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SECTION 1

g INTRODUCTION

The objectives of this program were to study some of the

practical issues involved in developing an optical processor

based in part on outer-product multiplication of matrices,

especially with regard to detector nonuniformities. Such a

processor would be programmable, compact, fast, and would have

many applications in the processing of image and radar data,

solution of large systems of differential equations, beam forming

and nulling, and in many other electronic warfare applications as

well.

The propagation properties of light can be utilized for

signal processing and computing with large advantages over

electronic computers in terms of parallel operation. Many analog

optical processing systems have been proposed and implemented in

the past in order to perform useful linear signal processing

operations (i. e., correlation, convolution, Fourier transform,

etc.) on both one-dimensional (1-D) signals (usually in time) and
on two-dimensional (2-D) signals (in space, time, or frequency),

such as images or synthetic aperture radar data. By utilizing

the parallelism of optics, such processors have, in many cases,

achieved a large data throughput advantage over digital

computers. In most cases, they require coherent light with all

of its associated disadvantages such as poor signal-to-noise

ratio and, in some cases, interferometric tolerance requirements.

Much work has also been reported on various optical vector-

matrix and matrix-matrix multipliers for optical computing. An

advantage of these matrix multipliers is that, since their

operation does not depend on the coherence of the light source,
incoherent light can be used (except for schemes utilizing

correlation, can be expressed in terms of the algebraic

manipulation and multiplication of matrices. Therefore, optical



matrix-matrix multipliers can also be utilized for signal

processing as well as for optical computing functions such as

matrix inversion. Such matrix processors will have an improved

signal-to-noise ratio compared to analog processors which utilize

coherent light, while still maintaining a high degree of

parallelism.

At Hughes Research Laboratories (HRL), we have developed a

method for performing optical matrix-matrix multiplication based

on the outer-product decomposition of matrices. This method

overcomes one of the main drawbacks of previously proposed

optical matrix multipliers; the need for a 2-D spatial light

modulator (SLM). By expressing the product of two matrices as a

sum of matrices, each of which is the outer-product of a row of

one matrix and a column of the other, 1-D SLMs can be used. This

greatly reduces the hardware requirements since currently

available 2-D SLMs cannot operate at the high frame rates

required and are not, in general, as highly developed as 1-D

SLMs. The addressing requirements are also reduced as compared

to an electrically addressed 2-D SLM.

An advantage of this implementation, as opposed to acousto-

optic implementations of outer-product processors, is complete

control of data clocking rates. Data can be shifted through the

processor at various rates without regard to acoustic velocities,

providing flexibility in system design. Also, our approach does

not require the use of coherent light and lenses for processing,

thus reducing size and alignment requirements.

In this Final Report, the Programmable Real-time Incoherent

Matrix Multiplier for Optical Processing (PRIMO), which is based

on outer-product decomposition, is described. PRIMO is a

versatile optical processor which can multiply two NxN matrices

in N clock cycles. In addition to matrix multiplication, PRIMO

can perform such signal processing functions as correlation,

convolution, 2-D Fourier transform, calculation of the cross-

ambiguity function for both sliding and fixed windows (dynamic

and static signals), matrix inversion, and histogram generation.

2
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Special attention is paid to the optimum utilization of

PRIMO algorithms for compensation of modulator and detector

nonuniformities. For example, it is shown that an algorithm

originally developed to represent bipolar and coupler numbers can

also be utilized to mitigate modulator and detector bias

nonuniformities. Optimum operating points for maximum dynamic

range and bias nonuniformity compensation are derived.
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SECTION 2

TECHNICAL DESCRIPTION OF PRIMO

2.1 MATRIX MULTIPLICATION AND THE FOURIER TRANSFORM

The basic architecture of PRIMO is illustrated in Figures 1

and 2. It is best understood by analyzing its operation for

matrix multiplication. PRIMO utilizes the principle of outer

product decomposition for optical matrix multiplication. The

product matrix C of two matrices B and A is given by

C = BA , (1)

where the ij-th element of C is given by the inner product

between the i-th row vector of B and the j-th column vector of A:

c.. = E b. a (2)
i m im mj

However, C can also be written as a sum of matrices, each of

which is the outer product between a column vector of B and the

corresponding row vector of A. The principle behind an outer

product matrix multiplier is to sequentially feed the rows of

matrix B into a I-D SLM and the corresponding columns of matrix A

into another 1-D SLM which is orthogonal to the first SLM. The

device is entirely edge-addressed. The transmission of the two

crossed 1-D SLMs during the nth clock cycle is given by the outer

product of the nth row of B and the nth column of A. The

transmitted light falls on a 2-D accumulator detector array and

summed to form the product matrix C. The multiplication of two

NxN matrices, which requires Na multiplications, is performed in

N clock cycles.

Figure 1 shows the two matrices, A and B, being fed into
PRIMO (row and column at a time, respectively). The two

orthogonally oriented 1-D SLMs consist of linear electrodes

r deposited on thin electro-optic crystal slices. (Polarizers that

5ft
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are located between the electra-optic crystals have been omitted

from Figure 1 for the sake of clarity.) Since the electrodes in

each layer are linear striped, either the transverse or

longitudinal electro-optic effect can be used. During the nth

clock cycle, light incident on PRIMO is modulated in one

direction by the nth row of A and in the orthogonal direction by

the nth column of B, forming the nth outer product matrix at the

accumulator detector array, the sum of which is the product

matrix C. .

Many electro-optic crystal layers can be stacked together as

shown in Figure 2. Figure 2(a) shows the basic device

configuration for matrix-matrix multiplication. By making the

layers thin, no lenses are required between the layers and an

extended incoherent light source can be used. Figure 2(b) shows

a multilayer programmable stack of 1-D electro-optic modulators 1

which can be used for cascaded operations and for more *

complicated operations such as generation of the cross-ambiguity "

function between two signals, which will be described below.

The Fourier transform of 2-D data can be calculated by 7

utilizing the basic configuration of Figure 1 and Figure 2(a)

because Fourier transformation is a special case of matrix-matrix A,%

multiplication. For example, if a 1-D Fourier transform of 2-D

data is desired, the 2-D data are placed in matrix B and the

corresponding Fourier exponential terms in matrix A of Figure 1.

The processor is then stepped through the sequence described 4

above for matrix multiplication. The product matrix C in the

accumulator is then the 1-D Fourier transform of matrix B. If a

2-D Fourier transform is required, then the previously calculated

C matrix values must be transferred back to the B matrix and the

processor is stepped through another sequence with a different

set of Fourier exponential terms in the A matrix which now

correspond to a l-D Fourier transform in the orthogonal

direction. The final result in the accumulator after 2N clock

cycles will be the 2-D Fourier transform of the 2-D input data, ~

assuming the input array is NxN.

8



2.2 CORRELATION AND THE CROSS-AMBIGUITY FUNCTION

An interesting signal processing operation, important in

radar, for example, is the calculation of the sliding window

cross-ambiguity function described by the equation

T
A(v,r) = f G(t)F(t-r)exp(i27rvt)dt (3)

0

where F(t) is a continuously running signal and G(t) is a finite

reference template of length T. Correlation is a special case of

Eq. (3) for v = 0.

The PRIMO architecture for calculating the sliding window

cross-ambiguity function is shown in Figure 3. The Fourier

exponential terms are located in matrix E, the template function

G is continuously applied to one electro-optic modulator layer as

shown, and the continuously running signal F is input into an

electro-optic modulator layer that has had its rows shorted

across the entire plane. This layer can be eliminated by using a

pulsed light source modulated by F, such as an LED or laser

diode. A further advantage of using such a source is that the

detector plane can be easily shuttered during clocking of data

from one cell to the next. The PRIMO output A,, is given by

M-1

Aln = = fn_mgmexp(i 2 rl(n-m)/M) (4)

The indices n, m, and 1 correspond to delay time, r, time t,

and frequency, v, respectively. Equation (4) is equivalent to

Eq. (3) except that f,, is reversed in time. This is not a

problem so long as transconductance, g., is also reversed. L

(Convolution instead of correlation results if g. is not

reversed.) The objective is to correlate the most recent M

samples of the F function (weighted by the Fourier exponential)

9
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with the f ixed G template. The summation is carried on the

product of the most recent M samples of the F function and the M

samples of the G function. Since the E terms of the Fourier

exponential matrix are periodic in time with period M, they are

recirculated. In each clock period a new update for the A

function is extracted.

The ail terms marked on the accumulator in Figure 3 have a

different meaning from the C terms of Figure 1. The ai terms

are partial sums (intermediate results), and at each clock cycle

are shifted one cell to the right and a new term added. They are

gradually built up to the full value of M terms and then output

as Ailj; therefore, ajui = Ai.. This feature is a result of the

sliding window nature of this particular architecture and results

in the real-time calculation of the cross-ambiguity function for

continuously running 1-D input signals. However, fixed window

correlations and ambiguity functions for static or fixed input

data can also be easily implemented using the PRIUD approach.

The general algorithm described above can be used to

implement any triple product form besides the ambiguity function.

Triple correlation or the Wigner distribution can be calculated

as well with a high degree of parallelism.

2.3 FADDBBV ALGORITHM

The Faddeev algorithm calculates the matrix form 0A1'B+D from

given matrix inputs A, B, C, and D. Important special uses are
matrix inversion and multiplication, the solution of linear

equations and least square problems. This section describes a

PRIMO architecture for the optical implementation of the Faddeev

algorithm by means of the Gaussian elimination or condensation

technique. The operations in PRIMO are done in parallel and the

algorithm is programmable in the sense that any of its special

cases can be implemented readily.
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A summary of the algorithm is shown in Figure 4. Four 
given KN

matrices A, B, C, and D are placed in a four quadrant field as

shown. The matrix A is multiplied by matrix W and the result is

added to the third quadrant field (-C); the same is done to the

second quadrant field (B) and the fourth quadrant field (D). A

Gaussian elimination procedure (explained later) is used to find

W, so that WA-C = 0 or W = CA-. In this case the third quadrant

field vanishes and in the fourth quadrant one obtains

CA-B+D ,

which includes matrix multiplications, inversion, and addition as

special cases.

In Figure 5 some particular results obtainable with the

Faddeev algorithm are shown. In the left column are shown the

input matrices that are placed in the four quadrants of the

field. By using Gaussian elimination, the outputs shown in the

right column are obtained. The output will appear in the fourth

quadrant of the field. The top entry is the general case

discussed in the previous figure. Assuming A = 1 (unity matrix),

C = l and D = 0, matrix inversion and multiplication result. For

A = 1 and D = 0, the matrix product of CB results, and for

B = C = 1 and D = 0, matrix inversion is obtained. It is

important to note that one obtains the different functions merely

by changing the input data, not the system architecture;

therefore, this system is highly programmable.

Using the well-known Gaussian elimination technique and

treating the four matrices in the four quadrants as one matrix of

order 2N, one calculates terms in a new matrix with the following

formula:

xold xold
new xold n1 Im (5)
nm nm Xo ld

12
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All the terms in the top row and left column of the "new" matrix

become zero. (This is easy to verify by substituting n = 1 or

m = 1 or n = m = 1 in the above expression.) Therefore the "new"

matrix is reduced to order 2N-1. If this procedure is repeated

N-i times more, a matrix of order N given by the expression

CA-1 B+D results. If during this procedure an upper left corner

term (X1,oId) is zero, "partial pivoting," is done, which means

to exchange the first row with any other nonzero first term row,

while at the same time these two rows will also be exchanged in

the final (output) matrix. This entire procedure is familiar as

a method of solving a set of linear equations.

In Figure 6 the Faddeev algorithm and the Gaussian

elimination procedure are applied to the matrix inversion

problem. Assuming for the input data B = 1 in the first

quadrant, C = 1 in the third quadrant, and D = 0 in the fourth

quadrant, one obtains A -'. For example, let

5 3
be a given 2x2 matrix. The 4x4 input extended matrix is shown in

the lower left corner of the diagram. Using Eq. (5), the matrix

shown in the center of the diagram is calculated term by term.

The first row and the first column in the new matrix are zeros.

Applying Eq. (5) again to this 3x3 matrix, one obtains the matrix

shown in the right of the diagram. This final matrix is 2x2 and

it is the desired result A-. It is important to note that the
variable information at each step is only of size NxN.

Therefore, one could use an NxN system and shift the information

one position north and west at each step. In addition, one would ..

have to temporarily store the uppermost ruw and the left most

column of the "old" matrix to calculate the terms of the "new"

matrix at each step.

14
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MATRIX INVERSION EXAMPLE 1431-4

A 1 NW OLD XOLD XOLD

c- oxm + xO-Nn n1 1M

-10 nm n L

5 3 1 0 0 0 0 0 0 0 0 0

9 4 0 1 0 -1.4 -1.8 1 0 0 0 0

0g 1 0 -10 0 0 0 1.2007-1 0 0 0 0 0.6 0.2 0 0 0 1-0.57 0.43,
L_...... - l I I

0 -1 0 0 0 -1 0 0 0 0 1.29 071

Figure 6. Matrix inversion using the Faddeev algorithm.
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In Figure 7 the implementation of matrix inversion using

Faddeev algorithm plus Gaussian elimination in the PRIMO system

is shown. At the bottom of the system there is an (N+l)x(N+l)

accumulator. The extra row and column (shaded in the diagram)

are used to store the uppermost row and the left most column of

the "old" matrix. The matrix to be inverted is loaded into the

accumulator in the unshaded area and is stepped one north and one

west. In addition to the accumulator there are three active EO

layers. The upper one (EO 1) is fed by the inverse of the

uppermost left term of the "old" matrix (1/X1 1 d).

The important advantage of the Faddeev-Gaussian procedure is

that this divisor is constant for the whole array in a given step

of the transformation. This enables one to calculate the inverse

of this term (shown in the diagram as l/X) in a serial electronic

circuit and then use the calculated value to multiply the whole

area using a "shorted" EO layer. The EO 2 is fed by the

remainder of the terms of the left most row of the "old" matrix

and -1 as shown in Figure 7. Similarly, the EO 3 is fed by the

remainder of the terms of the uppermost row of the "old" matrix

and 1. The result of the triple multiplication

(Xo I od) (XloId)/Xl1 o1d is subtracted from the values stored in

the accumulator. The information is shifted one step north and

one step west and the triple multiplication with the subtraction

is repeated. This procedure is repeated N times. At the end,

the inverted matrix is stored in the unshaded area of the

accumulator. The "zero" registers, shown next to the

accumulator, will not exist in a practical system; they are shown

here for display purposes only. In a practical system the

accumulator will be designed in such a way that, when shifted

north and west, zeros will enter to the bottom row and the right

most column. The pivoting circuit (not shown in the diagram)

will be activated each time zero appears in the uppermost left

pixel and the control unit will keep track of these pivotings.

'
16
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In Figure 8 the implementation of the complete Faddeev

algorithm plus Gaussian elimination scheme for the PRIMO system

is shown. The output of this system will be CA-B+D. Assume

that the accumulator is of size 2Nx2N, the same as the extended

input matrix, and that it will be loaded into the accumulator.

The procedure is the same as in the case of matrix inversion.

First one multiplies and subtracts. Then the accumulator is

shifted one step north and one west; again multiply and subtract.

This procedure is repeated N times. The result CA-1 B+D appears

in the upper left corner of the accumulator.

Negative and complex numbers can be handled as will be shown

in a subsequent section.

2.4 HISTOGRAM

The generation of histograms of 1- or 2-D signals is an

important operation in signal and image processing. The

calculation of the histogram of an NxN pixel image using a serial

computer requires nxNxN operations (where n is the number of

levels) and is very time consuming. The level of each pixel must

be compared to the n set levels. As shown in Figure 9, the

parallelism and edge addressing.capability of PRIMO can be used

to generate the histogram of an NxN image in N clock cycles.

Two crossed, 1-D electrooptic (EO) modulator layers are

shown schematically at the bottom of Figure 9 with no polarizer

between them. The two EO layers are situated between crossed

polarizers which results in the addition or subtraction of

signals applied to the two layers, depending on their relative

polarities. This effect is utilized as an n level comparator by

positioning a set of nxN zero or null detectors underneath the EO

modulators. A zero detector is activated when the voltages

applied to the two EO modulators are equal. The 2-D NxN signal

or image is applied one line at a time to the top EO layer. The .

bottom EO layer is addressed by a set of n fixed (but

programmable) voltages which represents the n signal levels into

18
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which the pixels of the input are to be sorted. Each zero

detector feeds one of n counters which keeps track of the number

of pixels in each of the n levels. Each line of the input data

is compared in parallel'to the n signal levels. The histogram,

therefore, is generated in N clock cycles.

2.5 BIPOLAR AND COMPLEX NUMBER REPRESENTATION

In incoherently illuminated optical processors, numbers are

represented by light intensities which are nonnegative quan-

tities. Most operations, however, involve bipolar and often

complex numbers. A bias-based time and space multiplexed method

for representing bipolar and complex numbers and which linearizes

the modulator-detector response is described in this section.

A shortcoming common to most optical matrix multiplication

techniques is the square law detector nonlinearity. Modulators

based on electro-optic crystals modulate light amplitude linearly

in response to an applied voltage (for voltages that are small

compared to the half-wave voltage), while most detectors respond

to light intensity. The detector output is therefore

proportional to the square of the applied voltages. For example,

the combined amplitude transmission of two stacked EO modulator

layers with polarizers between the layers is given by

t =tatb 

sin(Aa+ 0a)sin(Ab+ Ob)

S(A a+0a)A b+ Ob)

where @ is the birefringent phase shift induced by voltage X and

AX is a constant bias, which may be the result of crystal ""

birefringence or a constant voltage bias. It is assumed above

that A. and 0. are small enough to neglect the sine nonlinearity.

The detector response is proportional to ItJ2, which is clearly

not proportional to the desired product, #a#b

21



The square law detection nonlinearity can be eliminated while

simultaneously allowing the representation of bipolar numbers by

introducing a bias and sequencing the data in a special way.

The bias-based method for linear bipolar number multiplication is

illustrated in Figure 10. The input data, 0., are added to the

constant bias terms, A.. The bipolar input data, 0., are

multiplied by +1 or -1, as shown, regardless of their polarity.

Including the sine nonlinearity resulting from the transfer

function of the electro-optic modulators, the contents of the

plus and minus cells of the integrating detector are proportional

to

d = [sin(Aa+ 0a)sin(&b+ Ob)] 2+ [sin(A a - Oa)sin(Ab- #b)] 2

d_ = [sin( a+ 0a)sin(A b- b) ]2 [sin( a - Oa)sin(Ab Oh)]

The bipolar electrical output of the difference amplifier is

given by the difference between the contents of the plus and

minus cells of the detector. (Alternatively, the difference

could be taken by convolving the output plane with a sine S

function of width equal to the two detector cells.) By using

simple trigonometric identities, it can be shown that the

amplifier output is proportional to

d = d+ - d_ = sin(2 Aa )sin(2Ab)sin(20a)sin(20b)

For input data voltages that are small compared with the electro- " I
optic crystal half-wave voltage, the output voltage is linearly

proportional to the input data, 0. and Ob, and has zero bias.

This technique removes the square law detection nonlinearity

because it eliminates all of the even order terms in the power :

series expansion in 0 about A of the modulator transmittance,

leaving only the odd order terms. An interesting point that will

be discussed further in the next section is that the size of the
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bias has no effect on the linearity for linear electrooptic

materials. The sine nonlinearity remains, but is small for input

data voltages that are small compared with the half-wave voltage.

All sources of bias are compensated to the extent that the bias

is uniform between adjacent plus and minus cells. Detector dark

current bias is compensated, as well as optical bias arising from

EO crystal birefringence or incomplete polarizer extinction. 7-

This mitigates some of the detector noise sources and increases

the effective dynamic range of the processor, as described

further in the next section. a

Since the bias-based method eliminates all even order terms

in the power series expansion of the modulator transfer function,

it will also work without any changes for quadratic as well as

linear EO materials. In quadratic materials, such as some forms

of PLZT, the birefringent phase shift is proportional to the

square of the applied voltage instead of the voltage itself. For

quadratic materials, the bipolar detector output d obtained using

the bias-based method is given by

d = [sin(Aa+ a) 2 Sin(Ab+ 2b) + [sin(Aa- 0.) 2sin(Ab- O5) 2 I

d_ = [sin(Aa+ a) 2 sin(Ab -  b)] 2 + [sin(A a - Oa)2sin(A2b
+ Ob ) 2  "

d=d + -d_
[i2 (+ )2 si2 2] 2 2 2 2]~

= (sin [ sin(A (sin (&b+ *b)  -sin2]b- -b) -

_____________________I I ____________________

Term A Term B

The linearization of the PUZT modulator transfer function is

illustrated in Figures 11 and 12. Figure 11 shows the

unprocessed output of a quadratic PLZT modulator. The output
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linearized using the bias-based method is illustrated in

Figure 12 where Term A from the above equation is plotted as a

function of the signal ~.The output is quite linear for large

variations in *
The control circuitry for the bias-based method is simple

because the data input algorithm is independent of the polarity

of the data. The data are sequenced without regard to their

polarity.

A bias-based method for linear representation of complex

multiplication is illustrated in Figure 13. It is a

straightforward extension of bipolar multiplication. The real

and imaginary parts of the data are represented as bipolar

quantities. Upon readout, the output of the difference amplifier

is first the imaginary part, d', and then the real part, d', of

the product, given by

d i = d - d 1 6A Ab' r + ~r I

dr r - r =16A A (r r -
d - abab)

in agreement with the definition of complex multiplication. The

real and imaginary parts of the product are obtained directly in

a convenient bipolar, linear form. The above equation assumes

0<</2so that the sine nonlinearity can be neglected.

26

%'



15807-3

LIGHT IN

-0 r

r8 a a

Oa Oa

ZL/-BIASla

0, b rb _,r ~i BIAS~b

b~ b0 ----

r di,dr

ACCUMULATOR

Figure 13. Bias-based method for complex
multiplication.

27

114111,



Wi

U-

N
"I.

A

p.
'p.

z

'-S.
'p



DSECTION 8

IMPACT OF PRIO ALGORITHMS ON
DETBCTOR UNIFORMITY REQUIREMENTS

The detector, signal d, can be written as

d = S + 6 +n ,

where S is the true signal, 6 is a bias buildup from the time

integration of both the detector dark current and residual light

leakage through the EO modulators, and n is time-dependent noise

modeled as a zero mean stochastic process with deviation a. The

dynamic range for conventional detection is given by

d satDR + a

where dst is the saturated detector signal. Since the bias

terms are subtracted out in the bias-based technique, the

resultant theoretical dynamic range for the same conditions is

given by

_ d
DR- asat

The dynamic range is now limited by stochastic noise rather than

by bias buildup. In practice, the effectiveness of the bias

subtraction for the case of matrix multiplication will be limited

by variations between adjacent detector "pixels."

The equation for the detector output for linear electrooptic

materials is reproduced below.

d ~ - d_ = sin(2 asin(2b)sin(20a)sin(20b)

29
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Two relevant observations can be made regarding the above

equation. First, the bias terms appear as multiplicative factors

and, second, the bias terms are separable from the signal terms.

Global variations (over distances greater than two modulator

widths) in the bias due to spatial nonuniformities in detector

dark current, therefore, manifest themselves as spatially varying

inaccuracies in d. The separability of the bias and signal

terms, however, can be exploited to compensate for the detector

global bias variations. If A. and Ab are set equal to w/4

radians, then the multiplicative bias terms will be biased at the

maximum of the sine function where the derivative with respect to

A is much less than 1. Small fractional variations in A will be

transformed into much smaller fractional variations in d, thus

providing partial compensation for spatial nonuniformities. It

is fortuitous that the optimum value of the bias for

nonuniformity compensation is also the optimum value for maximum

signal gain.

The analogous situation for quadratic electrooptic materials

is slightly more complicated. The relevant equation for d is

reproduced below from the previous section:

d=d + - d

2 2 .2 ( [sin2 (A 2 sin 2 (A 2]
a s (A- 0a )  2b + b )  b - b

Term A Term B

Term A can be further simplified:

Term A = sin(4AA) [sin(2A2 )cos(202+ cos(2 2)sin(20 2
a a a a) a a

Term A is plotted in Figure 14 as a function of bias A., -

assuming 0. is small (0! = 0.01 radians). In order to achieve

the same nonuniformity compensation, a value of A. must be found .. e
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that minimizes the derivative of Term A with respect to the bias. ""

From the figure it is clear that there is one candidate value

that corresponds to the maximum of Term A where the derivative is

zero. The derivative is plotted in Figure 15. It is apparent

that there is an appreciable range of values about the zero
derivative point where the derivative is less than one and bias_.=
variations can be compensated.

In applications involving correlation operations where data

are shifted every clock cycle, the pixel variations will be
averaged. Thus we expect the dynamic range performance for
correlation type operations to be superior to that for matrix

multiplication in that both local and global nonuniformities can

be compensated.
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Figure 15. Derivative of Figure 14 with respect
to the bias.
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SECTION 4

SUMMARY

In this Final Report, the Programmable Real-time Incoherent

Matrix Multiplier for Optical Processing (PRIMO), which is based

on outer-product decomposition, was described. PRIMO is a

versatile processor that can multiply two NxN matrices in N clock

cycles. In addition to matrix multiplication, PRIMO can perform

such signal processing functions as correlation, convolution, 2-D

Fourier transform, calculation of the cross-ambiguity function

for both sliding and fixed windows (dynamic and static signals),

matrix inversion, and histogram generation.

It was shown that PRIMO algorithms developed for

representing bipolar and complex numbers using incoherent light

can also be utilized for compensation of modulator and detector

nonuniformities. Both linear and quadratic electrooptic effect

cases were analyzed and optimum values for bias levels were

determined.
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