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I. Introduction. In this paper we study the convergence and limit distribution

of the centered sums

n
(1.1) jZ] H(\j, §j) - An ’

in connection with series representations of infinitely divisible random

vectors. Here {yj} is a sequence of arrivial times in a Poisson process,

{Ej} is a sequence of i.i.d. random elements, which is independent of {Yj} ,
and H 1is a Banach space valued function.

Series representations involving arrival times in a Poisson process have
been given by Ferguson and Klass [4], for real independent increment processes
without Gaussian components. Kallenberg [8] showed the uniform convergence in
the Ferguson-Klass decomposition and Resnick [18] related the decomposition
to the well-known ItS-LéVy representation of processes with independent incre-
ments. A series representation of Hilbert space valued stable random vectors,
that generalizes the Ferguson-Klass representation of one-dimensional stable
random variables, has been established by LePage, Woodroofe and Zinn [12].
LePage [10] observed that symmetric stable random vectors can be represented
as conditionally Gaussian. This important property has been generalized and
extensively used by Marcus and Pisier [15] in their investigation of continuity
of stable processes. Marcus and Pisier's work [15] showed the significance of the
series decompositions in the study of stable probability measures on general
Banach spaces (see also [5], [2], [19] and [21]). We refer the reader to [15)
for a rigorous proof of the representation of symmetric stable vectors with
values in arbitrary Banach spaces. A generalization of the one-dimensional

Ferguson-Klass representation to the case of random vectors taking values in

Banach spaces of cotype 2 is due to LePage [11]. Since this assumption on
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o the geometry of Banach spaces is too restrictive for many interesting applications
4
‘:% of the representation (e.g. for studying the continuity of stochastic processes),
S9N .
,.:2 it is necessary to investigate series developments without any restrictions on
s
' the Banach spaces. The validity of the LePage representation for certain
}f{ symmetric infinitely divisible random vectors in general Banach spaces was
)
ufz stated by Marcus [14] (techniques similar to those of [15] can be used in that
L4
b *
i case, the general non-symmetric distributions considered here require different
JJE methods ).
ol
‘$I The main goal of the present paper is to give a simple and general scheme
1;‘ of deriving series representations of arbitrary Banach space valued infinitely
N j divisible random vectors. Our approach uses an idea of Vervaat [22] who obtained
%)
AN
*2‘ the Ferguson-Klass decomposition of positive random variables as a particular
Y
K case of a shot noise (for more information about shot noise see [22] and re-
)
,C;? ferences therein). Since only a very restricted subclass of infinitely divisible
;j_ probability measures can be represented by means of a shot noise (see Corollary
:3‘ 4.3(iii1)), we introduce and study a generalized shot nodise, which is defined
fﬁh; as the a.s. limit of the centered sums (1,1). We obtain a full characterization
Y
‘iﬁj of the convergence to a generalized shot noise in Section 2. In Section 3 we
...‘-'
‘&f‘ discuss certain special cases of the generalized shot noise and resulting
e simplifications in the centeres A . The results of Section 2 and 3 are
éi applied to derive series representations of infinitely divisible random vectors
e
SO
‘és in Section 4. This approach enables us to obtain various series represent-
igf ations, which generalize those of LePage [11], in a unified way, while avoiding
e
g:ﬁ many obscurhg details due to specific forms of the function H 1is concrete
)
el situations.
-
A
f $~i
2
N,
%
\ »
hd
e
1,
B A At e S T T e o a3 2



- WU W W SEW W EW Y

3

Finally we would like to mention something about the methods in this paper.
To determine the convergence in (1.1) we use a slight modification of the
technique previously employed by Ferguson-Klass [4] who transformed certain
dependent summand series into independent ones. The modification 1is that
we associate with (1.1) a continuous time, independent increment, stochastic
process, instead of the discrete time one, so that (1.1) is obtained by a
P

random “time substitution. This approach gives the results on the -convergeﬁce

immediately (see Corcllary 2.5), and reveals a martingale structure of the

decomposition {see Corollary 4.3(iv) and Theorem 3,1),.
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2. The convergence and distribution of a generalized shot noise.

We recall and complete some notation that will be used throughout the

paper. 1£.7. is a sequence of i,i,d, random elements taking values in a

j 3=l
measurable space (D, Z) , with the common distribution ﬁﬁ(&.) =\ . By

{N(t)} *t50 is denoted a Poisson process with parameter 1 and yJ is the jth

arrival time of N(t) , i.e. vyt inf{t > 0: N(t) =3}, 3=1, 2,

{UJ}?=1 stands for a sequence of i,i,d. uniform on (0, 1} random variables.

We assume that {£.}. are defined on the same

i3 3'§=
probability space (7, #, P} and they are mutual]y independent,

, IN(t)} t50 and {U.)%

In order to use the method of Ferguson and Klass [4] mentioned in the
Introduction we shall need the following lemma which in the case % = R can
be deduced from Lemma 2[4] and then easily extended to the case when % is
a separable Banach space. Since this lemma constitutes the first important
step of the method and also may be of independent interest, we shall give

below a straightforward and different proof in a more general case.

LEMMA 2.1. et (X, B) be a measurable veetor space and Let G: (0, «) x
D +X be a measurable map, Then the %-valued stochastic process given by

N(t)
X(t) = ZG(Y.a) y t>0,
j=1
has independent increments and

N§t)
Zix(t +s) - x(s)) = Z( G(s + tU,, £.))
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Prcg. Let FU' = o(N(s):s < t) and FLZ) < ole, ... g) . Put

: (21)  FyctheF A0 ) <k e 5V VER) for every k1)

!

f Then ﬁ?t £50 is an increasing filtration and {X(t)}t>0 is adapted to this
»

: filtration.

In order to prove that {X(t)} has independent increments it is enough

t>0
to show that o(X(t+s) - X(s)) and 7; are independent for every t, s >0 .

P ]

Let Aefr’S and B e F . We get

.0
{
¥ P{X(t+s) - X(s) e B, A} =
. (2.2) I P{X(t+s) - X(s) e B, N(s) = i , N(s+t) = i+k, A} =
. i,k>0
? i+k
. 1 P{Y 6{v,, £;) e B, N(t+s) - N(s) =k , A},
K i,k>0 j=ist ) !
f: where Ai = {N(s) = i, A} e ?é1) v ?fz) by (2.1). Since
:
N i+k i+k 1)
{ Z G('Yjs EJ) = 2 G(S + v, - Ej) ’
A j=i41 j=i4 I
\
’
3 where Y;]) is the mth arrival time in the Poisson process N(l)(u) =
{14k
.4 N(u+s) - N(s) , u > 0 , we conclude that the events A, and { 3 G(yj, Ej) € B,
- j=i#l
) N(t+s) - N(s) = k} are independent. Therefore the last expressionin (2.2) is
ﬁ equal to
L) 1+k
! Iopts alsw\), e e, N (e) - k) p(ay) -
' j=i+ J- J !
1 i k>0
: Z
4
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s i,k>0  m=) mooom !

N\ 2!

by,

o .

. k N(t)

';:: P} Gs+v;,55) € B, N(t) = kIP(A) = P{ G(s+yj,£j) € BIP(A) ,
: k>0 =1 j=1

“.‘

- which proves the independence of o(X{t+s) - X(s)) and }’s as well as the
= N(t)

P equality Z(X(t+s) - X(s)) = £( ) Gls+vy, £4)) .

¢ j=]

. In the proof of the second part of the 1emma we shall use the well-known
B

§ . . . . >

::' fact that the condtional distribution of (y1. cees YN(t)) given that

W)

::E’Z‘ N(t) = k > 1 1is equal to the distribution of (tU“). cees tU(k)) , where
! U(j) is the jth order statistic of U], covs Up o We have, for every

1)

.? B € ﬂ .

“

)

L N(t)

‘o PIX(ts) - X(s) € B} = P{ ) Gls#+yj, £5) € B} =

B j=1

.

b

"'o

o0 TR § G(s+tU, .\, £.) & B) v et -

. o | h ) B ry

J

o oo k &t

o ] PL] G(s+tU., £;) e B} (7 & =

< k=0 =1 v '

{I

)'

i A N(t)

L P{ )} 6(s+tU., £.) e B} ,

391 i’ 53

P :.:

e which completes the proof.

@, |

a LEMMA 2.2. Under the notations of Lemma 21,44 (X, 4) = (R, ﬂnl , then
L t

.',; (1) ex) = [ ety vatavau

' 0D

:{:i pravided cither cne cf the above quantities, on the Left on night side, exists;
v

'.;.:
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t .
(i) E exp[ix(t)] = exp{fo [ e an e

Paoc4. By Lemma 2.1 we get

N(t)
E X(t) = E[ 2 6(tu., £.)] =
j=

k
I E0 ] 6(tuy, £,)T(N(t)
S0 3= J

1]
P
St
—
L]

tEG(tY,, &,) t G(ts, v)Aa(dv)ds =
1 1 D

O

t
f f G(u, v)A(dv)du ,
0'’D
which gives (i). The proof of (ii) is similar.

The method of random time substitutuon will require the existence of the
1imit as t > = for almost every sample path of the associated stochastic pro-

cess. The next lemma will be useful for this purpose., Its proof is

routine and will be omitted,

LEMMA 2.3. Let {Y(t)}y o be a stcchastic process with values in a separable
metriic space and whode sample paths ate right-continuous. Then lim Y(t, @)
exdists gor a.e. w 4§ and cnby if for every increasing sequence {t }n_]

with 1im t =« , the sequence {Y(tn)}n=1 convenges a.s. .

nac




To state and prove the main result of this section we shall need some

notation that will be also used throughout this paper. E will stand for a
separable Banach space with the norm [|+|| and B, = {x e E: [x|jsr}t,

r > 0(B_ =E) . The dual of E will be denoted by E' and (x',x) =
x'(x) ,xeE" , x ek .

We recall that a measure M on '3E with M({0}) = 0 is said to be a
2

-

Lé&y measure if for every x' e E' , f ({x', x}° A 1)M(dx) < = and for some
E

(each) r e (0, =) the function ¢, defined by

TN
¢r(x') = exp{J [e1(x.,x/ -1- i(x',x}IB (x)IM(dx)} ,
E r
x' ¢ E' , is characteristic function of a probability measure on E . The
probability measure with characteristic function ¢r will be denoted by

chois(H) (see: deAcosta et al. [1]). If M is a Lévy measure and additionally

x|!M(dx) < = , respectively), then we define c_Pois(M)

I x!!
i

| e <= o
By By
(cOPois(M), respectively) as a probability measure with characteristic function

[e]

¢ (¢0 , respectively).

Llet H:(0, ) x D> E be a Borel measureable map and define a measure F
on 33E by
(2.5) F(A) = E JD IA\{O}(H(“’ v))a(dv)du , A ef?E .

Note that F({0}) = 0 . Put

fH(u, Vg (Hlu, V) (dv)du, t30 .
D 1

9,
) A

I O e s R T ot pieid



THEOREM 2.4. Lot LIS z.) - A(\n) . Then {Tn} convenges a.s. «n the

RN M
noam 0§ E if and ciby 44 F 48 a LEvy measurc cn E . Furthetr, 4§ F 4is a

[N
n 13

Levy measure and T = 1im Tn , then

n-or«

(1) = c1Pois(F)
Prooj. Let

By Lemma 2.1 {X(t) is an independent increment E-valued stochastic process

j't>0
with right-continuous sample paths. Using Lemma 2.2(ii) we get
(2.6) Zix(t)) = clpois(F(t)) ,

where

t
2.7 F9 - J[o fD (o) (Hlus VID(@V)du 4 A e B

(note that F(t)(E) =t <@,

Assume first that F 1is a Lé&y measure. Since F(t) AF as t P>,
we get

c]Pois(F(t)) = c1Pois(F) as tp @
(see deAcosta et al. Theorem1.6). Hence, by It6-Nisio Theorem ([7], Theorem 1) and (2.6),

{X(tn)}n=1 converges a.s. for each t) <t, < ... < t, > In view of Lemma

2.3 X =1im X(t) exists a.s. Clearly, f£(X) = c1Pois’F) . Now we notice




that Tn = X(\n) and Y, > = a.s. Therefore Tn >T =X a.s. as n~+>

*

which ends the proof of the sufficency part of the theorem.
Now we prove the necessity. Assume that {Tn} converges a.s. We have,

for every t ,

(2.8) Tn()er = X(8) +v(t)

where

By Markov property of {N(s)}s>0 , the random vectors X{t) and Y(t) are
independent for each t . Since TN(t)+1 > T a.s. as t->«, by (2.8)
£Z(X(t))}t>0 is relatively shift compact. In view of (2.6) and Theorem 1.6

in [1] F is a Lévy measure. The proof is complete.

COROLLARY 2.5. Llet F be a L&vy measure and ch”x”PF(dx) < = fon some

0 <p<e. Taen T T a3, and dn LE : 1

IX(t)IP < = by Corollary 3.3 in Hoffmann-

}

Pucch. Since Exxxp <o, Esup |
0<t<ee

Jgrgensen [6] . Hence
E sup ”Tnnp = E sup”X(Yn)“p < Esup X()P <,
n n O<t<e

which ends the proof. o

REMARK 2.6. Theorem 2.4, when specified to those Banach spaces for which a full

(3 I3 , 3 . ] 3 .’. -
characterization of Levy measures is known, gives definitive conditions in

terms of the function H for the a.s. convergence of {Tn} . For example, if




] ]]
E=R" or more general, if E 1is a separable Hilbert space, then

N r f (1A HH(u, v)]}z))\(dv)du < = is neccessary and sufficient for the a.s.
cgnvggence of {Tn} . Similarly, if E = P, 2 < p <, the conjunction of

the following two conditions is equivalent to the a.s. convergence of {Tn} :

N ~ .
e : |0 A e, P < -
0 /D

B and

L0 v, e 1213 (H(u, vIA(dvIdul?’? < = ,
}0 "D J 1

-
ne~1 8

o j=

)
:ﬁ' where {ej} denotes the standard basis (see [13], p.75).

P s Vs A -
RO - P

.;‘a N}
[ S M T ]
a8

.
1@

a2
(L

ParbPt

-

Ja-

4, -

h O L A FP : - S IR R L I U
AN \ ) CAL ' b T PP T PSRN (RS O LT TP A g AT T T AT
".\“ “.’x..". 'l“‘;‘ ‘w."t".".:' 0L .".l...l. GO ’ \., IO f \ L (x > {N"'.\ e NI




"

0

U }

egz

w

}% 12

: 3. Convergence in some special cases.

. 2

k-3

od

A In this section we shall discuss some interesting modifications in (1.1)
-

:' which are possible when F satisfies certain additional hypotheses.

\‘

-

o THEROREM 3.1. Assume that F , defdned bu(2.5), 4is a Levy measure on E such
&Q that [ c fxfp F(dx) < e gox seme p > 1 . Llet

Ml e -

B

N t

4 c(6) = [ [ W, vitands 120

N 0D

'-:
.. Thar

- n

RS (i) M = j£1 H(Yj, ij) - Cly) » n >V, s a mertingale with nespect te
{' O(Ys R S ’-"’:)!
= 1 n’=1 ’n

(i) Mn - M, a4, and n LE as N> =,
(i11) L(M) = c_Pois(F)

Proc§. First note that C(t) 1is well-defined as a Bochner integral. Indeed,

|rt f H(u, v)|[A(dv)du < t + ft r [H(uy V)T . (H(u, v)IA(dv)d
U, Vv vjdu < u, u, u
Jo o” | < 0 JD | %

A

v f ¢ ”prF(dx) <,
B

N(t)

Put X (t) = § H(yj, gj) - c(t) = X(t) + A(t) - C(t) , where X(t) is defined
j=1 ,

in the proof of Theorem 2.4. In the proofs of Theorem 2.4 and Corollary 2.5

we have shown that




,.,_‘
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13
X(t) > X a.s. as t -« ,

Z(X) = ¢ Pois(F) and

J Hlu, v)I _(H(u, v))rx(dv)du - -J X dF(x) ,
B
1

as t -« , we conclude that

(3.1) B sup X ()P <.
O<t<e

By Lemmas 2.1 and 2.2, {X](t)} is an independent increment process with

t>0

right continuous sample paths and EX](t) =0 . Moreover, {X](t)}t>0 is
adapted to the filtration ﬁrt}t>0 defined by (2.1) and Xl(t+s) - Xl(s) is

independent of ?; . Hence {X1(t),7}} is a martingale, By (3.1) andthe

£>0

Optional Sampling Theorem




14

form a martingale with respect to .?Y > c(yl, coes Yo Eps ey &n) and clearly
n
Mn > M = X1 a.s. and in LpE . The proof is complete.

THEOREM 3.2. Assume that F , defined by (2.5), 4is a Lévy measure such that
fB]”x“ F(dx) < = . Tihen

-

S =

n H(yj, gj) * S, 8., a8 N>,

— ~13

and

rf;;H(u, V)i T (Hu, v))A(dv)du =f [xjjFldx) <,
0°‘D 1 B,

it follows by the Dominated Convergence Theorem that
Aly ) » f x F(dx) a.s., as n >,
n
B
An appeal to Theorem 2.4 completes the proof.
The other case when the centering in (1.1) is not needed occurs when F is
symmetric. From now on {Ej}?=1 will be a sequence of i.i.d. random variables

such that P{ej =1} =1 - P{ej = -1} = % . Further, we assume that {ej} .

{Yj} and {51} are independent of each other.

O OO0
IR
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THEOREM 3.3. Assumy tiat F , dedined bu (2.5), 48 a symmetric Levy measure on

15

E . Ticen
n n v
S, = 'E £ H(yj, ij) +S_ a.s., as N o>e,
j=
and
n,
Z(s,) = c]Pois(F)
Peocs. We can write
'v 2 - n,
= I H(.Y Y i ) ’
n J:1 J J
~ v N

where £, (ej. Ej) takes values in {-1, 1} x D, H(u, v) = v]H(u, v2) .

b

u>0, V= (V1, V2) e -1, 1} x D . We have

2
(R3]
t<
—
e
g
]
~ol
) o
—
+
ol
i ol
A
X
>

Thus
Fia) - !“> f Invio) Hlw ¥)X(eV)du =
0{:1,13%D
% F(-A) + % F(A) = F(A) , A eBp,
and

t " o
O Huy VT (M, VX =0,

0 1-1,1}xo !

s ‘?-‘,'.\E‘»i't'c",-":'-‘:'a”:%‘t'F-.‘:'\"-:'\\\}?}j
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for every t > 0 . Theorem 2.4 completes the proof,

Do Z
¢

}_,: Rardom centers An = A(\n) in (1.1) provide a fine connection between

\-: .

N, the centered sums and the associated compound Poisson process. Random centers
*.':

" = C(yn) are also necessary for the martingale property in Theorem 3.1,

f: Nevertheless, it is an interesting question whether random centers can be re-
_‘_ placed by non-random ones and the a.s. convergence still would hold? We could not
» ) . . K] . - 3 -

answer this question in its full generality but under certain additional con-

j_"» ditions the answer is yes. To procede this question we begin with a lemma that
<

- is a special case of Lemma 4 in Klass and Ferguson [4]. We shall give below
-

® a short proof of this lemma and also indicate that our method can be easily
3 extended to obtain a new and short proof of Lemma 4 in [4].

Y
N
._ LEMNA 3.4. Lot g be a non-dncneasang sgquanc dntegrable function degincd o
l. (0, ‘) . T‘AL’
S rn
k. - ~glu)du = 0 a.s., as n >,

“ In
A

f.: Procd . We have

. »

o r\n
. (3.2) 1) elwidt] < gbypan) v, - |,

" n
: by the monotonicity of g , further, by the Strong Law of Large Numbers we have
)

,. with probability one:

- (3.3) g(r An) < g(3) eventually.
o
N4

2 Using Hajek-Renyi-Chow inequality [3] p. 243 we get, for every ¢ >0 ,

o’

e

[ ]
‘l.
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J‘.r.'- A P o o, S SR SRR I B .), ".A
‘MM T : Y, - N -,ﬁ_m N hJ




Bt v

. n
"N Pimax g(%) !\k -kl >e} < 6'2 2 gz(%) -0
il m<k<n k=m
L) -
Ko n
0 as m ,n-w _ Thus 9(5) [yn -nj{ ~0 a.s,, which combined with (3.2) and
:i (3.3) completes the proof.

v.

*l
- THEOREM 3.5. Asswnc that F , defdned by (2.5), 4s a L&y measure on E  such
B f.

‘ that J (HxﬁzA 1)F(dx) < = . Suppese that, for each v € D, [|H(u, v)|| 45 a
. E
”i non-dncneasding guncticn ¢4 u e (0, =) . Then
5
ﬁ; n

A iy

H(~., £.) - A -7 ,

® jél (\.J »J) (n) «
e

'1"

,::

S wiere T 48 apecddded i Thecrem 2.4,
-’

Proos Let

i 4 ] e
APl
PR

d -"0"

v

Y =A(y.) - A(n) = j\n jDH(u,v)IB](H(u,v))k(dv)du
n

o
X ot
oH

and

B e —

."4 ® ?‘;.}:‘v {'1‘.;

glu) = {jo(un(u,v)uz A 1)a(dv)} 72

o -

g 1s non- increasing,

ﬁ
J g% (u)du = J’ ([x)2 A V)F(dx) < = ,
o] E

\A"'"

and we have

v % &N o
P e

-y
Yy,

.
>

s
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by Jensen's inequality. Applying Lemma 3.4 we get Vh +0 a.s.. Theorem 2.4

completes the proof.
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. 4. Series representations of infinitely divisible random vectors.
Let F be a Borel measure on E with F({0}) = 0, We say that F admits

-
ﬁ‘j a poias decompeslticr with nespect te a Bevel set D, 0 ADcCE, if

' !
y'\
' -
r f

.5.: (4.1) F(A) = | Patx)o(x,dt)r(dx) , A € B ,

" . D - (0,=)
.;S where {c(x,-)}xeD is a measurable family of Borel measures on (0, =} and X

~P

o,

is a Borel probability measure on D . The phrase "pofar decomposition® will

A ". "- .'l . W v {.. ’,

always mean a polar decomposition with respect to the unit sphere D = S1 =

tx e £: Jx, =1,

Ei A polar decomposition of Lévy measures on Hilbert spaces and its application
N
‘ to stochastic integra’ representations of infinitely divisible processes were
fﬁf studied by Rajput and Rosinski [17], We shall show here that also Levy measures
§ <

,:ﬁ on general Banach spaces admit polar decompositions so that (4.1) can always be
') assumed. In fact, we shall prove more:

a8

N PROSITITION 4.1. Let M be a Betwed measuse on E such that M({0}) = 0 and
By

.§~ M(Bi) <w ferevery r >0, Thew M admits a polar decomposition.

> Procé. 1f F =0, then (4.1) holds trivially with p(+, *) = 0 and an

&N arbitrary A . Therefore we may assume that 0 < F(E) < » ., We shall con-

* -

k)

. struct a Borel function f: [0, =) -+ [0, =) that vanishes only at 0 and

f.‘ satisfies

)' ]

723

o ro

-— J f(,x,)F(dx) =1

::f E

&3 c

E: Let rg = infir: M(Br) =0}, 0<ry<=. Define

,

®

-

. . - . . - A
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[etM(Biu’] if 0<t<ry

o] otherwise,

To,-1 M
(1-e ) J ¢(t)dt ., f vanishes only at G and
0

Put f(u)

-, x|,
j fF(Ix)M(dx) = (1 - e O)7] j f” | ¢(t)dtM(dx) =
E Elo

Toy-1 7
(T -e %) J J o(t)I (t) M{dx)dt =
0’E (0,ix])
(- e-ro)'] froe'tdt =1
0

Define now a probability measure G on E by G(dx) = f([/x[/)M(dx) . Since

G({6}) =0, Gy © ;-] is a probability measure on Sy % (0, =) , where G0 =

NG o . L (X
G, E\io}.and v: EXIO: 5, * (0, ) is defined by u(x) CH;K  IxlD .

Let X be the marginal distribution of G0 o w'1 given by

A(B) = (6gou™ )(B x (0, =) , B €L .
0 S1
Using the well-known fact on the existence of regular conditional probabilities ‘
we get that there exists a measurable family {v(x, o}xes of probability
1

measures on (0, =) such that, for every C e 1% x(0, =)
] 1 ]

-1 o
(Goo v XC) = JS1J( ’w)lc(x,t)v(x,dt)k(dx) .

Hence, for every A € fBE |




GO = | | L(e0vxdeiex)

G(A)

which yields

F(A)

| ,
IA U Sldx) =

j | '?T¢lf7‘ Ip(tx)v(x,dt)aldx) =
S]'(O’OD [1ha

o ix,dt)

] 1 (tx) 208 5 (dx)

b S] (0’00)

Therefore (4.1) is fulfilled with p(x, dt) = Xiéif%il i

PROPOSITION 4.2. Let F be a Berel measure on E satisguing (4.1). Let, fox

each v €D,

inf{t > 0: p(v, (t, ®)) < u} ,u>0,

(4.2) R(u, v)

be the night continuous inverse of the function t » p(v, (t, @)) . Then the

gunction H defined by
H(u, v) =R(u, v)v

satisgdies (2.5).

Preof . For every A € B we have
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~ r
Jo JD IA\{O} (R(u, v)vir(dv)du =

rel”
Jotlg Tantoy (RLs vIv)dulalav) =
rm
JD[JO gy (tv)elv, dt)Ia(dv) = F(A) ,

where we utilized the fact that Leb({u > 0: R(u, v) € (t, «)}) = o(v, (t, «)) ,
t>0.

The results of sections 2 and 3 when specified to the case H(u, v) =
R(u, v}v give the following generalizations of the LePage's result ([11],

Theorem 2).

COROLLARY 4.3. let u  be an 4nfindtely divisible probability measwre on

witiout Gaussdan compenent 4. e,
(4.3) = 8,* c Pois(F) ,

where @ € E and F 43 a Levy measure, Assume that f admits a polar decom-

-

n
position (4.1) and Let R be defined by (4.2), Put Sy = 1 RCvy0 £5)E; and
| 31

t
A(t) = j J R(u,v)vIg (R(u,v)v)a(dv)du , t >0,
o ’p B

Then
(1) Sn - A(yn) convengesa.s., as np +» o , and ¢ (lim[sn’A(Yn)*°])=“' 14
/
J IxIPuldx) < @ gex some p > 0, then the convergence hofds also
E

in the LpE noam,

VSTV YT W TN TR T
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A f ’
o (ii) 14 J (Ix1°A1) F(dx) < =, then S - A(n) converges a.s., as n =+«
0% E
K and _?f(h’m[sn - A(n) + al) =
i
:5\ (iii) 1 Ix!! F(dx) < = , then S_ converges a.s., a5 n ~ = , and
'¢‘ B 170 n
$ 1
:b Zim Sn + ao) =y, where ag = a - JB xF(dx) . 1In addition,
! ()
; S, converges Ain LE provided J Hx"p (dx) < = forn some p > 0 .
[
;3
Q, (iv) 14 ( hxh <« fon some p>1, then M =S - Cly,)
K)) -

Lsammngwewdhnumuzto dYV'“’Ym Eyse-es %),

Mn converges a.s. and 4n LE s as n—>o, and Z(1im Mn + a]) = U,
whete a, = a + f xF(dx) and
1 )Bc
]

t
c(t) = J JD R(u, v) vi(dv) du , t >0 .

AR A -L'.t o Js;'}.:') ;r

0
{ I
25 (v) 14 p 4 symmetnic, then S, = .Z] ; R(YJ’ gJ)gJ converges a.s.
) J=
: v . . Y .
453 as n >« and Z(lim Sn) =y . In addition, S converges 4An |
.\ |
LX) !
X LE provided J IIx Pp (dx) < =, fon some p > 0 . !
" |
- Proof. Indeed, by. Proposition 4.2 the equality (2.5) is satisfied. Thus,
-
;S (i) follows from Theorem 2.4 and Corollary 2.5; (ii) is a consequence of
o
7 Theorem 3.5; Theorem 3.2 justifies the first part of (iii) and the second
"., [} - (]
{3: part follows from Corollary 2.5 and the observation that "A(yn)" is uniformly
.~

bounded by j x|l F(dx) ; (iv) is a corollary to Theorem 3.1; (v) follows

:5 from Theorem 3.3 and Corollary 2.5. The proof is complete.

:{J

P .

{3 A few comments are now in order. First note that Corollary 4.3(i) and (ii)

s

2 generalize LePage's Theorem 2 [11] by removing the restriction concerning the

na!

". geometry of Banach space E and in our case D is an arbitrary Borel set. This makes
Y

o the representation useful in investigation, for example, general infinitely

)

) divisible processes with sample paths in arbitrary Banach spaces. The results on the
T
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4 Lg -convergence and the martingale development given in (iv) are also new. Finally,
W B
N we note that the centering constants in LePage [11], Theorem 2, are erroneous. They
. should be assumptotically equal to A(n).
#
y The representation of n becomes simpler when a polar decomposition of
.
5 Fis of product type for some D, i.e,
‘
[ rr
o (4.4) F(A) N Ipltx)e(dt)r(dx)
, D /(0,%)
b
!'
s ‘
y: for all A eB_ . In this case, clx, *) = o(+) is the same Lévy measure
K-, for all x's .
.- LEMMA 4.4. ot F 6c a Levy measute on [ ahdch satisgies (4.4), where p 4s-
X bounded, Then J (1x:% A 1)F(dx) < o |
.
. Prcog. Let d = sup{jix;: x € D} <= ., We have
)
r
"o f f
(Ixi A 1)F(dx) = (fext? A1)
; )R Q(dt))\(dx)
K) J JD }(0!“’)
4
R
&
<f @At <o
: (O)w)
A The above Temma and Corollary 4,3(ii} give the fdi]éﬁi;mg
: COROLLARY 4.5. Let u be given by (4,3) and Let F admits decomposition (4.4)
with D bounded. Define
. Ru) = inf{t > 0: p((t, ®)) <u} ,u>0,
X
[}
(

o v o Ko }'.‘ '..1"'“"*

Whehs X W p o . X
RRUO0NGe St -"‘:' Yo, ’ ! ".o“‘-:'.1K R RS R R N O 4 ‘.o.i.u,s. OO £ DR, .,«‘l.ﬂ, oy
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R
4
|9
‘N
W
M.
4::'
) 2
IX
: @y the Rdght-contiucus averse va tie ganciden t = pllt, =)} . Then
b
-
n
.1\‘ 21 R(YJ)g\] - bn +a->T &.4., A5 n +> » .

! J=

o
L and LIT) = n, whene
v

LA hd fn f
. bn = J [R(u) J VIB(R(u)v)A(dv)]du .
‘) 0 D *
NN

Y

-'\'

%)

3 EXAMPLE: General stable distributions.

]
o Let u be a p-stable probability measure on E , 0 < p <2 . In view of
N L€vy spectral representation theorem there exists a finite Borel measure o
{f on S, and x; € E such that the characteristic function u of . can be
o written as follows:
W

»

8 ) .

G (4.5) ulx') = exp{-} |(x',x){po(dx) + iQp(o,x') + i(x',xo)} .

S

1

-

where

WA Y WA

rtan(mp/2) j [¢x',x)|Psign¢x’ ,xdaldx) , p £ 1,

- 3

& 0,x') =

b Qp( ) f

@ =2/ J (' yxden|(xtyx}|o(dx) , p =1,

g8 \ S

'~ ]

>

o

{ (for this and further facts concerning stable measures we refer the reader to

A Ty

Linde [13], Chapter 6.3). In order to obtain series representation of u we

write u in the form (4,3). Elementary computations give

9 AR @ AN A
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: / X

o - (e tp-D) oS R, L B £

o b W

PN

xg - 20=y)/mo(sx, , p=1,

4 ‘Ir Ay Ay A Ay

where cb = cos(mp/2)T(-p) , P #1 , ¢y =m/2 , Y denotes Euler's constant ,._

and -

X X, = j xa(dx)/o(8,) .

] 5

f Further, we can represent the Levy measure F of 1 as follows:

. A ! 1.
N F(A) = ¢ ] IA(tx)t =Pyt o(dx) =
S] (0 n“’)

J J IA(tx)p(dt)k(dX) R
S (0,=)

- where o(dt) = c;] o(S])t]'pdt , A(dx) = c(dx)/o(S]) . Therefore, the

assumptions of Corollary 4.5 are satisfied, and we compute
R(uj) = dpc‘l/p(sl)l.«"l/p .

where dp = (pcp)-1/p , and, for n Z,dg U(S]) .

p/(p-])[dpc]/p(s.‘)n]-]/p SIEICRI I

2/n[enn - en{2/7 o(S]))Jo(S]IYO s p =1,

HEY

Oy
N l'«.

s drkafelsananii

............



Under the above notations, using Corollaries 4.5, 4.3(iii) and (iv), we

obtain

COROLLARY 4.6. Let u be a p-stable probability measure on E with the
chawacternisiic guncticn given by (4.5), 0<p<2 . Let

]/p . n -]/p —
-V = dpc ($) )4 ) \ Ej - k(n)xo} * Xg s

J=1
whes
(1 - 1/p)e!=1/P L l<p<2
k(t) = int +1 -y - in(d1c(s])), p =1
0 s 0 <p <

Then V = 1im V  exists a.s, and L(V) = u . Funther, for 1 <p <2, put

n—ree

o 1/p L 7 T
M= dpo (sﬂ{jélyj gj k(yn)xc} +xg -

Then M 48 a martingale with nespect to °(Y1""’Yn’51""'£n) ,n>1,

M=limM exists a6, and én L3 for every 0 <q<p,and (M) =y .

no«

EXAMPLE: Symmetric semistable measures.

We recall that an infinitely divisible measure u on E is said to bea
(r,p)-semistable probability measure (G <r <1, 0<p<2) if
»7

o= (lr-]/p cu) * ¢ for some x, € £ .,
xo 0

27




SAeE

Fi ¥
- -".-.'J 2

1

S . g,'

PPy
Lakhice M

- s

4 ety
s

‘
s >

28

Here, the measure a c u 1is defined by (a ¢ u)(B) = u(a']B) , B € %E ,a#t 0.
The spectral representation of characteristic function of semistable measures
was obtained independently by Krakowiak [9] and by Rajput and Rama-Murthy [16],

which, in the symmetric case, reduces to the following:
on !
(4.6) p(x') = exp{ r" J [cos(r"/P (x',x)) - 1Joldx)} ,
L

where o 1is a finite symmetric measure on A& = {x € E: r]/p< hxl <1} .

Since

pix') = expf{ jAj(O )[cos(x‘,tx) - 1]v{dt)oldx): ,

where Vv 1is a discrete measure concentrated on the set {rn/p: n € Z} such that
v({rn/p}) =r ", neZ, we conclude that (4.4) is satisfied with X(dx) =

c'](A)a(dx) and o(dt) = o(&)v(dt) . Now by elementary computations we obtain

RGw) = [O/r - Do @WdVP

where [t]r = rk if rk <t< rk-] . In view of Corollary 4.3(v) we get
that
4.7 ? [O/r - 1)0'](A)Y J-]/p £.+S a.s
(') ,,EJ‘ jr j * D
i=1

and in L] , for every 0 <qgq<p, and Z(S) = u. We have obtained a series
:. ——

representation of semistable random vectors in the symmetric case.

Now we note that the multipliers in (4,7) are bounded both sides, up to a con-
stant multiplier, by o]/p(A)y 1/p , because rt < [t]r <t,t>0. Further,

HH
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a p-stable limit is obtain in (4.7) when one replaces [(1/r - ])c'](i)\j]r by
(1/r-1)c'](ﬁ),j.Thfs, in conjunction with the contraction principle, explains
why the moment properties of stable and semistable distributions are so

closely related. Using a different method of stochastic integeral this obser-

vation was also justified in Rosinski [20] p. 67-68 and comparisons of

moments of stable and semistable measures were given.
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