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INTRODUCTION AND STUDY OVERVIEW
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1.0 INTRODUCTION AND STUDY OVERVIEW

As its name suggests, the Maximum Entropy/Optimal Projection (MEOP)
theory of control design for large space systems represents the synthesis of two
distinct and novel ideas: (1) minimum information stochastic modelling of
parameter uncertainties (to characterize the inevitable tradeoff between
robustness and performance) and (2) optimal reduced-order compensator design for a
given high-order plant.(to optimally quantify the tradeoff between controller
complexity and performance). A previous AFOSR-funded study (contract no.
F49620-84-C-0015) consolidated MEOP theory developments and successfully
demonstrated the theory on a variety of flexible space structure models.

It is now possible to extend the basic MEOP theory and design
capability to handle an even larger class of structural concepts. In particular,
the sheer size, or dimensionality, of proposed flight structures (such as Space
Station) necessitates what may be called decentralized analysis and design. In
brief, this terminology refers to procedures that treat portions of the system
individually and then combine the results. Often the need for such analysis
arises from such basic constraints as computer capacity, i.e., the model may
simply be too large to "fit" into the computer at one time.

Our thinking concerning decentralized analysis and design is closely
related to the current 1iterature on large scale systems. We propose to go beyond
previous work by using the MEOP theory to quantify uncertain interactions among
subsystems, thus providing an “informational” or statistical system partitioning.
A major goal in this regard is to utilize our theory to extend the applicability
of the concept of connective stability to complex, multibody spacecraft.

In practice, a direct consequence of the physical size and physical
complexity of proposed spacecraft imposes severe constraints on the communication
1inks between sensors, processors and actuators. Relevant issues include cabling
mass and RF shielding problems along with relfabiiity concerns. This leads to
consideration of mul tiple sensor/processor/actuator subcontrollers or substations
on the spacecraft without real-time intercommunication. Although the processors
do not directly exchange data, preflight design of their software must, of course,
account for complex operational interactions among subcontrollers via the
structural response.

4077V /MEOP 1
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The design of such a decentralized architecture or implementation is
clearly a nontrivial task and can be thought of as involving two interrelated
steps:

1. Determination of the architecture of the control system including
the number of substations and the assignment of sensors and
actuators to particular substations; and

2. For a given architecture, design of the processor software for each
subcontroller.

The aims of the present study are to extend MEOP to address both of the
above items. Indeed, because maximum entropy modelling quantifies uncertainty
(i.e., lack of knowledge) it is possible to directly include informational aspects
in the system model. The statistical effects that result from this model can be
used to evaluate the performance of proposed decentralized architectures. Thus,
one goal is to quantify the degree of suboptimality resulting from the variance
between subsystem partitionings due to interaction uncertainties and alternative
controller architectures. Once a particular architecture is selected, the design
of each subcontroller often requires {terative solution of high-dimensional design
synthesis equations. A second major goal is to evolve efficient approaches to the
solution of the MEOP design equations for optimal, decentralized control.

1.1 Obgectives

The specific tasks required to accomplish the goals of this contract
are discussed in detail within the original technical proposal and are summarized
as follows:

Task 1: Undertake rigorous extensions of the MEOP design equations to the case
of distributed controller architecture in a variety of settings. These
developments include:

1.1 Extension of the continuous-time MEOP equations to the
decentralized case for both static and dynamic controllers.

1.2 Derivation of the MEOP design equations for decentralized
discrete-time control of discrete-time systems.

4077V /MEOP 2
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1.3 Extension of the MEOP design equations to a hierarchical controller
architecture.

Analyze the design equations derived in Task 1 to provide understanding
of the role of uncertainty in decomposing the design procedure. In
particular:

2.1 Analyze the effects of the maximum entropy uncertainty terms in
decomposing the open-loop system for decentralized design
procedures and decentralized implementation.

2.2 Derive methods for bounding the degree of suboptimality resulting
from decentralized design and decentralized implementation.

2.3 Evolve effective methods for deriving uncertainty bounds which
imply connective stability for the overall system.

In order to verify the analysis carried out in Task 2, develop solution
techniques for the decentralized form of the MEOP design equations.
The following sequence of developments is planned:

3.1 Develop iterative procedures for solving the decentralized optimal
projection equations assuming accurate plant modeis. Such
algorithms would be 1imited to fixed-structure designs for which
the order of the closed-loop system (plant plus subcontrollers) is
less than 50.

3.2 Expand subtask 3.1 to develop iterative methods for solving the
MEOP decentralized design equations which also account for
high-frequency modal uncertainty effects.

3.3 Apply the techniques of subtask 3.2 to the problem of uncertain
subsystem interaction. By designing for each subsystem separately
and accounting for modal uncertainties, considerably larger systems
can be treated. The results from subtask 2.3 can be used to assure
robust stability of the resulting design.
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Task 4: Apply the various decentralized extensions of MEOP to a realistic
design problem. Two possible spacecraft control problems are the COFS
I Program space flight test arti{-le and the space station. For either
of these alternatives, the following subtasks encompass the desired
goals:

4.1 Generate detailed state-space model, define uncertainty operators
for mass, damping and stiffness, define sensor/actuator number,
type and placement, and assign disturbance spectrum. Use system
model to perform centralized control-tradeoff studies. Such
designs may utilize decentralized design techniques.

4.2 Using the centralized tradeoff studies as baseline, determine
decentralized/hierarchical implementation architectures based upon
uncertainty patterns, physical constraints and processing
requirements. For each design assess the degree of suboptimality
resulting from the loss of centralization.

1.2 Progress to Date

In this section, we briefly summarize the results obtained under the
tasks listed above. Further details are described in Sections 2.0 through 5.0 and
the Appendices.

With regard to Task 1, subtask 1.1, the extension of the basic MEOP
design equations to the decentralized case has been accomplished. In the 1ight of
previous derivations, subtask 1.2 is an entirely straightforward exercise and the
results are to appear in future publications. On the other hand, subtask 1.3
fnvolves significant additional complexities and will be addressed during the
second year of this study. Further details on the MEOP design theory extensions
carried out as part of Task 1 are given in Section 2.0.

In connection with Task 2, it should be noted that a good qualitative
understanding of how the Maximum Entropy modelling approach combined with
optimization tends to enforce decentralized control architectures has already been
achfeved in previous studies and has been documented in numerous publications.
Further quantitative characterization of this phenomenon (as proposed in subtask

4077V/MEOP 4
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2.1) demands the prior completion of subtasks 2.2 and 2.3. Thus 2.2 and 2.3 have
been given priority during the first year of this study.

The essential problem to be addressed in subtasks 2.2 and 2.3 is the
determination of nonconservative bounds on system performance degradation due to
uncertainties and/or subsystem interactions. Note that once performance (e.g.,
line-of-sight error, surface shape errors) degradation is characterized, so is
robust stability. Thus both 2.2 and 2.3 are handled by development of a suitable
performance robustness analysis. This has been accomplished by the development of
a new robustness analysis tool, namely, Majorant Robustness Analysis (MRA). Based
upon the work of Ostrowski and Dahlquist on matrix majorants, MRA determines
bounds on the degradation of system performance due to unstructured or
parametrically structured uncertainties and bounded subsystem dynamics. Since the
basic development is carried out in a general operator setting, MRA can be applied
within both a frequency-domain/input-output and a time-domain/state-space
description. In the frequency domain/input-output setting MRA generalizes
previous robustness results (e.g., singular-value analysis), while in the
state-space setting, it is fully compatible with MEOP design synthesis. MRA thus
provides a design analysis tool which nicely complements our design synthesis
theory. Moreover, MRA reveals a direct 1ink between the MEOP stochastic modelling
and design formulation and a deterministic bound for robust performance, thereby
immensely strengthening the foundations of the Maximum Entropy modelling
approach. Section 3.0 sets forth the philoéophy of MRA and sketches its
theoretical development to date.

Under Task 3, subtask 3.3 requires amalgamating the results of 2.2 and
2.3 with 3.1 and 3.2. Thus, in the past year, subtasks 3.1 and 3.2 were given
priority. To accomplish 3.2, the plan is to incorporate the “highly uncertain
subsystems” asvmptotic solution approach developed in the previous study [40] with
the decentralized solution techniques derived within subtask 3.1. Thus, subtask
3.1, the development of efficient procedures for solving the MEOP decentralized
design equations, is the crucial step. To complece this task, we have developed
an iterative solution approach which reduces the overall problem to the sequential
solutfon of standard MEOP design equations pertaining to each subcontroller.
Since, however, each subcontroller probiem may be of high dimension and the number
of subsystems may often be considerable, it was recognized that an order of
magnftude improvement was needed for the efficiency of the MEOP solution
algorithm. To provide such improvement, S. Richter has developed and successfully

4077V/MEOP 5
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tested a homotopic continuation algorithm for solving the basic MEOP design
equations. In place of solving four nxn (n = dimension of the plant) nonlinear
matrix equations (as in the previously developed algorithms), Richter's method
reduces the problem to solving four nexn (nc = dimension of compensator)

linear equations for a modest number of continuation steps. The algorithm
converges to machine accuracy and, for ne small, actually entails less
computation than is required for the standard Riccati solutions involved in the
full-order compensator. Moreover, using the continuation approach together with
topological degree theory, Richter has succeeded in resolving many heretofore
intractable issues connected with multiplicity of solutions and convergence to the
global minimum. These results essentially complete the theoretical foundation of
the optimal projection theory of fixed-order dynamic compensator design. Further
details on the iterative approach to decentralized design and on Richter's
algorithm are given in Section 4.0.

Finally, both dynamic model1ing and determination of baseline
centralized control designs have been completed for two realistic example problems
thus completing subtask 4.1. The two candidate examples comprise (1) vibration
control of the beam subsystem of NASA's COFS I program Flight Test Article and (2)
overall space station attitude control combined with pointing control of the solar
dynamic concentrator power generation subsystem. Details on the dynamic models
and initial control design results for both examples are given in Section 5.0.

The second year of this study will follow up this work with (subtask 4.2) detailed
decentralized control designs for these examples.

4077V /MEOP 6
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2.0 MEOP DESIGN SYNTHESIS EXTENSIONS TO DECENTRALIZED CONTROL

2.1 Review of Centralized Theory

Optimal projection control-design theory has undergone considerable
development over the past several years. As shown in Figure 2.1, optimal
projection theory now encompasses problems in reduced order, robust modelling,
estimation and control in both continuous-time and discrete-time settings. A
comprehensive reference 1ist appears in Section 6.0.

For control-design purposes optimal projection theory provides new
machinery for synthesizing multivariable feedback controllers. This machinery
consists of a system of algebraic design equations which characterize optimal
feedback controllers while accounting for both controller order and parameter
uncertainties. The design equations consist of a system of two algebraic Riccati
equations and two algebraic Lyapunov equations coupled by both an oblique
projection and uncertainty terms. The Riccati equations are directly related to
the pair of separated Riccati equations arising in LQG theory. Indeed, when the
controller order is set equal to the order of the plant and all uncertainties are
absent, then the design equations specialize immediately to the standard LQG
equations. Numerical algorithms for solving these equations are described in
Section 4.0. Further discussion of centralized MEOP theory can be found in [69]
(see Appendix A).

2.2 Extensions to Decentralized Controllers

In keeping with the optimal projection philosophy, our approach to
decentralized control design is based upon fixed-structure optimization. That is,
we assume that the structure of the controller is determined by implementation
constraints and/or subsystem analysis. Once the controller architecture is fixed,
the feedback gains can be chosen to optimize the performance functional for the
closed-loop system. Of course, this approach can be used to determine preferable
controller architectures by varying the decentralized information structure and
optimizing the performance of each configuration.

The fixed structure approach is distinct from methods which are based
upon subsystem decomposition with centralizzd design procedures applied to the

4077V /MEOP 7
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individual subsystems. For such methods there remains the problem of determining
conditions under which the reassembled closed-loop system has acceptable

behavior. An additional drawback of decomposition methods is that the
decentralized controller architecture specified by implementation constraints may
be completely unrelated to desirable architectures arising from physical
considerations. For example, physical implementation constraints may impose a
particular decentralized architecture which does not correspond to any discernible
dynamical decomposition. Furthermore, subsystem decomposition as a design tool
may constrain the class of attainable designs at the expense of achievable
performance.

Of course, in many cases, such as in the presence of high
dimensionality, subsystem decomposition is absolutely essential for making
progress in designing decentralized controllers. However, only by developing
methods which avoid unnecessary constraints on the design space can the efficiency
of decomposition methnds be assessed. Furthermore, methods which retain the full .
system dynamics may provide a useful context for applying existing decomposition
techniques as well as an advantageous starting point for developing new methods.

Our overall approach is thus to regard the fixed-structure approach as
complementary to subsystem decomposition techniques. To this end, majorant

robustness analysis has been developed (see Section 3.0) to account for subsystem
interactions arising, for example, from system uncertainties. In addition,
majorant robustness analysis is closely related to MEOP synthesis particularly
with regard to nondestabilizing uncertainties.

2.2.1 Decentralized Controller Design for Static Controllers

We first consider the problem in which each subcontroller is assumed to
be static, i.e., a fixed gain multiplying the measurements. For realism, of
course, only the physical measurements are assumed to be available for feedback.
Earlier versions of this problem were considered in [2.1, 2.2]. The most general
treatment of this problem obtained thus far can be found in [77] (see Appendix
B). The development in [77] includes, in particular, noisy and nonnoisy
measurements, weighted and unweighted controls, and parameter uncertainties in the
A, B and C matrices. The optimality conditions for this problem are given in the
form of a pair of modified Riccati equations coupled by a pair of oblique
projections corresponding, respectively, to singular measurement noise and

4077V /MEOP 9
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singular control weighting. By utilizing a Lyapunov function to guarantee robust
stability, these optimality conditions serve as sufficient conditions for robust
stability and performance over a specified range of parametric uncertainty.

2.2.2 Decentralized Controller Design for Dynamic Controllers

A more complex situation arises when the decentralized subcontrollers
are allowed to be fixed-order dynamic compensators. In this case it does not
appear possible to characterize optimal gains for each subcontroller explicitly in
terms of the plant dynamics alone. This situation arises from the fact that each
subcontroller must be a projection of the dynamics of the controlled system which,
in this case, is not just the original plant but rather the original plant
augmented by the remaining subcontrollers' dynamics. It would be desirable, of
course, if each subcontroller could be characterized by an nxn projection. This
expectation is unrealistic, however, since each dynamic subcontroller increases
the dimension of the closed-loop system. Hence each projection for the individual.
subcontrollers must account for the dimension augmentation.

Thus we have discovered that optimal decentralized dynamic compensator
design must be viewed as a collection of subcontroller designs obtained for an
augmented system. Essentially, each subcontroller is viewed as a reduced-order
controller for the plant augmented by all other subcontrollers. This problem is
thus a direct application of centralized optimal projection theory. To apply
central ized theory each dynamic subcontroller can be determined sequentially,
accounting fully for previously specified subcontrollers. After initial gains
have been specified for each subcontroller, the overall design can be refined
sequentfally by replacing current subcontroller gains with improved gains.
Finally, subsystem decomposition techniques are relevant to the approach suggested
here by providing a near-optimal starting point for subsequent refinement.

In sequentially applying reduced-order design methods to decentralized
control, a number of issues immediately arise, including the subcontroller
refinement sequence, feasibility of the reduced-order design method at each step,
and convergence of the overall process. Note that after initial gain
determination the existence of a stabilizing design at each step is not at issue
here since at least one stabilizing controller exists, namely, the present gain
values supplied by the previous step. One of the chief concerns, however, is that
the reduced-order design method be sufficiently reliable to permit flexibility in
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choosing the refinement sequence. Many reduced-order design methods do not,
however, consistently yield stabilizing controllers of a given order even when
stabilizing controllers are clearly known to exist. For example, in [74] (see
Appendix E), the LQG reduction methods reviewed in [2.3] were compared to the
optimal projection approach to fixed-order dynamic compensation. For an 8th-order
example over a range of control authorities, only the optimal projection approach
consistently provided stable designs for each case considered. Thus, the optimal
projection approach appears to be suitable for reliable sequential subcontroller
refinement.

In addition to reliably producing stable designs at each step, the
optimal projection approach is based upon a quadratic performance criterion which
readily permits assessment of convergence of the refinement procedure.
Specifically, at each subcontroller refinement step, a given subcontroller is
replaced by an improved subcontroller. Here “improved" refers to the situation in
which all subcontrollers except one are “frozen," while the performance functional.
is optimized with espect to the remaining free gains. If this procedure is
feasible at each step and if the global minimum for each subcontroller design
problem is attainable, then the closed-loop performance must improve at each
step. Since the performance is also bounded below by zero, then it must
converge. Although such observations are immediate, they depend upon optimality
considerations and hence are not valid for most reduced-order control-design
procedures.

As discussed previously, stabilizability is not the issue here; after
subcontroller initialization at least one stabilizing controller at each
refinement step exists, namely, the gains provided by the previous step. Hence
the principal remaining issues concern the existence of and ability to compute the
global optimum. Using topological degree theory and homotopic continuation
methods, these issues have been addressed in [58] (see Appendix F). These results
show that the local extremals can be enumerated from the basic problem data and
the global optimum can be efficiently computed. Furthermore, one of the principal
results of [58] states that when the compensator order is greater than either the
number of inputs or outputs minus the dimension of the unstable subspace, then the
equations possess no more than one solution corresponding to the global minimum.

An immediate insight from this approach is the realization that design
methods which fail to account for this intrinsic coupling are necessarily
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suboptimal. In certain cases, such as in the presence of high dimensionality, it
may not be possible to precisely account for the coupling. In such cases the
optimal projection approach provides a rigorous context for determining suboptimal
solutions.

A numerical example demonstrating the optimal projection approach for
decentralized dynamic controllers is given in [56] (see Appendix C). The example
involves a pair of simply supported Euler-Bernoulli beams interconnected by a
spring. The objective of the problem is to design a two-channel decentralized
controller with one subcontroller assigned to each beam. After selecting starting
values for a pair of decentralized fourth-order subcontrollers, the optimal
projection equations were used to iteratively refine the subcontroller gains.
Closed-loop performance was improved at each iteration and convergence was
attained.
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3.0 PERFORMANCE DEGRADATION DUE TO UNCERTAINTIES AND SUBSYSTEM INTERACTIONS
VIA MAJORANT ANALYSIS

The problem addressed here is the determination of bounds on the
degradation of system performance due to uncertainties and/or unforeseen and
imperfectly modelled subsystem interactions. Such bounding techniques represent a
fundamental systems analysis tool that is indispensable for further elucidation of
decentral ized controller architectures and robust design.

Extensive work has been carried out within the controls community in
the area of frequency-domain analysis of robust stability giving rise to the
H-infinity theory of robustness characterization and robust design [3.1-3.5].
However, on several occasions we have remarked that although the H-infinity
world-view is a beautiful and compelling theory within its proper province, its
fundamental assumptions render it inapplicable to structural vibration control
which involves parametric and often nondestabilizing open-loop uncertainties. A
principal difficulty is the conservatism of H-infinity robustness
characterizations. A stability robustness analysis technique is called

conservative if the predicted set of nondestabilizing perturbations is a proper

subset of the actual set of nondestabilizing perturbations. MNote that
conservatism jointly depends upon both the definition of admissible perturbation
classes and the robustness analysis technique.

The well-known conservatism of H-infinity theory does not arise because
it operates in the frequency domain, per se, or because the infinity norm is
employed, but rather because of the crudeness of H-infinity bounds. What is the
fundamental source of this crudeness? Possibly this arises because the
fundamental intent of H-infinity development was the extension of classical
control design concepts to the multivariable case whether or not classical

concepts are truly suited to the problem at hand.

For example, in keeping with classical ideas, there has been widespread
insistence upon couching all questions of performance and uncertainty in terms of
simplistic (albeit traditional) unity gain feedback diagrams. Thus, singular
value developments have lumped uncertainty in a single block thereby obscuring the
often complex structure of modelling error. Moreover, this feedback paradigm is
maintained even for structured uncertainty approaches [3.6].
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Here, we contend that to achieve a less confining point of view, the
first step is to represent uncertain systems by means of a large-scale system
input-output formulation as depicted in Figure 3.0-1.

Referring to Figure 3.0-1, the overall system is represented by
interconnected subsystems undergoing interactions. The subsystems, characterized
by the operators G, (k=1,...,r), represent the known dynamics of the system
while the subsystem interactions, given by the operators ij, correspond to
uncertainties. Note that the partitioned off-block-diagonal operator H is
stipulated to belong to some compact arcwise connected set H. The set H specifies
both the character and extent of dynamical uncertainties.

The motivation for the above input-output formulation within the
context of large-scale systems is obvious. But in addition, thanks to the Dynamic
Inclusion Principle and related ideas elaborated by Siljak and his co-workers
[3.7, 3.8] the representation of Figure 3.0-1 is also suitable for parametric
perturbations in monolithic systems, i.e., systems without explicit
interconnections.

The problem now addressed is how to bound the degradation of the system
output vector y or the prediction accuracy Y-¥o due to the uncertainties.

To give this problem mathematical form, we must use the block-matrix
results of Ostrowski [3.9] and define the block-Lp norm matrix of a partitioned
operator M and the block-norm matrix of a partitioned matrix M as in the top half
of Figure 3.0-2. With these definitions, the principal problem is to bound the
block-norm vector of the system output y over all variations of the uncertain
perturbatfons, i.e., bound lylL as H varies over the whole set H. Incidentally,
bounding off-nominal prediction errors is handled similarly and so will not be
given separate treatment here.

Referring again to Figure 3.0-2, it is evident that a suitable bound
for | y| takes the form of a nonnegative matrix (all elements nonnegative) (the
"gain matrix" L) multiplied by the block-norm vector of the nominal output. Note
that the double inequality sign relating two matrices indicates element-by-element
tnequality. The matrix 'L is just a nonnegative bound on the worst-case value of
the block-Lp norm matrix of the output gain operator L. Note that, in essence,ﬁt

maps the nominal output into the actual output as corrupted by uncertain
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interactions. In the following, we focus on bounding the gain operator. Note
(from the bottom of Figure 3.0-2) that this formulation gives rise to a clear
definition of conservatism. Note also that the existence of a finite bound{tﬂﬂ)

implies input-output stability (see [3.10]). Thus robust stability and
performance degradation can be handled by one and the same theoretical apparatus.

Now, the above articulation of uncertainties into numerous interactions
permits more finely articulated methods of computing bounds beyond singular value
analysis, namely, methods associated with the majorant analysis of Dahlquist
[30]] ]o

Following Dahlquist, we define the majorant and minorant matrices of a
partitioned matrix or operator as in the top portion of Figure 3.0-3. The
inequalities shown in the center of the figure follow directly from the
definitions and indicate that the majorant and minorant are matrix generalizations
of the maximum and minimum singular values, respectively. Moreover, these
inequalities can be very efficently used to bound the block-Lp norm matrix of the
output gain operator. In fact, what we seek is merely some majorant of the gain
operator.

Figure 3.0-4 shows a simple example of how the inequalities of Figure
3.0-3 can be used to derive such a majorant for the gain operator, starting from
the defining relation

(I +GH)L =1

for L given in Figure 3.0-2. The result obtained in Figure 3.0-4, namely:
L, <<t
(I-GH)L = I

1s, in fact, the crudest possible majorant bound and is equivalent to the small

gain theorem for Lp input-output stability of a large scale-system [3.10]. When
there is only one system block, this further reduces to the singular-value bound
as a very particular special case.
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(G. Dahlguist, Lin. Alg. Appl., Vol. 52/53, pp. 199-216, 1983)
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(¥ ~
A - B = minorant of A + B
~ v
* A ana A are generalizatione of maximum andé minimum singular values

* Majorant/Linorant inequalities can be used to develop bounds cn |£|L

Figure 3.0-3. Matrix Majorants and Minorants
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But the uncertain subsystem interaction format (introduced in Figure
3.0-1) in conjunction with majorant analysis gives an almost unlimited potential
for formulating sharper bounds. Using a process of operator iteration, one can
obtain the results displayed in the top half of Figure 3.0-5. Here we have a
hierarchy of output bounds, where each successive member of the hierarchy requires
more and more information but is less and less conservative (with respect to the
set H). For the results shown in Figure 3.0-5, the sequence of bounds approaches
the least upper bound under a norm-bounded uncertainty set, i.e., for this set H
the hierarchy is nonconservative in the limit! Note also that, because we work in
an operator setting, distinctions between the time and frequency domains are
blurred. It is parochial to assert that only frequency-domain or time~domain
methods must be used. What's needed is easy and fluent translation between the
frequency and time-domain as provided here. Furthermore, the computational
advantage of this kind of hierarchy is that each bound requires only the inversion
of an M-matrix. This is quite straightforward and nicely tractable, even for many
subsystems, since it involves computing a monotonically increasing sequence where .
each iteration involves an addition and a multiplication of low-order matrices.
Figure 3.0-6 summarizes the relevant facts on the solution of majorant equations.
One has only to contrast the simplicity of these results with the difficulties of
the #-function computation [3.12] to appreciate the power of the “uncertain
subsystem" representation of Figure 3.0-1 and its allied bounding technique,
majorant analysis.

The above discussion has set forth the general development of majorant
robustness analysis within an operator setting which employs Lp norms to describe
the "size" of subsystem outputs. For systems with stochastic inputs and time
independent parameter uncertainties, the main lines of development are analogous.
However, in this case one needs to work with the Lyapunov equation for the
steady-state second-moment matrix of response and then derive majorant bounds for
the block-norm matrix of the second moment. The general setup for undertaking
majorant analysis for parametrically uncertain stochastic systems is shown in
Figure 3.0-7. Here, the block-diagonal matrix A represents the known subsystem or
nominal system dynamics while the off-block-diagonal matrix G represents uncertain
subsystem interactions or parametric uncertainties. Generally, G is stipulated to
be some element of a compact, arcwise connected set G which describes the geometry
and severity of uncertainties. The simplest prescription, for example, is that G
contains all off-diagonal block matrices such that the norm of each off-diagonal
block is bounded by a stipulated number,
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Figure 3.0-7. Subsystem Interaction Model

Note that the disturbance intensity V and the second-moment matrix Q
are partitioned conformably with A and G. We bound performance degradation due to
uncertain interactions G ranging over the admissible set G by bounding the
block-norm matrix of Q. To do this, however, requires additional algebraic tools,
such as the matrix calculus which centers on the VEC operator and the Kronecker
product and Kronecker sum. These operations, which are defined by the relations
shown in Figure 3.0-8, are critical to the development. The reader is encouraged
to consult the review paper by Brewer [3.13] for a thorough discussion of the
matrix calculus. Because of the algebraic complexity of deriving majorants for
the second-moment matrix, the matrix calculus is far more than a mere notational

convenience.

For our development, the standard matrix calculus is a completely
adequate tool only when each subsystem (with dynamics Ak' k=1,...,r) is
one-dimensional. However, we are concerned with systems composed of many
high-dimensional subsystems. To handle the algebraic work, one needs a
generalization of the matrix calculus, namely, the block-matrix calculus. The
underlying operations of the VECb operator are the block Kronecker product and sum
which are displayed in Figure 3.0-9. Note that while the VEC operator stacks the
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(J. v.. Brewer, l1EEE Trans, Circ, Sys., Vol. CAS-25, gp. 772-781, 1978.)

(M, A, £ € R*XM)

VEC operator, vec(M):

vec (M)
Kronecker Proauct, @
A ® B & ay,B ajoE ... ay B
anIB an28 cos annB
L .

Kronecker Sum, ®
A®E & A@ I +I1 @B

Figure 3.0-8., Matrix Calculus
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1. Block vec operator, vecb(l).

t:ll t’llz LI )

;| Ess

If N = , then:
§.‘ Fa1  Faz
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= 23 22 28
<
(14
(2]
bcrd
[
N

2. Elock Kronecker Product, @

All@B A12®B... A1t®B
§ -
A ® B = Agl ® By ® B ... A, ® B
::2 Ah@B :2@5" A"®B
where:
! L ® &), L ® AL, ... H®a
,. M ® A £ !;.@Azl |~®A22 .o r:@DAzr
a K ® A, kB ® A, ...on® A,
% 3. ock eck um, @
%
y A @B £ A Q@I + 1 ® B
g% 4, <0 d Y] .
{M} # bl-ciag {Mkk}, <> &K - {1}
E? vec Mll
ﬁ veckdg I; & vec M,,
vec M[t
@ Figure 3.0-9. Block Matrix Calculus
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columns of a matrix into a vector, the VECb operator stacks the VEC's of the
columns of subblocks in a partitioned matrix. When, referring to Figure 3.0-9,
the subblocks of the partitioned matrix M are all one-dimensional, the block
matrix calculus definitions revert to those given in Figure 3.0-8. Moreover, the
block matrix calculus is endowed with the same battery of identities as is

| ox

:f standard in the matrix calculus. These identities, shown in Figure 3.0-10, are
invaluable in effecting the required algebraic manipulations to obtain the results
discussed below.

) '..!‘
b "y In particular, using the block matrix calculus, one can first reduce
. Ek the second-moment Lyapunov equation into a rather compact equation determining the
) diagonal subblocks (the individual subsystem second-moment matrix) alone. This
55 equation is the second from the top in Figure 3.0-11. With this as the starting
” point, one then applies majorant analysis to obtain a hierarchy of majorant bounds
‘ & as shown in the bottom half of Figure 3.0-11. As in the Lp bound analysis, each
successive member of the hierarchy offers less and less conservative bounds.

&,

% Note that having obtained the expressions shown in Figure 3.0-11, we do

. not calculate the block-Kronecker sums and products explicitly. Rather, in each

ii case, we reverse the VECb operator to reduce each member of the hierarchy of

bounds to a low-order modified Lyapunov equation for the matrix majorant of the
"o second-moment matrix.

R TR
-

ll We now consider in more detail the first two members of the majorant
hierarchy in order to illustrate the specific forms of the modified Lyapunov

oo equations that are obtained.

~d

For example, Figure 3.0-12 shows the first member of the second-moment

-~
! ’z, majorant hierarchy. This gives the majorant Q as the solution of a simple
nonnegative matrix equation, where * denotes the Hadamard (element by element)
' CE product and the row and column dimension of the equation in the number of
L >

subsystems. For the norm-bounded uncertainty set shown in Figure 3.0-12, the !
existence of a nonnegative solution implies a bound for the block-norm matrix of !
the second moment and robust stability, i.e., (A+G) is stable for all

perturbations G in the norm-bounded set.

& = ==
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§'. I.1 (A+E) ® C = 2 ® C + E @ C
(] - - -
' 1.2 A ® (B+C) = A @@ E + A ® C
g 1.3 a @ 8T = AT @ BT
%} _ - -

1.4 (A @ BE)(C @ D) = (AC) @ (BD)
g 1.5 (A @ By = Al g g}

vecb (AYE) = (B @ &)vecb Y

[
o

g'.;‘) 1.7 vecb (AX + XB) = (ET @ A)vecbX
o I.8 vecb({t}) = £ vecb(h)
ﬁ 8 < alkik) (k ,k)
éf = e ® EV
& .
& .(k'k) e ..
e diag {5, 1}
nsl..r km
(k,k) 2 Y
' E'’ b4 nsxag u"k 8km}
) v
) 1 = . g -
% 1.9 vecb (<k>) = £ vecb(m); € 1, £
H }'4 I.10 vecb ({M}) = £ vecba(k)

~

o & _(k,k) (k k) (k,k)
g: kzs:le ® E ;e = Snk
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QTQ
I.11 ¢ = I

P

I.12 €T¢ . @7

Figure 3.0-10. Identities fcr the Block Matrix Calculus
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Figure 3.0-11. A Hierarchy of Majorant Bounds for the Second-Moment Matrix
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Figure 3.0-12. Majorant Lyapunov Equation

One particular advantage of the first member of the hierarchy is that
it correctly shows the effect of wide frequency separation of subsystems on

-~ o

f; performance degradation and robust stability. This effect is illustrated in

' . Figure 3.0-13. Here we have two subsystems whose poles are indicated by the

' crosses in the complex plane, with y denoting the minimum damping of the

; ! subsys tems andw]-bé the minimum separation in frequencies. The majorant

L equation in Figure 3.0-12 gives the expression shown in Figure 3.0-13 for the
@ square of the tolerable interaction strength under which stability is preserved.

Thus, if the frequency separation (“’]"2) is large, then even very large

’ ; uncertain interactions can be tolerated. In contrast, the vector Lyapunov

: & functior. theory of [3.7, 3.8] would give yz which is a much more conservative
;z,f: result for 1ightly damped systems. Thus, the majorant equation will correctly
3 predict that as frequency separation becomes sufficiently large, subsystems become
o effectively decoupled. Such predictions cannot be made by the small gain theorem
-?I for large-scale systems or by vector Lyapunov theory. Thus, even the first member

. of the majorant hierarchy offers greatly reduced conservatism compared to previous
@ results.
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Figure 3.0-13. Robustness Due to Weak Subsystem Interaction

Moreover, note that thanks to the properties of M-matrices, the first
(and all higher) members of the hierarchy of majorant bounds require only a simple
iterative sequence for their computation. The relevant facts are summarized in
Figure 3.0-14. The sequence is monotonically nondecreasing, and each iterate
requires only two matrix additions, two multiplications and a Hadamard product for
its computation. Convergence of the sequence implies robust stability while the
degradation of a quadratic performance index J from its nominal (zero interaction)
value Jo is given in terms of Q by the simple expression at the bottom of
Figure 3.0-14,

Furthermore, the second member of the second-moment majorant hierarchy,
shown in Figure 3.0-15, gives even tighter bounds and can even predict the
stabilizing effect of certain kinds of perturbations. The form of the majorant
equation (top of Figure 3.0-15) is similar to the first member of the hierarchy
except that the operator H[Q] appears. This operator is precisely what would
arise in the equation for the second-moment matrix for a system with Stratonovich
noise parameters: So far, we have discussed a design analysis tool for predicting
performance degradation due to uncertainty. This crucial observation brings us to
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MLE has a unique solution itf {Qg, K=0, 1, ..., | where:
A
Qo=0
A A A
Qi1 = A (G Q + QkGT +V)
Nlign 2 11 hn)

converges. If so, then:
A

A
Q= lim Qg
K—cc

r ~ /\
J-Jp <23 (tr PIGOIKK
K=1

TP +P A, +R

(0=A P+ PyAy * Ry)

Figure 3.0-14. Numerical Solution of the Majorant Lyapunov Equation

Second member of the hierarchy:
A AA A

110 Q + 111 = §<> + <Q>ET + D

r /\
J - tr[GR]) < 22 (tr P)(G<Q>)KK
K=1
0=AQ + QAT +]{[G]+V
0=ATP + PA + [1[P] +R
where: A A
<> £ ott-diagonal part of
}H[.] = Stratonovich model operator

® Tighter bound—incorporates more information on A and G
* Predicts stability when (A + AT) stable, G = -GT
A
* “Nominal” performance, tr [QR], given by Stratonovich model

Figure 3.0-15, Second Member of the Majorant Hierarchy
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consideration of the link between majorant robustness analysis and MEOP design
synthesis theory.

Figure 3.0-16 illustrates this link and the accompanying sequence of
logical developments. Overall, one may regard the MEOP design synthesis theory as
arising from a particular robustness analysis tool. Although any member of the
second-moment majorant hierarchy might be chosen as the basis of a design
synthesis theory, we choose the second member of the hierarchy (see lower right
block in Figure 3.0-16) to serve as the point of departure because it is the
simplest bound that also handles nondestabilizing uncertainties. Referring to the
lower left block of Figure 3.0-16, it is seen that the second-moment equation of a
multiplicative Stratonovich noise model essentially gives an approximation to the
majorant equation and a smooth optimization problem. The Stratonovich second
moment equation then leads to an auxiliary optimization problem (upper left block
in Figure 3-16), namely, choose dynamic compensator gains to minimize the
quadratic performance of a system having mul tiplicative stochastic parameters.
Because of the Stratonovich modifications to the standard form of the Lyapunov
equation that appear in the equation for'ﬁl the robust stability condition implied
by the majorant equation is still enforced since the optimization problem imposes
a robust performance constraint.

This optimization of an apparently stochastic system actually
approximates the majorant bound which was derived purely deterministically and
leads to the rather elegant MEOP optimality conditions given in the upper right
block in Figure 3.0-16.

Of course, the use of Stratonovich stochastic models was earlier
indicated by maximum entropy principles and stochastic approximation theory, and
this line of development still stands. But the import of the more recent majorant
analysis developments is that there is a direct link between maximum entropy
stochastic modelling and deterministic performance bounds. This 1ink inmeasurably
strengthens the foundations of MEOP synthesis theory and, most importantly, tends
to blur the distinctions between stochastic and deterministic points of view.

This is just as well: The task confronting the controls and systems theory
community is not to resolve the stochastic versus deterministic debate one way or
the other, but rather to rise above it. As the work described here suggests,
there is a plane upon which the points of view are numerically indistinguishable.
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Figure 3.0-16. Majorant Hierachy and Stratonovich Models
-- the Link Between Analysis and Synthesis

4077V /MEOP

33




3.1 References

[3.1] J.C. Doyle and G. Stein, "Multivariable Feedback Design:
iI Concepts for a Classical/Modern Synthesis," IEEE Trans. Autom.
Contr., Vol. AC-26, pp. 4-16, 1981,

4 [3.2] G. Zames, "Feedback and Optimal Sensitivity: Model Reference

hq Transformations, Multiplicative Seminorms, and Approximate

- Inverses," IEEE Trans. Autom. Contr., Vol. AC-26, pp. 301-320,
1981,

'! [3.3] G. Zames and B.A. Francis, “Feedback, Minimax Sensitivity, and

Optimal Robustness," IEEE Trans. Autom. Contr., Vol. AC-28, pp.
585-601, 1983.

[3.4] G. Stein and M. Athans, "The LQG/LTR Procedure for !
Multivariable Feedback Control Design," IEEE Trans. Autom.

ﬁ Contr., Vol. AC-32, pp. 105-114, 1987.
N
] [3.5] B.A. Francis, A Course in H-Infinity Control Theory,
g} Springer-Verlag, New York, NY, 1987.
L. S
[3.6] J.C. Doyle, “Analysis of Feedback Systems with Structured
2 Uncertainties," IEE Proc., Vol. 129, pp. 242-250, 1982.
- [3.7] D.D. Siljak, Large-Scale Dynamic Systems, Elsevier/
. North-Holland, T978.

{3.8] M. lkeda and D.D. Siljak, "Generalized Decomposition of Dynamic
Systems and Vector Lyapunov Functions," IEEE Trans. Autom.
Contr., Vol. AC-26, pp. 1118-1125, 1981.

S5

[3.9] A.M. Ostrowski, "On Some Metrical Properties of Operator
Matrices and Matrices Partitioned Into Blocks," J. Math. Anal.
Appl., Vol. 2, pp. 161-209, 1961.

[3.10] M. vidyasagar, "New Directions of Research in Nonlinear System

K@ Theory," Proc. IEEE, Vol. 74, pp. 1060-1091, 1986.
L)
[3.11] G. Dahlquist, "On Matrix Majorants and Minorants, With
Applications to Differential Equations,” Lin. Alg. Appl., Vol.
by 52/53, pp. 199-216, 1983.
. [3.12] M.K.H. Fan and A.L. Tits, “"Characterization and Efficient
- Computation of the Structured Singuiar Value," IEEE Trans.
= Autom. Contr., Vol. AC-31, pp. 734-743, 1986.
¥ [3.13] J.W. Brewer, "Kronecker Products and Matrix Calculus in System
:3 Theory," IEEE Trans. Circ. Sys., Vol. CAS-25, pp. 772-781, 1978.

AR

4077V/MEOP 34

T M

4 ' ; QOCHNT Ut Ve 00y
) :‘t’c. A A BRRERIRY) \'i. '.‘Q‘N‘ ;'J.‘s‘ﬂ'; R0



.

v W e

s

4.0 COMPUTATIONAL ALGORITHMS FOR DECENTRALIZED MEOP DESIGNS

Two distinct computational algorithms have been developed for solving
the MEOP design equations. An iterative algorithm has been utilized for several
N years and considerable experience using it has been obtained. More recently, a

3 Eg sophisticated algorithm utilizing a homotopy method has been developed by S.

K, Richter. Here we shall review both methods and point out several advantages
!! offered by the homotopy algorithm.

:ﬁ ey

o 4.1 Iterative Algorithm

s

' - The original contribution of optimal projection theory was the

A 55 discovery of the highly structured form of the necessary conditions for

: fixed-structure control design. An immediate benefit of this structure is the

‘: %g ability to apply novel computational algorithms which are distinct from gradient

{ search methods. This goal has been realized by developing an iterative algorithm

p N which operates through successive refinement of the optimal projection itself. A
& detailed description of this algorithm appears in [74] (see Appendix E) which also

P

~ M3

presents a thorough design study for a challenging 8th-order example considered in
[4.1]. 1In [4.1] the authors present a detailed comparison of several
controller-reduction methods over a range of control authorities. The following
conclusion is immediately clear: None of the methods considered in [4.1] reliably
yields stabilizing reduced-order controllers even when such controllers are known
to exist.

-
o v

=
P

P TX)
P
-

Y

%<e W

The design study in [74] involved subjecting the iterative algorithm to
each design case considered in [4.1]. In contrast to the results reported in
[4.1], the optimal projection equations provided stable designs in 100 percent of
the cases. Actually, this is not surprising since solutions of the optimal

-

,: projection equations can be shown to be generically stabilizing. The clear-cut
) 8& nature of these results can leave l1ittle doubt as to the effectiveness of optimal
projection theory.
-
; v 4,2 Homo topy Algorithm
-
" 59 To meet the increased demands of decentralized design, a more
K sophisticated algorithm has been developed (see [58] in Appendix F). In this
Q§ regard the study contract was particularly fortunate to have S. Richter as a

- o
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contributor. Mr. Richter pioneered the application of homotopy algorithms to
control problems including decentralized control (see [4.2-4.5]).

The concept behind homotopy methods is quite simple, namely, replace
the desired, but difficult, problem with an easily solved problem, and then
transform the solution of the easy problem into the desired solution. The
mathematics required to render the procedure rigorous is far from trivial,
however, and must be applied with some care. An important benefit of the homotopy
approach is the tools it provides for analyzing the design equations. The
principal result obtained thus far states that the design equation possess no more
than a prescribed number of nonnegative-definite solutions each of which is
stabilizing and each of which can be computed via a homotopic path. In
particular, if the plan is stabilizable by means of a controller of given order
and if the design problem possesses a solution, then the optimal gains can be
computed via the homotopy.

An additional benefit of the homotopy path is the ability to exploit
the structure of the design equations to an even greater extent than the iterative
algorithm. Specificallyy, Richter has shown that the computational burden using
the homotopy method involves solving four equations of order n.xn. Hence, the
computational requirements decrease as ne decreases. This is, of course, quite
pleasing since low-order controllers ought to be easier to design than high-order
controllers. For decentralized control design this property is particularly
advantageous since it will generally be true that nc<ﬁ< n, where n is the plant

dimension augmented by all other subcontrollers. See Section 2.0 for details.

Since the computational burden of the iterative algorithm tends to
increase as ne decreases, the advantages of the homotopy algorithm over the
iterative algorithm are obvious. Computational savings have been at least an
order of magnitude, and final convergence has been greatly improved. Moreover,
the example considered in [4.1] and [74] was reconsidered using the homotopy
algoritm in [58] (see Appendix F). The main result was the ability to produce
controllers as lTow as second order at control authorities which were three orders
of magnitude beyond the cases considered in [4.1] and [74]. 1In each case the
performance of the reduced-order controller was within 20 percent of the
full-order design.
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5.0 DECENTRALIZED MEOP DESIGN SYNTHESIS AND MAJORANT ANALYSIS FOR A
REPRESENTATIVE LARGE SPACE SYSTEM

Task 4 of the study contract involves applying decentralized MEOP
synthesis and majorant analysis to a representative large space system. Candidate
systems to be considered include the 60-meter COFS I truss structure and the solar
concentrator power generation subsystem for the space station. Here we report the
status of the effort for each system.

5.1 COFS I Truss Structure

For the COFS I truss structure the present study has benefitted from
extensive analyses carried out for the COFS project. Such analyses include
detailed finite element modelling, sensor and actuator modelling, and baseline
active damping control design. The baseline design is a decentralized
output-feedback controller for damping augmentation. For the present study a
centralized LQG design has been carried out for the truss structure and has been
compared to the baseline (see [61] in Appendix G). A dynamic decentralized design
study utilizing MEOP theory is planned for the next study phase.

5.2 Solar Concentrator Power Generation Subsystem

Power generation for the space station is planned to utilize solar
energy as a thermal source. Solar energy will be concentrated via reflectors for
maximum efficiency. An important control problem is the dynamic reflector fine
pointing subsystem. This problem represents a natural application of
decentralized feedback since it is desirable to control each solar reflector
autonomously while minimizing transient effects to the ambient space station
structure.

Under related programs initial analysis of this system has been
completed. This analysis includes dynamic modelling of the space station with
emphasis on attitude control and interaction with pointing control for the power
generation subsystem. Figure 5.2 illustrates the mechanical design of the
concentrator assembly.

Centralized MEOP control-design has been carried out for a design model
which accounts for attitude errors and gimbal torques. The line of sight error
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for the closed-loop system was below the 0.1 degrees requirement, while the peak
reboost transient was below the specification of 0.05 degrees. Future studies
will focus on decentralized design as a tool for simplifying the control-system
implementation.
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! Abstract
+ ———
4 »
o OPUS (Optimal Projectior for Uncertain Systems) provides new machinery for
By designing active controllers for suppressing vibration in flexible structures. The
S purpose of this paper is to review this machinery and demonstrate its practical value

in addressing the structural control problem.
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< 1. Introduction
T

Tor many years it has been widely recognized that the desire fro orbit

e

lar-e, lishtweight space structures nossessing high-performance capabilities would
-] < ) =) S5

o g LS S
e
¢

require active feecback control techniques. liore generally, the need for such

techniques may arise due to the combinations of either 1) moderate performance

B

" requirezents for highly flexible structures with low-frequency modes or 2) stringent
h DY performance requirements for semi-rigid structures with relatively high-frequency
SN
: zodes (Figure 1). Applications include pointing, slewing, and aperture shape control
4 ! for optical and RE systems.
3 o CONTROLLER AUTHORITY AND. OR
’ RESPONSE RANGE OF INTEREST
) MODES
K ra,

'i
o oy “Small” structures \
I\ * Older generation ol spacecrait \ ’

’ ® Most civil engineering structures

s (lrom strengih/static loading
N point of view) [ )
> FREQUENCY —b
N T
D

“Large” structures
o Mighly flexible spacecratt,
lail buildings. rapid transit
structures. etc.

And/or

-

o

)

y
) . * Stringent pointing accuracy 7”,”7777777777'7»\
" anda optical quaiity :

é'. i AN
- requirements ’
& » Noise abstement (acoustical/
K % structural interaction) i
i

y, Figure 1. The Need for Active Structural Control Arises From
' Stringent Performance Requirements or Low-Frequency Modes
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wo$onZmum
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PROCESSORS (i

Figure 2. Vibration Control Systems Utilize Sensors, Processors and Actuators

fcllowing

to Suppress Disturbances

The problem of active vibration suppression (Figure 2) entzils the

considerations:

ultiple, nighly coupled feedback lccrs. The potentiaily large number cf
sensors and actuatcrs leads to a fully coupled gulti-inpur, multi-cutput

feedback control system.

Limited actuator power. The control authority available from on-board

actuators is limited by weight, size, cost and power considerations.

High-dimensional models. Large structures subjected to broadband

disturbances are typically represented by high-order finite element rodels.

Limited processor capacity. Reliability and cost ccnsiderations limit the
processor capacity available for on-board real-time implementation of the

control system.

Highly uncertain models with structured uncertainty. Finite element models
often exhibit significant error particularly as modal frequency increases.
Although modal testing and related identification methods may be used to
improve modeling accuracy, residual uncertainty always remains and

unpredictabdle on-orbit changes due to &ging, thermal effects, etc., must dbe

tolerated.

¢ [N
1
0’“!" L




. S, Stringent performance requirements. Since active space structure contro.
@ i5 mesr r2levant in orecisice zp-licarioms. ir czon readily e zucecteC rhar

cerfcrmance specificeticns will ce particulariy srringernr,

& -

7. Design efficiency. Because of icplementation complexity due toc the

i sresence of multiple loops, high dimension, and kigh levels of uncertzinty,
the control design approach should efficienrly utilize both synthes:; and

;C analysis techniques (Figure 3).

~

SYNTHESIS

¢

v
. ANALYSIS
&
Tigure 3, Control-Systemn Design Must Efficiennly Utilice DSoth

Synthesis and Analysis Techniques
b These considerations pose a congsiderable challenge to the state-of-the-art
;'.; in control-design methodologies. For example, the presence of multiple, coupled
2 feedback paths essentially precludes the effectiveness of single-loop design
techniques. The sheer number of loops, their interaction, and the need to address a
! host of other issues render such methods inefficient and unwieldy.
E;; In addition to the presence of multiple loops, the high dimensionality of
) dynacic models places a severe burden on control-design methodologies. For example,
! although LGG (linear-quadratic-Gaussizn) design is applicable to multi-loop problecs,
8 such controllers are of the same order as the structural model (Figures & and 5).
e Thus LQG and similar high-order controllers can be expected to place an unacceptable
3 computational burden on the real-time processing capability. Hence it is not
‘ surprising that a variety of techniques have been proposed to reduce the order of LQG
S: controllers. A comparison of several such methods is given in [(1].
g All of the above cifficulties are severely exacerbated by the fact that the
dynacic (i.e., finite element) model upon which the centrol design is predicated nay

00 be highly inaccurate in spite of extensive modal identification. Hence, applicable
o control-design methodologies must account for modeling uncertainties by providing
.‘ robust (i.e., insensitive) controllers. Furthermore, because of stringent

)
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=

y Figure 4. LQG Theory Addresses the Problex of Designing a
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serformance requirezents, robusrt contrcl design musrt avoid censervarisi wiTi resgect

ro mcialin~ umsareaines chich =z unrecesceril;c dagricz zarfsormarce. A calienr

.

[a]

:ampie of ccrservearisc is illustratec in Jijure €. I7 umcertainty in The nccel

n

frequency is complexified in a transfer function setting, then the resulting pole
location uncertainry has the form of a disk. This disk, hcwever, intersects the
right half »lane in violation of enerzy dissipation. Hence one source of
conservarisn is the inability to differentiarte between gnysically distinct parazeters

such as mccal frequency and modal damping.

ImA

RIGHT-HALF-PLANE
POLES ARE PHYSICALLY
IMPOSSIBLE

Re A

Figure 6. Complexification of Real Parameters May Lead to Rocbustness Conservatism

Although classical methods are inappropriate for vibration control, a wide
variety of modern techniques are availgble. These include borh multi-loop frequency-
domain methods and time-domain techniques. A comprehensive review of such methods
17ill not be attempted here. Rather, we shall merely point ocut aspects of several
methods which motivate the philosophy of OPUS development.

As is well known, dynamic models can be transformed (at least in theory)
between the frequency and time domaing., Significant differences arise, however, in
attempting to represent modeling errors. Specifically, model-error characterization
of a particular type, which is natural and tractable in cne dcmain, may become

extremely cunbersome when trangformed into the cther domain. Fcr example, consider a

state space model with parameter uncertainties arising in the system matrices
(A,B,C). Upon transforaing to a frequency domain model G(s) = C(sI-A) 138 the
parsmetric uncertainties may perturb the transfer function coefficients in a
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complicetec nanrer. & aore natural ceasure of uncertainty for transier funcricne .as

Eg Tean Zevalczad in 21 where svsrew urcerrairrr {n <he T-sguency derain i omedelid

. searg of normec neijgnboriccas in the A-infinity repolugy. Tuere are lizitaticns oo

i: this approach, however, in designing controlle';s for viobration suppression. <for
examnple, 2s shown in Figure 6, complexification of real-parameter uncertainries such

' as modal frequencies z=ay yield urnecessary conservatism, while norm Sounds ofren fail
tc preserve the pnysical structure of parapeter variations. 4 case in point is tre

:',,-; lightly damped oscillator. As shcwn in [A42], nora bounds predict stability over a

=2 firequency range on the order of the demping while in fact the oscillator is .

u unconditionally stable. C[urthermore, with regard to processor throughput tradeoifs,

. zodern frequency-dcmain methods typically yield high-order controllers.

::: Although LQG addresses performance/actuator and performance/sensor
tradeoffs in a multi-loop setting, it fails to incorporate modeling uncertainty.

g Thus it is not surprising, as shown in [3], that LQG designs fail to possess

v

guaranteed gain margin, Since LQG designs lack such margins, attempts have been made

o to apply frequency-domain techniques to improve their characteristics. One such

g zethod, known as LGG/LTR (([4,5]) seeks to recover the gain margin of full-state-

- feedback controllers., Specifically, full-state-feedback LQR controllers are

:é gueranteed ¢ remzin stable in rhe face of perturbations of the input marrixz B of the
" forz aB where a €(1/2,9). As shown in [6,7], however, the full-state-feedback gain

margin fails to provide robustness with resgect to perturbations which are not of
this form. For instance, the example given in [6] with B = [0 IIT can be

‘}‘ destabilized for suitable performance weightings with perturbation B(E) = [€ IIT for

: arbitrarily small € in spite of the 6 dB margin. Furthermore, since LQG/LTR loop

! shaping is based upon singular value norm bounds, treatment of physically meaningful
reel parameter variations may lead to unnecessary congervatism., Several approaches

tave been proposed for circumventing these difficulties (see, e.g., [8]).

L
The importance of addressing the problem of structured uncertainty in
% finite elexent models cannot be overemphasized. Structural characteristics such as
modal frequencies, damping ratios, and mode shapes appear explicitly in (4,3,C)
EE: state—space models as physically meaningful parameters. Uncertainty in mode shapes,
for example, which appear as columns of the B matrix, cannot in general be expected
. to be of a multiplicative form in accordance with traditional gain-margin
| fb specifications. This is precisely the problem illustrated by the example of (6]
; digscussed above. Furthermore, uncertainties in modal frequencies and damping ratios
2 zust De carefully differentiated since, roughly speaking, zodal freguency
.- uncertainties affect only the imaginary part of the pole location while damping
:-:C' uncertainty affects the real part. Although these and related obsgervations
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i <. CPUS: 2w Machirerr for Controcl-System Desisn

“»

7 In view of the abiliry of LCG theorv to synthesize dynamic concrollers for
Y : ‘

i multi=-input, mulri-output controllers, it is nct surprising that LG forms the bDasis

for a variety of structural control methods. However, as discussed previously, LGQG

~ lacks the ability to address performance/processor and performance/robustness
- rradecifs. This situation has thus motivated the develcpment of numerous variants of
/.),“
iy LQG which entail additional procedures which attempt to remedy these defects. OFUS,
- however, is distinctly different. Rather than append additional procedures to LQG
:'__- design, CPUS extends LQG theory itself by generalizing the basic underlying
zachinery.
-
£L
As shown in Figure 5, the basic machinery of L(G consists of a pair cf
K separared Riccari equatrions whnose solutions serve to directly and e::plicitly
. synthesize the gains of an optimal dynamic cccpensator. The contriturion of CPUS is
; o to directly expand this machinery. The overall approach is illustrared in Figure 7
ﬂ which portrays two distinct generalizations of the basic LQG machinery. As Figure 7
- illustrates, these generalizations can be developed individually when either low-
\
l.j order or robust controllers are desired. The appealing aspect of OPUS, however, is
the ability to extend LQG to address both problems simultaneously in a unified
. manner.
¥ ¥
R 2 RICCATI
(SEPARATED)
LOW-ORDER
PARAMETER
‘! CONSTRAINT UNCERTAINTIES
K: "
kY op us
o 2 AICCATI » 2 LYAPUNOV 2 RICCATI » 2 LYAPUNOV
(COUPLED BY OPTIMAL PROJECTION) (COUPLED BY UNCERTAINTY TERMS)
v
of
; PARAMETER LOW-ORDER
i UNCERTAINTIES CONSTRAINT
]
o 2 RICCATI » 2 LYAPUNOV

(COUPLED BY OPTIMAL PROJECTION *
AND UNCERTAINTY TERMS)

. Figure 7. The Standard LQG Result Is Generalized by Both the Fixed-Order
e Constraint and Modeling of Parameter Uncertainties
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_~introducing plant uncertainties. In Section 4 the reduced-order constraint will be
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<0 ITuw IoiaeuWing SECTICRS Cae Jeher3iizations Lepicted in Jigure 7 wiii oe
reviewed follcwing the lefr branch. That is, the oprimal projection approach to

reduced-crcaer centrolier design wilil first be discussec in Section 2 wirhcur

retained while considering, in addition, uncertainties in the system model. In each
case the discussion will focus on the underlying ideas with a minimum of technical

Zerail.

Clearly, in order for a novel design methodology to be of practical value
it must te computationally tractable. Hence Section 5 will present an overview of
the current state of algorithm development for solving rhe OPUS design equations.
Finally, Section 6 will briefly summarize further OPUS generalizations of LGG theory

which are relevant to structural control.

3. Extensions of LQG to Reduced-Order Dynamic Compensation

Tke simplest, most direct way to cbtain oprimal reduced-order controllers
is to redevelop the standard LGG result in the presence of a constraint on controller
dinension (Figure 8). The mathematical technique reﬁuired to do this is remarkably
straightforward. Specifically, the structure and order of the controller are fixed
and the performance is optimized with respect to the controller gains. The resulting
necessary conditions obtained using Lagrange multipliers thus characterize the

optimal gains.

HIGH-ORDER PLANT xeRM

i=“*BU*W1

y:Cx#wz

ueRM ani

Xg = AcXe + Bey

u=Cexe

LOW-ORDER CONTROLLER x¢cR"C

STEADY-STATE PERFORMANCE CRITERION
JAc B Co) = lim E(xTRyx + uTRau]

Figure 8. In Accordance Hith-On-Board Processor Riqﬁircncnts. a Reduced-Order
Constrsint Is Imposed on the Dimension of the Dynamic Compensator
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This caracerer ottimization approach as such 1is nor new anc wis
investigated extensively in the 1970's. Typically, however, the optimality
conditions were found to be complex and unwieldy while cffering little insighr and

requiring gradient search methods for numerical solution.

One curious aspect of the parameter optimization literature is that no
artempt was czace to actually use this direct method to rederive the LQG result
itself. Such an exercise, it may be surmised, might reveal hidden structure within
the optimality conditions which would shed light on the reduced-order case. Indeed,
such an approach led to the realization that an cblique projection (idempotent
matrix) is the key to unlocking the unwieldy optimality conditions ([A7,A17]).
Although the result is mathematically straightforward, it is by no means obvious
gsince in the full-order (LQG) case the projection is the identity and hence not

readily apparent,

Sy exploiting the presence of the projecrtion, the recessary conditions.can
be transformed into & coupled system of four algebraic marrix equations consisting'of
a pair ci zmodified Riccati equations and a pair of codified Lyapunov equatiors
(Figure 9). The coupliﬁg is via the oblique projection T which appears in all four
equations and whicn is-determined by the solutions a and E of the zodified Lyapunov
equations. A satisfying feature of the optimality conditions is that in the full-
order case the projection becomes the identity, the modified Lyapunov equations drop
out, and, since s 0, the modified Riccati equations specialize to the usual
separated Riccati equations of LQG theory. Since, furthermore, G = [ = nxn identity,
the standard LQG gain expressions are recovered.

Although the modified Riccati equations sgpecialize to the standard Riccarti
equations in the full-order case, the modified Lyapunov equations have no counterpart
in the standard theory. The role of these equations can be understocd by considering
the problen of optimal model reduction aione. For this problem the cptical reduced-
order model is characterized by a pair of coupled modified Lyapunov equations
(see [A22]). Thus the modified Lyapunov equations arising in the reduced-order
dynaaic~compensation problem are directly anslogous to the modified Lyapunov
equations arising in model reduction alone. The modified Lyapunov equarions arising
in the control problem, however, are intimately coupled with the modified Riccarti
ecuations. Hence it cannot Le expected that reducecd-order ccntrol-design technicues

based upon LQG will generaliy vield optimal fixed-order controllers (Figure 10). It

is interesting to note that seversl such methods discussed in (1] are based upcn
balancing vhich was shown in [A22] to be suboptimal with respect to the quadratic
v (least squares) optiselity criterion.




REDUCED-ORDER CONTROLLER GAINS

A = I'(A-QE-xP)GT
-1

B =rQcC'v,

Cc = -R;'BTPGT

COUPLED RICCATI/LYAPUNOV EQUATIONS

0=AQ + QAT +V, - QYQ + rQ%QrT,
0= ATP + PA + Ry - PXP + rTPXPT,
0 = (A-3P)G + G(A-XP)T + Q%Q - Q%QrT,
0 = (A-QT)P + B(A-QF) + PXP - rTPSPr .
rank @ = rank P = rank GP = Ne

QP = GT™™I I'GT =1,

X = BR,'BT T=cmv;'c

Figure 9. The Optimal Reduced-Order Compensator Is Determined by a
Pair of Modified Riccati Equations and a Pair of Modified Lyapunov Equations
Coupled by the Oblique ProjectionT

HIGH-ORDER

MODEL
MODEL : LQG
REDUCTION OPTIMAL
PROJECTION
EQUATIONS

| CONTROLLER
REDUCTION

LQG

SUBOPTIMAL SUBQPTIMAL

Pigure 10. The Optimal Projection Equations Provide s Direct Path to
Optimal Reduced-Order Dynamic Compensators




In summary, the cptizal projecricn &quaricns ICr reduCceu-order uynaaic

I .
< compensaticn comprise a direct extension of the basic LQGC machinery to the reduced-

crder control prcblez. The design equations, which reduce 7o "he stendard LCG resulr
E; in the full-order case, provide direct synrhesis c¢f optical recuced-order contrcllers
"~

in accordance with implerentation constraints.

4, Extensions of LCG tc Uncertain llodeling

E
Two fundamental sources of error in modeling flexible structures are

g truncated modes and parameter uncertainties. Since the optimal projection approach
' permits the utilization of the full dynamics model, modal truncation can be largely
;::) avoided. There remains, however, a tendency to truncate poorly known modes and thus
& it is essential to incorporate a model of parameter uncertainty in both well-known
F and poorly known components of the system. Hence the problem formulation of Figure 8
< is now generalized in Figure 11 to include uncertain parameters o, appearing in the
i A, B and C matrices, The parameter o is assumed to lie within the interval [-8i'8i]
= in accordance with identification accuracy. Clearly, when uncertainty is absent,
- i.e., when Ai' Bi' Ci = 0, the reduced-order design problem of Figure 8 is recovered.
A

HIGH-ORDER, UNCERTAIN PLANT

s Stochastic disturbance model
- . = Deterministic parameter uncertainty mode!

[ 3

-~ s

|U|| $5|

X = (A+SqjA)x + (B+ZojBj)u + wy

Aty

y= (C+£crici)x + wy

Y u y
. 3 = Rore s By

3 u={Coxei+Dey]
- LOW-ORDER CONTROLLER

e Dynamic (strictly proper)
s Static (constant gain)
= Dynamic/static (nonstrictly proper)

Figure 11. Robust Cptimal Projection Pesign Is Based Upon a
. Hybrid Uncertainty Model Involving a Deterministic Parameter Uncertainty Mocel
= and a Stochastic Disturbance Model
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A salient feature of the design -mocel is that uncertainty is modeled in two

distinctly different ways. External uncertainty appearing as additive white noice ic

modeled stochastically. Such a codel appears appropriate for disturbances sy<h as

coolant flow for which only power spectral data are available. On the other hand,

internal uncertainty appearing as parzmeter variaticns is mocdeled deterministically.

Such a model appears appropriate for uncertainty arising from directly neasurable
quantities such as mass and stiffness. Thus the overall uncertainty model is hkvborid

in the sense that it utilizes both deterministic and stochastic characterizations of

uncertainty.

A natural performance measure which accounts for both types of uncertainty
characterization involves the usual LQG quadratic criterion averaged over the
disturbance statistics and then maximized over the uncertain parameters (Figure 12).

Hence this performance measure incorporates on the average and worst case aspects in

accordance with physical considerations.

PERFORMANCE CRITERION

J(AcBe,Ce) = sup lim sup E [xTR1x + 2xTRq2u + uTRou]

aj t—o<

Worst-  Steady- Ave:age Quaderatic

Case State

v
Over Over
Parameters Disturbance
Statistics

ROBUST PERFORMANCE PROBLEM

Minimize J(A¢,B¢,Ce) over the class of robustly
stabilizing controllers (A¢,B¢,Ce)

Figure 12. Performance Is Defined To Be Worst Caée Over the Uncertain Parameters
and Average Over the Disturbance Statistics

The resulting Robust Performance Problem thus involves determining the
gains (AC.BC.CC) to minimize the performance J. The static gain Dc can also be
included but will not be discussed here. Despite the apparent complexity of the
problem, remarkably simple techniques can be used. Specifically, first note that

after taking the expected value the performance J has the form

J(A_,B_ ,C ) = sup lim sup tr Q(t)R, (4.1)
¢ ¢ ¢ a-i t—>00
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where "tr" denotes trace of a matrix, C(t) is rhe covariance of the closec-lcon

and R,. The
&

srstem, anc R is an augmenred weighting matrix ccmposed of Rl' 312

covariance Q(t) satisfies the standard Lyapunov differential equation

Q= (XAl + eavTaa) + v, (4.2)
where A is the closed-loop dynamics, Ai is composed of Ai’ Bi and Ci’ and V is the
intensity of extermal disturbances for the closed-loop system including the plant zand

measurement noise.

Two distincet ;pptoaches to this problem will be considered. The first
involves bounding the performance over the class of parameter uncertainties and then
choosing the gains to minimize the bound. Since bounding precedes control design
this approach is known as robust design via a priori performance bounds., The second

approach involves exploiting the nondestabilizing nature of structural systems via

weak subsystem interaction.

4.1 PRebust Design Via A Priori Performance 3ounds

The key step in bounding the performance (4.1) is to replace (4.2) by a
modified Lyapunov differential equation of the form

Q=40+ QA +W(Q +V, (4.3)

where _e bound ¥ satisfies the inequality

Zoi(ziéézz) < W(g) (4.4)

over the range of uncertain parameters o, and for all candidate feedback gains. 1llote
that the inequality (4.4) is defined in the sense of nonnegative-definite matrices,
Now rewrite (4.3) by appropriate addition and subtraction as

Q= (Toh )0 + QAT A)Ts W@ - To (a,QAD) + V. (4.5)
liow subtract (4.2) from (4.5) to obtain

Ode

.

= (MT0A) () + (G0 (Lo A)T + 9@ - Ty (A,geqhD). (4.6)
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Since oy (=.%) the rern

Q) - Zo'i(AiQ“S.A{) (4.7)

Lo
", «

is nonnegative definite, it follows immediately that

.. ' . QL9 (4.8)
it _

y over the class of uncertain parameters. Thus the performance (4.1) can be bounded by

Q . - oy
& J(AB.C) ¢ 4(A.B_.C) & Lim tr QR. (4.9)
t=>@
N
O The auxiliary cost J is thus guaranteed to bound the actual cost J. This leads to
the Auxiliary Minimization Problem: Minimize the auxiliary cost J over the

§3 controller gains. The advantage of this approach is that necessary conditiong for
¥ the Auxiliary Minimization Problem effectively serve as sufficient conditions for
hj robust perfcrmance in the original problem. Since the bounding step precedes the
Y optimizztion procedure, this approach jis referred to as robust design via a priori
- performance bounds. This procedure is philosophically similar to guaranteed cost

| >

b control ([9,1C]). 1lote that since bounding precedes optimization, the bound (4.4)

must hold for all gains since the optimal gains are yet to be determined.

To obtain sufficient conditions for robust stability., the bounding function

¥ nust be specified. Since the ordering of nonnegative-definite matrices appearing

AT
Pt oy S

in (4.4) is not a total ordering, a unique lowest bouand should not be expected.

. Furthermore, each differentiable bound leads to a fundamental extension of the
- optimal projection equations and thus of the basic LQG machinery. In work thus far,
2 two bounds have been extensively investigated. Only one bound, the right
. Q} shift/multiplicative white noise bound, will be discussed here. The structured
' stability radius bound introduced in (11,12] is discussed in [A43].
&
The right shift/multiplicative white noise bound investigated in [A29,A41]
5: is given by
g
v ¥Q = T3, (a,geal'a a)), (4.10)
Lo
. where a, > 0 are arbitrary scalars. Note that this bound congists gf two distinct
‘- parts which must appear in an appropriate ratio. The first temm aig arises naturally

a.t
wvhen an exponential time weighting e 1 is included in the performance measure. As

is well known ((13]) this leads to a prescribed uniform stability margin for the

(g
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closed-loop system (Figure 13). A uniform stability margin, no marrer hcw large,
hewever, dces mct ~uarantee rotustness with respect rqQ arbitrary paracerer

variations. The complementar»” second terz ai AiQAi is crucial irn this regard.

X=Ax * x=(A+al)x,a>0

RO =S

im
e o
! Lo -
&: * —c
: »* -t
p
Re

@ APPLY CONTROL-DESIGN TECHNIQUES

TO RIGHT-SHIFTED OPEN-LOOP SYSTEM

=> UNIFORM STABILITY MARGIN
(Anderson and Moore, 1969) -

~
1
'..'w‘Ao

Figure 13, Open-Loop Right-Shifted Dynamics Arising From Zxponential Cost Weighting
Lead to a Uniform Closed-Loop Stability Margin

A

Although terms of the form ;15;5 are unfamiliar in robust control design,
they arise naturally in stochastic differential equations with multiplicative white
noise, That is, if the uncertain parameters o, are replaced by white noise processes
entering multiplicatively rather than additively, then the covariance equation for Q
autcmatically includes terms of the form Xiai'i. The literature on systems with
multiplicative white noise is quite extensive; see [A38] for references. It should

5 bYe.stressed, however, that for our purposes the multiplicative white noise model is

XS

not interpreted literally as having physical significance. Rather, multiplicative
white noise can be thought of as a useful design model which correctly captures the
impact of uncertainty on the performance functional via the state covariance.

! :ﬁ: Furthermore, just as the right shift term alone does not guarantee robustness,
‘o i neither does the multiplicative white noise term. Both terms must appear
' g simultanecusly. Roughly speaking, since multiplicative white noise disturbs the
plant though uncertain parameters, the cloud-ioop systen is automatically
:: desensitized to actual parameter variations.
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Afrter incorporating the right shifr/zulriplicarive white noise bournd (4.1C)
irrrs (4.3) tc cbrain ¢ dound J fcr rhe performance, the oprizal projecticn equaticrs
can be rederived following exactly rhe same parameter optimiczation prccedure
discugsed in Section 3. Again, the mathematics required is but a straightforward
application of Lagrange multipliers. The additional bounding terms are carried
through the derivarion to yield a direct generalization of the optimal projectior

equations shown in Figure 14 with gains given in Figure 15.

= T T 1.4 1.7 -1
0= ASQ * QA’ +AQA° +Vy + (ABR aP‘)Q(.-\-BR 297g) - gV

0= (AB.Ror.)G+Q(A-B. R, P)T +o v loT-rovlo
= (Ag-BgRogPs) (Ag-BgRagPs) QgVagl g~ VsV 25V

) V.;’Cs) ’PER;"P‘- rLTP..;R.;‘P'rL

.1 T/\ A
0= (A’-stz’cs) P P(As-\,’

Figure 14. The Robustified Cptimal Projection Design Equations Account for Both
Reduced-Crder Dynamic Compensation and Parametric Uncertainty

GAINS
Ac= T(Ag-BRH POV C)GT
c 3-85R 24740sV2s Co)
. -1
c = TQgVyy
- al
c° - -nz'P.GT
NOTATION
GP =GTMr, raT=1, (=r=GTr=?
P P
aQaTz Ta0AT, 108z ZAQBj, otc.
=1 i=1
T(p+p arT
Ryg = Rg+B8T(P+P)B Vag 3 Vg +c(Q+Q)

A
o = Q€T+ Vazea@Q)T Py sTp * n, + BT(P*P)A

. — ¢ e————e e —w — an

Figure 15. The OPUS Controller Gains Are Explicitly Characterized as a
Direct Generalization of the Classical LQG Gains
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The robusrifiad orrizal pro‘ecticn equaricns comprise 2 cystem of four

sarrisz equaricns coupled Dy berh the optimal projecricn anc urcartainry Terzs. LiT
the uncertainty terms are a2bsent, the optinmal projection equarions of FTigure 9 are
impediately recovered. Cn the other hand, if the order of the controller is ser
equal tco the order of the plant, then all terms involving fl can be deleted.- N
Hewever, in this case the mcdified Lyapunov equations do ncr drop cur since Q anc P
still appear in the modified Riccati equations. FEence the basic machinery of LQG is
again extended to include a pair of Lyapunov equations coupled to a generaljzation of
the standard LQG equations. It is interesting to nore that a related resulr in the
context of multiplicative noise also appeared in the Soviet lirerature ([14]). It
should alsc be pointed out that although the zodified Lyapunov equations arising in
the reduced-order control-design problem have analogues in model reduction, the
modified Lyspunov equations appearing in the full-order robustified equatione
represent nev zachinery not anticipated in robustness theories. Hence using
straightforward nathematical techniques, the basic LQGC machinery has again been

extended in novel directions.

Solving rhe design equarions shown in Figures 14 and 15 yields conrrollers
with guaranteea levels of robustness. The actual rocbustness levels cay, however, bde
larger than specified by a priori bounds. Thus, to achieve desired robustification
levels for the uncertainty structure specified by the a priori bounds, the design
procedure may be utilized within an iterative synthesis/analysis procedure

(Figure 16).

SYNTHESIS

STABILITY AND
CONSTRUCT _ _ _ DESIGN CONTROLLER _ __ - PERFORMANCE

BOUNDS TO MINIMIZE BOUNDS GUARANTEED

CHECK ACTUAL
STABILITY AND <
PERFORMANCE
AOBUSTNESS

ANALYSIS

Figure 16. Optimal Projection/Guaranteed Cost Control Provides
Direct Synthesis of Robust Dynamic Compensators

4.2 Robust Desizn Via Weak Subsvstem Interaction

The mechanism by which LQG vas robustified in Section 4.1 involved bounding
the performance over the class of parameter uncertainties and then determining

optimal controller gains for the performance bcund. As discussed in Section 2,
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however, flexible structures possess special properties which may, in addiricn, Ce

B e

zlcired r¢ achieve robustnmecs. Spevificaily, 2sice frex rigide=pody zoces, LTl

o)

dissization implies that mechanical structures are open-iocp stable regaraless of the

level of uncertainty. That is, flexible srructures possess only nondestabilizing

uncertainties., Hence, in the closed loop, a given controller may or may nor render a

perticular uncertainty destabilizinz. A priori bounds on controller performance

onust, however, be valid for all gains since bocunding srecedes optimization. Hence, a

priori bcunding may in certain cases fail to exploit nondestabilizing uncertainties.

A familiar exampie of a nondestabilizing uncertainty involves uncerrain
modal frequencies. Such an uncertainty will not, of course, destabilize an
uncontrolled (open-loop) structure. If particular modal frequencies are poorly xnown
then it is clearly advisable to avoid applying high authority control. Hence, rather
than the right-shift approach of Figure 13, it appears advantageous (although, at
first, counterintuitive) to utilize just the opposite, namely, a left shift
(Figure 17). Furthermore, in view of the fact that uncertainty usually increases
with codal frequency (Figure 18), a variable left shift appears to be more
appropriate than a uniform left shift. By left-shifting high-frequency poorly xnown
zcdes, the control-system desizn procedure applies corresgondingly recuced avthority
rc modes "perceived" as nighly damped. Hence rhe variable left shift can be rcughly
thought of as a device for achieving suitable authority rolloff. As will be seen,
hewever, the underlying robustification mechanism, namely, wesk subsystem interaction,
is far more subtle than the approach of classical rolloff techniques. It is also
interesting to note that the weak subsystem interaction approach to robustness is
entirely distinct from classical robustness approsches which utilize high loop gain

to reduce sensitivity.

° ° P 2
X=Ax ® x=(A+ L T AOx
2421 |

4
k

LARGE OPEN-LOOP SHIFT
e IN HIGH-FREQUENCY REGION
= LOW CLOSED-LOOP AUTHORITY

i,
e
SMALL OPEN-LOOP SHIFT
Qe IN LOW-FREQUENCY REGION
ox = HIGH CLOSED-LOOP AUTHORITY
Re

Figure 17. A Variable Left Shift Exploits Open-Loop Nondestabilizing Uncertainties
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MODAL FREQUENCY

COMERENT MODES
{Streng Corrsiation)

}

Hieh-Autherity C

Pigure 18. Modal Uncertainty Generally Incresses With Frequency

A variable left shift can readily be introduced into the robustified

A
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Figure 19. TFor Modal Systems With Frequency Uncertainty
the Stratonovich Correction Corresponds to a Variable Left Shift

R T

INCONERENT MODES
(Weah Carrelauon)

!

Low-Autherity Contrel

optimal projection design equations by replacing A by
= A ¢+ %ZA?,

where Ai denotes the structure of modal frequency uncertainty (Figure 19). lost
interestingly, such 8 modification of the dynamics matrix arises naturally froc a
aultiplicative white noise model defined not in the usual Ito sense but rather in the
Thus, as in the a priori bounding approsch, a stochastic

-
~

> wusds

<« Variable Left Shift

A2y 9

4[4 :]\

(4.11)
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e -odel serves to suggest a zechaniso for rocustification (Fijure 2C). 2gain it is

> izzereamt r3 ctress that rhe =ulriglicative whire ncise mccel i3 ~ct intercrers.
" iitdrally as having pnysical significance, UuLT rarier &N Se TaCLLal € 25 3 woel-.
“
E-' design model which correctly captures the impact of uncertainty on the performance
‘ functional via the state covariance.
ROBUSTNESS BOUNDS
)
, \ CUADRATIC LYAPUNOV FUNCTION MAJORANT LYAPUNOV FUNCTION )
\ﬁ_—-— CGEED GNP GEND GED GRS Gl GEED G SEE ————‘/
B
[ ] ,—---— T WS aIED aiiEe GE G CGEED Al T ——---\\
~ 4
N \ TO NOISE MOOEL STRATONOVICH NOISE MOOSL /)
»
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i
& STOCHASTIC UNCERTAINTY MODELS
; Figure 20. Stochastic Models anc Robustness Bounds Are Fundagenrally Relatec

)

In earlier work the Stratonovich dynamics model was justified by zeans of
the minimua information/msximsum entropy approach ([Al1-A15]). A central result of the
saximum entropy spproach is that the high authority/low suthority transition of s
vibration control system from well-known low~frequency smodes to poorly known high-
frequency modes (Tigure 18) is directly reflected in the structure of the state
covariance matrix (Figure 21). A full-state feedback design applied to a simply
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figure 21. Trequency Uncertainties in the Stratonovich Model Lead teo
Suppressed Cross Correlation in the Steady-State Covariance
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zodal frecuencies increases lLinearly with frequenrcy, the srrucrure of the ccvariance
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matrix lesds directly to the control gains illustrared in Figure 23. Note rkhat in

the high-frequency region the positicn gains are essenrially zero gnd thus rle

.."

control law asproaches positive-real enerzy dissipative rare :eecback. Th:s, of

course, is precisely the type of structural controllier expected in The ;resence ci

i; A )'-'_'

poor mcdeling information. Of course, any effecrive control-design theory fcor acrive
vibration suppression in flexible structures should produce enerjy dissifative

controllers when structural modeling information is highly uncertain.
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Tigure 22. The Effects of Frequency Uncertainties Can Be Illustrated
for & One-Disensionsl Beem With Ideelized Full-State Feedback
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. To carry out robustified optimal projection design in the presence of left-

’ shifted open-loop dynamics, it is only necessary to utilize the left-shifted dynamics
?-' matrix (4.11) in place of the right-shifted mstrix. All of the robustified oprimasl
- proiection machinery, including gain expressions, can be utilized directly. It is

f 3 also inpcrtaf_nt-sg stress that the left shifr zust be used in conjunction with terxzs

. of the form AiQAi.

One explanation for the sechsnism by which robustification is schieved is

; :3 i{llustrated in Figure 24. By left shifting the open-loop dynamics vithin the design
- process, the compensator poles are similarly left-shifted. Thus the compensator
! o~ coles are effectively moved further into the left half plane away from the actual

a= ciant poles. Since the interactior between compensator and plant poles is weaiened,
SN the closed-loop system is correspondingly robustified with respect to uncertainties

in the plant pole locations. A sensitivity analysis of this msechanisa utilizing a
unifora left shift in the context of LQG design is given in (15].
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a given level of urzertainty zcceling carnot be predictec a

of control design.

Indeed, this situatiocn is to be expected

when nondestabilizing uncertainties are exploited in a ncrnconservative design theory.

Thus a suitabie robust analysis technique is required for ncnconservatively

deteruining rhe rcbustification cf the closed-loop system with respect tc open-iccy

nondestabilizing uncerrainties.

A suitable robustness analysis technique, «nown as majorant Lyapunov

analysis, has inceed been developed ([A42]).

Essentially, this technique emplcys a

new type of Lyapunov function for assessing robustness due to weak subsystea

interaction.

The underlying machinery consists of the block-norm matrix which is a

nonnegative matrix each of wvhose elements is the norm of a block of a suitably

partitioned marrix (Figure 25).

sense of ncnnegative matrices, i.e,, element by elexent, is known as

A matrix which bounds the block-norm matrix in the

a ma‘oranr,

Majorants were introduced in [16] and were applied to srability analysis of

integration algorithms for CDE's in [17].

(Ostrowski, 1961; Dahiquist, 1983)

- My M2 ——-
|
M21 M2
] ' ~
| ~
T [IMqll [Imq2f]---
| m21]] ||M2||\
L N

NONNEGATIVE CONE ORDERING

Figure 25.

mgsfﬁ

The Matrix Majorant Is s Bound for the Matrix Block Norm,

i.e., the llonnegative Matrix Each of Whose Elements Is the Norm of the
Corresponding Block of a Given latrix
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To agply majoranrs To cynazical systems, rthe zccel is written in tae forz

a1

3n0Wn 1- Tigure lu. Tuae Zatriioa 5 S19C. Sic eral eng censists of sucsysten
aynacics. The sucsysrem inrerzcriors representec - tle partiricned zarrii G are

assumed to be uncertain. By suitable manipulation, uncertainties in the diagonal

blocks of A can a.so be captured by G. 3v assuming that the spectral norm (largest
singuldr vai.e, of the blocis or G sarisfy given bounds, the covariance blcck-nora
irequality is ottainea (Figure 27). This inequality is interpreted in the sense cf

nonnegstive zatrices, i.e., element-by-elezent, and * denotes the Hadamard (element~-

ov-eiezent! Crocuct.

1zA+Guew Q:(A+G)Q+QA+G)T+V
p— - r -
As 1 A2\ Q= ) °\ )
~ \
[} N\ | \
[} |

= -
v v Q Q
V= ?1 2 Qs ?1 2
\ N
| N\ | \
- | -J b | -
Neise intonsity State Coveriance

Figure 26. The Large—Scale System Model Involves Known Local Dynamics
snd Uncertain Interactions

fs(A*Qnew J=ExTRx) = tr QR
02(A+G)A+QA+G)T oV A = (g(A) @ A
Hvalle Hvegllpg === [1Qylig [lQyallg ==
Val [lvaqlip livalle <=l Hlonile 1Qalle
} \\ ' \\
~

| ~
. I

‘ #Oyg) - -~

Raz) . N ss§

1 N\
\ A Y
|

&
AQ==5RQ+QET+V

Tigure 27. The Block-Norm Matrix of the State Covariance Satisfies s
Lyapunov-Type Inequality Inveolving Nonnegative Matrices
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To azchieve rcousrness, the covariance block=-norm inequality is replacec by

the majcranrt Lyapincv equarion (Tigure 2E€,. The solurion cf the zajcranr Lyzpurcy

equation provides a bound (majoranr) for rhe block norm of the covaiiance thereby

guaranteeing both robust stability and performance.

MAJORANT LYAPUNOV EQUATION
A*Q=50+QGT+v
7(Gij) < Sij

&
Q=<
&

s Robust Stability
s Robust Performance

Tigure 28. The Corresponding Monnegative lMatrix Equation Yields a Majorant
for the State Covariance and Kence Robust Stability and Performance

It is interesting to note that numerical solution of the majorant Lyapunov

equation requires no new techniques. Utilizing properties of M matrices, the

solution can be obtained monotonically by means of a straightforward iterative

technique (Figure 29).

/\
MLE has a unique solution iff {Qk, K=0, 1, ..., <] where:
/\
Qo=0
A AR .
Qr+1 = A (G Qk + QkGT+ 1)
(A'lian & A~thn)

converges. It so, then:
A
Q= lm QK
K-

/\
J-Jo= 2" (tr PrIS QK
K=1

(0=AT B + P +RyY)

?iguro 29, By Exploiting the Properties of M—Matrxces.
the Majorant Lyapunov Equation Can Be Solved Monotonically by Means of a
Simple Iterative Technique
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An jillustrative application of the majorant Lyapunov equation involves

lightly damped subsystems (Figure 30). As shown in [A42] (and expected intuitively),
rocustness with respect to tncertain subsystem interaction is proportional to the
frequency separation between the subsystems. The ability to capture this
robustification mechanism is a unique feature of the majorant Lyapunov function not

available frem quadratic (i.e., scalar) Lyapunov functions or vector Lyapunov

functions ([18,19]).

Majorant Lyapunov Equation Bound~ v I(Zv)2 + (w1-w2)2\

Figure 30. Robustness Bounds for Uncertain Coupling in Modal Systems
Are Proportional to the Frequency Separation Between Subsystems

The next step in the majorant develcpment involves a hierarchy of finer and
finer robustness bounds which account for higher order subsystem interactions, e.g.,
the interaction between the ith and jth subsystems via the kth subsystem. The second
zember of the hierarchy (Figure 31) provides robustness guarantees with respect to
frequency uncertainties. The interesting aspect of this robustness test is the fact
that the performance bound is characterized precisely by a Stratonovich model. Hence
the Stratoncvich model can be viewed as an uggroximationzto a robustness bound, while
sxz.oiting the Stratonovich/majorant relationship leads to a natural

. -r-es:s analsis scheme (Figure 32) which nonconservatively exploits open=logp

~Mees801.123:Nng uncertainties.
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SYNTHESIS

UTILIZE STRATONOVICH MODEL
TO EXPLOIT NONDESTABILIZING
OPEN-LOOP UNCERTAINTIES

UTILIZE MAJORANT LYAPUNOV
EQUATION TO CHECK ROBUSTNESS WITH
RESPECT TO CLOSED-LOOP NONDESTABILIZING
SUBSYSTEM INTERACTION

ANALYSIS

Stratonovich synthesis = approximation to majorant analysis

Tigure 31. The Stratoncvich Synthesis Model Provides a First Appr.oximation to the
Majorant Analysis Bounds -

Second member of the hierarchy:

A+Q+Hi1= 8<§> + <@>ST +?

ro A
J - tr[@R] < 23 (tr PI(G<Q>)KK
=1

0=AQ + QAT + H[@]+V
0=ATP + PA + HI[P] +R
where: A A
<Q> £ off-diagonal part ot Q
H[.] = Stratonovich model operator

= Tighter bound—incorporates more information on A and G
» Predicts stability when (A + AT) stable, G = -GT
s “Nominal” performance, tr [QR], given by Stratonovich model

Figure 32, The Refined Majorant Bound Incorporates a Stratonovich Covariance Model
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< Memerical Al-orirnms and Exzmoles

Practical design of controllers is only possible when eificient, reliable
algorithms are availatle. Indeed, the oprimal projecrion equations are readily
solvable and have been applied to a wide variety of examples. llumericsl results
appear in [A3-46,A8,Al1,A12,A14-A16,A18,A19,A21-A24,A26-A28,A30-A33,A39,A42,A44,A46].

Twe distinctly different algorithms have been developed thus far, nemely, an

iterative merhod and a tomotopy algorithm.

The iterative method, developed in [Al14,A16,A44] and further studied in
(20,21], is outlined in Figure 33, The nice feature of this approach is that onl,
a standard LQG software package is required for its implementation. The basic
motivation for the method is the cobservation that the main source of coupling is
via the terms involving 11. The coupling is absent, of course, when o is the
identity, i.e., LQG. MNote also that the terms involving T| are small when Rz and
V2 are large, i.e., when control cost is high and the measurement noise is
significant, This case, which yields low-authority controllers, is approximately
characterized by decoupled control-design and controller-reduction operations. '
Thus it is not surprising that LQG reduction techniques are most successful when

centroller authority is low.

Since the 71 terms occasion the greatest difficulty, it appears

advantageous to bring them into play gradually. This can be accomplished by fixing

7 after each iteration to yield updated values of Q, P, Q and P, Furthermore, T is

introduced gradually by means of & to reduce its rank,

The crucial step of the algorithm concerns the construction of the
projecticn T from the pseudogramians a and 5. Specifically, T can be characterized
(see [A22]) as the sum of eigenprojections of 65. where each choice of
eigenprojections may correspond to a2 local extremal. However, the necessary
conditions do not specify which eigenprojections are to be selected for obtaining a
particular local solution. Nevertheless, there do exist useful methods for
constructing 7. For example, component-cost decomposition methods (([22]) when
applied within the optimal projection framework often permit efficient identification

of the global optigum.

Although the iterative method is convenient to use because it utilizes
readily available sofrware, it is suboptimal in the sense that it does nor fully
explcit the structure of the equations. Specifically, while the iterative cethcd
addresses a system of four nxn matrix equations, careful analysis reveals that
because of the rank deficiency of the projection the problem can be recast as four
n xn equations. Hence, when n. is much smaller than n, which is clearly the most
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cesirable case fir gracticel implexzentaticn, rthere exists consideraSlie cpporrunity
for increesed computational efficiency. Furthermore, and most sarisfying, the
computational complexity decreases with n, as is intuitively expected below that

required by LCG cdesign. Hence the optimal projection approach has computational

complexity less than LGG reduction methods for which LGG is but the first step.

S. Richter (([23,A46]) has ceveloped a homotopy algorithm which fully
exploits this crucial structurt, liumerical experiments thus far have shown that
considerable computational savings czn be achieved over the iterative method.
Furthermore, by applying topological degree theory to investigate the branches and

character of the lccal extremals, it can be shown that the maximum number of possible

extremals is

min(n,m, L)

n
c

if n. ¢ zin(n,3,4) or 1 otherwise. Hence in most practical cases the equations

suppert a relatively small number of soluticns,

Both the iterative zethod and the homotopy algorithm have been applied to a
design problem involving an 8th-order flexible structure originally due to D. Enns
and considered in [1]. Specifically, a variety of LQG reduction methods are compared

in [1] for a range of controller authorities. These methods include:

1. Enns: This method is a frequency-weighted, balanced realization technique

applicable to either model or controller reduction.

2. Glover: This method utilizes the theory of Hankel norm optimal

approximation for controller reduction.

3. Davis and Skelten: This is a modification of compensator reduction via

balancing which addresses the case of unstable controllers.

4, Yousuff and Skelton: This is a further modification of balancing for

handling stable or unstable controllers.

S. Liu and Anderson: In place of ugsing a balanced approximation of rhe

cozpensator transfer function directly, this method approxicates the

component parts of a fractional representation of the compensator.




All of the above methcds proceed by first ctrtaining rhe full-order L(CG
ccopersaror design for a aigh-order 3rare-spoce L.owel ané then recucin, rue <imerncicin
of rthe resulting LCG compenszator. -

Figure 34 summarizes the resulrs reported in [1] for the above L(G
reductior methods alcong with results octained using the irerative zethod for solving

the cptimal projection equations. Here g, is a scale factcr for the piant

disturbance noise affecting controller auzhority. Clearly, LGG reduction methcds
experience increasing difficulry as suthority increases, i.e., &as rhe Tl rerms beccoe
increasingly more important ir coupling the control and reducrion operations, For
the low authority czses, the cptimal projection calculations, which were performed cn
a Harris H800 minicomputer, appeared to incur roughly the saze computational burden
as the LQG reduction methods. Although the optimal projection computational burden
increases with authority, comparison with the LQG reduction methods is not meaningful
because of the difficulty experienced by these methods in achieving closed-loop
stability. See [A44] for further derails and for comparisons involving transient

response,

The nomotopy algorithm was also applied ro the exzupie consilered in [1].
Cne of the zain goals of the development effort was to extend the range of
disturbance intensity or, equivalently, observer bandwidth, out beyond q; = 20C0. Tec
this end, second-order (nc =z 2) controllers were obtained with relatively little
computation for q, = 10,000, 100,000 and 1,000,000. In addition, the performance cf
each reduced-order controller was within 25% of LQG. These cases can surely be
expected to present a nontrivial challenge to both the LQG reduction methods and the

iterative optimal projection method.

Numerical solution of the robustified optimal projection equations has been
carried out for several examples. For illustrative purposes a 2x2 example was
considered in [A26] and the results illustrated in Figure 35 indicate perforzance/
rcbustness tradeoffs possible. The varizble lefr-shifr technique was apglied in
(A19] to the NASA SCOLE problem with frequency uncertainties. The robustness of LQG
and twe robustified designs is shown in Figure 36, The plots illustrate the
degradation in performance due to simultaneous perturbation of all modal frequencies.
Note that LQG is rendered unstable by +5% frequency perturbation while a high-

authority robustified design improves this region to +8%. The low-suthority design

increases this regicn significantly while sacrificing 6% ncainal performance,
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The robustified cptimal projection design machinery has been further
extended to encompass & larger number of cesign cases arising in practical
applicaticn. ZHere we cerely list tne exrensions:

1. Discrete-rice and sampled-cara controllers ([A28,A3C,A34,A35]).
2. Decentralized controllers ([A39]).

3. lonstrictly proper controllers ([A37]).

4. Distributed parameter systems ([A25]).

7. Concludin: Reczarks

The zachinery precvided by CPUS for designing active cecnrrolilers for
f{lexible srructures has teen reviewed. The basic machinery is & systec of coupled
Riccati and Lyapunov equations which directly generalize the classical LQG result to
include both a constraint on controller order and a model of parameter uncertainty.
The overall approach thus encompasses all major design tradeoffs arising in
vibration-suppression applications. Substancial numerical experience has been gained
through an iterative method requiring only an LQG software package and, more
recently, by means of a highly efficient homotopy algorithm developed by S. Richter.

The overall approach opens the door for effective design of implementable controllers

for large precision space structures.

Acknowledgment. We wish to thank Ms. Jill M. Straehla for the excellient

Jreparation of this paper.
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Sufficient ccnditione cre developed for cdesignirng robust
cucentrelized static output feedbeck cortrollers. The approech invelves
Ceriving ncecssery conditions fer wininizing & bound on cleosec~locp
scricrmence over the class c¢f uncertein peraceters. 7The cffect of plent
sereceter variztions c¢r the clcsed-loop ccveriance is bournced by meenc cf &
roaified Lyajurov equation vi.oce foluticis &re juerenteuvc to provide robust
gtL2ility end periormence.
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1. Introduction

Because of implementation constraints, coet, and relisbility
concsiderations, a decentralized controller architecture is often required
for control of large scale systems. TFurthermore, such controllers must be
rcbust to vcrietions in plent parameterc. The present peper acdresses both
of these concerns within the context of a8 robust decentralized design thecry

for continucus-time static controllers.

The approach to controller design considered herein involves
optirizing closed-loop performance with respect to the constrained feecbeck
c2ins. This approech to output fecedback was studied for centralized
controllers in [13,14] end for decentralized controllers in ([15]). An
interesting feeture of [14,15] is the recognition of en oblique projection
(idempotent ratrix) vhich allows the necessery conditions to be written in
terns of ¢ nodified Riccati equetion. When the problen is specialized to
full-state fecdbeck, the projection beécomes the identity and the rodifiec
Ficceti equetion coincides with the stendard Ficcati equction of LGR theory.
It should be proirnted out that the oblique projection of stztic output
feecback is distinct from the oblique projection arising in dimamic
coryensation ([12]). A uvnified trectment of the statéc/dy:auic (nonstrictly

Froper) control prcblem irvolving both projectioms is given in [3].

The present paper joes beyond earlier work by deriving sufficient
concitions icr robust stability end perforrence with respect to constant
veriations in the plant paracetcers. Although plant disturbances are
represerted in the usual manner by ccditive white noise, urnccrtsinty in the
tlent dynacics is modeled cetem.irnisticelly by means of structurec parcmeter

variations within bounded sets. Thus, for exarple, the cynauics matrix A is
P
replaced by A + E 0.,11:. where g, is a constent uncertein parcceter acsused
[ 3
k=1
cr.ly tc lie within tle intervel [-du.dk] anc A, is a fixed metrix deroting
b [

the structure cf the uncertein peraceter 0& €8 it appeerg in the nouinal

é;ynamics motrix A. The cysten perfornence is defined to be the worst-case




velue over the parameter uncerteainties of a quadratic criterion averaged

over the disturbance statistics.

Since the closed-loop perfornence can be written in terns of tlLe
second-goment matrix, a performsnce bounc over the class of uncertain
percmeters cen be obtained by bounding the ctate coverience. The key to
boundir;; the state coveriance ic to replace the usual Lyzpunov equation for
tle second-uorent matrix by & suitably nocified Lyapunov equetion. In the
prescnt paper the nocified Lyapunov equation is constructed by aéding tvo
2cditional terms. The first term corresponcs to a uniform right ghift cf
ti:e cpen-loop cynarics. As is well knmown ([1]), such a shift mey arise frouw
&n ecponential perforrence weighting anc leeds to & unifcrm stability mergin
for the closed-loop system. In order tc obtein robustness vith respect to
sprecified structured paraceter varistione, howvever, an additional term cf
the Iorm. AiQAz is required. Such terns arise neturelly in systexs with
ruitiplicative white noise; see [L] enc the references therein for further
dctoils. The exporential cost weighting and cultiplicative noise
irterpretetione fer the uncerteinty bouic nave no beering in the present
feper since paraneter varistions are modeied deteruinisticelly &s constent

verietions within bounded sets so that only the btound itseif is required.

raving boundcd the state ccveriance over the class cf pcrerneter
tnccrtainties, the perfcrmence can ti.ug te bounced ir terns of the sclutiorn
of the rocifiec Lyapunov cquation, The perforuence bournd can be vieved éc
an guiiliary cost anc thus leeds to the Auxilicry lininization Prcbler:
linicize tie perforrance wiile satisfyin, the nodifiec Lyzpunov equétion.
The nice fezture of the suxiliary probler is that necczsary conditions fcor
optirelity of the perforcence bound now serve &£ sufficient conditicne for
rcbust perfoermance ir the originel probien. Thus our sp[rcech seeks to
rectifs cne of tie principel drewbecks cf necessity thcory, nencly,
uirantces of etebility end performance. Furthermore, it should bc rotcd
tret If nusericcl colution cof the optirality ceraitions yields ¢ lccad
witrensl wiich ie not the [lobel optinur, tlen rcbust grtelility anc
rerforrance cre still guerérteeq, elthough the perforrance ¢f the cxtiacl

sclution mey net be &s jood us the perforiance provicec ty the slcoel
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tnirinur.. Philoscophicelly, the overzall approach is rcleted to gusrentced

cost control ([10]).

& further eoxtension cf previous epproaches comsidered ir the
present paper involves the types of feedback lcops considerec.
Specifically, the usual zpproach to static output feedback involves nonneisy
reasurcrerts cnd weighted controls, while the duzl probler involves feeding
bacl: ncisy measurements t¢ unweighted corntrols. This situzticn lezds to ern
additionzl projection ([3]) whick is duzl to the projection discussed in
(14,15]. Tke inclusion of the duel case nov leaCs to a pair of mcdified
Riccati equetions coupled by both the uncertainty bouncds and the oblique

projections.

In zdditicn to the tuc types of lcops discussec above, one mey
wich to consider the two reraining ceses, namely, feeding back noisy
rcasurenents to weighted controls and feeding beck nonnoisy riessurements to
unwei nted ccntrols. It is eesy to show, hLiovever, tiat the forrer case
_ceés to an uncefired (i.e., irfinite) value for the performance while the

t

er case is niglly singular and fzils to vield explicit gein expressicne.

irally, the sccpe cf the precent peper is lirited te & rigorous
citvcication ol sufficient conditicns for rcbust decentralized output
feceback, lurerical sclution cf these equeticns cen be carriec out by
entencing evailabie aljorithre for centralized output [eedbeck. lumericel

¢l erithis Jor selving & sirgle cedified Riccetl ecuetion in the ebuence of

-

Licertainty bounds cre discugsed irn [1§].

. loteticn a=c Tefiniticns

rs
———

-

.rue L1 il

v = real nucbers, riis8 reel nurlecs, » €upccteticn

"
"

rur icertity, tronsgece
0,0 rerecl.er sun, JSroncccer precuct ([9])
rir gyunetric ratrices

Yir tyiaetric nernegstive=colinite netriccs
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Z, ¢ 2

Z, <2

asymptoticelly
stoble matriz:

(3]

Ny Ty S5s L

i, J. &
-

o, .
i 44

-~

I..» .
J lj

o

rir sym.etric positive-cefinite metrices

. r
Z,- %€ ¥, Z;.2,€8
r r
z, -2, € B, 2,02, €8

natrix with eigenvelues ir. open left half plane

positive integers

indices, i=l,...,T, j=l,eeess, k=1l,.ce00p

positive integers, i=l,...,r
coeitive integers, j=l,...,c

n-dinensionzl vector
mi. ‘i-dimensional vectors, i=l,...,r

mj. jj-dimensional vectors, j=l,...,5

nin ratricee
. -

nxni ratrices: Lixn metrices, i=l,...,T
-

rir, metrices; L:%Xn retrices, j=l,eees s
J 3

nxn matrices, =l,...,p
nE, tetrices, i=l,e00ery K=l,0..4,P

4jxn metrices, jElyeeesSy KkZl,eeenF

mixji catrices, i=l,ces,T

:jz 5 zotrices, j=l,eceessS
positive nugber, k=l,...,p
nonnegative number, ii=l,cee,f
81_/a1_. 1:=1. 0 ooop

real nunber, k=l,...,;

|14
1:2 :
b+ z §ﬁak1n

n=l
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wo(t). ¥ (t) n-cimensionzl, Aj—dimension.:l vhite noise, j=1l,...,s
vV, V intensities of w , v.; V_ ek, V ePlj j=1 s
o’ j o’ jo oif__‘ » j€2 9 JELlseeesyS
v .. rxd. cross ‘ntensity of w_, w., j=l,...,8
©J 3 R |
By
RO. R, stete end control weightings; I\ € !\ . R €p -,
1 ‘-1,....r
: . . -1.T .
E . nxe:, cross veighting: R - kK .R,"R > 0, i=l,...,T
oi i oii oi -
T s
3 ’ A+ E B.D .C. + E .C,
iei’d 3%ei’;
i=1 j=1
s
Ak A+ AB.D + B.E .AC,
Z i c:. i jei 3.
i=1
s
w(t) w (t) + 2 B.E_ .w.(t)
° e 3 €] 3
J:
r
F P+ E [R_.D_.C, + CD R, + CTDT R.D, c]
c oici’i icioi i
. i=1
v v_ +§ (v + B.E VY, + E,E_,V.E',B%]
°JCJJ J ¢J ¢; JeJ Jc3]
For erbitrary nxn G, P define:
P P
$ T on a Ty Ty .
I’e'.i x?':'. + YZ;Bik”'i'i.' ai Bi' * * Z’E;Lik“Ak' i=l,..0nT,
=l k=1
2 T : T
i g Ay . g ] T ) 321,000 .
Vaj = 5 T 2 G0 Qg T QG 4 VY Z"k“chjz;' §=leceses
Ii= k=1
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3. lobust Stability end Kotust Performance Problems

In this section we state tlhe Robust Stability Problen anc Robust
Performance Prcblem zlong with related notetion for later use. Let
nim nim 4.%xn L. %xn
. nxn ]
LCER x R 1 W oeee X Fx _1 X .eo 2R denote the set of

tncertein perturbztions (AA.ABI.....ABr.ACl.....ACF) of the noninal cysten

nes

ratrices A'Bl""'Br'cl"'°’cs'

Robust Stability Problem. Detercine (D 1.....D 1.....2 ) such

cr’e
that the closed-loop system consisting of the nth-order controlled plant

£(8) = (L+AR)x(E) +Z(n 45 e, (2) *ZE L), telos, (3.1)

j=1
Tecsurenents
yi(t) = Cix(t), i=l,c0e,1, (3.2)
y.(t) = (C.+AC.):(t), j=1l,cees5s (3.3)
J 3 ]
anc static output-feedback controller
ui(t) = Dciyi(t)' i=l,..0,1, (3.4)
‘. t) = E .y.(t j=leeeesS, 3.5)

is eoyupteticelly steble for all veriations in U,

Leceri: 3.1, In the czce ALADL,AC = 0 it is vell knoun that
ctedbilizebility is releted to the cuistence cf fixnecd mcdes ([16]). Vhen
vlzrt unccrteinties src prescnt the preblen is, of course, fer neore complen.
Ir. the present paper suificient concitiuns for rotust etebility ere cttainec

&S o cirect concequence of the enistence cof robust performance bouncs,
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fobust Pcrformencc Problem. Determine (Dcl""'D 'Ecl""’E )

cr cs
such that the closec-loop system consisting c¢f the nth-order controlled and

cisturbed plant

r s
u(t) = (A+AA)x(t) +Z(Bi+A5i)“~' () +Z£j;j(t) +w (t), tel0,x), (3.6)
i=1 j=1
ronnoisy and noisy measurecents
;4(t) = Eix(t). i=l,...,1, (3.7)
;. = (C.+AC.): LI j=1, 00058, .
)J(t) (CJ+ c.J) (r) + wJ(t) j=1 (3.8)

arné stztic output feedback ccntroller (3.4), (3.5), the performence

critericn
(5 £ 8
v(Jcl.'...Dcr.Lcl.....Ecs)
(3.9)
r r
. T, .\, T T
sup lie sup E[:=7(e)R =(t) + 2) =z ()R .u.(t) + u, (t)R,u,(t)]
= o ci i i ii
£ toe i=1 i=1 :

is rinicdizec.

Lereri 3.2. liote that the controiler architecture incluces two
¢istinctly different types of decentralizec loops. The first type irdened
ty i=1,...,r, invcives fecding bacik nonneisy mezsuremente to weightecd
cortrols., Tiiu is the standsrd setting in tlhe cptimel output-feedbach
literature ([12-15]). Ir zddition, we¢ include the dusl cituvation indened by
3=1l,400sc, whick invoives feeding becl: noicy zeaccorenents to unweighted
cortrois. The case in which only one type of lcop is prcsent can be

- -
Zorrelly recovercd from our results by ignoring Ei end Ci or Ej end Cj es

reguirec.

Fer ecch certreller (Dcl'""Dcr'tcl""'tcs) anc veristion in U,

the undisturbed closec-lec; systen (3.1)-(2.5) ie given by




T

2(t) = (LA x(t), t € [0.), (3.1C)

vhile the disturbed clcced-loop system (3.4)-(3.£) can be written &s

:.:(t) = (;3+A;s)x(t) + ‘:(t). t € [0,), (3.11)

. . . . v . n
wnere w(t) is vhite noise with intensity Vel .

For the Robust Performance Problem the cost cen be expressed in

terns of thce second-mement matrix., The following restlt is immedizte.

Propesition 3.1. For each decentrzlized controller

L eeesl E esesE and iation in U second-nonen atrix
( 1’ Lo oEeqe . cs) and veriation in U, the second-moment ratris

Q -(8)= El=(0)=T ()], t €[0.), (3.12)
AL £ .
seticiies
0 (t) = (DG _(t) +Q () (aA8)T + ¥V, te[0,9). (3.13)
Az A4 AA
furtherrorc,
J(Dcl..‘.’Dcr’Ecl’....ECS) = s;p li{:’:up tr QA;‘(t)Ro (3.14)

4, Sufficient Conditionc for Robust Stability end Performance

In practice, stecacy-state perforniznce is cnly of intercst vwhen the
clozec-loop systeu (3.10) ics stable cver U. The folloving result follous

fre: Proposition 2.1,

Lernic 4.1, Supposc the systen (3.10) is stable for 2l varistions
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o

E v = Ny n 2
".“CI.....HCS) sup tr ¢ .1, (4.1)

J(D ,seeesD
cl cr U AL

oo, . .
wvhere Q - € II" is the unique solution to

AL T

(24AA)Q - + Q -(A+AR)T + V. (4.2)
Ah A&

o
"

Rerarlk 4.1. VUher U is conpact, "sup" in (4.1) can be replaced by

mMaex".

cr’rcl""’ﬁcs)

explicitly, we shezll seek upper bouncs., Cur acsumptions ellow us to obtain

Since it is difficult to determine J(Dcl.....D

robust stebility es & consequence of robust performance.

n mlle m xzr d x£1
Theorem 4.1. Let : I =B P = E P
mc::z!_
x E v *.gn be such that
ARG + GALT € QUOLD - 1eveiD JE ovenusE ) (4.3)
¢ - *Tel?t P er el " " e’
n ml? 1
g ] zrictions in U & cee E eeesk . =% R W oeee
fer a-} var ‘txo in U nd.(Q’Dcl’ 'Dcr’ncl’ Ecs) € L R
oy ) o,k n ud
B T E 1 % .ee = BT 7. Furthermore, for given
: L g e  cariefvine
(Dcl,....Dcr.Ecl,...,Ecs) suppose there exists Q€ ¥ setisfying
0 = AC + GAY + ((G,D .seeesD 2T 1seeesE ) + V. (4.2)
*“el? *er’Tel’ *Tes

/2

. . ; . SU/2 T A%y s R .
Finzlly, suppese the peir (V7' 7,A444) is cetecteble fer all varisticns in U,

Then, for all verizticns in U, AHAA is zsyvptotically steble,

G- <G (4.5)
AL :

0

) 'Ma?,glﬂﬂ UEOGHNOGENS 3

A7
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T g
v(DCI.....DCr.ECI.....ECS) i tr QR. (4'6)

Proof. For all variatioms in U, (4.4) is equivalent to

= (A+AR)Q + Q(a+An)T 4 S TC SR S SO AR + V. (4.7)

cr'’e

where

‘I’(Q.Dcll . "DCI.ECI.. ...ECS.AA)

"

- = ALT
Q(QpDcl.ooo.Dcr.x—clgo.-.Ecs) - (AAO_"'WA )'
l'cte that by (4.3), ¥(-) > 0 for all variations in U. Since (Vllz. A+AA) is

cetectcble for 21l variations in U, it follows from Theorem 3.6 of [17] tret

((V+¢(Q,Dc1.....D ,E 1.....5 AA))I/‘. Aﬁ&h) is detectao;e for &ll

cr

varictions in U. Eence Lenma 12.2 cf [17] implies I+AA is asymptoticelly

stable for 2ll variztions in L.
l'exit, subtracting (4.2) from (4.7) yields

= (L4AL) (0-0 - AAL) T 3
= (£+44) (Q SAZ) + (G ?A;)(AtAA) + W(Q,D_y5ee0sD  HE 1se0esD AR,

or, equivaliertly, (cince A+AA is asymptceticeily stzble)

% ~ ~ - o~

3 - ' 4

=€ o= f e BTG o oD JE ae.E AR CUARE g,

A cl cr’ ¢l cs -
C

vhich irplies (4.5). Firelly, (4.5) and (4.1) yield (4.6).

'z alsc note & sufficient condition fcr the solution ¢ of (4.4) to

be pogitive definite.

Fropocsition 4.1. Let  be as in Theore:m 4.1, let

(Dcl.....D

5 . . ' . n
cr’zcl""'tc") be ziven, and suppose there existe Q€L

RO OADELAESEAIDGRE AN
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sctisfying (4.4). If (Vllz. A+AL) is obscrvable for some veristion in L,

then ¢ is positive definite.

Proof. If (VI/‘, A+AA) is observable for come veriztion in U, then
S > - - w2 7.7 :
by Theorer. 3.6 of [17], ((V+W(Q.Dc1....,Dcr._cl.....ucs.An) . AHAL) is

alsc observablc for the same veriztion in U. It thus follews from (4.7) and

Lemrz 12.2 of [17] thet Q is positive definite.
Recerk 4.2. If V is positive definite then the detectatility and

cbservability i.ypotheses of Theorem 4.1 znd Proposition 4.1 are

cutonetically sctisfied.

S. Uncerteinty Structure ané the Fisht Shift/lvltiplicative VWhite Lcise

Eourc

The uncertzinty set U is zssuued to te of the foru

L= {(AA,ALI,....AB“,ACI,....ACG):
P P
Al"- = E 05::[ . A:‘Ji = E O:KBi};. l=1.ooupr’ . (501)
=1 =1

P
AC. = O C..h §=l,ueesks o-.l <&+ L=1,e.0..D)s
: E .Cope || < . o0

-
e
=1

viere, for =l,...,pt (A“'zl”’""2“”'Clk'°"’csk) cre fizxed natrices
denoting the structure cf the paremetric uncertainty; §, is & given

uncerteinty beunc; and oo, is an uncertain perameter., The closed-locy systen

i

tiius hes structured uncerteinty of the form

- P
ai = T iay

MY
[ 2t

11
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IO T RTN, )

A R



pra
W

-
-~
-’

"
[

= A T , =
Ak tﬁ{ + dﬂ;DCi(’i + rjEcjcjl:. 15 lgcoogpo (5.2)
izl j:l

-
-

E E )

T ba. > i i fod .n . i s e e D o ess
o cbtzin explicit gain expressions for (Dcl' » c1’ B

cr’
we require that

[(BypoeeesBy) 0 =2 (ClueeniC) = 0] k=l,iii,p. (5.3)

That is, for each urcertzin psreneter o either (Elk"°"Brr) is zerc or

. ] ] > 4
(clk""'csk) is zero. Of course, bcth (B k""’“rk) anc (Clk""'csk) ney

[§]

e zero, cnd there are no restrictions on Ak'

Civer. the structure cf U definec dy (5.1), the tound () satisfyirg

(4.3) cen now be specifiea.

1

Frcpogitior 5.1. Let a’-----a& be erbitrery pesitive scalars.

Then the function

,
-17 T
Q(C’Dcl'""Dcr'Ecl'""Ecs) = Zs'.‘.h\:qﬂ A};c&..) (5.4)
i=1

catisfiece (4.3) with U given by (5.1).

Froof. Tor 2=l,..e5Fs

/2I 1/2 1/2;‘]T

-

- 6. /a3 1o @ /8.)
o - R b kTR T

.

o
~

1
[a.'x.(ak/s).;) In - (aklal;)

0',2_(a,/5,‘_)c. ¥ (8‘.;/"';-)‘;'s-c-;:;‘T - 01.(1‘:.(‘. s Qo).

) L)
o . . . & & .
Surining over I enc ueing o, < 87 yielés (£.2). E]

Tcrerii 5.1, llcte that the tound ) givern by (5.4) censiste of tue
dictirct terns in & specific retio. The first tern aPQ con be theught cf es
eriging {renm en expernentiel tine weijlhting of the cost, cr, equiveciently,

frem ¢ uvnifomm rillt shift ol the cien-leocy ¢ rerice (f1]). The second terr
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-1 T . . e . . : .
ak k QH crices naturaily fror o tzultiplicative white noice rodel ([£]).
.3
Such interpretaticts heve nc beering cr the results obtzined here since crnly

the tourd f) cefined by (5.4) is required.

G The Auxiliary Finimizetion Problex &nc llecessary Conditions for

Cpticality

Rather than minirizirg the actusl cost (3.5), we ciell consider the

vpper oounc (4.6). This lee¢s to the fcllowing problexm.

Auiiliery lVinic izetiorn Prcller.. Determine

o, ud o 4 %
a1l Le T 1T
(Q’Dcl'.“'Dcr'zcl'.'.'}:cs) ‘ ‘: o 6=~ e S 08 sv As\ - 5 £ oo
;e:l‘
. E © 7 vhiceh siniscizes
J(CT tveeesD. WE..seeesi ) % er R (6.1)
=Ry’ *Ter®el’ *“cs ¢
stoiect te
- - P - -, -
C = 4C + CAT + .acC + ?LA,Q&?] + v (€.2)
R e 4% ..
D]
nd
Sl/2 T Ty .. . . . . .
v » &8 is Cetectcile for ¢ll varizticrns ir U, (6.3)
n S
e el e n -. - S - .- .-
i .E-xnzuxcn C.l. EC'LCI"'"‘c:"cl""'ccs) €1 T L oees I
;r;lr :13‘1 . 4
5 e P ¥ Y ie ecritceible if anc cenly if
- = W T ) cr-cfica od on ot
(.‘,-cl.....JC:.-:I.oc..ccs, [:3 8 19 ST L (6-..) e (6.-4 .




-

L 4 B

Prozcsition 6.1. If there exists acrissiblic

(Q.DCI. e "DCt

veriations in U, end

'Ecl""'EC’) then A+AA is asymptotically steble for ell

J(Dcl..o-.D .o.o.E ) EE(Q.DCI‘..Q.D E 1.....5 )o (6.“)

cr'Ecl cs cr’ ¢ cs

Froci. Uitk Q) gyiven by (5.4), Progosition 5.1 irplies thet (4.3)
is cetisfied. Turthermore, ecmissibpility irplies that (4.4) has & solution
Gei". Eence, with (6.2), the hypotieses of Theoren 4.1 are cztisfied so
thet robust stebility with performance bound (4.€) is zucrcnteed. lote that

vith cefinivion (€.1), (€.4) is uerely a restatement of (4.6).0J

To azvoid Laving tc verify constraint qualificetions that erise in
tutn-Tucker theory, the derivetion of the necessery conditions for the
fusziliary liinirizetion Probler is basec upon the Fritz John forrm of tle

Lagrange nultiplier theorem., FRigorcus cpplicetion of this technique

requires thet (Q'Dcl""'ccr'rcl’""Ecs) Le restricted to the oper set
Sg {(Q.D pes e D E LN : )(
= cl *Ter®Tel’ *“es
Lod g x4 t..xd t 4
Er = R 1 N Ty E 17 ..o x bS5
L is asyrptoticelly statlel,
whcre
- - v - ¥ F - -
. 2 (.wéz : 8,1) © (ied 2 @8 1) ) ¥i Oiy.
- < «w . L - O RO .

The recuivencent (C.Ecl.....D 83 ) € S izzlies tiat C anc its

er® cl”"" " Tes
rornc etive=cefinite cuel F re urique sciuticns of tle rcdified Lyapurov

ceraticne (£.2) end

(o \F v B+ E .7 + ;.TFA.] + . (6.5)
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An cecitional teclnicel recuirerent is that (C.Dcl....,Dcr,Ecl.....Ecs) te
cornfinec to the set

+ A - - R .

S = ((Q.Dcl.....Dcr.ucl.....-cs) € S: CiC 5 > 0, i=l,400.7,

end ESPE, > C,  j=l.....s}.
373

Tle pecsitive cefinitenese conditicns in the definition of § hcld when Ci

enc B, have full rou end coluin renk, resrectively, and G end P eare pesitive
-
cefirite., As can be seen fron the froof of Theoren 6.1 these conditione

-

irply the exntistence cf the projections LA} and Tj corresponcing tc the two

cistinct typec cf fecdback loops.

- . + 13
Propositicn 6.2. The set § is open.

. . . s, . .
Freof. It reed cnly te noted thet § Is the intersccticn cf three

Ci-€1. Sets. D

fLereri: €.1. It is entrenely importent to erphesize that
Prepcsition 6.1 shous thet it is not necesser; for guarantced robust

cteciility anu periormance tuét en &cuissitle (Q.Dcl.....D .Ecl.....E )

cr cs
ottalineu by solving tle recessery concditions actuelly be shown te oe an

. 4g vill be seen from the procf of Theorer €.1, the set S

.

eciulent ¢

]
ten

ceresitutes sufficient cornditicns under which the Le_ rsnge multijlier
1

teennicre iz gpplicecle te the funilicr; ldnirication rrobler,

-

1] ”~ + .
Tiecrci: &.1. Sup;ose (C'Dcl'""Ecr’“cl""'ECs) € S solves tle

fiviilisry linindizetion Froblew witi, U Jiver Ly (5.1) end let a,.....ax > C.
- ¥

1

Landd - - . -L X1 » - v - r oae oo
ier therc enist C, F € L such thet ucl.....D '“cl""'rcs &re _iven Dy

cr
b .= -r lp CET(E oc) ™! 121l eeasr (G.€)
c eieitit it L . =T i
D= o(iopn) TR :vff. 121, 044,58, (€.7)
CJ : J aJ bad®]
15




anc such theat Q, P saticfy

r T

P EE TR Ex

e -1 ) -1 T .
- (Aaz i Z;Pazf )Q + k(AaZ i *1Pe171) * \'o
i=l i=]
:E:v (F~:E: B FoL lp ;7)CA =) DL E 1P o7y )T (6.8)
izl i=1

Eﬂ Z %Gy
JAJ' laJ Jajjx’

e W X OBEE Y 5l

s
0 = (4.a- rjcu-'-"a C )* P + P(A«-E T C&’ aJC ) + r
;=1 j=1
I 3 s
-1 T -1
+ E Y. (A.-E r.C .V (L. P/ E ¢ .v..C.) (6.¢)
W i ei ej 3k Tk 73 e; aj jw
L=l i=1 i=1
r r
T -1 T LT, -1
- 1 9 »
Z citeiei T fxl'a;lazrszfxl'
i=1 i=l

vLErE

A AR B
1]
2]
»
D
p-a
~ )
4

f_- = (C (C CC L » 711 = T_. -1 ' i=1.-...t. (6.1C)
w z (~ L) CLE, .. =T =1, izl,...,8. (€.11)
o - - - ;1 ]
é 2reof. ¢ crtirmize (€.1) cver tic cpen set £, there
ég {(:'r'cl""'tc-':cl"'"r‘u) € g‘: {(€.2) ig setisficcl},

~

fL._tC€t Te the cenetreint (€.2), Zerr the La_ ver oo

1¢

B TN B 244
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W2 4 = W8

S

., a4 T ST, - IT.S
L(QuB_jeeeesD WL jaeeesl ) S tr[ACR + (4G+CA ‘2“1;5'.-.(*71;‘1;‘:‘1-.*")”'

cr’c I3
=1

, n:n
vi.erc the La;range multiplicre )\ 2 0 and PeR ™

SO - A e el = oo o]
dL/d¥ =C, A=2C inplies P = 0 since (Q.Dcl.....Dcr.Ecl.....L ) €S. FKerce,

ere not botl: zerc., Setting

tithcut loss of gencrality set A = 1. TLus the stetionarity cornciticns are
Livern Uy
) d . ;T
L _ 7T 7 N -
-— = el - = ~
3 L°? + PL [allakl»‘ + YkIﬁ:PA._;] + R=0, (€.12)
w=1
é{:_- = P C CC + P QET = 0 i=1 eoeel (6. 13)
aL . ai%cii ai¥ i ’ ’ *ne
ci
oL T . =T . .
T = B.F:.:- .V .+ I.? . = C = seepDoe . 4
. TiTiTeiai 7] Caj = Cr 37heeenes (e.14)

e -.,..

Since (C,0 .sveesD oL _,eeeel ) € S+. C QC end I - Pd. are invertiile anc
cl cr’ ¢l cs -

ience (€.13) enc (€.14) irgzly (€.€) anc (u.7). rxnull (€.8) anc (€.C) ere

conivilent te (€.2) are (¢.5). [

fecezrii H.2. Ceverel speciel caces can lLe recoverec lormaslly fro-

T.ccret €,1. For euanjle, vhern tic centrcl wei_litin, is nerncingular enc the

c€zsure ernt neise s zero, i.€., vhen u i enc y: cre ebcent fcr i=l, ..., T,
cesete (£.7) anc zet 7, = L in (6.8). Clel_ting clsc the uncertainty ters
)
i Z.. C.. wvicler tic results of (1£]. Furtherrore, ccruning ¢
. P xS

ceityalicee ctructure for the ctotic centreliler, i.c., =1, vieics the veuel
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SEQUENTIAL DESIGN OF DECENTRALIZED
DYNAMIC COMPENSATORS USING THE OPTIMAL PROJECTION EQUATIONS:
AN ILLUSTRATIVE EXAMPLE INVOLVING INTERCONNECTED FLEXIBLE BEAMS

Dennis S. Bernstein®

Harris Corporation
Government Aerospace Systems Division
MS 22/4848
Melbourne, FL 32902

Abstract

A straightforward and natural spplication
of reduced-order control-design methods is to
design decentralized controllers by viewing each
subcontroller as & reduced-order controller for
the augmented system comprised of the plant and
all other subcontrollers. A suitable reduced-
order control-design method for this purpose is
the optizal projection approsch because of its
reliability in yielding stable controllers and
because it is based upon an optimality criterion
which serves as a convenient convergence
indicator. The approsch is illustrated on an
interconnected flexible beam example.

1. Introduction

In [1,2] the following approsch to
designing decentralized dynamic ccmpensators was
proposed: view each subcontroller as a reduced-
order controller for the augmented system
consisting of the plant and all other
subcontrollers. Initislly, the dynamic
subcontroller can be determined sequentially
accounting fully for previously specified
subcontrollers. After initial gains have been
specified for each subcontroller, the overall
design can be refined sequentially by replacing
current subcontroller gains with updsted gains.
Such an spproach appears to be & straightforward
snd nstural spplication of reduced-order design
pethods. Candidate methods include either LQG
reduction ([3]) or fixed-order optimization ([4]).

One criticism of this approsch which often
arises is that "no new insights or qualitatively
new properties germane only to the decentralized
case are obtained.” Indeed, quite the contrary,
the strength of this approach lies in the fact
that no new properties sre required. Numerous
decentralized control-design schemes have been
proposed which are based upon system decomposition
with centraslized design procedures applied to the

*Harris Corporation, MS 22/4848, Melbourne,
FL 32902. This research was supported in part by
the Air Force Office of Scientific Research under
contracts F49620-86-C~0002 and F49620-86-C-0038,

individual subsystems. There then remsins the
problem of determining conditions under which the
reassembled closed-loop system has acceptable
behavior. An additional drawback of decomposition
methods is that the decentralized controller
srchitecture specified by implementation
contraints may be completely unrelated to any
subsystem decomposition arising from physical
considerations. For example, implementation
constraints may impose a particular decentralized
architecture which does not correspond to any
discermible decomposition. Furthermore, subsystem
decomposition as a design tool may constrain the
class of sttainable designs st the expense of
achievable performsnce.

Of course, in many cases, such as in the
presence of high dimensionality, subgystem
decomposition is absolutely essential for meking
progress in designing decentralized controllers.
However, only by developing methods which avoid
unnecessary comstraints on the design space can
the efficiency of decomposition methods be
assessed. Furthermore, methods which retein the
full system dynamics may provide a useful context
for applying existing decomposition techniques ss
well as an advantageous starting point for
developing new methods. Finally, subsystem
decomposition techniques are also relevant to the
approach suggested here by providing a near-
optimal starting point for subsequent refinement.

In sequentially applying reduced-order
design methods to decentralized control, & number
of issues immediately arise, including the
subcontroller refinement sequence, feasibility of
the reduced-order design method at each step, and
convergence of the overall process. Note that
after initisl gain determination the existence of
a stabilizing design at each step is not at issue
here since st least one stabilizing controller
exists, namely, the present gain values supplied
by the previous step. One of the chief concerns,
however, is that the reduced-order design method
be sufficiently relisble to permit flexibility in
choosing the refinement sequence. Many reduced-
order design methods do not, however, consistently
yield stabiliszing controllers of a given order
when stabilizing controllers sre clearly known to
exist. For example, in [5), the LQG reduction
methods reviewed in [3] were compered to the
optimal projection approach to fixed-order dynamic
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compensation [(4)]. For an Sth-order example due
to Enns over a range of control authorities, only
the optimsl projection approach consistently
provided stable designs for each case considered.
Thus, the optimal projection approach appears to
be a promising candidate for reliable sequential
subcontroller refinement.

In addition to reliably producing stable
designs at each step, the optimal projection
approach is based upon a quadratic performance
criterion which readily permits assessment of
convergence of the refinement procedure.
Specifically, at each subcontroller refinement
step, a given subcontroller is replaced by an
improved subcontroller. Here "improved” refers to
the situation in which all subcontrollers except
one are "frozen," while the performance functional
is optimized with respect to the remaining free
gains. If this procedure is feasible at each step
and if the global minimum for each subcontroller
design problem is attainable, then the closed-loop
performance must improve at each step. Since the
performance is also bounded below by zero, then it
must converge. Although such observations are
immediate, they depend upon optimality
congiderations and hence are not valid for most
reduced-order control-design procedures.

As discussed previously, stabilizability is
not the issue here; after subcontroller
initislization st least one stabilizing controller
at each refinement step exists, namely, the gains
provided by the previous step. Hence the
principal remaining issue concerns the existence
of and ability to compute the global optimum.
Using topological degree theory and homotopic
continuation methods, these issues have been
addressed in [6]. These results show that the
local extremals can be enumerated from the basic
problem data and the global optimum can be
efficiently computed. Furthermore ome of the
principal results of [6] states that when the
compensator order is greater than either the
number of inputs or outputs minus the dimension of
the unstable subspace, then a unique global
minimum exists.

It should also be noted that alternative
optimality criteria may be utilized in place of
the quadratic performance functional. For
example, an H-infinity criterion may be utilized,
although it appears to be more difficult to
characterize globally optimal reduced-order H-
infinity controllers.

The approach proposed in [1,2] involves
solving the optimal projection equations developed
in [4] to sequentially refine each subcontroller
until convergence is reached. The structure of
the optimal projection equations shows that the
optimal solution is characterized by a collection
of oblique projections, specifically, one for each
subcontroller, Since each projection operates on
the plant dynamics augmented by the other
subcontrollers' dynamics, it is clear that a high
degree of coupling exists among the
subcontrollers. This, of course, is to be
expected in general, while design methods which

- A

attempt to decouple the subcontroller design
process are generally suboptimal.

2. Problem Statement

Given the controlled system

P

x(t) = Ax(t) + :E:Biui(t) + wo(t). (2.1)
i=1

yi(t) = Cix(t) + wi(t). i=l,...,p, (2.2)

design a fixed-structure decentralized dynamic
compensator

ci(:) = Abixci(t) + Bciyi(t). i=1,...,ps» (2.3)

-(t)p i=1.cll.p! (2.&)

ui(t) ccixcz

which minimizes the steady-state performance
criterion

A B ,C )8

J(Acl B ep’ cp’ cp

* cl'ccl""'

P

. T T
t:.g[x(t) Ryx(e)+3 “u, (8) "Ryu (1)), (2.5)
i=1

m 4

where, for i=1,...,p: xean. uielzi - yiel_'s 1.

P
n_.
ci a -
X ¢k em T Enci' Bey £ BT A By o
i=1
A Bci' cci' Ro and Ri are matrices of

appropriate dimension with R, (symmetric)
nonnegative definite and Ri (symmetric) positive
definite; Yo is white disturbance noise with nxn
nonnegative-definite intenmsity Vo. and wi'is white
observation noise with Lixzi positive-definite
intensity Vi. where “0'"1""’"p are mutually
uncorrelated and have zero mean. E denotes

expectation and superscript T indicates transpose.
With this notation the optimal projection
equations can be applied geparately to each
subcontroller with all other subcontrollers fixed
(see {1,2]).

3. Proposed Algorithm

Sequential Design Aigorithm.

Step 1: Chooge starting point
consisting of initial
subcontroller designs;
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Step 2: For a sequence {ik}:;l‘ where
ik €f{l,....p}. k=1,2...,
redesign subcontroller ik as an

optimal fixed-order centralized
controller for the plant and
remaining subcontrollers;

Step 3: Compute performance Jk of
current design and check Jk-

Ig-1

for convergence.

Note that the first two steps of the
algorithm consist of 1) bringing suboptimal
subcontrollers "on line" and 2) iteratively
refining each subcontroller. As discussed in
Section 1, the choice of a starting design for
Step 1 can be obtained by a variety of existing
methods such as subsystem decomposition. As for
subcontroller refinement, note that each
subcontroller redesign procedure is equivalent to
replacing a suboptimal subcontroller with a
subcontroller which is optimal with respect to the
plant and remaining subcontrollers.

4, Application to Interconnected Flexible
Beams

To demonstrate the applicability of the
sequential design algorithm, we consider a pair of
simply supported Euler-Bernoulli flexible beams
interconnected by a spring (see Fig. 1). Each
beam possesses one rate sensor and one force
actuator. Retaining two vibrational modes in each
beam, we obtain the 8th-order interconnected model

LTt 5 - B 5 = Oux1
Ay Ay 1] Ouxy 2 | By
Cp =€y 0y0e G = [0y, Cple
i 0 “is
- - . . 2 -
vhere A.. = w4 (k/.nu) (sin rrci) Ztiwli
11
0 0
L-(k/“"li)'(‘i“ ﬂci) (sin Zﬂci) 0
i 0 0
(k/w,.) (8in 7e.) (8in me.) 0
and A,, = 13 i J
ij 0 1]
i (k/wlj) (8in 1ch.) (8in zrrci) 0

iwsj,

0
Bii = | -sin ﬂai
0
-sin 2ma.
i
Cii = [0 sin s, 0 sin Znsi]
a, = ai/Li. s, = si/Li. ¢

Figure 1

0

-(k/wZi) (gin n ci) (sin erci)

° 2
-“51-(kA”21)('in 2ﬂci)

0

(k/wzj) (sin wci) (sin 2vch.)
0

(k/wzj) (gin chi) (sin Z:cj)

o |

“2i
-2§i“§'
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In the above definitions, k is the spring
constant, Wy is the jth modal frequency of the

ith beanm, {i is the damping ratio of the ith beam,
Li is the length of the ith beam, and 8. &, and

c; are, respectively, the actuator, sensor and

spring-connection coordinates as measured from the
left in Fig. 1. The chosen values are

k = 10,

=l wy =4 f=.005, Lo=1, i=l2
8, = 3. 8y = .65, ¢)= -6,
s, = -8 s, = .2, ¢, = b

In addition, weighting and intensity matrices are
chosen to be

o - - -

0 1 0
0 lhmZIJ

Ro = block-diagonal 0 1A”11

1 01 [1 o
0 l/wl2 0 lhmzz

L 1L

R, = R =-1.

1 2
B Ny r -
0 0 c O
Vo = block-diagonal » »
LO 1 LO 1
r 3 -
0o o [0 o©
o 1 “lo 1 !
L 1L ]

For this problem the open-loop cost was
evaluated and the centralized 8th-order LQG design
was obtained to provide a baseline. To provide a
starting point for the sequential design
algorithm, a pair of 4th-order LQG controllers
were designed for each beam separately ignoring
the interconnection, i.e., setting k=0. The
optimal projection equations were then utilized to
iteratively refine each subcontroller. The
results are summarized in Table 1.

Acknowledgement. I wish to thank Scott W.

Greeley for providing the beam model in Section 4
and for carrying out the design computations.
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6.

ST e TN

Design Cost
Open Loop 163.5
Centralized 1QG 19.99
n =8
c
Suboptimal Decentralized 59.43
Bepr ® P2 T 4
Redesign Subcoatroller 2 28.19
Redesign Subcontroller 1 23.29
Redesign Subcontroller 2 23.04
Redesign Subcontroller 1 22,25
Redesign Subcontroller 2 21.94
Redesign Subcontroller 1 21.86
Redesign Subcontroller 2 21.81
Redesign Subcontroller 1 21.79
Table 1
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The Majorant Lyapunov Equation:
A Nonnegative Matrix Equation
for
Robust Stability and Performance
of

Large Scale Systems

by

David C. Hyland and Dennig S. Bernstein

Harris Corporation

Government Aerospace Systems Division
MS 22/4848

Melbourne, FL 32902

(305) 729-2140

Abstract

A new robust stability and performance analysis technique is developed.
The approach involves replacing the state covariance by its block-norm
matrix, i.e., the nonnegative matrix whose elements are the norms of
subblocks of the covariance matrix partitioned according to subsystem
dynamics. A bound (i.e., majorant) for the block-norm matrix is given by
the majorant Lyapunov equation, a Lyapunov-type nonnegative matrix equation.
Existence, uniqueness and computational tractability of solutions to the
majorant Lyapunov equation are shown to be completely characterized in terms
of M matrices. Two examples are considered. For a damped simple harmonic
oscillator with uncertain but constant natural frequency, the majorant
Lyapunov equation predicts unconditional stability. And, for a psir of
nominally uncoupled oscillators with uncertain coupling, the majorant
Lyapunov equation shows that the range of nondestabilizing couplings is
proportional to the frequency separation between the oscillators, & result
not predictable from quadratic or vector Lyapunov functions.

This research was supported in part by the Air Force Office of Scientific
Research under contracts F49620-86-C-0002 and F49620-86-C-0038.
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1. Introduction

The importance of robustness in control-system analysis and design
cannot be overemphasized. Th.‘past ten years' literature reflects
considerable frequency-domain development ([1-10]), while recent
publications indicate increasing time-domain activity ({11-19]). Wide
variations in underlying assumptions, mathematical settings, and problem
data render it difficult, if not impossible, to clearly delineate the
relative effectiveness of different methods. Our own philosophical outlook

has thus been guided by two general criteria:
1. Effectiveness for simple examples;
2. Bfficiency when applied to large scale problems.

The first criterion involves applying robustness techniques to simple,
perhaps trivially obvious, examples to serve as "acid tests.™ A given
method's effectiveness on a collection of such examples can possibly reveal
inherent shortcomings. As an illustration of this criterion, consider a
damped harmonic oscillator with constant but uncertain natural frequency.
Using the notation of (6], stability is guaranteed so long as

o [R() (146K (Ga)) TIe(i@L ™ GGad] < 1, w20, (1.1)
vhere, for v > 0,
G(s) = (IZOZVI¢0§)-1-

and uncertainty in the nominal natural frequency L is modelled by

ate) = L H@)0(a)R(s) = Sal,

L(s) = 1/a, 6(s) = &/a, R(s) =al, K(s) =0,
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8§ e{-min(1,a) ], a > 0,
Note that
Umla(jw)] <1, >0,

as required in [6]. The perturbation A(s) (modelled as a feedback gain)
effectively replaces (ni in G(s) by (1+8)w§. Hence, for a given a > 0 this
uncertainty model permits perturbed natural frequencies in the range

(0, (1+a %/ 2w ]. Evalusting (1.1) yields the upper bound

2]1/2

a < [(mi-wz)z + s /w:. w>0, (1.2)

or, equivalently,
a < 2ta-tHY?, (1.3)

where { ¢ V/wn. The conservatisa of (1.3) is obviously most pronounced when
the damping ratio { is small. In all cases, however, the conservatisam is
infinite. This conservatism can be removed, however, by means of the

structured singular value developed by Doyle ([5,6]).

The second criterion is obviously subjective and depends upon a variety
of factors such as problem structure, designer experience, and computational
resources. This criterion is, im our opinion, most important since the need
for robustness techniques becomes incressingly critical as system complexity
grows. Indeed, the ultimate test of a given approach is to scale it up to
larger and larger problems to reveal inherent limitations. Obviously, such
tests are not only difficulr, but may entail a significant commitment of
human and financial resources. Nevertheless, crude predictions are
sometimes svailable, and a case in point is the "curse of dimensionality"
encountered in the spproach of [9]. Another example involves computational

difficulties in obtaining bounds for the p-function with more than 3 blocks
({10]).
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The contribution of the present paper is & new robustness analysis
method developed specifically for large scale systems. The basic idea,

motivated by the work of Siljak ([30]) on connective stability, is as
follows. The system is assumed to be in the form of 8 collection of

subsystems with uncertain local dynamics and uncertain interactions.”
Parameter uncertainties -e modelled as either structured or unstructured
constant variations contained in prescribed sets. The state covariance,
partitioned conformably with the subsystem dynamics, is replaced by its

block-norm matrix, i.e., the nonnegative matrix each of whose elements is

the norm of the corresponding subblock of the original matrix. This
nonnegative matrix satisfies a novel inequality designated the covariance

block-norm inequality. The existence of a solution to the msajorant Lyapunov

equation, i.e., the covariance block-nomm inequality interpreted as an
equation, yields an element-by-element bound (i.e., majorant) for the
covariance block-norm, hence assuring robust stability and performance. The
relevance of this technique to large scale systems stems from the fact that
replacing each subblock of the covariance by its norm can significantly
reduce the dimension of the problem. Indeed, the dimension of the majorant
Lyapunov equation is equal to the number of subsystems which may be
significantly less than the dimension of the original system.

To illustrate the above ideas in more detail, consider the covariance

equation

0 = (A+G)Q + Q(A+G)T + v, (1.4)

vhere A denotes the nominal dynamicg, G denotes uncertainty in A, V is the
disturbance intensity, and Q is the state covariance. Assuming that A is
block diagonal with r diagonal blocks sand that G has only off-diagonal
nonzero blocks leads to the covariance block-norm inequality (see

Proposition 4.2)

g << 6g + Q6" + V. (1.5)

In (1.5), A, Q, G and V are rxr nonnegative matrices, i.e., each element is
a nonnegative number. The matrices Q and V are formed by taking the
Frobenius norm of each subblock of Q and V, while each component of G is a

given constant which bounds the spectral norm (largest singular value) of the

*Uncertsinties in s single subsystem can also be regarded as
interaction uncertainties. To see this, write x = (A+G)x twice so that the

uncertainty G is represented by [g g].




RO ORR OB TR OB S B A T @ e

223 ¥R 8

» <7 B

corresponding subblock of the uncertain perturbation G. Hence G is a
sajorant for G in the sense of (21-23]. Each element of the matrix A is
bounded above by the smallest singular value of the Kronecker sum ([24-26])
of pairs of diagonal blocks of A. The operation "*" ig the Hadamard product
([27,28)), and the ordering "<<™ denotes element-by-element comparison,

i.e., the ordering induced by the conme of nonnegative matrices ([29,30]).

The majorant Lyapunov equation is obtained by replacing the inequality

(1.5) by the rxr nonnegative matrix equation

A%Q = GQ + QGT + V. (1.6)
A key result (Corollary 5.1) states that

g << Q (1.7 -

for all stable A+G. Consequently (see Theorem 5.1), the existence of a
solution to (1.6) leads directly to a guarantee of robust stability over the
range specified by G and to a performance bound involving Q. Moreover,

solutions of (1.6) exist if and only if the rzxrz matrix
A € diag(vec A) - GoG (1.8)

is an M matrix ([29,30]).

Even when the number of subsystems is large, the majorant Lyapunov
equation is generally computationally tractable. Specifically, although A
is an rzxrz matrix, no computations whatsocever need to be carried out with

matrices of this dimension. Rather, it suffices to solve only the majorant

Lyapunov equation (1.6). In this regard we show that Q is given by

Q=1limg, (1.9)
irw

vhere the sequence {Qi) generated by

é.§i¢1 = éi + §1_T + !0 §0 = 0, (1.10)




]

is monotonically increasing. Furthermore, the convergence of this sequence
is equivalent to A being an M matrix so fhat is not even necessary to form
A. Note that (1.6) does not require the development of new solution

techniques. Indeed, since (1.10) is a straightforward iteration, (1.6) is

even easier to solve than the original Lyapunov equation (1.4).

= B W

To illustrate these results we consider two examples. The first
example is the damped oscillator already considered in this section. With

little effort the majorant Lyapunov equation yields the (obvious) result

b2 |

that the oscillator is stable for all constant natural frequencies. The

second example involves a pair of oscillators with known parameters but with

LE2S

uncertain coupling. The majorant Lyapunov equation yields bounds over which

stability is guaranteed, and these bounds are compared to the actual

-
o

s |

stability region as a function of frequency separation. The main result

shows that the robustness to uncertain coupling is proportional to the

e

frequency separation. This weak subsystem interaction robustification

mechanism is the principal contribution of the majorant theory. This

et
s

example has immediate application to the problem of vibration control in

v ™

flexible structures. For this class of problems the open-loop dynamics can

be viewed as a collection of uncoupled oscillators which become coupled via

w-

feedback and structural uncertainties.

)
L}

The majorant bound developed in the present paper is quite different
from the widely used quadratic Lyapunov function (see, e.g., [11,12,17-20]).
As can readily be shown using the methods of [{12,17-20], the quadratic

Lyapunov function yields robust stability and performance by replacing (1.4)

== 4B

by
0=3Q + QAT + Q) + V, (1.11)
g
e where Q(-) satisfies
-F"E: ® + % < MQ (1.12)

for all variations G. It can then be shown that

1y
w»
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Q< aQ (1.13)

where now, in contrast (1.7), the ordering in (1.13) is defined with respect

to the cone of nonnegative-definite matrices. Indeed, the majorant bound

may be more closely related to vector Lyapunov functions ([30,31]) and the
Lyapunov matrix function ([32,33])). It does not appear possible, however,
to use these techniques to obtain the majorant results on robustness due to

subsystem frequency separation.

The reader will observe that this paper exploits a wide variety of
techniques including nonnegative matrices, block norms, matrix majorants,
the Hadamard product, the Kronecker sum, and M matrices. Each of these
techniques, except majorants, has, however, been previously applied to
control problems in numerous instances. In the special case of scalar
subblocks, the block-norm matrix has, moreover, been utilized by Yedavalli
([13-15]) and others for robustness analysis and design. In this case the
block norm is known as the matrix modulus. The variety of algebraic
structures employed in the present paper should not be surprising since the
quest for increasingly refined robustness techniques can be expected to
invoke correspondingly refined uncertainty bounds. Related techniques are
employed in [16]. Furthermore, nonnegative matrix equations involving M

matrices arise naturally in a variety of settings (see, e.g., [38,39]).

The contents of the paper are as follows. Section 2 presents notationm,
definitions and lemmas for use throughout the paper. In Section 3 robust
stability and performance are defined for the homogeneous and nonhomogeneous
systems. Detailed system structure and uncertainty characterization are
given in Section 4 and the covariance block-norm inequality is derived.
Section 5 analyzes the majorant Lyapunov equation to obtain a majorant for
the steady-state covariance. , The main result, Theorem 5.1, guarantees

robust stability and provides a performance bound. Finally, the examples

sppear in Section 6.
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2. Preliminaries

The following notation will be used throughout. All matrices are

assumed to have real entries.

diag(zl.....zp)
block-diag(zl.....zp)
p(Z)

asymptotically stable
matrix

nonnegative-definite
matrix

positive-definite
matrix

>
z2,22

21 > 22

2

expected value
real ndmbers. pxq real matrices, gpxl
pxp identity matrix, pxq zero.matrix. Opxp
Kronecker sum, Kromecker product ([24-27])
Hadamard product ([27,28])
ith column of matrix Z
coll(Z)
¢ gpq. 2 e gpxq

colq(Z)

(i,j) element of matrix 2

transpose of vector or matrix Z
21 or 2T

trace of matrix Z

s HI a -1 >
Hadamard inverse, (2 )(i.j) [z(i.j)] s 2 0
diagonal matrix with listed diagonal elements
block~diagonal matrix with listed diagonal blocks
spectral radius of 2

matrix with eigenvalues in open left half plane

symmetric matrix with nonnegative eigenvalues
(z >0

symmetric matrix with positive eigenvalues
(z >0

21-22 20, 21. Z, symmetric

.-z, > 0, 21. Z

172, symmetric

2
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nonnegative matrix matrix with nonnegative elements (Z >> 0) ([29,30])
g positive matrix matrix with positive elements (Z >> 0)
21 222, Z]‘--Z2 220
> -
21 Z2 zl 22 >» 0
B block-norm matrix nonnegative matrix each of whose elements is the
norm of a corresponding subblock of a given
partitioned matrix
s majorant nonnegative matrix each of whose elements bounds
the corresponding element of a block-norm matrix
@ ||Z||2 Euclidean norm of vector Z
Oi(z) singular value of matrix 2
ﬁ a'min(Z)' o, ax(Z) smallest and largest singular values of matrix 2

::: Am(z) largest eigenvalue of symmetric matrix 2
2 zlls - O ax(2) (spectral norm induced by ||-]|,)
Ei PsQ P
il (er 2ZHM2 2 1 30 28, 1M% = D 002
i, =1 i=1

h
-

(Frobenius norm [34])

In subsequent sections we shall exploit the fact that the norms ||||2. -l
and ""E’ coincide for vectors. Hence, if Z €l=lp then by interpreting

RP = RP*! it follows that

"2"2 = "z”S = "zup‘ (2- 1)
Furthermore, if Z € gpxq then
lzll < |Blp = Ivec zllp = livec z[l, = |Ivec z|l. (2.2)
Lemma 2.1. If 2 egpxp and iegpxq then

Onint@ 2l < N2zl < 12|l izl » (2.3,2.4)

1f, furthermore, p = q, Z 2 0, and Z is symmetric, then
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tr 22 ¢ (ex DA__(2) ¢ (ex Dl (2.5)

Proof. Imnequality (2.4) can be found in [35], p. 263. To prove (2.3),
note that when Z is singular the result is immediate. Otherwise, replace 2
and Z in (2.3) by Z-l and ZZ, respectively. The result now follows from
[°5ax(2)]-1 = °hin(z—1)’ Finally, (2.5) is given in [36].0

Recall ([30]) that a matrix Se¢ §rxr is an N matrix if § . 5 < o,
i, = l,0eeors i # j. If, in addition, all principal minors of S are

positive, then S is an M matrix.

Lemma 2.2. Suppose S ¢ grxr is an N matrix. Then the following are

equivalent:
(i) S is an M matrix;
(ii) det S # 0 and S™* >> 0;

(iii) for each y cgr. y 2> 0, there exists (a unique)

xcgr. x >> 0, such that Sx = y;
(iv) there exists xegr. x > 0, such that.Sx >> 0;

(v) I *S >> 0 and each diagonal matrix D >> I *§
satigfies p[D-]'(Ir*S-S)] <1,

Proof. The equivalences of statements (i), (ii), (iv) and (v) follows
from [30], p. 396. The implication (ii) ==> (iii) is immediate, and
(iii) ==> (iv) follows by setting y = [1 1 .... 1]T.0

Lemma 2.3. Suppose S ¢§nr is an M matrix and let S ¢§nr be an N

~

matrix such that § >> S. Then S is an M matrix.

Proof. See [30], p. 400.0
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3. Robust Stability and Performance Bounds

Consider the nth-order homogeneous system "

.

x(t) = (A(g)+G)x(t), te[0,™), (3.1)
GeG ::’“‘. (3.2)
6 €6 = RE, (3.3)

where A: © ——> R™" is continuous, A £ A(B) denotes the known nominal
dynamics for § ¢ ©, § denotes the unstructured .parametric uncertainty in A,
G denotes the structured parametric uncertainty in A, and 0 €G is the

nominal value of G. We first consider the stability of (3.1) over G and O.

Definition 3.1. If A(6)+G is asymptotically stable for all G ¢G and

6 € ©, then the homogeneous system (3.1) is robustly stable over G and ©.

Now consider the nth—-order nonhomogeneous system

x(t) = (A(0)+G)x(t) + w(t), ¢t ¢ [0.), (3.4)

where G ¢G, 6 €O, and w(+) is white noise with intemsity V > 0. For given

G ¢G and 0 €6, the steady-state average quadratic performance is defined by

3(6,8) £ lim sup Elx"(t)Rx(t)]. (3.5)
t->®

The system (3.4) may, for example, denote a control system in closed-loop
configuration. There is no need in our development, however, to make such

distinctions.

In practice, steady-state performance is only of interest when the

system is robustly stable. The following result is immediate.

*Upon first reading the uncertainty represented by (3.3) can be
ignored since the principal contribution concerns the treatment of (3.2).
10
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Proposition 3.1. Suppose the system (3.1) is robustly stable over
G and ©. Then for each G ¢G and 6 €9,

J(G,0) = tr QR, (3.6)

LAt

where nxn nonnegative-definite Q is the unique solution to

v |

0 = (A(8)+6)Q + Q(a(0)+6) T + V. (3.7)

)

We shall only be concerned with the case in which G and © are compact.

Since Q is a continuous function of G and 8, we can define the worst-case

b= |

average steady-state quadratic performance

(-3

max J(G,9). (3.8)
G €G, 9¢6

J
max

A BE

Since it is difficult to determine Jmax explicitly, we shall seek upper

bounds.

NEE

J Definition 3.2. If Jmax & @ then @ is a performance bound for the

A

nonhomogeneous system (3.4) over G and ©.

4. System Structure, Uncertainty Characterization and the Covariance
Block-Norm Inequality

oo R

A discussed in Section 1, (3.1) and (3.4) are assumed to be in the form

e

of a large scale system with uncoupled local dynamics and uncertain

interactions. Hence, with the subsystem partitioning

‘N = n.. (401)

b

T
=1

~y i

11
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the local system dynamics A(6) can be decomposed into subsystem dynamics

according to
A(9) = block-diag{Ai(B)]. (4.2)
i=1.coo.r

n.xn.
where Ai(G)G R 1 1, 6€0, For convenience, denote

nw

A block-diag{Ki}.

i=l,...,r

Accordingly, R is assumed to be of the form

R = block—diag{Ri]. (4.3)
i-‘-l.....t

n.xn,.

where Ric R o, Ri 20, i=l,...,r. The intemnsity V and steady-state
covariance Q satisfying (3.7) are assumed to be conformably partitioned,

i.e.,

. nixnj
v = {vij}i. -=1. vij € 5 » (4.4)
. nixnj
For notational simplicity define
V. 28v,., Q 24q.., i=l,...,r. (4.6)

Taking the Frobenius norm of each subblock of V and Q leads to the rxr

symmetric nonnegative matrices V and Q defined by

v E vl Q& dllollgs, 5oy (4.7)

i, j=1°

Note that




-

g

lally = Hally. Ul = Vil (4.8)

A few observations concerning the nominal system, i.e., with G = 0 and

8 = §, are worth noting. If A is stable then so is A,, i=l,...,r, and there

-~ -~ ncxn-
exist unique, nonnegative-definite Qi' Pic R o i=l,...,r, satisfying
O=K‘+aKT+V (4.9)
i%i ii i’
-T* A -
0=AP, + PA_+R.. (4.10)
ii il i

Proposition 4.1. Suppose A is asymptotically stable. Then the nominal

performance Jnom is given by

r - r -
I DY = -
Joog 2 9€0.8) = Eéitr QR, = égitr B.V.. (4.11)

Proof. First note that with G = 0 and 6 = § the diagonal blocks of Q
satisfying (3.7) coincide with Qi""’Qr' Thus

J(0,8)

"
"
”

L0
a

E “ T
izz:l(vec Qi) vec R,

= i [(A.0A )-lv v ]Tvec R
SRR ec ¥y i

r
= ) (vec v) T(Kﬁoﬁ?) Liec R,
i=1

r T -
Z(vcc V.) 'vec P,
i i

ix1
Zt': -

= tr P.Vv. .0
& i'd

13
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The matrices G ¢G are also conformably partitioned so that

r nixnj
G = (617 jayr Gyy¢B . (4.12)
and g is characterized by
a nxn ..
= H . .. £ PR . .
G2 {GeR am(GiJ) < 713 i.j r} (4.13)

vhere Yij >0, i,j=l,...,r, are given congtants. For convenience, define

the rxr nonnegative matrix

8 b 4
G {YIJ}ioJﬂ (4.14)

The bound G is a matrix majorant for G ¢G in the semnse of [21-23].

Remark 4.1. G is compact and convex.

Ixr

Finally, let symmetric A €R satisfy
< nm{crmm(Aj(a)OAi(O))}. i,j=lseeesr. (4.15)

-(1 i)~ 0€o

Proposition 4.2. Let G€G and § €O be such that A(0)+G is
asymptotically stable and let mxn Q > O satisfy (3.7). Then Q defined by
(4.7) satisfies

MQ LR OE 4T (4.16)
or, equivalently,
A vec Q << vec V, (4.17)
vhere
A £ [diag(vec A)] - GeG. (4.18)
14
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Proof. Expanding (3.7) yields

T _ T .
-[Ai(e)qij*qije\j(o)] = k}'_j [clqu Q. Jk] * Ve bdeleer (4.19)
Bounding the right hand side of (4.19) from above using (2.3) yields for all

G €g

I
"EJ%%*% G+ Vgl £ 2 (00030, 5 b’ * L

while bounding the left hand side of (4.19) from below using (2.4) implies
for all 0 €©

T T
l-[Ai(G)Qij-'-QijAj(O)lli. uvec(Ai(O)QijwijAj(o))l,

fica; (O)OA (6)) vec Qx;"?

jv

TinlA (0104, ())llvec Q .l

TpinlA5(OIOA(6D)Q ; )

21,95

v

Combining the above inequalities yields (4.16).0

Remark 4.2. Since G >> 0, the rzxrz matrix A is an N matrix ([30]).

15
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5. The Majorant Lyapunov Equation

In this section we interpret (4.16) as an equality rather than an

inequality and consider the Lyapunov-type nonnegative matrix equation

A*Q =

+ Q6T +V (5.1)

I8,

or, equivalently,

= vec V. (5.2)

nny»
[Yo i |

vec

Note that since A and V are symmetric a unique solution of (5.1) is

necessarily symmetric.

Proposition 5.1. The following are equivalent:

(i) A is an M matrix;

1

(i) det A #0 and A" 2> 0;

(iii) for each rxr symmetric V >> O there exists (& unique)
rxr Q >> 0 satisfying (5.1);

(iv) there exist rxr symmetric V >> 0 and rxr symmetric § 2> 0

satisfying (5.1);

(v) diag(vec A) - (Ir*g)o(xr*g) >> 0 and each diagonal matrix
D 2> diag(vec A) - (I *G)e(I *G) satisfies

P geg - (1 *)e(I *a)]) < 1; (5.3)




54"

B

(vi) for each rxr symmetric Qy 22 O and rxr symmetric V >> O, the

sequence {gi};;l generated by

-

A*Q i - (1.%6)Q, - 9y, (T%6)
= (G126)Q. + Q (I *0)T + ¥,  is0.1...., (5.4)

converges.

(vii) for each rxr symmetric Q, >> O there exists rxr symmetric V >> 0

0
such that the sequence {gi}zll generated by (5.4) converges.

Proof. Statements (i)-(v) are equivalent to (i)-(v) of Lemma 2.2.
Clearly, (vi) implies (iii), and (vii) implies (iv). To show (v) implies
(vi) and (vii) note that I 2*(909) = (Ir*g)o(Ir*g) and

r
vec(§*§i+1) = [diag(vec A)]vec §i+1'
Thus (5.4) is equivalent to
vec §i+1 = [diag(vec A) - (Ir*g)O(Ir*g)]-l[gog - Irz*(gtg)]vec éi
+ [diag(vec é)]-lvec v.

Thus (vi) and (vii) follow from (v) with D = diag(vec A) - (I_*G)e(1 *G).c

Since statements (i)-(vii) depend only upon A and G we have the

following definition inspired by (v)-(vii).

Definition 5.1. (A,G) is stable if A is an M matrix.

Remark 5.1. When Ir*g =0, i.e., when the local dynamics have no

structured uncertainty, (5.4) simplifies to

A*Qi'*l = ggi + giQT + Y- i=0.1.... » (5-5)

17
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or, equivalently,

Mlegg v 6"ow),  i=0,1.... . (5.5a)

i+l -

1o

The following result shows that for zero initial condition, the

iterative sequence is monotconic.

Proposition 5.2. Suppose diag(vec A) - I 2'(000) >> 0. Thenr the
- - r
sequence {Qi}:;l generated by (5.4) with 90 = 0 and V >> 0 is monotonically

increasing.

Proof. To simplify notation we consider the case mentioned in Remark
.1. Hence assume A >> 0. Clearly, if Q = 0 then (5.5a) implies that

_ LHI ., Iy .
= A%V >> 0. Hence 91 > go. Defining 591+1 L 91+1 - 91' (5.5a) yields

10w

1

- HI PO o
59141 = A ‘(gdgi*AQig ).

Since AQ, 2> 0, the result follows from induction.(

Remark 5.2. Proposition 5.2 is s particularly useful result in
agplications and can be utilized as follows. Setting §O = 0, the sequence
{gi} can be evaluated by~a simple numerical procedure. As will be shong in
Theorem 5.1 below, each 91 corresponds to s robuft performance messure a.
For practical purposes the increassging soquonco.{ai} can be generated until

either convergence is attained (in which case a = lis a, is a robust
i-e
performance bound) or a maximum permissible performance level is exceeded.

In the latter case the question of convergence is irrelevant since the
closed-loop system is known to either be unstable for some Geg
(i.e., 0 = ®) or exceed acceptable performance specifications, thereby

necessitating system redesign.

18
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We now prove a comparison result for solutions of (5.1).

- -

Lemma 5.1. Assume (A,G) is stable, let A, G be rxr nonnegative

matrices where A is symmetric, and assume that

. G << G, (5.6)

1>

A <«

Then (A,G) is stable. Furthermore, let rxr symmetric V satisfy

1<)

«< v, (5.7)

let Q be the unique, nonnegative solution to (5.1), and let Q be the unique

solution to

;ﬁé = éé + ééT + g. (5.8)
Then
é & § (5.9)

Proof. Since
A £ disg(vec A) - GeG
is an N matrix, é is an M matrix, and

A-A = disg(vec(A-A)) + (G-G)@(G-G) 2> O,

it follows from Lemma 2.3 that A is an M matrix and thus (A,G) is stable.
Next note that (5.1) and (5.8) imply

vcc(é—é) = é-l(;-é)voc é + é-lvec(!-i).

19
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Since A-A 3> 0, A" >> 0 (see Lemms 2.2), and V-V >> 0, it follows that

(5.9) is satisfied.C

Corollary 5.1. Suppose (A,G) is stable and let Q be the unique,

nonnegative solution to (5.1). Furthermore, let G €G and § € © be such that
A(0)+G is asymptotically stable and define Q by (4.7) for mxn Q > 0
satisfying (3.7). Then

. (5.10)

Yol

Q «

Proof. By Proposition 4.2, Q satisfies the covariance block-norm

inequality (4.18). In the notation of Lemma 5.1 define

=G V= A+Q - (6g+Q6D) (5.11)

>
1)

=é,

so that (5.6) is satisfied and (4.18) implies (5.7). Note that with the
notation (5.11), equation (5.8) has the unique solution Q = Q. Hence (5.9)
implies (5.10).0

Theorem 5.1. Assume A is asymptotically stable, © is continuously

arcwise connected, and (A,G) is stable. Then the homogeneous system (3.1)

is robustly stable over G and ©, and the nonhomogeneous system (3.4) has the

performance bound

- T - a -
o =On:x9{§1[tr(Qi(8)Ri) + 2(er Bo(0))(GQ) (; )13 (5.12)

where n xn. nonnegative—~definite ai(e) and Ei(O) satisfy
- - T
0= Ai(O)Qi(G) + Qi(O)Ai(O) + Vi. (5.13)

T ~ -~
0= Ai(G)Pi(O) + Pi(O)Ai(G) + Ri' (5.14)

and rxr Q is the unique, nonnegative solution to (5.1).

Proof. First note that since robust stability is independent of the

disturbances, we can get V = In for convenience in proving the first result.

20
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Hence, suppose (3.1) is not robustly stable. Since G is convex (see

Remark 4.1), A is asymptotically stable, and © is continuously arcwise

connected, there exist Goég and 0: [0,1] --> © such that

A(p) & A(8(u))+uG, is asymptotically stable for all u €[0,1), and A(1) is

[ X

not asymptotically stable. Define

-]

t -
T
Q(}l,t) QI eA(IJ)SeA (M)Sds. t l 0, “‘[0.1]9
0

=

which is monotonically increasing in the nonnegative-definite cone with

respect to t. Clearly, the limit

Q) 2 lim Q(p,v), u €[0,1),
t=->®

exists and satisfies !

0 = A@Q(W + QWA + I, pelo,1).

B o B= 55

Now define rxr nonnegative symmetric Q(u) by

—
)
-

X

Q) = Lo ;W] ioy e
n.xn,
vhere Q:i.j () € R * J and Q(u) is partitioned as in (4.5). By Corollary 5.1

B2z 292

with 0 = 5(#) G = p.Go. Q e Q(#), u €[0,1), and V = In' it follows from
(5.10) that

A ;
Q(u) << q, u €[0,1). (5.15)

SR

Hence, by (4.8), (5.15) implies

ey

el = Nawlly < lgll. » €l0.1). (5.16)

On the other hand, for u €[0,1) it follows that

L 34

TEE
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Qu) = Q(p) - Qp.t) + Qu,t) - Q(1,t) + Q(1,¢)
2 Qlu.t) ~ Q(1,t) + Q(1,¢t),
vhich implies, for arbitrary x €R",
Qx> x [Q(pt)-Q(1, ) ]x + x°Q(1,t)x.
Thus, by continuity of Q(u,t) in u,

lim x7Q(u)x > x'Q(1,t)x, x €R. (5.17)
u-1

Now, since A(1l) is not asymptotically stable and (A(l).In) is stabilizable,
it follows from Proposition 3.2 of [37], p. 67, that for some x eg“.

lim ;TQ(I.t); = o,
t—>o0

Thus by (5.17)

lim XQ(u)x = ®,
pl

and thus

lim llawlly = =. (5.18)

k-l

However, (5.18) contradicts (5.16). Hence (3.1) is robustly stable over G
and O.

To derive (5.12) note that since R is block diagonal,

r r
J(G,8) = 1§1“ QR, = igl(vec Qi)Tvec R,

22




where Q satisfies (3.7). Furthermore, (4.9) and (4.21) imply

vec Q. = -[A, (9)eA, (8)] “livec v+ kf__jvec(c Q% Ik)]

o

Hence, using Lemma 2.1,

+

; q ~ . T ,,T 2
i§1 (ex(Q,(6)R,) k§1 (vec [Gikai“QikGik] ) vec P (6)]

J(G,8)

= SN

= ): [tr(Q (OIR;) + 2 tr P, (06,9 . +Q1kG1k)]

a i=1 k=1
ﬁ < Z [tr(Q ()R + }_: (tr p (e))o _ (G,,Q .+, G0 7)1

i=1 k=1
R < El[u(q (BIR) + 2(tr B, (6) za Gy e (Q )]
ﬁ < ; [tr(Q (O)R,) + 2(zr P, ;(0)) § o e (GO Mg

i=1 k=1 ©®

< E:lltr(Q (O)R ) + 2(cx Pi(a))k§1g(1'k)g(k' i)] |
@ = Elttrcq [(OR) + 2(ex B(6))(8Q) (; o]
which yields (5.12).0

5
&‘.
;Cf 6. Examples
5 We first confirm that the damped harmonic oscillator is asymptotically
{:" stable for all constant frequency perturbations. Hence, let .
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and

{0},

where v > 0 and weg.
©=R 6 =0 and

To represent frequency uncertainty let G =

c 1
-1 0

Note that A(8) is stable for allfe€R with poles -v+j(w+6).

A(9) = A+ 9

Note that A(8)

can be diagonalized by means of the unitary transformation

Al )
2l - G P

so that
- ) ~V+j(w+6) 0
A(g) £ 0 "A(9)D = .
0 -v-j(w+0)
Hence, usging
AO)BA(0) = (9 90 1) (A(0)EA(6)) @09 .

it follows that
o in(A(B)BA(O)) = 2, 6 €R.

Defining (see (4.15))

A

A=284,y =2

and G = 0, the scalar majorant Lyapunov equation (5.1) has the solution

24
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é = Y/ZV'

where V = "V"F' Choosing V = I2
matrix, Theorem 5.1 guarantees robust stability for all frequency variations

065.

and noting that A= A =2V > 0 is an M

The next example has been chosen to demonstrate the robustness of a
pair of nominally uncoupled oscillators with respect to uncertain coupling.

Hence let

and

Ai = » i = 1.2.
=W, -V
1

where v, W, w, 2 0. Futhermore, let © = {8} and

G = .
= )&1 0

which denotes the fact that the local subsystem (oscillator) dynamics are

assumed to be known. Since

- - 2 2,1/2
"'min(Aj‘Ai) = [4v +(wj-wi) .
define
2v [4u2 + (u&-u&)zll/z
A= [4v2 + (a&-ub)zlllz 2v

Letting V = I, yields V = 2I,. Solving (5.1) yields

25
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23 2 23
g(l.l) = (2v°6 ')’127214-012)/2/2'11(1/ 6-‘)’12721).

-~ _ 20-
9(1.2) = (712+721)/2/§(v 5 712‘)’21).

= (20%6-7, . Y. .+ /2/2v(035-Y. . %),

Q2,2) 12721% %1 12721

where

[~}
1>

1/2 a _ \
¢ (1+s1Y2, 52w -w)/2r.
Clearly, Q is nonnegative if and only if

¥V, < V25 (6.1)
The bound (6.1) characterizes the magnitude of coupling uncertainty for
which stability is guaranteed. Note that the parameter § is a measure of
the frequency separation of the oscillators relative to the damping. When
6> 1, (6.1) becomes asymptotically

%ot < zl99l. (6.2)
which confirms the intuitive expectation that robust stability is
proportional to damping and subsystem frequency separation. This result
does not appear to be predictable from quadratic or vector Lyapunov
functions.

To evaluate the conservatism inherent in the bound (6.1) we solve for

the actual stability region. To render the calculation tractable we assume

that G12 and G21 have the structured form
G [a A 'Bij (6.3)

By constraining (6.3) the set of coupling variations is reduced, which may
or may not lead to a larger stability region. ' Thus our estimate of

conservatism may itself be conservative, i.e., the actual congervatism may

26
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indeed be less than the following analysis indicates. However, without
(6.3) the development becomes intractable. This calculation will thus be

called semi-exact.

By considering the characteristic equation for A+G, lengthy

manipulation shows that A+G is stable if and only if

1/2

Y. Y., < 208 (-g+ [1 +82(1-e2)112/(1-¢?), (6.4)

12721

where € € (0,1] is the smallest positive real root of
€ = (€D 1 +82(1-eD)1/ 12 + s2(1-eD)]. (6.5)

The majorant bound (6.1) and semi-exact bound (6.4) are illustrated in
unified form in Figure 1. For 8 >> 1 note that € = 0(8—1) and thus (6.4)
becomes asymptotically

Y,Ye ¢ vlwl-wzl. - (6.6)

Hence for large § the majorant bound (6.2) is, at worst, conservative by a

factor of 2 compared to the semi-exact bound.

To determine the performance bound (5.12) set R = Ik' Hence it can be

shown that

Jnom = 2/v

and the system has the performance bound

- 2 _
@= 3 o+ /2Py Ry ) 1-20,P) 1) (6.7)
where
- 21/2 /avst/ 2
p12 = 712//2118 » p21 = 721/ 2vd *
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On the other hand, the semi-exact calculation yields

_ 2 2 2 2,. 2
J = max {[p12 +Py t 2p12p21)\ + 28(p12PZl) (1-X11/
max  re[0,1)
(6.8)

(28 4p12p21)\ 26(p12p21) (1-A)11.
Figure 2 compares the semi-exact worst-case performance (6.8) to the
majorant Lyapunov equation bound (6.7). To efficiently illustrate the
results the data is specialized to the case p&z = Phl. Note that the semi-
exact performance is plotted for several values of § because of the explicit

dependence of (6.8) on & via §.
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Six methods for design of reduced-order compensation are compared using
an example problem given by Enns. The methods considered comprise five LQG
reduction techniques, reviewed in a recent paper by Liu and Anderson, and
the Optimal Projection theory as implemented via a simple homotopy solution
algorithm. Design results obtained by the different methods for forty-two
different design cases are compared with respect to closed-loop stability
and transient response characteristics. Of the LQG~reduction procedure s
two are found to offer distinctly superior performance. However, only the
Optimal Projection method provided stable designs in all cases. Further
details are given on the performance of the numerical algorithm for solving
the optimal projection equations and the corresponding design results.
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1, Introduction

The design of reduced-order dynamic controllers for high-order

systems is of considerable importance for applications involving large
spacecraft and flexible flight systems. Hence it is not surprising that

extensive research has been devoted to this area. A recent paper by Liu and

Anderson [1] subjected five reduced-order controller design methods to both

theoretical and numerical comparison. The computational comparison was

based upon an example problem considered by Enns [2]. The five methods

compared in [1] are:

1.

5.

Method of Enns [2]: This method is a frequency-weighted,
balanced realization technique applicable to either model or

controller reduction

Method of Glover [3]: This method utilizes the theory of

Hankel norm optional approximation for controller reduction

Davis and Skelton [4]: This is a modification of compensator
reduction via balancing which covers the case of unstable

controllers

Yousuff and Skelton [5]: This is a further modification of

balancing for handling stable or unstable controllers

Liu and Anderson [1]: In place of using a balanced
approximation of the compensator transfer function directly,
this method approximates the component parts of a fractional

representation of the compensator.

All of the above methods proceed by first obtaining the full-order

1LQG compensgator design for a high~order state-space model and then reducing

the dimension of this LQG compensator.




- "mmvw

Lo B

The present paper complements the results of Liu and Anderson by

giving a numerical comparison (again using Enns' example) of methods 1-5

with a sixth method:

e

6. Optimal Projection (OP) equations [6]: Reduced-order

compensator design by direct solution of the necessary

e — |

conditions for quadratically optimal fixed-order dynamic

compensation.

L0

Method (6), like methods (1-5), has been shown to have intimate

o

connections with balancing ideas [7]. Moreover, the first step in one
iterative method for solution of the OP equations is almost identical to

method (4). Method (6) differs from the other methods, however in that it

]

o

does not reduce the order of a previously obtained LQG design but rather

directly characterizes the quadratically optimal compensator of a given

e

fixed-order. The OP equations constitute four coupled modified Riccati and

ﬁi Lyapunov equations wherein the steps of regulator design, observer design
and order reduction are completely and inseparably intermingled.
o
R: The organization of this paper is as follows. In section 2, we
state the problem considered and review the OP design equations. Section 3
‘! gives the computational algorithm used herein for OP design synthesis.
Finally, section 4 sets forth the example problem of Enns and compares the
§§ results of all six methods obtained for this example.
55 2. Problem Statement and Review of OP Design Equations
gi Here we consider the linear, finite-dimensional, time-invariant
system:
% = Ax + Bu + v, X € RN.
@ (1)
y=0C + voi y € RP
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where x is the plant state, A is the plant dynamics matrix and B and C are
control input and sensor output matrices, respectively. vy is a white
disturbance noise with intensity matrix V, > O and w, is observation noise

with nonsingular intensity V2 > 0.

The reduced-order compensation problem consists in designing a

constant gain dynamic compensator of order Nc < N:

u = -Kq, uGRi

(2)

N

Acq+Fy; q€R

£eo
[}

Obviously, the heart of the design problem is the selection of the constant

matrices K, F and Ac'

Methods 1-6 all associate with the closed-loop system (1,2) a

steady-state quadratic performance index, J:

J = lim J/Itl-to
tl-to-—-no
31

J £ I dt E[xTRlx + uTRzu] 3)
%

Ry 20, R, >0

Methods 1-5 first design an LQG compensator (select K, F, Ac to
minimize J.) and then reduce the order of the resulting N state compensator.
Thus, in methods 1-5, the quadratic performance (3) is brought into play in
the initial LQG design step, but a variety of balancing and Hankel norm
approximation ideas are utilized for the subsequent compensator-order
reduction step. In contrast, method 6 selects, K, F, Ac by addresging the

uadratically optimal, fixed-order compensation problem i.e., for Nc fixed

(and < N), choose K, F, Ac to minimize J . The OP design methodology

RN MR
. \gkekt..'ta‘?’l'q‘l'g
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proceeds by solving the first-order necessary conditions for this

optimization problem using the new forms for the necessary conditions given
in [6]. The basic OP design equations reduce to four modified Lyapunov and
Riccati equations all coupled by a projection of rank Nc' In general these
design equations produce compensators that cannot be obtained by reduction

of an LQG compensator [7].

Methods 1-5 have been reviewed extensively in [1-5], and will not
be discussed in detail. Here we shall merely review the OP design equations

to the extent needed to illustrate the solution algorithm used for this

study.

To do this, a few preliminary results and notational conventions

must be given. First, we have Lemma 1, ([7]:

Lemma 1. Suppose ae RN‘N
rank (Q) = rank (P) = rank (QP). Then the product QP is semisimple (all

Jordan . blocks are of order un:i.iy) with real, non-negative eigenvalues.

and Pe rI&N are nonnegative definite and

Moreover, there exists a nonsingular ¥[Q,P] such that:

¥ 1Q,P1QPuIQ.2) = A (4a)
T [Q.PIB¥(Q.B] = A (4b)
¥ 1Q,P10¥ T1Q.P] = A (4c)
wvhere
A= diag } (5)
k=1...NMk

is the positive diagonal matrix of the square roots of the eigenvalues of
QP.
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When for a given pair Q and P, a ¥{Q,P] exists such that (4) hold,

Q and P are said to be contragrediently diagonalizable and balanced [9] and

¥[Q,P] constitutes a simultaneocus contragradient transformation.

Determination of such a transformation is the fundamental mathematical

operation of balancing.

Furthermore, it is clear that the quantities:

- - (k) 5
n, (Q,P] & w[q, P19 1 g, p] (6)
1; m=n=k
N
mn 0:; otherwise

form a set of mutually disjoint unit rank projections i.e.:

Thus the sum of r distinct Hk's is itself a projection of rank r. Also QP

can be alternatively expressed as:
i ~ o 2
= 2 T [QrlA (8)
=1 k k

By v1rtue of (8) and the usage in [10], we ternllk[QP] the eigen-projection
of QP associated with the k th eigenvalue.

The above results and conventions, together with the notations:

Z 8 BR?BT (9a)
2 c*v;le (9b)

(9¢)

)
w
(g ]
]
.'
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ﬁi allow us to state the main result [6-8] upon which the OP reduced-order

compensator design method is based:

e
éﬁ Theorem 1. Consider the quadratically optimal, fixed-order

compensation problem with-Nc < N fixed.

S o . oNxN

Let nonnegative definite Q, P, Q, P €R be determined as
ﬁ} solutions to the following equations:
1%
i T - <. _T

Y 0=4Q + QA" +V, - QD Q + rlQZ:er (10a)
" 0=ATP+PA+R, - BLP+ TRy Pr (10b)
E,‘. 1 1FLET)

. 0 = (A-XP)Q + QUA-IBT + qXa - 7a¥er| (10¢)
. — T‘ - — T
% 0 = (A-QY) P + P(AQY) + PY P - rlPZPrL (104)

. N

Y < bt
E: = 3" M Qp] (10e)

K=1

N g

Then with I, G€ R © given by:

A

W T'= [IN 'OJ\I’.l [al;]
c
(] (11)
& G = I PO ’
- IN oO]‘I’ [Q.P]
c
g
- the gains:
& K R;]'BTPGT
8 P o=TQCY, (12)
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A, = T(A=Q -6t
determine an extremal of the performance index J.

A has been remarked in [8], the value of the performance index is
unchanged by any transformation of the compensator state basis — in other

words, for any nonsingular S € RNxN:

le, s‘lacs) (13)

J(K,F,A ) = J(KS,S
Furthermore, when Nc = N, 7is a rank N projection on RN by virtue
of (10e). Hence T = I,and 7 =0 and equations (10a), (10b) become
uncoupled Riccati equations for determination of Q and P. Also 'and G
become W.l[Q.P] and WT[Q.P]. Finally. setting S = W-l and using (13) and

(12), extremalizing gains are given by:
K =R 'BP

= QCIV? (14)

L
|

. A-QE-Z?

>
L]

with Q and P given as solutions to the independent Riccati equations,
(10a,10b), with 7y = 0. Hence vhen N, = N, the design equations (10), (11)
and (12) immediately reduce to the LQG design for a full-order compensator.

However for Nc < N, equations (10) are first-order necessary
conditions and generally possess multiple solutions corresponding to
multiple extremals that can exist. This matter was explored in [11]
relative to the related quadratically optimal model reduction problem.
Basically, equation (10e) tells us that the rank N, projection, 7, which
defines the geocmetry of.thc fixed-order compensator, is the sum of Nc out of
N eigenprojections of QP. However, the necessary conditions do not tell us

which Nc out of N eigenprojections are to be selected to secure a global




pinimum of J. Indeed for any possible selection of Nc eigenprojections out

e = v

of N, equations (10) may possess a solution corresponding to a local

extremal. By virtue of (10e) and the notational conventions of (4) and (8),

o ——

the selection of Nc eigenprojections is defined (generically) by the manner
in which the eigenvalues..\k. are ordered. Recently, Richter [12] has
applied topological degree theory to investigate the possible solution
branches and the character of the associated .extrema and has devised a

homotopy solution algorithm which selects the A-ordering which homotopically

=33 =

converges to the global minimum.

o

For the example considered in this paper, we adopt the ordering

>

convention:

- e

LAl

A1 11\22_000 lAN (15)

g
. .

in constructing ¥[Q,P]. (15) together with (10e) imply that r is taken to

be the sum of the Nc eigenprojections corresponding to the Nc largest

22

eigenvalues of QP. Generically, this choice leads to an unequivocal choice

of one solution branch of (10) corresponding to a particular extremal.

LARN

-~ -

Thus, the OP design method investigated here consists in solving
(10) with convention (15) and then evaluating the gains according to (12).
We apply a simple homotopy solution algorithm, described in the next
section, to the example problem of Enn s specified in Section 4 and compare
results with methods 1-5. A more advanced and efficient homotopy algorithm
is given in [12].

= 1R

Ex- |

-
!
3

>,

3. An Algorithm for Solution of the OP Design Equations

-
¥

As stated, the OP design method is to solve (10) (with stipulation
‘ (15)) for P, Q, P, Q, and then evaluste the gains using (11), (12). A
logically distinct issue is precisely how equations (10) are to be solved.

e X

22

Here we present an algorithm that has been used for some time and requires

hAaA

b 8

DO U0
REN

DX SO I, A . ,=‘=.,l~|_ ! DAL (3C L 3
At e, a?t‘ﬁ"«.k”.l’f.l‘n,‘l" QPR ‘l’,!?"i.."'“,a& A "l‘l'tll' N "!:“*.(""‘!t"i,“,f ‘!","‘:"ﬂf‘fh‘.......‘:“Q:‘h"‘.‘!'a‘t'b: ‘?’t' "'g‘ '-'*"‘A"r!iltt
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only a standard LQG software package for its implementation. For
convenience this same algorithm was employed to obtain the numerical results

for method 6 presented in the next section.

The basic motivation of this algorithm is the observation that the
four main equations (10a)-(10d) are coupled only via the terms involving Ty
on the right hand sides. If these 7) terms were deleted, then all five
equations can be solved sequentially - moreover (10a),(10b) reduce to

ordinary Riccati equations and (10a), (10b) are Lyapunov equations. Likewise

under conditions in which QZQ and PZP are "small" relative to the
remaining terms (e.g., sufficiently small state-weighting and disturbance
noise intensity and/or sufficiently large control weighting and observation
noise intensity) the T) terms are typically found to have little effect. 1In
this situation the artiface of fixing an initial T and then solving (10)
as ordinary Riccati and Lyapunov equations is likely to give a reasonable
approximation to the true solution.

Since only the 7 terms on the right of (10a-10d) occasion most of

the difficulties, it is nocluuty to somehow bring these terms into play
gradually. There are two principal ways to do this. The first is an
iterative relaxation approach, i.e., fix T solve (10a)-(10d) sequentially,
then update T using (10e) and repeat until convergence, in some sense, is
achieved. The second method is a homotopy approach, i.e., multiply the 7
terms by & scalar parameter, a ¢[0,1], then starting with a = 0 and

gradually incrementing a, solve (10) repeatedly until a = 1.

The algorithm used here consists of two iterative loops. The
inner loop uses the relaxstion approsch and is embedded within an outer loop
which implements the siaple homotopy approach.

The inner loop follows the earlier computational scheme discussed
in [7] and is illustrated in Figure 1. Note that the parameter a ¢ [0,1]
multiplies the T, teras but is held fixed within the inner loop and is only

incremented on the outer loop. As Figure 1 shows, one first fixes Tt equal

T TE T R




Figure 1: Inner Loop of OP Solution Algorithm

o T Eem

&: A Compute Q, P, Q, P > 0

R 0 =4aQ + QAT + V1 - QZQ + arlqzq,-'{
= aT T
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to the previous iterate (or set 7 = EN Yhen starting) and then solves (10a)-
(10d). Once new iterates for Q, P, Q, P are obtained, r is updated by
determining the balancing transformation W{a.gl. To enhance convergence of
the modified Riccati equations, the updated 7 is taken to be the weighted
sum of all N eigenprojections - the first Nc eigenprojections are given
unity weight while the rth (r » Nc) eigenprojection is weighted by

ArA&N < l. As convergence proceeds, Ar[AN approaches zero for all r > Nc
c c

and the numerical rank of 7 approachs Nc. The indicsted convergence check
tests the relative excess of the numerical rank of 7 over Nc and terminates
the inner loop iterations when this "rank excess"™ falls below tolerance €.
In these studies € = 0.1 is used. The inner loop is terminated when either

this tolerance is achieved or when the prescribed number of iterations is

exceeded.

When the convergence criterion is satisfied, the gains, K, F, Ac
are computed using (11) and (12) and the steady-state performance, J, is
evaluated. Performance evaluation invokes no assumptions regardirg the
convergence and optimality of the solutions to (10). Specifically. the
values of K, ¥, Ac resulting from application of (12) are accepted as they
stand and are used to construct the system matrices of the augmented system
with state vector X' = [xr.qu. Next the 2Nx2N Lyapunov equation for the
second moment matrix of the augmented, closed-lo0p system is solved.
Finally, J is evaluated as & linear function of various sub-blocks of the

sugnented system second moment matrix.

The outer loop, depicted in Figure 2, implements the homotopy
approach by incrementing a and coatrolling the increment step size. Only at
the start is the inner loop initialized by 7= IN' Oth:tv{so. vhen a is
incremented, the inner loop is initialized using P, Q, P, Q, and 7 as
obtained wvith the previous value of a. o is taken to be 0 at the start and
is subsequently incremented by &. The default value of A is 0.1 although
other desired values asy be input. However, vhenever the inner loop is
terminated without achieving the convergence tolerance ¢, the homotopy

parameter increment, A, is halved. This provides simple control over the

Rtunddeaitendiabalioade |
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homotopy step size. The entire algorithm terminates when a = 1.0.
Alternatively, at the user's option, the algorithm can be terminated when
the change of the performance index, J. over two successive outer loop
iterations is sufficiently small - thus indicating acceptable convergence

with respect to quadratic performance.

4. A Design Example and Comparison of Regults

We use the example problem given by Enns (2] to compare methods
1-6. Results on this example obtained by use of methods 1-5 are discussed
in [1]. Here, we augment these results by considering method 6 and

undertake an overall comparison.

The plant to be controlled in this example is a four-disk system
and is linear, time-invariant, SISO, neutrally stable (with a double pole at
the origin) and non-minimua phase and of eighth order. Numerical values of
the matrices A, B, C, Rl. Rz. vl. vz defining this problem are given in
Table 1.

For each of the methods 1-6, controllers of different reduced
orders (from seventh to second order) were obtained for seven different

values of the disturbance noise intensity paraseter, 9,°
9, *= .01, 0.1, 1.0, 10, 100, 1000, 2000
Thus esch method was used to obtain results on 42 different design cases.

Each of the six methods was originally devised according to a wide
variety of different criterion for adequate performance of a reduced-order
compensator design. Despite this wide disparity among the different aims
and motivations of the several methods there are at lesst three criteria
that may be reasonably applied to judge the success of a reduced-order

design:

11
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-6.004

-0.5822

-9.9835

-0.4073

~-3.982
0

0

V, = q,BB" (q,

{0, 0, 0.0064,

(1.0 x 10~ %) u7x;

1 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.00235, 0.0713, 1.0002, 0.1045, 0.9955]

(1, 0, 0, 0, 0, 0, 0, O]

[0.01, 2000.0])

Table 1: Data Matrices for the Example Problem of Enns (2]
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1. Closed-loop stability

2. Extent to which the reduced-order compensator impulse and step

response match the full-order, LQG, compensator response
3. The closed-loop quadratic cost

However, item 3 will not be considered since costs for methods 1-5 were not
provided [1]. The comparison in item 2 examines the output y(t) in response

to an input v(t) injected in the loop as indicated in Figure 3.

First, Table 2 summarizes the closed-loop stability properties of
all design methods in all 42 cases. Generally, it is seen that all methods
achieve a high rate of success in achieving closed-loop stability for the
larger Nc values and small 9 - On the other hand, methods 1-5 experience
greater difficulties for low values of Nc and, particularly, for large 9,
With respect to stability, the only qualitative distinction among the
sethods is that method 6 (optimal projection) produces stable design in all

42 design cases.

The trend toward increasing difficulty of the design with
increasing disturbance noise intensity is highlighted by Table 3 which shows
the percentage of closed-loop stable designs given by the different methods
for the different values of 9, and in total. That the fraction of stable
designs declines with increasing q, is to be expected since larger
disturbance noise intensity increases Q, thereby incressing observer gains

to produce faster observers that are more sengitive to order reduction.

Overall, for this example problem, method 4 exhibits the smallest
fraction of stable designs (with 24 unstable designs) and does not achieve
any order reduction for q, = 100, 1000, 2000. Of the LQG reduction methods
(1-5), methods 1 and 5 fare best - with only 4 unstable designs out of 42.
As noted, optimal projection (method 6) yields stable designs in all cases.

12
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Table 3. Percentage of Stable Designs Given By
the Different Methods
q, = Total Z for
2 0.01] 0.1 1 10 100 1000} 2000| All Cases
Method
Enns (1) 100 | 100 100 100 83.3] 83.3| 66.7 90.5
Glover (2) 100 | 83.3| 83.3| 83.3( 33.3 0 16.7 57.1
Davis & Skelton (3) 83.3) 33.3] 50.0] 66.7] 66.7| 33.3} 33.3 52.4
Yousuff & Skelton (4)] 100 | 83.3] 83.3] 33.3 0 0 0 42.9
Liu & Anderson (5) 100 | 100 ]| 100 | 100 | 100} 83.3] 50.0 90.5
Optimal Projection (6) 100 100 100 100 100 100 1C0 100.0
|
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To permit independent corroboration by interested readers of the
OP design capabilities we give numerical values of the compensator gains

obtained by method 6 for a selection of the more difficult cases* ~ namely:

2, 3, 4, 5,6, 7

qz 2000. Nc

¢.o0:, 0.1, 1.0, 10, 100, 1000, 2000

N =2, 9,

Next, consider the accuracy with the step and impulse responses
(see Figure 3) of the various reduced-order compensator designs track the
cortespondingAresponse of the full-order LQG design. These characteristics
exhibit similar trends as noted with respect to closed-loop stability. For
example, Figure 4 shows a comparison of unit step responses for second-order
compensator designs with a small value of q, (= 1.0). 1In this case, all
methods exhibit stability and reasonable agreement with full order design.
However, as the comparison of methods 1-5 in Figure 4.a shows, methods 1 and
5 show distinctly superior tracking accuracy. For clarity, methods 1 and 5
are compared with method 6 in Figure 4.b. Here it is clear that method 5 is
somewhat closer to the LQG response than method 1 while method 6 is closest

of all.

Similar trends are seen in the comparisons of the impulse
responses (for the same design case) in Figure 5. Once again, of the LQG
reduction methods (compared in Figufe 5.a), methods 1 and 5 display '
gignificantly better agreement with the LQG response; This agreement is
slightly exceeded by method 6 (Figure 5.b), but on the whole, methods 1, 5

and 6 show excellent performance. .

On the other hand, for a fairly large vealue of qqe both stability
and agreement with LQG response is degraded somewhat for several methods.
Figures 6 and 7 show comparisons of unit step and impulse responses for the

case Nc =5, q, = 100. In this case, only methods 1, 3, 5 and 6 yield

# See Reference [13] for a complete listing of all 42 cases
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stable designs and are thus compared. Of the LQG reduction methods, method
5 exhibits distinctly better agreement with the LQG responses. Once again,
it is found (Figures 6.b and 7.b) that method 6 somewhat excels in the

accuracy with which it's transient responses track the full-order design.

Thus, for the 42 design cases studied in this example problem,
methods 1 and 5 demonstrate good guccess in achieving stable closed-loop

designs while method 6 achieves stable designs in all cases.

Also, in the cases examined, methods 1 and 5 offer good transient
response characteristics while method 6 tracks the full-order compensator

responses the closest.

In view of the good performance exhibited by method 6, we present,
in the remainder of this section, additional details on the OP design
results and the performance of the solution algorithm described in

Section 3.

First, as noted, the OP design philosophy focuses on the steady
state quadratic performance index, J, (defined inm (3)) as the "figure of
merit"™ for a reduced-order compensator design. Thus..we appropriately
display, in Figure 8, several plots of the performance index J (normalized
by q2) versus compensator §rder for all 7 values of q,- Note that apart
from minor variations that are likely due to the benign convergence
tolerance used in the solution algorithm, J generally decreases
monotonically with increasing Nc’ These graphs thus illustrate the basic

tradeoff between performance and controller complexity.

Note that for small q, (Figure 8.3). performance is not much
affected by order reduction. This is to be expected since small disturbance
noise intensity, in this problem, leads to low observer gains and to small
values for the terms involving Ty in equations (10). Since the T, terms in

equations (10) have little effect, the OP designslﬁte approximated by

14
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- balanced projections of the LQG design. This might also help to explain the

'l relatively successful performance of all methods for small q,-

For large (Figure 8.b) and for very large (Figure 8.c) values of
qqe however, the degradation of performance with reduction in order is ]
l' increasingly steep. For example, while for q, = 1.0, the 2nd order

performance is only 2.52 above the LQG performance, for q, = 2000, the

S second-order performance is 270% above the LQG value. Thus, order
- reduction under large disturbance noise does appear to be a more delicate
. :3 matter.
S
. While increasing difficulties with q, are not clearly manifested
gs in the stability or transient response properties of the OP designs, these
are reflected in the computation required to arrive at the final designs.
K To explain this we now describe the specific design steps taken
E and the performance of the solution algorithm. Each design case was treated
;‘ | using the OP solution algorithm shown in Figures 1 and 2 and & maximum
~ homotopy step size of 1.0 was input. Furthermore, for each design case, the
\ Z: algorithm was started "cold" - i.e., without being initialized with gain
! values obtained in previous cases. On initial application of the algorithm,
!l the OP design results presented here were obtained after using the numbers
\ of inner loop iterations given for each casge in Table 4.
E - Note that with &4 = 1.0, the logic of the outer loop (Figure 2)
. !’ implies a minimum of two inner-loop iterations. Inspection of the results
: " obtained in some of the benign cases suggested the possibility that only one
) & inner loop iteration was needed. Consequently we re—examined the cases
' 4 compriging q, = 0.01, 0.1, 1.0 and Nc =35, 6, 7, by revising the outer loop
logic to output gain values after only one pass through the inner loop. It
i Eﬁ was found that this produced acceptsble accuracy in the cases qy = 0.01;
. e =5, 6,7, 9, =01, N =6,7 and q, = 1.0, N, = 7. Thus, the revised
? sé results are as given in Table 4'. Since the gains are essentially
&
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Table 4. Number of Inner-Loop Iterations Used in OP Solution Algorithm
‘ - Initial Design Computations

4, |
g 0.01 0.1 1 10 100 | 1000 | 2000 i
Order, N ' I
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, unchanged, the design results obtained on the first application are the ones

' presented here.

As Table 4' shows, relatively few iterations were required in the
benign, small q,. cases. In particular, only one inner loop iteration was
l' needed in most of the cases comprising q, = 0.01, 0.1, 1.0 and Nc =5, 6, 7.
However, for large qps Up to 10 iterations were required. Thus it is clear
e that all methods run up against a fundamental source of difficulty when

v disturbance noise is large.

gg At the time of writing, full compilation of the computation times
. required for all methods on the same machine is not available. All OP
?2 calculations were performed on a Harris H800 minicomputer. However, as a
rough estimate, it is fair to say that in the benign cases, the OP
computation is comparable to the burden incurred by methods 1-5. For the
difficult, large q, cases the OP computational burden is clearly in excess
- of methods 1-5 (although certainly not excessive from a practical point of
L view). However, it is precisely in these cases that the LQG reduction
kY methods experience the greatest difficulties in producing closed-lcop stable
e designs. Thus a meaningful comparison of relative computational burden in
thegse cases cannot be performed.
) Finally it should be noted that the computational burden
:ﬁ asgsociated with OP for the designs presented here is also an artifact of the
'J solution algorithm depicted in Figures 1 and 2 and is not solely the result
[ of the design equations themselves. This algorithm was convenient to use,
y and was the first implemented since it requires only standard LQG software.
.. On the other hand, the algorithm discussed in section 3 takes no particular
| 25 advantage of the gpecial structure of the fundamental design equations,
. (10). Its principal draw-back is that it involves the iterative solution of
;? four NxN, nonlinear matrix equations. To remedy this, Richter [12] has
B developed a step—wise homotopy algorithm which requires, at each homotopy
: :' step, the solution of four N xN linear equations. Clearly, for small Nc’
this offers the potential for computing an OP design with less computational
™~
~
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| , Table 4'. Number of Inner-Loop Iterations Used
i In OP Solution Algorithm

- Revised after reconsideration of cases

- q, = 0.01, 0.1, 1.0; N = 5,6,7

:', 2 c

g

. qz

N \ 0.01 0.1 1 10 100 | 1000 | 2000
y\& Order. N,

”

. 7 1 1 1 4 5 8 10
o

"Q 6 1 1 2 6 4 8 10
N 5 1 2 2 6 5 S 7
' 4 2 2 2 8 9 6 10
3 4 4 4 8 9 7 8
<

2 4 4 4 8 9 9 10

04 "l.*“t.i

Uy
ﬂﬁbxiﬂ'i‘nﬂ 1
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b burden than is required for a full-order LQG design. It is anticipated that
\ i the future utilization of Richter's algorithm will permit a more accurate
¢ . and definitive comparison between the computational cost of the LQG-
’E‘ E}.& reduction techniques and the Optimal Projection formulation.
[
¥
o
o 5. Concluding Remarks
ol :_-:
‘. 2o In this paper, we have used the example problem of Enns {[2] to
JE perform a computational comparison of six methods for reduced-order dynamic
.o compensator design. Methods 1-5 are based upon LQG-reduction procedures
_' . while method 6 is based upon the Optimal Projection (OP) formulation.
; &
0f the LQG-reduction methods, the methods of Enns [2] and of Liu
,\: and Anderson [1] exhibited particularly good stability and transient
',; - response properties. However, in the cases examined, the OP method gave
' RN somewhat better transient response characteristics and, unlike the LQG~-
I ﬁ reduction procedures, produced closed-loop stable designs for all the 42
'. " design cases.
b
g A precise comparison of the computational burdens incurred by the
. ! variocus methods is not possible at present. However, as a rough comparison,
:: - it is fair to say that the OP method entailed comparable computation in the
; ?; relatively benign design cases and more computation in the difficult cases.
.:: g However in this case LQG reduction methods often produce unstable designs.
Thus the OP method exhibits a tradeoff between computational burden and
. OF corresponding design reliability. Present developments are directed toward
’ Y implementation of advanced homotopy techniques which take particular
?: ;_'; advantage of the structure of the basic OP design equations to markedly

improve design computation speed.
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Appendix 1

In the following, numerical values of the reduced-order
compengator gains, K, F and Ac obtained via the OP solution algorithm
discussed in section 3 are given for the design cases:

qz 2000. NC = 2. 3. l‘. 5. 6.’ 7

N
c

and

2 9,

0.01, 0.1, 1.0, 10, 100, 1000, 2000
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CASE: q, = 2000, Nc =6

0.8190E-03 0.3031 0.8960E-03 0.7075E-01 0.3110 0.2265
-2.356 -0.2845E-02 0.5058 0.1198E-01 O0.3847E-02 -0.4306E-01
-0.7592E-02 -0.6887 -0.1431E-02 0.2356 0.7586 0.5132
A =
¢ -1.358 -0.9398E-01 -0.3875 -0.1281 1.265 -0.8882E-01
-8.168 -0.1105E-01 -1.861 -1,709 0.1190E-02 0.1426
-16.17 ~0.4290E-01 -3.152 -1.545 -0,3782 -1.799
&g FT = [ 0.2713E-04 -0.7675E-01 -0.2492E-03 ~0.4487E-01 -0.2702 -0.5356]
ﬁa K = [-0.4324 -0.5140 0.1322 -1.545 ~0.1364 ~3.524]
ﬂ CASE: gq, = 2000, N, =5
0.1335E-02 -0.3220 0.5482E-02 0.4440E-01 -0.1963
gg 2.226 -0.3920E-02 -0.4659 -0.3941E-01 0.4951E-02
A.c = -0.5418E-01 0.6432 -0.1099E-01 0.2117 -0.4355
)
. -0.8042 0.2011 =0.2791 -0.1891 -1,488
6.046 -0.1203E-01 1.376 2,351 -0.6778E-03
FT = [ 0,4018E-04 0.6557E-01 -0.1614E-02 -0.2413E-01 0.1817]
K = [-0.4697 0.5101 0.4346 -1,795 -0.4017E-01)
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l CASE: q, = 2000, Nc = 4
0.3225E-02 -0.3717 0.1238E-01 -0.5735E-01
E 2.170 -0.3860E-02 -0.3623 -0.1829E-01
A = )
. ¢ -0.1140 0.5365 -0.2564E-01 -0.2749
1.176 -0.1297 0.3488 -0.4452
s F' = [ 0.9245E-04 0.6044E-01 -0.3234E-02 0.3370E-01]

[-0.4871 0.5626 0.6852 2.540)

=
]

CASE: q, = 2000, N_ =3

. 0.2351E-02 0.1516 0.1492
‘ A = -1.447 -0.9385E-01 0.6597
. g -1.592 -0.7041 -0.1027E-02
: FT = [ 0.5944E-04 -0.3619E-01 -0.3990E-01]
‘i K = [-0.5372 -1.410 0.1033]
_ g CASE: q, = 2000, N, =2
-0.8378E-03 =0.4671
; ﬂ A=
_ ¢ 2.047 -0.1095E-01
v 5 FT = [ 0.3272B-04 -0.7625E-01)
: i K= [0.3807  -0.6411)
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q, = 1000,
0.1745E-02 0.4039
-2.129 =0.7569E-02

[-0.6242E-04 0.7341E-01)

{ 0.3753 0.5049]

CASE: q, = 100,

0.2742E-02 0.4216
-2.396 =0.2274E-01

(-0.1538E-03 0.1303]

[ 0.2351 0.4178)

0.7474E-02 0.1970

[ 0.4814E-03 -0.1081)

[-0.1740 =0.9190

N
c

N
e




0.7832E-02 -0.1812

>
(1]

1.269 =0.7143

"y
"

[ 0.8516E-03 0.1356)

K = [-0.1003 0.5206

CASE: gq, = 0.1, Nc =2
0.9915E-02 -0.1578
be = 0.7650 -0.5093
T = [ 0.1695E-02 0.1264]
K = [-0.5729E-01 0.2733]
CASE: q, = 0.01, N =2

0.1357E-01 -0.1398
0.3985 =0.3430

S W I S BE B B 0 B aa
L)
]

{ 0.3451E-02 0.9371E-01]

(-0.3045E-01 0.1421]
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A HOMOTOPY ALGORITHM FOR SOLVING THE OPTIMAL PROJECTION EQUATIONS FOR
FIXED-ORDER DYNAMIC COMPENSATION:
EXISTENCE, CONVERGENCE AND GLOBAL OPTIMALITY

Stephen Richter

Harris Corporation
Government Aerospace Systems Division
MS 22/4848
Melbourne, FL 32902

ABSTRACT

The purpose of this paper is to present a
homotopy algorithm for solving the Optimal
Projection Equstions. Questions of existence and
the number of solutions will also be examined. It
will be shown that the number of stabilizing
solutions to the given Optimal Projection
Equations can be determined and that all solutions
can be computed via a homotopic continustion from
s simple problem. For an important special csse,
where the number of inputs or the number of
outputs to the system is less than or equal to the
dimension of the compensstor, there is only one
solution to the OPE, thus gusranteeing that
globally optimum reduced order controller can be
computed,

1, Introduction

Despite significant advances in the cost and
performance of digital computers over the last
decade, there remains s need in seversl
technological areas for low-order, high-
performance controllers. In particular, this
paper is motivated by the problem of vibration
suppression in large flexible space structures.
Such systems are infinite-dimensional (distributed
parameter) in nature and hence any finite-
dimensional controller is necessarily of reduced
order. The need for low—order controllers is
further driven by severe constraints on cost,
weight and power in spsce systems, not to mention
the restriction to space—qualified computational
hardware.

A wide variety of approaches have been
proposed to obtaining reduced-order controllers.
A comparison of several approaches to controller
reduction is given in [1]. These methods operste
by first designing a high-order LQG controller and
then obtsaining a suitable low-order controller by
means of controller reductionm.

A more direct approach to designing reduced-
order controllers involves optimizing the
quadrstic performance functional over the class of
controllers of fixed order. The controller order

Supported in part by the Air Force Office of
Scientific ..asearch under contract F49620-86-C-0038.

may be determined by implementation comstraints or
can be varied for performance/throughput tradeoff
studies.

An interesting reformulation of the parameter
optimizstion approach was given recently in (2].
By setting the gradients to zero, the suthors
shoved that the first order necessary conditions
can be transformed to yield explicit gain
expressions for extremsl fixed-order controllers.
An sppealing aspect of this formulation is the
recasting of the necesssry conditions in a fom
vhich generslizes the classical (full-order) LQG
solution. Specifically, instead of a psir of
separated Riccati equstions, the necessary
conditions for fixed-order dynamic compensation
comprise a system of two modified Riccati
equations and two modified Lyapunov equations
coupled by an oblique projection whose rank is
precisely equal to the order of the compensator.
When specialized to the full-order case, the
projection becomes the identity, the modified
Lyapunov equations drop out, and the modified
Riccati equations simplify to the classical
Riccati equations. Hence this approach sppears to
be a natural and fundamental generalization of
LQG.

Regardless of how appealing the optimal
projection formulation may appear to be and in
spite of the empirical advantages claimed in [2-
10], its contribution is vacuous unless certain
serious questions can be resolved. These include:

1. Under what conditions on the problem data
can the optimal projection equations be
guaranteed a priori to possess a
solution?

2. Given problem dats, exactly how many
solutions do the equations possess?

3. Of the possible solutions, what are their
stability properties, what is their
performance, and which is the global
Optilul? o

4. How cen numerical slgorithms be
constructed which can be gusranteed to
converge to any desired solution
especially the global minimum?
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It seems clear that any attempt to address
the above issues must utilize mathematical methods
which are global in nature. To this end we have
applied degree theory and sssociated homotopic
continustion methods ([13-24]) to snalyze the
solutions to the optimal projection equations and
to construct convergent, implementsble algorithame
for their computation. The purpose of this paper
is to report significant results in this regard.

2. Homotopic Continustion and Degree Theory

2.1 Homotopic Continustion. A homotopic
continuation method for solving a problem is to

first solve an essy "similar" problem, and then to
continuously deform the easy problem into the
original problem and to follow the path of
solutions as the easy problea is deformed into the
original problem. This is shown conceptually in

Figure 1.
-
b |
tad t ts?
: o =8, Fame
Figure 1
Example 1. Consider calculating the roots of a
polynomisl
F2) =2+, 2% 402" %., 4 a = 0.

2

Let the easy problem be Fy(2) = 2" -1 =20 end

deform Fo to F

F(Z,t) = 2" + :(-.z"" + ‘22:-2""::) -1+t
At t =0, F(Z,0) = FO(Z) and F(Z,1) = F(2).

The solutions Zk(t) which satisfy F(Zk.t) = 0 are
found by differentiating !‘(L‘(t).t) = 0 to obtsin

ﬁ .. .Izk“" + aziz...nn -1

dt

nz:" + t(ay (n-1)7{.2. et y)

This differential equstion cen be integrated from
the n initial values

iaw
Zk(O) =e- “= k
to the n solutions at t=l,

2.2 Degree Theory.

N

Definition 1: Given s function f mapping D in R

into V in Rx a regular value of £ is an
element p in V such that the NxK matrix of
partial derivatives of £, f:(x). has full

rank for esch x in f-l(p). Note that if N=K
then f*(x) having full rank is equivalent to
dct(fx(x)) » 0.

Definition 2: Given a function f mapping an open

gset D in RN with boundary D into V in RN and
a8 point p in V, the degree of £ for domain D
and point p (written Deg(£,D,p)) is defined
and is an integer if there is no x in the

boundary D of D such that f(x)=p. If p is a
regular point of f then the degree is the sum
of the signs of the determinant of the
Jacobians of £ evaluated at sll x such that
f(!)*P. i_u.ol ’

deg(£,D,p) = Sign( Dot(fx(xp)))
vwhere f(xp) =p

The degree has the following properties:

1) 1f deg(£,D,p) ¥ O then £f(x)=p has at least one
solution in D
N N . .
2) Let f£(x,t) ¢ R to R for each t in [0,1] with
f continous. If for each t, f(x,t)=p has no

solutions for x in D, then deg(f,D,p) is
constant for t in [0,1].

3) If f is as in (2) and deg(f,D,p) » O, then at
least one solution of £(x.0)=p connects with a
solution of f(x,1)=p.

Example 2. Every polynomial has at least one root
(over the complex numbers)

n-2
z

n °
Let f(z) =2 + s AT

We wish to show that deg(£,D,0) ¥ 0.

Let f(z,t) = ” + t(.lzn-l + .2z°.2

+a)-14+¢
n

+ e

Let D = 2 s.t |g] < R, vhere R is some large
number. :
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For z on D (|z] =R) 2" is much larger than
tai:n.1 so £(z,r) ¥ O for z in D, thus
deg(£,D,0) is comstant for t in [0,1].

For t=0, £(z,0) = 2" -~ 1 and writing

£(r,0) = x + iy we have that the solutions to
£(x,0,0) = 0 sxe r = 1, 0 = kn/2n for
k=0,1,....0

rlcos(n*@) + 1.0

£(z,0) =
£ sin (n*h)

The Jacobian of £ is
= ntn-lcos (n*@), -nr sin(n*@)

Foth ntn-llin (n*g), nr"cos (n*g) ’

£

" Det( ft.o) = nz th-l

The sign of the Jacobian is always +1, thus
deg(£,D,0) = n

3. Homotopy for the Optimal Projection Equations

The object is to find P, Q, P, Q, which
solve

0

T e~ -1;1‘
A vV, - QGQ + TQ&QTr-,
AQ + Q +1 | i

o
[}

ATP+?A+R1-?2?+'{?2PT.

4

(A-z)Q + Q(A-z)T

o
L]

= T
+ -7T T »
0550} lqml

o
]

(A-Qi)ri + Q(A-qi) + PZP - 1’Im1'l

given Z, &, Rl. Ve s B, A. To do this let

Dl
A(t) = D, (1-t) + tA
D
n
RI(t) z I(1-t) = tkl. Vl(t) = I(1-t) + 1:v1
[z, o
I(t) = (1-t) + tZ
L0 0
- z, 0] -
Z(e) = (1-t) + ¢
0

For t=0 the solution is easy to find. The object
is to follow the path or paths of solutions P(t),

Q(e), P(t), Q(t) from t=0 to t=l. Note that if
n, > min{f,n} - n_ then there is only one solution

]

at t=0. If n_ < lu(l.p}-n“ then there are
min{f,p} - n

n-n
c u

solutions at t=0.

In following these initial solutions from t=0
to t=1 there are seversl sgitustions which could
occur (see figure 2).

Fe N Y

”—§\\ —
»—_——/ ~—

/V — —
___'ﬂ'\\-// —————
1= 1) 189

Topological degree theory => The dashed paths do not exist
H N 2 min (£, 4 N)-A, there is only one sokution (=> giobal Minwm)

Figure 2

It can be shown using degree theory that the
situations shown in dashed lines canmot occur.
That is, the only solutions to the OPE at t=1 (or
for 0 < t < 1) are thome which are continuously

derived from the solutions at t=0.

Thus ve have the following result. Let n,

denote the dimension of the unstable subspace of
A.

Main Theorem. Assume that the plant is

stabilizable and detectable, V1 > 0, R1 > 0 and

n, £ n,. Then, in the class of nonnegative-

definite solutions Q, P, a. l;with
rlnkQ:rnnk?:rankQP=nc.

the optimal projection equations possess at most

(-in(n.-.l.) -,

. n_ < min(n,mn,4),
n o, ) c -

othervise,

stabilizing solutions. Each such solution is
reachable via a homotopic path with starting point
corresponding to diagonal initial data.
Furthermore, if.the plant is stabilizable by means
of an ncth-orde: dynamic compensator, then there

exists at least one solution.
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Remark 3.1. As shown in [26], stabilizing
controllers of arbitrary reduced order may not
always exist.

4, Algorithm Description and Numerical Results

In a homotopy path following algorithm one
follows the path of solutions of F(n(t),t) by
integrating the initial value problem

x(0) = x_.

R RTOIE TG RIP 0

For the optimal projections equations the solution

P, P, Q. Q can be easily determined once T
igs known so the P(t) = P(T(t)), Q(t) = Q(7(t))

etc. Thus the derivatives of P, Q, P, Q can be

written in terms of derivatives of 6" and I. Thus

we obtain
L}
vec rT' = | m| vec £(r.6D.
G
TI
which gives 2ncn equation for ' and 6 . P', Q°,

- - '
P' and Q' are then calculated from I" and GT and

finally I'(t+At) is updated by

F'(c+At) =T(t) + I xAt

and likewise for G, P, Q, P and Q.

Figure 3 summarizes the results reported in
[1] for LQG reduction methods along with results
obtained using the homotopy method for solving the
optimal projection equations. Here 1, is a scale

factor for the plant disturbance noise affecting
controller authority. Clearly, LQG reduction
methods experience increasing difficulty as

authority increases, i.e., 88 the T terms become

increasingly more important in coupling the
control and reduction operations.

One of the main goals of the development
effort was to extend the range of disturbance
intensity or, equivalently, observer bandwidth,
out beyond q, = 2000, To this end, second-order

(nc = 2) controllers were obtained with relatively
little computation for q; = 10,000, 100,000,

1,000,000, The performance of these results is
summarized in Figure 4.

) 3
rathed x o.o1 | o1 ) 1 | 10 | 100 | 3000 | 2000
€
7 s ] s ] s s s
. s s s s s s s
Tane H $ ] 4 [ ] s
4 s s s s s s 9
3 s s s s s s ]
2 s s s s L] ° L
? s ] ] s ] 1] [
) s s s ] v v v
Glover s ] s s s v 0 .
. s s s s ] 0 L]
3 s s o s v 0 v
2 s v s v s v| w
7 s ] v s s s s
. s ] s s s s s
Davie & s s v s s s v v
Sselton 4 3 H v s 1 v ]
3 v v v v u v v
2 ] v s v u ] v
? s s s s ° s v |
. s s s s 0 ] v 1
Tousutt & s s s s v U v v ;
elten . s s s v ] 0 8 ‘
3 s v v o v 0 v :
3 ] s N ] v v v 4
? s ] s s s ' v
N s s N s s s ]
tiv & s s s s s s s s
Andareen 4 s s s s s s s
3 s s s s s ° v
2 s s s s s s s
? s s s s s s s
N s s s s s H s
Oprimal s s s s s s 3 s ;
Projection & ] s s s $ $ ] ;
3 s s s s ] s s
2 s s s s s s s
|
$ = The clesed-lesp systmm is stable
U = Tha closeé-lovp systes is umscadble
Figure 3. The Optimal Projection Approach Was

Compared to Several LQG Reduction Techniques
Over a Range of Controller Authorities for an
Example of Enns
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ACTIVE DAMPING CONTROL DESIGN
FOR THE MAST FLIGHT SYSTEM

Fredric M. Ham and Scott W. Greeley

Harris Corporation
Government Aerospace Systems Division
Controls Analysis and Synthesis Group
P.0. Box 94000
Melbourne, Florids 32902

ABSTRACT

Design and development of the Mast Flight System for the COFS (Control of Flexible
Structures) program for NASA is currently underway. An active damping controller is
required to provide five percent damping for the first ten structural modes of s sixty
meter truss beam structure. Two types of controller design methodoligies are
presented to achieve the required five percent damping. The first is an LQG controller
and the second is a positive-real decentralized velocity feedback type, which is the
system baseline controller design. The system modelling details are also presented
which includes the models for the truss beam and the collocated actuators and sensors.

1. [INTRODUCTION

NASA has identified the need for large deployable space structures which will be
constructed of lightweight materials and will contain a 1arge number of joints or
structural connections. These deployable space structures may have precision shape
requirements and a need for active vibration suppresion during on-orbit operations. One
such ongoing NASA program is COFS (Control of Flexible Structures). Harris is
currently under contract to NASA Langley Research Center to design and develop the
Mast Flight System' for the COFS program.

NASA Contract Number: NAS1-18300
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The basic element in the Mast Flight System is a 60.7 meter long, trisngular cross
section, joint-dominated truss structure referred to as the beam subsystem, see Figure
1.1. Included at the tip of the truss structure are the primary actuators, collocated
sensors and s parameter modification device. A deployment/retraction subsystem is
provided which also secures the stowed beam package during launch and landing.

Tip Assembly

l—
k3
T

3

3

TN t

: 1.4 m-Diameter
Truss Beam v
| &
: 1212 m —P» l@— At Centerlines
60.7 m
l 1.124 m

2 ) |

- e
e
w

- -

Figure 1.1. Shuttle Attached Deployed Truss Beam Configuration
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The beam subsystem consists of a statically determinant, three longeron, triangular
truss whose cross—section fits inside 3 1.4 m diameter circle. A total of 54 bays, each
1.124 m long, make up the 60.7 m length of the beam sbove the deployer mechanism.
Figure 1.2 fllustrates more of the beam design details. Precision—machined titanium
joints at each spex of the triangular cross section of each bay and s nearly over—center
hinge in each diagonal allow the beam to fold into a repestable stack with a 35:1 packing
ratio. Structural members are fabricated from graphite/epoxy tubes bonded to titanium
end fittings. Length ratios are determined from test data such that the overall
coefficient of thermal expansion (CTE) is in the range of £ 0.5 x 10761,

Tip assemdbly (tip
mass, parameter
modification,
actuators, sensors,
and cover)

L) =

Graphite/epoxy struts

L— Two bays deployed

Titanium hardware

03

56-bay stack

CIANANEUENEQANARIISEARRRRAY]

Figure 1.2. Beam Subsystem (Articulated Truss Beam With Tip Assembly)

w

1987 ACC




Actustors are distributed along the beam as shown in Figure 1.3. All are
proof-mass type actustors and are implemented a3 linear DC motors (LDCM). There are
four (4) primary actuators located st the tip of the beam, two parallel to the x-axis and
two parallel to the y-axis as shown in Figure 1.4. Actuators ! and 3 may be commanded
in phase to produce x-axis forces. These same two actuators can be commanded out of
phase to produce tofques about the beam's longitudinel or z-axis. Actustors 2 and 4 can
be operated similarly, or other combinations as may be desired to achieve three degree
of freedom control using only the primary tip-mounted actustors. These primary
actuators are sized to sinusoidally excite the first ten (10) beam modes to a level which
allows measurement of the modal characteristics to an accuracy of | percent via the
beam-mounted sensors. These primary actuators are also sized to provide a total
damping of 5 percent or 5 times the natural structural damping, whichever is greater,
across the spectrum of the first 10 modes.

PRIMARY ACTUATOR STATION -

= Primary Actuators (4)
+ Collocated Sensors

Rate Gyros (3) - Linear Accel. (3)
« Parameter Modification Device

BAY 54

BAY 44

B R ER =l B Wl 5 W TR O'E

INTERMEDIATE STATIONS
BAY 38 « Distributed Sensors:
Linear Accel. (3) - Angular Accel. (1)
» Bays24 and 38

I""{ ‘*

S XN R W

BAY 30
INTERMEDIATE STATIONS
» Secondary Actuators (2)
« Collocated Sensors

Linear Accel. (2) - Angular Accel. (1)
* Bays 12, 30 and 44

BAY 24

BASE:
Rate Gyros (3)-Linear Accel. (3)

BAY 12

5

Figure 1.3. Mast Flight System Instrumentation Summary
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~ Figure t.4. Layout of Tip-Mounted LDCM Actustors

In order to provide the required active damping, LDCMs are utilized at the
intermediate stations on the truss beam as shown in Figure 1.3. The LDCMs at the
intermediate stations (Bays 12,30 and 44) are smaller devices than the tip mounted
ones; this is due to volume constraints. At each of the three bays are 2 LDCMs mounted
in the x and y directions, thus providing excitation and damping in these directions.
Table 1.1 summarizes the complement of actustors and sensors that are mounted on the
truss beam. The sensing devices which are collocated with LDCMs are the only devices

Table 1.1. Actuators and Sensors Mounted on the Truss Beam®

Location  LDCMs Rate Gyros Angular Accelerometers Linear Accelerometers

Tip 2-x,2-y 3-x,v,2 3-%,¥,2
Bay 44 =%, 1-y -2 rad M
Bay 38 1-2 3-x,Y,2
Bay 30 1-x, 1~y 1-2 2=Xx,Y
Bay 24 -2 3=x,v,2
Bay 12 1-x, -y 1-2 2-%,Y
Base 3x,y,2 3-x,y,2

* Note: There are additional instruments such as strain gages and thermistors mounted
on the structure that will not be addressed here.
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which are used for the active damping scheme. The sensors at Bays 24 and 38 are 1
included for the purpose of completeness and will be used for other experiements.

Y Il. MODELLING

-
- Ner

A mode) of the fully deployed (60.7 m) Deployable Mast System (DMS) has been
developed using a Harris proprietary finite~element code which is similar to NASTRAN.
An actuator/sensor location assessment based on the modal eigenvectors of the DMS
model has been conducted. Models of the actuators and sensors (i.e. LDCMs,
accelerometers and rate gyros) have also been formulated from manufacturer's data.

Using Harris' Nonlinear Structural Analysis (NLSA) finite element package, 2
three-dimensional truss beam mode! of the DMS cantilevered to 3 model of the Shuttle
Orbiter has been developed. An eigenvalue/eigenvector analysis has yielded several
modal frequencies and mode shapes. Because the Shuttle Orbiter model is only accurate
in terms of effective mass and inertia properties, only the pure DMS modes were ‘
considered in the modelling process (i.e. Shuttle Orbiter and DMS-Shuttle Orbiter |
modes are neglected). This is a good assumption for the control-system design and
analysis since the mass normalized influence coefficients of the Shuttie Orbiter and the
DMS-Shuttle Orbiter modes are much smaller than those of DMS modes for the practical
locations and power limitations of the LDCM actuators.

A qualitative discussion of the "best" actuator/sensor locations is summarized in |
Table 2.1. This table shows that there are five locations that are °best® in terms of

= g o 8

. -
2, T

L E E X R &
rr
it

Table 2.1 Qualitative Assessment of Actuator/Sensor Locations

¥ AR

oMsS ‘Best” Actuator/Sensor Location Based on Large
Hode Influence Coefficients

4 1 S4 (Tip)

B 2 54 (Tip)

SJe 3 30

hé 3

N~ 5 54 (Tip)

N 6 12, 44

¥ 7 12, 44

R o 8 24

g 2

R 9 12, 30, 44

R 10 12, 30, 44
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controllability and observability (1arge influence coefficients) for the first 10 flexible
modes of the DMS. Another criterion used for the placement of the instruments had to do
with volume contraints, requiring that even-numbered bay locations be chosen. As
ststed in the introduction, four of the bays where chosen to place collocated actuators
and sensors: Bays 12(x and y), 30(x and y), 44(x and y) and 54(x1,y1,x2 and y2) with
each actustor at the DMS tip station placed 0.5 m from the center to allow control of the
torsional modes. Control of the second torsional mode can be accomplished with the tip
actuators, therefore not requiring additional actustors at Bay 24 (which would be the
‘best” control location) where volume constaints are more severe than at the tip of the
DMS.

The weight of the LDCMs, accelerometers, rate gyros and the associated electronics
were included in the finite element model. For this model the DMS modal frequencies,
predicted modal damping and mode shape descriptions are summarized in Table 2.2.

_Table 2.2. Description of DMS Modes

DMS Mode Frequency Modal Damping Mode Shape
Mode w n Description
1 0.2 0.002 1st x-2 Bending
2 0.24 0.002 1st y-z Bending
3 1.52 0.003 2nd y-2 Bending
4 1.62 0.003 2nd x-2 Bending
S 2.49 0.005 st Torsion
6 4.65 0.005 3rd y-z Bending
7 4.96 0.005 3rd x-z Bending
8 8.24 0.005 2nd Torsion
9 8.55 0.005 4th y-2 Bending
10 9.05 0.005 4th x-2 Bending

Figures 2.1 through 2.3 show the various mode shapes for the first 10 fiexble modes of
the DMS. it can be seen theat there are 4 peirs of x and y bending modes, each peair
relatively close in frequency, snd there are two torsion modes. Note that the chosen
actuator/sensor locations remain the “best’ locations even with the additional weight.

Based on the DMS modes and predicted damping, a state-space mode! of the DMS can
be formulated. The following equations give the staste-space representation.
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1ST X-2 BENDING, 0.200M2
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oD X-Z DENDING, 1.617MZ
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4ATH X=2 DENDING, 9.049%2

Figure 2.1. DMS x~z Mode Shapes
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Figure 2.2. DMS y-z Mode Shapes
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¢#i) = Mass normalized influence coefficient of the ith mode
for the FEM node of jth actuator location

: 0, k=2i1
C(j,k) = y i=1,2, ..., 10
#ij , k=2i

¢#ij = Mass normalized influence coefficient of the ith mode
for the FEM node of jth sensor location

y = velocity output at DMS Bays 12(x and y), 30(x and y),
44(x snd y) and 54 (x, y ande;)

u = Force input at DMS Bays 12(x and y), 30(x and y), 44(x and y)
and S4(x1, y1, x2 and y2)

v = Disturbance force or torque

The acceleration at the sensor locations can be computed as

y = CAx +CBu +Cv (2.3)

This is the system representation that is used for all control system design and
analysis.

The Linear DC Motor (LDCM) is a proof-mass type actustor with s large movable
mass referred to as the secondary mass. Figure 2.4 shows the basic elements of the
LDCM. The secondary moves with respect to the primary or base of the LDCHM which is
fixed to the truss beam. The actuator is stroke limited at low frequencies (1ess than 1
Hz) and force limited at high frequencies (greater than 1 Hz). For & non-position
compensated LDCM the position of the secondary mass is very sensitive to changes in
commanded force amplitude and frequency and changes in position of its base. This due
to the double integration effects of force commanded devices and unknown forces (e.g.
Coulomb friction). To slleviate this problem a compensator has been developed to
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MOTOR FRAME

PRIMARY
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BEARINGS, 8X

PERM. MAGNETS

OUTER RETURN PATH

Figure 2.4. Basic Elements of a LDCM

isolate the secondary from the primary, in other words, the secondary position
tracks in an inertial reference frame and is decoupled from primary motion effects over
a range based on the stroke limitation.

The overall transfer function of the LDCM, taking into account pole/zero
cancellation, and the isolation compensator, behaves as a second-order system of the
form

f(s) Mg
= (2.4)

v(s) (s+¢)?

where f - Force Output
v = Command Output
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7.6 kg for LDCMs at DMS Bays 12,30 and 44
11.1 kg for LDCMs at DMS Tip (Bay 54)
6= 2m rad/sec (1 Hz)

Based on manufactuer data the linear accelerometers at the DMS Bays 12, 30, 44
and 54 (all in x and y) and the rate gyro at Bay 54 (¢,) are modelled as second order
systems. These sensing devices are used in the active damping control system and are
modellied as

Ys(s) Kwnz
= (2.5)
y(s) 82 + 2w + wp?

where Y4 = Output Voltage
y = Input Acceleration
K = Sensor Sensitivity

200 Hz for Linear Accelerometers
wp =
100 Hz for Rate Gyro

n=0.707

As shown above, the bandwidths of the sensing devices are large relative to the
frequency range of interest; therefore, the sensor dynamics will have a negligible effect
on the control system design and analysis.

111. CONTROL SYSTEMS DESIGN AND ANALYSIS

To achieve the design goal of S percent damping (i.e., modal damping ratio of 0.05)
in the first ten flexible modes of the Deployable Mast System (DMS) two different
controller design methodologies are compared. The first type is an LQG controller and
the second is a positive-real decentralized velocity feedback (PRDVF) controller. Both
of these controllers are designed using the following: 1) the design plant which includes
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the first ten flexible DMS modes augmented with the dynamics of the ten LOCMs, 2)
collocated sensors and actuators at Bays 12(x and y), 30(x and y), 44(x and y) and
S4(x,y ands,), 3) velocity measurements are assumed as inputs to each of the
controllers which can be obtained by integrating the accelerometer outputs. The PRDVF
controller is decentralized in the sense that each sensor output is fed only to the
controlier of its collocated actuator as shown in Figure 3.1,

S T,

T
PR RN R

"

%
¥

"1 - Yc | Disturbance

- LDCMs ﬂ v
Sto Disturbance

.Q
)
) ﬁ X = Ax+B8u
‘ Ye¢ [contror] Y y Ys
7 c =Cx Feedback j———— .
1.- LDCMs y Sensors
K {§
g T PRDVF Controllers
. 12x ' 12x
X & 1 |
12 : 12
y > le y

‘ &ﬂ’: 30x 30x
Y 3
¢

' 30y 2 le 30y
¥ 4‘
f 54-x1 54x
;}? 5 ¢
,‘ I 54.y2 | Geometric
o Transformation 1 6 54y

54-x2 T

v 540,
e 54-y2 — 7 |
)
TR
[y L
g
4
g &
4
B Figure 3.1. Block Diagram for Plant With PROVF Controller for Wide-Band
. & Disturbance Analysis
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, There are some interesting statements which can be made comparing the generic
&. aspects of each controlier type:

§ LOG:

e LQG will result in the best linear controller for a given set of quadratic

E ’3:. design goals [1].
; e ® Ingeneral, for large space structures, LQG designs result in high-order
| Q controllers which are often sensitive to parameter variations.
ih e Both of the above disadvantages can be overcome by using the Maximum
Entropy/Optimal Projection (MEOP) design approach which will result in
g} quadratically optimal low-order, robust linear controllers [2-5).
D PRDVF:
- o The decentralized positive-real controllers are infinitely robust to
' s parameter variations given a positive-real plant [6,7).
% o The major disadvantage of a PRDVF controller is its relative low authority.
> e The PROVF design here is very simple, with each decentralized
R controller being of second order or less.

An LQG controller has been designed in this study rather than a MEOP controlier
since a8 comparison of two controller types is desired in terms of 8 single design goal,
i.e., S percent damping. Controller implementation limitations and robustness levels
are not specified for this analysis. It also of interest to note that the PRDVF controller
! is only positive real over a certain frequency range. This is due to the high-frequency
rolloff of the linear sccelerometers and the rate gyro. However, for this analysis the
PRDVF controller is positive real for the frequency range of interest.

E} A comparison of the controllers, as well as the open-loop case , is carried out for
a scenario which includes a wide-band disturbance. New designs of the LQG controller

% and the PRDVF controller are made using only the collocated actuators/sensors at Bays
- 12(x and y), 30(x and y) and 54(x,y and #;) for this analysis. iInthis case the plant is
, 3‘, subjected to a wide-band disturbance utilizing the LDCMs at Bay 44(x and y). These
w disturbance LDCMs are given independent random signals which produce a mean square
force output of approximately one half of the LDCMs maximum force capability, which for
N the LDCMs at the intermediaste stations is 15 N (the maximum force capability of the

LOCMs at the tip statton is 30 N).
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éj\ LG6G Design

' ﬁ A standard continous-time LQG controller is designed using the time-invariant plant
consisting of the first ten flexible DMS modes augmented with the ten control LDCM
?& dynamics. The sensor dynamics are ignored here since their natural frequencies occur
well above the bandwidth of the plant. A block diagram of the plant/LQG controller is
d 8 shown in Figure 3.2. Note, this dlock diagram is for the LQG controlier used in the
§

s 1 LDCMs v
rto Disturbance

|« u OMS y Feedback y
it . s
) Control Model Sensors ——— DMS Bays
! LDCMs 12 (x.y)
| 30 (x.y)

ﬁ 54 (xy. )

LQG Controller
Ye Ys
] X¢ =A¢+Fy s I

Ye=Kxg

g w
1 © Yd Disturbance

S

s .

vl

Figure 3.2. Block Diagram of Plant with LQG Controller for Wide-Band Disturbance
Analysis

16 1987 ACC

U =R = =




wide-band disturbance analysis, which uses only eight control LDCM actuators.

The LQG controller is designed to yield S percent damping or greater in the DMS
modes. Since the design is not stated in terms of a quadratic performance criterion,
and requires relatively low controlier authority, the LQG controller is designed to only
yield the required 5 percent modal damping.

The closed-loop modal damping ratios of the plant augmented with the LQG
controller is listed in Table 3.1. As shown in the table all the values exceed the design
goal.

» . -

& ER TR MR

Table 3.1. Model Damping for Open Loop, LQO and PROVF

b I

; & an;] - MomlADmpl:- (%) —
1 0.2 5.1 5.4
5 2 0.2 5.1 5.9
~ “ 3 0.3 6.3 8.4
: 4 0.3 6.4 8.0
: é 5 0.5 6.3 12.0
' . 6 0.5 5.8 7.7
| 7 0.5 5.8 7.3
| & 8 05 7.8 5.7
| 9 0.5 6.7 5.7
5 10 0.5 6.7 5.3
. %
5
&
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Positive—Real Decentralized Velocity Feedback Design

A PRDVF controller, which consists of 9 controller loops [DMS Bays 12(x snd y),
30(x and y), 44(x and y) and 54(x,y ande,)], is designed to meet the 5 percent damping
goal. The design procedure is to examine the actustor/sensor locstions which best
influence the DMS modes of interest (in an open-loop sense). For example, the
accelerometers/LDCMs at the DMS tip (Bay 54) have the best influence on the first x and y
bending modes and the two torsion modes; the accelerometers/LDCMs st the DMS
distributed bays (Bays 12, 30 and 44) have the best influence on the 2nd, 3rd and 4th x
and y bending mode pairs. Thus, the poles of the controller loop are placed to shape the
gain in terms of the modes that the particular loop will be controlling, and the gains of
each controller loop are tuned to obtain 5 percent damping. There will be coupling
among the different loops due to interaction of the DMS. However the 5 percent damping
requirement is met as shown in Table 3. 1.

The generic structure of each decentralized collocated loop is of the form

K(s+6)2
H(s) = (3.1)
s(s+p)

This form is chosen since it offers a simple positive-resl controller that will achieve the
design goal (note: sensor dynamics will cause the controller to become non-positive resl
beyond 200 Hz for the linear accelerometer 1oops and 100 Hz for the rate gyro loop).

The output of the controller loops associated with Bay 54 (x, y and Oz) are geometrically
transformed such that equivalent outputs are applied to the four LDCMs at this bay
location (x1, y1, x2, and y2).

Wide—-Band Disturbance Analysis

For this analysis an LQG controller and a PROVF controller are designed using only
the collocated actustors/sensors at Bays 12(x and y), 30(x and y) and 54(x, y ands,).
This is done so that the LDCMs at Bay 44(x and y) only act to provide the disturbance
force. Independent wide-band random signals, each with a single-pole roll-off at 15 Nz,
are applied to the disturbance LDCMs. The int.nsity of these disturbance signals is
chosen such that the mean-square output force of the LDCMs is one half of their maxtimum
levels,
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For each of the following three cases RMS and PSDs of accelerometers and control
actuators are computed.

Case: 1 - Open Loop

2 - Closed Loop with LQG Centroller

3 - Closed Loop with PRDVF Controller
in each case the dynamics of the disturbance LDCMs and the single—pole filter which
shapes the white noise are included in the plant model.

The RMS levels of the accelerometers at Bays 12, 30 ,44 and 54 for each of the
cases are given in Table 3.2, It is shown in both closed-1o0p cases that the
accelerometer RMS levels are greater than a factor of two below the open-loop case.
Also Case 3 (PRDVF ) performs better than Case 2 (LQG). Power spectral density plots
for the accelerometers at Bays 12(x), 30(y) and 54(x, y and9,) are shown in Figures
3.3t03.7. These show that Case 3 (PRDVF) is more effective (suppressive) for all of
the modes than Case 2 (LQG).

Control LDCM RMS levels are slso given in Table 3.2. For Case 2 (LQG) the control
levels are spread more evenly among the LDCMs than for Case 3 (PROVF). It is of
interest to note that the control LDCM levels are all well below their maximum
capability. The power spectral density plots of the two closed-1oop cases for control
LDCMs at Bays 12(x), 30(y) and S4(x! and y2) sre shown in Figures 3.8 through 3.11.
Case 2 (LQG) requires less power over the entire frequency range than Case 3 (PROVF)
for LDCMs at Bays 12(x) and 30(y). However, Case 3 (PRDVF) requires much less power
in the higher frequency modes than Case 2 (LQG) for the LDCMs at Bay S4. This explains
the lower RMS control LDCM levels for Case 3 for these LOCMs. Recall in the design of the
PRDVF controller, the Bay 54 LDCMs are used primarily to control the 1st x and y bending
modes of the DMS.
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‘ Table 3.2. RMS Levels for Open Loop, L QG and PRDVF
ﬁ Vorisble Units RMS Level |
Description [~ Open Loop a6 PROVF |
5 ‘:cchmmm 9 0.063 0.027 0.019
g 12y 0 0.061 0.026 0.019
30x 9 0.044 0.018 0.014
g 30y 0 0.042 0.018 0.013
44x 0 0.058 0.023 0.023
E 44y g 0.056 0.027 0.022
f{; S4x g 0.010 0.0043 0.0030
Sdy g 0.010 0.0044 0.0034
i 540, r/s2 0.0027 0.0012 0.00072
oy Control Force:
& 12x N - 1.2 2.2
g 12y N - 1.2 2.0 i
30x N - 0.69 0.89 |
% 30y N - 0.69 0.90
g‘ 54 -x1 N - 0.46 0.042 |
' S54-y1 N - 0.45 0.060 |
o 54-x2 N - 0.46 0.041
@ 54-y2 N - 0.45 0.065
E
ﬁ 20 1987 ACC
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Figure 3.3. PSD for DMS Bay 12(x) Accelerometer for Cases 1,2 and 3
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Figure 3.4. PSD for DMS Bay 30(y) Accelerometer For Cases 1,2 and 3
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V. CONCLUSIONS

An overview of the Mast Flight System for the COFS program has been presented
along with some of the objectives specifically relating to the required active damping
control system. The main objective of the controller for this system is to provide 5
percent structural damping for the first ten flexible structural modes. Some of the
modelling issuses were discussed including: 1) the finite—element mode! of the
Deployable Mast System (DMS) along with the state-space model which is utilized to
design two different types of controllers, 2) a model! for the Linear DC Motors (LDCM),
3) and a model for the collocated sensing devices.

Two different types of controllers were designed and analyzed, an LQG type
controller and a Positive-Real Decentralized Velocity Feedback (PROVF) controller. Upon
comparing the two different types of controllers it is apparent that the PROVF controller
is better suited for this type of application. It offers a relatively simple approach to
achieve the required 5 percent structural damping which will not burden the flight
computer as much as the LQG design since the controller order is much less. The PROVF
controller is 8lso much more robust to parameter varistions than the LQG design since
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LQG controllers are very sensitive to parameter perturbations. As was previously
stated the PRDVF controller will always be positive real over the frequency range of
fnterest. Finally, the PRDVF controller requires much less power for the higher
frequency modes than L@G. Current activity involves applying the MEOP approach [2-5]
to design low-order robust controllers. These results will be compared to the LQG and
PROVF results.
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