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i 1.0 INTRODUCTION AND STUDY OVERVIEW

As its name suggests, the Maximum Entropy/Optimal Projection (MEOP)

theory of control design for large space systems represents the synthesis of two

distinct and novel ideas: (1) minimum information stochastic modelling of

I parameter uncertainties (to characterize the inevitable tradeoff between

robustness and performance) and (2) optimal reduced-order compensator design for a

I given high-order plant-(to optimally quantify the tradeoff between controller

complexity and performance). A previous AFOSR-funded study (contract no.

F49620-84-C-O015) consolidated ICOP theory developments and successful ly

demonstrated the theory on a variety of flexible space structure models.

3 It is now possible to extend the basic MEOP theory and design

capability to handle an even larger class of structural concepts. In particular,
I the sheer size, or dimensionality, of proposed flight structures (such as Space

Station) necessitates what my be called decentralized analysis and design. In

brief, this terminology refers to procedures that treat portions of the system

individually and then combine the results. Often the need for such analysis
arises from such basic constraints as computer capacity, i.e., the model may

5 simply be too large to Ofitt into the computer at one time.

3 Our thinking concerning decentralized analysis and design is closely

related to the current literature on large scale systems. We propose to go beyond

E previous work by using the MEOP theory to quantify uncertain interactions among

subsystems, thus providing an minformational" or statistical system partitioning.

A major goal in this regard is to utilize our theory to extend the applicability

of the concept of connective stability to complex, multibody spacecraft.

In practice, a direct consequence of the physical size and physical

complexity of proposed spacecraft imposes severe constraints on the comnunication

SI links between sensors, processors and actuators. Relevant issues include cabling

mass and RF shielding problems along with reliability concerns. This leads to
consideration of multiple sensor/processor/actuator subcontrollers or substations

i on the spacecraft without real-time intercommunication. Although the processors

g ,do not directly exchange data, preflight design of their software must, of course,

account for complex operational interactions among subcontrollers via the

structural response.

,,_ ;4077Y/NEOP



I
The design of such a decentralized architecture or implementation is

clearly a nontrivial task and can be thought of as involving two interrelated
steps:

1. Determination of the architecture of the control system including

3the number of substations and the assignment of sensors and
actuators to particular substations; and

1 2. For a given architecture, design of the processor software for each
subcontrol I er.

The aims of the present study are to extend MEOP to address both of the

above items. Indeed, because maximum entropy modelling quantifies uncertainty
(i.e., lack of knowledge) it is possible to directly include informational aspects

Wi n the system model. The statistical effects that result from this model can be
used to evaluate the performance of proposed decentralized architectures. Thus,

~ one goal is to quantify the degree of suboptimality resulting from the variance
between subsystem partitionings due to interaction uncertainties and alternative

controller architectures. Once a particular architecture is selected, the design
of each subcontroller often requires iterative solution of high-dimensional design

synthesis equations. A second major goal is to evolve efficient approaches to the

S solution of the MEOP design equations for optimal, decentralized control.

1.1 Objectives

The specific tasks required to accomplish the goals of this contract

3 are discussed in detail within the original technical proposal and are summarized
as follows:I
Task 1: Undertake rigorous extensions of the tEOP design equations to the case

of distributed controller architecture in a variety of settings. These
developments ncl ude:

11.1 Extension of the continuous-time MEOP equations to the

decentralized case for both static and dynamic controllers.

1.2 Derivation of the IEOP design equations for decentralized

discrete-time control of discrete-time systems.

4077V/NEOP 2



1.3 Extension of the MEOP design equations to a hierarchical controller

I architecture.

ITask 2: Analyze the design equations derived in Task 1 to provide understanding

of the role of uncertainty in decomposing the design procedure. In
* particular:

2.1 Analyze the effects of the maximum entropy uncertainty terms inI decomposing the open-loop system for decentralized design
procedures and decentralized implementation.

2.2 Derive methods for bounding the degree of suboptimality resulting

I from decentralized design and decentralized implementation.

2.3 Evolve effective methods for deriving uncertainty bounds whichI imply connective stability for the overall system.

Task 3: In order to verify the analysis carried out in Task 2, develop solution

techniques for the decentralized form of the I4EOP design equations.

I The following sequence of developments is planned:

3.1 Develop iterative procedures for solving the decentralized optimal

projection equations assuming accurate plant models. Such
algorithms would be limited to fixed-structure designs for which

the order of the closed-loop system (plant plus subcontrollers) is
less than 50.

3.2 Expand subtask*3.1 to develop iterative methods for solving the

I MEOP decentralized design equations which also account for
high-frequency modal. uncertainty effects.

3.3 Apply the techniques of subtask 3.2 to the problem of uncertain
subsystem interaction. By designing for each subsystem separately

and accounting for modal uncertainties, considerably larger systems
can be treated. The results from subtask 2.3 can be used to assure5 robust stability of the resulting design.

~ 4077V/MEOP 3



U
Task 4: Apply the various decentralized extensions of MEOP to a realistic

design problem. Two possible spacecraft control problems are the COFS
I Program space flight test art!-le and the space station. For either

of these alternatives, the following subtasks encompass the desired

goals:

4.1 Generate detailed state-space model, define uncertainty operators

for mass, damping and stiffness, define sensor/actuator number,
type and placement, and assign disturbance spectrum. Use system

model to perform centralized control-tradeoff studies. Such

designs may utilize decentralized design techniques.

4.2 Using the centralized tradeoff studies as baseline, determine

decentralized/hierarchical implementation architectures based upon

uncertainty patterns, physical constraints and processing
requirements. For each design assess the degree of suboptimality

resulting from the loss of centralization.

1.2 Progress to Date

In this section, we briefly summarize the results obtained under the

S tasks listed above. Further details are described in Sections 2.0 through 5.0 and

the Appendices.

I With regard to Task 1, subtask 1.1, the extension of the basic MEOPrn design equations to the decentralized case has been accomplished. In the light of
previous derivations, subtask 1.2 is an entirely straightforward exercise and the

results are to appear in future publications. On the other hand, subtask 1.3
I involves significant additional complexities and will be addressed during the

second year of this study. Further details on the MEOP design theory extensions
carried out as part of Task 1 are given in Section 2.0.

In connection with Task 2, it should be noted that a good qualitative
understanding of how the Maximum Entropy modelling approach combined with

optimization tends to enforce decentralized control architectures has already been
achieved in previous studies and has been documented in numerous publications.
Further quantitative characterization of this phenomenon (as proposed in subtask

4
S 4077V/t, EOP 4



I
2.1) demands the prior completion of subtasks 2.2 and 2.3. Thus 2.2 and 2.3 have

been given priority during the first year of this study.

The essential problem to be addressed in subtasks 2.2 and 2.3 is the

determination of nonconservative bounds on system performance degradation due to
uncertainties and/or subsystem interactions. Note that once performance (e.g.,

line-of-sight error, surface shape errors) degradation is characterized, so is

robust stability. Thus both 2.2 and 2.3 are handled by development of a suitable

performance robustness analysis. This has been accomplished by the development of

a new robustness analysis tool, namely, Majorant Robustness Analysis (NRA). Based

upon the work of Ostrowski and Dahlquist on matrix majorants, NRA determines
bounds on the degradation of system performance due to unstructured or

parametrically structured uncertainties and bounded subsystem dynamics. Since the
basic development is carried out in a general operator setting, MRA can be applied

z within both a frequency-domain/input-output and a time-domain/state-space

description. In the frequency domain/input-output setting MRA generalizes

previous robustness results (e.g., singular-value analysis), while in the

state-space setting, it is fully compatible with MEOP design synthesis. MRA thus

provides a design analysis tool which nicely complements our design synthesis5 Itheory. Moreover, NRA reveals a direct link between the MEOP stochastic modelling
and design formulation and a deterministic bound for robust performance, thereby
immensely strengthening the foundations of the Maximum Entropy modelling

approach. Section 3.0 sets forth the philosophy of MRA and sketches its
theoretical development to date.

Under Task 3, subtask 3.3 requires amalgamating the results of 2.2 and
2.3 with 3.1 and 3.2. Thus, in the past year, subtasks 3.1 and 3.2 were given

priority. To accomplish 3.2, the plan is to incorporate the "highly uncertain

subsystems* asymptotic solution approach developed in the previous study [40) with
the decentralized solution techniques derived within subtask 3.1. Thus, subtask

3.1, the development of efficient procedures for solving the MEOP decentralized
design equations, is the crucial step. To comple e this task, we have developed

an iterative solution approach which reduces the overall problem to the sequential
solution of standard NEOP design equations pertaining to each subcontroller.

Since, however, each subcontroller problem may be of high dimension and the number
of subsystems may often be considerable, it was recognized that an order of

magnitude improvement was needed for the efficiency of the MEOP solution

algorithm. To provide such improvement, S. Richter has developed and successfully

4077V/MEOP 5



I
tested a homotopic continuation algorithm for solving the basic MEOP design

equations. In place of solving four nxn (n = dimension of the plant) nonlinear
matrix equations (as in the previously developed algorithms), Richter's method

reduces the problem to solving four ncxn (nc = dimension of compensator)

linear equations for a modest number of continuation steps. The algorithm
converges to machine accuracy and, for nc small, actually entails less

computation than is required for the standard Riccati solutions involved in the
full-order compensator. Moreover, using the continuation approach together with

topological degree theory, Richter has succeeded in resolving many heretofore
intractable issues connected with multiplicity of solutions and convergence to the

global minimum. These results essentially complete the theoretical foundation of
the optimal projection theory of fixed-order dynamic compensator design. Further

details on the iterative approach to decentralized design and on Richter's

algorithm are given in Section 4.0.

Finally, both dynamic modelling and determination of baseline

centralized control designs have been completed for two realistic example problems
thus completing subtask 4.1. The two candidate examples comprise (1) vibration

control of the beam subsystem of NASA's COFS I program Flight Test Article and (2)
overall space station attitude control combined with pointing control of the solar

dynamic concentrator power generation subsystem. Details on the dynamic models

and initial control design results for both examples are given in Section 5.0.
The second year of this study will follow up this work with (subtask 4.2) detailed

decentralized control designs for these examples.

I

S 4077V/MEOP 6
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2.0 MEOP DESIGN SYNTHESIS EXTENSIONS TO DECENTRALIZED CONTROL

2.1 Review of Centralized Theory

Optimal projection control-design theory has undergone considerable

development over the past several years. As shown in Figure 2.1, optimalU projection theory now encompasses problems in reduced order, robust modelling,

* estimation and control in both continuous-time and discrete-time settings. A
comprehensive reference list appears in Section 6.0.

For control-design purposes optimal projection theory provides new
machinery for synthesizing multivariable feedback controllers. This machinery

consists of a system of algebraic design equations which characterize optimal
feedback controllers while accounting for both controller order and parameter

uncertainties. The design equations consist of a system of two algebraic Riccati
equations and two algebraic Lyapunov equations coupled by both an oblique

~ projection and uncertainty terms. The Riccati equations are directly related to
the pair of separated Riccati equations arising in LQG theory. Indeed, when the
controller order is set equal to the order of the plant and all uncertainties are

~~ absent, then the design equations special ize immiediately to the standard LQG
equations. Numerical algorithms for solving these equations are described in

~ Section 4.0. Further discussion of centralized MEOP theory can be found in [69]

(see Appendix A).

U2.2 Extensions to Decentralized Controllers

In keeping with the optimal projection philosophy, our approach to

decentralized control design is based upon fixed-structure optimization. That is,
we assume that the structure of the controller is determined by implementation

constraints and/or subsystem analysis. Once the controller architecture is fixed,
the feedback gains can be chosen to optimize the performance functional for the

closed-loop system. Of course, this approach can be used to determine preferable
controller architectures by varying the decentralized information structure and
optimizing the performance of each configuration.

3 The fixed structure approach is distinct from methods which are based

upon subsystem decomposition with central ized design procedures applied to the

S4077Y/MEOP 7
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U
individual subsystems. For such methods there remains the problem of determining

conditions under which the reassembled closed-loop system has acceptable
behavior. An additional drawback of decomposition methods is that the

decentralized controller architecture specified by implementation constraints may
be completely unrelated to desirable architectures arising from physical

considerations. For example, physical implementation constraints may impose a
particular decentralized architecture which does not correspond to any discernible

dynamical decomposition. Furthermore, subsystem decomposition as a design tool

may constrain the class of attainable designs at the expense of achievable

Mperformance.

Of course, in many cases, such as in the presence of high

; dimensionality, subsystem decomposition is absolutely essential for making
progress in designing decentralized controllers. However, only by developing

methods which avoid unnecessary constraints on the design space can the efficiency

of decomposition methods be assessed. Furthermore, methods which retain the full

system dynamics may provide a useful context for applying existing decomposition
techniques as well as an advantageous starting point for developing new methods.

Our overall approach is thus to regard the fixed-structure approach as

complementary to subsystem decomposition techniques. To this end, majorant

robustness analysis has been developed (see Section 3.0) to account for subsystem

interactions arising, for example, from system uncertainties. In addition,

U majorant robustness analysis is closely related to MEOP synthesis particularly

with regard to nondestabilizing uncertainties.

2.2.1 Decentralized Controller Design for Static Controllers

We first consider the problem in which each subcontroller is assumed to

be static, i.e., a fixed gain multiplying the measurements. For realism, of

course, only the physical measurements are assumed to be available for feedback.
Earlier versions of this problem were considered in (2.1, 2.2]. The most general

~ treatment of this problem obtained thus far can be found in [77) (see Appendix

B). The development in [77] includes, in particular, noisy and nonnoisy

measurements, weighted and unweighted controls, and parameter uncertainties in the

A, B and C matrices. The optimality conditions for this problem are given in the

form of a pair of modified Riccati equations coupled by a pair of oblique

projections corresponding, respectively, to singular measurement noise and

4077V/MEOP 9
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singular control weighting. By utilizing a Lyapunov function to guarantee robust

Istability, these optimality conditions serve as sufficient conditions for robust
stability and performance over a specified range of parametric uncertainty.I
2.2.2 Decentralized Controller Design for Dynamic Controllers

K A more complex situation arises when the decentralized subcontrollers

are allowed to be fixed-order dynamic compensators. In this case it does not

appear possible to characterize optimal gains for each subcontroller explicitly in

terms of the plant dynamics alone. This situation arises from the fact that each
subcontroller must be a projection of the dynamics of the controlled system which,

in this case, is not just the original plant but rather the original plant

Saugmented by the remaining subcontrollers' dynamics. It would be desirable, of

course, if each subcontroller could be characterized by an nxn projection. This
expectation is unrealistic, however, since each dynamic subcontroller increases

the dimension of the closed-loop system. Hence each projection for the individual.

subcontrollers must account for the dimension augmentation.

Thus we have discovered that optimal decentralized dynamic compensator
design must be viewed as a collection of subcontroller designs obtained for an

augmented system. Essentially, each subcontroller is viewed as a reduced-order
Scontroller for the plant augmented by all other subcontrollers. This problem is

thus a direct application of centralized optimal projection theory. To apply
centralized theory each dynamic subcontroller can be determined sequentially,
accounting fully for previously specified subcontrollers. After initial gains
have been specified fnr each subcontroller, the overall design can be refined

sequentially by replacing current subcontroller gains with improved gains.

Finally, subsystem decomposition techniques are relevant to the approach suggested

here by providing a near-optimal starting point for subsequent refinement.

In sequentially applying reduced-order design methods to decentralized

control, a number of issues immediately arise, including the subcontroller
refinement sequence, feasibility of the reduced-order design method at each step,
and convergence of the overall process. Note that after initial gain
determination the existence of a stabilizing design at each step is not at issue

here since at least one stabilizing controller exists, namely, the present gain

values supplied by the previous step. One of the chief concerns, however, is that

Sthe reduced-order design method be sufficiently reliable to permit flexibility in

4077V/MEOP 10
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I
choosing the refinement sequence. Many reduced-order design methods do not,

however, consistently yield stabilizing controllers of a given order even when

stabilizing controllers are clearly known to exist. For example, in [74] (see

Appendix E), the LQG reduction methods reviewed in [2.3] were compared to the

optimal projection approach to fixed-order dynamic compensation. For an 8th-order

example over a range of control authorities, only the optimal projection approach

consistently provided stable designs for each case considered. Thus, the optimal

projection approach appears to be suitable for reliable sequential subcontroller

refinement.

In addition to reliably producing stable designs at each step, the

optimal projection approach is based upon a quadratic performance criterion which

readily permits assessment of convergence of the refinement procedure.

Specifically, at each subcontroller refinement step, a given subcontroller is
replaced by an improved subcontroller. Here "improved" refers to the situation in

which all subcontrollers except one are "frozen," while the performance functional.

is optimized with espect to the remaining free gains. If this procedure is

feasible at each step and if the global minimum for each subcontroller design

problem is attainable, then the closed-loop performance must improve at each

step. Since the performance is also bounded below by zero, then it must

converge. Although such observations are immediate, they depend upon optimality

considerations and hence are not valid for most reduced-order control-design

procedures.

CAs discussed previously, stabilizability is not the issue here; after

subcontroller initialization at least one stabilizing controller at each
refinement step exists, namely, the gains provided by the previous step. Hence

the principal remaining issues concern the existence of and ability to compute the
S global optimum. Using topological degree theory and homotopic continuation

methods, these issues have been addressed in (58] (see Appendix F). These results

show that the local extremals can be enumerated from the basic problem data and

the global optimum can be efficiently computed. Furthermore, one of the principal
~ results of [58] states that when the compensator order is greater than either the

number of inputs or outputs minus the dimension of the unstable subspace, then the

equations possess no more than one solution corresponding to the global minimum.

An immediate insight from this approach is the realization that design

methods which fail to account for this intrinsic coupling are necessarily

4077V/MEOP 11



suboptimal. In certain cases, such as in the presence of high dimensionality, it

may not be possible to precisely account for the coupling. In such cases the

optimal projection approach provides a rigorous context for determining suboptimal

i solutions.

IA numerical example demonstrating the optimal projection approach for

decentralized dynamic controllers is given in [56] (see Appendix C). The example

involves a pair of simply supported Euler-Bernoulli beams interconnected by a

spring. The objective of the problem is to design a two-channel decentralized

controller with one subcontroller assigned to each beam. After selecting starting

values for a pair of decentralized fourth-order subcontrollers, the optimal

projection equations were used to iteratively refine the subcontroller gains.

Closed-loop performance was improved at each iteration and convergence was

attained.

2.3 References

[2.1] J. Medanic, "On Stabilization and Optimization by Output

Feedback," Proc. Twelfth Asilomar Conf. Circ., Sys. Comp., pp.

412-416, 1978.

[2.2) S. RenJen and D.P. Looze, "Synthesis of Decentralized Output

State Regulators," Proc. Amer. Contr. Conf., Arlington, VA, pp.

758-762, 1982.

[2.3) Y. Liu and B.D.O. Anderson, "Controller Reduction Via Stable

Factorization and Balancing," Int. J. Contr., Vol. 44, pp.

507-531, 1986.

~ 4077V/4EOP 12

lol- 51gi



SETO .
PEFRAC ERDTO U O NETITE N USSE

INT~ERCTION 3.AORN NAYI



I
3.0 PERFORMANCE DEGRADATION DUE TO UNCERTAINTIES AND SUBSYSTEM INTERACTIONS3 VIA MAJORANT ANALYSIS

The problem addressed here is the determination of bounds on the

degradation of system performance due to uncertainties and/or unforeseen and

imperfectly modelled subsystem interactions. Such bounding techniques represent a

fundamental systems analysis tool that is indispensable for further elucidation of

decentralized controller architectures and robust design.

Extensive work has been carried out within the controls community in

S the area of frequency-domain analysis of robust stability giving rise to the

H-infinity theory of robustness characterization and robust design [3.1-3.5].

However, on several occasions we have remarked that although the H-infinity

world-view is a beautiful and compelling theory within its proper province, its

fundamental assumptions render it inapplicable to structural vibration control

which involves parametric and often nondestabilizing open-loop uncertainties. A

principal difficulty is the conservatism of H-infinity robustness

characterizations. A stability robustness analysis technique is called

conservative if the predicted set of nondestabilizing perturbations is a proper

M subset of the actual set of nondestabilizing perturbations. Note that

conservatism jointly depends upon both the definition of admissible perturbation

classes and the robustness analysis technique.

The well-known conservatism of H-infinity theory does not arise because

it operates in the frequency domain, per se, or because the infinity norm is

employed, but rather because of the crudeness of H-infinity bounds. What is the

fundamental source of this crudeness? Possibly this arises because the

fundamental intent of H-infinity development was the extension of classical

control design concepts to the multivariable case whether or not classical

concepts are truly suited to the problem at hand.

For example, in keeping with classical ideas, there has been widespread

insistence upon couching all questions of performance and uncertainty in terms of

simplistic (albeit traditional) unity gain feedback diagrams. Thus, singular

value developments have lumped uncertainty in a single block thereby obscuring the

often complex structure of modelling error. Moreover, this feedback paradigm is

I
maintained even for structured uncertainty approaches [3.6).
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I
Here, we contend that to achieve a less confining point of view, the

first step Is to represent uncertain systems by means of a large-scale system
input-output formulation as depicted in Figure 3.0-1.

Referring to Figure 3.0-1, the overall system is represented by
interconnected subsystems undergoing interactions. The subsystems, characterized

by the operators Gk (k-l,...,r), represent the known dynamics of the system

while the subsystem Interactions, given by the operators Hkj, correspond to
uncertainties. Note that the partitioned off-block-diagonal operator H is
stipulated to belong to some compact arcwise connected set H. The set H specifies

both the character and extent of dynamical uncertainties.

The motivation for the above input-output formulation within the

context of large-scale systems is obvious. But in addition, thanks to the Dynamic
Inclusion Principle and related ideas elaborated by Siljak and his co-workers

[3.7, 3.8) the representation of Figure 3.0-1 is also suitable for parametric
S perturbations in monolithic systems, i.e., systems without explicit

interconnections.

jThe problem now addressed is how to bound the degradation of the system

output vector y or the prediction accuracy y-yo due to the uncertainties.

To give this problem mathematical form, we must use the block-matrix
results of Ostrowski [3.9] and define the block-Lp norm matrix of a partitioned

operator M and the block-norm matrix of a partitioned matrix M as in the top half
of Figure 3.0-2. With these definitions, the principal problem is to bound the
block-norm vector of the system output y over all variations of the uncertain
perturbations, i.e., bound 1y1L as H varies over the whole set H. Incidentally,

S bounding off-nominal prediction errors is handled similarly and so will not be

given separate treatment here.

Referring again to Figure 3.0-2, it is evident that a suitable bound

for 1yjL takes the form of a nonnegative matrix (all elements nonnegative) (the
A

"gain matrix" L) multiplied by the block-norm vector of the nominal output. Note
that the double Inequality sign relating two matrices indicates element-by-element
Inequality. The matrix L is just a nonnegative bound on the worst-case value of

the block-Lp norm matrix of the output gain operator L. Note that, in essence, L
maps the nominal output into the actual output as corrupted by uncertain

4077V/MEOP 14



LARGE-SCALE SYSTE1:-IIPUT-GUTPUT IPO1WULATIOZh

Vi+ e1  y.

Bly H ir r ri)

I(I + GH)y =C

Ua

C block-ceiag (CGk) G k known
k-i.,,r

0 H12 * H13 ... ' some compact.

H = H21  C E3arcwise connected set with

H3 H 32 0j off-6iagonal block structure

uncertain subsystem )ispecifies
3interactions or uncertainty about H

parametric uncertainties

Problem: Bound output y or deviation from nominal# y-y0,
f or all HE 2

Figure 3.0-1. Large-Scale System Input-Output Formulation
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3 (A.!;. Ostrowski, J. Fatb. Anal. ApPI., Vol. 2, pp. 161-209, 196l.)

Block-L norm matrix of ?a:

I L p 12 Ip
eRrxr

IIF21 L . 22I Lp
p p

I Block-norm matrix of K:

I 1ll i p 12 I e ...
. r Ixr

L j
I '21 |p I M 2 2 ip..

Output bound:

IYIL y Y Y

where e R rxr and
K+ .0 ) >_>_ ~sup w.,

HEH"
~where:

(I + GH)Z - ''L -I

Coneratvbound: 0

Nonconservative bound: *

Finite t(N) exists -- > Input-Output LF stability

Figure 3.0-2. Block-Norm Matrices
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I
interactions. In the following, we focus on bounding the gain operator. Note

(from the bottom of Figure 3.0-2) that this formulation gives rise to a clear
definition of conservatism. Note also that the existence of a finite boundL(H)

m implies input-output stability (see [3.10]). Thus robust stability and
performance degradation can be handled by one and the same theoretical apparatus.

Now, the above articulation of uncertainties into numerous interactions
permits more finely articulated methods of computing bounds beyond singular value

analysis, namely, methods associated with the majorant analysis of DahlquistI [3.11"1.

Following Dahlquist, we define the majorant and minorant matrices of a

Ipartitioned matrix or operator as in the top portion of Figure 3.0-3. The
inequalities shown in the center of the figure follow directly from the

I definitions and indicate that the majorant and mlnorant are matrix generalizations

of the maximum and minimum singular values, respectively. Moreover, these

I Iinequalities can be very efficently used to bound the block-Lp norm matrix of the
output gain operator. In fact, what we seek is merely some majorant of the gain

operator.

Figure 3.0-4 shows a simple example of how the inequalities of Figure

3.0-3 can be used to derive such a majorant for the gain operator, starting from
the defining relation

I(I + GH)L" I

I for L given in Figure 3.0-2. The result obtained in Figure 3.0-4, namely:

3(I-GH)L -*
is, in fact, the crudest possible majorant bound and is equivalent to the small

gain theorem for Lp Input-output stability of a large scale-system [3.10]. When
there is only one system block, this further reduces to the singular-value bound

as a very particular special case.
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(G. Dahljuist, Lin. Alca. APpi., Vol. 52/53, pp. 199-216, 1983)

tKaiorant: A e Rrx A >> AI

Kinorant: A f rx A Akk IIA kkIIL'

Aj IIA kI ; k j

Inecualities:

JAB IL «5 AB

IA + B IL 55A + B

UI A1 LS (A)

A - B = minorant of A + B

* A and A are generalizations of maximum and minimum singular values

* tMajorant/Kinorant inequalities can be used to develop bounds cen ItIL

Figure 3.0-3. Matrix Majorants and Minorants
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* IZIL = 1(I + GH)-ItL

fX.-

« (I4Gi) -1

<< (%f IL

a (I-G) ]-1

* Bounding I IL means: Find a majorant of t ' H c

• This is the cruciest possible bound,

r = 1 => singular value inequality

• There are much more refined bounds

, - obtained by iteration of operators...

Figure 3.0-4. Example of Bound Derivation
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But the uncertain subsystem interaction format (introduced in Figure

3.0-1) in conjunction with majorant analysis gives an almost unlimited potential
for formulating sharper bounds. Using a process of operator iteration, one can

U obtain the results displayed in the top half of Figure 3.0-5. Here we have a
hierarchy of output bounds, where each successive member of the hierarchy requires

more and more information but is less and less conservative (with respect to the
set H). For the results shown in Figure 3.0-5, the sequence of bounds approaches

the least upper bound under a norm-bounded uncertainty set, i.e., for this set H

the hierarchy is nonconservative in the limit: Note also that, because we work in
an operator setting, distinctions between the time and frequency domains are
blurred. It is parochial to assert that only frequency-domain or time-domain

methods must be used. What's needed is easy and fluent translation between the
ll frequency and time-domain as provided here. Furthermore, the computational

advantage of this kind of hierarchy is that each bound requires only the inversion
. of an M-matrix. This is quite straightforward and nicely tractable, even for many

subsystems, since it involves computing a monotonically increasing sequence where
each iteration involves an addition and a multiplication of low-order matrices.

,- Figure 3.0-6 summarizes the relevant facts on the solution of majorant equations.
One has only to contrast the simplicity of these results with the difficulties of

the/-function computation [3.12) to appreciate the power of the "uncertain
subsystem" representation of Figure 3.0-1 and its allied bounding technique,

majorant analysis.

The above discussion has set forth the general development of majorantg robustness analysis within an operator setting which employs Lp norms to describe
the "size" of subsystem outputs. For systems with stochastic inputs and time

independent parameter uncertainties, the main lines of development are analogous.
However, in this case one needs to work with the Lyapunov equation for the

. steady-state second-moment matrix of response and then derive majorant bounds for
the block-norm matrix of the second moment. The general setup for undertaking
majorant analysis for parametrically uncertain stochastic systems is shown in
Figure 3.0-7. Here, the block-diagonal matrix A represents the known subsystem or

nominal system dynamics while the off-block-diagonal matrix G represents uncertain
subsystem interactions or parametric uncertainties. Generally, G is stipulated to

be some element of a compact, arcwise connected set G which describes the geometry
and severity of uncertainties. The simplest prescription, for example, is that G

contains all off-diagonal block matrices such that the norm of each off-diagonal
block is bounded by a stipulated number.

4077V/MEOP 20

or~~~~ 
*f-r r



n.th (mn 0, 1,...) member:

IZIL, <(m V He t

G(m) sup J(CH) 2m"' rxr
H e* L +~

(in) M- 2up rr-isup J7 (I+ (-GEi) )IL ErxrHe)M r=O

*Each member of the hierarchy requires more information and is

sharper and sharper:

*Lowest member: L 0  = IGH

Uif (H: I[%ILR+ kk ' 0), then:

(in)L~m

-i.e. L~m is nonconservative in the limit

*Input data can be given in time-domain or frequency domain

-as approg riate

*Each member of the hierarchy re4;uires only inversion

of an rxr 1-matrix

Figure 3.0-5. Hierarchy of Lp Output Bounds
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All majorant bouncs involve equations of the form:

(I r-B)L - C

IC, BeR x

* Le Rrxrexists iff (I-B) is a nonsingular ?Y-matrix

* L + x exists iff the sequence:

L0

(I-{B))L n+l <E>L n + C

(1B) diagonal part of B

<B> &B - (B)

converges. If so, L =lim Lrn
nl4

LeRrxr exists iff the sequence:

A (I{jB) <B>, S 0 = I + A 0

0: A k+l = A2  S - SI+

k 'k+l = k(I+k+l)

converges. If so:

L - lir. Sk(I (BI)

(nth iterate - 2 n simple iterations)

Figure 3.0-6. Solution of M-IMatrix Equations
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x (A + G)x + w (A + G)O +.O(A + G)T + V

Al 0 --- 0 G12--

A= 0 A2  G21 0
II
I I

Known Subsystem Dynamics Uncertain Subsystem Interactions

Vl V12--- Q1 012 ---

V21  V2  Q 221 %

I \ J
Noise Intensity State Covarltance

Figure 3.0-7. 
Subsystem Interaction 

Model 1"03-13

Note that the disturbance intensity V and the second-moment matrix 0

are partitioned conformably with A and G. We bound performance degradation due to
uncertain interactions G ranging over the admissible set G by bounding the

block-norm matrix of Q. To do this, however, requires additional algebraic tools,

such as the matrix calculus which centers on the VEC operator and the Kronecker

product and Kronecker sum. These operations, which are defined by the relations
shown in Figure 3.0-8, are critical to the development. The reader is encouraged

to consult the review paper by Brewer [3.13) for a thorough discussion of the

matrix calculus. Because of the algebraic complexity of deriving majorants for

the second-moment matrix, the matrix calculus is far more than a mere notational

convenience.

For our development, the standard matrix calculus is a completely

adequate tool only when each subsystem (with dynamics Ak, k-l,...,r) is
one-dimensional. However, we are concerned with systems composed of many
high-dimensional subsystems. To handle the algebraic work, one needs a

generalization of the matrix calculus, namely, the block-matrix calculus. The

underlying operations of the VECb operator are the block Kronecker product and sum

S which are displayed in Figure 3.0-9. Note that while the VEC operator stacks the
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3 " Definitions

(J. :. Brewer, IEEE Trans. Circ. Sys., Vol. CAS-25, pp. 772-781, 1978.)

(M, A, E Rn x n)

VEC oDerator, vec(M ):

vec(M W 11

M2 1

12

2 2

Kronecker Product, )

A @ B a1lE a12E ... alnB

a1 2B a 2 2 B ... a2nE

anlB an 2 B annC

Kronecker Sum, )

A B B A In + I n @ B

Figure 3.0-8. Matrix Calculus
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-Definitions-

1. Block vec, operator, vecb(t:).

If M1= then:

vec

vec *1

vecb 1. A vec' 1r1

2. Block Kronecker Product, eo 1

rA 11 B A 12 B .. A 1r

[A1  22B 2rOBABI

where:

K A211 ' 12 Fi0 r
M A K [A 21 . S A 22  1. -1 0D A 2rJ

0-Ar ,SA r2  14 A rr

3. Block Kronecker Sum, QD

A (DB 0 A ,I + I (&
4. 1 -1. < -> ang vecbc :

()abi-diag (K kkJ9 o-> a m~ (11)

vec M 11l

vecbi m. vec N 22

vec 141 /
Figure 3.0-9. Block Matrix Calculus
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colums of a matrix into a vector, the VECb operator stacks the VEC's of the

colums of subblocks in a partitioned matrix. When, referring to Figure 3.0-9,

the subblocks of the partitioned matrix M are all one-dimensional, the block

matrix calculus definitions revert to those given in Figure 3.0-8. Moreover, the

block matrix calculus is endowed with the same battery of identities as is

standard in the matrix calculus. These identities, shown in Figure 3.0-10, are

invaluable in effecting the required algebraic manipulations to obtain the results

1 discussed below.

the In particular, using the block matrix calculus, one can first reduce

the second-moment Lyapunov equation into a rather compact equation determining the

diagonal subblocks (the individual subsystem second-moment matrix) alone. This

• equation is the second from the top in Figure 3.0-11. With this as the starting

point, one then applies majorant analysis to obtain a hierarchy of majorant bounds

• as shown in the bottom half of Figure 3.0-11. As in the Lp bound analysis, each

successive member of the hierarchy offers less and less conservative bounds.

0¢ Note that having obtained the expressions shown in Figure 3.0-11, we do

not calculate the block-Kronecker sums and products explicitly. Rather, in each

case, we reverse the VECb operator to reduce each member of the hierarchy of

bounds to a low-order modified Lyapunov equation for the matrix majorant of the

second-moment matrix.

We now consider in more detail the first two members of the majorant

hierarchy in order to Illustrate the specific forms of the modified Lyapunov

equations that are obtained.

For example, Figure 3.0-12 shows the first member of the second-moment

majorant hierarchy. This gives the majorant Q as the solution of a simple

nonnegative matrix equation, where * denotes the Hadamard (element by element)

product and the row and column dimension of the equation in the number of

subsystems. For the norm-bounded uncertainty set shown in Figure 3.0-12, the

existence of a nonnegative solution implies a bound for the block-norm matrix of

the second moment and robust stability, i.e., (A+G) is stable for all

perturbations G in the norm-bounded set.

4077V/MEOP 26

Sr



xcentitie
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Figure 3.0-10. Identities fcrr the Block Matrix Calculus
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0 = (A4-G)C + V(A+G)T+

/ ec .1vec V 11

IV+ p1 vec Q2 e:V2

*vecQ vec Vrr rr

v -block-diag (Ak $ Ad)
k=l.. .r

C (D G)eI(A (EP+ G E)G I'(G G
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a a aT

T G( C)I A f) A-G ED G ±GeG
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V 2  v jT (G C)(A A)_( G@
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Figure 3.0-11. A Hierarchy of Majorant Bounds for the Second-Moment Matrix
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*Q=SQ+QST+V

* F(Gij) -- Sij

| Q:5<5_Q

• Robust Stability

m Robust Performance
I4403-16

Figure 3.0-12. Majorant Lyapunov Equation

One particular advantage of the first member of the hierarchy is that
it correctly shows the effect of wide frequency separation of subsystems on
performance degradation and robust stability. This effect is illustrated in

Figure 3.0-13. Here we have two subsystems whose poles are indicated by the
crosses in the complex plane, with y denoting the minimum damping of the

subsystems andw,1-I the minimum separation in frequencies. The majorant
equation in Figure 3.0-12 gives the expression shown in Figure 3.0-13 for the
square of the tolerable interaction strength under which stability is preserved.
Thus, if the frequency separation ((J1-( ) is large, then even very large

7uncertain interactions can be tolerated. In contrast, the vector Lyapunov
function theory of [3.7, 3.8) would give y2 which is a much more conservative
result for lightly damped systems. Thus, the majorant equation will correctly

predict that as frequency separation becomes sufficiently large, subsystems become
effectively decoupled. Such predictions cannot be made by the small gain theorem

for large-scale systems or by vector Lyapunov theory. Thus, even the first member
of the majorant hierarchy offers greatly reduced conservatism compared to previous

results.
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Majorant Lyapunov Equation Bound- v (2v)2 + (w1-02)2

14403-22

Figure 3.0-13. Robustness Due to Weak Subsystem Interaction

Moreover, note that thanks to the properties of M-matrices, the first

(and all higher) members of the hierarchy of majorant bounds require only a simple
iterative sequence for their computation. The relevant facts are summarized in

Figure 3.0-14. The sequence is monotonically nondecreasing, and each iteratern requires only two matrix additions, two multiplications and a Hadamard product for
its computation. Convergence of the sequence implies robust stability while the
degradation of a quadratic performance index J from its nominal (zero interaction)

Svalue Jo is given in terms of Q by the simple expression at the bottom of

Figure 3.0-14.

Furthermore, the second member of the second-moment majorant hierarchy,

shown in Figure 3.0-15, gives even tighter bounds and can even predict the

stabilizing effect of certain kinds of perturbations. The form of the majorant

S equation (top of Figure 3.0-15) is similar to the first member of the hierarchy

except that the operator H[R] appears. This operator is precisely what would

arise in the equation for the second-moment matrix for a system with Stratonovich
noise parameters! So far, we have discussed a design analysis tool for predicting

performance degradation due to uncertainty. This crucial observation brings us to
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MLE has a unique solution iff (QK, K=O, 1, ..., =1 where:
/N

QO0

QK+1 =  '7 * (P" ; QK + QK2T +

(fNI A Ih7inn)

converges. If so, then:

Q=lim QK
K-=

rA
J - <21 (tr PK)( Q)KK

K=1lT
(0 A PK+PKAK RK)

Figure 3.0-14. Numerical Solution of the Majorant Lyapunov Equation

ii
Second member of the hierarchy:

r ( .
J - tr[dR] : 21 (tr PK)((;<Q>)KKK=1

0AO+,AT+1[8J+V
0 = AT^ + PA + Ijt[^] + R

where:
<Q> off-diagonal part of Q
1[.] : Stratonovich model operator

05 Tighter bound-incorporates more information on A and G
K Predicts stability when (A + AT) stable, G = -GT

a "Nominal" performance, tr [OR], given by Stratonovich model

Figure 3.0-15. Second Member of the Majorant Hierarchy
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consideration of the link between majorant robustness analysis and MEOP design

synthesis theory.

j Figure 3.0-16 illustrates this link and the accompanying sequence of

logical developments. Overall, one may regard the MEOP design synthesis theory as

arising from a particular robustness analysis tool. Although any member of the

second-moment majorant hierarchy might be chosen as the basis of a design

synthesis theory, we choose the second member of the hierarchy (see lower right

block in Figure 3.0-16) to serve as.the point of departure because it is the

simplest bound that also handles nondestabilizing uncertainties. Referring to the

lower left block of Figure 3.0-16, it is seen that the second-moment equation of a

multiplicative Stratonovich noise model essentially gives an approximation to the

majorant equation and a smooth optimization problem. The Stratonovich second

moment equation then leads to an auxiliary optimization problem (upper left block

in Figure 3-16), namely, choose dynamic compensator gains to minimize the

quadratic performance of a system having multiplicative stochastic parameters.

Because of the Stratonovich modifications to the standard form of the Lyapunov

equation that appear in the equation for Q, the robust stability condition implied

by the majorant equation is still enforced since the optimization problem imposes

a robust performance constraint.

This optimization of an apparently stochastic system actually

approximates the majorant bound which was derived purely deterministically and

pl leads to the rather elegant MEOP optimality conditions given in the upper right

block in Figure 3.0-16.

Of course, the use of Stratonovich stochastic models was earlier

indicated by maximum entropy principles and stochastic approximation theory, and

S this line of development still stands. But the import of the more recent majorant

analysis developments is that there is a direct link between maximum entropy

stochastic modelling and deterministic performance bounds. This link immeasurably

strengthens the foundations of MEOP synthesis theory and, most importantly, tends

to blur the distinctions between stochastic and deterministic points of view.

This is just as well: The task confronting the controls and systems theory

community is not to resolve the stochastic versus deterministic debate one way or

the other, but rather to rise above it. As the work described here suggests,

there is a plane upon which the points of view are numerically indistinguishable.
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Stochastic Design todel Majorant Hierarchy

T
Stratonovich 2nd Moment Equation 0th: (;-&)C + C(;- ) + Y = 0

0 = A + CA +n[C] + v 1st: A*C, =Q + Q£ + v

< < I{}I 2nd: A*( +' 2 [QJA
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Figure 3.0-16. Majorant Hierachy and Stratonovich Models

-- the Link Between Analysis and Synthesis
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4.0 COMPUTATIONAL ALGORITHMS FOR DECENTRALIZED MEOP DESIGNS

Two distinct computational algorithms have been developed for solving

the MEOP design equations. An iterative algorithm has been utilized for several

years and considerable experience using it has been obtained. More recently, a
K, sophisticated algorithm utilizing a homotopy method has been developed by S.

Richter. Here we shall review both methods and point out several advantages

!offered by the homotopy algorithm.

4.1 Iterative Algorithm

The original contribution of optimal projection theory was the
discovery of the highly structured form of the necessary conditions for

fixed-structure control design. An immediate benefit of this structure is the

ability to apply novel computational algorithms which are distinct from gradient

search methods. This goal has been realized by developing an iterative algorithm

which operates through successive refinement of the optimal projection itself. A

detailed description of this algorithm appears in [74) (see Appendix E) which also

presents a thorough design study for a challenging 8th-order example considered in

[4.1). In [4.1) the authors present a detailed comparison of several

controller-reduction methods over a range of control authorities. The following
conclusion is immediately clear: None of the methods considered in [4.1] reliably

yields stabilizing reduced-order controllers even when such controllers are known

to exist.

The design study in [74] involved subjecting the iterative algorithm to

each design case considered in [4.1). In contrast to the results reported in

[4.1], the optimal projection equations provided stable designs in 100 percent of

the cases. Actually, this is not surprising since solutions of the optimal

projection equations can be shown to be generically stabilizing. The clear-cut

nature of these results can leave little doubt as to the effectiveness of optimal

projection theory.

4.2 Homotopy Algorithm

To meet the increased demands of decentralized design, a more

sophisticated algorithm has been developed (see [58) in Appendix F). In this

regard the study contract was particularly fortunate to have S. Richter as a
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contributor. Mr. Richter pioneered the application of homotopy algorithms to

control problems including decentralized control (see [4.2-4.5)).

The concept behind homotopy methods is quite simple, namely, replace

the desired, but difficult, problem with an easily solved problem, and then

-4 transform the solution of the easy problem into the desired solution. The

mathematics required to render the procedure rigorous is far from trivial,

~ however, and must be applied with some care. An important benefit of the homotopy

approach is the tools it provides for analyzing the design equations. The
principal result obtained thus far states that the design equation possess no more

than a prescribed number of nonnegative-definite solutions each of which is

stabilizing and each of which can be computed via a homotopic path. In

particular, if the plan is stabilizable by means of a controller of given order
and if the design problem possesses a solution, then the optimal gains can be

computed via the homotopy.

An additional benefit of the homotopy path is the ability to exploit

the structure of the design equations to an even greater extent than the iterative
i algorithm. Specificallyy, Richter has shown that the computational burden using

the homotopy method involves solving four equations of order ncxn. Hence, the

computational requirements decrease as nc decreases. This is, of course, quite

pleasing since low-order controllers ought to be easier to design than high-order

controllers. For decentralized control design this property is particularly

advantageous since it will generally be true that n C , where n6 is the plant
dimension augmented by all other subcontrollers. See Section 2.0 for details.

Since the computational burden of the iterative algorithm tends to

increase as nc decreases, the advantages of the homotopy algorithm over the

Iterative algorithm are obvious. Computational savings have been at least an
order of magnitude, and final convergence has been greatly improved. Moreover,

S the example considered in [4.1) and £74] was reconsidered using the homotopy

algorithm in [58] (see Appendix F). The main result was the ability to produce
controllers as low as second order at control authorities which were three orders

of magnitude beyond the cases considered in [4.1) and [74]. In each case the
,* performance of the reduced-order controller was within 20 percent of the

full-order design.
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5.0 DECENTRALIZED MEOP DESIGN SYNTHESIS AND MAJORANT ANALYSIS FOR A
REPRESENTATIVE LARGE SPACE SYSTEM

j ITask 4 of the study contract involves applying decentralized MEOP

synthesis and majorant analysis to a representative large space system. Candidate

systems to be considered include the 60-meter COFS I truss structure and the solar

concentrator power generation subsystem for the space station. Here we report the

status of the effort for each system.

5.1 COFS I Truss Structure

For the COFS I truss structure the present study has benefitted from

extensive analyses carried out for the COFS project. Such analyses include

detailed finite element modelling, sensor and actuator modelling, and baseline

active damping control design. The baseline design is a decentralized

output-feedback controller for damping augmentation. For the present study a

centralized LQG design has been carried out for the truss structure and has been

compared to the baseline (see [61) in Appendix G). A dynamic decentralized design

study utilizing MEOP theory is planned for the next study phase.

5.2 Solar Concentrator Power Generation Subsystem

Power generation for the space station is planned to utilize solar

energy as a thermal source. Solar energy will be concentrated via reflectors for
maximum efficiency. An important control problem is the dynamic reflector fine

pointing subsystem. This problem represents a natural application of
%4 decentralized feedback since it is desirable to control each solar reflector

autonomously while minimizing transient effects to the ambient space station

PP structure.

Under related programs initial analysis of this system has been

completed. This analysis includes dynamic modelling of the space station with

emphasis on attitude control and interaction with pointing control for the power

generation subsystem. Figure 5.2 illustrates the mechanical design of the

concentrator assembly.

., Centralized MEOP control-design has been carried out for a design model

which accounts for attitude errors and gimbal torques. The line of sight error
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:for the closed-loop system was below the 0.1 degrees requirement, while the peak

reboost transient was below the specification of 0.05 degrees. Future studies

will focus on decentralized design as a tool for simplifying the control-system

I implementation.
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Abstract

OPUS (Optimal Projection for Uncertain Systems) provides new machinery for
designing active controllers for suppressing vibration in flexible structures. The
purpose of this paper is to review this machinery and demonstrate its practical value
in addressing the structural control problem.

1. Introduction

For many years it has been widely recognized that the desire ro orbit

2ar~e, li~htweight space structures poasessin- high-performance capabilities wiould

require active feedback control techniques. M!ore generally. the need for such

techniques may arise due to the combinations of either 1) moderate performance

requirements for highly flexible structures with low-frequency modes or 2) stringent

performance requirements for semi-rigid structures with relatively high-frequency

modes (Figure 1). Applications include pointing. sleving. and aperture shape control

f o r p t i c l a d R F s y s t m s .C O N T R O L L E R A U T H O R IT Y A N O O R
RESPONSE RANGE OF INTEREST

MOWES

*"Small" structures
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Oil Stringent Performance Requirements or Lw-Frquency Modes
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Figure 2. Vibration Control Systems Utilize Sensors, Processors and Actuators
to Suppress Disturbances

The problem of active vibration suppression (Figure 2) entails the

fcllowi.ng considerations:

". :uiple, highly coupled feedback loops. The potentially large ru=7ber cf

sensors and actuators leads to a fully coupled multi-input. multi-output

feedback control system.

2. Limited actuator power. The control authority available from on-board

actuators is limited by weight. size. cost and power considerations.

3. High-dimensional models. Large structures subjected to broadband

disturbances are typically represented by high-order finite element models.

4. Limited processor capacity. Reliability and cost considerations limit the

processor capacity available for on-board real-time implementation of the

control system.

5. Highly uncertain models with structured uncertainty. Finite element models

often ezhibit significant error particularly as modal frequency increases.

Although modal testing and related identification methods may be used to

improve modeling accuracy, residual uncertainty always remains and

unpredictable on-orbit changes due to aGing, thermal effects, etc.. must be

tolerated.
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6. Stringent performance requirements. Since active space structure control

z msr rIlevant in :-rmisir, sprlcations_ ir c- read-,' e --:::ec-?d rhaf

;ericrmance specifications will *e parr icuiarly Srrin:err..

7. Design efficiency. Because of implementation complexity due to the

presence of multiple loops. high dimension, and high levels of uncertainty.

the control design approach should efficiently utilize both synthe4s and

OP analysis techniques (Figure 3).I'
~SYNTHESIS

ANALYSIS

-igure 3. Control-System Design Iust Efficiently Utilize Both
Synthesis and Analysis Techniques

These considerations pose a considerable challenge to the state-of-the-art

-. in control-design methodologies. For example, the presence of multiple, coupled

feedback paths essentially precludes the effectiveness of single-loop design

techniques. The sheer number of loops, their interaction, and the need to address a

host of other issues render such methods inefficient and unwieldy.

In addition to the presence of multiple loops, the high dimensionality of

dynamic models places a severe burden on control-design methodologies. For example.

although LQG (linear-quadratic-Gaussian) design is applicable to multi-loop problems,

such controllers are of the same order as the structural model (Figures 4 and 5).

Thus LQG and similar high-order controllers can be expected to place an unacceptable

computational burden on the real-time processing capability. Hence it is not

surprising that a variety of techniques have been proposed to reduce the order of LQG

controllers. A comparison of several such methods is given in [1].

All of the above difficulties are severely exacerbated by the fact that the

dynamic (i.e.. finite element) model upon which the control design is predicated may

be highly inaccurate in spite of extensive modal identification. Hence, applicable

control-design methodologies must account for modeling uncertainties by providing

robust (i.e.. insensitive) controllers. Furthermore, because of stringent
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Fi-ure 4. LQG Theory Addresses the Problem of Designing a
Quadratically Optimal, Full-Order Dynamic Compensator

FULL-ORDER CONTROLLER GAINS
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Figure 5. The Optimal. Full-Order (LQG) Controller Is Determined by a
?air of Separated Riccati Equations
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frequency is complexified in a transfer function setting, then the resulting pole

location uncertainry has the form of a disk. This disk. hcwever. intersects the

ri-ht half plane in violation of energy dissipation. Fence one source of

conservarism- is the inability to differentiate between physically distinct naraeters

such as modal frequency and modal damping.

ImX
RIGHT-HALF-PLANE

- - POLES ARE PHYSICALLY
IMPOSSIBLE

................................

____ ____ _ __ ____ ____ __ ,Re A

5 Figure 6. Couplezification of Real Parameters May Lead to Robustness Conservatism

Although classical methods are inappropriate for vibration control, a wide

variety of modern techniques are available. These include both multi-loop frequency-

domain methods and time-domain techniques. A comprehensive review of such methods

vill not be attempted here. Rathr. we shall merely point out aspects of several

methods which motivate the Philosophy of OPUS development.

As is well known. dynamic models can be transformed (at least in theory)

between the frequency and time domains. Significant differences arise. however. in

attempting to represent modeling errors. Specifically, model-error characterization
of a particular type, which is natural and tractable in cn* domain. may become
ea.rremely cumbersome when transformed into the other domain. Fcr ex.ample. consider a

.4.. state space model with parameter uncertainties arising in the system matrices
(A.B.C). Upon transforming to a frequency domain model G(s) a C(alI-) 1 3 the

A Parametric uncertainties may perturb the transfer function coefficients in a
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this approach, however, in desi;ning controllers for vibration suppression. For

example, as shown in Figure 6. complexification of real-parameter uncertainties such

as modal frequencies may yield unnecessary conservatism, while norm bounds ofren fai

to -reserve the physical structure of parameter variations. A case in point is th-e

lightly damped oscillator. As shown in [A42], norm bounds predict stability over a
frequency ran~e on the order of the damping while in fact the oscillator is

unconditionally stable. Furthermore, with regard to processor throughput tradeoffs,

modern frequency-domain methods typically yield high-order controllers.

Although LQG addresses performance/actuator and performance/sensor

tradeoffs in a multi-loop setting, it fails to incorporate modeling uncertainty.

7Thus it is not surprising, as shown in (3]. that LQG designs fail to possess

guaranteed gain margin. Since LQG designs lack such margins, attempts have been made

to apply frequency-domain techniques to improve their characteristics. One such

=ethod, known as LQG/LTPR ([4,51) seeks to recover the gain margin of full-state-

feedback controllers. Specifically, full-state-feedback LQR controllers are

guaranteed to remain stable in the face of perturbations of the input marri-. E of -he

forma3 where ae[l/2.a). As shown in E6.7], however, the full-state-feedback gain

margin fails to provide robustness with respect to perturbations which are not of

this form. For instance, the example given in [6] with B a C0 11 T can be

destabilized for suitable performance weightings with perturbation B(E) = [C 11T for

arbitrarily small E in spite of the 6 dB margin. Furthermore, since LQG/LTR loop

shaping is based upon singular value norm bounds, treatment of physically meaningful

real parameter variations may lead to unnecessary conservatism. Several approaches

have been proposed for circumventing these difficulties (see. e.g.. [8]).

The importance of addressing the problem of structured uncertainty in

finite element models cannot be overemphasized. Structural characteristics such as

modal frequencies, damping ratios, and mode shapes appear explicitly in (A.3.C)

state-space models as physically meaningful parameters. Uncertainty in mode shapes.

for example, which appear as columns of the B matrix, cannot in general be expected

. to be of a multiplicative forn in accordance with traditional gain-margin

specifications. This is precisely the problem illustrated by the example of [61

discussed above. Furthermore. uncertainties in modal frequencies and damping ratios

must be carefully differentiated since, roughly speaking, modal frecuency

uncertainties affect only the imaginary part of the pole location while damping

uncertainty affects the real part. Although these and related observations

- ,, ~ ~v~:'~.gp5 ,11



c:,ncerrinn; -cer':ainty in rne dyn~amic characreristics Of i .tly Cam~ped arrUcrures

-. C'S: ~y; ac-irery _for Control-System Desi-,n

:n v:iew of the ability of LQG theory to synthesize dynamic controllers for

=ulti-input, -_ulri-outputr controllers, it is not surprisin; that LqC forms the basis

p for a variety of structural control methods. However. as discussed previously. 14G

lacks the ability to address performance/processor and performance/robustness

tradeoffs. ':%is situation has thus motivated the development of numerous variants of

0. LQG which entail additional procedures which attempt to remedy these defects. OPUS.

0 however. is distinctly different. Rather than append additional procedures to LQG

design. OPUS extends LQG theory itself by generalizing the basic underlying

machinery.

a. As shown in Figure 5. the basic machinery of LQG consists of a pair of

sevarared Riccati equations whose solutions servo to directly and explicitly

synthesize zhe gains of an optimal dynamic compensator. The contriburion of CPUS is

to directly expand this machinery. The overall approach is illustrated in Figure 7

6 which portrays two distinct generalizations of the basic LQG machinery. As Figure 7

illustrates, these generalizations can be developed individually when either low-

order or robust controllers are desired. The appealing aspect of OPUS, however, is

the ability to extend LQG to address both problems simultan'eousl, in a unified

LOW-OLOG
CONSTRAINT UNCETAITIE

TRI PARAMETER
CNUNCERTAINTIES

OPOPus
2 RICATI# 2LYAPNOV2 RICCATI # 2 LYAPUNOV

~~~~~~(COUPLED BY OPTIMAL PROJECTION C IB NIAANYTRS

Y (1AND UNCERTAiNTY TERMS)n17

Figure 7. The Standard LQG Result Is Generalized by Both the Fixed-Order
Constraint and Modeling of Parameter Uncertainties
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reviewed following the left branch. That is. the optimal projection approach to

reducec-order ccntroller design will first be discussee in Section 3 wirhcur

-introducing plant uncertainties. in Section 4 the reduced-order constraint will be

retained while considering, in addition. uncertainties in the system model. In each

case the discussion will focus on the underlying ideas with a minimum of technical

derail.

'4 Clearly, in order for a novel design methodology to be of practical value

it must be computationally tractable. Henci Section 5 will present an overview of

the current state of algorithm development for solving the OPUS design equations.

Finally, Section 6 will briefly summarize further OPUS generalizations of LQG theory

which are relevant to structural control.

3. Extensions of LQG to Reduced-Order Dynamic Compensation

The simplest, most direct way to cbtain optimal reduced-order controllers

is to redevelop the standard LQG result in the presence of a constraint on controller

dimension (Figure 8). The mathematical technique required to do this is remarkably

strai-htforward. Specifically, the structure and order of the controller are fixed

and the performance is optimized with respect to the controller gains. The resulting

necessary conditions obtained using Lagrange multipliers thus characterize the

optimal gains.
"<

HIGH-ORDER PLANT xeR n

y = Cx + W2

u.eRm YeR

, i = AicX + 8 cY
" '}' u : Ccx€

LOW-ORDER CONTROLLER

"i STEADY-STATE PERFORMANCE CRITERION

J(ACB 0cCc) = 1r E[xTRix + uTR2U]

Figure 8. In Accordance With On-Board Processor Requirements, a Reduced-Order
Constraint Is Imposed on the Dimension of the Dynamic Compensator

If' ,.'9 . ~



This paramerer ortimization approach as suc- is nor new.z anc was

investigated extensively in th1 1970's. Typically, however, the optimality

conditions were found to be complex and unwieldy while offering little insight and

requiring gradient search methods for numerical solution.

One curious aspect of the parameter optimization literature is that no

attempt was made to actually use this direct method to rederive the LQG result

itself. Such an exercise, it may be surmised, might reveal hidden structure within

the optimality conditions which would shed light on the reduced-order case. Indeed,

such an approach led to the realization that an oblique projection (idempotent

*f matrix) is the key to unlocking the unwieldy optimality conditions ([AA7]).

Although the result is mathematically straightforward, it is by no means obvious

since in the full-order (LQG) case the projection is the identity and hence not

readily apparent.

By exploiting the presence of the projection, the r.ecessary conditions can

be transformed into a coupled system of four algebraic matrix equations consisting of

a pair of =odified Riccati equations and a pair of modified Lyapunov equations

(Figure 9). The coupling is via the oblique projection 7 which appears in all four
%equations and which is determined by the solutions Q and P of the modified Lyapunov

equations. A satisfying feature of the optimality conditions is that in the full-

* "order case the projection becomes the identity, the modified Lyapunov equations drop

out, and, since r1 a 0. the modified Riccati equations specialize to the usual

separated Riccati equations of LQG theory. Since, furthermore, G = r = nzn identity,

the standard LQG gain expressions are recovered.

Although the modified Riccati equations specialize to the standard Riccati

equations in the full-order case, the modified Lyapunov equations have no counterpart

- in the standard theory. The role of these equations can be understood by considering

the problem of optimal model reduction alone. For this problem the cptimal reduced-

order model is characterized by a pair of coupled modified Lyapunov equations

(see (A22]). Thus the modified Lyapunov equations arising in the reduced-order

dynamLic-compensation problem are directly analogous to the modified Lyapunov

equations arising in model reduction alone. The modified Lyapunow equations arising

in the control problem, however, are intimately coupled with the modified Riccati

ecuations. Hence it cannot be expected that reduced-order control-design techniques

based upon LQG will generally yield optimal fixed-order controllers (Figure 10). :t

is interesting to note that several such methods discussed in [1] are based upon

balancing which was shown in EA221 to be suboptimal with respect to the quadratic

(least squares) optisslity criterion.



REDUCED-ORDER CONTROLLER GAINS

AC = (A0T-_p)GT
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COUPLED RICCATI/LYAPUNOV. EQUATIONS
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Fizure 9. The Optimal Reduced-Order Compensator Is Determined by a
Pair of Modified Riccati Equations and a Pair of Modified Lyapunov Equations

Coupled by the Oblique Projection T
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Figure 10. The Optimal Projection Equations Provide a Direct Path to
Optimal Reduced-Order Dynai Compensators



:n su..ar-y, the cptrial projecr'cn equ.tions for recuceu-order ynamic

compensation comprise a direct e::rension of the basic LQG machinery to the reduced-

order control pro Ie=. The design equarions, whic., reduce !o the srandard LCG result

in the full-order case. provide direct synthesis of optimal reduced-order controllers

in accordance with implementation constraints.

4. Extensions of LQG to Uncertain M!odeling

Two fundamental sources of error in modeling flexible structures are

truncated modes and parameter uncertainties. Since the optimal projection approach

permits the utilization of the full dynamics model, modal truncation can be largely

avoided. There remains, however, a tendency to truncate poorly known modes and thus
it is essential to incorporate a model of parameter uncertainty in both well-known

and poorly known components of the system. Hence the problem formulation of Figure 8

is now generalized in Figure 11 to include uncertain parameters r% appearing in the
I

A, B and C matrices. The parameter a-. is assumed to lie within the interval

iin accordance with identification accuracy. Clearly, when uncertainty is absent.

i.e., when Ai, B., C. = 0, the reduced-order design problem of Figure 8 is recovered.

HIGH-ORDER, UNCERTAIN PLANT

a Stochastic disturbance model
s Deterministic parameter uncertainty model

~:(A+Za1A1)x + (B+!:o1Bi)u + w

y = (C+ZaiC1 )x + w 2Uy

, 1 = [Acx c,  + soY I

'"- U -- Ic .x.,+t~l .

LOW-ORDER CONTROLLER
a Dynamic (strictly proper)

@ Static (constant gain)
n Dynamic/static (nonstrictly proper)

Figure 11. Robust Optimal Projection Design Is Based Upon a
Hybrid Uncertainty Model Involving a Deterministic Parameter Uncertainty &Xodel

and a Stochastic Disturbance Model

0 A



A salient feature of the design .model is that uncertainty is modeled in two

distinctly different ways. External uncertainty appearing as additive white noiZe ic

modeled stochastically. Such a model appears appropriate for disturbances sya--h as

coolant flow for which only power spectral data are available. On the other hand.

internal uncertainty appearing as parameter variaticns is modeled deterministically.

Such a model appears appropriate for uncertainty arising from directly measurable

quantities such as mass and stiffness. Thus the overall uncertainty model is hybrid

in the sense that it utilizes both deterministic and stochastic characterizations of

uncertainty.

A natural performance measure which accounts for both types of uncertainty

characterization involves the usual LQG quadratic criterion averaged over the

disturbance statistics and then maximized over the uncertain parameters (Figure 12).

Hence this performance measure incorporates on the average and worst case aspects in

accordance with physical considerations.

PERFORMANCE CRITERION

J(Ac,Bc,Cc) sup lim sup E [xTR1 x + 2xTR 1 2u + uTR2 u]
oI  t-oc

Worst- Steady- Average Quadratic
Case State I

Over Over
Parameters Disturbance

Statistics

ROBUST PERFORMANCE PROBLEM

Minimize J(Ac,Bc,Cc) over the class of robustly

stabilizing controllers (Ac,Bc,Cc)

Figure 12. Performance Is Defined To Be Worst Case Over the Uncertain Parameters
and Average Over the Disturbance Statistics

The resulting Robust Performance Problem thus involves determining the

gains (Ac ,Bc Cc) to minimize the performance J. The static gain Dc can also be

included but will not be discussed here. Despite the apparent complexity of the

problem, remarkably simple techniques can be used. Specifically. first note that

after taking the expected value the performance J has the form

J(A .3 BC c uc sup i. sup tr Q(t)R. (4.1)
c c 171 t->e

~X



where "tr" denotes trace of a matrix, Q(t) is the covariance of the closed-lco)

sy ste=. and R is an augmented weighting natrix ccmposed of Rio F2 and Z., The

covariance Q(t) satisfies the standard Lyapunov differential equation

Q = (A+EOA )Q + Q(A+EOA )T + , (4.2)

where A is the closed-loop dynamics. A. is composed of A., B. and C.. and V is theis 1opsdo i . 1n 1i  n V h

intensity of external disturbances for the closed-loop system including the plant and

measurement noise.

w%: 11o distinct approaches to this problem will be considered. The first

involves bounding the performance over the class of parameter uncertainties and then

choosing the gains to minimize the bound. Since bounding precedes control design

this approach is known as robust design via a priori performance bounds. The second

approach involves exploiting the nondestabilizing nature of structural systems via

weak subsystem interaction.

4.1 Pcbust Desi!gn Via A Priori Performance Bounds
I..u

The key step in bounding the performance (4.1) is to replace (4.2) by a

modified Lyapunov differential equation of the form

I.T
where ..e bound * satisfies the inequality

Eaj(A .C ) _ ( (4.4)

over the range of uncertain parameters a'. and for all candidate feedback gains. ":ote

0 that the inequality (4.4) is defined in the sense of nonnegative-definite matrices.

Now rewrite (4.3) by appropriate addition and subtraction as

T T

_q (A+4.s. Aa q + (A+1:0- Aie +~ V J:r(.4Q + V.

~ Now subtract (4.2) from (4.5) to obtain

-qQ + (S-Q ) + -S a (4.6)



Since -y '.) the term

'P~s - ~~(A~+~.A) -(4.7)

is nonnegative definite, it follows immediately that

2Q(O (4.8)

over the class of uncertain parameters. Thus the performance (4.1) can be bounded by

J(A c.Bc Cc ) < J(A cBCc ) - lim tr _R. (4.9)

The auxiliary cost J is thus guaranteed to bound the actual cost J. This leads to

the Auxiliary Minimization Problem: Minimize the auxiliary cost J over the

controller gains. The advantage of this approach is that necessary conditions for

the Auxiliary Minimization Problem effectively serve as sufficient conditions for

robust performance in the original problem. Since the bounding step precedes the

optimization procedure, this approach is referred to as robust design via a priori

performance bounds. This procedure is philosophically similar to guaranteed cost

control (N9.I). rote that since bounding precedes optimization, the bound (4.4)

must hold for all gains since the optimal gains are yet to be determined.

To obtain sufficient conditions for robust stability, the bounding function

m ust be specified. Since the ordering of nonnegative-definite matrices appearing

in (4.4) is not a total ordering, a unique lowest bound should not be expected.

Furthermore. each differentiable bound leads to a fundamental extension of the

optimal projection equations and thus of the basic LQG machinery. In work thus far.

two bounds have been extensively investigated. Only one bound, the right

shift/multiplicative white noise bound, will be discussed here. The structured

stability radius bound introduced in [11.12] is discussed in [A43].

The right shift/multiplicative white noise bound investigated in EA29,A41]

is given by

a= Ai ). (4.10)

where a. > 0 are arbitrary scalars. Note that this bound consists of two distinct

parts which must appear in an appropriate ratio. The first term a._ arises naturally
a.t

when an exponential time weighting a I is included in the performance measure. As

is vell known ((13]) this leads to a prescribed uniform stability margin for the



closed-loop system (FiSure 13). A uniform stability mar.in, no car.er hcw large.

hcwever. dces r-cr :uarznree robustness airh respect rq arbitrary paracerer

variations. The corplementarrsecond ter- a i A.iA. is crucial in rhis regard.

I i=Ax - i (A+a)xa>0
Im

X- -

4AP_

Re

APPLY CONTROL-DESIGN TECHNIQUES
TO RIGHT-SHIFTED OPEN-LOOP SYSTEM

c* UNIFORM STABILITY MARGIN

(Anderson and Moore, 1969)

S Figure 13. Open-Loop Right-Shifted Dynamics Arising From Exponential Cost Weighting
Lead to a Uniform Closed-Loop Stability Margin

Although terms of the form. A.Ai are unfamiliar in robust control design.

they arise naturally in stochastic differential equations with multiplicative white

noise. That is. if the uncertain parameters ca. are replaced by white noise processes

entering multiplicatively rather than additively, then the covariance equation for Q

automatically includes terms of the form AiQA. The literature on systems with

multiplicative white noise is quite extensive; see (A38] for references. It should

be.stressed, however, that for our purposes the multiplicative white noise model is

not interpreted literally as having physical significance. Rather, multiplicative

white noise can be thought of as a useful design model which correctly captures the

impact of uncertainty on the performance functional via the state covariance.

1,. Furthermore. just as the right shift term alone does not guarantee robustness,

neither does the multiplicative white noise term. Both terms must appear

simultaneously. Roughly speaking, since multiplicative white noise disturbs the

plant though uncertain parameters, the closed-loop system is automatically

desensitized to actual parameter variations.

..



After incorporating the right shifr/mulriplicarive white noise boun~d (4.1C)

i-.rrc C'4.3 to zi'i '. ound J fcr rhe performa.nce, t*.., opt izal Projectioni ecuaticr.;

can berederived following e~zactly rho same parameter optimization procedu.re

discussed in Section 3. Again, the mathematics required is but a straightforward

application of Lagrange multipliers. The additional bounding terms are carried

through the derivation to yield a direct aeneralization of the optimal proJectior

equations shown in Figure 14 with gains given in Figure 15.

T .TA .1 T TP. TPT

T-T T T -T T
0 A2 (A PA + RO+O(A 5 BRVPC) *(A- QV Q- PR P + V P R

(AV CT A A -1T- T T 'I

0 = (ASQSV2SCS) P +P(AS. 5V 2SC5 ) + P R 2PS- r P SR 25 Pa

Figure 14. The Robustified Optimal Projection Design Equations Account for Both
Reduced-Order Dynamic Compensation and Parametric Uncertainty

AC S('s 2.P-Qvj C,)GT

C 2S

OpQzATmr rAQ T sIn* r e CTc.r2

OCT a I TpA

R2 R 8T P) 22aV + (Q+Q)C

V12 _S a N 12 +

Figure 15. The OPUS Controller Gains Are Explicitly Characterized as ag Direct Generalization of the Classical LQG Gains



The ou iieCocr=a! -ro-ecticn ecuaricnz csmnrise a :-

-- rri:: equarticrn coupied by bcth the optimal projecricn anc. ,.r certainry er-z;.

the uncertainty terms are absent, the optimal projection equations of Fi;ure 9 are

immediately recovered. Cn the other hand. if the order of the controller is set

equal to the order of the plant, then all terms involving 71" can be deleted. -

However. in this case the modified Lyapunov equations do nc drop our since Q and P
" still appear in the modified Riccati equations. Hence the basic machinery of LQG is

again extended to include a pair of Lyapunov equations coupled to a generalization of

the standard LQG equations. It is interesting to note that a related result in the

context of multiplicative noise also appeared in the Soviet literature ([14]). It

should also be pointed out that although the modified Lyapunov equations arising in

. the reduced-order control-design problm have analogues in model reduction, the

modified Lyapunov equations appearing in the full-order robustified equationr

represent new machinery not anticipated in robustness theories. Hence using

straightforward mathematical techniques, the basic LQG machinery has again been

extended in novel directions.

Solving rhe design equations shown in Fiures 14 and 15 yields conrrollers

* with iuaranreea levels of robustness. The actual robustness levels may. however, be

larger than specified by a priori bounds. Thus. to achieve desired robustification

W levels for the uncertainty structure specified by the a priori bounds, the desi;n

procedure may be utilized within an iterative synthesis/analysis procedure

(Figure 16).

SYNTNESIS
CONSTRUCT DESIGN CONTROLLERSTBLYAN

'z -- ' ---- V PERFORMANCEB. OUNDS TO MINIMIZE BOUNDS GUARANTEED

CHECK ACTUAL
.'. STABIITY AND ,
• . , PERFORMANCE I

ROBUSTNESS

ANALYSIS

-igure 16. Optimal Projection/Guaranteed Cost Control Provides
Direct Synthesis of Robust Dynamic Compensators

4.2 Robust Design Via Weak Subsystem Interaction

The mechanism by which LQG was robustified in Section 4.1 involved bounding

the performance over the class of parameter uncertainties and then determining
" optimal controllgr ains for the performance bound. As discussed in Section 2.



however, flexible structures possess special properties which may. in addition, 'e

z::;Lci-,ed achieve robusrnes. :zi-efica ' io frc- ri;i-body ocas,

,.issipation implies that mechanical structures are open-loop stable regarclesz of t..

level of uncertainty. That is. flexible structures possess only nondestabilizing

uncertainties. Hence, in the closed loop, a given controller may or may nor render a

Iparticular uncertainty destabilizinz. A nriori bounds on controller performance

must, however, be valid for all gains since bounding precedes optimization. Hence, a

priori bounding may in certain cases fail to exploit nondesrabilizing uncertainties.

A familiar example of a nondestabilizing uncertainty involves uncertain

modal frequencies. Such an uncertainty will not, of course, destabilize an

uncontrolled (open-loop) structure. If particular modal frequencies are poorly known

then it is clearly advisable to avoid applying high authority control. Hence. rather

than the right-shift approach of Figure 13. it appears advantageous (although. at

first, counterintuitive) to utilize just the opposite, namely, a left shift

(Figure 17). Furthermore, in view of the fact that uncertainty usually increases

with modal frequency (Figure 18). a variable left shift appears to be more

appropriate than a uniform left shift. By left-shifting high-frequency poorly known

-odes, the crntrol-system design procedure applies correspondingly recuced authori-

rc modes "Perceived" as highly damped. Hence rhe variable left shift can be rcu;F.*y

. thought of as a device for achieving suitable authority rolloff. As will be seen,

however, the underlying robustification mechanism, namely, weak subsystem interaction.

is far more subtle than the approach of classical rolloff techniques. It is also

interesting to note that the weak subsystem interaction approach to robustness is

entirely distinct from classical robustness approaches which utilize high loop gain

3 to reduce sensitivity.

1=Ax -0 i=(A+ A A2 )x

Im

LARGE OPEN-LOOP SHIFT
IN HIGH-FREQUENCY REGIONI 0 LOW CLOSED-LOOP AUTHORITY

SMALL OPEN-LOOP SHIFT
IN LOW-FREQUENCY REGION
=n HIGH CLOSED-LOOP AUTHORITY

le.

figure 17. A Variable Left Shift Exploits Open-Loop Nondestabilizing Uncertainties

ts%
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figure 18. Modal Uncertainty Genrally Increases With frequency,

A variable left shift can readily be introduced into the robustitied

optimal projection design equations by replacing A by

Au~~ AIA, C2 i

where A. denotes the structure of modal frequency uncertainty (Figure 19). F:ost

interestingly. such a modification of the dynanics matrix arises naturally froz a

aultiplicative vhite noise model defined not in the usual Ito sense but rather in the

sense of Stratonovich. Thus, an in the a priori bounding approach. a stochastic

3 q1  Ulf 0

Az 2 "2 A, 1

~A~[1 0]

C* Aj 4- Aa i Lef Sif

Figure 19. For Modal Systems With frequency Uncertainty
the Straeonovich Correction Corresponds to a Variable Left Shift



o oel serves to suggest a mechanism for ro.-ustification (Figure ZC). "&a:n it iz

i-,:rrart " :)ress tEat r*he =uli@ca ve whire noize .-cce. 41- -ct iter-r,-c

%, itirally as -.avir. physical siniiicance, Lt ratner can , tz.cu .. r c: az a

desian model which correctly captures the impact of uncertainty on the performance

functional via the state covariance.

ROBUSTNESS BOUNDS

OUAOAIC LYADUNOV FUM CTION, kJORANT LYAPUNOV FUNCTION

- --- - -- -a a-moo - -__.o

STOCHASTIC UNCERTAINTY MODELS

" Figure 20. Stochastic Models and Robustness Bounds Are Fundamenrally .elaree

In earlier work the Stratonavich dynamics model was justified by teens of

the minimm inforuation/mazimum entropy approach ([AI-AI5]). A central result of the

• ".aimum entropy approach is that the high authority/low authority transition of a

vibration control system from vell-known low-frequency modes to poorly known high-

g frequency modes (Figure 18) is directly reflected in the structure of the state

covariance matrix (Figure 21). A full-state feedback design applied to a simply

Okk ,,04.0.

' I-

COHERENT INCOHERENT
(WELL-KNOWN MODES) (POORLY KNOWN MODES)

INFORMATION REGIMES

figure 21. frequency Uncertainties in the Stratonovich Model Lead to
Suppressed Cross Correlation in the Steady-State Covariance
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zodal frequencies increases linearly with frequency. tne 4trucrure of Zhe covariance

matrix leads directly to the control gains illustrated in Fi&ure 23. Note that in

the high-frequency region the position gains are essentially zero and thus the

control law a.-roaches positive-real energy dissipative rare feedback. .his. of

course, is precisely the type of structural controller expected in rhe ;resence cf

poor modelin& information. Of course. any effecrive control-desi&n theory for ac-17e

vibration suppression in flexible structures should produce energy dissi;arive

9 controllers when structural modeling information is highly uncertain.

w sam , Pam

• U1 amE~I O~

"[ r~uro 2. Te | ectso F~que:y ;tceuasnt et aml is w sutete

I'P G Menegw wva

es '243 Ofg M W OqUusC%

M KI-SOPPOR UUPU W"t~i m SSSLT M s.0

figure 22. The Iffects of frequency Uncertainties Can U. Illustrated
? - for a Omf4 -Diieional Dom With Id1elised Tull-State Feedback

To carry out robustified optimal projection design in the presence of left-

shifted open-loop dynamics, it is only necessary to utilize the left-shifted dynazics

matrix (4.ll) in place of the right-shifted matrix. All of the robustified optimal

P9 projection machinery, including gain expressions. can be utilized directly. It is

also important to stress that the left shift must be used in conjunction with terms

of the form A iqdA..

One explanation for the mechanisma by which robustification is achieved is

illustrated in Figure 24. By left shifting the open-loop dynamics within the design

process, the compensator poles are similarly left-shifted. Thus the compensator

;oles are effectively moved further into the left half plane away from the actual

;lant poles. Since the interaction between compensator and plant poles is weaktened,

the closed-loop system is correspondingly robustified vith respect to uncertainties

in the plant pole locations. A sensitivity analysis of this mechanism utilizing a

uniform left shift in the context of LQG design is given in [15 .
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$ ncrcesra6i"izin; uncertainries and rhus cannot operare 'hrough a :riori bcundinc.

s -sn j ac'a ev:e I r . ro :c acn a c h iev ez r-: r .e r st 1~e-t o a3.

pro:ection equations for a &iven level of ur ertainry -celin; cannot be predictec a

priori. i.e., in advance of control desi&n. Indeed, this situation is to be expected

j when nonaestabilizing uncertainties are exploited in a ncnconservative design theory.

-.-us a suitable robust analysis technique is required for ncnconservartively

aetermining the robustification cf the closed-loop system wirh respect rc open-lccp

nondesrabilizing uncertainties.

U A suitable robustness analysis technique. known as .uajorant Lyapunov

analysis, . as indeed been developed ([A42]). Essentially, this technique employs a

new type of Lyapunov function for assessing robustness due to weak subsystem

interaction. The underlying machinery consists of the block--nor matrix which is a

9 nonnezative macrix each of whose elements is the norm of a block of a suitably

partitioned matrix (Figure 25). A matrix which bounds the block-norm matrix in the

sense of ncnnegative matrices, i.e.. element by element, is known as a =a'oranr.

Majoranrs were introduced in [16] and were applied to stability analysis of

integration algorithms for ODE's in (171.

(Ostrowski, 1961; Dahlquist, 1983)

.M2I M11 -

M = M21 M2

- '

M=2 11 M21 11 IIM211

NONNEGATIVE CONE ORDERING

Figure 25. The Matrix ajorant Is a Bound for the Matrix Block Norm.

i.e.. the Nonnegative 'Matrix Each of Whose Elements Is the Norm of the
Corresponding Block of a Given Matrix



To apply ma~oranrs to cynam cal systems, the =cdel is written in the for

CUnI -,.7- - =ar . " a ra . CCni'.*_- of u-z~

a)n&L.ics. The susyste= inreractiors represene . the partiricred =atri:: G are

assumed to be uncertain. By suitable manipulation, uncertainties in the diagonal

iblocks of A can also be captured by G. By assuming that the spectral norm (largest

singular val.e, of the bloc's oi C sarisfy &iven boLnds. the covariance blcck-nor=

ireqLality is octainec (Fiv.re Z7;. 7his inecuality is interpreted in the sense of

nonnegative =atrices. i.e.. element-by-element, and * denotes the Fadamard (element-

oay-e lemenrl ;r oQct.

x:(A+G)s+w O:(A+G)+(A+G)T+VAe  , 0 0 oG12 -
'i' A2 a G

1%%

Known Subsysem Dynamics Uncertain Subsysem Intsereons

V1  V 1 2 --- 01 012

V21 V am 21 02i*i "' L " J"j
Nsise~~~~~ Iel ae ~ain

figure 26. The Large-Scale System Mod l Involves Known Local Dynamics
ad Uncetain Inteactionsm

x a (A + G)u * s J a EZTRX] x tr OR

S(AG)a O(A G)T * V JraIAjOA,)I

-1IIIIV2 1 01I 1101211 F
It1W1H,1V21111 j- Q 110921HF 1I121~ 1F

4.' 
I-I

figure 27. The Slock-mors Matriz of the State Cavariance Satisfies a
*Lyapuov-Type Inequality Involving Nonnegative Matrices



To achieve rcobusrness, the covariance block-norm inequality is reFlacec by

z.e ,ajoranr Lyapunov equarion (Tigure ZE;. The solurion of the -a;crarr Lyapur.-:

equation provides a bound (majoranr) for the block norm of the covaqiance thereby

guaranteeing both robust stability and performance.

MAJORANT LYAPUNOV EQUATION

PQ ,Q Q9T+ V

. jq- Q: + T+Q

n Robust Stability

* Robust Performance

Figure 28. The Corresponding Nonnegative 'atrix Equation Yields a Majorant

for the State Covariance and Hence Robust Stability and Performance

It is interesting to note that numerical solution of the majorant Lyapunov

equation requires no new techniques. Utilizing properties of M matrices, the

solution can be obtained monotonically by means of a straightforward iterative

technique (Figure 29).

MLE has a unique solution iff {QK, K=0, 1, ... , =1 where:

QoOO

QK+1 Cl'U (U QK + QK6T + X)

converges. If so, then:

Q :Iim QK
; . K-00

J " < 2 (tr PK)(Q)KK

K=1

(0: A K K+PKAK +RK)

Figure 29. By Exploiting the Properties of M-Matrices,
the Majorant Lyapunov Equation Can Be Solved Monotonically by Means of a

Simple iterative Technique



An illustrative application of the majorant Lyapunov equation involves

lightly damped subsystems (Figure 30). As shown in [A42] (and expected intuitively).

robustness with respect to uncertain subsystem interaction is proportional to the

frequency separation between the subsystems. The ability to capture this

robustificarion mechanism is a unique feature of the majorant Lyapunov function not

available frcm quadratic (i.e., scalar) Lyapunov functions or vector Lyapunov

functions ([18,19]).

X
X

X

, " I

Majorant Lyapunov Equation Bound- v J 2v)2 + 1oa1-W2)2

Figure 30. Robustness Bounds for Uncertain Coupling in Modal Systems
Are Proportional to the Frequency Separation Between Subsystems

The next step in the majorant development involves a hierarchy of finer and

finer robustness bounds which account for higher order subsystem interactions, e.g.,

the interaction between the ith and jth subsystems via the kth subsystem. The second

• .member of the hierarchy (Figure 31) provides robustness guarantees with respect to

frequency uncertainties. The interesting aspect of this robustness test is the fact

that the performance bound is characterized precisely by a Stratonovich model. Hence

rhe Stratonovich model can be viewed as an approximation to a robustness bound, while

;oitig r.e Stratonovich/majorant relationship leads to a natural

- .Ir'sis scheme (Figure 32) which nonconservatively exploits open-loop

-'. eeoaox~z~nI~ uncertainties.

Os
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- SYNTHESIS

UTILIZE MAJORANT LYAPUNOV
EQUATION TO CHECK ROBUSTNESS WITH

RESPECT TO CLOSED-LOOP NONDESTABILIZING
SUBSYSTEM INTERACTION

ANALYSIS

LStratonovich synthesis approximation to majorant analysis

Figure 31. The Stratonovich Synthesis Model Provides a First Appr'oximation to the
4 Majorant Analysis Bounds

Second member of the hierarchy:

trR] :5 21r PK)(9<Q>)KK

K=1

0 = Ad + OAT + HE^0] + V
0O=ATP+ PA + EP3+ R

* ~.whee:> off-diagonal part of Q
1-i=Stratonovich model operator'

e Tighter bound-incorporates more Information on A and G
a Predicts stability when (A + AT) stable, G = G
a "Nominal" performance, tr 16R], given by Stratonovich model

Figure 32. The Refined Majorant Bound Incorporates a Stratonovich Cavariance Mtodel



'u-erical Al-orir-.s and EZ:an-!es

Practical design of controllers is only possible when efficient, reliable

algorithms are available. Indeed, the optimal projection equations are readily

solvable and have been applied to a wide variety of examples. Numerical results

appear in (A3-A6,A.AlI.AI2.A14-A16,Al8,Al9,A21-A24,A26-A28,A30-A33 ,A39.A42,A44.A46].

Two distinctly different algorithms have been developed thus far, namely, an

iterative method and a homotopy algorithm.

The iterative method, developed in [A14,A16.A44] and further studied in

(20,21], is outlined in Figure 33. The nice feature of this approach is that only

a standard LQG software package is required for its implementation. The basic

motivation for the method is the observation that the main source of coupling is

via the terms involving 7". The coupling is absent, of course, when 'r is the

identity. i.e.. LQG. Note also that the terms involving 1I are small when R2 and

V2 are large, i.e., when control cost is high and the measurement noise is

significant. This case, which yields low-authority controllers, is approximately

characterized by decoupled control-design and controller-reduction operations.

Thus it is not surprising that LQG reduction techniques are most successful '.hen

controller authority is low.

Since the r terms occasion the greatest difficulty, it appears

advantageous to bring them into play gradually. This can be accomplished by fixing

7r after each iteration to yield updated values of Q. P. Q and P. Furthermore. r is

introduced gradually by means of a to reduce its rank.

The crucial step of the algorithm concerns the construction of the

projection T from the pseudogramians Q and P. Specifically, r can be characterized

(see [A221) as the sum of eigenprojections of QP, where each choice of

eigenprojections may correspond to a local extremal. However, the necessary

conditions do not specify whEkch eigenprojections are to be selected for obtaining a

particular local solution. Nevertheless, there do exist useful methods for

constructing r. For example, component-cost decomposition methods ([22]) when

applied within the optimal projection framework often permit efficient identification

of the global optimum.

Although the iterative method is convenient to use because it utilizes

readily available software, it is suboptimal in the sense that it does not full,

exploit the structure of the equations. Specifically, while the iterative methcd

addresses a system of four nxn matrix equations, careful analysis reveals that

because of the rank deficiency of the projection the problem can be recast as four

nc m equations. Hence, when n c is much smaller than n, which is clearly the most

. p. p



COMPUTE U. P. 0. P O0

* V I R)OA4~P) P- RP 5 T ~ T,1 Q i~V~T

OxAPA PA. RS1  29 2328zli

P A 1 TR o (ACS .1T A .1 T F

. 1A A - . T -Tlp T

46:0 (A'QVjCz) P (A&.(6V 2,C 5 ) P SRii 2 s 8 2B1 or

UPDATEr

BALANCE ~I t j2 1J

W ~* a A.

A DIAG (A,, . An).

IN r Ing 01 W-1  Ai.>Ai,

COMPUTE Q, V-1  AR I~

DASEDON U. P. P

COMPUTE PERFORMANCE

Figure 33. The Iterative Method for Solving the Robustif led, OPUS Design
Equations Requires Only an LQG Softvare Packa&e and

Involves Refinemenit of the Optimal Projection r



cesirable cae fcrn pracrical im~ple=entaricn, there exzisrs considerable cporrunityfor increased computational efficiency. Furthermore. and most satisfying, the

computational complexity decreases with n as is intuitively expected below hat

resuired by LQG design. Fence the optimal projection approach has computational

complexity less than LQG reduction methods for which LQG is but the first step.

S. Richter ((23.A461) has developed a homotopy algorithm which fully

exploits this crucial structurb. HIumerical experiments thus far have shown that

considerable computational savings can be achieved over the iterative method.

Furthermore, by applying topological degree theory to investigate the branches and

character of the local extremals, it can be shown that the maximum number of possible

ext remals is

(.incn.m.,))

if n ( min(n.m.2) or 1 otherwise. Fence in most practical cases the equations

support a r-latively small number of solutions.

~ Both the iterative method and the homotopy algorithm have been applied to a

design problem involving an 8th-order flexible structure originally due to D. Enns

and considered in [1]. Specifically, a variety of LQG reduction methods are compared

in [1] for a range of controller authorities. These methods include:

1. Enne: This method is a frequency-weighted, balanced realization technique

applicable to either model or controller reduction.

2. Glover: This method utilizes the theory of Hankel norm optimal

approximation for controller reduction.

3. Davis and Skeltcn: This is a modification of compensator reduction via

balancing which addresses the case of unstable controllers.

4. Tousuff and Skelton: This is a further modification of balancing for

handling stable or unstable controllers.

5. Liu and Anderson: In place of using a balanced approximation of rhe

compensator transfer function directly, this method approximates the

component parts of a fractional representation of the compensator.
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All of the above methcds proceed by first obtaining rhe full-order LQG

ccmnersaror aesgn for a hi.h-order zrare-sp:ce -. oi and ,t-.tn reducir= rh .' i.er:'zr

of the resulting LQG compensator.

g Figure 34 summarizes the results reported in [1] for the above LQG

reduction methods along with results obtained using the irerative =ethod for solving

the optimal protection equations. Here q2 is a scale factor for the plant

disturbance noise affecting controller authority. Clearly. LQG reduction methods

experience increasing difficulty as authority increases, i.e., as the 71 rers beccm.e

increasingly more important it coupling the control and reduction operations. For

the low authority cases, the optimal projection calculations, which were performed on

a Harris H800 minicomputer, appeared to incur roughly the same computational burden
N as the LQG reduction methods. Although the optimal projection computational burden

increases with authority, comparison with the LQG reduction methods is not meaningful

because of the difficulty experienced by these methods in achieving closed-loop

stability. See (A44] for further details and for comparisons involving transient

response.

The homotopy algorithm was also applied to the e:azple consilerd in [LA

Cne of the =ain goals of the development effort was to extend the range of

disturbance intensity or, equivalently, observer bandwidth, out beyond q, = 2000. To

this end, second-order (nc = 2) controllers were obtained with relatively little

computation for q2 = 10,000. 100,000 and 1,000,000. In addition, the performance of

each reduced-order controller was within 25% of LQG. These cases can surely be

expected to present a nontrivial challenge to both the LQG reduction methods and the

iterative optimal projection method.

Numerical solution of the robustified optimal projection equations has been

carried out for several examples. For illustrative purposes a 2x2 example was

considered in [A26] and the results illustrated in Figure 35 indicate performance/

robustness tradeoffs possible. The variable left-shift technique was applied in

[AI to the NASA SCOLE problem with frequency uncertainties. The robustness of LQG

and two robustified designs is shown in Figure 36. The plots illustrate the

degradation in performance due to simultaneous perturbation of all modal frequencies.

* Note that LQG is rendered unstable by +52 frequency perturbation while a high-

authority robustified design improves this region to +8&. The low-authority design

increases this region significantly while sacrificing 6% nominal performance.
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,he robustified optimal projection design machinery has been further

extended to encompass a larger number of design cases arising in practical

application. Iere we merely list the extensions:

I. Discrete-rime and saopled-cara controllers L[A28,A30,A34.A35).

2. Decentralized controllers ([A391).

3. Nonstrictly proper controllers ([A37]).

4. Distributed parameter systems ([A25]).

7. Concludin_ Remarks

The zachiner provided by CPUS for designing active ccrrrollers for

.lexible srructures has been reviewed. The basic machiner- is a osrec of coupled

Riccari and Lyapunov equations which directly generalize the classical LQG result to

include both a constraint on controller order and a model of parameter uncertainty.

The overall approach thus encompasses all major design tradeoffs arising in

*- vibration-suppression applications. Substantial numerical experience has been gained

through an iterative method requiring only an LQG software package and, more

S recently, by means of a highly efficient homotopy algorithm developed by S. Richter.

The overall approach opens the door for effective design of implementable controllers

for large precision space structures.
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A'zrtract

Sufficient ccnditions ere declojpee for desi,-n-r.rt robustI -Lc.-cntr~lized1 static output feedback cor~trollers. Thc. approcch itivclves
Carivir.L ncccss~ry conditions ' cr Li4nizizinL a bound; or. closed-locp
;cr~crL.&r.cc over the class cf uncertain prr&.tcrs. Thc effect of plzntI ~ r~ttrer variations ctr the clcoed-loop ccvariarnco is bour~de6 by recrx c f a
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1. Introduction

Because of implementation constraints, cost, and reliability

considerations, a decentralized controller architecture is often required

for control of large scale systems. Furthernore. such controllers must be

robust to variations in plant parameters. The present paper addresses both3 of these concerns within the context of a robust decentralized design theory

for continuous-time static controllers.

The approach to controller design consideredherein involves

optiizin closed-loop performance with respect to the constrained feedback

-,ains. This approach to output feedback was studied for centralized

controllers in (13.14 and for decentralizcd controllers in [151. An

interestinL feature of [14.15] is the recognition of an oblique projection

(idempotent .atriz) t-hich allows the necessary conditions to be written in5tarus of a modified Riccati equation. When the problem is specialized to

full-state feedback, the projection becomes the identity and the Lodified

Ficcati equation coincides with the standard ,iccati equa-tion of L4R theory.

it should be pointed out that the oblique projection of static output

feeCback is distinct fron the oblique projection arisinL in dynamic

cor..ensation (12]). A unified treatment of the static/di..&ic (nonstrictly

proper) control Froblem ir.volvine both projections is Liven in [3].

The present paper -oes beyond earlier work by deriving sufficient

conditions ior robust stability and perfortance with respect to constant

variations in the plant paraneters. Although plant disturbances are

reprcser.ted in the usual manner by additive white noise, uncertainty in the

;lent dynamics is modeled detert..inisticclly by means of structured paraneter

variations within bounded sets. Thus, for exat:ple. the cynaLric& matrix A is
p

roplaced by i + E 4. where W is a constant uncertain parcmeter assu-ed

only to lie within the interval [-6..6 ] and . is a fixed Latrin dernotinZ

the structure of the uncertain param:eter 0. as it appears in the novinal

dyna-.ics rmtrix A. The systerm perfo=,ance is defined to be the worst-case

1



I
value over the parameter uncertainties of a quadratic criterion avera~ed

over the disturbance statistics.

Since the closed-loop perfortiance can be written in ters.s of the

I second-moment matrix. a performance bound over the class of uncertain

parameters can be obtained by boundin, the state covariance. The key to

3bboundir. the state covariance is to replace the usual Ly&punov equation for
the second-zuorent =atrix by a suitably rodified Lyapunov equation. In the3 present paper the modified Lyapunov equation is constructed by addinL two

additional terms. The first term corresponds to a uniformi right shift of

tlie open-loop dynaics. Ls is well known ([I]). such a shift may arise fro,

an e::ponential perforr.ance wei&htin& and leads to a uniform stability mar~in

for the closed-loop system. In order to obtain robustness with respect to

specified structured parazeter variations, however, an additional term cf

the fo-n. A QAt. is required. Such terr.s arise naturally in systems with

rIultiplicative w7hite noise; see CC] and tLe references therein for further

dc:c.ils. The e#ponential cost wcihtin6 and multiplicative noise

inter.retationE for :he uncertLinty bout.4: have no bearin- in the present

papcr since parameter variations are Lwodeled deterministically as constant

vcriations -ithin bounded sets so that only the bound itself is required.

FavinE bounded the state covariance over the class of pzraneter

uccrtairtiez, the perfcr.ance can thus te bounded in tems of the sclutior

o! thM r,odfied Lyapunov ecuation. Te ?erfo,.rDIce bourd can be viewed E.s3 &n &u::iliary coat and thus leads to the Au:iliary I:ini:izatior Prcblm:

: .iniin tie parfornance while satisfyin.- the modified Lyapunov equation.3 The nicc feeture of the auxiliary probleL is that ncccsary corditions for

oitivelity of the performance bound no sere as sufficient conditione for3 roiuit .erfr=rance in the oririnal probler.. Thus our aiproach seeks to

rcctif: one of tie principal drawbcks of necessity thcory. narcly,

u.Lrar, Ltc of stability End perforrance. Furthcrmore, it should bc noted

tht if nM.crical colution of the or:tisality conditions ieldc a lcca:

_::tre:.al lhich it not the .lobcl opt'..ur, t.en robust stability and

,rerforar.ce c-re still -usrentee4. althOur. tie perforr..,nce cf the c:tvc.lc

solution mLy not bu as Zood Ls the perfo.ance provicad by the -IcbelI



,iniL:uL. Philosophically, the overall approach is relcted to guzrzntccd

cost control ((10]).

A further extension cf previous approaches considered in the

presunt paper involves the types of feedback loops considered.

Specifically, the usual approach to static output feedback involves nonnoisy

3easurements crd wei&hted controls, while the dual problem involves feedig
bach ncisy measurements to unweighted controls. This situation leads to an

additionzl projection ([3]) which is dual to the projection discussed in

(14,15]. Ths inclusion of the dual case now leads to a pir of modified

Riccati equations coupled by both the uncertainty bounds and the oblique

project ions.

In addition to the t%:o types of loops discussed above, one may

•:ish to consider the to rer.aining cases, namely. feedin back noisy

c. ur ents to ",cighted controls and feedin- back nonnoisy iueasurements to

un-ei~hted controls. It is easy to show, ho;ever, t-at the former case

1cads to a. undefined (i.e.. infinite) value for the performance while the

.tter case i& hijLly singular ard fails to yield explicit cain en.pressicnc.

.ir.c.lly. the sccj.e cf the present paper is lrited to a rigorous

.iucidctlon o2 sufficient conditions for robust decentralized output

ftQbach. :'urerical solution cf these equations can be carried out by

.e.-.cin6 available algorithr. for centralized output feedback. 1:uerical3 P r soivinL a- ir.le Lodified riccati ecuatior. irl the abL.ence of

u:.cr:ai;.ty bot..ds .re discussed it [15].

I i. 1:ot: -i n a .-. jcfinitionL

"-" :- *r i-real nur.ers, r-:s reei nurte s, . : e:.rcctaticn

, (, ;r::r icerti~cyr tr-ns-cce

5 0 , 0 ".¢rr.ec: Lu.., L rcu.L€.er prccuct [p])

Ir-.r * z *rc r...r i e
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I r =:r syr=,etric posit ive-Cefinite matriceL

2 2-I Z1 < Z. ~Z2 -Z 1 E U r. Z . Z2

~2z r rZ 1 < Z 2  Z 2 -Z l fp_ 0 Zi a Z 2 4

I asymptotically riatrix with ei-envalues in open left half plane
stable rat ri::

3 na ra s. positive integers

i. .h indices . i=1•.. r j l ....,s & k=l ...,or

m 2i positive inte&ers, i=l,....r

Ar~, A jpositive inteLers, j=l....,s

n-dimensional vector
a a

ui' Yimi, ;-dimensional vectors, i=l,...,r

u., y. m. A-dirensional vectors, i1....r

Sn::n ratriccc

ni. c. n.=. mtrices: /i::r matrices. i=l,...,r

L.;• C.5 AC. := . matrices; 1.xn ..atrices, jr1, .. s

3 ;.. ~nxn matrices, k=...,p
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ik 2.I Cj A Nn ma-trices* OF,.,, =,.,

I:: Dc zi atrices, i=1a,..., r
Ci 2. 2.

E. c... ::.atrices. j-l,....scj a
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8. n~onneEcative numbcr. h1...,p

I . 8I t/. *=0..p

e. real nu.ber. .

La A + F 8,k a.InI ; =

x
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3. r.obust Stability and RPobust Performance Problcms

m In this section we state the Robust Stability Problexi and Robust

Performance Problem along with related notation for later use. Let
nxn  m=1 nmn r J 1 xn E xn

x R ... x R R denote the set of

uncertain perturbations ( A, BI,...,CBr.ACI, .... ACa) of the nominal System.

matrices AB ... Br, C1 ...,Cs.

Robust Stability Problem. Determine (DC9 ... D crE cl, ...ocs) such

that the closed-loop system consisting of the nth-order controlled plant

r s
= (A+(B):(t) +B)U(t) + W.(t), t e([0,c), (3.1)

i=1 j=1

.-casurements

it) C-. (t) i,....,r. (3.2)

yj(t) = (C.+AC)::(t), j=....,s$ (3.3)

and static output-feedback controller

u.(t) = D .yi(t). i=,...,r, (3.4)

u. (t) = c j y j W. j=1.....s. (3.5)

Si= c y:-pttically stable for all variations in U.

I tLerark 3.1. In the case AA,,C = 0 it is well 'no";n that

stabilizability i5 related, to the e::istence cf £i:;ec M.cdcs ([16]). hn

iar.t uncertainties arc present the prcbler is, of course, far .Ce comlQ..

In thce present japer sufficient conitions for robust vtability are obtainec

" a Cirect cornesuence of the e:;istencc of rolust perforar.ce bounds.

6 6
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Fobust Pcrfonuz-ncc Problem. Determine (D cl... ODcr,Ecl,... ,Ec)

such that the closed-loop system consisting of the nth-order controlled and

disturbed plant

r s

.(t) = (A+AA):(t) + (BA . t) + (t) + ,(t) , t e [0,=). (3.6)10U i=1 jr1

nonnoisy and noisy measurements

y4(t) = C. :(t). i1l...., (3.7)

Yj(t) = (C +AC ) (t) + w-(t),j j=, .... so (3.6)

I ard Static output feedback controller (3.4). (3.5). the perfornance

~criterion

J(Dcl...,cr, cl .... Ec. S

r r
-T 2 P ta+ u.Tflu()

up &ii sup t(::Tt)F. :t) + 2.uT.(t) iu(t)+ (t) .(t)]
U t-Ot i=1 i = 1 1

I is riniL.i-ec.

g rLcr. . 3.2. I:ote that the controller architecture includcs two

,istinctly different types of decentralized loops. The first type ir.de:zed

Ly i=,....r, involves feading back nonnoisy rasurements to weighted

controls. Mia is the standard settin% in the cptir al output-feedbach

A.terature ([13-15]). In addition, uc include the dual situation inde::ed by

j=w,...,h, which involves feedinL bach noisy -Lzs.retLetts to ureighted

controlS. The case in -hich only one type of loop is prcsent can be
-ornally recovered froe: our results by izrnorin- B. and C. or . and C. as

rcc irc-.

For c"ch ccr.troller (Dci,...Dcrcl,..., Ecs) and vriation in U,

t'.a undisturbed cloed-loo; syste:: (3.1)-(3.5) is Liven by

K 7
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(t) = (A+AA)x(t). t C[0,c), (3.1C)

while the disturbed cloced-loop system (3.4)-(3.C) can be written as

= (A+AA)x(t) + w(t), t e [0,c), (3.11)!n
where w(t) is white noise w7ith intensity V e 1:n .

For the Robust Perform:ance Problem the cost can be expressed in

reru.s of t-c second-moment matriz. The following result is immediate.

ProDcsition 3.1. For each decentralized controller

(De1 ,...,*Dr,Ec1 ,...,Ecs) and variation in U. the second-morent matrix

Q _(t)= t[:(t)XT (t)], t E [0,O), (3.12)

satisfies

c _(t) = (A -A)Q .(t) + Q .(t)(A+4A) + V. tE [0,e). (3.13)
At AA AA

Furthermorc,

J(D,... ) = sup lim sup tr Q .(t)R. (3.14)

Sufficient Conditions for Robust Stability and Performance

In practice, stoady-state perfor.ance is cnly of intercst when "-he

clccd-loop systemL (3.10) is stable cver U2. The folloi;4nS result follovs

fro: Proposition 3.1.

Lcu-:a 4.1. Supposc the systev:. (3.10) is stable for all variations

in U. Ther.

L!,



J (D1 ....D clE cr '*** * = sup tr Qf,(4.1)

w ~here e I: n is the unique solution to

0 =(1A-+AA)Q - + , .. (A+At:), + V. (4.2)
AA Ali

Remark 4.1. I-her. U is cos~pact. "isup"? in (4.1) can, be replaced by

Since it is difficult to determ~ine J(D 1 '* ,.D r9 1 ,'.9E C)

explicitly. %.,e shall se~k upper bcun~s. Our acsumptions allow us to obtain

robust stability es a consequence of robust performance.

1heorem. 4.1. Let fl: FT rx R. F. r r

s C be such that

~Atq + rIA. < fl(rQ '~ ...&D r.E cl . E ). (4.3)

-n
fcr all variations in U and (Q,D .. D *E ... SE) 11

- a c1l" cr' ci, cs-

r . R Further.ore, frEie

(D1,...,D crEc ...,E) suppose there e::istc; Qe N: SatL5fin

0 = AC, + QA' + fl (Q. D ..*, D cr , c'* E cs) + V. (4.4)

Final4l, suppose the pair (V ,A+A A)iseecbl fo lvritn r..

Then, for all varictions in U, A+A is asytptotically stable,

Q Q., (4.5)

ar~r.

0
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3 J(D cl,...,D cr,Ee .... OEcs) < tr QR. (4.6)

Proof. For all variations in U, (4.4) is equivalent to

(A+W.)Q + Q(A+,A) + *(Q. D cl...,Der E cl,...,E csAA) + V. (4.7)

3 where

*(QDcl, ...,DcrEcl, .. 9 E es,)A

fl(Q.DC 1 ...D croL 1" ...9E) - (AQ+Q&T).

rote that by (4.3). *(.) ) 0 for all variations in U. Since (V , A+M) iz

detectable for all variations in U, it follows fro. Theorem 3.6 of [17] that

(CV+*(,D D -1/2--((V++(QDc1, .... DcrEcl .... 9E cs" A)) AA,) is detectable for all

variations in U. Hence Lern:a 12.2 cf [17] implies A+b; is asrptotically

stable for all variations in U.

1'e:t, subtractinZ, (4.2) from (4.7) yields

c = (A+4)(o-Q .) + (-Q .) (A+41) + *(Q.Dc ....D E 1...... E.A).At , AA 1 cr

or, ecuivalertl y, (since A+-a. is asymptcticaily stable)

= (A+&') t(., c AA'. ) ( )t
- , J Dc .... cr Ecl,... Cs dt > ,

:hich irplies (4.5). Finally, (4.5) and (4.1) yield (4.6).

.t also note a sufficient condition fcr the solution Q of (4.4) to

be j.ocitive definite.

Proposition 4.1. Let 92 be a in Theorem 4.1, let

(D l,...,OD r- 1... ,EJ ) be given, ant suppose there e:ist-S QEL n

S10



satisfying (4.4). If (V 1  AP.) is observable for some variation in U,

then Q is positive definite.

Proof. If (V1, A+AA) is observable for some variation in UP then

by Theorer. 3.6 of [17]. ((V+*(QD cl,...,D cr, r cl.... ,cs ,A) /2, A i -

also observablc for tle same variation in U. It thus follous fror: (4.7) and

Lemna 12.2 of [17] that Q is positive definite.

ReL.ark 4.2. If V is positive definite then the detectability and

observability Lypotbeses of Theorem, 4.1 and Proposition 4.1 are

auto..tically satisfied.

5. Uncertainty Structure and the RF iht Shift/lultiplcativcr Vhite Noise

E our.d

The uncertainty set U is assumed to be of the for

- IA4L1' * A01 ..c . SAC)

dPP
W -= .1 -1 . = E kB ik. i=l.....r 51- p

1 = 1 '= 1

AC. =''cjC j =1,..,. ..... PIP

,h ere. for p. U ::EPCC) are fi;:ed Latrices
zI . . 1h. sh

cenotinL the structvre of the parametric unccrtainty; 8,. is a given

uccrtair.ty bounc.; and a.. is an uncertain parametcr. The closed-loop syster.

t'.Us has structured uncertainty of the for.

P

ei, =

k= 1

4 11



U
* r

LK +2 D .C c IL=1... (5.2)+E i -- + j~ jZ-
j=1

To obtain e=plicit gain e::pressions for (D ... ,D Ecl ... E)

-e requirc 
that

[(B lk . .B k) / 0 => (C ." ., ) 0] . k=l ,.... op. (5 .3)

3I Tlhat is, for each ur.certain parameter ,. either ( .lk' .Br.) is zero or

(C.. Cq) is zero. Of course, bcth (BI. .... ,B .) and (C11. ..... C
) ay

5 be zero, ci.-d there are no restrictions on tK.

Giver, the structure of U defined by (5.1). the bound il satisfying

(4.3) can now be specifiea.

Prcpositio 5.1. Let aI....n be arbitrary pcsitivc scalars.

Then the function

PI.=
ffir. D ... D E 1 ... 9E) C - - (5.4)

tisficL (4.3) with U given by (5.1).

Proof. ork=l,....r.

1/2 -.11/1/2 - - / 2 T
C [or (cf. /8.) - . /a c[j,(a,/81,) "In ,, I

&. i S * *i,
1 ILo(.&)C~ + 8 /a..) ti. U- a C, + Q

over k V~ ar.L LSil.Z 0j ' Yields(1)

.cr-ar.7 5.1. ::ote that tLe tou--( fl Li vor. by (5.1-) cc-sistr of tvc

d ic;tir.ct ztr.. in a s~ccific rstio. -1. . first ter.., OhQ cc:. be tl-,cugj,t cf Ls

risin. frr.t: an e:.cr.cr;tial ti-..e wei.tir:. of :hc cost. or, ecuivcalently.

rcr.. :.ifornr,' t shift o2 the cjer;-Iccp d'rcr:icr ([11). h7 CeCOrd tE-T.

12 eo~dz 1r



1~er - T rLes nturall1y f ror. -. ZItltiplicative white noise r-odel ([(E])

Su.,h interpretaticts heve nc, bearin-g cr. the results obtained here since only

the boun~d 11 defined by (5.4) is required.

6. Thc. Auxiliary Iinizzization Problem an IEecessar; Conditions for

3 Ctinality

r~ather than mini4zi-r,,g the actual cost (3.9). we Liell consider the

i;pcr )oun~d (4.6). This leads to the fcllowinL problem.

Au:iir i:i:iztior. PrcLIer.. Determine r~r l~

r:hci 1 :A i n r 1e1

-i c1'" cr, cCS

ZLJ,-ect to

JQ + CA.c + + I T~~ + v (6.2)

1/2--(V *Ar, is Cetecta'Lle for UL1 var ~jo~ ir. L. (6.2)

n 2

C.1 -. D 1
.r r 2 1- -

.. .. .. .. .. ..-:F. is a.'itsible if arid cn'y i,

gatilfiC (6.2) r-L(.)

-1 19 -' C



Pro.-csition 6.1. If there exists adr..issiblc?

(QDl ...'Dcrh Lc1 .... E Cc then A46 is asymptotically stable for all

va~riations in U. and

J(Dl *... OD coE *a-E ) J(C..D *..,D *reE WO.&E ). (6.4)

Frocf. 1:it41 01 6iven by (5.4). Proposition 5.1 ir.plies that (4.3)

Cs atisfied. rurthermore. cdmissi~ility iL-plies that (4.4) has a solution

C :1 ence. With (6.3). the hypot1teses of Theore.~ 4.1 are satisfied soIz
thit robust stability with performance bound (4.6) is ZuLrcnteed. Vote tLat
i*ith diefinition (6.1). (6.4) is Lierely a restatement of (4.6).[]

To avoid having tc verify constraint qualifications ttat arise in

.uiai-Tuck-er theory. the derivation of the necessary conditions for the

k.u:iliary I.inir-iZat ion Problemn is basee. upon the Fritz John form of tk~e

Laran~c Lultij.1ier theorem. Ri-orcus cplication of this tectniquc

res~uires that (Q.D c .. DD r E c ...*E )s Lo reztriActee to the oper. set

-(,Dl .. D r c ... 0 ) u

xP x

is asyjitotic&al Stablc).

Eat... E.L

71~~ Cc.4.".L-, .L .....D .L E .. OR- )S S L-_' lies t*.. nc t
rtcur~.rc~t ci Cr1 ci C t

P.~~~ ,: (:. ;.c-ce :r.2tc "LL1A F c re urique scluticns of t:ic r ccific Lya,,,r;cx

C + 7z. +L a r)*:. (6.5)
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;x aditional teclniczl rCc-Lirerzent io that (QDcl ,...9B *Ec ,...E )z be
ci cr*c cs

con~fined to the set

T

,he icsitive Cfiniteness conditicns in the definition of S~hcld when C.

End B. Lave full rot. ane. colu:..n rank. resrectively. and Q and P are rcsitivc

;efir.ite. As can be seen from the proof of Theorem 6.1 thcse conditions

..lythe e:istence of the projections T. and r.j corresporndinfg to the tw,.o

c-:iztinct types of fecdback loops.

Pro; osition 6.2. The set S+ is open.

Proof. It need only bc noted th~at S4' is the i-ntersccticn cf three

oe~sfts.

1,er..r:. 6. 1. It is e-::r.L~ely imiportant to eL-pha.SicL that

PrcI~csit-.cir, 6.1 show;s tha-t it is not necessary for uaranteed robuzt

..t;L....ity- ant; Performance tihat a-n im.disuible (Q.D,D .. D rcl ..EDE
ci'" cr'ci Cs

oza~e~by solvln tice necessary conditions actually be shotn to- *,D an

G-.LLent of S. iAs vill be seen fromi the proof of Theoirer. 6.1. tl.e set S

cornr:ttUtCS SL'ficient cor.~iticnz undier whi-.ch the LE~ran~e rut~le

ti~t~ciS ~pi~l to the 1-u:-liaLr, :.iniL.ization Frobler..

-hcorez- 6. 1. sup~.ose (C.C,..., C+ * .. E olvcs t:.e

~:a'-. i~r..~aio FobeL wit*. U . iver. L,; (5.1) and lot ale ... $at C.
rir-- eP--s Q, F =-Sc that D *..D r r are 'ivtun b

D -Tr F QC.(C ;C-c) i=.. .(6~.6)

C.2.2 2. c
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Iarnc such t.'rt P, P~ if

(A - R -p Q + CA1 T+

(aE~iLP 1 a-IB~r~ i .F- i

i=1 i=1

r

+ ~ C. Vl Qi 7

s e

1= -1l

r. 1

- T -1(GS

-1 +-j' I

= QC(C.CC.) C.., Id Z = -i a. a il.rs6.C

C. 1 i. i

Src-of. c, cti-rizc (6.1) cvcz t:.. open stvt -,*h~rc

c1Sc''c1f4cC. -

al* " c- c1C
5t t' i. cn:t



(Q.D '.. Dr1 .. S trR(XF. + (Ac+A+Fakak+-Ykc. +V) P]

t..erc th~e La- ranLe- l~Ultipli.rs )~~0 andc P E _~:' are not bothi zero. S 6:t t irl

=C. X= ir.1-lies P = 0 sin~ce (.Cie .. D c* E *l....,L cs)IS. Ecrce,

t.iti-cut loss oi Lfrcrality set X1. Th~us the stationaritY cornciticns are3 j.ver. uy

PA
+ P ~(a 1 P+ I +

R 1Ir'P+ +c 0. =~ .. . (.2

FrP. .C. + P. C=0. i....(.3

Si:-.ceCZ Dl . D rEci *... DE CL S9 c CQ C i cr.d Z P are invertiWole anc.

a :~.Z. 6.1 cr.6 (CE.14) iz-.ly (6.6) anc (C.7) . rirail;, ((.E) a~(.~ are

iv..e.t to (E .2) ar., (C. 1).

.:-ce 6.1. For e::&r.l-le. viier. ti.c cortrcl Is r.nr.rirnular anc;tl(

C. -I tl.c rezultc of [l,'] . Furt~iLrtorc. LELu~inZ, L

cc:tzk ~. ztru.cture for thLt. ctatic ccor.troiler, i.c. * ril. yie.OCs tli vL-.;Ll

CI- ~LLic- rz%'t(1.4)
a, "
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3

SEQUENTIAL DESIGN OF DECENTRALIZED
DYNAMIC COMPENSATORS USING THE OPTIMAL PROJECTION EQUATIONS:

AN ILLUSTRATIVE EXAMPLE INVOLVING INTERCONNECT FLEXIBLE BEAMS

Dennis S. Bernstein*

Harris Corporation
Government Aerospace Systes Division

MS 22/4848

Melbourne, FL 32902

Abstract individual subsystems. There then remains the
problem of determining conditions under which the

A straightforward and natural application reassembled closed-loop system has acceptable
of reduced-order control-design methods is to behavior. An additional drawback of decomposition

design decentralized controllers by viewing each methods is that the decentralized controller
subcontroller as a reduced-order controller for architecture specified by implementation
the augmented system comprised of the plant and contraints may be completely unrelated to any
all other subcontrollers. A suitable reduced- subsystem decomposition arising from physical

order control-design method for this purpose is considerations. for example, implementation
the optimal projection approach because of its constraints may impose a particular decentralized
reliability in yielding stable controllers and architecture which does not correspond to any
because it is based upon an optimality criterion discernible decomposition. Furthermore, subsystem
which serves as a convenient convergence decomposition as a design tool may constrain the
indicator. The approach is illustrated on an class of attainable designs at the expense of
interconnected flexible beam example. achievable performance.

Of course, in many cases, such as in the

1. Introduction presence of high dimensionality. subsystem
decomposition is absolutely essential for making
progress n designing decentralized controllers.

In g 112] the following approach to However, only by developing methods which avoid
designing decentralized dynamic compenator. was unnecessary constraints on the design space can
proposed: view each subcontroller as a reduced- the efficiency of decomposition methods be
order controller for the augmented system assessed. Furthermore, methods which retain. the
consisting of the plant and all other full system dynamics my provide a useful context
subcontrollers. Initially, the dynamic for applying existing decomposition techniques as
subcontroller can be determined sequentially well as an advantageous starting point for
accounting fully for previously specified developing new methods. Finally. subsystem
subcontrollers. After initial gains have been decomposition techniques are also relevant to the
specified for each subcontroller, the overall approach suggested here by providing a near-
design can be refined sequentially by replacing optimal starting point for subsequent refinement.
current subcontroller gains with updated gains.
Such an approach appears to be a straightforward In sequentially applying reduced-order
and natural application of reduced-order design design methods to decentralized control, a number
methods. Candidate methods include either LQG of issues iediately arise, including the
reduction ([3]) or fixed-order optimization (14]). subcontroller refinement sequence, feasibility of

the reduced-order design method at each step, and
One criticism of this approach which often convergence of the overall process. Note that

arises is that "no new insights or qualitatively after initial gain determination the existence of
new properties germane only to the decentralized a stabilizing design at each step is not at issuecase are obtained." Indeed, quite the contrary, here since at least one stabilizing controller
the strength of this approach lies in the fact exists, namely, the reagnt gain values supplied
that no new properties are required. Numerous by the Previous step. One of the chief concerns.
decentralized control-design schemes have been however, is that the reduced-order design method
proposed which are based upon system decomposition be sufficiently reliable to permit flexibility in
with centralized design procedures applied to the choosing the refinement sequence. Many reduced-

order design methods do not. however, consistently

---------- yield stabilizing controllers of a given order
*Harris Corporation. MS 22/4848. Melbourne. when stabilizing controllers are clearly known toFL 32902. This reserch was supported in part by exist. For example, in [5), the LQG reduction

the Air Force Office of Scientific Research under methods reviewed in [3] were compared to the

contracts 149620-86-C-0002 and F49620-86-C-0038. optimal projection approach to fied-order dynamic



compensation ((4)]. For an 8th-order example due attempt to decouple the subcontroller design
to Enns over a range of control authorities, only process are generally suboptimal.
the optimal projection approach consistently
provided stable designs for each case considered.
Thus. the optimal projection approach appears to 2. Problem Statement
be a promising candidate for reliable sequential
subcontroller refinement. Given the controlled system

In addition to reliably producing stable P
designs at each step, the optimal projection i(t) = Ax(t) + B BuW(t) + w0 (t). (2.1)
approach is based upon a quadratic performance 0
criterion which readily permits assessment of ii
convergence of the refinement procedure.
Specifically, at each subcontroller refinement yi(t) : Cix(t) + wi(t). i1.....p, (2.2)
step. a given subcontroller is replaced by an
improved subcontroller. Here "improved" refers to design a fixed-structure decentralized dynamic
the situation in which all subcontrollers except
one are "frozen," while the performance functional compensator
is optimized with respect to the remaining free
gains. If this procedure is feasible at each step i .(t) = A X (t) + B .Y.(t), il.....p, (2.3)
and if the global minimum for each subcontroller c i Cl Ci 2

design problem is attainable, then the closed-loop U.(t) = C Z . izl....pp (2.4)
performance must improve at each step. Since the i c cit
performance is also bounded below by zero, then it
must converge. Although such observations are which minimizes the steady-state performance
immediate, they depend upon optimality criterion
considerations and hence are not valid for most
reduced-order control-design procedures. Jcl 1 .C ..... Acp Bcp ) -

As discussed previously, stabilizability is
not the issue here; after subcontroller P
initialization at least one stabilizing controller lim E[x(t)TR x(t)+ ui(t)TR ui(0)] (2.5)at each refinement step exists. namely. the gains t 0-. ( tt

provided by the previous step. Hence the izi
principal remaining issue concerns the existence
of and ability to compute the global optimum. m. 1i
Using topological degree theory and homotopic where, for i--.....p: xERn a u.ER . y i e E
continuation methods, these issues have been
addressed in [6]. These results show that the p
local extremals can be enumerated from the basic n .
problem data and the global optimum can be xci ER c. ,A - c . ,c-,ci. A. Bn C-.

efficiently computed. Furthermore one of the iml
principal results of [61 states that when the A .. B ., C .. R and R are matrices of
compensator order is greater than either the ci, ci ci, 0 i
number of inputs or outputs minus the dimension of appropriate dimension with % (symmetric)
the unstable subspace. then a unique global nonnegative definite and R (symmetric) positive
minimum exists. 2

definite; w0 is white disturbance noise with nxn

It should also be noted that alternative nonnegative-definite intensity V0 . and w is white
optimality criteria may be utilized in place of i

the quadratic performance functional. For observation noise with £1 xl 1 positive-definite
example, an H-infinity criterion may be utilized, intensity Vi. where 0,,1 0 ...,W are mutually
although it appears to be more difficult to e
characterize globally optimal reduced-order H- uncorrelated and have zero mean. E denotes
infinity controllers, expectation and superscript T indicates transpose.

With this notation the optimal projection
The approach proposed in [1.21 involves equations can be applied separately to each

solving the optimal projection equations developed subcontroller with all other subcontrollers fixed
in [4] to sequentially refine each subcontroller (see E1.21).
until convergence is reached. The structure of
the optimal projection equations shows that the
optimal solution is characterized by a collection 3. Proposed Algorithm
of oblique projections, specifically, one for each
subcontroller. Since each projection operates on Sequential Design Algorithm.
the plant dynamics augmented by the other
subcontrollers' dynamics, it is clear that a high Step 1: Choose starting point
degree of coupling exists among the consisting of initial
subcontrollers. This. of course, is to be subcontroller designs;
expected in general, while design methods which



Ste 2: For a sequence where [k-l 0 1
ke[l. k=1.2.... B. -sin VTS*

redesign subcontroller ik as an 0

optimal fixed-order centralized -sin 27r.

controller for the plant and 
I

_ _ remaining subcontrollers; C. C O sin irs. 0 s in 27rs.]

Step 3: Compute Performance Jk of

current design and check J- a. a &./L.. s . 8 s. /Li. c. = c./L.

Jk- for convergence.

Note that the first two steps of the

algorithm consist of 1) bringing suboptimal

refnin eah sbcotroler Asdiscussed in
Secion1. he hoie o astarting design for

Step 1 can be obtained by a variety of existing
methods such as subsystem decomposition. As for
subcontroller refinement. note that each
subcontroller redesign procedure is equivalent to
replacing a suboptimal subcontroller with a
subcontroller which is optimal with respect to the
plant and remaining subcont rollers.

R4. Application to Interconnected Flexible

Beams

To demonstrate the applicability of the
sequential design algorithm, we consider a pair of
simply supported Euler-Bernoulli flexible beams
interconnected by a spring (see Fig. 1). Each
beam possesses one rate sensor and one force
actuator. Retaining two vibrational modes in each
beam. we obtain the 8th-order interconnected m~del

A 11 AAl 12] B~ 1 [o01 B 2 = -H' Figure 1

f C1 =CC1 1  0 lx4l. 02 = [0 lz4 C221.

0 al 0 0

weeA.=I -Wi -(k/ 1.1 ) (sin trc i) 2  _2 W(w2i) (sin r c.) (sin 27,rc.) 0

-(A.1 )(sinffc .)(sin 0 -c 0 (k/w .)(sin 2irc.) 2  -2Cw

FA0r 0 0
adA(k/w 4, ) (sin Tc .)(sin ,rc) 0 (k/w.j)(sin rc.)(sin 2rcj) 0[j 0 0 0 0

i 0 j,



In the above definitions. k is the spring Designos
constant. w i is the jth modal frequency of the Open Loop 163.5

ith beam. is the damping ratio of the ith beam.
Centralized LQG 19.99

L. is the length of the ith beam, and ai. s. and n 81 -
ci are, respectively, the actuator, sensor and Suboptimal Decentralized 59.43

spring-connection coordinates as measured from the cl , c2 ,

left in Fig. 1. The chosen values are Redesign Subcontroller 2 28.19

k = 10. Redesign Subcontroller 1 23.29

W ii = 1. wi = 4. Ci = .005. L. = I. i = 1.2. Redesign Subcontroller 2 23.04

Redesign Subcontroller 1 22.25

a 1  3, a, = .65. C .6, Redesign Subcontroller 2 21.94

a2  .8, s2 = .2 c2 = .4. Redesign Subcontroller 1 21.86

In addition, weighting and intensity matrices are Redesign Subcontroller 2 21.81

chsnt eRedesign Subcontroller 1 21.79

R0 = block-diagonal 0 I/i 0 I2 Table 1

1. *D S.] Be101Rns e rn estmlPoeto

R1 = R2 = .1. Equations for Fixed-Structure Decentralized
1 2  Dynamic Compensation." Proc. 24th IEEE Conf.

] o 0 ] 01.Dec. Contr.. pp. 104-107. Fort Lauderdale.

V0 = block-diagonal ,L Deebr.95

0 1 0 1 2. D. S. Bernstein. "Sequential Design of0 1] [0 0 JDecentralized Dynamic Compensators Using the
0Optimal Projection Equations." nt. J.

[ ] 0 J Contr.. 1987: to appear.

0 0 " [ ) 3. Y. Liu and B. D. 0. Anderson. "Controller

V = V 2 = .1. Reduction Via Stable Factorization and
Balancing." Int. J. Contr.. Vol. 44. No. 2.

For this problem the open-loop cost was 507-531. 1986.

evaluated and the centralized 8th-order LQG design
was obtained to provide a baseline. To provide a 4. D. C. Hyland and D. S. Bernstein. "The

starting point for the sequential design Optimal Projection Equations for Fixed-Order

algorithm, a pair of 4th-order LQG controllers Dynamic Compensation." IEEE Trans. Autor.

were designed for each beam separately ignoring Contr., Vol. AC-29. pp. 1034-1037. 1984.

the interconnection. i.e.. setting k=O. The
optimal projection equations were then utilized to 5. S. W. Greeley and D. C. Hyland. "Reduced-

iteratively refine each subcontroller. The Order Compensation: LQG Reduction Versus

results are summarized in Table 1. Optimal Projection." submitted.
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the Optimal Projection Equations for Fixed-
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Abstract

A new robust stability and performance analysis technique is developed.
The approach involves replacing the state covariance by its block-norm
atrix, i.e.. the nonnegative matrix whose elements are the norms of
subblocks of the covariance matrix partitioned according to subsystem
dynamics. A bound (i.e.. majorant) for the block-norm matrix is given by
the majorant Lyapunov equation, a Lyapunov-type nonnegative matrix equation.
Existence. uniqueness and computational tractability of solutions to the
majorant Lyapunov equation are shown to be completely characterized in terms
of M matrices. Two examples are considered. For a damped simple harmonic
oscillator with uncertain but constant natural frequency, the majorant
Lyapunov equation predicts unconditional stability. And. for a pair of
nominally uncoupled oscillators with uncertain coupling, the majorant
Lyapunov equation shows that the range of nondestabilizing couplings is
proportional to the frequency separation between the oscillators, a result
not predictable from quadratic or vector Lyapunov functions.
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1. Introduction

U The importance of robustness in control-system analysis and design

cannot be overemphasized. The past ten years' literature reflects

considerable frequency-domain development (1-10] ). while recent

publications indicate increasing time-domain activity ([11-19]). Wide

variations in underlying assumptions, mathematical settings. and problem

data render it difficult. if not impossible, to clearly delineate the

k relative effectiveness of different methods. Our own philosophical outlook

has thus been guided by two general criteria:

1. Effectiveness for simple examples;

2. Efficiency when applied to large scale problems.

The first criterion involves applying robustness techniques to simple.

perhaps trivially obvious, examples to serve as *acid tests." A given

method's effectiveness on a collection of such examples can possibly reveal

inherent shortcomings. As an illustration of this criterion, consider a

damped harmonic oscillator with constant but uncertain natural frequency.

Using the notation of (6]. stability is guaranteed so long as

a [R(jO) (+GCjw)K(jcW)-IG(j#L-(jO0] < 1. _ 0. (1.1)

where, for P > 0.

5G(S)a(a22$&-.
nnand uncertainty in the nominal natural frequency don is modelled by

A(s) 8602)E

L(s) - 1/a. 8(s) - 6/. (s) -con . K(s) *0.an
S1
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8e[-minC.a) a]. a >

U Note that

a , Jw ) ]  > 0.

3 as required in [61. The perturbation A(s) (modelled as a feedback gain)
2 2effectively replaces (an in G(s) by (1+8)wi . Hence. for a given a > 0 thisn n

uncertainty model permits perturbed natural frequencies in the range

[O.(1+ 1/n] Evaluating (1.1) yields the upper boundnon

2_ 2)2 20211/2 2
( We-o) +4v > O (1.2)

or. equivalently.

a < 2(1-C2)l/2. (1.3)

S where v n . The conservatim of (1.3) is obviously most pronounced when

the damping ratio C is small. In all cases, however, the conservatisma is

infinite. This conservatism can be removed, however, by means of the

structured singular value developed by Doyle (5.6]).

3 The second criterion is obviously subjective and depends upon a variety

of factors such as problem structure, designer experience, and computational

resources. This criterion is. in our opinion, most important since the need

for robustness techniques becomes increasingly critical as system complexity

grows. Indeed. the ultimate test of a given approach is to scale it up to

larger and larger problems to reveal inherent limitations. Obviously. such

tests are not only difficult, but may entail a significant commitment of

human and financial resources. Nevertheless. crude predictions are

sometimes available, and a case in point is the "curse of dimensionality"

encountered in the approach of [9]. Another example involves computational

difficulties in obtaining bounds for the p-function with more than 3 blocks

2



The contribution of the present paper is a new robustness analysis

method developed specifically for large scale systems. The basic idea.

motivated by the work of Siljak ([30]) on connective stability, is as

follows. The system is assumed to be in the form of a collection of

subsystems with uncertain local dynamics and uncertain interactions.*

Parameter uncertainties re modelled as either structured or unstructured

constant variations contained in prescribed sets. The state covariance,

partitioned conformably with the subsystem dynamics, is replaced by its

block-norm matrix, i.e.. the nonnegative matrix each of whose elements is

the norm of the corresponding subblock of the original matrix. This

nonnegative matrix satisfies a novel inequality designated the covariance

block-norm inequality. The existence of a solution to the majorant Lyapunov

equation, i.e., the covariance block-norm inequality interpreted as an

equation, yields an element-by-element bound (i.e., majorant) for the

covariance block-norm, hence assuring robust stability and performance. The

relevance of this technique to large scale systems stems from the fact that

replacing each subblock of the covariance by its norm can significantly

reduce the dimension of the problem. Indeed. the dimension of the majorant

Lyapunov equation is equal to the number of subsystems which may be

significantly less than the dimension of the original system.

To illustrate the above ideas in more detail, consider the covariance

equation

0 - (14G)Q + Q(,+)T + v. (1.4)

3 where A denotes the nominal dynamics. G denotes uncertainty in A. V is the

disturbance intensity, and Q is the state covariance. Assuming that A is

block diagonal with r diagonal blocks and that G has only off-diagonal

nonzero blocks leads to the covariance block-norm inequality (see

Proposition 4.2)

*qcg+ 9G T + V. (1.5)

In (1.5). A. Q. G and V are rxr nonnegative matrices, i.e.. each element is

V a nonnegative number. The matrices g and V are formed by taking the

Frobenius norm of each subblock of Q and V. while each component of G is a

given constant which bounds the spectral norm (largest singular value) of the

*Uncertainties in a single subsystem can also be regarded as

interaction uncertainties. To see this, write i (A+G)x twice so that the

uncertainty G is represented by 0 G].

3
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corresponding subblock of the uncertain perturbation G. Hence G is a

ajorant for G in the sense of [21-231. Each element of the matrix A is

bounded above by the smallest singular value of the Kronecker sum ([24-261)

of pairs of diagonal blocks of A. The operation "*" is the Hadamard product

([27.28]). and the ordering "<" denotes elment-by-element comparison.

i.e.. the ordering induced by the cone of nonnegative matrices ([29.30]).

The majorant Lyapunov equation is obtained by replacing the inequality

(1.5) by the rxr nonnegative matrix equation

A9 = Gq+ WQT + V. (1.6)

A key result (Corollary 5.1) states that

9_Q_ (1.7)

for all stable !+G. Consequently (see Theorem 5.1). the existence of a

solution to (1.6) leads directly to a guarantee of robust stability over the

range specified by G and to a performance bound involving Q. Moreover.

solutions of (1.6) exist if and only if the r 2 xr 2 matrix

A i diag(vec A) - GG (1.8)

is an M matrix ([29.30]).

Even when the number of subsystems is large, the majorant Lyapunov

equation is generally computationally tractable. Specifically. although A

is an r 2xr2 matrix, no computations whatsoever need to be carried out with

matrices of this dimension. Rather. it suffices to solve only the majorant

Lyapunov equation (1.6). In this regard we show that 9 is given by

9=liz (1.9)

where the sequence '9 i} generated by

-i1 * + -
+ V. o. (1.10)
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B
is monotonically increasing. Furthermore. the convergence of this sequence3 is equivalent to A being an M matrix so that is not even necessary to form

A. Note that (1.6) does not require the development of new solution

techniques. Indeed. since (1.10) is a straightforward iteration. (1.6) is

even easier to solve than the original Lyapunov equation (1.4).

To illustrate these results we consider two examples. The first

example is the damped oscillator already considered in this section. With

little effort the majorant Lyapunov equation yields the (obvious) result

that the oscillator is stable for all constant natural frequencies. The

second example involves a pair of oscillators with known parameters but with

uncertain coupling. The majorant Lyapunov equation yields bounds over which

stability is guaranteed, and these bounds are compared to the actual

stability region as a function of frequency separation. The main result

shows that the robustness to uncertain coupling is proportional to the

frequency separation. This weak subsystem interaction robustification

mechanism is the principal contribution of the majorant theory. This

example has immediate application to the problem of vibration control inr, .
flexible structures. For this class of problems the open-loop dynamics can

be viewed as a collection of uncoupled oscillators which become coupled via

feedback and structural uncertainties.

The majorant bound developed in the present paper is quite different

from the widely used quadratic Lyapunov function (see. e.g.. [11.12.17-20]).3 As can readily be shown using the methods of [12.17-20]. the quadratic

Lyapunov function yields robust stability and performance by replacing (1.4)

by

0 = + A fl(Q) (1.11)

where () satisfies

Q+ < Q) (1.12)

f or all variations G. It can then be shown that

5 A



Q < Q. (1.13)

where now. in contrast (1.7). the ordering in (1.13) is defined with respect

to the cone of nonnegative-definite matrices. Indeed, the majorant bound

may be more closely related to vector Lyapunov functions (30.31]) and the

Lyapunov matrix function ([32.33]). It does not appear possible, however.

to use these techniques to obtain the majorant results on robustness due to

subsystem frequency separation.

The reader will observe that this paper exploits a wide variety of

techniques including nonnegative matrices, block norms, matrix majorants.

the Hadamard product, the Kronecker sum, and M matrices. Each of these

techniques, except majorants. has. however, been previously applied to

control problems in numerous instances. In the special case of scalar

subblocks, the block-norm matrix has, moreover, been utilized by Yedavalli

(Q13-15]) and others for robustness analysis and design. In this case the

block norm is known as the matrix modulus. The variety of algebraic

structures employed in the present paper should not be surprising since the

quest for increasingly refined robustness techniques can be expected to

invoke correspondingly refined uncertainty bounds. Related techniques are

employed in [16]. Furthermore, nonnegative matrix equations involving M

matrices arise naturally in a variety of settings (see. e.g.. [38.39]).

SThe contents of the paper are as follows. Section 2 presents notation.

definitions and lemmas for use throughout the paper. In Section 3 robust

stability and performance are defined for the homogeneous and nonhomogeneous

systems. Detailed system structure and uncertainty characterization are

given in Section 4 and the covariance block-norm inequality is derived.

Section 5 analyzes the majorant Lyapunov equation to obtain a majorant for

the steady-state covariance. The main result. Theorem 5.1. guarantees

robust stability and provides a performance bound. Finally. the examples

appear in Section 6.

6
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2. Preliminaries

The following notation will be used throughout. All matrices are

assumed to have real entries.

E expected value

B. gpxq. Rp real numbers. pxq real matrices. Pz

Ip 0pxq' 0 pxp identity matrix. pxq zero matrix. 0 PIp

* Kronecker sum. Kronecker product (Q24-27])

* Hadamard product ((27.28])

col (Z) ith column of matrix Z

Fcol 1 (Z),

vec(Z) 1# col() Zft , R pzq

Z(ij) (i.j) element of matrix Z

Z T transpose of vector or matrix Z

z-T (Z T) -1or(Z -1)T

tr Z trace of matrix Z

HI HIZHadamard inverse. (Z ) (ij 9 Z (j) Z >> 0

diag(Z1 ..... Z ) diagonal matrix with listed diagonal elements

block-diag(Z... .. Z ) block-diagonal matrix with listed diagonal blocks

p(Z) spectral radius of Z

asymptotically stable matrix with eigenvalues in open left half plane
matrix

nonnegative-definite symmetric matrix with nonnegative eigenvalues
matrix (Z >0)

positive-definite symmetric matrix with positive eigenvalues
matrix (Z >0)

Z 1 Z Z 1 _Z2>0 Zia Z 2 symmetric

Z >Z 1 _ 2 >0, zi Z 2 symmetric

7
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%
nonnegative matrix matrix with nonnegative elements (Z >> 0) ([29.30])

positive matrix matrix with positive elements (Z >> 0)

ZI >_ Z2  Z1-Z2 >> 0

Z1 >> Z2  Z1-Z 2 >> 0

block-norm matrix nonnegative matrix each of whose elements is the
norm of a corresponding subblock of a given
partitioned matrix

majorant nonnegative matrix each of whose elements bounds

the corresponding element of a block-norm matrix

11zl 2  Euclidean norm of vector Z

o.(Z) singular value of matrix Z
I

Crmin(Z), Cmax(Z) smallest and largest singular values of matrix Z

Ama(Z) largest eigenvalue of symmetric matrix Z

IzIS (r (Z) (spectral norm induced by 11'l2)

p,q PIIzl IF  (tr zz T E/ [~ z2( ' ) I12- [1:0]i 1/2

i~~
(Frobenius norm [34])

In subsequent sections we shall exploit the fact that the norms II2 . II
and I-11 coincide for vectors. Hence. if zRP then by interpreting

gP = Rpx l it follows that

11z12 ZIlzls - Iizl,. (2.1)

Furthermore. if Z C Rp( q then

11zll .1 41- IIec zl, -- I vec z12 a Ilvec zll. (2.2)

Lemma 2.1. If Z ERpxP and C Rpxq then

CminmUzll IIZI-IIZ 1 _ I Zll8411l. (2.3.2.4)

If. furthermore, p a q. Z > 0. and Z is symmetric, then

I8
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r Zz < (tr Z)X (Z) < (tr Z)IIzII. (2.5)

Proof. Inequality (2.4) can be found in [35]. p. 263. To prove (2.3),

note that when Z is singular the result is immediate. Otherwise, replace Z

and i in (2.3) by Z- 1 and ZZ. respectively. The result now follows from

[a(Z)]- = (r (Z- 1 ). Finally, (2.5) is given in [361. 0

Recall ([30]) that a matrix S Rr is an N matrix if S _ 0.
- -(i.j)-1

i.j = l,...,r. i $ j. If. in addition, all principal minors of S are

positive, then S is an M matrix.

Lemma 2.2. Suppose S R R4 xr is an N matrix. Then the following are

equivalent:

(i) S is an M matrix;

(ii) det S $ 0 and S >> 0;

(iii) for each y eR , y )) 0. there exists (a unique)

xE R , 9 >> 0. such that Sx = y;

(iv) there exists eR , x > 0. such that.Sx >) 0;

(v) I r*S )) 0 and each diagonal matrix D >> I r*S

satisfies p[D-1 (Ir*S-S)] < 1.

Proof. The equivalences of statements (i). (ii). (iv) and (v) followsIfrom £30]. p. 396. The implication (ii) =-> (iii) is immediate, and

(iii) ==> Civ) follows by setting y = [1 1 .... 1]T.0

Lemma 2.3. Suppose S eR'z r is an M matrix and let 5 Rx r be an N

matrix such that S )) S. Then S is an M matrix.

Proof. See [30]. p. 400.0

9



3. Robust Stability and Performance Bounds

Consider the nth-order homogeneous system*

x(t) = (A(O)+G)x(t), te [Oao), (3.1)

G#G .Rnn. (3.2)

9 EeR (3.3)

where A: e --) Rnxn is continuous, A - A(C) denotes the known nominal

dynamics for 9 E e. 0 denotes the unstructured parametric uncertainty in A.

G denotes the structured parametric uncertainty in A, and 0 f G is the

nominal value of G. We first consider the stability of (3.1) over G and e.

Definition 3.1. If A(O)+G is asymptotically stable for all G CG and

9 o e. then the homogeneous system (3.1) is robustly stable over G and e.

Now consider the nth-order nonhomogeneous system

x(t) = (AC)+G)x(t) + w(t). t i [0,o). (3.4)

where G eQG, O e. and w(.) is white noise with intensity V > 0. For given

G 4G and Oee, the steady-state average quadratic performance is defined by

J(G.9) 4 lim sup §ZT(t)RxCt)]. (3.5)
t-.,

The system (3.4) may. for example, denote a control system in closed-loop

configuration. There is no need in our development, however, to make such

distinctions.

In practice, steady-state performance is only of interest when the

system is robustly stable. The following result is immediate.

*Upon first reading the uncertainty represented by (3.3) can be

ignored since the principal contribution concerns the treatment of (3.2).

10



Proposition 3.1. Suppose the system (3.1) is robustly stable over

G and e. Then for each G dG and e e,

r J(G.) = tr QR. (3.6)

where nxn nonnegative-definite Q is the unique solution to

0 = (A(O)+G)Q + Q(A()+G)T + V. (3.7)

We shall only be concerned with the case in which G and e are compact.

Since Q is a continuous function of G and 0, we can define the worst-case

average steady-state quadratic performance

j ma max J(G.0). (3.8)
G eG., Oe

Since it is difficult to determine J explicitly, we shall seek uppermax
bounds.

Definition 3.2. If Jmax < & then & is a performance bound for the
nonhomogeneous system (3.4) over G and 0.

4. System Structure Uncertainty Characterization and the Covariance

Block-Norm Inequality

A discussed in Section 1. (3.1) and (3.4) are assumed to be in the form

of a large scale system with uncoupled local dynamics and uncertain

interactions. Hence, with the subsystem partitioning

r

n in. (4.1)

11



the local system dynamics A(O) can be decomposed into subsystem dynamics

according to

A(O) = block-diag(A 1C()). (4.2)

where A ) Me R 1 , E For conv~enience. denote

Ia block-diagil.1.

Accordingly. R is assumed to be of the form

Rt = block-diag(R) 3 * (4.3)

where R. e R R* R. 0. i=..,. The intensity V and steady-state
2 covariance Q satisfying (3.7) are assumed to be conformably partitioned,

n * n.
= IQ J! Q i. R 13(445)

ii 2. j=l' i*

For notational simplicity define

Taking the Frobenius norm of each subblock of V and Q leads to the r
symmetric nonnegative matrices V and _2 defined by

Note that

12



A few observations concerning the nominal system. i.e.. with G = 0 and

Bare worth noting. If I in stable then so is A.,im 1.. and there
n xn.i

exist unique, nonnegative-definite Q. .e R ~ ,i...,satisfying

0 = A .Q . + Q.iA.i + V.m (4.9)

11 

T

o T A.P. + P.A. + R.. (4.10)
11 11 1

Proposition 4.1. Suppose A is asymptotically stable. Then the nominal

performance J nmis given by

X 
r

i nom i J(0.9) = Fltr Q iR. = rP2 (4.11)

Proof. First note that with G =0 and 0= the diagonal blocks of Q
satisfying (3.7) coincide with Q.....Q r Thus

r
J( O.i) = tr Q R.

r
= (vec T. vec R.

= (.i)- vec V.]l vec R.

r ~ T -T -T -1E (Vec V.)( i* vecR

(Vec V. veC P.

r
= tr PiVi.D

13



The matrices G . G are also conformably partitioned so that

Un xn.
G G =* G.. e R (4.12)

3ij l 13 z

and G is characterized by

G -4 (G c R n 40 (G.. Y V.. iojlo ... r), (4.13)
z max Ij I

where Y.,. > 0. i.jzlo...or, are given constants. For convenience. define
13

the rir nonnegative matrix

The bound G is a matrix majorant for GEdG in the sense of [21-23].

Remark 4.1. G is compact and convex.

Finally. let symmetric -C z satisfy

A a in(a in (A.(O)OA .(9))). i.j1l....,r. (4.15)

Proposition 4.2. Let Ge G and 0 e ()be such that AM0)+G is

asymptotically stable and let mzn Q 1 0 satisfy (3.7). Then gdefined by

(4.7) satisfies

G+ 2T +V(4.16)

or. equivalently.

=vec (vec!V. (4.17)

where

[ diag(vec A)] - G2. (4.18)

14



b Proof. Expanding (3.7) yields

-[.()Q Tr T . *-1(.9-[A i Q.4 Q...() 3 E GkQk. +,kGjk ] +Vi . j....(.9
13133 k=1 3 1

Bounding the right hand side of (4.19) from above using (2.3) yields for all

r T r
E [GQkjQ G 3k]I + V k=1F C (i.k)-Ck.j)+2(i.k)2(j.k)' I -+Ci.j)*
k=1 k*(~l

while bounding the left hand side of (4.19) from below using (2.4) implies

for all 0 ee0

I-[ (8Q + AT8)1F aivec(Ai(O)Q. .4Q..AT(G))Dr

*(A.(0)*A.(0))Ivec Q 0JI

0. o~(A (8)Ai(O))g(ij)

Combining the above inequalities yields (4.16).C

Remark 4.2. Since G >) 0. the r 2xr 2matrix A is an N matrix ([30]).



5. The Majorant Lyapunov Equation

In this section we interpret (4.16) as an equality rather than an

inequality and consider the Lyapunov-type nonnegative matrix equation

A*2 = G + g +v (5.1)

or. equivalently.

A vec Q = vec V. (5.2)

Note that since A and V are symmetric a unique solution of (5.1) is

necessarily symmetric.

Proposition 5.1. The following are equivalent:

i) A is an M matrix;

(ii) det A 0 and A-' >> 0;

(iii) for each rzr symmetric V >> 0 there exists (a unique)

rxr 9 _> 0 satisfying (5.1);

(iv) there sist rxr symmetric V >> 0 and rzr symmetric > 0

satisfying (5.1);

X (v) diag(vec A) - (I r*G)*(I *G) >> 0 and each diagonal matrix

D >> diag(vec A) - (I *G).(I*G) satisfies-
"  - . (r- oCr-c a~~e

% p(D-[1 G[_ - (Ir*G)(Ir* G)]) < 1: (5.3)

16
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(vi) for each rxr symmetric Q0  0 and nxr symmetric V >> 0. the

sequence Q 1=1 generated by

A*Q1 - (Ir-*G)Q -Q 2i+(Ir*G)

*G)Q i+ Q(G-I r*G) + V, i=01...& (5.4)
4 ~ ~= -- r*--Q -i- - +-"'

converges.

(vii) for each rxr symmetric Q0 > > 0 there exists ncr symmetric V >> 0

such that the sequence {_ i generated by (5.4) converges.

Proof. Statements (i)-(v) are equivalent to (i)-(v) of Lemma 2.2.

Clearly, (vi) implies (iii), and (vii) implies (iv). To show (v) implies

(vi) and (vii) note that I 2*(GG) = (I *G)O(I *G) and
2 r r

vec(A*g.i1) [diag(vec A)]vec

Thus (5.4) is equivalent to
I.-

vec Qi+l = [diag(vec A) - (I r*G)*(I r*G)] [GOG - I 2*(GOG)]vec Q.

+ [diag(vec A)]- vec V.

Thus (vi) and (vii) follow from (v) with D = diag(vec A) - (I r*G)e(Ir*G) .

Since statements (i)-(vii) depend only upon A and G we have the

following definition inspired by (v)-(vii).

Definition 5.1. (AG) is stable if A is an M matrix.

Remark 5.1. When Ir *G = 0. i.e.. when the local dynamics have no

structured uncertainty. (5.4) simplifies to

aT
A*gi+l 2 i + gi2  + V. i=0,1.... (5.5)

17
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g or. equivalently.
-- +iT V

Q = AI*(GQg _V). i=0.1.... (5.5a)

The following result shows that for zero initial condition, the

iterative sequence is monotonic.

Proposition 5.2. Suppose diag(vec A) - I *(GOG) > 0. Then the
" a - r

sequence gi I generated by (5.4) with go 0 and V > 0 is monotonically

inc reas ing.

Proof. To simplify notation we consider the case mentioned in Remark

5.1. Hence assume A )> 0. Clearly. if 0 then (5.5a) implies that

Q = AHI*V >> 0. Hence 9 > . Defining %gi+, - 9il - gi" (5.5a) yields

H*= A2I, ( 1_1 i GT).

k Since I 0. the result follows from induction.C

Remark 5.2. Proposition 5.2 is a particularly useful result in

applications and can be utilized as follows. Setting g = 0. the sequence

(Q.} can be evaluated by a simple numerical procedure. As will be shown in

Theorem 5.1 below, each 9. corresponds to a robust performance measure a..

For practical purposes the increasing sequence (c.) can be generated until

either convergence is attained (in which case a = li a i is a robust

performance bound) or a maximum permissible performance level is exceeded.

In the latter case the question of convergence is irrelevant since the

closed-loop system is known to either be unstable for some GEG

S. (i.e.. = i) or exceed acceptable performance specifications, thereby

( necessitating system redesign.

€%
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We now prove a comparison result for solutions of (5.1).

Lema 5.1. Assume (A.G) is stable. let A. G be rxr nonnegative

matrices where A is symmetric, and assume that

A <<A G (< G. (5.6)

Then (A.G) is stable. Furthermore, let rxr symmetric V satisfy

V << V. (5.7)

let Q be the unique. nonnegative solution to (5.1). and let Q be the unique

solution to

*= G9 + QG + V.(58

Then

9.- (5.9)

Proof. Since

A diaig(vec A O

is an N matrix. A is an M matrix, and

A-A = diag(vec(A-A)) + (G-G)*(G-G) )> 0.

it follows from Lemma 2.3 that A is an M matrix and thus (G)is stable.

Next note that (5.1) and (5.8) imply

vec(99 A- (i-A) Vec + A:-Vec(V-V) .
z z

19



Since A-A >> 0. A-' >> 0 (see Lemm& 2.2). and V-V >> 0. it follows that

(5.9) is satisfied.0

Corollary 5.1. Suppose (A.G) is stable and let Q be the unique.

nonnegative solution to (5.1). Furthermore, let GEG and 0 eO be such that

A(G)+G is asymptotically stable and define 2 by (4.7) for nxn Q > 0

satisfying (3.7). Then

Q << Q. (5.10)

Proof. By Proposition 4.2. Q satisfies the covariance block-norm

inequality (4.18). In the notation of Lemma 5.1 define

A=A. G. _=A*- _ T (5.11)

so that (5.6) is satisfied and (4.18) implies (5.7). Note that with the

notation (5.11). equation (5.8) has the unique solution = Q. Hence (5.9)

implies (5.10).c

Theorem 5.1. Assume A is asymptotically stable. e is continuously
arcwise connected, and (A.G) is stable. Then the homogeneous system (3.1)

is robustly stable over G and 0. and the nonhomogeneous system (3.4) has the

performance bound

a r-
0a= [tr(Q.(O)Ri) + 2(tr -(O)) (ii) (5.12)

where n.zn1 nonnegative-definite Qi(9) and P(9) satisfy1 1 ]

0 = A ()Q () + Q.(O)A.(O) + Vi. (5.13)

" a. (MP(a) + P (O)A.(0) + Ri. (5.14)

and rir is the unique, nonnegative solution to (5.1).

Proof. First note that since robust stability is independent of the

disturbances. we can set V - In for convenience in proving the first result.

20



B
Hence. suppose (3.1) is not robustly stable. Since G is convex (see

Remark 4.1). A is asymptotically stable, and E is continuously arcwise
connected, there exist G f G and j: [0O.1] -- > E such that
A(p) - A(j(p))+pG0 is asymptotically stable for all p E[O.1), and A(1) is

not asymptotically stable. Define

tA~ AT(p)Ss.
Q(P.t) - f e A(11) saeA (;)sd t > 0. pf[0.1].

0

which is monotonically increasing in the nonnegative-definite cone with

respect to t. Clearly, the limit

Q(A) lia Q(.t). I E [0.1).
t.

exists and satisfies

M40 : A(p)Q(IA) + Q(p)AT( ) + Ins p[O.1).

Nov define rxr nonnegative symmetric 9(p) by

9Q) r (iQ (,.LIIl)r

n. xn. 
ij i.j=1'

where Q (/A) e R and QQ) is partitioned as in (4.5). By Corollary 5.1
13

with =(t) G =/G 0 . _Q-Q(. EC[0.1), and V = In& it follows from

(5.10) that

94(1) << 9. p E 1O.1). (5.15)

Hence. by (4.8). (5.15) implies

IIQ(MA)U "2(9)AF I_ o. o.1). (5.16)

On the other hand. for ;A e[0.1) it follows that
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QA = Q(;I) -QO;I.t) + QQ(.t) - Q(l.t) + Q(1.t)

.Qgst) -Qlt) + Q(l. t).

which impl ies, f or arb it rary x f R n

xTQ(j)x > xT[Q(j.t)_Q(l.t)]x + xTQC1.t)x.

Thus, by continuity of Q(A.t) in p

lrn xTQCI.L)X > XTQ(lt)X. X feR. (5.17)

Now. since A~l) is not asymptotically stable and (A(1) .I n is stabilizable.

it follows from Proposition 3.2 of (37]. p. 67. that for some xE e~.

li urn TQ(lt)x 40

Thus by (5.17)

I-T

and thus

liz IIQ(I1 1 = g.(5.18)

However. (5.18) contradicts (5.16). Hence (3.1) is robustly stable over G

and e.

To derive (5.12) note that since R is block diagonal.

r rT
J(G.0) = tr Q . Rt= (vec Q.i) vec R.
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where Q satisfies (3.7). Furthermore, (4.9) and (4.21) imply

vec Q. = (A (0) *A. (0) 1 1 vec V +T

Hence. using Lemma 2.1.

r r T T
J(G,9) [ tr(Q.i(O)R .) + E (vec[G iQki+Qik G i]) vec P.i(0)]

1 1 k=1

r *r T

E tr(Q.C9()R.i) + F, tr P.i(0) (G iQki+Qik Gk)]

r r *T

E tr(Q.(O)R) + (tr P .(0))o mx(G AQ ki +Q ik G )
i=1 k=l

r - r
S[trCQ.(O)R. + 2(tr P (0)) E o- (G. ):o' (i ~max ik max k

r r -

(tr(Q.(O)R. + 2(tr P (0))(EGo- (G]

whc yild (5ma.12).oiI

6.~ Exaple

Wfiscnfrm tathdmpdarncoilarissyptcly
stablei forR al costn fr +ec pturbtions. E ece letk2

r1, nn 1  =8

r2

Ft( ORi)+2trPi()(Q ii



and

where v > 0 and w R . To represent frequency uncertainty let G = [0}

e =R.9 =O and

A(O) = + 0 11

Note that A(O) is stable for alIGER with poles -i+j(u)+6). Note that A(8)

can be diagonalized by means of the unitary transformation

0 -j]j

so that

-1 [-v+j (W+O) 0

A(O) =0 A(e)o = 0 -v-j(+e)"

Hence. using

A()SA(O) = (01--) -(0) .

L it follows that

% nA( e)()) = 2v. 0 E.

Defining (see (4.15))

A=A =2v.

and G = 0, the scalar majorant Lyapunov equation (5.1) has the solution
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Q = Vl2v.

where V = liviy. Choosing V = 12 and noting that A = A = 2v > 0 is an M

matrix. Theorem 5.1 guarantees robust stability for all frequency variations

ER.

The next example has been chosen to demonstrate the robustness of a

pair of nominally uncoupled oscillators with respect to uncertain coupling.

Hence let

n 4, r = 2. n1 = n2 = 2.

and

Ai =  , i =1.2.

where v. wli w2 > 0. Futhermore. let e = {0} and

- 2 1 0

which denotes the fact that the local subsystem (oscillator) dynamics are

assumed to be known. Since

(7min(C.oA) = [43. 2 +(a_-)211 1 2

define

2v [4v 2 + (Cj-W2) 2 11/2

_A[4P 2 + (W-2)2] 1/ 2  2v

Letting V = 14 yields V = 212. Solving (5.1) yields
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- (22 _ _y_ 2 /jL( 2 62-C1 22 1+12 ) / 
2= y-)1 

2/ 
v)6 -

("12+21)12 ( V26- "l 2 ̂2 1).

UPv6- 2 )2 6-= 12"21 21

where

1 / [+ 2 ] 2  
( 2)/2v.

P7Clearly, Q is nonnegative if and only if

'Y12'2 < v 2 j. (6.1)

The bound (6.1) characterizes the magnitude of coupling uncertainty for

which stability is guaranteed. Note that the parameter 8 is a measure of

the frequency separation of the oscillators relative to the damping. When

8 >> 1. (6.1) becomes asymptotically

Y Y, I..WI (6.2)
12 21 2 1.2

which confirms the intuitive expectation that robust stability is

proportional to damping and subsystem frequency separation. This result

does not appear to be predictable from quadratic or vector Lyapunov
functions.

To evaluate the conservatism inherent in the bound (6.1) we solve for

the actual stability region. To render the calculation tractable we assume

that G and G have the structured form
12 21

G -$,, (6.3)

By constraining (6.3) the set of coupling variations is reduced, which may

or may not lead to a larger stability region. Thus our estimate of

conservatism may itself be conservative. i.e.. the actual conservatism may

26



indeed be less than the following analysis indicates. However. without

3 (6.3) the development becomes intractable. This calculation will thus be

called semi-exact.

By considering the characteristic equation for A+G. lengthy

manipulation shows that A+G is stable if and only if

2 < 2v 2 (-P+ [l + 8 2 1p 2 )] 1/ 2 /(1_E 2 ). (6.4)
12 21

where E E (0.11 is the smallest positive real root of

- (1+E2)[1 +8(1--2)]/[2 + 82 (jE2)]. (6.5)

The majorant bound (6.1) and semi-exact bound (6.4) are illustrated in

unified form in Figure 1. For 8 )> 1 note that E = 0(8- 1 ) and thus (6.4)

becomes asymptotically

>i 2~>21  CvIW-')I.(6.6)12 1 'WW21
Hence for large 8 the majorant bound (6.2) is. at worst, conservative by a

factor of 2 compared to the semi-exact bound.

To determine the performance bound (5.12) set R = 14. Hence it can be

shown that

ui = 2/vnom

and the system has the performance bound

1 = nom + /2(pl2+p2 l)2/v(1-2Pl2 P2 1 ). (6.7)

where

p1  =y b/Vjl/2. p Al/2
12 Y12/ 21 21

27



On the other hand, the semi-exact calculation yields

JA = max p1 2  P2 1 ' 2p 12 p2 1
"  28(P1 2 2 1 ) 2 (1_

(6.8)
[28 - 4P12 P2 1X - 29(PI2021)2(,_X2)]).

Figure 2 compares the semi-exact worst-case performance (6.8) to the

* majorant Lyapunov equation bound (6.7). To efficiently illustrate the

results the data is specialized to the case p12 = p2 1 . Note that the semi-

exact performance is plotted for several values of 8 because of the explicit

.5 dependence of (6.8) on 8 via 8.
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Abstract.

Six methods for design of reduced-order compensation are compared using
an example problem given by Enna. The methods considered comprise five LQG
reduction techniques, reviewed in a recent paper by Liu and Anderson. and
the Optimal Projection theory as implemented via a simple homotopy solution
algorithm. Design results obtained by the different methods for forty-two
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1. Introduction

The design of reduced-order dynamic controllers for high-order
systems is of considerable importance for applications involving large

spacecraft and flexible flight systems. Hence it is not surprising that

extensive research has been devoted to this area. A recent paper by Liu and

Anderson [11 subjected five reduced-order controller design methods to both

theoretical and numerical comparison. The computational comparison was

based upon an example problem considered by Enns [2]. The five methods

compared in [ll are:

S1. Method of Enna (21: This method is a frequency-weighted.

balanced realization technique applicable to either model or

controller reduction

2. Method of Glover (3]: This method utilizes the theory of

Harikel norm optional approximation for controller reduction

3. Davis and Skelton (4]: This is a modification of compensator

reduction via balancing which covers the case of unstable

controllers

4. Yousuff and Skelton (5]: This is a further modification of

balancing for handling stable or unstable controllers

5. Liu and Anderson [11i: In place of using a balanced

approximation of the compensator transfer function directly.

this method approximates the component part. of a fractional

representation of the compensator.

All of the above methods proceed by first obtaining the full-order

LQG compensator design for a high-order state-space model and then reducing

the dimension of this LQG compensator.

46 4f
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The present paper complements the results of Liu and Anderson by

giving a numerical comparison (again using Enns' example) of methods 1-5

with a sixth method:

6. Optimal Projection (OP) equations [6]: Reduced-order

compensator design by direct solution of the necessary

conditions for quadratically optimal fixed-order dynamic

compensation.

Method (6). like methods (1-5). has been shown to have intimate

connections with balancing ideas [7]. Moreover. the first step in one

iterative method for solution of the OP equations is almost identical to

method (4). Method (6) differs from the other methods, however in that it

does not reduce the order of a previously obtained LQG design but rather

directly characterizes the quadratically optimal compensator of a given

fixed-order. The OP equations constitute four coupled modified Riccati and

Lyapunov equations wherein the steps of regulator design, observer design

and order reduction are completely and inseparably intermingled.

,Y The organization of this paper is as follows. In section 2. we

state the problem considered and review the OP design equations. Section 3

gives the computational algorithm used herein for OP design synthesis.

Finally, section 4 sets forth the example problem of Enna and compares the

vt results of all six methods obtained for this example.

2. Problem Statement and Review of OP Design Equations

Here we consider the linear, finite-dimensional, time-invariant

system:

iAx + Bu + w1 ; f-RN.

y :Cx + w2 ; y e R(P

2



I
I

where x is the plant state. A is the plant dynamics matrix and B and C are

control input and sensor output matrices, respectively. w1 is a white

disturbance noise with intensity matrix V1 > 0 and w2 is observation noise

with nonsingular intensity V2 > 0.

The reduced-order compensation problem consists in designing a

constant gain dynamic compensator of order Nc ( N:

u = -Kq. u ERN

(2)

= ACq + Fy; qeR c

Obviously, the heart of the design problem is the selection of the constant

matrices K. F and Ac.

Methods 1-6 all associate with the closed-loop system (1.2) a

steady-state quadratic performance index. J:

r,= lir,: Ji J/ jIt,-to,
t_ t1-to-- > G

t1 T (3J Idt E[xTR 1x + uTR2u]  (3)

t 0

R > 0, R2 >0

Methods 1-5 first design an LQG compensator (select K. F. A to
* c

minimize Js) and then reduce the order of the resulting N state compensator.

Thus, in methods 1-5. the quadratic performance (3) is brought into play in

the initial LQG design step, but a variety of balancing and Hankel norm

approximation ideas are utilized for the subsequent compensator-order

reduction step. In contrast, method 6 selects. K. F. A by addressing the

quadratically optimal, fixed-order compensation problem i.e.. for N fixed

(and < N). choose K. F. Ac to minimize J . The OP design methodology

I



proceeds by solving the first-order necessary conditions for this

optimization problem using the new forms for the necessary conditions given

in [6]. The basic OP design equations reduce to four modified Lyapunov and

Riccati equations all coupled by a projection of rank N . In general these

design equations produce compensators that cannot be obtained by reduction

of an LQG compensator [7].

Methods 1-5 have been reviewed extensively in [1-5]. and will not

be discussed in detail. Here we shall merely review the OP design equations

to the extent needed to illustrate the solution algorithm used for this

study.

To do this, a few preliminary results and notational conventions

must be given. First, we have Lemma 1. [7]:

Lemma 1. Suppose Q E RNKN and FC RNE N are nonnegative definite and

rank (Q) = rank (F) = rank (QP). Then the product QP is semisimple (all

Jordan.blocks are of order unity) with real. non-negative eigenvalues.

Moreover, there exists a nonsingular4t[Q,P] such that:

S *4[QbpQJ = A (4a)

*4 [Q.]PQP ] - A (4b)

E71 Q.P3 Q*TEQ.P] A (40)

where

A = diag (Ak (5)
k=l...N

is the positive diagonal matrix of the square roots of the eigenvalues of

4



When for a given pair Q and P. a P[ Q.P exists such that (4) hold.

and P are said to be contragrediently diagonalizable and balanced [91 and

'4[Q*,P] constitutes a simultaneous contragradient transformation.

Determination of such a transformation is the fundamental mathematical

operation of balancing.

Furthermore, it is clear that the quantities:

n k1Q.P1 *[Q.FIE Q. P]J6

W~k 1; mn~k
mn 0 otherwise

form a set of mutually disjoint unit rank projections i.e.:

[nQk . P P] .1 -- k[Q'P]6kj (7)

Thus the sum of r distinct Rik's is itself a projection of rank r. Also QP

can be alternatively expressed as:

n2

QP E 'ffk[QP]Ai (8)U k=l

By virtue of (8) and the usage in [10]. we termr [ P] the eigen-proiection
a a t

of QP associated with the k eigenvalue.

The above results and conventions, together with the notations:

~BR7 1B T (9a)

? c V-c (9b)
2

J in- 7 (90)



allow us to state the main result [6-8] upon which the OP reduced-order

compensator design method is based:

Theorem 1. Consider the quadratically optimal, fixed-order

compensation problem with. N < N fixed.

NxJLet nonnegative definite Q. P, Q, P e R be determined-as

solutions to the following equations:

0 = AQ + QAT +V 1 - Q.Q + 7 Q T1 'LQF:~ (10a

T T

0Q (A-FP)Q + Q(A-FP)T + QEQ r E . (10c)

0= (A-Q) P + P (A-Q) + PEP - T PEPT (l0d)

N

E n fl1 IQPI (10.)

K=l3 N iN

Then with r, G e R given by:

N'
m (11)

G [IN
c

the gains:

-71 BT PGT~~K =R 2 EBPG
T

F = rQcTv-1  (12)

6



determine an extremal of the performance index J.

A has been remarked in [8]. the value of the performance index is

unchanged by any transformation of the compensator state basis - in other

words, for any nonsingular S E RNxN:

J(K.F.Ac) = J(KSS-I FS A cS) (13)

Furthermore, when Nc = N. ris a rank N projection on R by virtue

of (10e). Hence 1= IN and T= 0 and equations (10a).(10b) become

uncoupled Riccati equations for determination of Q and P. Also r and G

become %P1 Q.P] and *T[Q.i]. Finally. setting S =%P-l and using (13) and

(12). extremalizing gains are given by:

-1T

, = QC (14)2

A= A- QE- P

with Q and P given as solutions to the independent Riccati equations,

(10a.10b). with T1 = 0. Hence when Nc = N. the design equations (10). (11)

and (12) immediately reduce to the LQG design for a full-order compensator.

However for N€ ( N. equations (10) are first-order necessary

conditions and generally possess multiple solutions corresponding to

multiple extremals that can exist. This matter was explored in [11]

relative to the related quadratically optimal model reduction problem.

Basically, equation (10.) tells us that the rank N projection. r, which

defines the geometry of the fixed-order compensator, is the sun of N out of

N eigenprojections of QP. However, the necessary conditions do not tell us

which N out of N eigenprojections are to be selected to secure a global

7



minimum of J. Indeed for any possible selection of N eigenprojections out

of N. equations (10) may possess a solution corresponding to a local

extremal. By virtue of (10e) and the notational conventions of (4) and (8).
I.

V. the selection of N eigenprojections is defined (generically) by the manner
I;. C

in which the eigenvalues. Xk& are ordered. Recently. Richter [12] has

applied topological degree theory to investigate the possible solution

branches and the character of the associated extrema and has devised a

homotopy solution algorithm which selects the A-ordering which homotopically

converges to the global minimum.

For the example considered in this paper, we adopt the ordering

convention:

A1 -A 2 _> - AN (15)

in constructing *[Q.P]. (15) together with (10e) imply that 7 is taken to

be the sum of the N€ eigenprojections corresponding to the Nc largest

eigenvalues of QP. Generically, this choice leads to an unequivocal choice

of one solution branch of (10) corresponding to a particular extremal.

Thus. the OP design method investigated here consists in solving

(10) with convention (15) and then evaluating the gains according to (12).

We apply a simple homotopy solution algorithm, described in the next

section. to the example problem of Enn a specified in Section 4 and compare

results with methods 1-5. A more advanced and efficient homotopy algorithm

is given in [12].

3. An Algorithm for Solution of the OP Design Equations

As stated, the OP design method is to solve (10) (with stipulation

(15)) for P. Q. P. Q. and then evaluate the gains using (11). (12). A

logically distinct issue is precisely k equations (10) are to be solved.

Here we present an algorithm that has been used for some time and requires

8
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only a standard LQG software package for its implementation. For

convenience this same algorithm was employed to obtain the numerical results

. ffor method 6 presented in the next section.

The basic motivation of this algorithm is the observation that the

3four main equations (10a)-(lOd) are coupled only via the terms involving 71
on the right hand sides. If these ri terms were deleted, then all five

equations can be solved sequentially - moreover (lOa).(lOb) reduce to

ordinary Riccati equations and (1Oa).(10b) are Lyapunov equations. Likewise

under conditions in which QEQ and PEP are "small" relative to the

remaining terms (e.g.. sufficiently small state-weighting and disturbance

noise intensity and/or sufficiently large control weighting and observation

noise intensity) the r, terms are typically found to have little effect. In

this situation the artiface of fixing an initial 7,. and then solving (10)

as ordinary Riccati and Lyapunov equations is likely to give a reasonable

approximation to the true solution.

Since only the rI terms on the right of (1Oa-lOd) occasion most of

the difficulties, it is necessary to somehow bring these terms into play

gradually. There are two principal ways to do this. The first is an

iterative relaxation approach. i.e.. fix r, solve (10)-(lOd) sequentially.

then update T using (lO) and repeat until convergence, in some sense, is

achieved. The second method is a homotopy approach. i.e.. multiply the lj

terms by a scalar parameter, a e[0,1], then starting with a = 0 and

gradually incrementing a, solve (10) repeatedly until a a 1.

The algorithm used here consists of two iterative loops. The

inner loop uses the relaxation approach and is embedded within an outer loop

which implements the simple homotopy approach.

The inner loop follows the earlier computational scheme discussed

in [7] and is illustrated in Figure 1. Note that the parameter a E [0,1]

multiplies the TI terms but is held fixed within the inner loop and is only

incremented on the outer loop. As Figure 1 shows, one first fixes r equal

L4 9



Figure 1: Inner Loop of OP Solution Algorithm
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to the previous iterate (or set r = I N when starting) and then solves (lO)-

(lOd). Once nay iterates for Q. P. Q. P are obtained. T is updated by

determining the balancing transformation '1Q.P1. To enhance convergence of

the modified Riccati equations, the updated r is taken to be the weighted

sum of all N eigenprojections - the first Nc eigenprojections are given

unity weight while the rth (r > N c ) eigenprojection is weighted by

Ar/AN ( 1. As convergence proceeds. A /AN approaches zero for all r > NcrN c
c c

and the numerical rank of r approachs N . The indicated convergence checkc
tests the relative excess of the numerical rank of r over N and terminatesCrthe inner loop iterations when this "rank ezcess" falls below tolerance e.

In these studies e = 0.1 is used. The inner loop is terminated when either

this tolerance is achieved or when the prescribed number of iterations is

ezceeded.

When the convergence criterion is satisfied, the gains. K. F. A€

are computed using (11) and (12) and the steady-state performance. J. is

b evaluated. Performance evaluation invokes no assumptions regarding the

convergence and optimality of the solutions to (10). Specifically. the

values of K. 1. Ac resulting from application of (12) are accepted as they

stand and are used to construct the system matrices of the augmented system

with state vector XT a [ZT.qT] . Next the 2Nz2N Lyapunov equation for the

second moment matriz of the augmented, closed-loop system is solved.

Finally. J is evaluated as a linear function of various sub-blocks of the

augmented system second moment matrix.

The outer loop. depicted in Figure 2. implements the homotopy

approach by incrementing a and controlling the increment step size. Only at

the start is the inner loop initialized by r = '. Otherwise. when a is

incremented, the inner loop is initialized using P. Q, P. Q. and r as

obtained with the previous value of a. a is taken to be 0 at the start and

is subsequently incremented by A. The default value of A is 0.1 although

other desired values may be input. However, whenever the inner loop is

terminated without achieving the convergence tolerance e. the hoaotopy

parameter increment. A. is halved. This provides simple control over the

10
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I
hoaotopy stop size. The entire algorithm terminates when a = 1.0.

Alternatively, at the user's option, the algorithm can be terminated when

the change of the performance index. J. over two successive outer loop

iterations is sufficiently small - thus indicating acceptable convergence

with respect to quadratic performance.!
4. A Design Example and Comparison of Results

We use the example problem given by Enns [2] to compare methods

1-6. Results on this example obtained by use of methods 1-5 are discussed

in [1]. Here, we augment these results by considering method 6 and

undertake an overall comparison.

The plant to be controlled in this example is a four-disk system

and is linear, time-invariant. SISO. neutrally stable (with a double pole at

the origin) and non-minimum phase and of eighth order. Numerical values of

the matrices A. B. C. R1 , R 2 V1* V2 defining this problem are given in

Table 1.

k. For each of the methods 1-6. controllers of different reduced

orders (from seventh to second order) were obtained for seven different

values of the disturbance noise intensity parameter. q2:

q2 a 0.01. 0.1. 1.0. 10. 100. 1000. 2000

Thus each method was used to obtain results on 42 different design cases.

Each of the six methods was originally devised according to a wide

variety of different criterion for adequate performance of a reduced-order

compensator design. Despite this wide disparity amon$ the different aims

and motivations of the several methods there are at least three criteria

that may be reasonably applied to judge the success of a reduced-order

design:

0%:11



F-0.161 1 0 0 0 0 0 0

-9.9835 0 0 0 1 0 0 0

-0.4073 0 0 0 0 1 0 0

-3.982 0 0 0 0 0 1 0

B T= C0. 0. 0.0064. .00235. 0.0713. 1.0002. 0.1045. 0.9955]

C = Ell 0. 0. 0. 0. 0. 0. 0]

Rt = (1.0 z10 -6)HTH; H = [0. 0. 0. 0. 0.55. 11. 1.32. 18.0]

R21

V, q 2 BB (q 2  [0.01. 2000.0])

V u1
2

pIq

Table 1: Data Matrices for the Example Problem of Enna [2]
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1. Closed-loop stability

2. Extent to which the reduced-order compensator impulse and step

response match the full-order. LQG. compensator response

3. The closed-loop quadratic cost

However. item 3 will not be considered since costs for methods 1-5 were not

provided [1]. The comparison in item 2 examines the output y(t) in response

to an input v(t) injected in the loop as indicated in Figure 3.

First. Table 2 summarizes the closed-loop stability properties of

all design methods in all 42 cases. Generally. it is seen that all methods

achieve a high rate of success in achieving closed-loop stability for the

larger Nc values and small q2 " On the other hand. methods 1-5 experience

greater difficulties for low values of N and. particularly, for large q 2 "

hWith respect to stability, the only qualitative distinction among the

methods is that method 6 (optimal projection) produces stable design in all

42 design cases.

The trend toward increasing difficulty of the design with

9increasing disturbance noise intensity is highlighted by Table 3 which shows
the percentage of closed-loop stable designs given by the different methods

for the different values of q2 and in total. That the fraction of stable

designs declines with increasing q2 is to be expected since larger

pdisturbance noise intensity increases Q. thereby increasing observer gains

to produce faster observers that are more sensitive to order reduction.

Overall, for this example problem, method 4 exhibits the smallest

fraction of stable designs (with 24 unstable designs) and does not achieve

any order reduction for q2 
= 100. 1000. 2000. Of the LQG reduction methods

(1-5). methods 1 and 5 fare best - with only 4 unstable designs out of 42.

As noted, optimal projection (method 6) yields stable designs in all cases.

12
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v~t) = Unit step or impulse

(K. F.A ) = full-order LQG or reduced-order compensator gains

Figure 3. Comparison of unit stop or impulse responses



Table 2. Stability of the Reduced-Order Controllervs by Different Methods

q -------------------------------

Method N 2 0.01 0.1 1 10 100 1000 2000

7Ck S S S S S S S

Enns (1) 5 S S S S S S S
4 S S S S S S U
3 S S S S S S S
2 S S S S U U U

- - - - - -

6 S S S S S U S
Glvr62 S S S S U U U

4lvr2 S S S S U U U
3 S S U S U U U

2 S U S U S U U

7 S U U S S S S
6 S S S S S S S

Davis & 5 S U S S S U U
Skelton (3) 4 S S U S S U U

3 U U U U U U U
2 S U IS U U U U

7 IS S S S U U U
6 S S S S U U U

Yousuff & 5 S S S U U U U
Skelton (4) 4 S S S U U U U

3 S U U U U U U
2 S S S U U U U

7 S S S S S S U
6 S S S S S S U

Liu& 5 S S S S S IS S
Anderson (5) 4 S S S S S S IS

3 5 S S S S U U
2 S IS S S S S S

7 S S S S S S S
6 S S S S S S S

Optimal 5 S S S S S IS S
Projection 4 S S S S S S S
(6) 3 S S S S S S S

2 S S S S IS S S

S - The closed-loop system is stable
U - Unstable



I
I

Table 3. Percentage of Stable Designs Given By
the Different Methods

q2 Total % for
M 2 0.01 0.1 1 10 100 1000 2000 All Cases

Enns (1) 100 100 100 100 83.3 83.3 66.7 90.5

Glover (2) 100 83.3 83.3 83.3 33.3 0 16.7 57.1

Davis & Skelton (3) 83.3 33.3 50.0 66.7 66.7 33.3 33.3 52.4

Yousuff & Skelton (4) 100 83.3 83.3 33.3 0 0 0 42.9

Liu & Anderson (5) 100 100 100 100 100 83.3 50.0 90.5

A Optimal Projection (6) 100 100 100 100 100 100 100 100.0

V

.p



To permit independent corroboration by interested readers of the

OP design capabilities we give numerical values of the compensator gains

obtained by method 6 for a selection of the more difficult cases* - namely:

Sq2 = 2000. Nc = 2. 3, 4, 5, 6, 7

Nc = 2. q2 = 0.01, 0.1, 1.0, 10. 100, 1000, 2000

Next, consider the accuracy with the step and impulse responses

(see Figure 3) of the various reduced-order compensator designs track the

corresponding response of the full-order LQG design. These characteristics

-, exhibit similar trends as noted with respect to closed-loop stability. For

example. Figure 4 shows a comparison of unit step responses for second-order

compensator designs with a small value of q2 (= 1.0). In this case, all

methods exhibit stability and reasonable agreement with full order design.

However, as the comparison of methods 1-5 in Figure 4.a shows, methods 1 and

5 show distinctly superior tracking accuracy. For clarity, methods 1 and 5

are compared with method 6 in Figure 4.b. Here it is clear that method 5 is

somewhat closer to the LQG response than method 1 while method 6 is closest

of all.

Similar trends are seen in the comparisons of the impulse

responses (for the same design case) in Figure 5. Once again, of the LQG

reduction methods (compared in Figure 5.a). methods 1 and 5 display

significantly better agreement with the LQG response. This agreement is

slightly exceeded by method 6 (Figure 5.b). but on the whole, methods 1. 5

and 6 show excellent performance.

On the other hand, for a fairly large value of q2. both stability

and agreement with LQG response is degraded somewhat for several methods.

Figures 6 and 7 show comparisons of unit step and impulse responses for the

case N= 5. q2 = 100. In this case, only methods 1. 3. 5 and 6 yield

• See Reference [13] for a complete listing of all 42 cases

13
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stable designs and are thus compared. Of the LQG reduction methods, method

5 exhibits distinctly better agreement with the LQG responses. Once again.

it is found (Figures 6.b and 7.b) that method 6 somewhat excels in the

.- accuracy with which it's transient responses track the full-order design.

Thus, for the 42 design cases studied in this example problem.

methods 1 and 5 demonstrate good success in achieving stable closed-loop

designs while method 6 achieves stable designs in all cases.

i4 Also, in the cases examined, methods 1 and 5 offer good transient

response characteristics while method 6 tracks the full-order compensator

responses the closest.

In view of the good performance exhibited by method 6. we present,

in the remainder of this section. additional details on the OP design

results and the performance of the solution algorithm described in

Section 3.

First, as noted, the OP design philosophy focuses on the steady

state quadratic performance index, J. (defined in (3)) as the "figure of

merit" for a reduced-order compensator design. Thus, we appropriately

display, in Figure 8. several plots of the performance index J (normalized

by q2) versus compensator order for all 7 values of q2. Note that apart

from minor variations that are likely due to the benign convergence

tolerance used in the solution algorithm. J generally decreases

*monotonically with increasing N,* These graphs thus illustrate the basic

- tradeoff between performance and controller complexity.

Note that for small q2 (Figure 8.a). performance is not much

affected by order reduction. This is to be expected since small disturbance

noise intensity, in this problem, leads to low observer gains and to small

values for the terms involving 7 in equations (10). Since the T, terms in

equations (10) have little effect, the OP designs are approximated by

14
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balanced projections of the LQG design. This might also help to explain the

relatively successful performance of all methods for small q2 "

For large (Figure 8.b) and for very large (Figure 8.c) values of

q2. however, the degradation of performance with reduction in order is

increasingly steep. For example, while for q2 = 1.0, the 2nd order

performance is only 2.5% above the LQG performance. for q2 = 2000. the

second-order performance is 270% above the LQG value. Thus, order

reduction under large disturbance noise does appear to be a more delicate

matter.

While increasing difficulties with q are not clearly manifested

in the stability or transient response properties of the OP designs, these

are reflected in the computation required to arrive at the final designs.

To explain this we now describe the specific design steps taken

and the performance of the solution algorithm. Each design case was treated
- using the OP solution algorithm shown in Figures 1 and 2 and a maximum

homotopy step size of 1.0 was input. Furthermore. for each design case. the

algorithm was started "cold" - i.e.. without being initialized with gain

values obtained in previous cases. On initial application of the algorithm.

the OP design results presented here were obtained after using the numbers

of inner loop iterations given for each case in Table 4.

Note that with A = 1.0. the logic of the outer loop (Figure 2)

*implies a minimum of two inner-loop iterations. Inspection of the results

obtained in some of the benign cases suggested the possibility that only one

inner loop iteration was needed. Consequently we re-examined the cases

comprising q2 = 0.01, 0.1, 1.0 and Nc = 5. 6. 7, by revising the outer loop

logic to output gain values after only one pass through the inner loop. It

was found that this produced acceptable accuracy in the cases q2 = 0.01;
N Nc = 5. 6. 7. q2 

= 0.1. Nc = 6. 7 and q2 = 1.0. NC a 7. Thus, the revised

results are as given in Table 4'. Since the gains are essentially

15



Table 4. Number of Inner-Loop Iterations Used in OP Solution Algorithm
-Initial Design Computations

q 2
0.01 0.1 1 10 100 1000 2000

Order .Nc
7 2_2__4_58_1

6 2 2 2 4 4 8 10

5 2 2 2 6 5 5 7

4 2 2 2 8 9 6 10

3 4 4 4 8 9 7 8

2 4 4 4 8 9 9 10



unchanged. the design results obtained on the first application are the ones

presented here.

As Table 4' shows. relatively few iterations were required in the

benign, small q 2. cases. In particular, only one inner loop iteration was

needed in most of the cases comprising q 2 = 0.01. 0.1. 1.0 and Nc = 5. 6. 7.

However, for large q 2. up to 10 iterations were required. Thus it is clear

that all methods run up against a fundamental source of difficulty when

disturbance noise is large.

At the time of writing. full compilation of the computation times

required for all methods on the same machine is not available. All OP

calculations were performed on a Harris H800 minicomputer. However, as a

rough estimate, it is fair to say that in the benign cases, the OP

* computation is comparable to the burden incurred by methods 1-5. For the

difficult. large q 2 cases the OP computational burden is clearly in excess

of methods 1-5 (although certainly not excessive from a practical point of

view). However, it is precisely in these cases that the LQG reduction

methods experience the greatest difficulties in producing closed-loop stable

designs. Thus a meaningful comparison of relative computational burden in

these cases cannot be performed.

Finally it should be noted that the computational burden

associated with OP for the designs presented here is also an artifact of the

solution algorithm depicted in Figures 1 and 2 and is not solely the result

p of the design equations themselves. This algorithm was convenient to use.

and vas the first implemented since it requires only standard LQG software.

On the other hand, the algorithm discussed in section 3 takes no particular
advantage of the special structure of the fundamental design equations.

(10). Its principal draw-back is that it involves the iterative solution of

four NiH. nonlinear matrix equations. To remedy this, Richter [12] has

developed a step-wise homotopy algorithm which requires, at each homotopy

step, the solution of four N iN linear equations. Clearly, for small N.,

this offers the potential for computing an OP design with less computational



Table 4'. Number of Inner-Loop Iterations Used
In OP Solution AlgorithmI - Revised after reconsideration of cases

0.01 0.1 1 10 100 1000 2000

Order N

7 1 1. 1 4 5 8 10

6 1 1 2 6 4 8 10

5 1 2 2 6 5 5 7

4 2 2 2 8 9 6 10

3 4 4 4 8 9 7 8

2 4 4 4 8 9 9 10

I j,1, 11



burden than is required for a full-order LQG design. It is anticipated that

the future utilization of Richter's algorithm will permit a more accurate

and definitive comparison between the computational cost of the LQG-

reduction techniques and the Optimal Projection formulation.

5. Concluding Remarks

In this paper. we have used the example problem of Enns [2] to

perform a computational comparison of six methods for reduced-order dynamic

compensator design. Methods 1-5 are based upon LQG-reduction procedures

while method 6 is based upon the Optimal Projection COP) formulation.

Of the LQG-reduction methods, the methods of Enns (2] and of Liu

and Anderson [1] exhibited particularly good stability and transient

-' response properties. However, in the cases examined. the OP method gave

somewhat better transient response characteristics and, unlike the LQG-

reduction procedures, produced closed-loop stable designs for all the 42

design cases.

A precise comparison of the computational burdens incurred by the3 various methods is not possible at present. However, as a rough comparison,

it is fair to say that the OP method entailed comparable computation in the

relatively benign design cases and more computation in the difficult cases.

A However in this case LQG reduction methods often produce unstable designs.

p Thus the OP method exhibits a tradeoff between computational burden and

* K corresponding design reliability. Present developments are directed toward

implementation of advanced homotopy techniques which take particular

advantage of the structure of the basic OP design equations to markedly
improve design computation speed.
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Appendix 1

U In the following. numerical values of the reduced-order
compensator gains. K. F and A obtained via the OP solution algorithm
discussed in section 3 are given for the design cases:

q2 = 2000. Nc = 2. 3. 4. 5. 6e 7

Nn C 2 q 2 = 0.01. 0.1. 1.0. 10. 100. 1000. 2000

a

I c  2q .1 .,10 0 0o10o20

I
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CASE: q2 = 2000. N€ = 6

0.8190E-03 0.3031 0.8960E-03 0.7075E-01 0.3110 0.2265

1 -2.356 -0.2845E-02 0.5058 0.1198E-01 0.3847E-02 -0.4306-01

-0.7592E-02 -0.6887 -0.1431E-02 0.2356 0.7586 0.5132A
c -1.358 -0.9398E-01 -0.3875 -0.1281 1.265 -0.8882E-01

-8.168 -0.1105E-01 -1.861 -1.709 0.1190E-02 0.1426

-16.17 -0.4290Z-01 -3.152 -1.545 -0.3782 -1.799

FT = [ 0.27131-04 -0.7675E-01 -0.2492E-03 -0.4487E-01 -0.2702 -0.5356]

K = [-0.4324 -0.5140 0.1322 -1.545 -0.1364 -3.524]

I
CASE: q2 = 2000. N c 5

0.1335E-02 -0.3220 0.5482Z-02 0.44401-01 -0.1963

2.226 -0.39201-02 -0.4659 -0.3941E-01 0.4951E-02

A = -0.5418E-01 0.6432 -0.1099Z-01 0.2117 -0.4355

-0.8042 0.2011 -0.2791 -0.1891 -1.488

5 6.046 -0.1203E-01 1.376 2.351 -0.6778E-03

FT  [ 0.40181-04 0.65573-01 -0.16141-02 -0.2413E-01 0.18171

K C [-0.4697 0.5101 0.4346 -1.795 -0.4017E-01]

I
I
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CASE: q2 = 2000. N€ - 4

0.3225E-02 -0.3717 0.1238E-01 -0.5735E-01

3 2.170 -0.3860E-02 -0.3623 -0.1829E-01
A-c -0.1140 0.5365 -0.2564E-01 -0.2749

I 1.176 -0.1297 0.3488 -0.4452

I F= 0.9245E-04 0.6044E-01 -0.3234E-02 0.3370R-O1]

3 K = [-0.4871 0.5626 0.6852 2.540]

CASE: q2 - 2000. Nc .3

0.2351E-02 0.1516 0.1492

3 A -1.447 -0.9385E-01 0.6597

-1.592 -0.7041 -0.10273-02

F = [ 0.5944E-04 -0.3619E-01 -0.3990-01]I
K = [-0.5372 -1.410 0.1033]

I
3 CASE: q2 2000. N0 "2

-0.83781-03 -0.4671
° A€

2.047 -0.10953-01

7T - E 0.3272-04 -0.76251-01]

i K [ 0.3807 -0.6411]

I



I
CASE: q2 =1000 N = 2

A
c -2.129 -0.7569Z-02

yT = [-0.6242E-04 0.7341E-01]

K = E 0.3753 0.5049]U

CASE: q2 loo N 2

I - 0.2742E-02 0.4216

c -2.396 -0.22741-01

FT  [-0.15389-03 0.1303]

i K E [ 0.2351 0.4178]

I
CASE: q2 s 10 N c 2

0.7474Z-02 0.1970
As

c -1.699 -0.8276

I F - 0.4814Z-03 -0.1081]

3 K [-0.1740 -0.9190

I
I

U



I ..

U
CASE: q2 = 1. Nc = 2

0.7832E-02 -0.1812

c 1.269 -0.7143

PT = [ 0.8516E-03 0.1356]

K [ [-0.1003 0.5206

CASE: q2  0.1. N = 2

1 0.99153-02 -0.1578

3c 0.7650 -0.5093

FT = [ 0.16951-02 0.1264]

K a [-0.5729E-01 0.2733]

CASE: q2  0.01. N€ -2

A= 0.13571-01 -0.1398

C 0.3985 -0.3430

IT a C 0.3451E-02 0.9371Z-011

K a [-0.30453-01 0.1421]

I
i
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I
A HONOTOPY ALGORITHM FOR SOLVING THE OPTIMAL PROJECTION EQUATIONS FOR

FIXD-ORDER DYNIAIC COMPENSATION:
EXISTENCE, CONVERENCE AND GLOBAL OPTIMALITY

Stephen Richter

Harris Corporation
Government Aerospace Systems Division

MS 22/4848

Melbourne, FL 32902

ABSTRACT may be determined by implementation constraints or
can be varied for performance/throughput tradeoff

The purpose of this paper is to present a studies.

homotopy algorithm for solving the Optimal
Projection Equations. Questions of existence and An interesting refo ulation of the parameter
the number of solutions will also be examined. It optimiation approach was given recently in [21.
will be shown that the number of stabilizing Dy setting the gradients to zero the authorssolutions to the given Optimal Projection showed that the first order necessay conditions
Equations can be determined and that all solutions can be transformed to yield explicit gain
can be computed viz a homotopic continuation from expressions for extremal fMied-order controllers.

a simple problem. For an Important special case. An appealing aspect of this formulation is the
where the number of inputs or the number of recasting of the necessary conditions in a form

outpts o te sytemin ess hanor qualto he vhich generalizes the classical (full-order) LQGoutputs to the system is less than or equal to the soltion. Specifically, inosted of a pair of

dimension of the compensator, there is only one separated Sccatilequainste necesary
Ssolution to the OPE. thus guaranteeing that seaae ictequations. the necessaryconditions for fixed-order dynamic compensation

globally optimum reduced order controller can be comprise a system of two modified Riccati

computed. equations and two modified Lyapunov equations

coupled by an oblique projection whose rank is
1. Introduction precisely equal to the order of the compensator.

When specialized to the full-order case. the

Despite significant advances in the cost and projection becomes the identity, the modified

performance of digital computers over the last Lyapunov equations drop out. and the modified

decade, there remains a need in several Riacati equations simplify to the classical

technological areas for low-order. high- Riccati equations. Hence this approach appears to

performance controllers. In particular, this be a natural and fundamental generalization of

paper is motivated by the problem of vibration LQG.

suppression in large flexible space structures.
Such systems are infinite-dimensional (distributed Regardless of how appealing the optimal

parameter) in nature and hence any finite- projection foxulation may appear to be and in
dimensional controller is necessarily of reduced spite of the empirical advantages claimed in [2-
order. The need for low-order controllers is 10). its contribution is vacuous unless certainordr, he eedforlowordr cntrlles ~serious questions can be resolved. These include:
further driven by severe constraints on cost,
weight and power in space systems, not to mention 1. Under what conditions on the problem data
the restriction to space-qualified computational
hardware. can the optimal projection equations be

guaranteed a priori to possess a
A wide variety of approaches have been solution?

proposed to obtaining reduced-order controllers.
A comparison of several approaches to controller 2. Given problem data. exactly how many
reduction is given in [1. These methods operate solutions do the equations possess?
by first designing a high-order LQG controller and
than obtaining a suitable low-order controller by 3. Of the possible solutions, what are their
means of controller reduction, stability properties, what is their

performance, and which is the global
A more direct approach to designing reduced- optimau?

order controllers involves optimizing the
quadratic performance functional over the class of 4. How can numerical algorithms be
controllers of fined order. The controller order constructed which can be guaranteed toconverge to any desired solution

Supported in part by the Air Force Office of especially the global minimum?
Scientific .search under contract F49620-86-C-0038.
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It se0m clear that any attempt to address i2v
the above issues must utilize mathematical methods Z 0 ) -n k
which are global in nature. To this end we haveUapplied degree theory and associated homotopic to the n solutions at t=1.
continuation methods ([13-24]) to analyze the
solutions to the optimal projection equations and 2.2 Degree Theory.
to construct convergent. implementable algorithor
for their computation. The purpose of this paper N
is to report significant results in this regard. Definition 1: Given a functi.on f mapping D inR

into V in RKa regular value of f is an
element p in V such that the NxK matrix of

2. Homotopic ContinuAtion and Degtree Theory partial derivatives of f. fx W. has full
2.1 Homotopic Continuation. A homtopic rank for each x in f1 l(p). Note that if NUK
continuation method for solving a problem is to then fCx) having full rank is equivalent to
first solve an easy usimilar3 problem. and then to

continuously def orm the easy problem into the det(f Cx)) 00.

souiosas the easy problem is deformed into the Definition 2: Given a function f mapping an openIoriginal problem. This is shown conceptually in N NFigure 1. set D in R with boundary D into V in R and
a point p in V. the degtree of f for domain D.
and point y (written Deg(f.D.p)) is definedI and is an integer if there is no x in the
boundary 5 of D such that f(x)-p. if p is a
regular point of f then the degree is the sum
of the signs of the determinant of theI .. Jacobians of f evaluated at all x such that

deg(f.D.p) z Sign( Det(f Cx ))

whe re fVx ) p

ta The degree has the following properties:
FL g .. FMel I

1) If deg(f.D.p) 0 0 then f(x)=p has at least one
Figure 1 solution in D

Examle . Cnsidr clcuatig th rots f a2) Let f (x~t) aRto RN for each t in (0. 1] with
Exmpe p olnialcuaigteroso f continous. If for each t. f(x.t)-p has no

V(Z) . n a . Zn- *aZ -2.. + Ca n =0. solutions for z in 5. then deg(f.D.p) is
constant for t in [0.1].

Let the easy problem be 0 (Z) = Zn -1 0 and 3) If f is as in (2) and deg(f.D.p) 0 0. then at
deformP to Ileast one. solution of f(x.0)=p connects with a

deom0~t solution of f(x.1)ap.

F(~) Z (aZn-i Zn- 2 .. a - t Example 2. EBver polynomial bas at least one root
1(Z~~t) = Y C 1 Can n.a (over the complex numbers)

At t .0, !(Z.) = * and 1(Z.1) I(Z.Le z)ax+'IZn-+..an

The solutions Z.k(t) which satisfy F(Zk.t) a 0 are We wish to show that deg(f.D.0) 10 0.

found by differentiating 1(Z.O(.t) =0 to obtainLo zt)=zn+ta12U1+en-
n-n- +n2Z2I2

Let fYkt k .. % + az ..

at- - n- i -2. .

This differential equation can be integrated from LtDg ~ ~ t~: + )- +

the n initial valuesnubrwheRisomlag



I
Fors on 5 (JaJ -R) an is much larger than at t-0. If a tnl.Pl-nu the there are
ta.zU-1 so f(z.r) 960 for z in D. thus (slts. pa 3.n un solutions at t=O.

deg(f.D.O) is constant for t in [0.1]. c u

n In following these initial solutions from t=O
For t-0. f(z.O) Z - 1 and writing to t-l there are several situations which could
f(r.e) a z; iy we have that the solutions to occur (see figure 2).
f(r.9.0) - 0 are r - 1. 9 =kr/2n for
k a Ol.....n

n/
f(z.0) - r cos(n*8) + 1.0 /

rasin (n*O) /

The Jacobian of f is

r n-l (ne) _nrnsin(n*o) M-ip.Z) -

r fsin(n*9). nrcos(n*) - -

Det f : n2 r2n- 1 . 1

The sign of the Jacobian is always +1. thus
des(f.D.0) = n

UP068"m 009We tlu- =P The do&%G ipau do not eist

3. Honotopy for the Optimal Proiection Equations u me a mi(n P-. W mmlon i one o u o l (*WgOW M-Mu )

- Figure 2
solveThe object is to find P. Q. P. Q. which

O A A~ + V + TQ.Q. It can be shown using degree theory that the
situations shown in dashed lines cannot occur.
That is. the only solutions to the OPE at t=l (or

O a J11 + PA + I -PZP + TPZP1 for O t ( 1) are those which are continuously
1 I derived from the solutions at t-O.

O: (A-)Q + Q(A-ZP) +± -J Q Q . Thus we have the following result. Let nu

denote the dimension of the unstable subspace of
0.(A-Qi) + ;(A-(*) + PP-TPEr A.

Main Theorem. Assume that the plant is
given Z. le R1. V1. * n A. To do this let stabilizable and detectable. V1 > 0. R1 > 0 and

n U n . Then. in the class of nonnegative-
D1 u- C

A(t) = 2  (-)+t definite solutions Q. P. Q, P with

Urank Q=rank Purank QP z= c.

R 1(t) Z Il-t) tR, V ItW a (-t) + t VI the optimal projection equations possess at most

1 0

Z 10 : (1t0 + tZ(mnnm )umnn A)

Wt a[ :1 -stabilizing solutions. Each such solution is
I reachable via a homotopic path with starting point

for t=O the solution is easy to find. The object corresponding to diagonal initial data.
is to follow the path or paths of solutions P(t). Furthermore. if-the plant is stabilizable by means
Q). ;(t). ;(t) from t=O to tzl. Note that if of an cth-order dynamic compensator. then there

n0 > min(A.n) - nu then there is only one solution exists at least one solution.



Remark 3. 1. As shown in [26] . stabilizing Hobd 4 0.01 0.1 1 o to -00
controllers of arbitrary reduced order my not At___ - - -

always exist. 7 3 S £ S 3 S S

0 S I S S 5 S S

3 S II 11 5 S S S

iortetimal projecitions vlequatonslem souin23

isF knwns tePA)= (t). () = Q&t) 1t6S S S

ritte intrso dert ie of GTwt an r. Thus
&*te A S 01 3 S

Fote obti a prjcin eqain th solutio
P.~~.dr. ca beesl eemndoc S3 S a S S

is knw so th P5)=PTW ~)m (~ 5 U U

w e o t i L s G5 S 6 S S 3 5 S

anmlS S S S SIoeto 4 5 S 5 1 S S 8
which gives 2n n equation for r' and G . PI. Q'. 1

;I and Q'I are then calculated from rV and G and ?b eledlo syste is abahi

finally r(t+Wt is updated by -M closed-*Io" systan to imbl.

Figure 3. The Optimal Projection Approach Wasr(t+& t) = r(t) + r' xat Compared to Several LQG Reduction Techniques
Over a Range of Controller Authorities for an

and lik~ewise for G. P. Q. P and Q. Example of Enna

Figure 3 sumarizes the results reported in OP VIA H0OC)T0PY ALGORITHM
[]f or LQG reduction methods along with resultsENI KMLobtained using the homotopy method for solving the NSUAPL

optimal projection equations. Here q2 is a scale$.

factor f or the plant disturbance noise affecting .
controller authority. Clearly. LQG reduction21Cmethods experience increasing difficulty as 9.0
authority increases. i.e.. as the terms become .

increasingly nore important in coupling the 1.0
control and reduction operations. 1.

1.6 AffERSONS coewpansoN
One of the main goals of the development .

effort was to extend the range of disturbance
intensity or. equivalently, observer bandwidth. 20' OF

out beyond q2 = 2000. To this end. second-order FUL1

2 FULL LO

(nc = 2) controllers were obtained with relatively
little computation for q2 'm10.000. 100.000. ______4._________

1.000.000. The performance of these results is I *' .4 1* Is"2 I 3 * 1.

summarized in Figure 4. oeB'uma.a WTENSIY IQ ,)

Figure 4
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ACTIVE DAMPING CONTROL DESIGN

I FOR THE MAST FLIGHT SYSTEM

5 Fredric M. Ham and Scott W. Greeley

Harris Corporation

Government Aerospace Systems Division

Controls Analysis and Synthesis Group

P.O. Box 94000

Melbourne, Florida 32902

ABSTRACT

Design and development of the Mast Flight System for the COFS (Control of Flexible

Structures) program for NASA is currently underway. An active damping controller is

required to provide five percent damping for the first ten structural modes of a sixty

1 meter truss beam structure. Two types of controller design methodoltgies are
presented to achieve the required five percent damping. The first is an L0G controller

S and the second Is a positive-real decentralized velocity feedback type, which is the

system baseline controller design. The system modelling details are also presented

3 which includes the models for the truss beam and the collocated actuators and sensors.

I. INTRODUCTION

3 NASA has identified the need for large deployable space structures which will be

constructed of lightweight materials and will contain a large number of joints or
structural connections. These deployable space structures may have precision shape

requirements and a need for active vibration suppresion during on-orbit operations. One

Ssuch ongoing NASA program is COFS (Control of Flexible Structures). Harris is

currently under contract to NASA Langley Research Center to design and develop the

Mast Flight System' for the COFS program.

' NASA Contract Number: NASI-18300
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The basic element in the Mast Flight System is a 60.7 meter long, triangular cross
section, joint-dominated truss structure referred to as the beam subsystem, see Figure
1. I. Included at the tip of the truss structure are the primary actuators, collocated
sensors and a parameter modification device. A deployment/retraction subsystem Is
provided which also secures the stowed beam package during launch and lending.

0.4m 

j- 
1.44m

Tip Assembly

1.4 m-Diameter
Articulated _ _\

Truss Beam

1.212 m j4 .. At Centeitines

I60.7 m

I 1.124 m

1

Figure 1. I. Shuttle Attached Deployed Truss Beam Configuration
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The beam subsystem consists of a statically determinant, three longeron, triangular
truss whose cross-section fits inside a 1 .4 m diameter circle. A total of 54 bays, each

1. 124 m long, make up the 60.7 m length of the beam above the deployer mechanism.
Figure 1.2 illustrates more of the beam design details. Precision-machined titanium

joints at each apex of the triangular cross section of each bay and a nearly over-center
hinge In each diagonal allow the beam to fold into a repeatable stack with a 35:1 packing

3 ratio. Structural members are fabricated from graphite/epoxy tubes bonded to titanium

end fittings. Length ratios are determined from test data such that the overall

coefficient of thermal expansion (CT:) is in the range of 0.5 x 10-6 K- 1 .

Tip assembly (tip
mass, arametermodification,
actuators,9 sensors.

~and cover)

Graphite/epoxy struts

Two bays deployed

Titanium hardware

56-bay stack

I

Figure 1.2. Beam Subsystem (Articulated Truss Beam With Tip Assembly)
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Actuators are distributed along the beam as shown in Figure 1.3. All are

proof-mass type actuators and are implemented as linear DC motors (LDCM). There are
four (4) primary actuators located at the tip of the beam, two parallel to the x-axis and
two parallel to the y-axis as shown in Figure 1.4. Actuators I and 3 may be commanded
in phase to produce x-axis forces. These same two actuators can be commanded out of

phase to produce torques about the beam's longitudinal or z-axis. Actuators 2 and 4 can
be operated similarly, or other combinations as may be desired to achieve three degree
of freedom control using only the primary tip-mounted actuators. These primary

actuators are sized to sinusoidally excite the first ten (10) beam modes to a level which

allows measurement of the modal characteristics to an accuracy of I percent via the

£ beam-mounted sensors. These primary actuators are also sized to provide a total
damping of 5 percent or 5 times the natural structural damping, whichever is greater,
across the spectrum of the first 10 modes.

PRIMARY ACTUATOR STATION BAY 54

. Primary Actuators (4) BAY54
0 Collocated Sensors

Rate Gyros (3) - Linear Accel. (3)
0 Parameter Modification Device

- BAY 44

I INTERMEDIATE STATIONS

- BAY 38 - Distributed Sensors:
Linear Accel. (3) - Angular Accel. (1)

0 Bays 24 and 38

- BAY 30
INTERMEDIATE STATIONS

Secondary Actuators (2) - BAY 24

Collocated Sensors
Linear Accel. (2) - Angular Accel (1)
Bays 12, 30 and 44

BASE:- BRate Gyros (3)-Linear Accel. (3)

. - BAY12

Deployer/Retractor

Figure 1.3. Mast Flight System Instrumentation Summary
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I
X axis

E~3j~3

I I
TOP VIEW

Figure 1.4. Layout of Tip-Mounted LDCM Actuators

In order to provide the required active damping, LDCMs are utilized at the
intermediate stations on the truss beam as shown in Figure 1.3. The LDCIls at the
Intermediate stations (Bays 12,30 and 44) are smaller devices than the tip mounted
ones; this is due to volume constraints. At each of the three bays are 2 LDCls mounted
in the x and y directions, thus providing excitation and damping in these directions.
Table I . I summarizes the complement of actuators and sensors that are mounted on the
truss beam. The sensing devices which are collocated with LCls are the only devices

I Table l.1. Actuators and Sensors Mounted on the Truss Beam*

Locin LDCMs Rate OGvro Angular Accelerometers Linear Accelerometers
Tip 2-x,2-y 3-x,y,z 3-x.yz

I Bay 44 t-x, I-y 1-z 2-x,y
Bay 38 1-z 3-x,y, z
Bay 30 -x, -y I-z 2-x,y
Bay 24 I-z 3-xy,z

U Bay 12 t-x, I-y 1-z 2-xy
Base 3-x,y,z 3-xy,z

Note: There are additional Instruments such as strain gages and thermistors mounted
on the structure that will not be addressed here.
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which are used for the active damping scheme. The sensors at Bays 24 and 38 are

included for the purpose of completeness and will be used for other experlements.

-I
II. PIODELLING

A model of the fully deployed (60.7 m) Deployable Mast System (DMS) has been

developed using a Harris proprietary finite-element code which is similar to NASTRAN.
I An actuator/sensor location assessment based on the modal elgenvectors of the DIIS

model has been conducted. Models of the actuators and sensors (i.e. LDCrts,

accelerometers and rate gyros) have also been formulated from manufacturer's data.

Using Harris' Nonlinear Structural Analysis (NLSA) finite element package, a
three-dimensional truss beam model of the DMS cantilevered to a model of the Shuttle

Orbiter has been developed. An eigenvalue/elgenvector analysis has yielded several

modal frequencies and mode shapes. Because the Shuttle Orbiter model is only accurate

in terms of effective mass and inertia properties, only the pure DMS modes were

considered in the modelling process (I. e. Shuttle Orbiter and DrS-Shuttle Orbiter

modes are neglected). This is a good assumption for the control-system design and

analysis since the mass normalized influence coefficients of the Shuttle Orbiter and the

L DMS-Shuttle Orbiter modes are much smaller than those of DMS modes for the practical
locations and power limitations of the LDCM actuators.

A qualitative discussion of the "best" actuator/sensor locations is summarized in

Table 2. 1. This table shows that there are five locations that are best" in terms of

V Table 2.1 Qualitative Assessment of Actuator/Sensor Locations

S DMs "Best" Actuator/Sensor Location Based on Large
dt Influence Coefficients

1 1 54 (Tip)

2 54 (Tip)
3 30
4 30
5 54 (Tip)
6 12, 44

7 129 44

8 24
9 12, 30, 44

10 12, 30, 44
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controllability and observability (large Influence coefficients) for the first 10 flexible
modes of the DMS. Another criterion used for the placement of the instruments had to do
with volume contraints, requiring that even-numbered bay locations be chosen. As

i stated In the Introduction, four of the bays where chosen to place collocated actuators
and sensors: Bays 12(x and y), 30(x and y), 44(x and y) and 54(xl ,yl ,x2 and y2) with
each actuator at the DMS tip station placed 0.5 m from the center to allow control of the
torsional modes. Control of the second torsional mode can be accomplished with the tip
actuators, therefore not requiring additional actuators at Bay 24 (which would be the
*best' control location) where volume constaints are more severe than at the tip of the
IMS.

The weight of the LDCMs, accelerometers, rate gyros and the associated electronics
were Included In the finite element model. For this model the DMS modal frequencies,
predicted modal damping and mode shape descriptions are summarized in Table 2.2.

Table 2.2. Description of DMS Modes

DMS Mode Frequency Modal Damping Mode Shape
Mode 11 Description

1 0.2 0.002 1st x-z Sending
2 0.24 0.002 lIst y-z Bending
3 1.52 0.003 2nd y-z Bending
4 1.62 0.003 2nd x-z Bonding
5 2.49 0.005 1st Torsion
6 4.65 0.005 3rd y-z Bending
7 4.96 0.005 3rd x-z Bending
8 8.24 0.005 2nd Torsion
9 8.55 0.005 4th y-z Bending
10 9.05 0.005 4th x-z Bending

Figures 2. 1 through 2.3 show the various mode shapes for the first 10 flexble modes of
the DMS. It can be seen that there are 4 pairs of x and y bending modes, each pair
relatively close in frequency, and there are two torsion modes. Note that the chosen
actuator/sensor locations remain the "best" locations even with the additional weight.

Based on the DMS modes and predicted damping, a state-space model of the DMS can
be formulated. The following equations give the state-space representation.
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Figure 2. 1. DIIS x-z Mode Shapes
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xuAx + Bu j (2.0)

Sye Cx

where Au Block Diagonal [0 Wi] (2.2)

av wi -ith modal frequency
Il aith modal damping ratio

and

B(kgj)u 1t 10 192, 10

toi k2
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3
5 ij a Mass normalized influence coefficient of the th mode

for the FEM node of jth actuator location

i 0 k a 2H-

C(J,k) * ,ial,2, ... , 10
Oilj It - VZ

3 lj a Mass normalized influence coefficient of the ith mode

for the FEM node of Jth sensor location

I y a velocity output at DMS Bays 12(x and y), 30(x and y),

44(x and y) and 54 x, y ands z)

u - Force input at DMS Bays 12(x and y), 30(x and y), 44(x and y)

and 54(xl, yl, xZ and y2)

3 v = Disturbance force or torque

g The acceleration at the sensor locations can be computed as

y -CAx +CBu +Cv (2.3)

I This Is the system representation that is used for all control system design and

analysis.

The Linear DC Motor (LDCM) is a proof-mass type actuator with a large movable
mass referred to as the secondary mass. Figure 2.4 shows the basic elements of the

3 LDCM. The secondary moves with respect to the primary or base of the LDICM which is

fixed to the truss beam. The actuator is stroke limited at low frequencies (less'than I

Hz) and force limited at high frequencies (greater than I Hz). For a non-position

compensated LDCM the position of the secondary mass Is very sensitive to changes in

commanded force amplitude and frequency and changes In position of Its base. This due

to the double integration effects of force commanded deices and unknown forces (e.g.
Coulomb friction). To alleviate this problem a compensator has been developed to
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Figure 2.4. Basic Elements of a LDCM

3isolate the secondary from the primary, In other words, the secondary position
tracks in an inertial reference frame and is decoupled from primary motion effects over

a range based on the stroke limitation.
The overall transfer function of the LDCM, taking Into account pole/zero

cancellation, and the isolation compensator, behaves as a second-order system of the

form

f(s) MSk2s2

f a (2.4)

v(s) (s+,)2

where f - Force Output
v - Command Output
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; 7.6 kg for LDCMs at DMS Bays 12,30 and 44

96 M 11. 1 kg for LDCMs at DMS Tip (Bay 54)

2TY rad/sec 0 Hz)

*Based on manufactuer data the linear accelerometers at the DMS Bays 12, 30, 44
and 54 (all in x and y) and the rate gyro at Bay 54 (9z ) are modelled as second order
systems. These sensing devices are used in the active damping control system and are

modelled as

Ys ( s) Kwn2
s a (2.5)

y(s) s 2 + 2T1wnS + wn2

where ys 3 Output Voltage

y = Input Acceleration
.' ;K - Sensor Sensitivity

200 Hz for Linear Accelerometers

wAn =
100 Hz for Rate Gyro

TV f 0. 707

As shown above, the bandwidths of the sensing devices are large relative to the
frequency range of Interest; therefore, the sensor dynamics will have a negligible effect
on the control system design and analysis.

III. CONTROL SYSTEMS DESIGN AND ANALYSIS

To achieve the design goal of 5 percent damping (i.e., modal damping ratio of 0.05)
V in the first ten flexible modes of the Deployable Mast System (DMS) two different

controller design methodologies are compared. The first type Is an LO0 controller and
the second is a positive-real decentralized velocity feedback (PRDVF) controller. Both
of these controllers are designed using the following: I ) the design plant which includes
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the first ten flexible DMS modes augmented with the dynamics of the ten LDCMs, 2)
collocated sensors and actuators at Bays 12(x and y), 30(x and y), 44(x and y) and
54(xy and ez), 3) velocity measurements are assumed as Inputs to each of the

g controllers which can be obtained by integrating the accelerometer outputs. The PRDF
controller is decentralized in the sense that each sensor output is fed only to the
controller of its collocated actuator as shown in Figure 3. 1.

I (c0 Y C Disturbance
s + coDisturbance

~~~~D MS ModelOteSnsr

Yc =ot-q__ Ax+Bu YYs

~Sensors

PRDVF Controllers
12x 12x

11

1 2y 1 2y

30x j 30x

3 30y L~II~30y
54-xl 54x

54-y2 Geometric
54-x2 Transformation
54-x2 T 54 z

54-y2

Figure 3. 1. Block Diagram for Plant With PRDVF Controller for Wid2-Band

Disturbance Analysis
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There are some Interesting statements which can be made comparing the generic
aspects of each controller type:

LOG:

" LOG will result in the best linear controller for a given set of quadratic
design goals [I].

" In general, for large space structures, LOG designs result In high-order

controllers which are often sensitive to parameter variations.
a Both of the above disadvantages can be overcome by using the Maximum

Entropy/Optimal Projection (MEOP) design approach which will result In
quadratically optimal low-order, robust linear controllers 12-51.

PRDVF:

9 The decentralized positive-real controllers are infinitely robust to
parameter variations given a positive-real plant [6,7J.

1Z * The major disadvantage of a PRDVF controller is Its relative low authority.
e The PRDVF design here Is very simple, with each decentralized

controller being of second order or less.

An LOG controller has been designed in this study rather than a MEOP controller
since a comparison of two controller types is desired in terms of a single design goal,

_ i.e., 5 percent damping. Controller implementation limitations and robustness levels
are not specified for this analysis. It also of Interest to note that the PRDVF controller
is only positive real over a certain frequency range. This Is due to the high-frequency

rolloff of the linear accelerometers and the rate gyro. However, for this analysis the
PRDVF controller Is positive real for the frequency range of interest.

A comparison of the controllers, as well as the open-loop case , is carried out for
a scenario which includes a wide-band disturbance. New designs of the LOG controller

are made using only the collocated actuators/sensors at Saysand the PRDVF controller aemd sn nytecloae cutr/esr tBy
12(x and y), 30(x and y) and 54(xy and Sz ) for this analysis. In this case the plant is

, subjected to a wide-band disturbance utilizing the LDCMs at Bay 44(x and y). These
disturbance LDCMs are given independent random signals which produce a mean square
force output of approximately one half of the LDCMs maximum force capability, which for

k the LDCMs at the intermediate stations is 15 N (the maximum force capability of the
LDCMs at the tip station Is 30 N).
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L06 Design

9 A standard continous-time LG controller is designed using the time-invariant plant

consisting of the first ten flexible DlS modes augmented with the ten control LDaM

dynamics. The sensor dynamics are ignored here since their natural frequencies occur

well above the bandwidth of the plant. A block diagram of the plant/LG controller is

' shown in Figure 3.2. Note, this block diagram is for the LQG controller used in the

Other Sensors D
CotrlMoe Y Feedback

..: " = LDCLs :tSnsr 12D(x,y)y
30 (x~y)

54 (x,y, ez

LOG Controller
Yc xc  Ac +Fys ,Ys

Yc - -K x c

Figure 3.2. Block Diagram of Plant with LOG Controller for Wide-Band Disturbance

Analysis
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wide-band disturbance analysis, which uses only eight control LDCtI actuators.
The LOG controller is designed to yield 5 percent damping or greater in the DMS

modes. Since the design is not stated in terms of a quadratic performance criterion,

3 and requires relatively low controller authority, the LOG controller is designed to only

yield the required 5 percent modal damping.
The closed-loop modal damping ratios of the plant augmented with the LOG

controller is listed in Table 3. 1. As shown In the table all the values exceed the design

Pgoal.

Table 3.1. Moctl Damping for Open Loop, LQO and PRDVF

DM5 Modal mpi ()
Model Open Loop . LO PRDV

1 0.2 5.1 5.4

2 0.2 5.1 5.9

3 0.3 6.3 8.4

4 0.3 6.4 8.0

C. 5 0.5 6.3 12.0

6 0.5 5.8 7.7

7 0.5 5.8 7.3

8 0.5 7.8 5.7

9 0.5 6.7 5.7

10 0.5 6.7 5.3
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Positive-Real Decentralized Velocity Feedback Design

A PRDVF controller, which consists of 9 controller loops [DIIS Bays 12(x and y),
U 30(x and y), 44(x and y) and 54(xy andez)], is designed to meet the 5 percent damping

goal. The design procedure is to examine the actuator/sensor locations which best
influence the DIIS modes of Interest (in an open-loop sense). For example, the
accelerometers/LDCMs at the DIS tip (Bay 54) have the best influence on the first x and y
bending modes and the two torsion modes; the accelerometers/LDCMs at the DMS
distributed bays (Bays 12, 30 and 44) have the best influence on the 2nd, 3rd and 4th x

and y bending mode pairs. Thus, the poles of the controller loop are placed to shape the
gain in terms of the modes that the particular loop will be controlling, and the gains of
each controller loop are tuned to obtain 5 percent damping. There will be coupling
among the different loops due to interaction of the DMS. However the 5 percent damping
requirement is met as shown in Table 3. I.

The generic structure of each decentralized collocated loop is of the form

K (s + f) 2

H(s) - (3.1)
s (sip)

This form is chosen since it offers a simple positive-real controller that will achieve the
design goal (note: sensor dynamics will cause the controller to become non-positive real
beyond 200 Hz for the linear accelerometer loops and 100 Hz for the rate gyro loop).
The output of the controller loops associated with Bay 54 (x, y and 9z ) are geometrically
transformed such that equivalent outputs are applied to the four LDCMs at this bay
location (xI, yl, x2, and y2).

Wide-Band Disturbance Analysis

For this analysis an LOG controller and a PRDVF controller are designed using only
the collocated actuators/sensors at Bays 12(x and y), 30(x and y) and 54(x, y and z).
This Is done so that the LDCMs at Bay 44(x and y) only act to provide the disturbance

. force. Independent wide-band random signals, each with a single-pole roll-off at 15 Hz,
are applied to the disturbance LDCMs. The Inta;nsity of these disturbance signals is
chosen such that the mean-square output force of the LDCMs is one half of their maximum

S levels.
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For each of the following three cases RMS and PSDs of accelerometers and control
actuators are computed.

Case: I - Open Loop
2 - Closed Loop with LOG Controller
3 - Closed Loop with PRDVF Controller

, In each case the dynamics of the disturbance LDCMs and the single-pole filter which
shapes the white noise are Included in the plant model.

The RMS levels of the accelerometers at Bays 12, 30 .44 and 54 for each of the
cases are given in Table 3.2. It is shown in both closed-loop cases that the
accelerometer RMS levels are greater than a factor of two below the open-loop case.
Also Case 3 (PRDVF) performs better than Case 2 (LOG). Power spectral density plots
for the accelerometers at Bays 12(x), 30(y) and 54(x, y and 9z) are shown In Figures
3.3 to 3.7. These show that Case 3 (PRVF) Is more effective (suppressive) for all of
the modes then Case 2 (LOG).

Control LDCM RMS levels are also given In Table 3.2. For Case 2 (LOG) the control
levels are spread more evenly among the LDCMs than for Case 3 (PROVF). It is of
interest to note that the control LDICM levels are all well below their maximum
capability. The power spectral density plots of the two closed-loop cases for control
LDCMs at Bays 12(x), 30(y) and 54(xl and y2) are shown in Figures 3.8 through 3. 11.
Case 2 (LOG) requires less power over the entire frequency range than Case 3 (PROW)
for LCMs at Bays 12(x) and 30(y). However, Case 3 (PROW) requires much less power

S in the higher frequency modes then Case 2 (LOG) for the LDCMs at Bay 54. This explains
the lower RMS control LDCM levels for Case 3 for these LDCMs. Recall In the design of the
PROVF controller, the Bay 54 LOCMs are used primarily to control the Ist x and y bending
modes of the DIMS.

I
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I

5 Table 3.2. RMS Levels for Open Loop, LQO and PRDYVF

Variable Units RMS LevelDescription Open Loow LO PRDV

Acclertion:U 12x :  0.063 0.027 0.019

12y g 0.061 0.026 0.019
PIx g 0.044 0.018 0.014

30y g 0.042 0.018 0.013

44x 9 0.0 8 0.023 0.023

44y g 0.056 0.027 0.022

54x 0 0.010 0.0043 0.0030

54 g 0.0 10 0.0044 0.0034

54Zr/s 2  0.0027 0.0012 0.00072

Control Force:
12x N -1.2 2.2

5 iY N -1.2 2.0

30X N -0.69 0.89

30V N -0.69 0.90

54 -xI N -0.46 0.042

54-yl N -0.45 0.060

54-x2 N -0.46 0.041

54-y2 N -0.45 0.065
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IV. CONCLUSIONS

An overview of the Mast Flight System for the COFS program has been presented
i along with some of the objectives specifically relating to the required active damping

control system. The main objective of the controller for this system Is to provide 5
percent structural damping for the first ton flexible structural modes. Some of the

~~modelling Issuses were discussed Including: 1 ) the finit"-elment model of the

Deployable Most System (DMS) along with the state-space model which Is utilized to
Idesign two differtent types of c ontrollIers , 2) a model for the Lines r DC; Motors (LDCM),

3) and a model for the collocated sensing devices.
I Two different types of controllers were designed and analyzed, an LO type

controller and a Positive-Real Decentralized Velocity Feedback (PRDVF) controller. Upon
€comparing the two different types of controllers It Is apparent that the PRDVF controller

Is better suited for this type of application. It offers a relatively simple approach to
achieve the required 5 percent structural damping which will not burden the flight

i computer as much as the LG design since the controller order Is much less. The PRDVF

controller Is aso much more robust to parameter variations then the LG design since
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LOG controllers are very sensitive to parameter perturbations. As was previously

stated the PRDVF controller will always be positive real over the frequency range of

Interest. Finally, the PRDVF controller requires much less power for the higher

frequency modes than LOG. Current activity involves applying the MEOP approach [2-51

to design low-order robust controllers. These results will be compared to the LOG and

S PRDVF results.
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