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INTRODUCTION

Most problems in surveillance and communications involve the specific

determination of whether or not one of a library of complex signals is sent

within a fixed observation interval T. In radar, this library is composed of

time-displaced versions of a certain known waveform, while in communications

the library is either a set of linearly independent waveforms or unique linear

combinations of those waveforms (references 1, 2).

Figure 1 illustrates the determination of signal existence which is known

as M-ary Signal Hypothesis Testing and its most common detection strategy. A

time-varying voltage v(t) from a receiving device such as an antenna or hydro-

phone is input to a set of signal correlators, whose outputs are sent to an

"optimum" processor designed to establish signal presence(s). The hypotheses

being evaluated are the null hypothesis H where the voltage v(t) is just
0

random background and/or electronic noise. The signal presence hypothesis H I

where the input voltage is random noise plus one or more of M possible wave-

forms {4.(t); j 1 1, M).

OPTIMUM

PROCESSOR

filit-er ha lnk

,P p o,- -,. --. .---.
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The specific form of the signal-presence processor depends on the

application, the type of random noise involved,and the particular performance

criteria adopted by the system designer (references 1, 2). However, the

correlator bank approach is always computationall"yrtensive for large signal

libraries, no matter what the application or noise process(es) involved.

The intent of this paper is to describe a Maximum Likelihood Ratio Test

(MLRT) which determines signal presence(s) in a near-optimal fashion and with

minimal computational load. Specifically, a log-likelihood ratio test is

presented which preprocesses input data with a single filter developed from a

M-ary signature library. This test indicates whether one or more of the M

possible signal waveforms is present in the input.

The above type of test is analogous to the Uniformly Most Powerful

Invariant Test developed by Scharf for unknown amplitude M-ary signal

detection in noise (reference 3). Here, this test is developed independently

from both a signal detection and estimation point-of-view. When signal

presence is indicated, the input voltage train is processed by a signal vector

estimation filter, whose output is a Least-Mean-Square (L1S) or Maximum

Likelihood (ML) estimate of the amplitudes of the linearly independent signals

detected.

In this paper the above detection strategy is tested against computer-

generated noise-only, signal-plus-noise data sequences, and the results

validate the theory. In addition, comparisons are made between MLRT and cor-

relator bank receivers for single signal presence detection in Additive White

Gaussian Noise (AWGN). The results indicate that there is only a small

decibel advantage for the latter when M is large. However, this advantage

disappears for multiple signal detection scenarios, independent of the size of

M.

2
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MAXIMUM LIKELIHOOD RATIO TEST
OF LINEARLY SUPERIMPOSED SIGNALS

Consider an L-element sample set of received radar, communication, or

lexicographi ally mapped image data having the form

xI
x 2 T

x - • - [ Xl , . . ... XL] (1)

x L

Without loss of generality, the analysis to come assumes only real data sets

are involved. One can extend the development to complex data fields by simply

substituting Hermitian conjugate or adjoint operations for matrix/vector

transpose operations where they occur in the subsequent text (reference 4).

Let S denote the signature library matrix, composed of the M possible

signal vectors which might be sent through the channel. Specifically, one

writes

S - s I ,  s 2 ' ..' , M 1 ( 2 )

where

sj - [Slj' '2j' ... SuLi T (3)

is the j th signal vector. In this form, S is an LxM matrix. For this

development the M signals are assumed to be a linearly independent set

(reference 4).

For the L-sample observation period, consider the possible inputs to the

receiver to be either noise only or a noise plus weighted sum of the signal

vectors. In particular, let the signal portion of the input to the receiver

be written as the column vector

[M 1
sI Sa - [1Sjiaij (4)

with

a- [a1, a2, ..2. aM)

3
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denoting a M-element column vector of weight coefficients. If the noise

incident to the receiver is a zero-mean Gaussian process n with autocovariance

K - E(nnT ), the input vector x has the following form for hypotheses H and

HI, respectively

H0: x - n (5)
0*

under the noise-only hypothesis and

H x - n + Sa (6)

under the signal-plus-noise hypothesis. In the latter situation, the exact

composition of the weight vector a is assumed to be known. The accepted way

to process this data is through a log-likelihood ratio test. In the following

subsections this approach is reviewed, and with it a maximum likelihood ratio

test is developed for determining the presence or absence of a library of

possible signals and an estimate i of the weight vector a. In addition, some

important properties and aspects of this test are derived. The first sub-

section describes classical Neyman-Pearson hypothesis testing (reference 1).

MAXIMUM LOG-LIKELIHOOD RATIO TEST

The log-likelihood ratio test is based on the logarithm of the ratio of

the probability density functions associated with the two possible simple

hypotheses, H0 , the noise-only hypothesis and HI, the signal-plus-noise

hypothesis, assuming the weight vector a is known. When a is known, the

optimum test is

[px 1> H1

p1 (x,a) H1
L(x) - f(x,a) -log P0(X )  > L0  (7)[ 0( <L 0

H0

where
P(Xa) 1 -1111/2 K(x-S

S( 2 )M/2 1iK1{ expt-i/2(x - Sa)TK-l(x Sa)) (8)

and

PO(x) - M/2 IIK1I -I / 2 exp(-I/2x r KI x) (9)
(27r)

- P l (x, 0) . (10)

4
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When tle weight vector a is unknown, an estimate of a is substituted in

equation 8 i.nd used in the log-likelihood test given in equation 7. The

simplest estimate is the Maximum Likelihood Estimate (MLE) of a under

hypothesis I1 ' Using this estimate, the log-likelihood ratio test becomes

H1

L(x) - max f(x,a) - f(x,i) > L0  (11)

H0 
0

where

f(x,a) - -1/2(x - Sa)T K (x - Sa) + 1/2xT KI x

- (Sa)T K x - 1/2(Sa)T K -(Sa) (12)

since

(K-) - [E(nnT)_ T - K 1  (13)

Equation 11 is known as the Maximum Log-Likelihood Ratio Test.

The autocovariance K is a positive-definite symmetric matrix. Hence, it

has a square-root factorization of the form

K - K /2KI/ 2  (14)

where

K-/2KK -I/ 2  IL  (15)

with IL denoting the LxL identity matrix. The matrix K1 / 2 is used to "whiten"

the input data before processing. Mathematically, we write

-12

y K K-/x (16)

nK -K /2n (17)

S - K-1 1 2S (18)

as the "prewhitened" input vector, noise vector, and signal library. Since

this transformation is linear, the initial multivariate gaussian nature of the

data is retained and the log-likelihood test given in equation 11 becomes

. . ... . . . . .'. . . . . .. . %. . .. . .,, .. v. ,%%5



f(x,a) - (Sa)T K Ix - I/2(Sa)T K (Sa)

- aTSKyT _ 1/2a T(S KS)a > LO0 (19)

H0

By completing the square in equation (19), one obtains

f(x,a) - a TSK T- 1/2 ([(SS)/,Ta)( SKK1/2a
T TS S KSKK

- -1/2 11(SK K)/a - (S SK) SKyl I + 1/2yT s )i S K YT (20)

l/2y TSK(STSK)1 SKy (21)

with equality if and only if

T 1T
a - (S SK) SKy - a(x) (22)

Equation (22) is the least-squares estimate of the weight vector a one obtains

from the general theory of regression (reference 5). The existence of the

inverse matrix (STSK)- Iin that expression is guaranteed by the assumption of

the independence of the K signal vectors. It is clear that equality holds in

equation 21 if and only if the estimate i(x) in equation 22 is substituted

into f(x,a). This implies that

H1

f(x,a,(x)) > L
< L0
H0

0

is the required Maximum Log-Likelihood Ratio Test. Hereafter in this paper,

it is referred to as the Maximum Likelihood Ratio Test (MLRT).

As noted earlier, the above test is a Uniformly Most Powerful Invariant

Test and, as a consequence, is a very reasonable way of detecting the presence

of a linear combination of M signals (reference 3). In addition, it

accomplishes the signal-presence/signal-absent test using a single filter

operation before threshold comparison. In the next subsection, the rank of

this processing filter is obtained.
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RANK OF THE FILTER MATRIX

In the last subsection the maximum log-likelihood ratio test for

determining whether one or more signals are present in a particular data

sequence is shown to be

L(x) - 1/2y TSKSSK)T
IK SKyT

H1
- 1/2xTK IS(STK-Is)sTK " 1 > L 0 (23)

H0 0

where

- (sTK- S)I STK-Ix (24)

As noted above, the estimate i(x) can be used after detection for the

discrimination of a signal with one linear combination of the s.Is from the

set of signals with other linear combinations of the linearly independent

waveforms.

There are two things to note about the above expressions: 1. L(x) is a

quadratic form in the input vector x and 2. i(x) is an unbiased estimate of

the weight/amplitude vector a. The processing filter which is applied to the

whitened input data y is given by

H T (SSK-IsT SKG (25)
K K K K K K

where

T T -IT

GK - (SK5K) SK [gl' g2' ., gL] (26)

with

T

- [glj' ' gMj]

Rewriting the filter H in more specific form, it is apparent that

H - [SKgl, S K2' ... , SKgL] (27)

implies that every column of this filter matrix is a linear combination of the

M independent column vectors of SK* Thus the rank of H must be less than or

equal to M, i.e., rank (H) < M.

Consider the product

SKGKSK HS - S(S T SK -IST - SK

K K K K K K K K SK K

7
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This expression clearly shows that

HSK(j) - SK(j) (28)

for all j - i, 2, .. , M. Recall that SK(j) represents a whitened version of

one of the M independent column vectors of S. Equation 28 has the form of an
eigenvalue equation. Equation 23 demonstrates that the column vectors of SK

are distinct and independent eigenvectors of the matrix operator H with equal

eigenvalues of magnitude one for all eigenvectors. This implies that cne rank

of H must be greater than or equal to M, i.e., rank (H) M. If one combines

the two inequalities for the rank of H, the rank of H must equal M. Thus, the

matrix operator H has M eigenvalues equal to one and (L-M) eigenvalues equal

to zero. The impact of this is that even though each of tht ignals has L

components, the driving factor of the MLRT in terms of degrees of freedom is

the number M of signals in the library matrix. In the next section the

probabilities of false alarm and detection are determined for the MLRT.

DETECTION AND FALSE ALARM PROBABILITIES FOR MLRT

From the above discussion, the maximum likelihood ra'.io test L(x) can be

rewritten as

H I

L(x) - L(y) - y THy L0 (29)< L0

d H0

Let U be an orthogonal unitary matrix which diagonalizes H. Specifically, U

*" is defined to be

T
U - Kl SK2 SiKM( I

IsKl__ SK21 _SKMI uL

which gives

UHU"T - A (31)

0 oL M

8
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(See appendix A for the proof.) By defining a new input vector by the relation

y - Uz (32)

the decision strategy for simultaneous multisignal detection becomes

H1

T T T T M 2 > 2L0
y Hy- z UHU z - z AZ - z. 0 (33)

j-1 j  < 2L0

HI

Rewriting equation 32, one has

z - u Ty .

The probability density function of this vector is similar to that of the

original measurement vector x, except this new distribution has a new mean and

covariance values (reference 3). Specifically we have

IK' 11-1/2 { (z - d)TK ° - (z - d) (34)

where

d -E(z) (35)

and

K'- E((z - d)(z - d)T (36)

The average value of the vector z, under hypothesis H1 is equal to

d - E~z[H I }  E(U TnK + UT SKa)

- UTSKa (37)

Its covariance, under the same hypothesis, is given by

E(z - d)(z - d) T H EIUT n n TU)
K K

-U TE(n n T)U
K K

L  (38)

Equation 38 also holds for hypothesis H However, the mean vector d for H0

is the null vector.

9



Referring to equation 33, it is clear that the MRLT decision strategy

depends on the norm of the vector z. Under hypothesis HI, the probability

density function for this situation is the noncentral chi-squared density

Pl(r) - d(r/d) M/2e (r2+d2)/21(M2)(rd) (39)

2

where by equation 33,

[(z2 1 2T 1 T -1 1 T -1 1/2 ( 0

r -i " [(xTK-IS)(s K- s)I (S K- x)]I / 2 (40

and

d2 -d[2 T Td Ii= aSKUUl SKa

T -K
- a(S TKI S)a (41)

is the peak signal-to-noise ratio (reference 6).

The probability density function under hypothesis H0 is central

chi-squared--and is derived as follows: The modified Bessel function of the

first kind can be written as

0 (t/2)'+2n
V (t) - n tr(t + n + . (42)

n= 0

Equation 39 then becomes

Pl(r) - d(r/d) M/2e- (r 2+d 2)/21 (M2)(rd)

2

2 2 CO2n
M/ ( d)2 Ml(i/2rd) 2n...

(2) M/2e- (r+d)/2(r/2) + n) (43)
n=0 n!r(M/2+

This implies that

So(r ) -lim 2M/2 )M- -r 2/2_1 (44)
p0r d-0 Pl(r) = (r/2 e F(M/2)

is the probability density function for the null hypothesis. Equation 44 is a

chi-squared density function with M/2 degrees of freedom.

10



Based or the above, one can write

Pd - d f (r/d) M/2e- (r2+d2 1/21(M 2 )(rd) dr (45)

0 2

as the probability of detection for the maximum likelihood ratio test, and

dr - er 2 /2 
(46)

bf 2 2/-r(M/2)

as its probability of a false alarm. In these two equations b0 is the MLRT

threshold level in normalized units. If one refers to the usual analysis of a

multiple signal detection (e.g., reference 1), equations 45 and 46 indicate

that MLRT has one half the number of degrees of freedom that would normally be

expected for this type of detection strategy.

COMPUTER SIMULATIONS

With the above detection strategy defined, a validation of the

maximum likelihood ratio test was performed. In addition, the quality of the

weight vector estimation under positive processor response was concurrently

assessed. Three computer simulations were performed which assumed the number

of signals in the library to be of lengths 2, 4, and 6.

In the following subsection, the performance of the MLRT is summarized

for the six-signal library simulation. For simplicity, the input noise is

assumed to be Additive White Gaussian Noise (AWGN).

The simulations were performed on a AT-clone Personal Computer with an

80287 Co-processor. The computer programs themselves were written in

Microsoft FORTRAN, Version 3.31, and required externally generated random

numbers to create the simulated noise sequences.

The uniform random deviates are generated from the RANI and RAN3

subroutines developed by Knuth and others (reference 7). These routines

create uniformly distributed numbers between 0.0 and 1.0 with negligible

sequential correlations. These numbers are translated into normal deviates

(zero mean and unity variance) using a technique suggested by Dillard

(reference 8).

11



The linearly independent signals chosen for the simulations were binary

(+l,-l) pulse sequences with various power-of-two frequencies. The computa-

tion of the theoretical false alarm and detection probabilities were perLormed

using a recursive relation for the generalized Q-function described by

Dillard (reference 9).

The six-signal library simulation was performed as follows. Six linearly

independent signal vectors were generated. The selected signal cycles were 2,

4, 8, 16, 32, and 64 Hz. The length of each sample vector was 128. This is

chosen to accommodate two cycles of the lowest frequency waveform. Under the

AWGN assumption, the processing filter H described in equation 25 was created

and stored, as well as the estimating filter

H - (SK s) STK (47)

Ten thousand null-hypothesis sequences and ten thousand signal-present data

sequences were independently generated and applied to both filters. The

filtered results were stored and later statistically analyzed.

Figure 2 shows the theoretical and simulation-derived false alarm

probabilities for the six-signal library MLRT case. The error bars were

computed using the analytical expression developed by Clopper and Pearson

(reference 10). Figure 3 compares theoretical and computer-generated results

for the probability of detection as a function of threshold for input

signal-to-noise ratios equal to 128, 288, and 512. Both figures illustrate

good agreement between simulation and theory. This good agreement is

similarly found for the two- and four-signal library simulations not

discussed.

The LMS estimate of the weight vector a gave good results in predicting

the presence and amplitude of the appropriate signal when hypothesis HI is

true. The covariance of the prediction can be shown (reference 5) to be given

by

2 (aTIl E(H T T -l1 -I- E( 1 E(a IH 1 )] (S K S) (48)a iI (48)

All three simulations exhibited this variation in the statistics of the weight

vector estimate. In the six-signal library case, the normalized standard

deviation of the estimate was -9% as expected. This expression shows that the

accuracy of the estimation is inversely proportional to the inherent signal-

to-noise ratio of each waveform in the signal library This is not an

12
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unexpected result. Parameter estimation is always better with strong signals

(reference 5).

A COMPARISON OF MLRT AND THRESHOLDED/SIGNAL-CORRELATION RECEIVERS

To demonstrate the power of the MLRT procedure, a comparison is made

between this new detection strategy and a strategy based on the approach shown

in figure 1. One of the most common techniques for M-ary hypothesis testing

is to use a filter bank of M signal correlators with a threshold signal-

presence detection criteria (reference 1). The outputs of the M correlators

are compared to a predetermined value and those exceeding this value are said

to indicate signal presence during that observation time. The null hypothesis

occurs when none of the correlator outputs exceed the predetermined threshold.

The particular threshold value selected is based on the desired probability of

error.

In this section a comparison is made between a MLRT receiver and the

above-cited filter bank receiver for the case of 6, 200, and 400 linearly

independent signals at two fixed false alarm rates. These examples illustrate

the relative performance of these two M-ary detection techniques, but more

importantly they scope the kind of penalties encountered from the use of the

less computationally intensive MLRT detection strategy. In other words, these

comparisons demonstrate how close to optimum the MLRT really is.

Assume that a receiver filter bank has been created to determine which of

M possible signals is sent. The M waveforms of interest are all of equal

energy. For this comparison, AWGN with zero mean and unit variance again is

assumed. In order to compare the detection performance of the filter bank

receiver with a MLRT receiver, analytical expressions for the probabilities of

false alarm and detection of the correlation receiver must be determined.

The probability of the correct "reception" of the null hypothesis is

p[correctlH O ] = Pr(all STK-1x < b " j 1i 2 3, MHo (49)

M T-l1
p - risTK-x < b (50)J-

f Pn(r)dr 
(51)

0

14



The integral

J Pn(r)dr (52)

b 
0

represents the probability of choosing the signal presence hypothesis after

thresholding when the null hypothesis is true. This is the false alarm

probability or the Error of the First Kind. For AWGN, equation 52 is defined

as

erfc(b) - (27r)-1/2 f exp(-t 2/2) dt (53)

b0

As before, b0 is the receiver threshold setting.

The probability of false alarm is the difference between equation 51 and

unity. Specifically, the false alarm probability for a M-ary filter bank with

threshold detection is given by

Pfa - I p[correctlHo0  - 1 (1 - erfc(b 0 ))
M  (54)

Rewriting equation 52, one has

erfc(b0 ) - I - (i - pfa)/M (55)

This last expression can be used to determine the threshold setting for a

fixed false alarm probability using an inverse error-function integral

relation (reference 11).

Since the assumed waveforms have equal energy, their integrated power

levels are also equal. The probability of detection is, therefore, the same

for each of the M signal correlators and is given by

b I

Pd I I - (I - erfc(b 0 - SNR)) (56)

with SNR representing the expected signal-to-noise ratio for each and bI being

the number of waveforms per complex signal (reference 12). Equation 56

assumes that the probability of false alarm at every filter contributes

nothing to the detection of any signal. For this analysis, the number of

waveforms per signal is 1 and equation 56 reduces to

Pd - erfc(b 0 - d) (57)

15



Figure 4 compares the probability of detection for MLRT and filter bank

receivers, given six linearly independent signals, as a function of signal-

to-noise ratio for false alarm probabilities of 1E-04 and 1E-06. The MLRT
results are computed using equations 45 and 46, and the filter bank numbers

were computed using equations 55 and 57. It is apparent that the filter bank
performs better than the MLRT for all signal-to-noise ratios shown. However,

MLRT suffers only a I dB penalty over this same range and is less computa-

tionally intensive for situations when the null hypothesis is the most

frequently occurring event. This supports the previous contention that MLRT
is a near-optinmum M-ary detection strategy for AWGN, or at least for small

signal library scenarios. The signal-to-noise ratio penalty for large signal

library detection is investigated next.

PROBABILITY OF FALSE DISMISSAL, 1 - P. (percent)

9999 999 99 90 50 10 1 01 001
10 1 11 

30 M 6
S\ -- PROBABILITY OF FALSE ALARM - 10

4

50 \ - PROBABILITY OF FALSE ALARM - 106

I- \
o 7

90

* z 110
0 LRT (FILTER BANK)

130 .

150 - MLRT

170

190
001 01 1 10 50 90 99 999 9999
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Figure 4 The probability of detection false dismissal as a function
of signal to noise ratio for MLRT and filter bank receivers at false
alarn probabilities of 1 E 04 and 1 E 06, and with M equal to 6

For large numbers of signals, the probabilities of false alarm and

detection for the M1RT reduce to

P fa erfc([b - MJ]2M) (58)

and

P erfc (b - M - d 2)/2(M * 2d 2 ) (59)
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respectively, for values of M greater than 200 (see appendix B). The false

alarm and detection probabilities for the filter bank/threshold receiver are

Pfa = M erfc (b0 ) 
(60)

and

Pd = erfc (b0 - d) (61)

Equation 60 assumes that erfc(b0 ) << 1. Figure 5 compares the probabilities

of detection for the MLRT and the filter bank/threshold receivers for M = 200

and false alarm probabilities of 1E-04 and IE-06. As expected, the filter

bank/threshold receiver performs better than the MLRT receiver. In fact, it

is around 4.5 to 5 dB better for reasonable detection probabilities. This is

really not too bad considering the reduced computational load requirements one

has with the latter. Figure 6 depicts the same comparison as figure 5, except

for M - 400. This figure shows the MLRT receiver has a I to 1.5 dB increase

in SNR penalty for the factor of two increase in the number of signals.

Again, this is not a significant penalty for the reduced data processing load.

However, the choice depends on the application.

When the signals of interest are linear combinations of linearly

independent waveforms, the MLRT detection strategy is the definitely preferred

approach. This is because the MLRT filter causes the linear combination of

waveforms to incoherently add their respective energies before thresholding.

As an example, figure 7 shows the probability of detection for false alarm

probabilities of IE-04 and 1E-06 where each complex signal is assumed to be

composed of two linear independent waveforms. It is clear in this figure that

MLRT performs better over most r- the signal-to-noise ratio range shown at

both false alarm probabilities. MLRT has the effect of linearly increasing

the total signal-to-noise ratio within the test by the total number of signals

in the linear combination. In this case, the linear increase in signal-to-

noise ratio is a factor of 2 or 3 dB. On the other hand, the correlator bank

still looks for transmitted signals on an individual linearly independent

waveform detection basis and is not able to take advantage of the total energy

of the complex signal. The probability of detection for the filter bank is

2
Pd 1 - (1 - erfc(b 0  - d)) (67?

with d aain bein the sigal-to-n isertoo h niiulwv:rs

with d%~ agai being the/. sinlt-os ratio~ of" th indviua wavejft



PROBABILITY OF FALSE DISMISSAL, 1 - P. (percent)

99.99 99.9 99 90 50 10 1 0.1 0.01
6.0 1 1 1 1 1 1 1 1 1 1 1 1 1 '

8.0 M 
= 

200
PROBABILITY OF FALSE ALARM =10'

10.0 'k PROBABILITY OF FALSE ALARM =10'

-0 \\ LRT (FILTER BANK)

14.0

I.-

0 180
< MLR

200

22.0 -

2 4 .0 ,1 n I . 1 1 1 1 L n

001 0.1 1 10 50 90 99 99.9 99.99

PROBABILITY OF DETECTION. P. (percent)

Figure 5. The probability of detection/false dismissal as a function
of signal-to-noise ratio for MLRT and filter bank receivers at false
alarm probabilities of 1.E-04 and 1.E-06, and with M equal to 200.
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alarm probabilities of 1 E 04 and I E 06. and with M equal to 400
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Figure 7 The probability of detection/false dismissal as a function
of signal-to-noise ratio for two-signal-combination MLRT and filter

bank receivers at false alarm probabilities of 1.E-04 and 1 E-06,
and with M equal to 6.

SUMMARY

This paper has presented a new strategy for detecting and estimating

multiple linearly independent signals immersed in additive random noise. This

technique is most useful for communication and surveillance applications. 'I

This new approach determines the presence of one or more signals through a %

single filter operating on the received input vector, and performs a signal-

amplitude estimation when a positive response o-curs. It is a Uniformly Most

Powerful Invariant Test and reduces the compu' .cionally intensive work to only

those situations where important data may exis,. The estimation technique

determines the signal amplitude of all the possible input signals in an LMS

sense with variance inversely proportional to the inherent signal-to-noise

ratio of each linearly independent waveform.

Computer simulations verify the theory and demonstrate near-optimum

performance of MLRT for small signal libraries. The MRLT is close to optimum

for larger signal sets and is clearly optimum for complex multiwaveform

signals.
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APPENDIX A: THE UNITARY TRANSFORMATION MATRIX U WHICH DIAGONALIZES H

It is known that any arbitrary L x N matrix F of rank M can be decomposed

into the sum of a weighted set of unit rank L x N matrices by a singular value

decomposition (SVD) (references 13, 14). Application of this concept to the

MLRT processing filter H will be used to determine the unitary transformation

matrix U.

According to the SVD matrix decomposition, there exists an L X L unitary

matrix U for which

UHUT _ AI/ 2  (A-1)

where

U - [ulu 2,U3 ' ... UL] (A-2)

H- T -1T (A-3)

1/2

" AI/2 11 I/2(1)
M

A 1 /2 -
1 /2(M1 (A-4)

0 0 L -M

M L - M

The matrix A1/ 2 is called the singular value of the matrix H.

Since U is an unitary matrix, U TU - UU - IL* Consequently,

H - UTA/ 2u (A-5)

The rows of the unitary matrix U are composed of the eigenvectors of the
T

product matrix HH The defining relation is
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TT 0
UHH TU T A(M)____) (A-6)

0 1 0 L-M

M L -M

where A(i) are the nonzero eigenvalues of the matrix HH T(reference 13).

Since H is a symmetric matrix,

HT _S(T S)-1iST SST S -1iST

T 1iT
- SK(S K SK) S K

-H .(A-7)

Substituting equation A-7 into equation A-6, we obtain

1 0 M

T.
UHU x ACM) (A-8)

0 0 L M

M L-M

The MLRT processing filter H has been shown in the main text to have M unity

eigenvalues with associated eigenvectors equal to the columns of S K'This

implies that equation A-2 becomes

U - [U1,u 2. . . . . . . ULIT

-T

- 1 S K2!K "MUl UL (A-9)
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taking into account the unitary nature of U. The vectors (UM+1  ... U L )

remain arbitrary, subject only to the unitary requirement of U (reference 15).

Substituting the eigenvalues of H into equation A-8 yields

M1 0
TI

UU- (A-10)

0 0 L-M

M L - M

which completes the derivation of U.

,2
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APPENDIX B: APPROXIMATE EXPRESSIONS FOR THE PROBABILITIES
OF DETECTION AND FALSE ALARM 1

When the number of waveforms M in the signal library of MRLT is large,

2 M 2
the probability density function (pdf) of the statistic r X z. is nearly

Gaussian by virtue of the Central Limit Theorem. Following Helstrom

(reference 1), an asymptotic expression for the pdf Pl(r 2 ) is derived in this

appendix which exhibits this limiting Gaussian character and is used to

establish approximate expressions for the probabilities of detection and false

alarm associated with this new log-likelihood ratio test for large M.

Recall that the logarithm for the characteristic function h(z) of a

random variable x can be expressed in a power series of the form

- 2 2 k
In h(z) - izx + a (iz) /2 + k (iz) /k! (B-1)

k-3

where
p. "

x - E(x)

2 -2
a - E((x - x) ,

and ?7k is the "k-th cumulant" of the random variable x. This implies that .5'

h(z) - exp (izx + c2 (iz) 2/2!1 1 1 + Ck(iz) (B-2)
k X3 k-

after collecting terms with like-powers of (iz). The coefficients Ck

contained in equation B-2 have the form

C3 " 13/3.

C4 - 14/4!

C5 - '15/5!

C + 1032 )/6!

and so on. The pdf of x is the inverse Fourier transform of the

characteristic function h(z) and is equal to the following:
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p(x) - 21r 2 /2 exp-(x - )2/2a2 1 + x (Ck/ak)hk(u) (B-3)
k-3

- l)([1/ k) k-3(k\()

[ ~k k
-a1 (u) + (-1)k(Ck/u 0 (u) (B-4)

k-O

with
k -u 2 /2d k  -u 2/21/k

(-l) ke U/2h(u) - -(e )-(2i) i2(u) (B-5)

k duk

k (u) k()k k(-u) . (B-6)

The functions hk(u) in equation B-3 denote Hermite Polynomials which are

defined by equation B-5.

Evaluating equation B-3 when

Pl(L) - l/2(L/S) (N-1)2exp(-(L + S)/2) IN-1 (UL) (B-7)

yields

Pl(L )  0 a[0O(y)  2N + 3S 3
L 6(N + S)3/2 3(y)

N + 2S 4 + 12(N + 3S) + (2N + 3S) 2 O(y)

4(N + S)2 72(N + S)3

+ • . . I (B-8)

L - 2N - S
Y - 1/2 (B-9)

2(N + S)

The probability of detection is given by the termwise integration of this

density function. The probability of a false alarm is also obtainable from

equation B-8 by setting S - 0 before the termwise integration.

When M is large, only the first two terms of equation B-8 need be

retained. The probabilities of false alarm and detection in this case after

termwise integration are

Sfa erfc(h6) (B-10)
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AxUWFL~n1rF~ 1LM7"TX-WWKW-6 MWMF. -XnJ- W- X X^l~ 2~v

and

Pd erfc(L) (Bli

wihL N -/2,(1,2 L - N)

and

L- (1.6 - 1/2 SN 1/2) 1/ B-3

In this paper's nomenclature, equations B-12 and B-13 are

[~ 1/2 22
-(1/2 b M/2) - (b0  M)/./2M (B-14)

and

2 -M 11/2
L" f(b -M)/12M -1/2 d( 2  ) 2 Io 0 + 2

M4 1/2
2 2___

-(b~ 2 M - d2) /12(M + 2 d2) (B-15)
0.1
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