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Abstract: We examine the paths of the stable fields that are
the analogs of index-B Gaussian fields. We find
Holder conditions on their paths and find the
Hausdorff dimension of the image, graph, and level
sets when we have local nondeterminism, generalizing

the Gaussian results.
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1. INTRODUCTION

Our objective is to study the sample paths of the stable
analogs of the index-f Gaussian fields. One example of the lat-
ter is a Gaussian process with Var (X(t) -X(s)) x|t -s|2B for
some 0 <8 <1. The work of Cuzick (1978), Adler (1981), Pitt
(1978) and Geman and Horowitz (1980) have resulted in detailed
knowledge of the sample paths of these Gaussian fields. A good
reference for these results is Chapter 8 of Adler's book, where
one can find any Gaussian result we don't explicitly reference.

In Section 2 we define our terms and give some consequences
of local nondeterminism. Section 3 is concerned with Holder
conditions for the sample paths of (N,1) stable fields. Brief-
ly, the stable result does not follow the Gaussian one and we
IP
p

is a poor replacement for

give a surprising example of how |
Var(+*). We describe what we can for harmonizable, subgaussian
and moving average processes. Finally, in Section 4, we examine
(N,d) stable fields. We allow the indices of stability to be
different for different components. We find the Hausdorff di-
mension of the image, graph and level sets for classes of stable
fields, as well as show their trajectories are Jarnik functions.

gis an adequate tool for these erraticism

Perhaps surprising, |

results and there is no dependence on the index of stability.
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2. PRELIMINARIES

Points in R" will be denoted by x =(xl,..., xn), the usual
inner product by <x,y> =Exlyl and the Euclidean norm by

/e

x| =<x,x>’". The notation A= B will mean that

C(al'aZ'”')
there is a positive constant C depending on the parameters

al,az,... such that C_l <A/B <C. For s,t eIRn, s <t means

st stl for all i=1,..., n in which case [s,t] will mean the n-

dimensional rectangle H2=l[sl,tl]. Lebesgue measure on RY will
be denoted by Lebn.

If X is a symmetric p-stable r.v., 0 <p <2, then we let
(2.1) IlXHp = [-logEexp(iX)]l/p.

This is a norm (p quasi-norm if 0 <p <1l) on the space of symmet-
ric p-stable random variables. Of course I]XH% =Var (X) in the Gaus-
sian case, so one is tempted to think of ||XHS as a generaliza-
tion of the variance. It is known that for any 0 <g <p, there

is a C(p,g) >0 such that
(2.2)  Elx[? = ce,a ][]

for every symmetric p-stable r.v. X.
Let 0 <p<2 and T CIRN, then a real valued random field
X= {X(t) :t «T} is called an (N,1,p) stable field if every
finite linear combination Z?=lajx(tj) is a symmetric p-stable
r.v. Then by (2.1)
m m

i = - || P
(2.3) Eexp(ljzlajx(tj)) exp ( lggin(tj)Jp),

----------
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so |lZan(tiH|p completely determines the distribution of

(X(t),..e, Xt )). IE X(t)= [f(t)aW is the 1P stochastic integral

representation for X(t), then ||fa.X(t.) =||fa.f(t.) .

pre on for X(t), || j ( 3 Ilp || 3 3 Ile
Throughout we assume that ||X(t) - X(s)Hp-+0 as t +s, which is
equivalent to X being continuous in probability.

Points tl""' tm ¢ T are ordered if tl< t2 < ...< tm when
N

T:<IR; if Tc<cIR (N >1) we call them ordered if for every

3=2,..., m,[tj —tj _1! sltj -tkl for every k=1,..., j -1,
is closest to tj among t

i.e. In Nolan (1986)

€5 1 Loty

we used this definition of order and ||+| to define local non-

determinism (LND) for symmetric stable fields. A curious con-

sequence of LND is the following.

Lemma 2.1. Let 0<p <2 and X and Y be (N,1l,p) stable fields
on T. Assume both are LND, f{x(t)”p % o }!Y(t)Hp for all teT
1
K - ~ - -
and !|X(t) X(s)llp C2IlY(t) Y(s)Hp for all |t -s] <8, where

51 is some positive number. Then locally X and Y have equivalent

norms, i.e. there is a 62 >0 such that for any m 22,

m
szlqu(tj)Hp

11

u.X(t.) ~
j=1 J J Hp

C(m,p)

for all u;,..., u «IR and all t;,..., t T with ]ti —tjl <8,

for all i and j.

Proof: We will assume t tm are ordered. This is no loss

l'...,

of generality as there is always a permutation m of {1,..., m}

with t t ordered and the following proof works on

T(Ly"Ttt Tw(m)
this rearrangement. Letting
...... "-‘.'.".'..'.',‘.'_‘_'_‘,‘.'_‘.' A - -t a7 . . - - [ l‘_-\.. [ - . ‘./'
...... e T T T e L et e e e R N T S S
"y RS R N I S LR Sy T T T R N O R T Sy
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N m

:.3 vJ —kzjuk' then vj+l—vj=uj for j=1,..., m-1

LA SO

“ ; m

7 u.X(t.) = v, X(t,) + v. (X(t.) =X (t, .

4 JujX(e5) = v X(t)) jiz 5 (X)) —X(E5_p))

&

\J By LND,

N

‘:’.: 2.4) Tu.x (e, ) v, x (e )] ?H (X(t.) = X(
~ . u. t. bt + v. (X )= X(t.
> ( bug elly = c(m,py X5 P 422 3 ] J'l»HP
A

f‘ when tl""’ tm are close. The same argument works for Y, so the
Jd

.

i:é assumptions on the p-norms of X(t), Y(t), X(t) -X(s) and

SN

ol Y(t) -Y(s) give the result. O

'#5 In view of (2.3), one is tempted to conclude that if X and
.-.h":

:f Y satisfy this theorem, then they will have the same local

9%

{" properties. This is true in the Gaussian case, but not neces-

,%g sarily true when 0 <p <2, as we shall see in the next section.

l%ﬂ The following consequence of LND is the crucial one for

...’:

-

local time applications. Since it was not explicitly stated in

O

0.4 Nolan (1986) we present it here.
N
.7
i Lemma 2.2. Let X be a LND (N,1,p), 0 <p <2, stable field on
i - -
e compact T with joint density p(t;x) =p(t,,seee, t 3 X.irees, X))
oo 1 m 1 m
e of (X(tl),..., X(tm)). Then there is a § >0 such that if
oo
'Ej: tys---s t, are ordered, distinct, and lti —tjl < § for all i,j,
X
R P(tix) = K (m,p)J(¥)
N
e
\'.'- <
o and for any 0 <y <1,
al
b2, :
%
W
o
) "::
\~‘.' ...........

...........

X
e
o
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m
lp(tix) -p(t;y) | < Ky(mp) 1 [x; -y [J(F)
5210 3

1+2y

where
—_ m _1
= I - . .
J(t) [l)x(tln]pj=ZIIX(tj) x(t]_lnipl

Proof: The inversion formula for characteristic functions

shows
p(tix) < (2m) =~ [ [Eexp(i ] u,X(t.))[du.
R j=1 3 ]
Letting \H =22=juj as in (2.4), LND shows that there is some

5 >0 such that Iti'-tjl <§ for all i,j, implies that the inte-

grand above is bounded by

m
- - p
exp ( C(Hle(tlH|p+ jzzHVj(X(tj) X(tj_l))Hp) ).
= ‘ = — ) =
Let w, ,1x(tl)|]pvl and Wy [[X(tj) X(tj—l)”pvj for 3 =2,..., m.

(Recall that these norms are positive as part of our definition

of LND.) Some calculation shows that J(t) is precisely the
Jacobian of the transformation (ul,..., um)v+(wl,..., wm),
vielding

m

(2m)™" [ exp(-C( [ lw. DPYyT () aw
R j=1 J

IA

p(t;x)

%}m,p)J(E).

For the second part, the inversion formula yields

m
pltixrplEy) | < (2m) ’“ﬂ1~exp(—i_7, (xj—yjmj)l < |Bexp(i

u.X(t.))|du.
=1 j=1 3

1

For any 0 <y 21, the first term inside the integral is

Y Y : -
N X, =Y. u. . Letting v. be as above, u_=v_ and
-1 '%5 7yl | ]I g vy 0 =Vm

Uy =Yy mYyyp for 3=1,..., m-1 50 we can replace the uj's with




: v.'s and expand to get

N J

7 m v m ejy o
\4: H lu'l < Z H leI r {e}c{o,l,Z} .
oS j=1 I {6} 3=

g3 Using LND as above,

m
N Ip(€:%) -p(E;y) | < 2m™ 1 |x, ~y.|"
" j=1 ] 3

ely m W er

. [ I [TTX(t ) - g(t B |
p j=2 j j=-1""1p

x exp(-C(ZIle)p)J(E)dW.

Since t +||X(t)Hp is continuous on compact T, l|X(t)||p and

lx(t) - x(s)Hp are bounded, implying that for 6 =0,1 or 2,
HX(t)H;GY < constantHX(t)H;ZY,

o [1X(t) - X(s)H;eY < constant]||X(t) - X(s)H;ZY

and we can combine these terms with J(t) to get

D L _
oA lp(t:x) -p(t;y) | Sconst.J(t)l+2Y

m 0.y _
J W] Jexp(-c(§|w, ) P)aw
6} 4=1 J

x éﬁ{




3. REGULARITY FOR (N,1) FIELDS

We will examine (N,1l,p) stable fields X similar to the index-

3 Gaussian fields studied in Chapter 8 of Adler (1981). Specific-

y trte i

o ally, for all t in the interior of T and some 0 < 8 smax(l,p-l), |
ﬂ s define the two conditions:
R (3.1) Ix(e+n) - x(0)li, = o(!h|¥) as |h! +0 for all 0 <a <3.
o~
(3.2) Ih!1% = o(]|X(t+h) = X(t)f| ) as |n| v0 for all a8,
1
:ﬁ Note that we may have 8 >1 when p <1 because ||- g, not ||- p’ is
-
o subadditive. If both (3.1) and (3.2) hold, we call X an index-8
v (N,1,p) stable field. 1In this section we will examine when sample
t paths of X satisfy a uniform stochastic H6lder condition of order
b 2 on T, i.e. there is an a.s. finite, positive r.v. C(w) such
(n that whenever |h| is small and t,t +h T
~ .
o (3.3) [X(t +h) =X(t)] < C(w)|h]|™.
In the Gaussian case (3.1) implies (3.3) for every a <8
>
»,
3 and (3.2) implies (3.3) fails for every a >8. The stable Lévy
ﬁf process with B =p_l shows that the stable result cannot be as
N
. simple.
-E Theorem 3.1. Let X be an (N,1,p) stable field on compact T « RY
LN
< and 0 <p <2.
. (i) If N=1, p>1 and (3.1) holds for some 8 >p L, then (3.3)
:: is valid for every o <8. When N=1, no other values of p and B8
Pl
- are sufficient for (3.1) to imply continuous paths.
~
e
v,
"
e
Y

S R AR P L R S T Y R LN S

‘ ‘ B
.\'.‘r-\d ".‘l'

....................................................

~~~~~
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X ;

|
{J

o X .
») (1i) For N 21, (3.2) implies (3.3) fails for every o > 8.
- I
I
) Proof: (1) By compactness of T is suffices to consider
2? T‘=[0,hO] where hO is small. Using (3.1) and (2.2) we have for
..'. 4
li any 0 <g <p, any a <8
‘-"
Efx(t +h) -x(t) |9 < k|n|>9 ;
ji for |h| small. If p>1 and B >p_l then choosing o e(p-l,a) and
o~ -
» q e (x l,p), gives ag >1 and Kolmogorov's classic result guarantees
& continuous sample paths. However we need something stronger to
N
;. get the desired modulus of continuity. Theorem 1.1 of Pisier
)
o (1983), with d(t,s) =t -s|® and v(u) = |u|? gives the desired
L
_ modulus of continuity.
32 The second part of (i) comes from example (d) below.
(”‘ (ii) As in the Gaussian case, if a >3, then (3.2) shows ]
::ﬁ (X (h) —X(O))/\h\OL is a.s. unbounded as 'h| +0, so (3.3) cannot )
~ _
N hold. _
[ .
>3
Ry
) Note that the proof of part (i) is a moment argument and ap-
fi plies to qth moment processes regardless of whether they are sta-
fb ble or not. Also, this proof fails when N >1. We know of no
‘?; general result when N 21, though the value 8=p_l is always a
” lower bound as example (c) below shows. In the next section we
42 will strengthen (ii) using local times.
‘ . . P {
We now give examples to illustrate the possibilities for
)'v
S specific classes of (N,1l,p) stable fields. We will mention when }
Ly a
533 these examples are LND, both for an interesting reason here and
.‘",:‘
‘q for use in the next section. Any unreferenced statements below
;:f come from Nolan (1986).
:i
.:f
@
-.:,"
X2
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;Hﬁ (a) Harmonizable fields. Let N=21, 0<p <2, yu a finite Borel

KR

!-’!b measure on IRN, W the complex p-stable noise generated by u and
2R define

o (3.4) X(£) = Re [yexp(i<t, >)dwW(})

-.:_\' R

o W

\ .

v for t e[O,ZW]N. This gives a stationary (N,1l,p) stable field,

’l
" ’l .

i)
L

e but does not exhaust that class, e.g. Cambanis and Soltani (1983).

e Sufficient conditions for (3.1) and (3.2) to hold are respectively
R (3.5) }nr supl A [VFOP Ly +Q) <=  for all a <38,

-.':_:.'. A >0

._::.’_'

o (3.6) lim infl 2 V%P u(x +Q) >0 for all a > 8,

- ,kl-»co

N

where Q is any bounded cube [-a,al] 1in Hﬁt If both hold, then

X is an index-B (N,1l,p) stable field. If both hold and p 21,

SN then X is LND. Taking Q:=[—‘A,‘A]N, this includes random p-stable
o -

e Fourier series X(t) = Re(Ia exp(int)§ ), e.q. [an] z |n| (1+3p)

’-."

Yo for large n} implies X(t) is an index-8 p-stable process.

N when p >1, Marcus and Pisier (1984) give necessary

gfg and sufficient conditions for (3.4) to be continuous. Since

f:j (3.5) implies t(t,s) =|[X(t) - X(s)Hp < constant|t -s|% for a <8,
fzj their logarithmic metric entropy is finite, giving continuity.
?i Even more, using Theorem 1.6 of Marcus and Pisier (1984a), we
-5:. get (3.3) for every a <B. Using their notation

;%j lexp (ius)l =< constant|u|”, making

o

o [1lexp (ius)][Pdu () < =.
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Furthermore, Jq(mS) < constant § and ¢ _(1,8) <constant §

for small € >0. For [t=-s| s<h, §=1(t,s) <h, and their result

M

shows

¥i(t) =X(s)| <C(w)|n|217E)

When 0 <p <1, the finiteness of u insures the continuity of

X, see Marcus and Woyczynski (1977).

(b) Subgaussian fields. Let 0<p <2, A a positive (p/2)-stable

r.v. and Y(t) an (N,l) Gaussian field. Then X(t)==AE4Y(t) is a
subgaussian (N,1,p) stable field. It satisfies (3.1l) and/or
(3.2) if and only if Y satisfies the respective condition. It is
LND if and only if Y is. Since the sample paths of X are simply
multiples of those of Y, (3.1) implies (3.3) for every o« <8 as

in the Gaussian case.

(c) Multiparameter Lévy stable fields. Let O0<p <2, T =[0,l]N

and X(t) =W([0,t]) where W is the p-stable noise generated by

Lebesgue measure on T. When N:=1, ||X(t+h) - X(tﬂ[p= ]h[l/p,

so X is an index-(l1/p) stable process. It is also LND. In con-
trast, when N>1 and T is compact we have (3.1) for 8 =p_l, but
(3.2) fails for every B and these fields are not LND. To see the

claims about (3.1) and (3.2), we note that
X (t+h) - X(t)llg = Leb ([0,t +h] 4 (0,t]).

Taking any component of h to be zero, this is zero, so (3.2) can-
not hold. The proof of (3.1) is in the following elementary ar-

gument.

Ry "."\.'""t*'\“"""h'“'.‘-'.‘-;.
- =

’ " 1‘:( v "
‘. &),‘\- ’r m.‘.' |l "l
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For any M >0, and any t,t +h e[O,M]N, LebV([O,t +h]A[0,t]) =
R . . .
MN lN’é?hi. Let a,b eIRN have coordinates at =min(tl,tl +hl) and
b* =max(t*,t* +h’). Then (0,t +h] 5 [0,t] < [0,b] and

[0,t +h] 2~ [0,t] =[0,a}, so [O0,t+h] A[O,t] <[0,b] A[0,a]. Now

the last term is equal to UN Qi’ where

i=1
Q, = (1 (0,b7]) x (a*,b ] x ( 1 [0,b7]).
1 . . . .
J<1 J>1
Hence,

N N . i i

Leb  ([0,t +h] A [0,t]) s ] Leb (Q.) = ] (1 [b2])«|b" -a”]
. i LE L,
i=1 i=1 j#i

- ; 1 1 . 1

Of course these fields are discontinuous when 0 <p <2,
explaining the critical value of 8 =p_l in Theorem 3.1l. We note
that Ehm (1981) has derived some of the results in the next sec-
tion for these fields without LND by using a direct approach to the

integrals involved in the proocf of our Lemma 2.2.

(d) A class of moving average processes. Let 0<p <2, 0-3 <1

and set

t -1 .
(3.7) x(t) = [ 1e-2|3P eIt Mawn

- 00

for t : IR, where W is the symmetric p-stable Lévy process. For
every value of p and B, this is an index-B and LND p-stable pro-
cess. When p>1 and B > p-l, then Theorem 3.1 (i) above shows
(3.3) holds for every a <B. However, in all other cases (p <1l
or B8 Sp-l), the kernel in (3.7) is discontinuous and hence, by

Theorem 5.1 of Rosinski (1985), X(t) cannot have continuous sample

paths.
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P Looking a bit further at this example leads to an unexpected
P
= result. Let X be one of these discontinuous moving average pro-
O cesses. Take the same p and 8 and get a subgaussian process 2Z
~{: using (a) and (b) above that is index-8 and LND. Then Lemma 2.1
'ﬁz shows
) 03 Tuzeal
I Yu.x(e ) || .~ [l Tu.z(tl)
:_:~ j=lj J P C(mrp) ]=lj P
o
- locally. 1In view of (2.3) it is surprising that X is discontinu-
ous, while Z is continuous! Perhaps the lesson here is that for
-:.\:
%} reqgularity results, ||- S fails to express what Var(*) does in
ﬁ: the Gaussian case and that a Banach space approach like Rosinski
Ve
o (1985), or Marcus and Pisier (1984, 1984a) is necessary.
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4. REGULARITY AND ERRATICISM FOR (N,d) STABLE FIELDS

We will now consider stable fields having state space IRd,

i.e. X = X(t) =(Xl(t),..., Xd(t)) 1t =T _IRN}. Each component

Xi(t) will be an (N,l,pi)symmetric stable field. We allow com-
ponents to have different stability indices. This will be ab-
breviated as an (N,d,p) stable field, where §==(pl,..., py) - For
simplicity we will assume T =[0,l]N and that X has stationary in-
crements, although this is not strictly necessary for most of
these results.

Since (3.1) fails to imply uniform stochastic Holder condi-
tions on the sample paths in general, we will replace (3.1)

and (3.2) by

(4.1) X satisfies a uniform stochastic HOlder condition
of every order a <3, i.e. §"=(xl,..., 1q)
§'=(Sl,..., Bd) and component X' satisfies (3.3)

for every a. <8..
Y i B1

(4.2) For each ¥ » 2, we have simultaneously for all
components 1 =1,..., 4,
. . .
't o= L'(!Txl<t+h)—xl(t)1!p ) as 'h| +o0.

1

The results of the last section apply to each component
separately, but to study all the components together we need to
rale out degeneracy caused by too much dependence between compo-
nents. For example, if a field X has one component a scalar
multiple of another, then the image of X can be quite different
from when the components are independent. For Gaussian fields,
Cuzick (1978) gave such a condition in terms of the covari-

ance. We alter slightly our earlier definition in Nolan
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(1986). An (N,d) random field has crnaracteristic

Sunction lo2:111lu arvroximatell irnderendent components, if for

.

all m:1 there is a $=48(m) >0 and a C=C{(d,m) >0 such that for

all u,,..., u_+«®Y, and all t.,..., t_ - T with t, ~t.| <& for
1 m 1 m i j
all i and 3,
4 Toid °
_ - . > 1
(4.3) " iBexp (iC l_%‘ujx (tj))l < IEeXP(l.Z <uj,X(tj) )
i=1 )= =1
d o
< 1 Eexp(iC } uiX (t.))!.
i=1 j=1 7 ]

Clearly (4.3) holds if the components of X are independent. If the
indices Py+Pyr--.s Pg are all the same, then the techniques in
the above paper give an equivalent condition in terms of the com-

mon ]?-Wp norm.

i
we can start our analysis by looking at the Hausdorff dimen-
sion of the image and graph of X, denoted by ImX and GrX. This

result generalizes Cuzick's (1978) Theorem 1.

Theorem 4.1. Let X be an (N,d,p) stable field on [0,1]Y with

stationary increments that satisfies (4.1), (4.2) and (4.3) for

some 2 with coordinates arranged so that 0 <Bl 582 <...< Bd < 1.

d

Id if N2 ) B,
(4. 4) dim(ImX) = i=1
: ;

d+ (N-)8.)/B if N < B.,

gt d i=1 *
d a

rd + N —iilgi if N 2i£18i,
(4.5) dim(GrX) = i a a

d+ (N -.z 8.)/84 if N <'E B, -
i=1 i=1

(A

-FI

CaF
A PO
S,
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Proof: We make minor adjustments to Cuzick's proof. For both

ImX and GrX, (4.1) and real variable arguments show that the right

hand sides above are upper bounds for the respective dimensions.

The lower bound for dim(ImX) come from standard capacity argu-

ments if we can show NE| X (t) —X(0)1_kdt <o for all i <
[-lrl] :

right hand side of (4.4). As he does, substitute Yi(t) =
(Xi(t) -Xi(O))/lixi(t)— Xi(O)Hp_. Our (4.3) plays the role of

Cuzick's condition (1A) and gua;antees that the joint density of
(Yl(t),..., Yd(t)) is bounded above by a constant independent of

t. That density is, using (4.3) and |lY (&) |l =1,

Pj

_ a . . a .
pY(t;yl,..., ¥ = en ™Y Jem-i ] yuhEem | uve))d
K i=1 i=1

d oo
< constant j;i T |Eesp (icu™y (t)) |da
R i=1

d o p.
= constant [, T exp(-|jau’y" (8)}] 1) du
. D.
R 1=1 1
d 3P _
= [gqom- ] |oa| Hdu < =
R i=1

The rest of the proof follows Cuzick.

1]

It is worth noting that the result does not depend on the

indices pl,..., pd. As in the Gaussian case, the sum Z?=181

the critical value. If this is less than N, then dim(ImX) <d

is

a.s., Sso Lebd(ImX) =0 a.s. and almost every point in IRd is not
hit by X. If the sum is N or more than we can ask about hitting

points and existence of local times. The latter was done in Nolan

(1986) for stable fields, we state it here for these
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f} fields. We will say an (N,d,p) stable field is LND if the compo-

~'
o nents are individually LND and (4.3) holds.
o — N

N? Theorem 4.2. Let X be an (N,d,p) stable field on T =1{0,1] with
"t? stationary increments that is LND and satisfies (4.2) for some
V) 3. If N >Z?=181, then X has a jointly continuous local time
ffi a(x,t) that for any compact U cm? is

;“; (i) HOlder continuous in x ¢ U for any order

0 <y <min(l,((N/Z?=181) -1)/2), i.e. there is an a.s. finite

i positive r.v. Cl(w) with

c la(x,B) —a(y,B)]| < Cl(w)lx -yl

o

AT for all x,y < U and all rectangles B cT with rational vertices;
\-‘.-'

j: (ii) Holder continuous in t for any order 0 <§ <1 —(Z?lei/N),
LS i.e. there is an a.s. finite positive r.v. Cz(w) with
L‘::
L 5
L .

o 2 (x,B) < Cz(w)(LebN(B))

¥l
| - for all x = U and all rectangles B =T of sufficiently small edge
= length.

SR

'f? Proof: The (4.3) part of LND lets us generalize Lemma 2.2 to
e _ -

-:,:-' p(t;X) SKl(mrprd)J(t)

ii and

AN

e — - - - m Y=, 1+2Y

- p(t:x) -p(E:¥) | < Ky(m,p,d) T |x, -y |'T(E)

b '_—_l ] ]

N )

o . R T m

'i; where 0 <y <1, m=z21, t (tl""' tm) e T, tl,..., tm are ordered,
AN = _ = _ . d.m

X -(xl,..., xm), y-—(yl,..., ym) - (IR7)  and

...:::: o d i -
- J(t) = 1 3 (t),
. i=1
.-)‘

piel

o4

o

I Y ST A

EFl Ll
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where J' is the Jacobian term for component Xl as in Lemma 2.2.

The rest of the proof is as in sections 25-30 of Geman and Horo-

witz (1980). The only essential change is to use
_ = Ty 1H2Y -
Vi, y (B) = IfamJ(A(t)) dt

m

(where A : T > " rearranges t tm so that they are ordered)

170
instead of their V (B).
m,Yy

’

As in (30.7) of Geman and Horowitz (1980), we can strengthen
Theorem 3.1 (ii) with LND. This can be applied separately to the campon-

ents of an (N,d,p) field even when they do not satisfy (4.3).

Corollary 4.3. Let X be an (N,1,p) stable field on T =[O,l]N

that is LND and satisfies (3.2) for some 8 <1l. Then a.s. the
sample paths of X are Jarnik(a) for every a >B8, i.e. for every

t- T,

ap-lim L = 4o  a.s.
s+t 't - s

The fact that this holds at every t means much more than
Theorem 3.1 (ii)=-- it guarantees that the paths are uniformly er-
ratic.

Let X be as in Theorem 4.2 and assume (4.1) holds. Continuing
our discussion after Theorem 4.1, a natural question is how big
is the level set {t - T :X(t) =x}. Consider the open set
d

O =01(w) ={x - IR 7 (x,T) >0}. Adler (1981) shows that for each w, 0 and ImX

are essentially the same: his Theorem 8.6.1 shows ( closure(ImX)

and his Lemma 8.7.2 shows that the complement of ( is nowhere




dense in ImX. His Theorem 8.8.4 can be extended to the stable

case.

Corollary 4.4. Assume X is as in Theorem 4.2 and (4.1) holds.

Then a. s.

-1 d
dim X “(x) = N - ) B84

for all x 0.

Finally, we comment on recent results of Monrad and Pitt

(1986). Assuming 8=(8 ,...,8 ) has all components the same,

then Gaussian fields similar to those here satisfy a uniform
dimension result that strengthens Corollary 4.4: aimx () =

N - 3d + 3dimF for every closed set F c(0. The stable fields can

be dealt with in the same way if we assume (4.1). They also

show that (4.4) can be strengthened: 1f N <gd, then dimX(E) =
(dimE) /B a.s. for every closed set EcT. We do not see immediate-
ly how to generalize this when p <2. Their "strongly LND" can be
defined (the limit in the definition of LND in Nolan (1986) is in-

dependent of m), but the constant in (2.4), and hence in Lemma 2.2,

depends on m when p < 2.

.......

Pt e T e e
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