NOSC TR 1183

1.

€811 U1 OSON

Technical Report 1183 '
August 1987 ;

A Simultaneous M-ary Channel
Hypothesis Test with ]
Least-Mean-Square Signal |
Amplitude Estimation '

AD-A186 526

. S. Reed J
University of Southern California

L. B. Stotts
Naval Ocean Systems Center

- - -

|

DTIC ;;

ELECTE _

0CT 2 21987 '

o>5H :

¢

.i

(

Approved for public release; distribution is unlimited. ;
a 00 ‘

' " .'-. s ~ RS

‘ AT N T L 0 L Vet T
ATV A e L L MG RGNS, AL DR e » ¥ (2] L




Y AN PRV VWU W LW LW UW VW OV U W UV UW U7 LW U L DWW LU DRV ORTY A L DR DR URPURTSURT RA RTORA AU U A U N R O O RO O W O e *a% = !

'l
.l
L\
R ‘.
M
B
N
g
.}
/¢ UNCLASSIFIED é
FECORNYY CLABBRCATION OF Trel PAGE
LA A
REPORT DOCUMENTATION PAGE
["Ta. REFORTBECURNY CLASSIFICATION ®
28, SECUNTY TION AUTHORITY 3 DISTRIBUTION AVAILABILITY OF REPORT
i
- I 75 OECLASSWICATION, DOWNGRADWNG SCHEOULE
Approved for public release; distribution is unlimited.
.i' — P————————— P———
: " - 4 PERFORMING ORGANZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBERIS)
i
. NOSC TR 1183
. I 6a NAME OF PERFORMING ORGAMZATION 6b OFFICE SYMBOL 70 NAME OF MONTORING ORGANIZATION
il apphcebie)
L\
Naval Ocean Systems Center NOSC
R Bc ADDRESS (Cty. State snd ZIP Codel 7o ADDRESS /Crty. Stete #nd ZIP Code]
\J
\I
' San Diego, CA 92152-5000
4 8a NAME OF FUNDING/ SPONSORING ORGANIZATION 85 OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMSER
i (1t apphcedle)
.; ————
> ["8c ADORESS /Cy. State and 2P Cedel 0 SOURCE OF FUNDING NUMBERS
o PROGRAM ELEMENT NO PROJECT NO TASK NG AGENCY
> ACCESSION NO
.
L)
o iR ZTé8
S 11 TITLE finchude Securty Classilication)
—~
A Simultaneous M-ary Channel Hypothesis Test with Least-Mean-Square Signal Amplitude Estimation
N 72 PERSONAL AUTHOMS!
. LS. Reed, L.B. Stotts
N 13a TYPE OF REPORT 136 TIME COVERED 14 DATE OF REPORT (Yeor Morth. Dey! 16 PAGE COUNT
L 32
- Interim rrom Jan 1987  rolun 1982 |, {1987
' 16 SUPPLEMENTARY NOTATION
1599
: 17 COSATI CODES 18 SUBJECT TEAMS (Continue on reverse if necessery snd «denidy by dlock number)
- FleLo GRove Sue Grour multivariate Gaussian nature .
; Maximum Likelihood Ratio Test (MLRT)
L] signal-to-noise utiol, S
19 mmmmm”m.m of necessery and rdentify by black number)
...
:' This paper presents a new strategy for detecting and estimating multiple linearly independent signals immersed in
o additive random noise. This new approach is a Maximum Log-likelihood Ratio Test (MLRT) and determines the presence
o of one or more signals through a single filter operating on a received input data vector. In addition, it performs a
ﬂ signal-amplitude estimation when a positive response occurs. This test is & Uniformly Most Powerful Invariant Test and
Y I reduces the computationally intensive work to only those situations where important data exists. The estimation technique
determines the signal amplitude of all possible input signals in a least-mean-square sense with a variance inversely
proportional to the inherent signal-to-noise ratio of each linearly independent library waveform.
e
S . Computer simulations verify the theory and demonstrate near-optimum performance of the MLRT for small signal
-: libraries. The MLRT is close to optimum for larger signal sets, and is clearly optimum for complex multiwaveform
signals.
[} ~
5
)
" .
N 20 OIS TRIBUTION, AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
:-' O uncLassirieo unumireo (%) same as per (O3 onc usens UNCLASSIFIED
< 728 NAME OF RESPONGIBLE INDVIDUAL 22b TELEPHONE ninciude Aree ( ode; 22c OFFICE SYMBOL
V¢ L.B. Stotts 619-225-2777 Code 7402
L2
) 83 APR EOXTION MAY BE USED UNTI EXHAUSTED
2 DD FORM 1473, 84 JAN o IONS ant OBSOLETE UNCLASSIFIED

N O T RTINSO A AT,
) - ot - - L) A




Rt

Page
[X3 .
) Introduction 1
q Maximum Likelihood Ratio Test of Linearly Superimposed Signals 3
1
! Maximum Log-Likelihood Ratio Test . 4
1
!? Rank of the Filter Matrix . 7
n Detection and False Alarm Probabilities for MLRT 8
y
Y
] Computer Simulations 11
) A Comparison of MLRT and Thresholded/Signal-Correlation Receivers 14
o Summary . 19
e, Appendix A: The Unitary Transformation Matrix U which Diagonalizes H 20
g: Appendix B: Approximate Expressions for the Probabilities of
Detection and False Alarm 23
N References 26
o
'
)
2
]
v
?
[}
b
. Accession For
= hns GRAXI i
r | DTIC TAR a
Ky - © Umannounced |
‘ Justifioatlon
|‘ e -
4 . ___J
4 e e ]
: | T | AR Y o 0
) Cooarties .
B : T e |
L. ' '
l Al |
U i ;
s T
i D S
\
)
e s N A g (L T T (e i T S

ALY )

LT SAN XATAYKER WY U

CONTENTS




Y
v o a

XEv

k) Lo
QY L LA

PP 1P P as 2]

a -
[

[
a "4 "f l.}l.‘ e

&

o

[l
L)

St

N

RS ’x'xfh'.’\’

INTRODUCTION

Most problems in surveillance and communications involve the specific
determination of whether or not one of a library of complex signals is sent
within a fixed observation interval T. In radar, this library is composed of
time-displaced versions of a certain known waveform, while in communications
the library is either a set of linearly independent waveforms or unique linear
combinations of those waveforms (references 1, 2).

Figure 1 illustrates the determination of signal existence which is known
as M-ary Signal Hypothesls Testing and its most common detection strategy. A
time-varying voltage v(t) from a receiving device such as an antenna or hydro-
phone is input to a set of signal correlators, whose outputs are sent to an
"optimum" processor designed to establish signal presence(s). The hypotheses
being evaluated are the null hypothesis H0 where the voltage v(t) is just
random background and/or electronic noise. The signal presence hypothesis H1
where the input voltage is random noise plus one or more of M possible wave-

forms {¢j(t); jo=1, My.
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Figure 1 Recewver configuration for a M ary signal
fitter bank
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The specific form of the signal-presence processor depends on the
application, the type of random noise involved,and the particular performance
criteria adopted by the system designer (references 1, 2). However, the
correlator bank approach is always computationally~$mtensive for large signal
libraries, no matter what the application or noise process(es) involved.

The intent of this paper is to describe a Maximum Likelihood Ratio Test
(MLRT) which determines signal presence(s) in a near-optimal fashion and with
minimal computational load. Specifically, a log-likelihood ratio test is
presented which preprocesses input data with a single filter developed from a
M-ary signature library. This test indicates whether one or more of the M
possible signal waveforms is present in the input.

The above type of test is analogous to the Uniformly Most Powerful
Invariant Test developed by Scharf for unknown amplitude M-ary signal
detection in noise (reference 3). Here, this test is developed independently
from both a signal detection and estimation point-of-view. When signal
presence is indicated, the input voltage train is processed by a signal vector
estimation filter, whose output is a Least-Mean-Square (LMS) or Maximum
Likelihood (ML) estimate of the amplitudes of the linearly independent signals
detected.

In this paper the above detection strategy is tested against computer-
generated noise-only, signal-plus-noise data sequences, and the results
validate the theory. 1In addition, comparisons are made between MLRT and cor-
relator bank receivers for single signal presence detection in Additive White
Gaussian Noise (AWGN). The results indicate that there is only a small
decibel advantage for the latter when M is large. However, this advantage

disappears for multiple signal detection scenarios, independent of the size of
M.
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MAXIMUM LIKELIHOOD RATIO TEST
OF LINEARLY SUPERIMPOSED SIGNALS

Consider an L-element sample set of received radar, communication, or

lexicographically mapped image data having the form

X = . - [xl, X

Without loss of generality, the analysis to come assumes only real data sets

SIRERE xL] . (1)

are involved. One can extend the development to complex data fields by simply

substituting Hermitian conjugate or adjoint operations for matrix/vector
transpose operations where they occur in the subsequent text (reference 4).
Let S denote the signature library matrix, composed of the M possible

signal vectors which might be sent through the channel. Specifically, one

writes
s - [sl’ sz’ ...’ sM] (2)
where
T
sj - {slj’ Spyr e SLj] (3)

is the jth signal vector. In this form, S is an LxM matrix. For this
development the M signals are assumed to be a linearly independent set

(reference 4).

For the L-sample observation period, consider the possible inputs to the

receiver to be either noise only or a noise plus weighted sum of the signal

vectors. In particular, let the signal portion of the input to the receiver

be written as the column vector

s, - Sa - ) S:i31 (4)

with
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denoting a M-element column vector of weight coefficients. If the noise
incident to the receiver is a zero-mean Gaussian process n with autocovariance
K~ E(nnT), the input vector x has the following form for hypotheses Ho and
Hl’ respectively

Hy: x=n (3)
under the noise-only hypothesis and

Hl: X =n + Sa (6)

under the signal-plus-noise hypothesis. In the latter situation, the exact
composition of the weight vector a is assumed to be known. The accepted way
to process this data is through a log-likelihood ratio test. 1In the following
subsections this approach is reviewed, and with it a maximum likelihood ratio
test is developed for determining the presence or absence of a library of
possible signals and an estimate a of the weight vector a. In addition, some
important properties and aspects of this test are derived. The first sub-

section describes classical Neyman-Pearson hypothesis testing (reference 1).
MAXIMUM LOG-LIKELIHOOD RATIO TEST

The log-likelihood ratio test is based on the logarithm of the ratio of
the probability density functions associated with the two possible simple
hypotheses, Ho, the noise-only hypothesis and Hl, the signal-plus-noise

hypothesis, assuming the weight vector a is known. When a is known, the

optimum test is

H
pl(x,a) 1
L(x) = f(x,a) = log po(x) 3 to (7)
H 0
0
where
py(x,a) = —— [[K|| V? expt-1/2(x - sa) K }(x - sa)) (8)
1 M/2
(2m)
and
-1 .
Py (x) = ———IM—E | k]| /2 exp(~1/2xT K 1x) (9)
(27)
- py(x, 0). (10)
4
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When tle weight vector a is unknown, an estimate of a is substituted in
equation 8 :nd used in the log-likelihood test given in equation 7. The
simplest estimate is the Maximum Likelihood Estimate (MLE) of a under

hypothesis 11. Using this estimate, the log-likelihood ratio test becomes

L(x) = m:x f(x,a) = f(x,a)

where

f(x,a) = -1/2(x - Sa) K Y(x - Sa) + 1/2x'K 'x

1

- sa)K Yx - 1/2(sa)Tk Y(sa)

since

LT _ (gand) T - k7L

(K
Equation 11 is known as the Maxfmum Log-Likelihood Ratio Test.
The autocovariance K is a positive-definite symmetric matrix.

has a square-root factorization of the form
K = K1/2K1/2

where

-1/2 1/2

K KK~ - I (15)

L
1/2

with I. denoting the LxL identity matrix. The matrix K is used to "whiten”

L
the input data before processing. Mathematically, we write

y = K /2% (16)

n, - x 2, (17)

-1/2
SK K

s (18)
as the "prewhitened" input vector, noise vector, and signal library. Since
this transformation is linear, the initial multivariate gaussian nature of the

data is retained and the log-likelihood test given in equation 11 becomes




1

f(x,a) = (sa) K !x - 1/2(sa) Tk L(sa)

By
T.T T, T > L
-a SKy - 1/2a (SKSK)a < Lg (19)
Ho
By completing the square in equation (19), one obtains
T.T T, 1/2,T |T,.To. \1/2
£x,0) = asgy - 172(1(sgs 1 ") sl 0 %
T. .1/2 T, .-1/2 T, ,oTo (-1.T
= -172| [ (5y8,) e - (8,8.) syl + 172y (S8 TSy (20)
T Te -1.T
< 1/2y7S,(5,8,.) S,y (21)
with equality if and only if
T -1_.T .
8 = (S;8,) "S;y = a(x) . (22)

Equation (22) is the least-squares estimate of the weight vector a one obtains
from the general theory of regression (reference 5). The existence of the
inverse matrix <SESK)-1 in that expression is guaranteed by the assumption of
the independence of the M signal vectors. It is clear that equality holds in
equation 21 if and only if the estimate a(x) in equation 22 is substituted
into f(x,a). This implies that

f(x,a, (x))

is the required Maximum Log-Likelihood Ratio Test. Hereafter in this paper,
it is referred to as the Maximum Likelihood Ratio Test (MLRT).

As noted earlier, the above test is a Uniformly Most Powerful Invariant
Test and, as a consequence, is a very reasonable way of detecting the presence
of a linear combination of M signals (reference 3). In addition, it
accomplishes the signal-presence/signal-absent test using a single filter
operation before threshold comparison. In the next subsection, the rank of

this processing filter is obtained.
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RANK OF THE FILTER MATRIX

In the last subsection the maximum log-likelihood ratio test for
determining whether one or more signals are present in a particular data

sequence is shown to be

” T. T. -1.T
L(x) = 1/2y SK(SKSK) SKy
H
- 1725k Ls(sTk 1s)sTk 1x 2 to (23)
H, 0
where
ix) = sk 1s) 1Tk 1y (24)

As noted above, the estimate a(x) can be used after detection for the
discrimination of a signal with one linear combination of the s,'s from the
set of signals with other linear combinations of the linearly independent
waveforms.

There are two things to note about the above expressions: 1. L(x) is a
quadratic form in the input vector x and 2. a(x) is an unbiased estimate of

the weight/amplitude vector a. The processing filter which is applied to the
whitened input data y is given by

T -1.T T
H SK(SKSK) SK - SKGK (25)
where
T T -1.T
Gy = (SyS) "Sg = [, 8y, ***. g (26)
with

T
8y = [Byyr =0 Byl .

Rewriting the filter H in more specific form, it is apparent that

H - [sKgll sng’ ...l SKgL] (27)
implies that every column of this filter matrix is a linear combination of the
M independent column vectors of SK’ Thus the rank of H must be less than or

equal to M, {.e., rank (H) < M.

Consider the product

1STS -8

T T -
[ - -
G.,S HS SK(SKSK) kSk K

KKK K
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L This expression clearly shows that
5
! HS -S 28
k() ™ k() N
Q: for all j = 1, 2, «ee, M. Recall that sK(j) represents a whitened version of
;2 one of the M independent column vectors of S. Equation 28 has the form of an
:: eigenvalue equation. Equation 23 demonstrates that the column vectors of SK )
A
are distinct and independent eigenvectors of the matrix operator H with equal
;\ eigenvalues of magnitude one for all eigenvectors. This implies that the rank
N
of H must be greater than or equal to M, i.e., rank (H) > M. If one combines
(Y
N the two inequalities for the rank of H, the rank of H must equal M. Thus, the
matrix operator H has M eigenvalues equal to one and (L-M) eigenvalues equal
;: to zero. The impact of this is that even though each of the <ignals has L
q
:. components, the driving factor of the MLRT in terms of degrees of freedom is
~'
W the number M of signals in the library matrix. In the next section the
- probabilities of false alarm and detection are determined for the MLRT.
o
. DETECTION AND FALSE ALARM PROBABILITIES FOR MLRT
-
- From the above discussion, the maximum likelihood raiio test L(x) can be
o rewritten as
X!
N T >L
N L(x) = L(y) =y Hy _ 0 . (29)
& Ho
“ Let U be an orthogonal unitary matrix which diagonalizes H. Specifically, U
3: is defined to be
l.
, s s s T
' K1 K2
- U - 1 ’ A | v il A u (30)
;
which gives
Vo I 0
- vwut - | M - A, . (31)
’ 0 0 M
L-M
2
.
8
%
~
“~
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(See appendix A for the proof.) By defining a new input vector by the relation

y = Uz (32)

the decision strategy for simultaneous multisignal detection becomes

H)

K M > 2L
] yTHy ~ z UHU'z - zTAMz - ) 22
j=1 3 <L
H

0 (33)

0
Rewriting equation 32, one has

z = UTy .

The probability density function of this vector is similar to that of the

4 original measurement vector x, except this new distribution has a new mean and

covariance values (reference 3). Specifically we have

1 -1/2 1 T,, -1
p(z) = ;;;;175 | x| / exp{-E(z - d)K' (z - d)} (34)

where

d = E{z}

K' = E((z - d)(z - &)0)

The average value of the vector z, under hypothesis H1 is equal to

T T

d - E{zIHl) - E(U'n, + U'S.a)

T

-U SKa . (37)

Its covariance, under the same hypothesis, is given by
T
KnKU)

T)U

E(z - d)(z - d)Tlul) - E(u'n

T
‘ = U E(nKnK

= IL . (38)

Equation 38 also holds for hypothesis H However, the mean vector d for H

4, O ‘
is the null vector.

0
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\
N Referring to equation 33, it is clear that the MRLT decision strategy
$ depends on the norm of the vector z. Under hypothesis Hl, the probability
. density function for this situation is the noncentral chi-squared density
: M/2 - (r’+d?) /2
- ) 39
b' pl(r) d(r/d) e I:M-Z](rd) (39) )
. 2
3 where by equation 33,
:: M 1/2
r=| Y22 -k sy sTk sy tsTk Ixy /2 (40)
. il 3
and
. 2 2 T .T
5 d [d]” = as uu's a
. -
W - a(s'k s)a (41)
o is the peak signal-to-noise ratio (reference 6).
y The probability density function under hypothesis H0 is central
- chi-squared-and is derived as follows: The modified Bessel function of the
. first kind can be written as
A
© v+2n
(£/2)
' Iy(t) EO n!'T(v + n+ 1) ° (42)
!
. Equation 39 then becomes
.': (r) = d(r/d)M/ze'(”2+d2)/21 (rd)
- Py (M-2)
< 2
4
M2 -(efvadys2 M1 S (1/2xa)®"
\ = (2)" % (r/2) L TITM/2 + o) (43)
: n=0
N
This implies that
lim M/2 M-1 -r2/2 1
P () = Lo Py(X) = 277 (x/2)" "e TM/2) (44)
is the probability density function for the null hypothesis. Equation 44 is a
K chi-squared density function with M/2 degrees of freedom.
{
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Based or the above, one can write

P 2, .2
-4 I (/a2 (B ) ar (45)
% 2

Pgq

as the probability of detection for the maximum likelihood ratio test, and

M-le-r2/2 46)
—r e =
Pp. = . dr

fa 2M/2 1F(M/2)

L

as its probability of a false alarm. In these two equations bo is the MLRT
threshold level in normalized units. If one refers to the usual analysis of a
multiple signal detection (e.g., reference 1), equations 45 and 46 indicate
that MLRT has one half the number of degrees of freedom that would normally be

expected for this type of detection strategy.
COMPUTER SIMULATIONS

With the above detection strategy defined, a validation of the
maximum likelihood ratio test was performed. In addition, the quality of the
weight vector estimation under positive processor response was concurrently
assessed. Three computer simulations were performed which assumed the number
of signals in the library to be of lengths 2, 4, and 6.

In the following subsection, the performance of the MLRT is summarized
for the six-signal library simulation. For simplicity, the input noise is
assumed to be Additive White Gaussian Noise (AWGN).

The simulations were performed on a AT-clone Personal Computer with an
80287 Co-processor. The computer programs themselves were written in
Microsoft FORTRAN, Version 3.31, and required externally generated random
numbers to create the simulated noise sequences.

The uniform random deviates are generated from the RAN1 and RAN3
subroutines developed by Knuth and others (reference 7). These routines
create uniformly distributed numbers between 0.0 and 1.0 with negligible
sequential correlations. These numbers are translated into normal deviates
(zero mean and unity variance) using a technique suggested by Dillard

(reference 8).
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The linearly independent signals chosen for the simulations were binary
(+1,-1) pulse sequences with various power-of-two frequencies. The computa-
tion of the theoretical false alarm and detection probabilities were periormed
using a recursive relation for the generalized Q-function described by
Dillard (reference 9).

The six-signal library simulation was performed as follows. Six linearly
independent signal vectors were generated. The selected signal cycles were 2,
4, 8, 16, 32, and 64 Hz. The length of each sample vector was 128. This is
chosen to accommodate two cycles of the lowest frequency waveform. Under the
AWGN assumption, the processing filter H described in equation 25 was created

and stored, as well as the estimating filter

B - sk ls) 1sTk ! | (47)
Ten thousand null-hypothesis sequences and ten thousand signal-present data
sequences were independently generated and applied to both filters. The
filtered results were stored and later statistically analyzed.

Figure 2 shows the theoretical and simulation-derived false alarm
probabilities for the six-signal library MLRT case. The error bars were
computed using the analytical expression developed by Clopper and Pearson
(reference 10). Figure 3 compares theoretical and computer-generated results
for the probability of detection as a function of threshold for input
signal-to-noise ratios equal to 128, 288, and 512. Both figures illustrate
good agreement between simulation and theory. This good agreement is
similarly found for the two- and four-signal library simulations not
discussed.

The LMS estimate of the weight vector a gave good results in predicting
1 is

true. The covariance of the prediction can be shown (reference 5) to be given

by

the presence and amplitude of the appropriate signal when hypothesis H

o [E(alHl) E(aTIHl)] - sk syt (48)

ag - E(aaTIH
All three simulations exhibited this variation in the statistics of the weight
vector estimate. In the six-signal library case, the normalized standard
deviation of the estimate was -9% as expected. This expression shows that the
accuracy of the estimation is inversely proportional to the inherent signal-

to-noise ratio of each waveform in the signal library. This is not an

1?2
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signal hbrary MLRT with computer simulation denved data at
signal to noise ratios of 128 288 and 512
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unexpected result. Parameter estimation is always better with strong signals

(reference 5).

A COMPARISON OF MLRT AND THRESHOLDED/SIGNAL-CORRELATION RECEIVERS

To demonstrate the power of the MLRT procedure, a comparison is made
between this new detection strategy and a strategy based on the approach shown
in figure 1. One of the most common techniques for M-ary hypothesis testing
is to use a filter bank of M signal correlators with a threshold signal-
presence detection criteria (reference 1). The outputs of the M correlators
are compared to a predetermined value and those exceeding this value are said
to indicate signal presence during that observation time. The null hypothesis
occurs when none of the correlator outputs exceed the predetermined threshold.
The particular threshold value selected is based on the desired probability of
error.

In this section a comparison is made between a MLRT receiver and the
above-cited filter bank receiver for the case of 6, 200, and 400 linearly
independent signals at two fixed false alarm rates. These examples illustrate
the relative performance of these two M-ary detection techniques, but more
importantly they scope the kind of penalties encountered from the use of the
less computationally intensive MIRT detection strategy. In other words, these
comparisons demonstrate how close to optimum the MLRT really is.

Assume that a receiver filter bank has been created to determine which of
M possible signals is sent. The M waveforms of interest are all of equal
energy. For this comparison, AWGN with zero mean and unit variance again is
assumed. In order to compare the detection performance of the filter bank
receiver with a MLRT receiver, analytical expressions for the probabilities of
false alarm and detection of the correlation receiver must be determined.

The probability of the correct "reception" of the null hypothesis is

T -1 .
p[correctlHO] ~ plall ij X <bgi jo= 1,2, 3, «e0, MIHol (49)
M |
- 0 p.isKlx <b. (50) |
: roj 0
j=1
< M
- |1 - I pn(r)dr ) (51)
b
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The integral

-] 4

I p (r)dr (52)

b,

represents the probability of choosing the signal presence hypothesis after
thresholding when the null hypothesis is true. This is the false alarm !
probability or the Error of the First Kind. For AWGN, equation 52 is defined

as

erfc(bo) - (27r)-1/2 I exp(-t2/2) dt . (53)

bO )

As before, b, is the receiver threshold setting.

0
The probability of false alarm is the difference between equation 51 and
unity. Specifically, the false alarm probability for a M-ary filter bank with

threshold detection is given by

M
Pe, 1 - p[correct|H0] =1 - (1 - erfc(bo)) . (54) A

Rewriting equation 52, one has

1M

erfc(bo) =1 - (1 - pfa) (55)

This last expression can be used to determine the threshold setting for a

fixed false alarm probability using an inverse error-function integral

relation (reference 11). '
Since the assumed waveforms have equal energy, their integrated power

levels are also equal. The probability of detection is, therefore, the same

for each of the M signal correlators and is given by .

b N
Py =1 - (1- erfe(b, - JSNR)) 1 (56) :

with SNR representing the expected signal-to-noise ratio for each and b1 being
the number of waveforms per complex signal (reference 12). Equation 56
assumes that the probability of false alarm at every filter contributes
nothing to the detection of any signal. For this analysis, the number of
waveforms per signal is 1 and equation 56 reduces to

Py = erfc(bo - d) (57)
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Figure 4 compares the probability of detection for MLRT and filter bank

receivers, given six linearly independent signals, as a function of signal-
to-noise ratio for false alarm probabilities of 1E-04 and 1E-06. The MLRT
results are computed using equations 45 and 46, and the filter bank numbers
were computed using equations 55 and 57. It is apparent that the filter bank
performs better than the MIRT for all signal-to-noise ratios shown. However,
MLRT suffers only a 1 dB penalty over this same range and is less computa-
tionally intensive for situations when the null hypothesis is the most
frequently occurring event. This supports the previous contention that MLRT
is a near-optimum M-ary detection strategy for AWGN, or at least for small
signal library scenarios. The signal-to-noise ratio penalty for large signal

library detection is investigated next.

PROBABILITY OF FALSE DISMISSAL, 1 - P, (percent)

9999 999 99 90 50 10 1 01 0O
10 \k\l 1 ] 1 I 77 ] LI T 77 TV TITT

\ M6 .

— — PROBABILITY OF FALSE ALARM - 10 *
——— PROBABILITY OF FALSE ALARM : 10

LRT (FILTER BANK)

SIGNAL-TO-NOISE RATIO (dB)

wo LWl 4o o4 Loy
oo 01 1 10 50 920 99 999 9999

PROBABILITY OF DETECTION, P, (percent)

Figure 4 The probabihity of detection false disnissal as a function
of signal to noise ratio for MLRT and filter bank receivers at false
alarm probabihities of 1 £ 04 and 1 E-06, and with M equal to 6

For large numbers of signals, the probabilities of false alarm and

detection for the MLRT reduce to

. ? =
Pp, = erfe((by - M]/J/2M) (58)

and

py = erfe (hg - M- d?)//ﬁ(m v 2d?) (59)
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respectively, for values of M greater than 200 (see appendix B). The false

alarm and detection probabilities for the filter bank/threshold receiver are

Pe, = M erfc (bo) (60)

and

Py = erfec (b, - d) . (61)

Equation 60 assumes that erfc(bo) << 1. Figure 5 compares the probabilities
of detection for the MLRT and the filter bank/threshold receivers for M = 200
and false alarm probabilities of 1E-04 and 1E-06. As expected, the filter
bank/threshold receiver performs better than the MLRT receiver. In fact, it
is around 4.5 to 5 dB better for reasonable detection probabilities. This is
really not too bad considering the reduced computational load requirements one
has with the latter. Figure 6 depicts the same comparison as figure 5, except
for M = 400. This figure shows the MLRT receiver has a 1 to 1.5 dB increase
in SNR penalty for the factor of two increase in the number of signals.

Again, this is not a significant penalty for the reduced data processing load.
However, the choice depends on the application.

When the signals of interest are linear combinations of linearly
independent waveforms, the MLRT detection strategy is the definitely preferred
approach. This is because the MLRT filter causes the linear combination of
waveforms to incoherently add their respective energies before thresholding.
As an example, figure 7 shows the probability of detection for false alarm
probabilities of 1E-04 and 1E-06 where each complex signal is assumed to be
composed of two linear independent waveforms. It is clear in this figure that
MLRT performs better over most ¢’ the signal-to-noise ratio range shown at
both false alarm probabilities. MLRT has the effect of linearly increasing
the total signal-to-noise ratio within the test by the total number of signals
in the linear combination. In this case, the linear increase in signal-to-
noise ratio is a factor of 2 or 3 dB. On the other hand, the correlator bank
still looks for transmitted signals on an individual linearly independent
waveform detection basis and is not able to take advantage ot the total energyv
of the complex signal. The probability of detection for the filter bank is

P, =1- (1 - erfc(b,, - d))? (62)

d 0

with d again being the signal-to-noise ratio ot the individual waveforms.
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Figure 5. The probability of detection/false dismissal as a function
of signal-to-noise ratio for MLRT and filter bank receivers at false
alarm probabilities of 1.E-04 and 1.E-06, and with M equal to 200.
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Figure 6 The probabihity of detection false dismissal as a function
of signal to noise ratio for MLRT and filter bank receivers at false
alarm probathhties of 1 £.04 and 1 E 06. and with M equal to 400
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Figure 7 The probability of detection/false dismissal as a function
of signal-to-noise ratio for two-signal-combination MLRT and filter
bank receivers at false alarm probabilities of 1.E-04 and 1.E-06,
and with M equal to 6.

SUMMARY

This paper has presented a new strategy for detecting and estimating
multiple linearly independent signals immersed in additive random noise. This
technique is most useful for communication and surveillance applications.

This new approach determines the presence of one or more signals through a
single filter operating on the received input vector, and performs a signal-
amplitude estimation when a positive response o~curs. It is a Uniformly Most
Powerful Invariant Test and reduces the compu’ .tionally intensive work to only
those situations where important data may exis.. The estimation technique
determines the signal amplitude of all the possible input signals in an LMS
sense with variance inversely proportional to the inherent signal-to-noise
ratio of each linearly independent waveform.

Computer simulations verify the theory and demonstrate near-optimum
performance of MLRT for small signal libraries. The MRLT is close to optimum

for larger signal sets and is clearly optimum for complex multiwaveform

signals.
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APPENDIX A: THE UNITARY TRANSFORMATION MATRIX U WHICH DIAGONALIZES H

It is known that any arbitrary L x N matrix F of rank M can be decomposed
into the sum of a weighted set of unit rank L x N matrices by a singular value
decomposition (SVD) (references 13, 14). Application of this concept to the
MLRT processing filter H will be used to determine the unitary transformation

matrix U.

According to the SVD matrix decomposition, there exists an L x L unitary

matrix U for which

T 172

UHU = A (A-1)
where
U= [u,,u,,u u ]T (A-2)
1'72'73 " L ’
T -1.T
H = sK(sKsK) Sy (A-3)
[ .1/2 ]
A2y ! I
. i
|
. i 0 M
1 ) |
a2 ,\1/204), (A-4)
______________ r——--
1
0 : 0 L-M
L |
M L-M
< 1/2 . ;
The matrix A is called the singular value of the matrix H.
Since U is an unitary matrix, UTU - UUT - IL' Consequently,
- uTAl/%y (A-5)

The rows of the unitary matrix U are composed of the eigenvectors of the

product matrix HHT. The defining relation is
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A(L) i 1

I
b0 M
van’u” - A(M): (4-6)
|
L 0 | 0 L -M

| i

. N, Ay

M L-M

where A(j) are the nonzero eigenvalues of the matrix HHT (reference 13).

Since H is a symmetric matrix,

T

T -1.T
HH® = SK(SKSK)

T, -1.T
S8k SeSk) Sk

T -1.T
- SK(SKSK) SK
- H. (A-7)

Substituting equation A-7 into equation A-6, we obtain

-
A(l)

UHU = ' A(M) (A-8)

The MLRT processing filter H has been shown in the main text to have M unity

ﬁ eigenvalues with associated eigenvectors equal to the columns of SK' This
implies that equation A-2 becomes
T
U =- [ul,uz, A uL]
T
8 s s
K1l K2
- ’ Yooy ’ v-~-1u (A°9)
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taking into account the unitary nature of U. The vectors (uM+1, e, uL)
remain arbitrary, subject only to the unitary requirement of U (reference 15).

Substituting the eigenvalues of H into equation A-8 yields

i !
1 | W
|
! M
I 0
T !
UHU" - 1 (A-10)
|- R
|
o | o L-M
! )
M L-M

which completes the derivation of U,

22

-" - o'

M T N T S N T N T L I I IPNE T AP IR T
'c.l‘ -f .f~ N .-"". ',‘-'.\ .‘\ ‘{ 1" " .‘.“ax" ‘ \.\'.‘\‘P."'.A o - N . .\ X ..\J' \-'\ " .'--‘ e




2t a "6r bt nl e gt b o §4a e lte g WA AN AN N NN 2'e8'g.t MY NOR Sy ab % gt . p Salia® Batats* W 05" ob

v
s

e
Cd
2
APPENDIX B: APPROXIMATE EXPRESSIONS FOR THE PROBABILITIES :ﬁf
OF DETECTION AND FALSE ALARM )
When the number of waveforms M in the signal library of MRLT is large, Q'
M A
the probability density function (pdf) of the statistic rz -y zj2 is nearly ; :
j=1 ]
Gaussian by virtue of the Central Limit Theorem. Following Helstrom -
(reference 1), an asymptotic expression for the pdf pl(rz) is derived in this ﬁJ
appendix which exhibits this limiting Gaussian character and is used to i;
RS
establish approximate expressions for the probabilities of detection and false }h
>
alarm associated with this new log-likelihood ratio test for large M. - 3
Recall that the logarithm for the characteristic function h(z) of a ks
random variable x can be expressed in a power series of the form :;'
-
= 2,2 . k ™4
In h(z) = izx + 0o“(iz)"/2 + ) 1n, (iz) /k! (B-1) }
|3 8
k=3 ~
where 5:‘
_ "
x = E{x) , (s
0% =~ El(x - 021, X
o)
-~
and e is the "k-th cumulant” of the random variable x. This implies that -x'
-~
U
L= 2,02 - N =
h(z) = exp {izx + o"(iz)“/21) « | 1 + ) C, (iz) (B-2) \
k=3 A
o
after collecting terms with like-powers of (iz). The coefficients Ck :}
contained in equation B-2 have the form ot
- 1
C3 '73/3 . “|. .
\, 3
Cqy = 474!
\.'
- 1 s
C5 ns/S. ..
2 9
- 1
| Ce = (ng + 109,°) /6! a
and so on. The pdf of x is the inverse Fourier transform of the :2
characteristic function h(z) and is equal to the following: :«
()
N
Ky
N
Y,
o
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. p(x) = 270%) Y expl-(x - X)2/20%) |1 + k§3<Ck/ak>hk(u> (B-3)

6w + Z ¥ /a 765 (u) (B-4)
k=0
<
v
. with
n 2 k 2
3 D¥™ Zh ) - S ) - ent W (B-5)
™ du
sy = 1w - (B-6)

The functions hk(u) in equation B-3 denote Hermite Polynomials which are

defined by equation B-5.

“ Evaluating equation B-3 when

- N-1)/2 -

: p, (L) = 1720/ N 2expi- L+ $)/2) 1 (JBD) (B-7)

- yields

. -1,..,0 2N + 38

N 6(N + S)

l

- )

N + 2§ 4 12(N + 3S) + (2N + 38 0
¢ B iy 4 L2 LR35 0y,
4(N + 9) 72(N + S)

, e e ] (B-8)

]

| - L_.:__Z_N__-_]j_i . (B_g)

; 2(N + S)

X The probability of detection is given by the termwise integration of this
density function. The probability of a false alarm is also obtainable from
equation B-8 by setting S = 0 before the termwise integration.

When M is large, only the first two terms of equation B-8 need be

] retained. The probabilities of false alarm and detection in this case after

p termwise integration are

. Pfa = erfc(LO) (B-10)

'
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and

Pd = erfc(La) (B-11)

~'
with ’-\.
P SV 3 B (B-12) g

and wX]
]1/2

' -1/2
. = (Ly - 1/2 sN )[N + S (B-13)

In this paper’'s nomenclature, equations B-12 and B-13 are

-~
»

, _ ()2 2 2 —
L) [2] (172 by - M/2) = (b, - M)/J/2M (B-14)

,r el

’

and

v,

rs

o e

Lo = (b3 - M)//2% - 172 a¥us2) M2

[y
.
[P

=
N

N T
p

o}

JM) |5

d

L}

M
(b - M- ah | 2
+

P
" v
¢

s
e )

‘»

- (bg - M- dz)//z(M + 2d2) . (B-15)
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