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INTRODUCTION

The objectives of this program were to study some of the
practical issues involved in developing an optical processor
based in part on outer-product multiplication of matrices,
especially with regard to detector nonuniformities. Such a
processor would be programmable, compact, fast, and would have
many applications in the processing of image and radar data,
solution of large systems of differential equations, beam forming
and nulling, and in many other electronic warfare applications as
well.

The propagation properties of light can be utilized for
signal processing and computing with large advantages over
electronic computers in terms of parallel operation. Many analog

optical processing systems have been proposed and implemented in

the past in order to perform useful linear signal processing

operations (i.e., correlation, convolution, Fourier transform,
etc.) on both one-dimensional (1-D) signals (usually in time) and
on two-dimensional (2-D) signals (in space, time, or frequency),
such as images or synthetic aperture radar data. By utilizing
the parallelism of optics, such processors have, in many cases,
achieved a large data throughput advantage over digital
computers. In most cases, they require coherent light with all
of its associated disadvantages such as poor signal-to-noise
ratio and, in some cases, interferometric tolerance requirements.
Much work has also been reported on various optical vector-
matrix and matrix-matrix multipliers for optical computing. An
advantage of these matrix multipliers is that, since their
operation does not depend on the coherence of the light source,

incoherent light can be used (except for schemes utilizing

L

acousto-optics). Linear operations on signals, such as
correlation, can be expressed in terms of the algebraic

manipulation and multiplication of matrices. Therefore, optical




matrix-matrix multipliers can also be utilized for signal
processing as well as for optical computing functions such as
matrix inversion. Such matrix processors will have an improved
signal-to-noise ratio compared to analog processors which utilize
coherent light, while still maintaining a high degree of
parallelism.

At Hughes Research Laboratories (HRL), we have developed a
method for performing optical matrix-matrix multiplication based
on the outer-product decomposition of matrices. This method
overcomes one of the main drawbacks of previously proposed
optical matrix multipliers; the need for a 2-D spatial light
modulator (SLM). By expressing the product of two matrices as a
sum of matrices, each of which is the outer-product of a row of
one matrix and a column of the other, 1-D SLMs can be used. This
greatly reduces the hardware requirements since currently
available 2-D SLMs cannot operate at the high frame rates
required and are not, in general, as highly developed as 1-D
SLMs. The addressing requirements are also reduced as compared
to an electrically addressed 2-D SLM.

An advantage of this implementation, as opposed to acousto-
optic implementations of outer-product processors, is complete
control of data clocking rates. Data can be shifted through the
processor at various rates without regard to acoustic velocities,
providing flexibility in system design. Also, our approach does
not require the use of coherent light and lenses for processing,
thus reducing size and alignment requirements.

In this Final Report, the Programmable Real-time Incoherent

Matrix Multiplier for Optical Processiﬁg (PRIMO), which is based

on outer-product decomposition, is described. PRIMO is a
versatile optical processor which can multiply two NxN matrices
in N clock cycles. In addition to matrix multiplication, PRIMO
can perform such signal processing functions as correlation,
convolution, 2-D Fourier transform, calculation of the cross-
ambiguity function for both sliding and fixed windows (dynamic

and static signals), matrix inversion, and histogram generation.
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Special attention is paid to the optimum utilization of
PRIMO algorithms for compensation of modulator and detector
nonuniformities. For example, it is shown that an algorithm
originally developed to represent bipolar and coupler numbers can
also be utilized to mitigate modulator and detector bias
nonuniformities. Optimum operating points for maximum dynamic

range and bias nonuniformity compensation are derived.
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SECTION 2
TECHNICAL DESCRIPTION OF PRIMO

2.1 MATRIX MULTIPLICATION AND THE FOURIER TRANSFORM

The basic architecture of PRIMO is illustrated in Figures 1
and 2. It is best understood by analyzing its operation for
matrix multiplication. PRIMO utilizes the principle of outer
product decomposition for optical matrix multiplication. The

product matrix C of two matrices B and A is given by
C =BA , (1)

where the ij-th element of C is given by the inner product

between the i-th row vector of B and the j-th column vector of A:

cij = % bima'mj . (2)

However, C can alsoc be written as a sum of matrices, each of
which is the outer product between a column vector of B and the
corresponding row vector of A. The principle behind an outer
product matrix multiplier is to sequentially feed the rows of
matrix B into a 1-D SLM and the corresponding columns of matrix A
into another 1-D SLM which is orthogonal to the first SLM. The
device is entirely edge-addressed. The transmission of the two
crossed 1-D SLMs during the nth clock cycle is given by the outer
product of the nth row of B and the nth column of A. The
transmitted light falls on a 2-D accumulator detector array and
summed to form the product matrix C. The multiplication of two
NxN matrices, which requires N® multiplications, is performed in
N clock cycles.

Figure 1 shows the two matrices, A and B, being fed into
PRIMO (row and column at a time, respectively). The two
orthogonally oriented 1-D SLMs consist of linear electrodes

deposited on thin electro-optic crystal slices. (Polarizers that
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are located between the electro-optic crystals have been omitted
from Figure 1 for the sake of clarity.) Since the electrodes in
each layer are linear striped, either the transverse or
longitudinal electro-optic effect can be used. During the nth
clock cycle, light incident on PRIMO is modulated in one
direction by the nth row of A and in the orthogonal direction by
the nth column of B, forming the nth outer product matrix at the
accumulator detector array, the sum of which is the product
matrix C.

Many electro-optic crystal layers can be stacked together as
shown in Figure 2. Figure 2(a) shows the basic device
configuration for matrix-matrix multiplication. By making the
layers thin, no lenses are required between the layers and an
extended incoherent light source can be used. Figure 2(b) shows
a multilayer programmable stack of 1-D electro-optic modulators
which can be used for cascaded operations and for more
complicated operations such as generation of the cross-ambiguity
function between two signals, which will be described below. V

The Fourier transform of 2-D data can be calculated by
utilizing the basic configuration of Figure 1 and Figure 2(a)
because Fourier transformation is a special case of matrix-matrix
multiplication. For example, if a 1-D Fourier transform of 2-D
data is desired, the 2-D data are placed in matrix B and the
corresponding Fourier exponential terms in matrix A of Figure 1.
The processor is then stepped through the sequence described
above for matrix multiplication. The product matrix C in the
accumulator is then the 1-D Fourier transform of matrix B. If a
2-D Fourier transform is required, then the previously calculated
C matrix values must be transferred back to the B matrix and the
processor is stepped through another sequence with a different
set of Fourier exponential terms in the A matrix which now
correspond to a 1-D Fourier transform in the orthogonal
direction. The final result in the accumulator after 2N clock
cycles will be the 2-D Fourier transform of the 2-D input data,

assuming the input array is NxN.
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2.2 CORRELATION AND THE CROSS-AMBIGUITY FUNCTION

An interesting signal processing operation, important in
radar, for example, is the calculation of the sliding window

cross-ambiguity function described by the equation

T
A(v,7) = [ G(t)F(t-T)exp(i27vt)dt , (3)

(o]

where F(t) is a continuously running signal and G(t) is a finite
reference template of length T. Correlation is a special case of
Eq. (3) for v = 0.

The PRIMO architecture for calculating the sliding window
cross-ambiguity function is shown in Figure 3. The Fourier
exponential terms are located in matrix E, the template function
G is continuously applied to one electro-optic modulator layer as
shown, and the continuously running signal F is input into an
electro-optic modulator layer that has had its rows shorted
across the entire plane. This layer can be eliminated by using a
pulsed light source modulated by F, such as an LED or laser
diode. A further advantage of using such a source is that the
detector plane can be easily shuttered during clocking of data

from one cell to the next. The PRIMO output A,, is given by

M-1

In = & £, & exp(i27l(n-m)/M) . (4)
m=0

A

The indices n, m, and 1 correspond to delay time, 7, time t,
and frequency, Vv, respectively. Equation (4) is equivalent to
Eq. (3) except that f,_, is reversed in time. This is not a |
problem so long as transconductance, g,, is also reversed.
(Convolution instead of correlation results if g, is not
reversed.) The objective is to correlate the most recent M

samples of the F function (weighted by the Fourier exponential)
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with the fixed G template. The summation is carried on the Vg
| product of the most recent M samples of the F function and the M ﬁ%
i samples of the G function. Since the E terms of the Fourier [
B exponential matrix are periodic in time with period M, they are 5:
) recirculated. In each clock period a new update for the A o
function is extracted. ;\'

The a;; terms marked on the accumulator in Figure 3 have a L
different meaning from the C;; terms of Figure 1. The a;; terms ﬁ@
are partial sums (intermediate results), and at each clock cycle N
are shifted one cell to the right and a new term added. They are ﬁ&

gradually built up to the full value of M terms and then output o
as A;;; therefore, a; y.; = A;,. This feature is a result of the ;w
sliding window nature of this particular architecture and results eé
in the real-time calculation of the cross-ambiguity function for %ﬁ
continuously running 1-D input signals. However, fixed window .
correlations and ambiguity functions for static or fixed input NN
data can also be easily implemented using the PRIMO approach. .;
The general algorithm described above can be used to _ﬁé
implement any triple product form besides the ambiguity function. o
Triple correlation or the Wigner distribution can be calculated E"
as well with a high degree of parallelism. ﬁft
":‘
2.3 FADDEEV ALGORITHM X

The Faddeev algorithm calculates the matrix form CA !B+D from T*

given matrix inputs A, B, C, and D. Important special uses are ;f
matrix inversion and multiplication, the solution of linear ~
equations and least square problems. This section describes a ;:;

PRIMO architecture for the optical implementation of the Faddeev N
algorithm by means of the Gaussian elimination or condensation ﬂﬁ
technique. The operations in PRIMO are done in parallel and the ;\:
algorithm is programmable in the sense that any of its special e&
cases can be implemented readily. \{i
R
;

11 ~
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A summary of the algorithm is shown in Figure 4. Four given
matrices A, B, C, and D are placed in a four quadrant field as
shown. The matrix A is multiplied by matrix W and the result is
added to the third quadrant field (-C); the same is done to the
second quadrant field (B) and the fourth quadrant field (D). A
Gaussian elimination procedure (explained later) is used to find
W, so that WA-C = O or W = CA"!. In this case the third quadrant

field vanishes and in the fourth quadrant one obtains
CA-'B+D ,

which includes matrix multiplications, inversion, and addition as
special cases.

In Figure 5 some particular results obtainable with the
Faddeev algorithm are shown. In the left column are shown the
input matrices that are placed in the four quadrants of the
field. By using Gaussian elimination, the outputs shown in the
right column are obtained. The output will appear in the fourth
quadrant of the field. The top entry is the general case
discussed in the previous figure. Assuming A = 1 (unity matrix),
C 1 and D
A 1 and D = 0, the matrix product of CB results, and for

B=C=1and D = 0, matrix inversion is obtainéd. It is

O, matrix inversion and multiplication result. For

important to note that one obtains the different functions merely
by changing the input data, not the system architecture;
therefore, this system is highly programmable.

Using the well-known Gaussian elimination technique and
treating the four matrices in the four quadrants as one matrix of
order 2N, one calculates terms in a new matrix with the following

formula:

1d 1d
xnew _ xold xﬁl ) x?m 5
nm  ‘nm xold ) (5)
11
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All the terms in the top row and left column of the "new" matrix
become zero. (This is easy to verify by substituting n =1 or
m=1orn=m=1 in the above expression.) Therefore the "new"
matrix is reduced to order 2N-1. If this procedure is repeated
N-1 times more, a matrix of order N given by the expression
CA-'B+D results. If during this procedure an upper left corner
term (X,,°'9) is zero, "partial pivoting," is done, which means
to exchange the first row with any other nonzero first term row,
while at the same time these two rows will also be exchanged in
the final (output) matrix. This entire procedure is familiar as
a method of solving a set of linear equations.

In Figure 6 the Faddeev algorithm and the Gaussian
elimination procedure are applied to the matrix inversion
problem. Assuming for the input data B = 1 in the first
quadrant, C = 1 in the third quadrant, and D = O in the fourth

quadrant, one obtains A”!. For example, let

o2

A=

9 4

be a given 2x2 matrix. The 4x4 input extended matrix is shown in
the lower left corner of the diagram. Using Eq. (5), the matrix
shown in the center of the diagram is calculated term by term.
The first row and the first column in the new matrix are zeros.
Applying Eq. (5) again to this 3x3 matrix, one obtains the matrix
shown in the right of the diagram. This final matrix is 2x2 and
it is the desired result A"!. It is important to note that the
variable information at each step is only of size NxN.

Therefore, one could use an NxN system and shift the information
one position north and west at each step. In addition, one would
have to temporarily store the uppermost ruow and the left most

column of the "old" matrix to calculate the terms of the "new"

matrix at each step.
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Figure 8. Matrix inversion using the Faddeev algorithm. s
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In Figure 7 the implementation of matrix inversion using Ej
Faddeev algorithm plus Gaussian elimination in the PRIMO system _
is shown. At the bottom of the system there is an (N+1)x(N+1) "

accumulator. The extra row and column (shaded in the diagram)

are used to store the uppermost row and the left most column of

the "old" matrix. The matrix to be inverted is loaded into the

accumulator in the unshaded area and is stepped one north and one

; west. In addition to the accumulator there are three active EO ?
| layers. The upper one (EO 1) is fed by the inverse of the ‘-
uppermost left term of the "old" matrix (1/X,,°'9). *E
The important advantage of the Faddeev-Gaussian procedure is
that this divisor is constant for the whole array in a given step Eg
of the transformation. This enables one to calculate the inverse -
of this term (shown in the diagram as 1/X) in a serial electronic ;3
circuit and then use the calculated value to multiply the whole
area using a "shorted" EO layer. The EO 2 is fed by the ‘s
remainder of the terms of the left most row of the "old" matrix aN
and -1 as shown in Figure 7. Similarly, the EO 3 is fed by the -
remainder of the terms of the uppermost row of the "old" matrix :
and 1. The result of the triple multiplication )
(Xpo1°'9) X10°'9)/X;,°'? is subtracted from the values stored in e
the accumulator. The information is shifted one step north and ]
one step west and the triple multiplication with the subtraction c;
is repeated. This procedure is repeated N times. At the end, -
the inverted matrix is stored in the unshaded area of the ~,
accumulator. The "zero" registers, shown next to the ¥
accumulator, will not exist in a practical system; they are shown -
here for display purposes only. In a practical system the \
accumulator will be designed in such a way that, when shifted .
north and west, zeros will enter to the bottom row and the right ;_'
most column. The pivoting circuit (not shown in the diagram)
will be activated each time zero appears in the uppermost left
pixel and the control unit will keep track of these pivotings. - }
SO
.
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In Figure 8 the implementation of the complete Faddeev .".:
algorithm plus Gaussian elimination scheme for the PRIMO system
is shown. The output of this system will be CA"!B+D. Assume
that the accumulator is of size 2Nx2N, the same as the extended
input matrix, and that it will be loaded into the accumulator. '~
The procedure is the same as in the case of matrix inversion.
First one multiplies and subtracts. Then the accumulator is
shifted one step north and one west; again multiply and subtract.
This procedure is repeated N times. The result CA~!B+D appears o
in the upper left corner of the accumulator. N

Negative and complex numbers can be handled as will be shown

in a subsequent section.

2.4 HISTOGRAM <

The generation of histograms of 1- or 2-D signals is an

-y TR T P Y Jw ¥V sy F V. ¥ §F ESNNES WS- e e e T A A T
-~
(Y]

. . . . . . "
important operation in signal and image processing. The ~

calculation of the histogram of an NxN pixel image using a serial
computer requires nxNxN operations (where n is the number of xr

levels) and is very time consuming. The level of each pixel must

b}

be compared to the n set levels. As shown in Figure 9, the

£

parallelism and edge addressing capability of PRIMO can be used
to generate the histogram of an NxN image in N clock cycles.
Two crossed, 1-D electrooptic (ED) modulator layers are !a

shown schematically at the bottom of Figure 9 with no polarizer

between them. The two E0 layers are situated between crossed f?

polarizers which results in the addition or subtraction of

signals applied to the two layers, depending on their relative E;
<

polarities. This effect is utilized as an n level comparator by

positioning a set of nxN zero or null detectors underneath the EO

e

modulators. A zero detector is activated when the voltages

applied to the two EO modulators are equal. The 2-D NxN signal

s

or image is applied one line at a time to the top EO layer. The

bottom EOQ layer is addressed by a set of n fixed (but

by

programmable) voltages which represents the n signal levels into

18
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which the pixels of the input are to be sorted. Each zero

ol

detector feeds one of n counters which keeps track of the number
of pixels in each of the n levels. Each line of the input data
is compared in parallel to the n signal levels. The histogram,

. therefore, is generated in N clock cycles.

2.5 BIPOLAR AND COMPLEX NUMBER REPRESENTATION

In incoherently illuminated optical processors, numbers are

represented by light intensities which are nonnegative quan-

=

tities. Most operations, however, involve bipolar and often

complex numbers. A bias-based time and space multiplexed method

L2

5
PRt

for representing bipolar and complex numbers and which linearizes

~

the modulator-detector response is described in this section.

S
Z 2

ne2

A shortcoming common to most optical matrix multiplication

techniques is the square law detector nonlinearity. Modulators

-

<

Lo PP
R AL

based on electro-optic crystals modulate light amplitude linearly

==

in response to an applied voltage (for voltages that are small

compared to the half-wave voltage), while most detectors respond

s

to light intensity. The detector output is therefore

P

proportional to the square of the applied voltages. For example,

v—rTr
A

the combined amplitude transmission of two stacked E0 modulator

layers with polarizers between the layers is given by

ta.t'b

sin(Aa+ ¢a)Sin(Ab+ ¢b)

= (Aa+ ¢a)rAb+ ¢b) »

@ where ¢, is the birefringent phase shift induced by voltage X and \

A, is a constant bias, which may be the result of crystal :,
# birefringence or a constant voltage bias. It is assumed above :-:
) that A, and ¢, are small enough to neglect the sine nonlinearity. ;S
E? The detector response is proportional to |[t|?, which is clearly

not proportional to the desired product, ¢,¢,.




The square law detection nonlinearity can be eliminated while Cﬁ

simultaneously allowing the representation of bipolar numbers by

introducing a bias and sequencing the data in a special way.

|
i
\
I t‘(
: The bias-based method for linear bipolar number multiplication is
i jllustrated in Figure 10. The input data, ¢,, are added to the SE
{ constant bias terms, A,. The bipolar input data, ¢,, are >
| multiplied by +1 or -1, as shown, regardless of their polarity. =
l Including the sine nonlinearity resulting from the transfer -~
E function of the electro-optic modulators, the contents of the 2
plus and minus cells of the integrating detector are proportional o
’ to -
7
; d = [sin(A_+ ¢ )sin(Ab+ ¢b)]2+ [sin(A_- ¢ )sin(Ab— ¢b)]2 )
. + a 'a a a ‘.
d_ = [sin(d_+ ¢ )sin(Ap- ¢,)]1%+ [sin(A_- ¢ )sin(B,+ ¢,)]1°
a 'a a 'a
The bipolar electrical output of the difference amplifier is
given by the difference between the contents of the plus and 7:
minus cells of the detector. (Alternatively, the difference
could be taken by convolving the output plane with a sine ;:
function of width equal to the two detector cells.) By using "
simple trigonometric identities, it can be shown that the —
amplifier output is proportional to gy
5
d = d+ - d_ = sin(2Aa)sin(ZAb)sin(2¢a)sin(2¢b) . R
-
For input data voltages that are small compared with the electro- e
optic crystal half-wave voltage, the output voltage is linearly ‘
proportional to the input data, ¢, and ¢,, and has zero bias. ?k
This technique removes the square law detection nonlinearity o I
because it eliminates all of the even order terms in the power oo
series expansion in ¢ about A of the modulator transmittance, AN
leaving only the odd order terms. An interesting point that will o a
be discussed further in the next section is that the size of the - %
% 3
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bias has no effect on the linearity for linear electrooptic

materials. The sine nonlinearity remains, but is small for input
data voltages that are small compared with the half-wave voltage.
All sources of bias are compensated to the extent that the bias
is uniform between adjacent plus and minus cells. Detector dark
current bias is compensated, as well as optical bias arising from
EQ0 crystal birefringence or incomplete polarizer extinction.

This mitigates some of the detector noise sources and increases
the effective dynamic range of the processor, as described
further in the next section.

Since the bias-based method eliminates all even order terms
in the power series expansion of the modulator transfer function,
it will also work without any changes for quadratic as well as
linear EO materials. In quadratic materials, such as some forms
of PLZT, the birefringent phase shift is proportional to the
square of the applied voltage instead of the voltage itself. For
quadratic materials, the bipolar detector output d obtained using

the bias-based method is given by

(oW
!

, = [sin(8_+ ¢a)2sin(Ab+ ¢b)2]2 + [sin(4_- ¢a)2sin(Ab— ¢b)21

a.
]

_ = [sin(A_+ ¢)%sin(A- ¢,.)21% + [sin(h- $.)%sin (8 + ;)]

d=d, -d_

+

I |
Term A Term B

The linearization of the PLZT modulator transfer function is

illustrated in Figures 11 and 12. Figure 11 shows the
unprocessed output of a quadratic PLZT modulator. The output

24
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linearized using the bias-based method is illustrated in

Figure 12 where Term A from the above equation is plotted as a
function of the signal ¢,. The output is quite linear for large
variations in ¢.

The control circuitry for the bias-based method is simple
because the data input algorithm is independent of the polarity
of the data. The data are sequenced without regard to their
polarity.

A bias-based method for linear representation of complex
multiplication is illustrated in Figure 13. It is a
straightforward extension of bipolar multiplication. The real
and imaginary parts of the data are represented as bipolar
quantities. Upon readout, the output of the difference amplifier
is first the imaginary part, d', and then the real part, d7, of

the product, given by
i i,r r ,i
" =d, - d_-= 16AaAb(¢a ¢b M ¢a. ¢b)

r r r _ r r i i
d" =d} - df = 1888, (¢, ¢ o o0,
in agreement with the definition of complex multiplication. The
real and imaginary parts of the product are obtained directly in

a convenient bipolar, linear form. The above equation assumes

$<<7/2 so that the sine nonlinearity can be neglected.
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SECTION 38

IMPACT OF PRIMO ALGORITHMS ON
DETECTOR UNIFORMITY REQUIREMENTS

The detector, signal d, can be written as

d=S+6+n |,

where S is the true signal, 6 is a bias buildup from the time

integration of both the detector dark current and residual light
leakage through the EO modulators, and n is time-dependent noise
modeled as a zero mean stochastic process with deviation 0. The

dynamic range for conventional detection is given by

d
_ _Ssat
DR = 5175
where d,,, is the saturated detector signal. Since the bias

terms are subtracted out in the bias-based technique, the
resultant theoretical dynamic range for the same conditions is

given by

d
_ sat
DR = -

The dynamic range is now limited by stochastic noise rather than
by bias buildup. In practice, the effectiveness of the bias
subtraction for the case of matrix multiplication will be limited
by variations between adjacent detector "pixels."

The equation for the detector output for linear electrooptic

materials is reproduced below.

d=d, - d_-= sin(2Aa)sin(2Ab)sin(2¢a)sin(2¢b)
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Two relevant observations can be made regarding the above ﬂ
equation. First, the bias terms appear as multiplicative factors .-
and, second, the bias terms are separable from the signal terms. .
Global variations (over distances greater than two modulator \
widths) in the bias due to spatial nonuniformities in detector ﬂ

. . A
dark current, therefore, manifest themselves as spatially varying
inaccuracies in d. The separability of the bias and signal ~
terms, however, can be exploited to compensate for the detector v
global bias variations. If A, and A, are set equal to 7/4 .

-
radians, then the multiplicative bias terms will be biased at the -~
maximum of the sine function where the derivative with respect to N

N
A is much less than 1. Small fractional variations in A will be N
transformed into much smaller fractional variations in d, thus .
providing partial compensation for spatial nonuniformities. It ;: A
is fortuitous that the optimum value of the bias for
nonuniformity compensation is also the optimum value for maximum ;I 3
signal gain. -

The analogous situation for quadratic electrooptic materials S o
is slightly more complicated. The relevant equation for d is .3
reproduced below from the previous section: .

o

¥
d=d -4d . .
-+ -—

=

~' -
_ .2 2 . 2 2 .2 2 . 2 2 ;
= [sin®(8_+ ¢_)" - sin®(A_- ¢.) ] [sin (Bp+ @07 - sin® (8- $p) ] o

| N R
| | o
Term A Term B

Ay

R

vl .8

Term A can be further simplified: W

) J
Term A = sin(4A_ ¢ ) [sin(28%)cos(2¢2) + cos(282)sin(2¢2)]

a’a a a a a > "

u':

.‘ ’

Term A is plotted in Figure 14 as a function of bias A,, -

By :
assuming ¢, is small (¢2 = 0.01 radians). In order to achieve -
the same nonuniformity compensation, a value of A, must be found .. :

.'- -
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Figure 14. Dependence of detector output on bias
for quadratic electrooptic effect using
bipolar algorithm.
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o that minimizes the derivative of Term A with respect to the bias.
s From the figure it is clear that there is one candidate value
‘ that corresponds to the maximum of Term A where the derivative is
E zero. The derivative is plotted in Figure 15. It is apparent
that there is an appreciable range of values about the zero
, derivative point where the derivative is less than one and bias
%' variations can be compensated.
:i In applications involving correlation operations where data
> are shifted every clock cycle, the pixel variations will be
b averaged. Thus we expect the dynamic range performance for
ES correlation type operations to be superior to that for matrix

multiplication in that both local and global nonuniformities can

be compensated.
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Figure 15. Derivative of Figure 14 with respect
to the bias.
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SECTION 4
SUMMARY

In this Final Report, the Programmable Real-time Incoherent
Matrix Multiplier for Optical Processing (PRIMO), which is based
on outer-product decomposition, was described. PRIMO is a
versatile processor that can multiply two NxN matrices in N clock
cycles. In addition to matrix multiplication, PRIMO can perform
such signal processing functions as correlation, convolution, 2-D
Fourier transform, calculation of the cross-ambiguity function
for both sliding and fixed windows (dynamic and static signals),
matrix inversion, and histogram generation.

It was shown that PRIMO algorithms developed for
representing bipolar and complex numbers using incoherent light
can also be utilized for compensation of modulator and detector
nonuniformities. Both linear and quadratic electrooptic effect
cases were anglyzed and optimum values for bias levels were

determined.
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