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ABSTRACT

A fifteen-month multi-tasked research project was pursued by the

present investigators to study complex viscous flows under AFOSR sponsorship

between July 1985 and September 1986. The major objective of this study was

to acquire improved understanding of viscous flows and to develop basic

computational methods for efficient determination of 2-D/3-D subsonic and

incompressible flows. Two major analyses were pursued. These include the

Interacting Parabolized Xavier-Stokes (ZPNS) analysis for steady flows and

the full Xavier-Stokes (NS) analysis for direct simulation of unsteady

flows. The IPUS analysis developed employs no ad hoc artificial dissipation

and, in spite of being a density-based formulation, performs well even for

very low Mach numbers. The applications considered include 2-D cascades and

channels of simple geometry. The flow solutions are well behaved in the

presence of sharp leading edges and trailing edges, as well as in the

presence of reversed flow. The complete unsteady IS analysis is based on

direct-solution methodology and has proved to be very robust and efficient.

It has been applied to analyze high-incidence aerodynamics of symmetric as

well as cambered JouIowski airfoils, and has yielded very interesting

results regarding multiple incommensurate frequencies in the large-time

behavior of the flow and, hence, regarding the theory of strange attractors

and ,haos. The corresponding 3-D analysis appears well on its way and looks

very promising. All of this research relies heavily on usage of the

supercomputers at the NASA Research Centers, in addition to all the various

computing and graphics facilities at the University of Cincinnati. Both the

2-D analyses developed are reasonably mature now and should be useful for

examining realistic flow phenomena.
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SECTION 1

OBJECTIVES

The development of computational fluid dynamics (CFD) analyses for

complex viscous interacting flows was pursued by the present investigators

during July 1985 - Sertember 1986. The major thrust of the work was in the

development of two analyses, which are briefly outlined as under:

Viscous Interacting Analysis: Internal Flows

Subsonic flows are essentially elliptic in character. However, in a

large class of internal flow applications, streamwise diffusion is

negligible, although upstream influences through pressure interactions are

significant. These situations can be analyzed and computed more efficiently

using the Interacting Parabolized Navier-Stokes (IPNS) model rather than the

full Navier-Stokes equations, particularly for steady flow. The IPNS model

and the corresponding numerical method were studied, with the objective of

developing an efficient procedure of desirable versatility for use in

studying flows in diffusers, cascades, etc.

Unsteady Navier-Stokes Analysis: Internal and External Flows

Unsteady separation and vorticity interactions in self-excited and

forced unsteady flows are important fundamental phenomena which occur in

internal as well as external flows. Unsteady separation in large-vortex

dominated flows is particularly important in external flows. The underlying

physical mechanisms were examined by analyzing flows exhibiting these

phenomena, with the help of the complete unsteady Navier-Stokes equations

solved using a direct (fully implicit) numerical technique.

i0 1



Additional items such as grid generation and development of solution

algorithms were also studied to further aid the above two analyses. These

items contribute significantly to basic research even by themselves.

Moreover, these essential elements were needed for successfully developing

the two main analyses.
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SECTION 2

DESCRIPTION OF' SIGNIFICANT ACCOMPLISHMENTS

All of the areas of research proposed for study were pursued during

this 15-month grant period. The progress achieved in each of these areas is

briefly described in this section.

2.1 Composite Generation of Multi-Block Grids for Subsonic Cascades

Examination of the basic grids for cascades shows that a C-grid can

adequately resolve the boundary layers on the blades as well as the wakes

downstream and is satisfactory everywhere except in the region upstream of

the blades. In this region, the grid density decreases rapidly with

distance upstream of the front stagnation point. On the other hand, an

H-grid is generally satisfactory in this region and also facilitates

implementation of the repeating boundary condition for cascade flows. For

cascades with minimal stagger and blades with thin leading edges, the H-grid

is not highly skewed. But when the blades possess thick rounded leading

edges typical of turbine cascades, the H-grid becomes highly skewed in the

leading-edge regions (Fig. 1). Earlier, K. Ghia and U. Ghia [1982] had

suggested an approach for improving a basic C-grid for use with cascades.

This consisted of deleting a segment of the C-grid in the upstream region

and patching a segment of an H-grid onto the remainder of the C-grid, as

shown in Fig. 2. The resulting coordinates appear satisfactory everywhere.

It should be noted that this hybrid coordinate system contains two five-

sided cells which require special consideration.

The concept of C-H hybrid grids for cascades was pursued further by

U. Ghia et al. [1983]. The main result of that effort is shown in Fig. 3.

Here, a C-grid encompasses a narrow region in the vicinity of the lower

3
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blade and approximately includes the wake region. Similarly, a C-grid also

covers the corresponding repeating region around the upper blade. The

remainder of the flow domain between the blades is then occupied by a

sequence of three H-grid blocks. This led to a five-block grid system for

the cascade. The grid in each of the five blocks was generated separately

using numerical solution of elliptic partial differential equations

governing the coordinate transformation. Continuity across the block

interfaces was maintained by a single visit to each block, performed in a

specific sequence. First, the C-grid portions of the cascade coordinates

were generated, using appropriate forcing functions to provide resolution of

the blade boundary layers. The resultant clustering near the outer boundary

of the C-grid blocks was employed to determine the forcing functions for the

grids in the adjoining H-grid blocks, leading to an overall grid system that

* is continuous everywhere. This procedure also circumvented the difficulties

to be expected with the two five-sided cells appearing in this hybrid grid.

However, the procedure required knowledge of the grid-point distribution at

all block interfaces; this constituted a major difficulty, especially so far

as the solution for the flow itself was concerned.

Work performed under the present grant has resulted in the development

of a composite solution procedure which does not employ, or require, any

information along block interfaces. The boundaries of the computational

region correspond only to actual boundaries in the physical plane. All

I information along physical-block interfaces is obtained as part of the

evolving overall solution. Therefore, no special iterative measures are

'j required at these interfaces. The first step towards developing this

procedure was the appropriate representation of the physical region in the

computational domain. The earlier 3-D computational-domain representation

! 04



(Fig. 3) by U. Ghia et al. [1983) of the 2-D hybrid grid was very useful but

was computationally inefficient. The present representation of the 2-D

physical problem retains a 2-D computational region. Only the true

boundaries of the physical region appear as boundaries in the computational

plane; no block interfaces are exposed as computational boundaries. The

resultant multi-rectangular computational-region representation also paves

the way for appropriate treatment of the five-sided cells appearing in the

hybrid grid. Finally, this representation is very well suited for the

numerical solution of the coordinate-generation equations, as well as the

flow equations, even by implicit methods such as ADI. The various blocks

used in the hybrid grid for a staggered cascade are shown in Fig. 4 which

shows mainly the boundaries of these blocks. The corresponding

computational region is shown in Fig. 5. With this arrangement, the grid is

developed simultaneously in all the blocks without any special consideration

of block interfaces. This is a unique feature of the present multi-block

domain-decomposition procedure. An invited paper based on some preliminary

results from this work was presented by U. Ghia et al. [1985); a written

version of the paper was also prepared later by U. Ghia et al. [1986).

2.2 Steady Flows with Strong Upstream Interactions

In this effort, a reduced form of the governing equations has been

developed which can capture much of the physics, while requiring less

computer resources than the full Navier-Stokes equations. It belongs to the

category of semi-elliptic analyses, one form of which was proposed and

V' employed earlier by U. Ghia et al. [1981]. The formulation holds greatest

promise for high-Re steady flows with a predominant flow direction. It

should be mentioned, however, that the procedure can be extended easily to

5



include consideration of unsteady flows. But the most unique feature of the

method is its ability to compute low-Mach nuber flows. Although it is a

density-based method, it is not plagued by computational difficulties for

m - 0, as are the other density-based methods available. Also, no use is

made of any externally added artificial viscosity. The method Is applicable

to 3-D flows as well.

The governing differential equations used are derived from the Navier-

Stokes equations, together with the continuity equation and the energy

equation, for steady flow of a compressible fluid. With Cartesian

decomposition of the vector quantities, these equations are expressed, in

terms of a general coordinate systes (E,n), In the strong-oonservation law

(SCL) form. Expressing the transformed governing differential equations in

the SCL form requires that the coordinate transformation metrics satisfy a

set of geometric conservation relations. In an analytical formulation,

$these are identically satisfied. In a discretized formulation, satisfaction

of these relations is ensured by the use of appropriate differencing for the

metrics.

The semi-elliptic formulation developed in the present work is obtained

by invoking the approximation that, for flows with a predominant flow

direction, streamwise diffusion is negligible relative to normal diffusion.

Nevertheless, a large class of flows, for which streamwise diffusion may

well be negligible, are significantly influenced by upstrean interactions,

and may not be adequately represented by mathematically parabolic equations.

In the present formulation, upstream interaction is provided for via

appropriate treatment of the stremwise pressure radient term. Hence, the

formulation is also termed an interacting parabolized Navier-Stokes (IPNS)

model. The viscous-inviscid interaction is included by composite

* 6



consideration of the viscous and inviscid flow regions through the use of

the PNS equations; upstream interactions are propagated and included through

the pressure field.

I' For the subsonic flows considered, the total pressure, total

temperature and streamline slope are prescribed at inflow and the static

pressure is prescribed at outflow. At the wall-wall boundaries, the

conditions of zero slip and zero suction/injection, together with a

specified temperature condition, provide a total of six boundary conditions.

The one additional boundary condition needed is provided by an approximate

form of the normal momentum equation obtained by neglecting the viscous

terms in that equation. This last condition is applied in the cells

adjacent to the wall, rather than at the wall itself, thus avoiding the need

for any one-sided differences for the normal derivatives. The wake-wake

boundaries are the periodic boundaries occurring in cascade flows. The

periodicity condition requires that the corresponding values of all four

flow variables, and the n-derivatives, u n, v and Tn, of the velocities and

temperature which are governed by second-order differential equations, be

the same at corresponding periodic points along the wake boundaries. It is

important to mention that, in terms of the conserved variables (p, pu, pv,

pet) comprising the solution vector Q, the repeating condition on the

rderivatives must be satisfied for all four elements of Qn.

The analysis was employed to determine the flow in several channel and

cascade configurations. Some of the results obtained are presented here in

terms of the two most sensitive quantities, namely, the static pressure and

wall shear. Unless otherwise stated, the Mach number M is approximately

0.008.



Figure 6 shows the distribution of the surface pressure

Pb (- Pwinlet-Pw) and wall-shear parameter, T w (_ aus/3n), obtained for a

constricted channel with tmax/h - 0.2 and Re - 1500. Of particular

significance is the presence of a finite region of small reversed flow

indicated by negative cw downstream of the constriction and the completely

non-singular behavior of the present IPNS solution for this configuration

with upstream interaction.

The performance of the IPNS model in the presence of sharp leading and

trailing edges was evaluated by application of the model to a cascade of

finite flat plates. Figure 7 shows the distribution of the pressure pb and

shear parameter trw for Re ranging from 1500 to 15,000. Through all the

highly nonlinear behavior of the flow variables, including that due to

abrupt change In the boundary conditions across the leading edge (LE) and

the trailing edge (TE), the solution of the IPNS model is quite regular as

upstream interactions are appropriately included in it.

The distributions of pb and -w are shown in Fig. 8 for parabolic-arc

airfoils for various thickness ratios (Fig. 8a) and for various Reynolds

numbers (Fig. 8b). The effect of varying M up to nearly 0.5 has also been

examined. It is found to be minimal on the shear parameter Tw, but becomes

evident in the pressure distribution at the highest value of M considered.

Figure 8c shows the static pressure contours for the case with M - 0.49, Re

- 15,000. The high-pressure region localized near the LE is evident from

the concentration of the contours in this region, as is the more widespread

low-pressure regions downstream of the position of maximum thickness. From

8



the values of the pressure along these contours, it is clear that the

pressure varies rather minimally over the airfoil surface. Nevertheless,

these variations have been very accurately computed in order to produce the

contours which are well behaved and conform to the physics of this flow,

especially in the LE and TE regions.

Application to these various flow configurations served to demonstrate

that the technique is viable for flows with strong interactions occurring

due to boundary-layer separation or the presence of sharp leading/trailing

edges. It is important to recall that the procedure developed uses no

externally added artificial viscosity and is capable of producing

satisfactory solutions for compressible (subsonic) viscous flows, with no

modification needed for analyzing nearly incompressible flow as well.

A paper based on these results was presented by U. Ghia et al. [1985);

a written version of the paper was also prepared later by U. Ghia et al.

[1986).

2.3 Unsteady 2-D Navier-Stokes Analysis

The simulation of 2-D flows with self-sustained unsteadiness has been

continued using the direct solution of the unsteady 2-D Navier-Stoke

equations. In addition to determining the basic flow solution, the time-

dependent aerodynamic lift, drag and moment coefficients were also obtained

for flow past airfoils at high incidence. Effort was also made to

understand the observed quasiperiodicity and bring forth any possible

similarity with strange attractors.

9



Symmetric Joukowski Airfoil

A 12 percent thick symmetric Joukowski airfoil is used in this study as

it has two especially attractive features. (i) The Joukowski airfoil can be

accurately represented using conformal transformations; the details of these

and the clustering transformations used, as well as the total analysis, were

given by K. Ghia et al. [1985a]. (ii) The presence of a sharp TE leads to a

much stronger interacting region and, hence, truly tests the analysis

developed. This unsteady Navier-Stokes analysis and the corresponding

numerical method are used to study three flow configurations in detail. All

of these configurations have the same Re - 1,000 but the value of the free-

stream incidence angle af varies such that of - 150 , 300 and 530,

* respectively. For the high angle-of-attack case with Mr- 530 , the Joukowski

airfoil appears, to the oncoming stream, as an apparent bluff body. The

massively separated vortex-dominated flow in the post-stall regime for this

configuration of the Joukowski airfoil is exceedingW.y complex and, from the

results available so far, it is feasible to conjecture two hypotheses; see

Fig. 11. One possibility is that the solution has still not asymptoted to

an exact limit cycle but may do so subsequently. The second possibility,

based on the results for * f - 300, is that the solution may asymptote to a

quasiperiodic state, with anywhere from 3 to 8 incommensurate frequencies.

The second hypothesis is more likely to prevail.

Limit Cycle Analysis

Originally, the aerodynamic coefficients were computed only at

intervals of 0.1 characteristic time. This was quite satisfactory for

qualitative assessment of the flow evolution but too coarse for its detailed

analysis. Subsequently, the computer program has been modified to provide

4 10



the coefficients of lift CLe drag CD and moment C (nose-up positive about

the quarter-chord point) at every At increment. The configuration with

a f = 150, which requires minimum time to reach the time-asymptotic limit

cycle solution, has been completely recomputed, using a slightly improved

grid near the TE. The flow configuration with of - 300 has been recomputed

between t - 45 and t - 58, whereas, due to limitation of availability of CPU

time on the host computer system, the configuration with of - 53* is

currently available with CLO CD and CM computations at time intervals of 0.1

only. Figures 9a,b,c show CLI CD and CM corresponding to af=15 . As seen

in this figure, CL rises initially but drops very sharply during the

transient phase and asymptotes to a near-limit-cycle solution corresponding

to the dominant frequency for the shedding of vortices from the TE. The

L2-norms of the entire vorticity and stream-function fields were carefully

examined to ensure that the near-limit-cycle has been achieved. This limit-

cycle solution is an "ordinary attractor", the attractor being the 1-D

object to which the phase-space trajectories are attracted at all times.

The complete motion is known once the geometry of the attractor is

determined. Hence, it is also possible to compute the mean flow by

averaging the flow over one complete cycle; similarly, it is possible to

determine the Reynolds stresses from first principles, although these

computations have not been performed in the present study.

For the flow configuration with af.300, the physics changes

dramatically, as seen in Figs. 10a,b,c. The curves for the force

coefficients show that one limit cycle consists of two TE vortices

sheddings. There are now two shedding frequencies, or modes, associated

11



Awith this more complex attractor. As shown in Fig. 10a, the first frequency

is associated with the shedding which takes place at point 1, whereas the

second frequency is associated with the shedding which takes place at point

3. The LE shear layer associated with the first frequency is thinner and

more intense, as compared to that associated with the second frequency. The

energy now oscillates between the two unstable modes through a nonlinear

coupling. The appearance of subharmonics signifies small modulations in the

shedding frequency. This flow field, with its two natural incommensurate

frequencies, is referred to as a quasiperiodic flow, also known as "Hopf

bifurcation" into an Invariant torus. From Fig. 10a, it is clear that the

initial state at point 10 of a new cycle is slightly different from that at

point 8. If the phase-space trajectories were drawn, this solution may very

well show a tendency to fill a rather significant surface area of the torus.

Finally, it should be noted that the CD peaks In Fig. 10b correspond to

points 2 and 9 In Fig. 10a.

For the case with af- 5 3 *, the results obtained up to t-T4 may be far

from approaching an asymptotic state. Figure Ila shows some resemblance of

quasiperiodic flow with three incommensurate frequencies, this fact being

further supported by the curves in Figs. lib, c. From their numerical

experiments, Grebogi, Ott and Yorke E1983] have also shown the existence of

quasiperiodicity with three incommensurate frequencies. The state of the

system at a given time instant in one cycle is not quite repeated at the

corresponding time instant in the subsequent cycle. The phase-space

.: portrait, not shown here, is very complex, where the surface has folded

Vrepeatedly onto itself, so that it appears to be a strange attractor. This

is an indication, although preliminary, that the flow may be exhibiting a

route to chaos. Some of the rigorous approaches for characterizing a

* 12



strange attractor consist of the determination of i) the Lyapunov exponent;

(ii) the fractal dimension of the attractor, which is related to the number

of degrees of freedom; and finally, (iii) the Kolmogorov entropy. These

indices still need to be studied thoroughly in order to rigorously analyze

the route to chaos in a meaningful way.

The overall state of the total flow system was examined in terms of the

frequencies associated with the various sheddings and an invited paper based

on these results was presented by K. Ghia et al. [1985b]. A written version

of the paper was also prepared by K. Ghia et al. [1986].

Cambered Joukowski Airfoil

The 2-D unsteady flow analysis was continued for a cambered Joukowski

airfoil. A typical clustered conformal C-grid, with (230, 46) points, is

shown in Fig. 12 for the Gottingen 580 airfoil (i.e., an 11.8 percent thick

cambered Joukowski airfoil with a zero-lift angle of attack 0 -5.7110),

at effective flow angle of attack ae - 300.

Results are obtained for three flow configurations with Re 1 1000 and

ae a 5.7110, 150 and 300, the last two being in the stall and post-stall

flow regimes, respectively. Here, the effective angle of attack is

ae = af - mot with of being the geometric angle of attack between the chord

and the free-stream direction.

Figure 13 shows the inviscid starting solution, the grid distribution

in the near field and the steady-state stream-function and vorticity

contours for the case with Re - 1000 and ae " 5.7110. The stream-function

contours show a mildly separated region in the vicinity of the trailing edge

(TE). Laminar boundary layers prevail on both the suction and pressure
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surfaces, as observed in the vorticity contours, which also show a tongue-

like behavior. The streamwise extent of the separated flow near the TE is

0.15c, as compared to approximately 0.4c for the symmetric Joukowaki airfoil

with a - 50, as given by K. Ghia, Osswald and U. Ghia [1985b].e

The time history of the lift and drag coefficients CL and CD,

respectively, is depicted in Fig. 14 for the case with Re - 1000, e - 150.

A time asymptotic limit-cycle solution evolves by approximately t - 12, as

compared to t - 31 for the case of the corresponding symmetric airfoil.

K. Ghia et al. [1985b] had defined the period as the time interval required

for the L2-norm of the deviation of the instantaneous state of the flow from

a reference initial state to become smaller than a specified tolerance. For

the present configuration, the period is established by examining the

successive maxima of CL in Fig. 14. The period associated with this limit-

cycle (ordinary attractor) is 1.046 characteristic time units and the

corresponding Strouhal number Sf - fc (sin af )/U- 0.154; based on e, its

value is S - 0.247. The corresponding period for the symmetric airfoil is
e

1.416 and S - 0.18. Hence, the effect of camber is to increase the
e

frequency of the periodic shedding of large-scale vortices from the TE

region and from the separation zone on the suction surface.

The oefficients of lift C L and drag CD for the case with Re - 1000,

- 300 are shown in Fig. 15. These curves show that, even at t - 52, the

flow has not yet reached an asymptotic state. Also, these curves show that

one cycle consists of two TE sheddings. Thus, there are two shedding

frequencies associated with this attactor; these correspond to the sheddings
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associated with points 1 and 2 in Fig. 15. The LE shear layer associated

with the first frequency is thinner and more intense as compared to that

associated with the second frequency. This flow field, with its two natural

incommensurate frequencies, is again referred to as a quasiperiodic flow.

The phase-space portrait is complex and is tending towards being a "strange

attractor". The corresponding Poincare sect n indicates that the attractor

may be a thin torus. These results are similar to those of the symmetric

airfoil (Fig. 11), except that the CL history appears more chaotic and does

not seem to be tending towards a limit cycle. Also, there is a peak due to

the shedding from the LE at point 3; this was not present in the results for

the symmetric airfoil. The time instants at which the detailed flow results

are presented correspond to the TE-LE-TE sheddings.

The instantaneous stream-function contours, presented in Figs.

16a,c,e,g,i, show massively separated flow, with large eddies present over

the suction surface as well as in the wake. Figures 16a,g,i show the

presence of multiple separations, whereas Fig. 16c shows the presence of two

counterclockwise co-rotating bubbles, aft of the shoulder, towards the TE

and these bubbles are in the process of coalescing. The corresponding

vorticity contours are shown in Fig. 16b,d,f,h,j and various vortex

interactions can be observed from this figure. In Fig. 16b, the TE vortex

has just been shed, a new TE vortex intensifies as shown in Fig. 16d and is

being Just separated from the TE by the growing LE vortex. Figure 16f

corresponds to shedding of the LE vortex. The state shown in Fig. 16J

corresponds to TE shedding and has features similar to those in Fig. 16b.

The results of this effort may be summarized as follows. Up to the

stall regime, camber causes the flow fields to be dominated by the TE

geometry. Also, the extent of the separated flow is diminished both in the
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streamwise and the lateral dimensions and the shedding frequency is
increased. For flow fields in the post-stall regime, the CL time history

iL

becomes more chaotic and shows a peak associated with LE shedding. The

computation of the flow field needs to be continued to larger t, to predict

its further behaviour with definite assurance. A paper based on these

results was presented by Osswald et al. [1986) and appears in the Conference

Proceedings.

Circular Cylinder

For flow past airfoils at high angle of attack, the airfoil behaves

like a bluff body. The large-scale structure of the separated flow past a

bluff body, e.g., a circular cylinder, is not understood well, except at

extremely low values of the Reynolds number' Re around 120 where Re is based

on the cylinder diameter. The understanding of separated flow past the

model problem of a circular cylinder is crucial, as it may lead to a better

understanding of more complex flows such as separated flow past airfoils

with or without solution bifurcations associated with lift hysteresis,

symmetry breaking, etc. Also, a thorough knowledge of steady separated flow

could aid in analyzing unsteady separated flow leading to incipient

transition and, eventually, to chaos.

Hence, the flow past a circular cylinder was computed, first without

assuming symmetry. The instantaneous streamlines and vorticity contours are

presented in Fig. 17 for Re - 200. The occurrence of the bulge phenomenon

for Re - 200 and t k 1.0, first reported by Bouard and Coutanceau [19801, is

also computed satisfactorily. It leads to an alteration in the vorticity

contours close to the surface of the cylinder in the separated zone. For

the corresponding symmetric configuration with Re - 500, the instantaneous
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stream-function and vorticity contours are delineated in Fig. 18 at t - 100,

225, 800 and 1600. The eddy length L, as seen from the stream-function

contours, increases from approximately 6 diameters at t - 100 to 27

diameters at t-1600; the asymptotic results of Fornberg [1985) show this

length to be 36 diameters. Further, the region between the cylinder and the

main eddy grows from about 1 diameter initially to 5 1/2 diameters by t -

1600; the corresponding asymptotic results of Fornberg [1985) show this

distance to be approximately 8 diameters. This region can be considered as

consisting of two parts: the front part where the separating streamline

grows in width as O(Re 11 2 ) followed by a 'transition' region in which the

growth rate adjusts such that the vidth can grow as O(Re) in the main eddy.

Also, in this transition region, the vorticity increases from zero to the

level of nearly uniform vorticity present in the main eddy. The kink in the

contours of the vorticity is conjectured to be related to this change in the

growth rate of the width of the eddy. The results for the velocity do not

show 0(0) thickness for both the shear layer past the center of the main

eddy and the return jet, as proposed by Smith [1985); the present results

need to-be scrutinized further to provide the accurate flow structure. The

Navier-Stokes calculations show that, near Re - 500, the translating

cylinder drags with it a massive eddy.

These results for flow past cylinder were presented by K. Ohia et al.

[1986) at the I.U.T.A.M. Conference; a written version of the paper is to

appear in the Conference volume.

2.4 Unsteady Three-Dimensional Navier-Stokes Analysis

The effort directed to this area of study was focused primarily on the

careful selection of the formulation of the governing partial differential
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equations and the proper choice of discretization to produce sparse matrices

with repetitive block structure. This structure is essential for efficiency

of the inversion technique with a high degree of vectorizability in the

solution phase. The goal was to develop a direct-solution technique for the

3-D unsteady Navier-Stokes equations for general geometries. This was based

on the fact that direct-solution methodology developed by the principal

investigators for 2-D unsteady Navier-Stokes equations has proved very

robust and efficient.

After much careful study, the velocity-vorticity (V,w) formulation has

been selected, as opposed to the primitive-variable (V,p) and the several

vector-potential-vorticity (A,:) formulations. All vector-potential

formulations, which include stream-like functions, toroidal and poloidal

potentials, etc., suffer from the necessity for more boundary conditions on

the vector potential A than are available naturally from the physics of the

flow problem. This difficulty can be traced to the fact that the vector

potential is gauge invariant and 'extra' boundary conditions are required to

uniquely select a specific gauge. Conversely, the non-physical boundary

conditions selected must be consistent with a specific gauge function;

otherwise, numerical convergence difficulties can be expected.

• ZAt first glance, the primitive-variable (V,p) formulation appears to be

computationally more efficient, since it requires the solution of only four

unknowns, V1, V2 , V3, and p, rather than the six unknowns, V1 . V2 , V3 , wit

W 29 and w 3 occurring in the velocity-vorticity (V,w) formulation. Indeed,

much effort has been directed by the technical community at primitive-

variable techniques for compressible flows. However, in the present effort,
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it is determined that the velocity-vorticity (V,w) problem can be

d1scretized in such a manner as to produce a sparse matrix problem with

repetitive block structure. As a result, the computational work associated

with the implicit determination of one unknown can be effectively eliminated

from the solution of the velocity problem, while the computational effort

for yet another unknown can be eliminated from the vorticity-transport

equation. Consequently, velocity-vorticity techniques deserve attention.

A philosophical point to bear in mind is that the (V,u) formulation

leads to a more natural decoupling of the governing equations than occurs in

the primitive-variable technique. Specifically, pressure is an essential,

* nonlinear function of velocity, whereas vorticity is a linear function of

velocity. Indeed, the (V,;) formulation can physically separate the spin

dynamics of a fluid particle (vorticity-transport problem) from the

translational kinematics of the fluid particle (the elliptic velocity

problem). This natural decoupling, which occurs in the (V,;) formulation,

may be seen to directly translate into simple and direct application of the

necessary boundary conditions. Furthermore, complete internal consistency

can be maintained with the (V,_w) formulation, i.e., all integral vorticity

constraints, all integral velocity constraints, solenoidal velocity, etc.,

can be algebraically guaranteed, irrespective of grid size and time-step

discretization, throughout the entire flow solution.

Wu [1985] and his associates, Fasel [1976), and Gatsky, Groach and

Rose [1982) have used the corresponding 2-D (V,w) formulation and are

presently developing 3-D algorithms using the (V,w) formulation. The

present analysis, however, aims to employ efficient direct inversion for the

19

11 11 111 1- j 1



elliptic velocity problem which can be formulated so an to produce a

uniquely determined nonsingular vector-matrix problem with repetitive sparse

block structure.

2.5 Pressure-Field Evaluation for Urteady Flows

For unsteady flows analyzed using the (w, #) formulation of the Navier-

Stokes equations, the surface distribution of the pressure my be obtained

by simply integrating the tangential component of the lmmntum equation

along the surface. For determination of pressure in the total flow field,

1U. Ghia et al. [1976] have shown that a path-independent presure field

results only frm the solution of the Neumann-Poisaon pressure poblm

formed by the divergence of the mcmentu equations. With Neumann-type
'..$

boundary conditions, this problem admits a solution, which is unique upto an

arbitrary additive constant, only when the boundary values and the source in

. the differential equation satisfy Green's interal theoram. This places

certain very specific requirements on the disoretization of the Neumann-

Poisson problem. This work is being pursued with the assistance of Collopy

[1986] and comprises his Master's deree thesis, expected to be completed

shortly. The application considered was the flow through an orifice in a

doubly infinite circular pipe. The infinite extent of the flow domain in

the streamwise direction necessitated additional considerations in order to

maintain bounldedness for the working variable for the pressure.

1/e  2.6 Supercomputer Usage and Graphical Post-Processing of Data,
All of the research pursued towards this rant makes extremely

extensive use of computer resources. For acceptable productivity, all

available computer facilities are made use of, judiciously. During the
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initial development stages, the programs are tested and run using the

facilities of the University of Cincinnati (UC); these include the Aerospace

Engineering Department's Perkin Elmer 3250 supermini computer system with

-1;. dual processors for parallel computation possibility and the UC Computer

Center's AMDAHL 470 V/7A mainframe facility. Host of the actual results are

eventually generated using the NASA-Lewis CRAY XMP supercomputer system for

the IPNS computations and the NASA-Langley CYBER 205 supercomputer system

for the unsteady Navier-Stokes computations (2-D as well as 3-D). All four

of these systems are equipped with their respective peripheral devices which

are employed for post-prooessing the results of the computations and for

presenting these results in suitable raphical form. All of the graphics

packages employed are written by the present research team and are very

2:. efficient. However, the retrieval of the large data bases from the remotely

located supercomputers is extremely inefficient via the present long-

distance communication network. Therefore, plans are presently underway to

• purchase, through AFOSR funds, a superworkstation and, through the

University of Cincinnati, have a leased direct-communication line to the

NASA-Langley supercomputer site; this is most essential for the 3-D unsteady

flow simulations, which are presently being pursued. The limited

availability of supercomputer time continues to create a great deal of

difficulties. Much valuable time is often expended In transferring programs

from one computing facility to another, in the hope of expediency, but this

necessitates continual changes in the programs and ends up consuming

additional personnel time. Easier availability of larger amounts of

supercomputer time would be most conducive for rapid progress in this

research.
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