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I. Introduction. In this paper we study the convergence and limit distribution

of the centered sums

n
(1.1) Cj, j - An

jln

in connection with series representations of infinitely divisible random

vectors'. Here -j. is a sequence of arrivial times in a Poisson process,

{j. is a sequence of i.i.d. random elements) which is independent of {yj}

and H is a Sanach space valued function.

Series representations involving arrival times in a Poisson process haveI

been given by Ferguson and Klass 14], for real independent increment processes

* without Gaussian components. Kallenberg 18] showed the uniform convergence in

the Ferguson-Klass decomposition and Resnick 118] related the decomposition

to the well-known It'-Le'vy representation of processes with independent incre-

ments. A series representation of Hilbert space valued stable random vectors,

that generalizes the Ferguson-Klass representation of one-dimensional stable

random variables, has been established by LePage, Woodroofe and Zinn [12].

LePage £lO] observed that symmetric stable random vectors can be represented

as conditionally Gaussian. This important property has been generalized and

extensively used by Marcus and Pisier [15] in their investigation of continuity

of stable processes. Marcus and Pisier's work 115] showed the significance of the

series decompositions in the study of stable probability measures on general

Banach spaces (see also £5], 12], [19] and 121]). We refer the reader to (15]

for a rigorous proof of the representation of symmetric stable vectors with

values in arbitrary Banach spaces. A generalization of the one-dimensional

Ferguson-Klass representation to the case of random vectors taking values in

Banach spaces of cotype 2 is due to LePage 111]. Since this assumption on

"
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the geometry of Banach spaces is too restrictive for many interesting applications

of the representation (e.g. for studying the continuity of stochastic processes),

it is necessary to investigate series developments without any restrictions on

the Banach spaces. The validity of the LePage representation for certain

symmetric infinitely divisible random vectors in general Banach spaces was

stated by Marcus [14] (techniques similar to those of [15] can be used in that

case, the general non-symmetric distributions considered here require different

methods).

The main goal of the present paper is to give a simple and general scheme

of deriving series representations of arbitrary Banach space valued infinitely

i.1 divisible random vectors. Our approach uses an idea of Vervaat [22] who obtained

the Ferguson-Klass decomposition of positive random variables as a particular

case of a shot noise (for more information about shot noise see [22] and re-

'. ferences therein). Since only a very restricted subclass of infinitely divisible

probability measures can be represented by means of a shot noise (see Corollary

4.3(iii)), we introduce and study a gen .% n -ze.d Thot noize, which is defined

as the a.s. limit of the centered sums (1.1). We obtain a full characterization

of the convergence to a generalized shot noise in Section 2. In Section 3 we

discuss certain special cases of the generalized shot noise and resulting

simplifications in the centeres An . The results of Section 2 and 3 are

applied to derive series representations of infinitely divisible random vectors

in Section 4. This approach enables us to obtain various series represent-

ations, which generalize those of LePage Ill]. in a unified way, while avoiding

many obscurig details due to specific forms of the function H is concrete

.S situations.

" .' "• I *r- .%. N N % Z
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Finally we would like to mention something about the methods in this paper.

To determine the convergence in (1.1) we use a slight modification of the

technique previously employed by Ferguson-Klass £4] who transformed certain

dependent summand series into independent ones. The modification is that

we associate with (1.1) a continuous time, independent increment, stochastic

process, instead of the discrete time one, so that (1.1) is obtained by a

random'time substitution. This approach gives the results on the LP-convergence

imediately (see Corollary 2.5), and reveals a martingale structure of the

decomposition (see Corollary 4.3(iv) and Theorem 3.1).

,* ?* U
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2. The convergence and distribution of a generalized shot noise.

We recall and complete some notation that will be used throughout the

paper. {jj is a sequence of i.i.d. random elements taking values in a

measurable space (D, ) , with the common distribution j = X . By

{NCt)} is denoted a Poisson process with parameter I and y. is the jtht>o
arrival time of N(t) , i.e. I  inf{t > 0: N(t) = j} , j = 1, 2,....

fu Ujj -stands for a sequence of ii,d. uniform on (0, 1) random variables.

an CU}WWe assume that i j~j=l , {N(t)}t>O and 1Uj)j= 1 are defined on the same

E probability space (. Y, P) and they are mutually independent.

In order to use the method of Ferguson and Klass 14] mentioned in the

Introduction we shall need the following lemma which in the case I = IP can

be deduced from Lemma 2142 and then easily extended to the case when % is

a separable Banach space. Since this lemma constitutes the first important

step of the method and also may be of independent interest, we shall give

below a straightforward and different proof in a more general case.

LEMMA 2.1. Let U, S) bc a mneaswab/e veteC o Apace and tet G: (0, o) x
D - be a measuaable map, Then thte t-uged stochastic p'ocez given by

N(t)

X( t) = I G(-., Ej) , t > 0

j=l J

has indepoident ineents and

Z(X(t + s) - X(s)) Z(j=l JG(s + tU

II
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c. Let F c(N(s): s < t) and -(2) l  Put
tkk

(2.1) F t = {A e F: A l {N(t) < k} (e 1 I ) v y(2) for every k > 1}

Then fF t)t>0 is an increasing filtration and {X(t)} t> is adapted to this

filtration.

In order to prove that {X(t)}t> 0  has independent increments it is enough

to show that c(X(t+s) - X(s)) and Fs  are independent for every t, s > 0

Let Ae- and B Z We get

P{X(t+s) - X(s) E B, A) -

(2.2) 2 P{X(t+s) - X(s) e B, N(s) = i , N(s+t) = i+k, A} =
i,k>O

i+k
SP{ I G(Nj, j) E B, N(t+s) - N(s) = k , A. ,

i,k>O j=i+l

where A. = {N(s) = i, A) F () vyF(2) by (2.1). Since

i+k i+k
1 G(Yj, Ej) = G(s + y.I. ,j~~=i+l i=i+l -i j '

where "l) is the mth arrival time in the Poisson process N 1 )(u) =
'm i+k

N(u+s) - N(s) , u > 0 , we conclude that the events Ai and { I G(y., Fj) e B,-
1 J=i+l

N(t+s) - N(s) = k} are independent. Therefore the last expression in (2.2) is

equal to

i+k +1'
Z P{ 7 G(s+yj-' ) B N (t) = k) P(Ai ) =

i,k>0 j' +
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Z P{ P G(s+y- l -  ) . B , (t) k} P(Ai ) =i, k O m=l m mn

k N(t)
P, I G(s+-y, ,) e B, N(.t) = k}P(A) = P{ G(s+yj,Ej) e BIP(A)

k>O j=l j=l

which proves the independence of a(X(t+s) - X(s)) and F s  as well as the

equality 4(X(t+s) - X(s)) N(j~l

In the proof of the second part of the lemma we shall use the well-known

fact that the condtional distribution of (yl, ...' yN(t) ) given that

N(t) = k > 1 is equal to the distribution of (tU(1), ... , tU(k)) , where

UU) is the jth order statistic of Ul, ... , Uk  We have, for every

N(t)
P{X(t+s) - X(s) e B} P{ 7 G(s+yj, j)e B)

j=l

k tkP'O Pj:G(S+tUj) vj B} e - t

k=0 jl 1 j, j T

cc k ki k tk  -t
IPT I G(s+tUj, Ej e B) e

k=0 j=e
N(t)

P{ t G(s+tUj, %) q B}

*j=l

which completes the proof.

LEMMA 2.2. Under the notations o6 Lenna (2.1,Zi 1, A) = J, R ) , 2 then

tr
(i) EX(t) = fo fJ Gu v)X(dv)du.

0a0

,F~id hc c, - ->~*fp t.hc .above *'u~ *.*t*, on -elf ht deus
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*(ii) E exp[iX(t)] =exp{ f j [e iG(u~v)_l)X(dv)du}

~. By Lemma 2.1 we get

N( t)
E x(t) =E[ 7 G(tU., i)

j=l ~ -

k
E[ I G(tU j, ',.)I(N(t) = k)]

k>O j=l

7 k E[G(tU1, e)J t =t
4 k>Oe

J Df

ft~ fD G(u, v)X(dv)duP

which gives (i). The proof of (ii) is similar.

The method of random time substitutuon will require the existence of the

limit as t -- for almost every sample path of the associated stochastic pro-

cess. The next lemma will be useful for this purpose. Its proof is

routine and will be omitted.

LEMMA 2.3. Le~t {Y(t)}t> be a stoctw-tc. p'Locezz with vat&.ez5 i.n a zepatabte

'.4 metx.Lc apace and whoze s~ampte paths a~c -tght- contnuou. Then limi Y(t, (b)

exitL 6o a.e. w i6 and onty i6 6o- evety4 iA.Cea.6ing -eqLuencv- {tn~l,.1

W~Zth lim tn = 00,the sequence MYt )OD cnege .6
n- i

4O

- "21 -.. , -



To state and prove the main result of this section we shall need some

notation that will be also used throughout this paper. E will stand for a

separable Banach space with the norm 1.11 and B = {x e E: 1,xii < r},

r1 > OQ(B = E) . The dual of E will be denoted by E' and (x',x)

xl(x) , x E' ,x e E .

We recall that a measure M on E with M({O}) = 0 is said to be a/2
Levy measure if for every x' E' , x A l)M(dx) < and for some

IE

(each) r e (0, -) the function Cr defined by

Sr(X') = expf [ei x-' x' - 1- i(x',x)IB (x).]M(dx)}
E Br

x' E E' , is characteristic function of a probability measure on E . The

probability measure with characteristic function 0r will be denoted by

c Pois(M) (see: deAcosta at al. [1]). If M is a Levy measure an4 additionally
r

JI: x 'M dx ) < co llxlM(dx) < c , respectively), then we define c.Pois(M)

B1  B1
(c0Pois(M), respectively) as a probability measure with characteristic function

0. ( ' respectively).

Let H:(O, c ) -D * E be a Borel measureable map and define a measure F

on 2E by

(2.5) F(A) = O I A\{o}(H(u' v))X(dv)du , A e E"

r.4

Note that F({O}) 0 . Put

A(t) = H(u, v) (H(u, v))X(dv)du, t > 0

11:

01 1 D -



THEOREM 2.4. Let T j 1H(Tj, - A( n ) Thcn {T } conveAP.4 a.s. iii tiCh

nnvm 0 j E -4' and o)~ cni't F 4-' a L'cxq nesL-c on E Fut-thie~, i6 F Zs a

Lev~y measue and T. = 1 im T n, -thenl
n-N

Z(T ) : clPois(F)

Pr'o. Let

N(t)
',X(t) .7T H~hj, j) - A(t) ,t > 0

By Lemmna 2.1 {X(t)t, is an independent increment E-valued stochastic process
t>O

with right-continuous sample paths. Using Lemma 2.2(ii) we get

(2.6) M(X(t)) = ciPois(F(t))

where

(2.7) F(t)A = { IA\{o}(H(u, v))(dv)du A cE E

(note that F(t)(E) = t <

Assume first that F is a Levy measure. Since F(t) 7 F as t

we get

clPois(F(t)) C1Pois(F) as to

(see deAcosta et al . Theorem 1.6). Hence, by Ito-Nisio Theorem ([7], Theorem 1)and (2.6),

{X(tn)}n=1 converges a.s. for each tI < t2 < ... < tn . In view of Lemma

2.3 X =lim X(t) exists a.s. Clearly, .Z(X) = clPois'F) . Now we noticeJ
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that Tn = X(on ) and yn- a. s. Therefore T n  Too •X as as n

which ends the proof of the sufficency part of the theorem.

Now we prove the necessity. Assume that {T n} converges a.s. We have,

for every t ,

(2.8) TN(t)+l = X(t) + Y(t)

where

Y(t) = H(- N(t)+I ' N(t)+l) + A(t) - A('N(t)+1

By Markov property of {N(s))s> 0 , the random vectors X(t) and Y(t) are

independent for each t . Since TN(t)+I -* Too a.s. as t - , by (2.8)

{'(X(t))}t> 0 is relatively shift compact. In view of (2.6) and Theorem 1.6

in [1] F is a Levy measure. The proof is complete.

COROLLARY 2.5. L F bc a Lrvymco-ue andcIIx'1PF(dX) <= 6or , e
0 < p < The; T n  To a.z. cud J1 Lp

n T LE

_____. Since E;X: p < E sup 1JX(t)i p < by Corollary 3.3 in Hoffmann-
O<t<X<

J~rgensen [6] Hence

E sup 1T P' E sup;IX(Yn)I p 
_< E sup llX(t)IJp < =

n n 0<t<00

which ends the proof.

REMARK 2.6. Theorem 2.4, when specified to those Banach spaces for which a full

characterization of Levy measures is known, gives definitive conditions in

terms of the function H for the a.s. convergence of {T n  For example, if

P A .L. .P (Jt . n



E = Rn or more general, if E is a separable Hilbert space, then

F0 fD (I A IIH(u, v):!2 )X(dv)du < - is neccessary and sufficient for the a.s.

convegence of {T n } . Similarly, if E = kP , 2 _< p < - , the conjunction of

the following two conditions is equivalent to the a.s. convergence of { nT n

- .o f0 (1 A IH(u, v).I:P)A(dv)du <

and

CC Jl(H(u, v), ej2' IB (H(u, v))X(dv)du] p/2 <

SJ21 JO JD 1

where {ej} denotes the standard basis (see [13], p.75).

I %

'S" ' % % % " -" '" ." w " ."
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3. Convergence in some special cases.

In this section we shall discuss some-interesting modifications in (1.1)

which are possible when F satisfies certain additional hypotheses.

THEROREM 3.1. Azzuswe that F , dcfincd bq(2.5), i a Levy measuu on E .uch

ta J c "x ' p F(dx) < . cme P > 1 Lct
B1

C(t) = (u, v)N(dv)du t > 0
0 J

ThC)

n
(i) Mn (-yI C(y n ) , n > 1 , Zs a martZigate "th(j 'jLTCrct to

n j=l n

n~ "n

(ii) Mn M. a..a, d a n as n
E

(iii) ,(M ) = c.Pois(F)

ProcCf. First note that C(t) is well-defined as a Bochner integral. Indeed,

I' ' (u, v)1IX(dv)du < t + r 11"( uO v)jjI c (H(u, v)l(dvldu

< t + 1  [jxljp F(dx) <

Put X1 (t) = N H(y., i j) - C(t) = X(t) + A(t) - C(t) , where X(t) is defined
j=l

in the proof of Theorem 2.4. In the proofs of Theorem 2.4 and Corollary 2.5

we have shown that

IL

= .

0 - -
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X(t) - X a.s. as t - ,

.(X) = clPois(F) and

E sup 1X(t),!p <O< t<00

Since

rt rr
A(t) - C(t) O- J DH(u, v)I (H(u, v))X(dv)du -f cx dF~x)

1 1

as t e , conclude that

X1(t) x 1  a.s., as t -0

=~ c.Pois(F) and

(3.1) E sup ~X(ty': <
O<t<r

By Lemmas 2.1 and 2.2, {Xl(t)}t>0  is an independent increment process with

right continuous sample paths and EX (t) =0 .Moreover, {X~ t1 I
1 l~t)}t>O i

adapted to the filtration (t defined by (2.1) and X (t+s) - X (s) is
t t>O11

independent of s . Hence {XI(t), Ft7}t>O is a martingale. By (3.1) andthe

Optional Sampling Theorem

Mn = Xl(Y) , n > 1

VS• <4
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form a martingale with respect to . *'Y (" 1 9' nn ) and clearly

M - M -= X a.s. and in LP  The proof is complete.
n 1 E

THEOREM 3.2. Ak5wnc that F , dcfuzed by (2.5), is a L~vy meiute ,6uch tkat

fB1llxl!F(dx) < Then

n
-n H(-yj, i) - a, z n

* 1

aiz

z(S) : C0Pois(F)

Pwc.' . Since

J !!IH(u, v)';I (H(u, v))X(dv)du : ,vx F(dx) <

"ID 1 , 1 <B1 1 <

it follows by the Dominated Convergence Theorem that

A(Yn) B J x F(dx) a.s., as n

1

An appeal to Theorem 2.4 completes the proof.

The other case when the centering in (1.1) is not needed occurs when F is

symmetric. From now on {}= 1  will be a sequence of i.i.d. random variablesJ =1

such that P-j I} = 1 - P{E : -1= . Further, we assume that { j,

{y.} and {ji} are independent of each other.

3 .
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THEOREM 3.3. A.um , -t,,- F , dc! bi, (2.5), z a symettic LCvy measuic on

E Ti. :i

n I
Sn =- CjH(., -j) S a.. s n oo

aki

1 POis(F)

ftcPj.4j. We can write

S 7 H(, j

n j I

where . = (E, Kj) takes values in {-1, 1) D, H(u, v) vi H(u, v2)

u > 0 , .(v1 9 v2 ) E {-1, 1 D . We have

% +
1 1

Thus

(A) =I (W~(u, ^V) )A(d'V)duf A\{O)
0 11JXD

' 1 F1)+
,(-A) + F(A) = F(A) A EBE

and

A(t) U, 0-,I

04 -11x

m
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for every t > 0 . Theorem 2.4 completes the proof.

Random centers An = A(' n) in (1.1) provide a fine connection between

the centered sums and the associated compound Poisson process. Random centers

An = C( n ) are also necessary for the martingale property in Theorem 3.1.

Nevertheless, it is an interesting question whether random centers can be re-

placed by non-random ones and the a.s. convergence still would hold? We could not

answer this question in its full generality but under certain additional con-

ditions the answer is yes. To procede this question we begin with a lemma that74,

is a special case of Lemma 4 in Klass and Ferguson 14]. We shall give below

a short proof of this lemma and also indicate that our method can be easily

extended to obtain a new and short proof of Lemma 4 in [4].

LEMIMA 3.4. L ., g b z a ,c .e =b teg abLe fuctoio dcfThcd c:

lbn

* (0, ) T c,

g(u)du 0 0 a.s., a n -Jn

-. _ . We have
U.

rIn

(3.2) i g(u)dt! < g( nAn) I'n - ni
""Jn n-n

by the monotonicity of g , further, by the Strong Law of Large Numbers we have

with probability one:

(3.3) gn' m) < g(2) eventually.

.4. Using Hajek-Renyi-Chow inequality [3] p. 243 we get, for every c 0

"'4' . -. . . . ." .' ." , - %.'_ %' ,,% W %% ,
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PI'm 2 g,)IV V > E} < E-2 n 2 0
P2max g(1) Iy k _ 2 2k
m<k<n k=m

as m , n - Thus g(-) 1-n - nj - 0 a.s., which combined with (3.2) and

(3.3) completes the proof.

THEOREN 3.5. Aswnc t iat F , de'ijzed by (2.5), i6 a L~vy mea~ute on E 6uch
S ,2

tiat j ( -, A 1)F(dx) < Suppc. e -that, 6ot each v e D , IH(.u, v)II Zs a

bn-inca5,bij 6wcfcii c'~ u e (.0, a)Then

n• I H( j A(n) - T,:

j=l J '

SI.

"~ecTO -~A4c i:Tem~ex 2. 4.

Puc Let
.

(A n A(n) = JH(u,) (H(u,v))X(dv)du

V and

* 2

g(u) = {j0 (IIH(uv) 2 A l)X{dv)}

g is non- increasing,

" #= 2 i ,12

g,.. (u)du = ( A l)F(dx) <

and we have

hav
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nD(- 
A 1 ))(dv)du

(n n

< Inng(u)du:

by Jensen's ineqaality. Applying Lena 3.4 we get V n 0 a.s.. Theorem 2.4

completes the proof.

I

V

-I

Iw

'4

... ,-. ..., ... ,.... .... 4
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4. Series representations of infinitely divisible random vectors.

Let F be a Borel measure on E with F({O}) = 0. We say that F admits

a poi- dcccmpc 5itLk:t':' toz ac a&tc sct D , OAD cE 9 if

(4.1) F(A) = D = (0, ) IA(tA)_x( ,dt)X(dx) , A E BE

where {Z(x, ")jxrD is a measurable family of Borel measures on (0, -) and

is a Borel probability measure on D . The phrase "povA' decompositZon" will

• always mean a polar decomposition with respect to the unit sphere D = S1 =

JA r E: ',x

A polar decomposition of Levy measures on Hilbert spaces and its application

to stochastic integral representations of infinitely divisible processes were

studied by Raiput and Rosinski 117]. We shall show here that also Levy measures

on general Banach spaces admit polar decompositions so that (4.1) can always be

assumed. In fact, we shall prove more:

PROSITITION 4.1. LeC N bc a Bc,'tci mczL ,.c on E such tha-t M({O}) = 0 and

M(BC) < - f evc, va r > 0 . Thei: M admitz a potoa decompos~tLon.

d. If F 0 , then (4.1) holds trivially with p(., ) 0 and an

arbitrary X . Therefore we may assume that 0 < F(E) < . We shall con-

S~struct a Borel function f: 10, 10, -) that vanishes only at 0 and

satisfies

f(,x:)F(dx) = 1

Let r0 = infir: M(BC) 0} , 0 < r0 < . Define
r
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le tM(Br U-1 if 0 < t < r

• I :" (t) =

Sj 0 otherwise.

-r01 - U
Put f(u) = (l - e 0b(t)dt . f vanishes only at 0 and

r ro. - r rIIxNI
E f(I'x ')M(dx) = (1 - e J j ¢(t)dtM dx) =

•E E J 0

(1 - e "rO 3 3 E(t)I (t) M(dx)dt =(l -eJO J E (o0 . x11 x

-r O) _l -r

(I - e -01 r e dt = 1

Define now a probability measure G on E by G(dx) = f(jIxI)M(dx) . Since

G({0}) = 0 , G c ; is a probability measure on S (0, -o) , where G0

G and : E\ O .S 1 x (0, -') is defined by p(x) = x ,

Let X be the marginal distribution of Gc given by

X(B) = (Go 0 'l )(B x (0 )) , B e X
_S IS

N Using the well-known fact on the existence of regular conditional probabilities

we get that there exists a measurable family {v(x, )} of probability

m measures on (0, -) such that, for every C e .s IXO,

( XC) = (x,t)v(x,dt)X(dx)

Hence, for every A e

" 'p '", , w .. . ,. . ,,,
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G(A) = G 0 (6\{O:) I A j I(tx)-v(x,dt))X(dx)
S1  Co.-~)

which yields

F(A) = JA G~dx)

J I ~ i'1 I(.tx)v(x,dt)X(dx)=

1  (t( Ot X)x

Therefore (4.1) is fulfilled with p(.x, dt) =v(x, dt)

PROPOSITION 4.2. Let F be a Bc.Let. meazwLe on E .6atiztqyLng (4.1). Let, 6c.1,

each v e D0

(4.2) R(u, v) -= infit > 0: p(v, (t, -)) < u} *u > 0

be thc 4igt cont-6uws injvt,5e oj the 6unction t p(.v, (,t, )) Then .the

6wiction H de~ined by

H(u, v) E R(u, Y)v

6atiz 6i.a (2.5).

PUwOL For every A e we have
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JO JD IA\{O9 (R(u, v)v)A(dv)du =

(R(u, v)v)du]X(dv) =

JD IA\{[J O tv)(v, dt)]J(dv) = F(A)

where we utilized the fact that Leb({u > 0: R(u, v) e (t, p)}) = pv, (t, o))

t>0

The results of sections 2 and 3 when specified to the case H~u, v)

R(u, v)v give the following generalizations of the LePage's result ([ll],

Theorem 2).

COROLLARY 4.3. Let i be an infiZteiy divisible probability measure on E

xcthout Gaus sian component i.e.

(4.3) W = 6 a * clPois(F) ,

SwheAe a e E and F i6 a L uey mease, Asume that F adm.nt6 a pot&v decom-
n

po~ition (4.1) and tet R be de5ined by (4.2). Put Sn = I RCYj, - )Ca
-J=1

,(t) = R (R(u,v)v)=,Jdv)du , t > 0

Then

() Sn - A(,n) convergesa.s. , a6 n , and t (im[Sn-A(y n)+a])= . If

j llxc'it (dx) < o some p > 0 , then the convegence hod6 ato

in the LPE norm.
tE
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i '2 A 1) F(dx) < tJzen S - A(n) conveT.ges a... , n~~E 1h i ,

and (lim[Sn - A(n) + a])

(iii) If J xf! F(dx) < oo , then S convetgu a.6., a n - , and

J~B lZO im S n + a 0 11 whee a 0 
= a - f xF(dx) I d~in

Sn conv.tges in LP provided J JJxfJp %(dx) < 6ot some p > 0

(iv) 16 F Iix1:P'(dx)< - 6ot some p > 1 , then M = Sn - C(yn)

Z5 a magt'ngaZe with respect to (yl',..." Yn C "'" I

M conv'e,ges a.s. and in LP, a, n o , and Z(lim Mn + al ) =

whe.re a1 = a + JBC xF(dx) and

C(t) = f f R(u, v) vX(dv) du , t > 0{ " 0 D-

n
(v) 1 p is symmett-, then S n = E. R(y., Y conveAjel a.

a6 n and I(lim S) In addition, S n conveAegeb

L provided I!xJIp p(dx) < , for 6ome p > 0
LE p4vc E

P . Indeed, by. Proposition 4.2 the equality (2.5) is satisfied. Thus,

i) follows from Theorem 2.4 and Corollary 2.5; (ii) is a consequence of

Theorem 3.5; Theorem 3.2 justifies the first part of (iii) and the second

part follows from Corollary 2.5 and the observation that IA(yn)11 is uniformly

bounded by f IlxJ1 F(dx) ; (iv) is a corollary to Theorem 3.1; (v) follows
*0 B1

from Theorem 3.3 and Corollary 2.5. The proof is complete.

A few comments are now in order. First note that Corollary 4.3(i) and (ii)

generalize LePage's Theorem 2 [11) by removing the restriction concerning the

geometry of Banach space E and in our case D is an arbitrary Borel set. This makes

the representation useful in investigation, for example, general infinitely

*divisible processes with sample paths in arbitrary Banach spaces. The results on the
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LE -convergence and the martingale development given in (iv) are also new. Finally,

we note that the centering constants in LePage [11], Theorem 2, are erroneous. They

should be assumptotically equal to A(n).

The representation of pJ becomes simpler when a polar decomposition of

F is of product type for some D , i.e.

r r
(4.4) F(A) D IACtx),(dt)X,(dx)

for all A eE In this case, c,(x, ) -( ) is the same Levy measure

" for all x's

LEMMA 4.4. Let F bc a Levy mcasucle on E af/ich s fti.jiez (4.4), c i5-

bowtded. Then j (I xj2 A 1 )FCdx) <

PUC . Let d = sup{ljx,,: x E D< . We have

r 2 r r , 2
J E Al l)F(dx) J Al )p(dt)X(dx)

r 2 2< (d t A l)p(dt) <

The above lemwa and Corollary 4,3(ii) give the following

COROLLARY 4.5. Let p be gi.en by (4,3) and Lest F admits decomposition (4.4)

with D bounded. Define

R(u) = inf{t > 0: p((t, <)) u} , u > 0

I.
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a4i ivou. " t& Lc 5 -JlC. t - Ut, -1~)) Thenz

n
J R(yj)- j - b + a T a.s., as n ca

j=l J n

a:id p(T) = l , whceue

b n R) VI (R(u)v)X.(dv)]du

EXAMPLE: General stable distributions.

Let p be a p-stable probability measure on E , 0 < p < 2 In view of

L evy spectral representation theorem there exists a finite Borel measure a

on S1  and x 0 E E such that the characteristic function pi of p can be

written as follows:

(4.5) (x') = exp{j I(x',x,, a(dx) + iQ (Ox') + i(x'Xo)}

1

,#, where

Q '(,x') r

-2/i J ( ,x)knj(x',x)ja(dx) , p = I

(for this and further facts concerning stable measures we refer the reader to

Linde 113], Chapter 6.3). In order to obtain series representation of p we

write p in the form (4.3). Elementary computations give

i6 ,1- ' , r€, ., , r, ,
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x p C )P)1c' (S1)x ,pl

a

- 2(1-y)/rT, a(S )x ,p 1

where c. COS(7p/2)iT(-p) ,p 1 , c1  7Tr/2 ,y denotes Euler's constant

and

Further, we can represent the Le~y measure F of -p as follows:

F(A) = C- )t -1- I(t dt a(dx)=

S1 (0'-)

is j~,IA (tx)p(dt)X(dx)

where p(dt) = c- C(S )t 'edt , A(dx) = a(dx)Ia(S) Therefore, the

assumptions of Corollary 4.5 are satisfied, and we compute

R(u) = d a I/(S )u- '/

ip

%where dp = (PC )/ , and, for n > dP oLs
p p p s)

- 2/1fnn - tn(2/7 C1 )Uc( 1 ~ p
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Under the above notations, using Corollaries 4.5, 4.3(iii) and (iv), we

obtain

COROLLARY 4.6. Let 11 be a p-stable probabiiLty mea.uwe on E with the

c htz'ac~tevstic functin given by (4.5), 0 < p < 2 . Le~t
'.

l/i( n15 I/pj

Vn =d p"a(S){ 1 j - k(nJ= + x

,.'~- -- /p
( - I/p)

k(t) = nt + 1 - y - Zn (do(Sl)), p = 1
0 0 < p < l1

Then V lim Vn  exis6t a.6. and Z(V) = i FuxtheA, for 1 < p < 2 , put
n-xo

Mn d9 p1(S 1 ){ ' - k(yn } + xO

,E; n G 1

Then Mn  i. a m n~gate with ue.pec.t to 0 , n > 1
M = lir Mn N exi.ts a.6. and in Lq q ol every 0 < q < p , and (M) =

n- E

EXAMPLE: Symmetric semistable measures.

We recall that an infinitely divisible measure p on E is said to bea

(r,p)-semistable probability measure (0 < r < I, 0 < p < 2) if

,r (rI / p 0 1) for some x0 e E
x 
0

N N N
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Here, the measure a c w is defined by (a c )(B) = paIB) , B e SE ' a 0

The spectral representation of characteristic function of semistable measures

was obtained independently by Krakowiak 19] and by Raiput and Rama-Murthy [16],

which, in the symmetric case, reduces to the following:

(4.6) i (x') = exp{ r nj cos(rn/p (x',x) - lja(dx)}n=- I

* where c is a finite symmetric measure on L = {x E E: rl/P< < 11I

Since

-(x')= exp{ [cos(x',tx) - l]v(dt)a(dx)}

where v is a discrete measure concentrated on the set {r'p: n e 21.1 such that

v({rn/Pi) = r-n , n E 2Z, we conclude that (4.4) is satisfied with )X(dx)

Cl '(L)o(dx) and p(dt) = r(A)%(dt) . Now by elementary computations we obtain

R(u) = [(lr - l (L)u lip ,

Sk rk  k- 1

b where It]r = r if r < t < r In view of Corollary 4 .3(v) we get

that

* (4.7) Y Ej[(I/r - l)c-I(A)'j]. /p j- S a.s.

j=l

and in L , for every 0 < q < p , and X(S) : Vi. We have obtained a series
t

representation of semistable random vectors in the symmetric case.

Now we note that the multipliers in (4.7) are bounded both sides, up to a con-

stant multiplier, by al/P(L)Yil/P , because rt < [t] < t , t > 0 . Further,stan muliplir, b
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a p-stable limit is obtain in (4.2) when one replaces [(/r - l)c- I)3 ]r by

This, in conjunction with the contraction principle, explains

- why the moment properties of stable and semistable distributions are so

closely related. Using a different method of stochastic integeral this obser-

vation was also justified in Rosinski [20] p. 67-68 and comparisons of

moments. of stable and semistable measures were given.

.4

..

*1

.0,

.
04'2

-
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