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i= l i!

= 2,.., k, where natural interpretations can be given for the p.. This
generalirzes certain results due to Dziubdziela (J. Appl. Prob. 21, 720-729
(1934)), and Hsing et al. (Technical Report No. 150, Center for Stochastic
Processes, UNC). It is further demonstrated that, with minor modification,
the'technique can be extended to study the joint limiting distribution of

tne order statristics. In particular, Theorem ] of Weisch (Ann. Math. Statist.
43, 439-446 (1972)) is generalized, and some links between the convergence

of tne order statistics and that of certain point processes are established.
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ON THE EXTREME ORDER STATISTICS FOR A STATIONARY SEQUENCE

&
by

N
N Tailen Hsing
by Texas A § M University
! . and
t\ University of North Carolina
A
~ Abstract. Suppose that {ij} is a strictly stationary sequence which
.‘l- .

satisfies the strong mixing condition. Denote by Mik) the k-th largest
" ..J
t} value of él, Eqsees En, and {un(-)} a sequence of normalizing functions
L -
-~ for which P{Mﬁl) < un(x)] converges weakly to a continuous distribution
ot
L G(x). It is shown that if for some k = 2, 3,.., P[Mﬁk) < Un(x)] converges
,i‘ for each x, then there exist probabilities Pioess Py such that
.- ; i~1 (_ i
- P[M(J) f u (x)] converges weakly to G(x)[1 + JZ (=1ogG(x)) p.] for
¢ n n i=]1 i! 1

Ll

j=2,.., k, where natural interpretations can be given for the pj. This

: generalizes certain results due to Dziubdziela (J. Appl. Prob. 21, 720-729
5: (1984)), and Hsing et al. (Technical Report No. 150, Center for Stochastic
) Processes, UNC). It is further demonstrated that, with minor modification,
~j the technique can be extended to study the joint limiting distribution of
E; the order statistics. In particular, Theorem I of Welsch (Ann. Math. Statist.
:~ 43, 439-446 (1972)) is generalized, and some links between the convergence
3 - of the order statistics and that of certain point processes are established.
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oo 1. Introduction
2 ,
~ Let tij} be a strictlv stationary sequence of random variables satisfying
MO the strong mixing condition (also known as uniform or a-mixing). For each n,
:' ’ ':' ‘ 2 n . .

N let M(l) 2 M(“) zZ ... 2 M( ) be the order statistics of £&.,..., & , and

"o n n n 1 n

) write Mn for Hﬁl> for convenience. Suppose there exist normalizing

‘N functions v n 2 1, and a continuous type distribution function G for

-

L . W w .
r. - which P[."In < vn(x)] > G(x), where - denotes weak convergence. The following

questions can be asked:

(a) Does P[Hék) < vn(x)] converge weakly for each k 2z 27

A

(b) If, for some k 2z 2, P[M(k)

N vn(x)] converges weakly, how is the

— limit characterized?

In the i.i.d. setting the answers to the above questions are well known

- (cf. Leadbetter et al. (1983)); namely for each k

v

2,

k-1 J
v ()] Y o)1 +.Z (=10gG(x))")

RE k
SRR P[.V[lg ) 4

N j=1 j!

-, . .

- where 0log0 := 0. For a dependent sequence, however, the answer to (a) is
'{.

not necessarily affirmative. Mori(1976) provides an example of ({g.} for

Ly J

A : 2

- which P[Hn < vn(x)] converges weakly, but P[Mﬁ ) < vn(x)] does not.

R

N fxploiting the ideas in Mori(1976), it is possible to construct examples to
A . A (i)

7 show that for anv fixed k 2z 2, the weak convergence of P[Mn S vn(x)],

- . . k
L l £ j £ k-1, does not in general garantee that of P[Mﬁ ) < vn(x)]. However,
-~

-
nt}f “he folinwing question is unanswered:
b) o

' - : A ry( KD

: " AUppo=e, tor some kox 3 P[Jn - vn(x)] converges weaklv,  Does
~ 3
e ) . .
f;,_ it follow that P[Méj) < vn(x)], 2 23 <2 k-1, all converge weakly’
o -.l
L2
"5}' ~ith regard 1o th) in the dependent case, two papers are relevant.
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Under certain constraints, Dziubdziela(1984) and Hsing et al.(1986) characterize

Mﬁk) s v (x)], assuming that p[nﬁk) s (0]

the limiting distribution of PJ
converges weakly for each k. In view of the examples mentioned in the
previous paragraph, their studies, though useful, are not sufficient to answer
(b).

In this paper some problems connected with the above (a') and (b) are
considered. First, in section 2, we briefly discuss the assumptions stated
earlier, and prove a technical lemma. We then study in section 3, for any
fixed k, the necessary and sufficient conditions for P[Mﬁk) s vn(x)] to
have a limiting distribution. There answers to both (a') and (b) are
obtained. It is seen in section 4 that the method in section 3 can be extended
to study the limit of P[Mﬁl) pS vn(x), Mgk) < vn(y)] for any fixed k, and,
in particular, a resuit in Welsch(1972) is generalized. Finally, in section 5,

we discuss the connection of the convergence of the order statistics and that

of certain point processes which were studied in Hsing(1985) and Hsing et al.

(1986).
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2. Preliminaries

To avoid repeated reference, assume without further mention that the
conditions in first paragraph of section 1 hold throughout the paper. It is

known that the strong mixing condition is often too stringent for the purpose

of extremal theory. Nevertheless it is technically convenient, and to replace
it by a more appropriate mixing condition is now considered straightforward
(cf. Leadbetter et al.(1983), and Hsing et al.(1986)). That G 1is continuous
is hardly a restriction; it is the case if, say, G 1is of extreme value tvpe

(cf. Leadbetter et al.(1983)). Under this assumption, there exist normalizing

functions u for which

-T
un(T)] =e , 1T>0,

A

lim P[M
n

Ja o]

For notational convenience we shall throughout work exclusively with up
For later reference, we state without proof the following lemma which is a

version of some well-known results (cf. Loynes(1965) and Leadbetter et al.(1983)).

Lemma 2.1 For each ¢ >0 and 71 > 0,

1im P[M un(or)] = e_OT,

n-»oo [ ]

173}

WA
A

U] = lim P(M_ u{%](l')] = Lim P[M_

wnere, here and hereafter, [y] denotes the integer part of y. Thus it follows

that if G, < Oy u[n/gﬂ(T) > Un(OZT) and un(olr) > un(ozr) for all

sufficientlv large n.

[t is of interest to consider whether parallels of Lemma 2.1 exist for order

statistics other than the maximum., The following lemma solves this problem.

Lemma 2.2 Suppore for some k 2 2, 1 >0, and o > g, > 1, either
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(k)
P[J[Jn]

A

P[Mﬁk)

A

un(T)] or un(or)] converges for each O 1in (OQ, Ou).

The for each ¢ 1in (02, Ou), 11m P[M %O)] S un(T)] = 11m P[M ( ) g un(OT)].

|
|
Proof First assume that P[Mﬁk) S un(or)] converges for each o in (OQ’ Ou). J
For ¢ and o' with 0y <O < g'«< 0,
limsup P[W( )< u_(1)] = limsup P[M(k? , S u (T ]
(2.1) n- [O' ] n -0 [c'[n/c']] [n/c"]

- linsup prutt) < 8(n/gr (O] € Lim M) 5 u (o)),

Here the first equality follows from the identity {n: n 2 1} = {[n/c']: n 2 1},

the second equality holds since 0 $n - [¢'[n/0']] £ ¢' and P[M[o'] >

[n/* ](T)] 0, and the inequality follows from Lemma 2.1. Similarly, for
¢ and 0" with o, <¢" <0< o0,

') u
2.2y 1iminf P15 () g u ()] 2 1im P £y (o)1,
n-+>x [ ] n N-sco n n
By (2.1) and (2.2), for ¢ and o0,, 1 2i 54, with 0, <0, <0, <0<g, <
i 2 1 2 3

s, <o,

4 u

- (k) . < 14 ulk) - < (k)
I;Tiup P[W[O n] = un(T)] < éig P[IVIn < un(O3T)] < %ig P[M B un(OT)]

< ( k ) < < - s ( k ) < 1

s %ig P[M 3 un(OZT)] < 1é2inf P[M[Oln] < Un(T)j-
But

liminf P{M (k) s u (T)] - lxmsup P[W(k) su (1)]
n-+oo [ g l n ] [ 4 ] n
. (k) y{k)
< N < <
< léEiUP (P[J[Oln] s u (T)] P[M [O n] = un(T)])
. . -(0,-0.)T
s lim P[M > ]l =1- 4 71
ren "o -0 pa) 7 (D] °
which tends to zero if 04 - Ol + 0. This shows that llm P[W(k) su (-T)] is
continuous at 3. Since for 7, 0], and O, with ©, < 31 <o <o)<,
2 % 2 u
4
....... '.._4'._'. R A .. _‘.-,'_# PR AR S Sl t'-"-‘:’--:' NSRS .‘..::. ,’:‘-_».:'_.’\'," }(" WA "-J .;’. PRIN --, .- . . _.:
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(k)

n-w n n' 1l n->wo

liminr P[M%gz] $u (1)] s limsup P[WEk)]

n N>

lim P[M

#A
(o
—~
Q
—{
~
A

A

un(T)]

WA

lim P[\I(k) s u(0,7)]

¢

by (2.1) and (2.2), it is easilyv seen that P[M(k) g un(r)] converges and has

[on]
. . (k)
the same limit as does P[Mn

(k) . .
N ‘
Suppose now P[A[On] < un(T)] converges for each 0 in (OQ, Ou). Using

z un(OT)].

arguments similar to the ones in getting (2.1) and (2.2), it can be seen that

for o, Ol’ and 02 with 02 < Ol < g < 02 < Ou,

. (k) (k) . (k)
b <
iig P[j[ozn] < un(T)] < léménf P[W = un(OT)] < léTiUP P[Mn g un(OT)]
; (k)
< %ig P[M{Oln] < un(T)].
As before, the difference between 1lim P[M (k) 2u (1)] and lim P[M<k) <
n-<o [oln] n N->co [Ozn]
un(T)] tends to zero as Ol and 02 tend to o. This concludes the proof.

Q.E.D.

We remark that, bv applying the triangle inequality, Lemma 2.2 can be
extended to situations where finitely many order statistics are involved. In

particular, Lemma 2.2 remains true if, in the statement of the lemma,

P[”;k) s un(OT)] and P[Wfk)] < un(T)] are replaced by P[Mél) < un(oT),
Hﬁk) g un(jT')] and P[Mféi] S un(r), Hfii] < un(T')], respectively. This

fact will be applied in section 4.

DI -
...................

. .
P JOUP DI T VU PRI e |



P

Ay N, G B
PN

- . 0 1 0 v
/ NIRRT

A b
. "“I b Y

-
"1

&

A
®..""'"

)

,l
i.-
»

; . .
ok

(k)

3. The Limiting Distribution of Mn

The essence of our theory lies in the fact that the sequence €1, Enrees

. ),

can be divided into "asymptotically independent" groups (g(i—l)r 10t 5y
n n

iz l, of size ro each (in the precise sense as described by Lemma 3.1
below), where {rn} is determined in the following manner. Let {Zn} be any
sequence such that Qn/n - 0 and a(ln) + 0, where a(*) 1is the mixing
function of the strong mixing condition which holds for {gj}’ and let {rn}

be such that

n/

(3.1) n/rn > ©, e In u(in) + 0, and e

n/

'n g /n > 0.
n

For anv such {Rn} and {rn}, it is not difficult to show (cf. Hsing et al.

(1986, Lemma 2.2 and 2.3) that for each T > O,

(3.2) 1im ™0 Py >y ()] =0
N0 Qn n

and

(3.3) %ig n/r_ P[Mrn >u (D] = 1.

It will soon be clear that {Qn} and {rn} only function as step stones in
the proofs, and indeed the theory is independent of the specific choice of

these sequences. The following lemma is essential.

Lemma 3.1 Let T >0, o>0, and k = 2,3,... be constants. Write kn =

A

[oam
A

[sn/r_ ], and let X
n

[ oM

m < kn’ be i.i.d. r.v.'s having the same

Tn

iistribution as does l(ij > un(T)) where 1(*) 1is the indicator function.
j=1
Then
k
(k) n .
\ N ) ’ |
P[![gn] < un(r)] P[m; Xn,m s k-1] >0 as n > o,
mro

A

Proot  write X = g L (5 >u(T)y), |
—_r n

< .
m =k . 3
n,m Since
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(k) [on]
\ < \ = > = — i ] 1 J
P[J[On] s un(r,] P[j£1 1 (Ej un(r)) s k-1], it is easily shown that
(3.4) pv) sy (o)) - Pl o X _sk-1]+0
: “fon] T Tn mop  MLm = '
kn
For each fixed s =1,2,..., the set [ | Xn n = s] can be written as the
s - _ y m=1 !
union of (kn *s 1) = (kn * s D disjoint sets of the form ([X
Sk St (k, - 1) n,m
I £msk ] where ) s, = s. For each fixed choice of such s, 1 s
1 1
kﬂ
_ 1 < - ( = .
’P[Xn,m = S sm s L\n] mgl P['\n,m Sm]‘
< (kn - (a(tn) + 2 P[\f’1 > un(f)])

by some standard arguments (cf. Leadbetter et al.(1983)). Thus

kn En -
P[ ) X =s] -P[} X = s},
2y mm oI m
(3.3) m
k., + s -1
- n ) 2 v
s (k- 1) ( < ) (a2 ) + 2 P[Jzn > u (1],
It is obvious that (kn -1 (k“ +SS - 1) < ek“ for large n. Thus the

dominant side of (3.3) tends to zero by (3.1) and (3.2). The result follows

on combining this with (3.4). Q. E. D.
For 1z 1, write
T 'n
{ kM 1T = T £ = 1 s T
(3.6) STy = P L&, > u (1)) =i L HES > (1) > 0]
=1 j=1
b))
and denote by 7n/ (*;7) the #-fold convolution of Wn(-;T), namely
e 0, 1 <,
(3.7) - i) = A
! ) T T (i1 T (i,5T), iz
Loeee T (1,57 eee T ; y 2 L.
{4, 4027 1 nol
1 A
1 511 lcron
.
7
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where

Proof

k-1 2 k-1
A _ -
Corollarv 3.2 P[H<k' su(1)] =e ot (1 + 7 o) yoom . (i31)] + o(l)
[on] n =1 21 oo m
w;& (i;T) 1is defined by (3.7).
Kn
Yool (X > 0) 1is distributed as binomial with mean k_ P[X > 0} =
m=1 n,m n n,l
> un(T)] which tends to OT as n tends to « by (3.3). Thus
n
X

L

k  P[M
r

St, from which the result easily follows.

The

Theorem
each T
defined

in this

(3.8)

where

Converselv if for some 1T > 0,

main result of this section is the following.

A

3.3 Let k z2 2 be a constant. If P[tvlr(]k) 0 (]

> 0, then for any T >0 and 1l i s k-1

the probabil

in (3.6) converges to some T7(i) which is independent of

case,
. _ j-1 23—l
lim pm%gn)]] su (0] =1y ] LT 7y
07w 2=1 Coi=f
c>0, 1T>0, 25 j¢sk,
<% O’ 1< Q‘!
T SZ(i) = {
Loeee ) W(il) . ﬂ(iQ), iz g
Lj+eotip=i
i zl, lsrse
r

HA

m™ (i;T) converges for 1 =i
n

(K
P[Jn ) < uj(?)] converges for each 1 > O.
1
- . Kk -
Proof  First assume that P[Ai ) < un(r)] converges [or each 7
o , k=1 (or)i k=
A - » %0 tfor now., By Lemma 2.2 and Corollarv 3.2, yo——
=] <z
k-1 59
converses for cach 3 > 1. This implies that Lo T {iyT), o<
i=%
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P e el T

nem 0) converges in distribution to a Poisson variable with mean
’

converges for

Q.E.D.

i T (1:T
ity 7 ( )

T, and,
9
k-1, then
> 0. Fix
1 =
b ¢ (i:T)
n
l
¢ k-1,
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all converge.

converges, or fﬂ(l;f)

i=k-1
=1 i 1._9 _
converges, and T T iy = (- SR (k=237 (1;) %77 = (237)
“ Yoy [} l_i 5 n - n VYoo l £ - n - n L=y e

converges, which implies that 7_ (2;T) converges, etc., It follows from a

n
simple induction that for each 1 £ i

< k-1, Wn (i:T) converges, sav, to
T (i3;7). Hence Corollarv 3.2 implies
(3 -CT it gm)z S
(3.9) lim P[M; 27 s u (7)] = e 1+ 7 —~<— Y T (i3],
oo (o] 7 £ R

J, T >0, 2

A
o
A
T

To show (3.3), it now remains to show that 7(i;T) is independent of T.

fixoT, > T It follows from (3.9) that for 2 £ j = k,
2
(J) —Th J;l T,) J;l 20
lim P{M 1 su(t))=e = [1+ ), = L 7 (i;1)1],
N [._-n] n 1 =1 L i=L !
Ll .
3 T J_l T: J_l 3%
lim P L ury )= eT 21 T = T 7R (1)),
nseo 0 no- =1 Y iy

But Lemma 2.2 implies that the two limits are the same for each 2 = j sk,

which in turn implies that =(i;T,) = 7(i;7,), 1 £1i £ k-1. This proves

3.3

[t is worth notina that, in the ibove derivation, the assumption that
(K fo . , : . .
f}ﬁj Sou Tl eanveraes ror cach T oo 0 can be relaxed considerablv; ftor

‘ iy (K) .
example, it was enough to assume that P{Wn < uj(r)] converges for all
i i

T2 osome T > 0. we shall make use of this fact in the following part ot the
uroot,

Converselv, suppose tor some 7 > ), L (i;7) converges ftor | < i £ k-1,
I ) P MO, <k) - T 3 A
Men by Corollary 3.2, EL%[’n] < Un(t)] converges for cach 7 > 0, [t thus



e
N follows from Lemma 2.2 that P[H;k) < un(JT)] converges for each ¢ > |,
A
< The first part of the proof and the remark in the preceding paragraph now :
v
{ . |
SN imply that P[Hik) < un(T)] converges for each 1 > O. This concludes the )
igf: proof. Q.E.D. }
SN J
|
(:) The following corollarv is easily shown. }
|
:gﬂz Corollarv 3.4 If for some T > O, Wn(l;f) -] as n + ®, then for all
e kz1 and T >0,
o k-1 _2
(3.10) lim P[M“‘) su ()] =e" T .
N0 n n =0

Converselv, if (3.10) holds for some k 2 2 and T > 0, then ﬂn(l;T) -1
i}i as n - o, and hence (3.10) holds for all k21 and T >0
;}:2 Proof Assume first that Wn(l;T) -1 as n +® for some T > 0. Then it is
{ o simply seen that Wn(i;f) + 0 for all i 2z 2, and (3.10) follows readily

from the theorem. Next suppose (3.1) holds for some k 2z 2 and 71 > 0. It
k-1

‘:;h follows from Corollary 3.2 that lim Z T (i;1) =1 for all ¥ =1,...,k-1,
el S

e winich implies that lim 7_ (1;1) = 1 and the conclusion follows from the

o n-o n

N first part. Q.E.D.

Note that the condition "ﬂn(l;T) +~ 1" in Corollary 3.4 is reminiscent

el of the condition (17) in Lovnes(1963), and the condition D'fu_ ) 1in

n

N -~ Leadbetcer( 1974,
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- 4. The Joint Limiting Distribution of M(l) nd M(k)
G I
& . . : . - y(D Gk)
. we now consider the normalized limits of Hn and Jn jointly for
::f: any fixed k 2z 2. In spirit of (3.6) and (3.7), define, for t > 1' > 0,
.'\\_‘h\
n\:." r r
N " "
K O (ist,t) =P I 1 (E.,>u (") =0, T 1(&.>u /(1)) =
n . J n . ] n
\ ] j=1 j=1
S r
o n
N e w | -
o HL TGy > o,
SO J=1
" (3.1)
g . 0, 1 <X,

hv

" Lo '

Y . ' R ;
] >_ On(ll,T,T ) PP Qn(lQ,T,L ), 1
1,4eet+l,=1
2
1

1

izl, 1srsg
r

where {rn} is obtained in (3.1). The following result parallels Theorem 3.3.

Theorem 4.1 Let k

hv

2 be a constant. If P[Mﬁl) b un(T'), Mék) < u (7))

converges for each T and T' > 0, then for any T > 1' >0 and 1

K-

A
I
HA
—

-

¢ (i;7,7') converges to some p(i;T'/1) which depends on T and T'

n
through their ratio, and in this case for o,T,7' >0 and 2 s j < k,
g J

F“-.'_!
. 1) (3)

o lim P "I( Su (t"), M gu (T

o w38 "M on) ® (T Mgy = 4y (O]

PLR

n""’:‘ (14 /))

e 2 ~o1!

= e , O<ts1',
) 3 - {
w7 - 3 :

o ~ J‘]. 2 J—l ™~

~ ~oT ot #L .
e (1 + 1 L—,L I oo (i;Tt'/T)], 0 < T <1,
. .
?..;_ Q,:l =
SRS where

-.’.-"' _:(_2/ O, i< Q,,

_ o “lizs) = |

.'—. I . . .
L Loeee L 0(11;5) cee 0(1%;5), iz 4.
\-‘_.f_ : 1. +,..+1 =i
s 1 ;

s izl, lsrse
o r
H‘:’l'. )

Conversely, 1f Lhere exists a T  such that On(i;T,ST) converges for each
:'.‘:‘J
b,

:‘f_‘.
ANy
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‘ (1) e y(3)
N £ A g H
Aig P[A[On] < un(T . W{On] un( )]
(4.4 ot
e ot , O<T=sT,
R j-i L=l
R el I PR NI A
=1 2! i=2
ter any > 2 0 and 2 2§ £ k. Take T *i, Ty, and TE such that
T T, o= ”E 1 L and 0 ’ T,= '1 CT Lo Then 73,4 implies that
for 2 2 5 <k,
i) (1)
Fim PUM o I ”i), Mo T
n-=o — | l — ]
i i
-7, L ) B
R — i
S |
= 1=y
12

(1)

i 2 k-1, then P[M "/ su (1), M
n n

(k)

n

Jd < s <1 and 1

[Ta

< un(T)] converges

for each T and T' > 0.

Proot e remarked after proving Lemma 2.2 that *he result may be generalized
to where two or more order statistics are involved. The same remark applies 1

to Corollary 3.2, which can be extended to give

(1) ' (3)
DN < ! <
L [li[cn] = un(r )1 W[On] Un(T)]
(4.3) ot
e +O(1}, O< T gT',
= -CT 3l ot Logcl *L
e "t 1+ } (C19k ) o, (1iT,T) ] + o(), 0 <’ <1,
=1 2! i=f
tor each 2 >0 and j z 2, where ow is defined in (4.1). Suppose

n

A

LD . (k)
?[Aj < un\;'), Hn\’ un(t)] converges for each 71, t' > 0. It can pe

2hown, as in the proof of Theorem 3.3, that for any 7 > 7' and 1 s i £ k-1,

Z_ti37,7") converges to some p(i;T,T') and it follows from (4.3) that
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and

n n> 2
. )
-1, j-1 75 J:l “p '
= e L+ 1 77 L 0 (i1t

=1 i=¢ I

M= Ty
3ut, since — Ti =11 and —= T = 7,, it follows from the variant of

" 2 T 2

)

Lemma .. mentioned immediately arfter

N

same for  J ¢ ;5 < k. This shows that

and -' through - 7' and (4.2) is

Lemma 2.2 that the two limits are the
olri-,"), 1 i g k-1, depend on T

proved. The remaining steps of this

proot parallel those in the proof of Theorem 3.3 and are therefore left for

the reader.

It can be observed from the above

our method lends 1tself to still more

anyv rixed choice of kl’ Koyeoos kI'
fetails since not much more content ca

some properties of the probability

the tollowing result.

)

Q.E.D.

proof and the proof of Theorem 3.3 that

general situations. In fact, the

A

i £ I] can be thus determined for

and I. However, we shall spare the
n be added by making them specific.

2(i;s) 1in Theorem 4.1 are included in

Theorem 4,2 let k z 2 be fixed. Assume that P[Hil> = un(T'), Mﬁk) s un(f)]
onverzes for each T and 1' > 0. Then the probabilities o{(i;s), 0 < s < 1,

i 21 ¢ k-1, 1in Theorem 5.1 satisfy the following properties:

1 0iys)  is nonincreasing in S,
k-1
hoo . (e3s) s l-s for each s e (0,1),
=] r r
" ey o= (] [ : = _ Tn £ > T S
;%ﬂ L(135) (i) : %iﬂ P[JEl 1 (gj > (1)) = l.jil 1 (ﬂj u (D) > 0],

S, 3=y, as a tunction of s,

v, e and G4 hotd tor each

is concave,

1 =1,.., k=1,
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- Proof By (3.3) and Theorem 4.1,
;;::::: r, L
SO S(i3s) = lim =P T 1 (6. >u(s)) =0, [ 1 (5 >u (1)) =1i].
— N> rn J=l J n J=1 J n
That (a) holds is trivial., To show (b), observe that
: k-1 Tn "n
\ 0 T o(3s) =1lim=—P[ § 1(E,>u(s)) =0, § 1(&.>u (1)) sk-1]
2=1 e | Jon j=1 J 0
:':'4 r r
e 0 n n
- $lim=—P[ T 1(. > u (s)) =0, Y1, > u (1)) > 0]
— me fn el J j=1 J
! r r
= n n
=lim = (P[ [ 1(§,>u(1)>0]-P[ [ 1(& >u(s)) >0])
e e T 2 T e
N r r s
(R =lim—(—--—)=1-5s
R mefa o BT
_::::t'_: bv (3.3), and this shows (b). It can be shown similarly that
o r r
{ 0 n n
0s—=(P[ L 1 (& >u())=1i] =P[ ) 1 (& >u(s)) =0,
e r : J n . i n
a5 n j=1 j=1
::';:-f r
s n
"-" Z 1 (Ej > un(l)) =1i])
9, i=1
N r
X q n ] .
:;::, ia P(jf:l 1 (‘;j > u (s)) > 0l o2 oo V-
-.,-: =
:.:_‘ rn rn
'@1 Thus P[j‘_‘zl 1 (gj > un(l)) = '1|JZl 1 (;:J. > un(l)) > 0] converges if {i;s)
.’..-.~ ‘— =
;‘.ff.‘ converges as s » O, which it dose since p(i;s) 1is bounded above by one and
T
-;;ji: ts nonincreasing. This proves (c¢). It remains to show (d). For this we ’
i
write 0(s) = ;. 0(%3;s) for a fixed i, and follow the steps in Theorem 1
=1 |
of welsch(1973)., It suffices to show that for each 0O < r < s <1 and = >0 :
. tor which s + £s < 1, we have
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(4.5) O(s+es) - o(s) _ _o(r+er) - o(r)
. £s er ‘

For each selection of such r, s, and €, we can find O < Ti <1

T, <1 by letting

! < ] = ] 1] = ] = 1]
Tl r, T2 Tl + erl, Tl Tl / ;, TZ Tl / r.
-t o1 tl-t!
Thus s = Ti / T, T = Ti / Ty) €S = 2T,l L ZT 1, and €r =
1 1 1
T —T{ Ti T;-ri
— - I = "T. In terms of the 71's, (4.5) becomes
1 2 2
T; r{ T; T{
(4.6) T ( D(;;) D(;—)] S Ty [ D(?z) - O(;—)],
1 1 2 2

which we now show. It is readily seen from (3.3) that for T < T’

r r
[ n n
To(=) = lim = P[] 1 (5 >u (")) =0, [ 1 (5 >u(D) =i
nxe el J j=1 J
(4.7)
= lim ﬁl- P[M(l) su (1), M(l+1) su ()],
ne I r n r n
Since for all large n
(1) ' (i+1) (1) (i+1)
N\ < < - h < ! <
P[Jr s un(Tz), Mr < un(Tl)] P[Mr < un(Tl), Mr < un(Tl)]
n n n n
(l) ' (i+l) (l) [} (i+1)
\ - b A% <
< P[Jr < un(Tz), Mr < un(Tz)] P[Mr < ”n(Tl)’ Jr < un(Tz)],
n n n n
(4.6) follows simply from (4.7). This concludes the proof. G.E.D.

welsch(1972) proved the claims in Theorem 4.1 and Theorem 4.2 (a), (b),

and (d) for the case k = 2, assuming that there are constants a s b, and

n

a distribution function G such that 1im P[M_ za x + b ] = G(x). In this
oo n n n

connection, Mori(1976) showed that (a), (b), and (d) of Theorem 4.2 fully
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characterize the cluster probability 0(l;s) in the sense that for each
function <o(s) satisfving the three conditions, one can construct an

l-mixing stationary sequence {ij} for which there exist constants

a, b, and a distribution function G such that

R
limP[.\l(l)§ax+b,M(“)éay+b}
o n n n n n n

G(x), y 2 X,

G(y) {1 - o[(log G(x) / log G(y)] log G(v)}, v < x.
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5. The Convergence of Certain Point Processes

For notation and theory of point processes we follow Kallenberg(1983).

Hsing et al.(1986) studied the so-called exceedance point process Nﬁr)
which consists of the points {j/n: ij >u (1), 1 57 = n}. It was shown

there that if NSL) converge in distribution w. r. t. the vague topology in

the space of locally finite counting measures on (0O, 11, the limit must be
compound Poisson. The following result states the connection between the

(™)
n

convergence of N and that of P[Mgk) < un(T)].

Theorem 5,1 Nﬁ‘) converges in distribution for each T > 0 w. r. t. the
vague topology in the space of locally finite counting measures on (0, 1]

if and only if for each T > O, P[Mﬁk) < un(t)] converges for each k 2z 1,

and
. . : (k)
5.1 lim lim P[M s u (T =1
( ) Lim lim [ N n( )]
Proof If N(T) converges in distribution to N(T), then by the continuous

n

mapping theorem P[Hﬁk) b un(T)] = P[NﬁT) (0, 1] s k=1] converges to

P[N<T) (0, 1] $k-1] as n tends to =, and hence

lim lim P[ngk)

k=0 n=oo

S u (1] = Lim pin{T) (0, 1] £ k-1] = 0.

Suppose next that the converse is true. Then Wn(i;T) -+ some ﬂn(i) tor
each 1, and

(k)

1 = lim lim P[M su (1)

ko o n n

- .
e - -T k-1 TQ’ k-1 )
=lime " [1 4+ ) — 7 77(i)]
K0 7_1 ¢ :
L= 1=5
17
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2

-1 8

=3

1 7 i=R

bv virtue of Theorem 3.3 and monotone convergence. But (5.2) implies that
[0 o]

Z T L(i) =1 for each 2, or, equivalently, Z m(i)
i=2 i=]

converges in distribution follows from Theorem 4.2 of Hsing et al.(1986),.

l. That §¢7)
n

0.E.D.

-~
L

In addition to 1lim P[M_ s u (1)] = e ", T>0, we now require that,
-0 n n

for each n, u be nonincreasing, left continuous, and such that

; )
Tlig P[un(Tz) < El < un(Tl’]
Té+®

Define ugl(i) = sup{t1 >0:¢

A

-1
< . .
un(T)}. u (&) T if and only if §& > un(T).
Consider the two-dimensional point process Nn which has the points
{(j/n, ugl(éj)) : j 21}, The limiting distributions of point processes
of this type were studied in Pickands (1971), Resnick (1975), Weissman (1974),

Mori (1977), and Hsing (1985). The following result was obtained by Hsing

AN (1985), in which a detailed proof can be found.

Theorem 5,2 If Nn converges in distribution to N w. r. t. the vague

YO topology in the space of locally finite counting measures on R+ x R+ =
LIPS

g

iay (0, =1 < (0O, =), then N consists of the points {(S., TiYiJ): iz 1,
-t

a0 . . . . :

Lz 5 ¢ R]: wherse [SL’ Ti), iz 1, are the points of a mean one Poisson

i

~ . . . i . - .

" proces~  ~ on RO~ R, Y ., 1 < j < K,, are the points of a point
- ' + + ij : i
- proces< ¢ an o D1, o) with 1 as an atom, 71. Yases. are identically
'\-}'. i P
B ™ . . ) .

- rstraburedy and -0 v 0 v po.. are mutually independent.,

N
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Sketch of Proof It can be shown that a point process & has the representa-

)
R

-

tion described in the theorem 1if and only if it satisfies the following

-'?}j properties:
i".* ) . d \ -1
(i) J08 ., =7 for each o, 3 >0, where g _(x, v) :=(ax + 3, 1 V),
e 2,3 a3
\
. X, V) ¢ x R
O (x, v) ¢ ]R+ +
‘J::‘(
Iad (i1}  For any choice Il’ +ey I, of disjoint intervals of the form [a, b)
-w",.:n
ot in ]R+, and anv choice Jl’ ceos Jm of intervals of the form [c, d)
- in 1R+, the m-dimensional random vectors (Q(Ii X.Jl),..., C(Ii ><Jm)),
‘€
:.:-f: 1l £1 sk, are mutually independent, where k and m are arbitrary
‘;.';t
N positive integers;
: C -T
RN {(iii1)y Pz (0, 1) x (O, 1)) >0] =e ', T > O.
LS
N
\'.‘- - . . . . : :
GRS For the point process N in the present theorem, (i) follows from stationarity
YA
\-‘ Al ’ . .
( of 1::1; and a variant of Lemma 2.2, (ii) holds since {ij} is a-mixing,
Sod
L ) . -7
and (iii) follows from the assumption that 1lim P[M s u (1)] =e ', 1T > O.
S I n n
}::: Q.E.D.
o The interpretation of the convergence of N _, 1in terms of the order
I n
:-::) statistics, cer. be summarized to give the following result which we state
k>~
]
> el
- without proof.
Vo Theorem 5.3 N converges 1n distribution w. r. t. the vague topologv in the
..‘. e ., n > A
-:_\:‘
.- space of locally finite counting measures on ]R+ x IR+ if and onlv if
¥ :
s
o (k) . N
PIM "17 24y (-y), 1 £ 1 < 1] converges for each choice of - >0, k. : 1,
ant n n - 1 1
A
'.':-. 21 2 I, 1 =21, and (5.1) holds for each T > 0,
-
NN
O
ot
-":’
4 ~$‘
-ﬁ
1
s
. 19
]
&d
g
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