting finite dimensional

approximations U r Sc c HE' and V r SON c Hdt of u and v, respectively, and finding U

such that

(V,MUt) + (V,f) + A (V,U) = VTD(x,t,U)U'I, for all V e So, t > 0,

(4a)

(V,U) = (V,u), for all V e SON, t > 0. (4b)

Specifically, we introduce a partition

nQ, () := (a =xo(t) < x1(t) < "" < xN(t) = b } (5)

of [a,b] into N moving subintervals (xil(t),xi(t)), i = 1, 2, ..., N, t t 0, and select SN

and S N to consist of piecewise linear polynomials with respect to this partition. The sys-

tern of ordinary differential equations that result from this spatial discretization can be

integrated in time using one of the many excellent software packages for solving stiff

differential systems. We found that the backward difference code DASSL (cf. Petzold

[18]) for differential and algebraic systems best fit our purposes.

The spatial discretization error of the finite element solution

e(x,t) = u(x,) - U(xt) (6)

satisfies Eq. (3) with u replaced by U + e, i.e.,

(v,M(U,+e,)) + (v,f(.,t,U+e,U,+e,)) + A (v,U+e)

I:-- '. .. :"' ='"?""" *- "?"- '"' """- 2" : ' " , .2 '"- . :." .:. ._.. . . ---:-. .
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VTD(x,t,U+e)(U. + ex) I , for all v e H t > 0. (7a)

(v,e) = (v,u--U), for all v r H1, t = 0. (7b)

We approximate e by a function E e So', where Sof is a finite dimensional subspace of

Ho consisting of piecewise quadratic functions that vanish on (t N). We further approx-

imate v by V o0 and determine E as the solution of

(V,M(U,+Et)) + (V,f(',t,U+E,Ux+E,)) + A (V,U+E) = 0,
for all V e S ', t > 0, (8a)

(V,E) = (V,u-U), for all V e 5to, 0 =0. (8b)

In constructing the error estimate E(x,t), we assumed the superconvergence of the

piecewise linear finite element solution U(x ,t), i.e., we assumed that U(xt) converges at a

faster rate on ic(tN) than elsewhere on a < x < b. This superconvergence property was

established by Thomee (19] and the convergence of E to e has been proven for linear

problems by Adjerid and Flaherty [4].

The error estimate E(x,t) is used to control the refinement/coarsening strategy and

the motion of c(tN). We determine mesh motion by solving the ordinary differential sys-

tem

- .i_1(t) = -(Wi- ), i = 1, 2, ..., N, (9a)

where X, is a non-negative parameter, W i is an error indicator on the subinterval (xi_ ,xi),

and W is the average of W i, i = 1, 2, ... , N. We shall take Wi to be the square of the

local error estimate in H 1, i.e.,

W(t) = IIEII. :- f [ETE + ETEx]dx; (9b)
. -I

however, other local measures can be used [2].

. , .p- , , . . . . - : ; . .. ... -. . -.. . . .. . . .. . . .'.- .. .. -.-. ....- -.- . ... .
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When X > 0 and Wi > W, the right-hand side of Eq. (9a) is negative and the nodes

xi and xi- 1 move closer to each other. Similarly, the nodes xi(t) and xi_.(t) move apart

when X > 0 and Wi < W. Coyle et al. [16] studied the stability of Eq. (9a) with respect

to small perturbations from an equidistributing mesh (i.e., one where W(t) = W(t),

i = 1, 2, . ..... N, t • 0) and showed that such perturbations could only grow by a bounded
-1,

amount when X > 0, Wi > 0, i = 1, 2, ... N, and the velocity of the equidistributing

mesh remained finite for t > 0. They further showed that the mesh obtained by solving

Eq. (9a) stayed closer to the equidistributing system when X was large. This, however,

introduces stiffness into the system which makes its solution expensive and, as noted,

causes some difficulties with our error estimate. Adjerid and Flaherty [2] studied Eq. (9)

and developed an adaptive algorithm for selecting X as a function of t that balanced

stiffness and equidistribution. The procedure for selecting X will not be discussed further,

but it has been used in the examples of Section 11.3.

In order to maintain sparsity, we eliminate W by combining Eq. (9a) on two neigh-

boring intervals and solve the scalar tridiagonal system

-ii+1 - 2.i +ii+ = -X(Wi+ 1 - Wi), i = 1,2, ... , N-l, t >0. (10)

The ordinary differential equations resulting from Eq. (8) and Eq. (10) are solved

using the same backward difference software that is used to integrate the finite element

" system Eq. (4).

IL2. Adaptive Algorithms. In addition to controlling mesh motion, the error estimate E

described in Section I.I is used as an error indicator in conjunction with procedures that

locally refine or coarsen the mesh. A top-level description of an adaptive local

refinement/coarsening algorithm is presented in Figure 1 in a pseudo-PASCAL language.
,.,

The procedure adapfem integrates the system Eqs. (4, 8, 10) from time tinitial to if inal

and attempts to keep the spatial error estimate iEuJ1 < TOL, where TOL is a prescribed

tolerance. The time steps that are selected by the temporal integration routine (e.g.,

--.
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DASSL) are denoted as At[m], m = 1, 2, ..., and the corresponding times are tout[m],

m = 0, 1, "", with tout [0] initially set to tinitial. The integration is halted every nstep

steps or when tout [in ] = tf inal and the arrays At and tout are recomputed with tout [0]

reset to the last computed time, i.e., tout [nstep ] or tf inal.

The spatial error estimate IIEII is checked whenever the temporal integration is

halted. If IIEII > TOL, the last in integration steps are rejected and the mesh is refined by

adding

N[i] := max (round [IlEIIt.i/,] - 1, 0 (la)

elements uniformly to (xi_,xi), i = 1, 2, ..., N. Here,

ftrunc (x) + 1, if x - trunc (x) Z:
roundp(x) : trunc (x otherwise, (1 ib)

where 0 < 3 < 1, trunc (x) evaluates the integer part of x, and

E := 0.9TOL IN. (1ic)

The choice of 13 = 0.2 in Eq. (11) seemed to produce refined meshes that reliably reduced

IIEII to approximately TOL the next time that the error estimate was checked. Further

justification for this value of J3 is given in Adjerid and Flaherty [4].

The integration is redone from tout [0] to tout [m ], where m is either nstep or such

that tout [Im] tfinal, on the refined mesh which has

N
N =N + JN[i] (12)

i=l

elements. This process is repeated until IIE(,out [m ])111 < TOL.

Elements can be deleted from a mesh whenever IIE(',tout[m ])llI < TOL/3 or when-

ever refinement was necessary to integrate from tout [0] to tout [m 1. The need to refine

. =-
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procedure adapfem (tinirial, tfinal, nstep, TOL);

begin
Calculate the initial conditions and an initial mesh;

( Integrate the system from tinitial to tfinal.}
m := 0;
tout [(] := tinitial;
while tout [m ] < tfinal do

begin
m :=m + 1;
redone := false;
Integrate Eqs. (4, 8, 10) for one time step At [M];
tout[m] rou[m-I] + At[m];

( Check the error estimate.)

if (m = nstep) or (tout [m] = tfinal) then
begin

Compute a new value of 2L, if necessary;

(Refine the mesh. }

while IE(',tout[m ])III > TOL do
begin

Add elements to the mesh;
Redo the integration on the refined mesh from

t = tout[0] to tout[m];
redone trueend; ( Coarsen or regenerate the mesh. )

if (IIE(,tout [m ])III < TOL/3) or (redone)
then Delete elements from the mesh, if possible
else Generate a new mesh, if necessary;

tout [0] := tout [m 1;

end ( if m = nstep...
end ( while tout [m] < tfinal )

end ( adapfem);

Figure 1. Top-level description of an adaptive finite element procedure with
mesh motion and/or local mesh refinement/coarsening.

often indicates that the spatial error pattern has changed and that fine grids may no longer

be needed in some portions of the domain. A mesh is coarsened by uniting successive
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pairs of elements, (xi_ 1,xi ) and (x,xi+1), when IIE(',tout[m])IIIj < TOL/3N, j = i, i+l.

This union of elements is only performed when a significant percentage of elements may

be removed from a mesh. This strategy avoids the overhead associated with restarting the

temporal integration routine.

If TOL /3 s IIE(',tow [m ]lII < TOL, we continue the temporal integration with the

existing mesh provided that its speed is not too great and it is not close to equidistributing

the local error indicators. A mesh where the error indicators are not equilibrated indicates

that mesh motion and/or refinement are being performed in a suboptimal manner and that

a new mesh may be more efficient. We use the following indicator to measure the

effectiveness of a mesh x(t ,N) with respect to equidistributing the local error indicators:

pt~t(tN)) N i W 1 (13)

. If c is a mesh that equidistributes Wj, j = 1, 2, ... , N, then W = j = , 2 ... , N and

. ~it(n) = 0. Larger values of i indicate increasing departures from equidistribution. For

* example, suppose all of the error is concentrated in the first element, i.e., Wj=NW and

Wj = 0, j = 2, 3, ... , N. Then t(n) = N, which we interpret as meaning that at least one

element (the last one) will have to cross N elements in order to equidistribute the error

indicators. If all of the error were concentrated in the N12 th element, then gI(t) = N/2,

indicating that one element has to cross N12 elements of xt. Whenever the mesh speed is

too fast and pt(x(tout [m ],N)) > 0. IN, we generate a new mesh that approximately equidis-

tributes the error indicators by iteratively removing elements with small error indicators

and refining those having large error indicators.

Additional details of our procedures, such as the generation of new initial conditions

whenever the number of elements in a mesh changes, are as described in Adjerid and

Flaherty [2].

-*I*-..';.y . % .,%* *



-10-

In Section 11.3, we present some calculations performed on stationary meshes. These

were done by using a code based on adapfem with the mesh moving parameter . = 0.

Additionally, we only generated new meshes when g(x(tout [m ],N))> 0.4N in order to

avoid excessive restarting of the temporal integration routine.

I3. Computational Examples. We conclude this section by presenting some examples

that illustrate our adaptive strategies and also attempt to appraise the relative advantages of

mesh moving and local refinement. There are several potential reasons why an adaptive

procedure that combines mesh moving with refinement would be very efficient. Mesh

moving techniques are inexpensive relative to refinement (cf. Arney and Flaherty [6]) and

the use of mesh motion should reduce the need for refinement. Mesh motion can also

reduce the necessity of restarting the temporal integrator, which is an important considera-

tion in a method of lines approach such as ours. Some refinement is essential, however,

since mesh motion alone cannot generally satisfy prescribed error tolerances. Furthermore,

rapid mesh motion, e.g., towards an evolving region of high error, can severely restrict

time steps and diminish the efficiency of an adaptive procedure (cf. Adjerid and Flaherty

(2]). Finally, many more numerical techniques converge at higher rates on uniform

meshes than they do on nonuniform moving meshes.

There is, thus, a need to quantify the optimal use of mesh moving with local

refinement; however, this is a very difficult problem and there have been very few

attempts in this direction. Arney and Flaherty [6] presented some computational results

comparing mesh moving and local refinement procedures for two-dimensional hyperbolic

systems. Bieterman, Flaherty, and Moore (15] attempted to compare adaptive local

refinement and method of lines procedures for one-dimensional parabolic problems and

noted the difficulties in finding appropriate performance measures. Herein, we apply a

code based on our adaptive procedures to two computational examples and compare

results on moving and stationary meshes. We use the total number of space-time cells to

integrate the partial differential system from tinitial to tfinal as a measure of



performance. A similar measure of computational complexity was used by Arney and

Flaherty [6]. It has several apparent deficiencies, such as not providing an indication of

the effort devoted to the various segments of the adaptive algorithm.

Example 1. Consider the linear heat conduction problem

ut + u,6 + g (x ,t ) = u = , -l< x < 1, t >0. (14a)

U (x,O) = u°(X), -1 <5x :5 1, (14b)

u(-1,t) = CI(t), u(1, ) = C20), t > 0. (14c,d)

We select g, u , c C2, so that the exact solution of Eq. (14) is

u (x,) = 1 - - (tanh [10(x-t+0.8)] + tanh [20(x+2t-l.6)]). (15)
2

Equation (15) represents two wave fronts initially centered at x = -0.8 and x = 1.6

and moving with speeds 1 and -2, respectively. The center of the fastest front enters the

domain (-1,1) at x = 1 and t = 0.3.

We solved Eq. (14) for 0 : t < 1.2 using tolerances of 27k, k = 2, 3, 4, 5, in H'

with adaptive procedures on moving and stationary meshes. The total number of space-

time cells used on 0 : t : 1.2, the exact error Ile 11, at t = 1.2, and the effectivity index

e := IIEI~llt/lelt I(16)

at: = 1.2 axe presented in Table 1. The moving and stationary mesh trajectories that were

used to solve Eq. (14) with a tolerance of 1/8 are shown in Figure 2.

Solutions on moving meshes used less than half of the space-time cells of those on

stationary meshes. A larger number of cells are needed with a stationary mesh because

the temporal integration must be restarted more often and more time steps must be redone

due to a failure to satisfy the error tolerance. In each case, the actual error was less than

J..
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the prescribed tolerance and fine meshes were concentrated in high-error regions. The

effectivity index is a common method of appraising the performance of an error estimation

technique (cf., e.g., Babuska et al. [9]). Ideally, 0 should not deviate appreciably from

unity and should approach unity as N increases. The results of Table 1 suggest that this

is the case. The performance of our error estimate seems to be slightly better on a station-

ary mesh than on ia uniform mesh.

Stationary Mesh Moing Mesh

Tol. No. Cells No. CellsxIO-4 Ilell xIO"4 Ilell, 0

1/4 4.11 0.1803 0.983 1.60 0.1725 0.979
1/8 8.67 0.0848 0.994 2.79 0.0903 0.993

1/16 26.94 0.0413 0.996 9.50 0.0566 0.988
1/321 47.72 0.0230 0.998 20.27 0.0282 0.996

Table 1. Number of space-time cells on 0:< t < 1.2, spatial discretization error
at t = 1.2, and effectivity index at t = 1.2 as functions of error tolerance using
stationary and moving mesh methods to solve Example 1.

Example 2. Consider the reaction-diffusion system

u.,=u, -Du e"- r , LT =T,, + oDue T ,

0< X < 1, t > 0, (17a,b)

D =Re /aS, (17c)

u (x,O) = T (x,O) =- 1, 0 <5x <5 1, (17d,e)

u.(0j) = Tz(0,r) = 0, u(1,t) = T(1,t) = 1, t > 0. (17fg,h,i)

This model was studied by Kapila [17] and used to describe a single one-step reac-

tion (A -+ B) of a mixture in the region 0 < x < 1. The quantity u is the mass fraction

of the reactant, T is the reactant temperature, L is the Lewis number, c is the heat

release, 8 is the activation energy, D is the Damkohler number, and R > 0.88 is the reac-

tion rate.

A:

Vv V.V- *.t*.*-*.
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Figure 2. Mesh trajectories used to solve Example I with a tolerance of 1/8 on
p stationary (upper) and moving (lower) meshes.
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When L is near unity, the temperature slowly increases with a "hot spot" forming at

x = 0. At some time t > 0, ignition occurs and the temperature at x = 0 jumps rapidly

from near unity to near I + o. A steep flame front then forms and propagates towards

x = 1 with speed proportional to e'4'(1 ). In practical problems, a is about unity and 5

is large; thus, the flame front moves exponentially fast after ignition. The solution tends

to a steady state once the flame has reached x = 1.

We solved Eq. (17) for 0 < r 5 0.5 with a 1 1, 8 = 20, and R = 5 using tolerances

of 0.2, 0. 1, and 0.05 on stationary and moving meshes. The number of space-time cells

needed to solve these problems is presented in Table 2 and the mesh trajectories for both

the stationary and moving mesh calculations with a tolerance of 0.1 are shown in Figure 3.

As in Example 1, the number of stationary space-time cells is approximately double the

number of moving space-time cells.

Tolerance Number of Space-Time Cell
Stationa9Mesh M70in0 Mesh0.2 29700 16300

0.1 62300 30300
0.05 170800 118100

Table 2. Number of space-time cells as a function of error tolerance to solve
Example 2 on 0 <- t 5 0.5 using stationary and moving meshes.

I. TWO-DIMENSIONAL ADAPTIVE PROCEDURES.

Our finite element, error estimation, and local refinement procedures for two-

dimensional partial differential systems closely parallel our one-dimensional methods and

are briefly summarized in Section III.1 and ll.2. The representation of data and its

management are much more complicated in two dimensions, and we use a dynamic tree-

data structure to store and retrieve information about the mesh, solution, and error esti-

:,: .: .. i ?.'..'- -,'-.,
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Figure 3. Mesh trajectories used to solve Example 2 with a tolerance of 0.1 on
stationary (upper) and moving (lower) meshes.
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mate. Similar structures have been used by other investigators (cf., e.g., Babuska et al.

[8-10] and Bank et al. [12-14]) to design adaptive procedures for elliptic systems, and they

have been shown to be an effective means of reducing storage and access overhead. The

essential details of our tree structure are described in Section M11.2 and a two-dimensional

combustion problem, similar to Example 2, is presented in Section M1.3.

fiL. Discrete System. A weak form of Eq. (1) is constructed in the manner described in

Section 11. 1 for one-dimensional problems. Thus, we seek to determine u e HE' such that

(vUt) + (vf(.,t,u,Vu)) + A (vu) f r[vTDlu ,,v + vJDu,,v ]da,

for all v e Hd, r>0, (18a)

(v,u) = (v,u°), for all v e H1, t =0 , (18b)

where

(v,u) = v(x,y,)Tu(xy,t)Xldx 2, (1 8c)

A (v,u) = g[vTD(x,t,u)u=1 + v~1ID(x,t,u)uxjdx IdX2. (18d)

We have set the mass matrix M in Eq. (1) to the identity matrix for simplicity.

The functions u and v are approximated by U e Sc c HE and V e Sov c: H1

respectively, where S v and S' are spaces of bilinear polynomials with respect to a piece-

wise rectangular partition of the rectangular domain fl. The finite element solution U is

obtained by solving

(V,Ug) + (V,f(.,t,U,VU)) + A (V,U) = f[VT D'UZ v + VTD 2U2 v2]dO,

for all Ve Sv, t >0, (19a)

(V,U) =(V,u), for all V S, t =0. (19b)

%
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As in the one-dimensional case, the spatial error e(x,t) := u(xj) - U(x,t) is approxi-

mated by E e cH. In two dimensions, we select the finite dimensional space Si to

consist of piecewise cubic functions with respect to a piecewise rectangular partition of fQ.

The cubic functions are biquadratic polynomials that are missing their quartic terms (i.e.,

serendipity functions in the terminology of Zienkiewicz [20]) and further vanish at the ver-

tices of each element. Thus, once again we take advantage of nodal superconvergence to

simplify our approximation of the discretization error. However, there is very little

theoretical justification of the superconvergence property for two-dimensional problems

and we are relying on computational evidence [3] and our one-dimensional theory [4].

The approximate error E is determined by replacing u and v in Eq. (18) by U + E

and V cH res tivey, is composed of the same cubic functions as ^E,

and solving

(V, U+E) + (V,f(,t,U+E,V(U+E))) + A (V, U+E) =

f(VTDl(U+E),,vl + VTD2(U+E), 12v2]da, for all V t > 0, (20a)

(VE) = (V,u°-U°, for all V 0 (20b)

The resulting ordinary differential equations (19) and (20) for the solution and error

estimate are integrated in time using a code for stiff systems (e.g., DASSL).

1112. Local Refinement Algorithms. A top-level description of our two-dimensional

adaptive procedure closely resembles the one-dimensional algorithm shown in Figure 1,

except that we have no mesh moving procedures, as yet. Initially, the domain C1 is parti-

tioned into a "base" mesh of N x M rectangular elements, which is the coarsest mesh that

can be used to solve the problem. Refinement is performed by bisecting the edges of a

coarser element, thus, creating four elements where there was previously one. A base

mesh having four elements and a refined mesh obtained by bisecting one of them is shown

%
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in Figure 4.

The refinement process may be repeated, i.e., elements may be bisected again to

create four new elements. Additionally, quartets of elements that were created by

refinement may be subsequently deleted if they are no longer needed to maintain accuracy.

Bilinear approximations in S and S0' and cubic approximations in and are con-

strained to be linear and quadratic, respectively, on edges between elements of different

levels in order to maintain continuity of U and E on Q2.

The mesh is organized as a tree structure with the domain Q being the root of the

tree and the N x M elements of the base mesh being offsprings of the root. All nonleaf

nodes of the tree, other than the root node, have four offsprings which correspond to the

four elements created by refining its parent element. The domain Q is referred to as level

zero of the tree, the elements of the base mesh are level one, and the levels increase as

elements are recursively refined. The tree structure for the mesh shown in the lower por-

tion of Figure 4 is displayed in Figure 5.

Each node of the tree contains the following information:

a. The element number, say k, of the finite element

b. The level I of the tree

c. Pointers to the four vertex nodes of element k

d. Pointers to the four midside nodes of element k, which are needed to represent E

e. Pointers to the four elements neighboring element k, with a null pointer used when

an edge of element k is on the boundary

f. A pointer to the parent of element k

g. Pointers to the four sons of element k, with null pointers used when element k is a

leaf node of the tree

';,;.,'..;, ,,.'.€ ... ..:. ........ .... . .'.. ..,.'..,.'_.....-. .:..~ ,.,,.. .., . .. ............. .' , -. . S A S SS M h A S .~> ... ., \..' .-.,.....
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Figure 5. Tree representation of the mesh shown in the lower portion of Figure
4.

As in the one-dimensional algorithm of Figure 1, elements are added to a mesh when

JEll > TOL and deleted from a mesh when either IIE[If < TOL/3 or when refinement was

necessary to integrate to the current time. Our refinement and deletion procedures impose

the following two rules, which Bank et al. [12-14] found to aid the efficiency and accu-

racy of their refinement process for elliptic systems:

. a. The 1-irregular rule, which states that neighboring elements can differ by at most

one level of the tree

b. The 3-neighbor rule, which states that any element where the number of edges con-

taining elements at a higher level of the tree and the number of boundary edges totals

to three or more must be refined.

d%
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Refinement is performed by examining the elements of a mesh by levels, proceeding

from the root to the leaf nodes of the tree. An element k is refined by dividing it into

four subelements whenever IIEIIt > TOL i ,f, where N. is the number of elements in

the mesh. Elements are deleted from meshes, other than the base N x M mesh, by prun-

ing the tree. A quartet of elements having the same parent is deleted if:

a. Every element in the quartet has no offsprings

b. Every neighbor of the elements in the quartet are at the same or lower level of the

tree

c. The average error estimate of the four elements is less than TOL'34Fi

Additional details pertaining to other aspects of our adaptive procedures are presented in

Adjerid and Flaherty [3].

1IL3. Computational Example. A code based on our two-dimensional local mesh

refinement procedure has been written and applied to several problems [3]. Herein, we

present the results of a two-dimensional version of the model combustion problem con-

sidered in Example 2.

Example 3. Consider the partial differential system on the rectangular domain

:=((xx)I 0 <x 1 ,x2 < 1 )

Tt = Txz + Tx2,2+D (I + a- T)e "8 , (x'y)a 6Q, t > 0, (2 1a)

T (x,0) = 1, x e Q . DO, (21 b)

Tx (Ox2,) = 0, T(1,x2,) = 1, 0 : x 2 < 1, t > 0, (21c,d)

T,,(x 1,0,t)=O0, T (x 1,14)=1, 0<!5x 1 5l, t > 0. (21,f')

All of the parameters are as described in Example 2. The Lewis number L has been set

to unity and, in this case, the mass fraction u = 1 + (1 - T)/a.
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We solved Eq. (21) with a = 1, 8 = 20, and R = 5 using a spatial error tolerance of

0.2. Mesh refinement had to be restricted to a maximum of two levels because of virtual

memory restrictions on our computing system. The meshes that were created at

t = 0.2867, 0.2979, 0.3055, and 1 are shown in Figure 6. Surface and contour plots of the

calculated temperatures at t =0.28674 and 0.3115 are presented in Figures 7 and 8,

respectively.

I I

Figure 6. Meshes that were used for Examnple 3 at t 0.2867 (upper left),
0.2979 (upper right), 0.3055 (lower left), and 1 (lower right).

The temperature slowly increases until ignition occurs at approximately t = 0.28.

The temperature at the origin then jumps from near unity to near two. A circularly- shaped

reaction front forms and moves radially with a speed of approximately 30 towards the

aI
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Figure 7. Surface (top) and contour (bottom) plots of calculated temperature for
Example 3 at t = 0.28674.
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Figure 8. Surface (top) and contour (bottom) plots of calculated temperature for
Example 3 a t -0.3115.
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boundaries. A steady state is reached at about t = 0.32. Refinement is confined to the

vicinity of the reaction front. The results of Figures 7 and 8 show some small oscillations

in the temperature ahead of the reaction front. At present, we are unsure if these oscilla-

tions are caused by interpolation inaccuracies in our plotting routines, inadequate resolu-

tion of the finite element solution due to our restricting the number of levels of refinement,

or an instability of the reaction front. We plan to explore these matters further using a

combination of numerical and asymptotic techniques.

Our results on this difficult nonlinear problem are very encouraging; however, we

anticipate that greater efficiency could be achieved by combining local mesh refinement

with mesh moving as in the one-dimensional procedures described in Section II.

IV. DISCUSSION OF RESULTS AND CONCLUSIONS.

We have developed adaptive local mesh refinement finite element procedures for

-, solving vector systems of parabolic partial differential equations in one and two dimen-

sions. The nodal superconvergence property of the finite element method on parabolic

systems has been used to calculate and estimate the spatial discretization error and mesh

motion has been combined with local mesh refinement for one-dimensional problems.

Examples 1 and 2 were designed to illustrate the performance of our one-dimensional

procedures and to characterize the importance of mesh motion as an adaptive technique

relative to mesh refinement. These experiments indicate that our combination of mesh

moving and refinement can obtain solutions with about one-half the total number of

space-time cells of calculations performed using only refinement. We emphasize the prel-

iminary nature of these results. Many more experimental and theoretical investigations

will be necessary before firm conclusions can be reached regarding the optimal combina-

tion of mesh motion and refinement. Appropriate performance measures and optimality

conditions are yet to be specified. There is also a strong temptation to compare coded
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implementations of procedures and, at this stage, we are interested in more theoretical

bounds on an algorithm's performance.

Comparisons of the exact and estimated errors, presented in Example I and in Refer-

ences 1 through 4, give us some confidence in the accuracy of our error estimate. Addi-

tionally, the results of Example 3 provide an indication of the robustness of our methods.

This is a difficult nonlinear two-dimensional problem; yet, we solved it without interven-

tion and a priori knowledge of the solution. No special initial mesh was used, fine meshes

were automatically added to the vicinity of the reaction front, and the fine meshes fol-

lowed the dynamics of the problem. Indeed, our one- and two-dimensional techniques

seem to be well-suited for the automatic solution of reaction-di'Wusion systems.

Despite our preliminary success, there is a great deal more that should be done to

justify and improve the performance of our procedures. As noted, rigorous analyses of the

convergence of our error estimate to the true error have only been done for one-

dimensional linear parabolic problems on stationary meshes [4]. Dimensional, nonlinear,

and refinement effects should be included in a complete analysis. This is a difficult task,

as very few analyses of two-dimensional time dependent problems with refinement have

appeared in the literature.

Several computational procedures in our approach might also be improved. For

example, a sparse Gaussian elimination procedure was used to solve the linear algebraic

systems associated with the temporal integration of Eqs. (4), (8), and (10) in one dimen-

sion and Eqs. (19) and (20) in two dimensions. The solution of linear systems is a

significant part of the total computational effort, and it is possible that iterative schemes,

such as multigrid methods, could substantially improve performance and reduce storage.

Multigrid iteration was used successfully in the adaptive PLTMG package for elliptic sys-

tems by Bank et al. [13].
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We are also studying the addition of mesh moving capabilities to our two-

dimensional algorithm, the use of higher-order finite element approximations, and imple-

mentations of our procedures on vector and parallel computers. A simple, stable and

explicit mesh moving technique, that may be useful for our purposes, was developed by

Arney and Flaherty [5] for two-dimensional hyperbolic systems. This procedure dramati-

cally reduced errors and erhanced the resolution of their solutions (cf. Arney and Flaherty

[6]). We are developing procedures for two-dimensional parabolic problems that use

piecewise biquadratic finite element approximations as solution spaces and piecewise cubic .
approximations as error estimates. Babuska [7] has shown that the error associated with

even-degree polynomial finite element approximations for elliptic problems is principally

due to the error in the interior of the element. Thus, the error on element boundaries may

be neglected. Babuska and Yu [11] have implemented procedures for elliptic systems

based on this theory and we are studying their utility for parabolic problems. Finally, our

tree structure is well-suited for parallel computation and we are exploring its use on a

variety of parallel computing systems.

..PIS
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