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1. INTRODUCTION

Our objective is to study the sample paths of the stable

analogs of the index-$ Gaussian fields. One example of the lat-

ter is a Gaussian process with Var(X(t) -X(s)) Z It -sl 25 for

some 0 <S 1. The work of Cuzick (1978), Adler (1981), Pitt

(1978) and Geman and Horowitz (1980) have resulted in detailed

knowledge of the sample paths of these Gaussian fields. A good

reference for these results is Chapter 8 of Adler's book, where

one can find any Gaussian result we don't explicitly reference.

In Section 2 we define our terms and give some consequences

* of local nondeterminism. Section 3 is concerned with H6ider

conditions for the sample paths of (N,l) stable fields. Brief-

*-.. -ly, the stable result does not follow the Gaussian one and we

give a surprising example of how .1 p is a poor replacement for
p

"- Var(.). We describe what we can for harmonizable, subgaussian

and moving average processes. Finally, in Section 4, we examine

(N,d) stable fields. We allow the indices of stability to be

different for different components. We find the Hausdorff di--4.

,.4' mension of the image, graph and level sets for classes of stable

fields, as well as show their trajectories are Jarnik functions.

.' Perhaps surprising, 11• lis an adequate tool for these erraticism
p

results and there is no dependence on the index of stability.

,::



2

2. PRELIMINARIES

n 1n
Points in IRn will be denoted by x = (xl,..., x ), the usual

inner product by <x,y> =Ex iy and the Euclidean norm by

X1 =<x,x> The notation AzC(al'a2,...,)B will mean that

there is a positive constant C depending on the parameters

a a 2 " .. such that C LA/B C. For s,t c IR , s < t means

i is < t for all i=,..., n in which case [s,t] will mean the n-ii mninlrcage n si ti In

dimensional rectangle n= [s ,t ]. Lebesgue measure on IR will
ii

be denoted by Leb n

If X is a symmetric p-stable r.v., 0 <p 2, then we let

(2.1) lXIP = [-logEexp(iX)] I/ p.

This is a norm (p quasi-norm if 0 <p <1) on the space of symmet-

ric p-stable random variables. Of course llXII2 =Var(X) in the Gaus-

sian case, so one is tempted to think of IxiKp as a generaliza-
p

tion of the variance. It is known that for any 0 <q <p, there

is a C(p,q) > 0 such that
at.

(2.2) E[Xj = C (p,q) X 11  c
p

' for every symmetric p-stable r.v. X.

Let 0< <p 2 and T cIRN , then a real valued random field

. X = IX(t) :t ETI is called an (N,l,p) stable field if every

finite linear combination Z m=laX(tj) is a symmetric p-stable

r.v. Then by (2.1)

m m
at. (2.3) Eexp(i [ a.X(tj)) exp(- X aX(tj)l[P,

j=l j j=lj i

@44
-I

a- *- '*~- . . . .
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. so IIla.X(t.)Hl completely determines the distribution of

(X(t) ,..., X(t) ). If X(t)= ff(t)dwis the Lp stochastic integral

representation for X(t), then lIlajX(tj ) ip I lEajf(tj) IILP
Throughout we assume that IIx(t)-x s) - 0 as t- s, which is

equivalent to X being continuous in probability.

Points tI ., t m ET are ordered if tl< t2 < ...< t when

T z IR; if T (N >1) we call them ordered if for every

j =2,..., m, jtj - tj _1 -Itj -tki for every k=l,..., j -1,

i.e. t.3_1 is closest to t.3 among tI , ..., t I . In Nolan (1986)

we used this aefinition of order and 11"11 to define local non-

determinism (LND) for symmetric stable fields. A curious con-

sequence of LND is the following.

Lemma 2.1. Let 0 <p!-2 and X and Y be (N,l,p) stable fields

on T. Assume both are LND, fiX~t)Ilp z ClI Yt) 1p for all t E T

and X(t) - X(s) 02 IcI2Y(t) - Y(s) i for all It -sI <6 where
p Cp 1

5 is some positive number. Then locally X and Y have equivalent

norms, i.e. there is a 5 >0 such that for any m -2,
. 2

m m

1"I. u.X(t.j)I II z u.Y(tj)II
'. j=l j  p C(m,p) j=l

for all ul,..., um EIR and all tl,..., tm ET with Iti -tjI < 2

for all i and j.

Proof: We will assume tl,..., t are ordered. This is no loss

of generality as there is always a permutation 7r of {m,.... ml

with t(i)'' t ordered and the following proof works on

this rearrangement. Letting

V ,

Sj%
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m
I Uk , then v +-v. =u. for j =i,..., m-i_.j k=3 +  3 3

so
m

uj =X(t = (t + v.(X(t.) -X(t )

j=2

By LND,

m
(2.4) u.X(t. )II z liv X(tl)I + XI I V. (X(t) - (tij j p (m,p) llp j=2 D

when ti , ..., t are close. The same argument works for Y, so the

assumptions on the p-norms of X(t), Y(t), X(t) -X(s) and

Y(t) -Y(s) give the result.

In view of (2.3), one is tempted to conclude that if X and

Y satisfy this theorem, then they will have the same local

properties. This is true in the Gaussian case, but not neces-

sarily true when 0 <p <2, as we shall see in the next section.

The following consequence of LND is the crucial one for

local time applications. Since it was not explicitly stated in

'. Nolan (1986) we present it here.

Lemma 2.2. Let X be a LND (N,l,p), 0 <p!<2, stable field on

compact T with joint density p(t;x) =p(tI , ..., t m; X...I xm)

of (X(tl),..., X(tm)). Then there is a 6 >0 such that ifm
til, . . . ,I t are ordered, distinct, and It -t I < 6 for all i,j,

p(t;x) < Kl(m,p)J(t)

and for any 0 <y 51,

A.
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iweeP (t; x)-p (t;y) -K 2 (m' P)m JTixj H  YJJt)+2

where

j=2  j

Proof: The inversion formula for characteristic functions

shows

(t; X) _< (2 TO-m f mIEexp(i I uj3X(tjI))Idu-.

mm

Letting v. = m u. as in (2.4), LND shows that there is some
j k=jj3

5 >0 such that Iti -tj <6 for all i,j, implies that the inte-

0 grand above is bounded by

m"-"-c IIv x(t ) + X II V (X (tj) X(tj 1) ) I Ip)P).

P j=2 i

Let wI = l X(tl) IIpv 1 and w = I X(tj)- X(tt IV. for j =2,..., m.
1 p1 J J J-1) p)v

4- (Recall that these norms are positive as part of our definition

of LND.) Some calculation shows that J(t) is precisely the

Jacobian of the transformation (u1 ,..., u ) - w . . . w),

yielding

m
- p(t;x) <-(2TO)- m  f exp(-C( 1wj3 )P)J(t)d

I .j=l

.- K(m,p) J (t).

For the second part, the inversion formula yields

m mp(t;x)p(t y - -mfll-exp(-i Y (xjy .
""j=l j=l ]

For any 0 <y < 1, the first term inside the integral is

.__n X -yj lu.K! Lettingv. be as above, u =v and
" j= i. - f j im m

U. for j . -1 so we can replace the u.'s with

04



v.'s and expand to get

M ~ m
Sj lujl ¥ <  7 IVI j y, {0} c{0,1,2}

je} j=l J

Using LND as above,

I p(t;x) -p(t;y) 1 -! (2 )-m T I xj-yj.
j=1 j

Wl _1 Y m w. 6.y
SHX(t I ) lip' j=2I X(t X (t

x exp(-C( jwj )P)J(t)dW.

Since t + Ix(t)I His continuous on compact T, IX(t) 1i and
p p

X(t)-X(s) are bounded, implying that for e =0,1 or 2,
p

.'.'." -'y _< c n t n IX (t )II- 2 y
-I X(t)l I p p

I Ilx(t) - X(s)18 < constantIIX(t) - X(s)iI p
2

p p

and we can combine these terms with J(t) to get

lp(t;x) -p(t;y) -const.J(t) +2  f I 1W.! exp(-C(lWl)P)dw

Wn{e} j=1

m
× TX -yj .
j=l j

" K2 +(m,p)J(t)'12 y m lx

2 j=1 

.?

t r j% % --
e .' - -< / ' -- - . -- . .-- . / . . .- - . . - -- -- .-- . - . - --." -.. -- .".- -- . . ---- -. "--,
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3. REGULARITY FOR (N,l) FIELDS

We will examine (N,l,p) stable fields X similar to the index-

3 Gaussian fields studied in Chapter 8 of Adler (1981). Specific-

ally, for all t in the interior of T and some 0 <2 max(1,p )

define the two conditions:

(3.1) HIX(t+ h) - X(t)I p  o(!hl O) as ihj 4-0 for all 0 <a <2.

(3.2) ihIa= o(IIX(t+ h)- X(t)i ) as hi 4- 0 for all a> .

Note that we may have B >1 when p <1 because 11 -lp, not Hi" 1 p, is
p p

subadditive. If both (3.1) and (3.2) hold, we call X an index-2

(N,l,p) stable field. In this section we will examine when sample

paths of X satisfy a uniform stochastic Hb1der condition of order

a on T, i.e. there is an a.s. finite, positive r.v. C(w) such

that whenever jhI is small and t,t +hET

(3.3) JX(t +h) -X(t) I <- C(w) Ihla.

In the Gaussian case (3.1) implies (3.3) for every a <6

and (3.2) implies (3.3) fails for every a >B. The stable L6vy

process with 2 =p shows that the stable result cannot be as

simple.
1#

Theorem 3.1. Let X be an (N,l,p) stable field on compact T EIR

and 0 <p < 2.

(i) If N =1, p >1 and (3.1) holds for some 2>p , then (3.3)

is valid for every a <2. When N =1, no other values of p and

are sufficient for (3.1) to imply continuous paths.

,J'

0 ,% " % ... ",.% . .. * .% - . - . . % . ' - ". . . . , -
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(ii) For N ->I, (3.2) implies (3.3) fails for every a > .

Proof: (i) By compactness of T is suffices to consider

T =[O,h 0] where h0 is small. Using (3.1) and (2.2) we have for

any O<q<p, any a<6

E-X(t +h) -X(t)lq Kjh[ q

for jhl small. If p >l and B >p- then choosing CE (p ,B) and

q E (-lp), gives aq >1 and Kolmogorov's classic result guarantees

continuous sample paths. However we need something stronger to

get the desired modulus of continuity. Theorem 1.1 of Pisier

(1983), with d(t,s) =It-sVl and (u) =Iulq gives the desired
0

modulus of continuity.

"* The second part of (i) comes from example (d) below.

(ii) As in the Gaussian case, if a > 3, then (3.2) shows

(X(h) -X(0))/ihl ' is a.s. unbounded as hI 0, so (3.3) cannot

hold.

Note that the proof of part (i) is a moment argument and ap-

•estqthplies to q moment processes regardless of whether they are sta-

ble or not. Also, this proof fails when N >1. We know of no

general result when N -1, though the value B=p 1 is always a

lower bound as example (c) below shows. In the next section we

will strengthen (ii) using local times.

We now give examples to illustrate the possibilities for

specific classes of (N,l,p) stable fields. We will mention when

these examples are LND, both for an interesting reason here and

for use in the next section. Any unreferenced statements below

come from Nolan (1986).

04
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(a) Harmonizable fields. Let N 1 1, 0 < p 2, a finite Borel

measure on IR N , W the complex p-stable noise generated by u and

" define

. (3.4) X(t) = Re f exp(i<t,'")dw(X)

N

for t E [0,2r] This gives a stationary (N,l,p) stable field,

but does not exhaust that class, e.g. Cambanis and Soltani (1983).

Sufficient conditions for (3.1) and (3.2) to hold are respectively

(3.5) lim suP XIN+aP4 ( +Q) < for all a <,

(3.6) lim inflX IN+aPw(X +Q) >0 for all a> B,

N N
where Q is any bounded cube [-a,a] in IR . If both hold, then

X is an index-5 (N,l,p) stable field. If both hold and p 1,

then X is LND. Taking Q= [-'/2 ,
1/2 ]N, this includes random p-stable

Fourier series X(t) = Re(a nexp(int)9n), e.g. lan t I zn- (I+3p)

for large Int implies X(t) is an index-3 p-stable process.

Wihen p -1, Marcus and Pisier (1984) give necessary

* ."and sufficient conditions for (3.4) to be continuous. Since

(3.5) implies T (t, s) IX(t) - X(s) 1p < constantit -sile for a <

their logarithmic metric entropy is finite, giving continuity.

Even more, using Theorem 1.6 of Marcus and Pisier (1984a), we

get (3.3) for every a < 3. Using their notation

-exp(iu)I I < constantlul, making

.'f exp(iu")IjPdu(u) < n.

O4
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Furthermore, J (, 5) constant 61-F- and q (T,6) constant 6l- 6

for small £ >0. For t-sj <h, 6 =r(t,s) <h, and their result

-:. c shows

Y.q Y(t) -X(s) -C (W) I h Icc(l- E )

When 0 <p <1, the finiteness of u insures the continuity of

X, see Marcus and Woyczynski (1977).

(b) Subqaussian fields. Let 0 <p <2, A a positive (p/2)-stable

r.v. and Y(t) an (N,l) Gaussian field. Then X(t) =A1AY(t) is a

subgaussian (N,l,p) stable field. It satisfies (3.1) and/or

(3.2) if and only if Y satisfies the respective condition. It is

LND if and only if Y is. Since the sample paths of X are simply

multiples of those of Y, (3.1) implies (3.3) for every ot < 3 as

in the Gaussian case.

N
(c) Multiparameter Levy stable fields. Let 0 <p < 2, T = [0,1]

and X(t) =W([0,t]) where W is the p-stable noise generated by

Lebesgue measure on T. When N :-l, jIX(t+ h)- X(t)Ilp 1h= I/ p

so X is an index-(l/p) stable process. It is also LND. In con-

trast, when N >1 and T is compact we have (3.1) for 5 =p , but

(3.2) fails for every B and these fields are not LND. To see the

claims about (3.1) and (3.2), we note that

SX(t+ h) -X (t)Ip Leb([0, t +h] A [0,t]).
p N

Taking any component of h to be zero, this is zero, so (3.2) can-

not hold. The proof of (3.1) is in the following elementary ar-

gument.



NFor any M '0, and any t,t +h [O,M] , Leb N([O,t +h]A[0,t])
MN-i IN ,IN i iti hi
M N h;. Let a,b<]R have coordinates a =min(t ,t +h ) and

.. bi tii hi
b =max(t ,t + ) Then [0,t +h] j [0,t] c [0,b] and

-" [0,t +h] [0,t] = [0,a] , so [O,t +h] A [0,t] [0,b] A [0,a] Now

Nthe last term is equal to u where

Qi = ( r (ObJ])x [ai,b I ( (E [O,bJ]).
j<i j>i

Hence,
N N

Leb ([0,t +h] A [0,t]) < L Leb (Qi ) T ( bj bi
N N1 N ji

- < MN-1 [hi < MN- Nl/2( [hi1 2 ) 1/2

Of course these fields are discontinuous when 0< p <2,

explaining the critical value of 3 =p in Theorem 3.1. We note

that Ehm (1981) has derived some of the results in the next sec-

"- tion for these fields without LND by using a direct approach to the

integrals involved in the proof of our Lemma 2.2.

(d) A class of moving average processes. Let 0 < p 2, 0 , 3 1

and set

t -l
(3.7) X(t) f It -Xj -p  e It-IdW(X)

~-00

for t IR, where W is the symmetric p-stable L6vy process. For

every value of p and B, this is an index-a and LND p-stable pro-

cess. When p >1 and 8 > p , then Theorem 3.1 (i) above shows

(3.3) holds for every a < . However, in all other cases (p:51

55v -li
or -p ), the kernel in (3.7) is discontinuous and hence, by

Theorem 5. 1 of Rosinski (1985) X(t) cannot have continuous sample

paths.

S",

-L,5
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Looking a bit further at this example leads to an unexpected

result. Let X be one of these discontinuous moving average pro-

cesses. Take the same p and B ard get a subgaussian process Z

using (a) and (b) above that is index-B and LND. Then Lemma 2.1

shows
m m
Y u IIJ X(t ) lip C(m,p) l 'j Z(tj)llp

j=I 'l

locally. In view of (2.3) it is surprising that X is discontinu-

ous, while Z is continuous! Perhaps the lesson here is that for

regularity results, flP fails to express what Var() does in
p

the Gaussian case and that a Banach soace approach like Rosinski

(1985), or Marcus and Pisier (1984, 1984a) is necessary.

J ".,

%,,",

A4

b ." ...

*5 *% S . . - .. J.~:
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4. REGULARITY AND ERRATICISM FOR (N,d) STABLE FIELDS

dWe will now consider stable fields having state space IR

1 d Ni.e. X = fX(t) =(X (t),..., X (t)) :t -T .-IRI. Each component

X (t) will be an (N,l,pi) svmmetric stable field. We allow corn-

ponents to have different stability indices. This will be ab-

breviated as an (N,d,p) stable field, where p= (Pl'..' pd). For
N

simplicity we will assume T = [0,1] and that X has stationary in-

crements, although this is not strictly necessary for most of

these results.

Since (3.1) fails to imply uniform stochastic Holder condi-

tions on the sample paths in general, we will replace (3.1)

and (3.2) by

(4.1) X satisfies a uniform stochastic Holder condition

of every order Ct <, i.e. a = (l.... Zd)

-and component X .satisfies (3.3)

for every a i <i"

(4.2) For each I > 7, we have simultaneously for all

components i =1,..., d,
•- h - xi x

h'X( (t + h) - X1 (t)l, ) as hj 0.
P.

The results of the last section apply to each component

separately, but to study all the components together we need to

rile out degeneracy caused by too much dependence between compo-

nents. For example, if a field X has one component a scalar

multiple of another, then the image of X can be quite different

from when the components are independent. For Gaussian fields,

Cuzick (1978) gave such a condition in terms of the covari-

ance. We alter slightly our earlier definition in Nolan
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(1986). An (N,d) random field has 2haatevisti

S"7 aroxi7.2te', ideprendent c'omzronents, if for

all m -1 there is a S =  (m) >0 and a C =C(d,m) >0 such that for

-'", all u I ,... , u m IR and all tI ,..., t T with !ti -t. < for

all i and j,
m m

.. d - i uiX I < mEexp(i Y ,X(tj)>)!
(4.3) - :Eexp(iC u i ei' " "j=i j=l

d m
- H Eexp(iC 7 ux(t.)) .

i=l j=l 3

. Clearly (4.3) holds if the components of X are independent. If the

indices plP2...' Pd are all the same, then the techniques in

* the above paper give an equivalent condition in terms of the com-

mon j!"l norm.

.e can start our analysis by looking at the Hausdorff dimen-

sion of the image and graph of X, denoted by ImX and GrX. This

result generalizes Cuzick's (1978) Theorem 1.

NTheorem 4.1. Let X be an (N,d,p) stable field on [0,11 with

stationary increments that satisfies (4.1), (4.2) and (4.3) for

some - with coordinates arranged so that 0 < S5 -  " -  1.

d
id if N -  7 sip

(4.4) dim-ImX)
+ (Nd d

d + (N -i)/ 8 d if N < Bit

... d d
rd +N- B Pq. if N 7 7.

(4.5) dim(GrX) =i=l i=l
* iiI "[ d d

d + (N - 7 US)/ d if N < .. 1i=l
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Proof: We make minor adjustments to Cuzick's proof. For both

ImX and GrX, (4.1) and real variable arguments show that the right

hand sides above are upper bounds for the respective dimensions.

* . The lower bound for dim(ImX) come from standard capacity argu-

ments if we can show i[_ 1 , 1 1 NEIX(t) -X(0)!- dt <- for all , <

right hand side of (4.4). As he does, substitute Y i(t) =

(xi(t) -xi(0))/Il x  ( t) - X (0) . Our (4.3) plays the role of
p.

Cuzick's condition (1A) and guarantees that the joint density of

(YCt),..., Y d(t)) is bounded above by a constant independent of

t. That density is, using (4.3) and 1 Y'(t) llp 1,

py (t;yl, .) = (2T f)d dexp(i yiu)Eexp( i 2 uY(t))du
- R i=l i=l

d
- constant id 7 JEexp(iCu'Y'(t)) du

-R i=l

9-.' i -

. constantd 'I exp( CuiYi(t) du

IR i=l

f' d {R exp ( -  I C I )du < o

The rest of the proof follows Cuzick.

It is worth noting that the result does not depend on the
.-: W.., indices PI''''' Pd' As in the Gaussian case, the sum 7ilB is

the critical value. If this is less than N, then dim(ImX) <d

a.s., so Lebd(ImX) =0 a.s. and almost every point in fRd is not

hit by X. If the sum is N or more than we can ask about hitting

points and existence of local times. The latter was done in Nolan

(1986) for stable fields, we state it here for these

.4

04 "

-" " ' . ' ."." " " " .. " ". . - " -" "' • " " . -" -. "..,. %J' , ,". ,. ''." " -" , ," ". • ,. ". ..S."." ,," "'.
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fields. We will say an (N,d,p) stable field is LND if the compo-

nents are individually LND and (4.3) holds.

N4: Theorem 4.2. Let X be an (N,d,p) stable field on T =[0,1] with

stationary increments that is LND and satisfies (4.2) for some

3. If N > i= , then X has a jointly continuous local time

a(x,t) that for any compact U cIR is

(i) H6lder continuous in x cU for any order

0 <y <min(l,((N/ =1 -1)/2), i.e. there is an a.s. finite

positive r.v. C (M) with

1a(x,B) -c(y,B) I  C l(W)Ix - y

for all x,y E U and all rectangles B cT with rational vertices;

d
(ii) H6lder continuous in t for any order 0 < 6 < 1- (Z ii/N),

i.e. there is an a.s. finite positive r.v. C2( ) with

A(x,B) -< C (w)(Leb (B))6
2 N

for all x -U and all rectangles B ;' T of sufficiently small edge

length.

Proof: The (4.3) part of LND lets us generalize Lemma 2.2 to

p(t;x) <K (m,p,d)J(t)

and

p(t;x) -p(t;y I K 2(m,p,d) 71 1 fj(t)1+2y

.''.? j=l J

where 0 <y l, m.l, t) ET m t,., tm are ordered,1'"''' d

-dd

" ' x =(xlI~? .. 'Xm)' Y= (yl''''' m - ( m and

. .-.. J(t) = .J Ji(t),
i= 1

......................................... 7
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where J is the Jacobian term for component X as in Lemma 2.2.

The rest of the proof is as in sections 25-30 of Geman and Horo-

witz (1980). The only essential change is to use

Vm (B) = fmJ(A(t))l dt
B

4

in im(where A :T _,.T rearranges ti,. t so that they are ordered)

instead of their V m,(B).

As in (30.7) of Geman and Horowitz (1980), we can strengthen

Theorem 3.1 (ii) with LND. This can be applied separately to the ccxnpon-

ents of an (N,d,p) field even when they do not satisfy (4.3).

Corollary 4.3. Let X be an (N,l,p) stable field on T =[O,liN

"*- that is LND and satisfies (3.2) for some < 1. Then a.s. the

sample paths of X are Jarnik(c) for every o > 6, i.e. for every

t T,

ap-lim iX(t) + a.s.
s -t t -s s

The fact that this holds at every t means much more than

Theorem 3.1 (ii)-- it guarantees that the paths are uniformly er-

ratic.

Let X be as in Theorem 4.2 and assume (4.1) holds. Continuing

our discussion after Theorem 4.1, a natural question is how big

is the level set {t. T :X(t) =x}. Consider the open set

x ,0() d  (x,T) > 0}. Adler (1981) shows that for each , and ImX

are essentially the same: his Theorem 8.6.1 shows 0 closure(ImX)

and his Lemma 8.7.2 shows that the complement of 0 is nowhere
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dense in ImX. His Theorem 8.8.4 can be extended to the stable

case.

Corollary 4.4. Assume X is as in Theorem 4.2 and (4.1) holds.

Then a.s.

-1 d
dim X (x) N-" i=l

for all xE 0.

Finally, we comment on recent results of Monrad and Pitt

" (1986). Assuming .( ., ) has all components the same,

then Gaussian fields similar to those here satisfy a uniform

dimension result that strengthens Corollary 4.4: dimX - (F)

N- -3d + 3dimF for every closed set F c 0. The stable fields can

be dealt with in the same way if we assume (4.1). They also

show that (4.4) can be strengthened: if N s ad, then dimX(E)

(dimE)/3 a.s. for every closed set E cT. We do not see immediate-

ly how to generalize this when p <2. Their "strongly LND" can be

defined (the limit in the definition of LND in Nolan (1986) is in-

dependent of m), but the constant in (2.4), and hence in Lemma 2.2,

- depends on m when p <2.

:4

4Z'
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