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ABSTRACT

A fifteen-month multi-tasked research project was pursued by the
present investigators to study camplex viscous flows under AFOSR sponsorship
between July 1985 and September 1986. The major objective of this study was
to acquire improved understanding of viscous flows and to develop basic
computational methods for efficient determination of 2-D/3-D subsonic and
incompressible flows, Two major analyses were pursued. These include the
Interacting Parabolized Navier-Stokes (IPNS) analysis for steady flows and
the full Navier-Stokes (NS) analysis for direct simulation of unsteady
flows. The IPNS analysis developed employs no ad hoc artificial dissipation
and, in spite of being a density-based formulation, performs well even for
very low Mach numbers. The applications considered include 2-D cascades and
channels of simple geometry. The flow solutions are well behaved in the
presence of sharp leading edges and trailing edges, as well as in the
presence of reversed flow. The complete unateady NS analysis is based on
direct-solution methodology and has proved to be very robust and efficient.
It has bdeen applied to analyze high-incidence aerodynamics of symmetric as
well as cambered Joukowski airfoils, and has yielded very interesting
results regarding multiple incommensurate frequencies in the large-time
behavior of the flow and, hence, regarding the theory of strange attractors
and chaos. The corresponding 3-D analysis appears well on its way and looks
very promising. All of this resaarch relies heavily on usage of the
supercamputers at the NASA Research Centers, in addition to all the various
computing and graphics facilities at the University of Cincinnati. Both the
2-D analyses developed are reasonably mature now and should be useful for

examining realistic flow phenomena.
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SECTION 1
OBJECTIVES
The development of computational fluid dynamics (CFD) analyses for
complex viscous interacting flows was pursued by the present investigators
during July 1985 - Sertember 1986. The major thrust of the work was in the

development of two analyses, which are briefly outlined as under:

Viscous Interacting Analysis: Internal Flows

Subsonic flows are essentially elliptic in character. However, in a
large class of internal flow applications, streamwise diffusion is
negligible, although upstream influences through pressure interactions are
significant. These situations can be analyzed and computed more efficiently
using the Interacting Parabolized Navier-Stokes (IPNS) model rather than the

full Navier-Stokes equations, particularly for steady flow. The IPNS model

and the corresponding numerical method were studied, with the objective of
developing an efficient procedure of desirable versatility for use in

studying flows in diffusers, cascades, etc.

Unsteady Navier-Stokes Analysis: Internal and External Flows

Unsteady separation and vorticity interactions in self-excited and
forced unsteady flows are important fundamental phenomena which occur in
internal as well as external flows. Unsteady separation in large-vortex
dominated flows is particularly important in external flows. The underlying
physical mechanisms were examined by analyzing flows exhibiting these
phenomena, with the help of the complete unsteady Navier-Stokes equations

solved using a direct (fully implicit) numerical technique.
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jq&s Additional items such as grid generation and development of solution
e algorithms were also studied to further aid the above two analyses. These
; items contribute significantly to basic research even by themselves.

q Moreover, these essential elements were needed for successfully developing

the two main analyses.
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SECTION 2

DESCRIPTION OF SIGNIFICANT ACCOMPLISHMENTS

All of the areas of research proposed for study were pursued during
this 15-month grant period. The progress achieved in each of these areas is

briefly described in this section.

2.1 Composite Generation of Multi-Block Grids for Subsonic Cascades

Examination of the basic grids for cascades shows that a C-grid can
adequately resolve the boundary layers on the blades as well as the wakes
downstream and is satisfactory everywhere except in the region upstream of
the blades. In this region, the grid density decreases rapidly with
distance upstream of the front stagnation point. On the other hand, an
H-grid is generally satisfactory in this region and also facilitates
implementation of the repeating boundary condition for cascade flows. For
cascades with minimal stagger and blades with thin leading edges, the H-grid
is not highly skewed. But when the blades possess thick rounded leading
edges typical of turbine cascades, the H-grid becomes highly skewed in the
leading-edge regions (Fig. 1). Earlier, K. Ghia and U. Ghia [1982] had
suggested an approach for improving a basic C-grid for use with cascades.
This consisted of deleting a segment of the C-grid in the upstream region
and patching a segment of an H-grid onto the remainder of the C-grid, as
shown in Fig. 2. The resulting coordinates appear satisfactory everywhere,

It should be noted that this hybrid coordinate system contains two five-

ﬂ" sided cells which require special consideration.
h-)
~$ The concept of C~H hybrid grids for cascades was pursued further by
e

e

e U. Ghia et al. [1983]. The main result of that effort is shown in Fig. 3.

Y Here, a C~grid encompasses a narrow region in the vicinity of the lower
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o
5 .:; blade and approximately includes the wake region. Similarly, a C-grid also
%:g covers the corresponding repeating region around the upper blade. The

e remainder of the flow domain between the blades is then occupied by a
';tg sequence of three H-grid blocks. This led to a five-block grid system for
::;j the cascade. The grid in each of the five blocks was generated separately

‘ 2‘ using numerical solution of elliptic partial differential equations
‘%Eé governing the coordinate transformation. Continuity across the block

;sé interfaces was maintained by a single visit to each block, performed in a
- specific sequence. First, the C-grid portions of the céscade coordinates
i;ﬁg were generated, using appropriate forcing functions to provide resolution of
?22 the blade boundary layers. The resultant clustering near the outer boundary
:f of the C-grid blocks was employed to determine the forcing functions for the
v?ég grids in the adjoining H-grid blocks, leading to an overall grid system that
5151 is continuous everywhere. This procedure also circumvented the difficulties
;d;. to be expected with the two five-sided cells appearing in this hybrid grid.
;égg However, the procedure required knowledge of the grid-point distribution at
ff? all block interfaces; this constituted a major difficulty, especially so far
%iﬁ as the solution for the flow itself was concernedf
;Egs Work performed under the present grant has resulted in the development
'ffﬁ of a composite solution procedure which does not employ, or require, any
;;: information along block interfaces. The boundaries of the computational

;E; region correspond only to actual boundaries in the physical plane. All

A

f%% information along physical-block interfaces is obtained as part of the
ii:i evolving overall solution. Therefore, no special iterative measures are

oY

3&? required at these interfaces. The first step towards developing this

%ff procedure was the appropriate representation of the physical region in the
A ~ computational domain, The earlier 3-D computational-domain representation
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(Fig. 3) by U. Ghia et al. [1983] of the 2-D hybrid grid was very useful but
was computationally inefficient. The present representation of the 2-D
physical problem retains a 2D computational region. Only the true
boundaries of the physical region appear as boundaries in the computational
plane; no block interfaces are exposed as computational boundaries. The
resultant multi-rectangular computational-region representation also paves
the way for appropriate treatment of the five-sided cells appearing in the
hybrid grid. Finally, this representation is very well suited for the
numerical solution of the coordinate-generation equations, as well as the
flow equations, even by implicit methods such as ADI. The various blocks
used in the hydrid grid for a staggered cascade are shown in Fig. 4 which
shows mainly the boundaries of these blocks. The corresponding
computational region is shown in Fig. 5. With this arrangement, the grid is
developed simultaneously in all the blocks without any special consideration
of block interfaces. This is a unique feature of the present multi-block
domain-deccomposition procedure. An invited paper based on some preliminary
results from this work was presented by U. Ghia et al. [1985]; a written

version of the paper was also prepared later by U. Ghia et al. [1986].

2.2 Steady Flows with Strong Upstream Interactions

In this effort, a reduced form of the governing equations has been
developed which can capture much of the physics, while requiring less
computer resources than the full Navier-Stokes equations. It belongs to the
category of semi-elliptic analyses, one form of which was proposed and
employed earlier by U. Ghia et al. [1981]. The formulation holds greatest
promise for high-Re steady flows with a predominant flow direction. It

should be mentioned, however, that the procedure can be extended easily to

% P € - -
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.u“ include consideration of unsteady flows. But the most unique feature of the

¥
S
§ $ method {8 its ability to compute low-Mach number flows. Although it is a
. density-based method, it is not plagued by computational difficulties for
&
) . H- + 0, as are the other density-based methods available. Also, no use {s
J‘\

made of any externally added artificial viscosity. The method is applicable

"y to 3-D flows as well.

o
=

The governing differential equations used are derived from the Navier-

~’~‘.
N
-

Stokes equations, together with the continuity equation and the energy

-
-

equation, for steady flow of a compressible fluid, With Cartesian

-

e
;:. decomposition of the vector quantities, these equations are expressed, in

;';': terms of a general coordinate system (E,n), in the strong-conservation law
-;'.j (SCL) form. Expressing the transformed governing differential equations in
\g the SCL form requires that the coordinate transformation metrics satisfy a

el

-

set of geometric conservation relations. In an analytical formulation,

A~

these are identically satisfied. In a discretized formulation, satisfaction

o of these relations {s ensured by the use of appropriate differencing for the
L4
.Y
)
S metrics.
t‘," The semi-elliptic formulation developed in the present work i{s obtained
"ffr by invoking the approximation that, for flows with a predominant flow

e direction, streamwise diffusion is negligible relative to normal diffusion.

'\., Nevertheless, a large class of flows, for which streamwise diffusion may
.),,'\-
: *3 well be negligible, are significantly influenced by upstream interactions,

and may not be adequately represented by mathematically parabolic equations,

"'.'r; In the present formulation, upstream interaction i{s provided for via
b
'wﬁ appropriate treatment of the streamwise pressure gradient term., Hence, the
"W
Y

formulation is also termed an interacting parabolized Navier-Stokes (IPNS)

W model. The viscous-inviscid interaction is included by composite

' vk L] AUt Vool ¥ OOk ‘\' ¢ o oy e gt de
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éﬁ% consideration of the viscous and inviscid flow regions through the use of
:;E?E the PNS equations; upstream interactions are propagated and included through
- the pressure field.

:}é For the subsonic flows considered, the total pressure, total

;:6 temperature and streamline slope are prescribed at inflow and the static
pq; pressure is prescribed at outflow. At the wall-wall boundaries, the

; 7 conditions of zero slip and zero suction/injection, together with a

gg' specified temperature condition, provide a total of six boundary conditions.
Wy The one additional boundary condition needed is provided by an approximate
_,é form of the normal momentum equation obtained by neglecting the viscous

‘."-.. terms in that equation. This last condition is applied in the cells

%,::: adjacent to the wall, rather than at the wall itself, thus avoiding the need
ég? for any one-sided differences for the normal derivatives. The wake-wake

::‘::l boundaries are the periodic boundaries occurring in cascade flows. The

x& periodicity condition requires that the corresponding values of all four

,§§ flow variables, and the m-derivatives, un. vn and Tn’ of the velocities and
fj. temperature which are governed by second-order differential equations, be
.‘: the same at corresponding periodic points along the wake boundaries. It is
.2 ' important to mention that, in terms of the conserved variables (p, pu, pv,
W

‘&;: pet) comprising the solution vector 5. the repeating condition on the

LN

?wﬁ n-derivatives must be satisfied for all four elements of En.

B

The analysis was employed to determine the flow in several channel and
cascade configurations, Some of the results obtained are presented here in
P terms of the two most sensitive quantities, namely, the static pressure and
s by

wall shear. Unless otherwise stated, the Mach number M_ is approximately ‘

W
o) 0.008. ‘
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Figure 6 shows the distribution of the surface pressure

Py (=p -p..) and wall-shear parameter, T, (= auslan). obtained for a

“inlet

constricted channel with tmax/h = 0.2 and Re = 1500. Of particular

significance is the presence of a finite region of small reversed flow

indicated by negative Ty downstream of the constriction and the completely

non-singular behavior of the present IPNS solution for this configuration
with upstream interaction,

The performance of the IPNS model in the presence of sharp leading and
trailing edges was evaluated by application of the model to a cascade of

finite flat plates. Figure 7 shows the distribution of the pressure pb and
shear parameter T, for Re ranging from 1500 to 15,000. Through all the

highly nonlinear behavior of the flow variables, including that due to
abrupt change in the boundary conditions across the leading edge (LE) and
the trailing edge (TE), the solution of the IPNS model is quite regular as
upstream interactions are appropriately included in it.

The distributions of pb and Ty are shown in Fig. 8 for parabolic-arc

airfoils for various thickness ratios (Fig. 8a) and for various Reynolds

numbers (Fig. 8b). The effect of varying M_ up to nearly 0.5 has also been
examined. It is found to be minimal on the shear parameter T, but becomes
evident in the pressure distribution at the highest value of M, considered.
Figure 8c shows the static pressure contours for the case with M, = 0.49, Re

= 15,000. The high-pressure region localized near the LE is evident from

the concentration of the contours in this region, as is the more widespread

low-pressure regions downstream of the position of maximum thickness. From




ﬁ%::‘,' the values of the pressure along these contours, it is clear that the
’3::2: pressure varies rather minimally over the airfoil surface. Nevertheless,
”:“ these variations have been very accurately computed in order to produce the
E,":"::; contours which are well behaved and conform to the physics of this flow,
e especially in the LE and TE regions.
;,) Application to these various flow configurations served to demonstrate
"; that the technique is viable for flows with strong interactions occurring
-:.:‘t due to boundary-layer separation or the presence of sharp leading/trailing
:;:;;, edges. It is important t.o recall that the procedure developed uses no
;;E:.'::: externally added artificial viscosity and is capable of producing
::E: satisfactory solutions for compressible (subsonic) viscous flows, with no
Tg modification needed for analyzing nearly incompressible flow as well.
A paper based on these results was presented by U. Ghia et al. [1985];
:.:1:? a written version of the paper was also prepared later by U. Ghia et al.
:’* [1986].
1
i
’7‘!? 2.3 Unsteady 2-D Navier-Stokes Analysis
é’f.:?‘ The simulation of 2-D flows with self-sustained unsteadiness has been
",SE: continued using the direct solution of the unsteady 2-D Navier-Stokes
.::f:: equations, 1In addition to determining the basic flow solution, the time-
{' dependent aerodynamic l1ift, drag and moment coefficients were also obtained
¥
E for flow past airfoils at high incidence. Effort was also made to

W)

understand the observed quasiperiodicity and bring forth any possible

E‘g‘ similarity with strange attractors.

ISORCOE IO
3 v Rk



e

WA
8’ a

DR

ek
, "
B

‘-".'x"a’ f_:*,l“hﬁ" BOAGHN BOOOA . ,‘.,13?."{‘«“,.[3!‘;':,“:'IS“_'Q“&‘!‘('S' IR A "'t‘_»{:l‘,!‘i’;} LX)

Symmetric Joukowski Airfoil

A 12 percent thick symmetric Joukowski airfoil is used in this study as
it has two especially attractive features. (i) The Joukowski airfoil can be
accurately represented using conformal transformations; the details of these
and the clustering transformations used, as well as the total analysis, were
given by K. Ghia et al. [1985a]. (ii) The presence of a sharp TE leads to a
much stronger interacting region and, hence, truly tests the analysis
developed. This unsteady Navier—-Stokes analysis and the corresponding
numerjical method are used to study three flow configurations in detail. All
of these configurations have the same Re = 1,000 but the value of the free-

stream incidence angle a, varies such that a, = 15°, 30° and 53°,

respectively. For the high angle-of-attack case with a,= 53°, the Joukowski

airfoil appears, to the oncoming stream, as an apparent bluff body. The
massively separated vortex-dominated flow in the post-stall regime for this
configuration of the Joukowski airfoil is exceedingly complex and, from the
results available so far, it is feasible to conjecture two hypotheses; see
Fig. 11. One possibility is that the solution has still not asymptoted to
an exact limit cycle but may do so subsequently. The second possibility,

based on the results for ap = 30°, is that the solution may asymptote to a

quasiperiodic state, with anywhere from 3 to 8 incommensurate frequencies.
The second hypothesis is more likely to prevail.

Limit Cycle Analysis

Originally, the aerodynamic coefficients were computed only at
intervals of 0.1 characteristic time. This was quite satisfactory for
qualitative assessment of the flow evolution but too coarse for its detalled

analysis. Subsequently, the computer program has been modified to provide
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Y the coefficients of lift CL' drag CD and moment CM (nose-up positive about
L]

thl

R\ the quarter-chord point) at every At increment. The configuration with

vﬁ a, = 15°, which requires minimum time to reach the time-asymptotic limit
!‘p'

\: cycle solution, has been completely recomputed, using a slightly improved
i ‘1

D grid near the TE. The flow configuration with ap = 30° has been recomputed
.ﬁi between t = 45 and t = 58, whereas, due to limitation of availability of CPU
"

j:‘ time on the host computer system, the configuration with a, = 53° is

lffl

e currently available with CL' CD and C" computations at time intervals of 0.1
g

W

ﬁ: only. Figures 9a,b,c show CL' CD and CM corresponding to °r"5°‘ As seen
t

Ef in this figure, CL rises initially but drops very sharply during the

‘i ali

;jj transient phase and asymptotes to a near-limit-cycle solution corresponding
}g to the dominant frequency for the shedding of vortices from the TE. The

)
: Lz-norms of the entire vorticity and stream-function fields were carefully
'5 examined to ensure that the near-limit-c¢ycle has been achieved. This limit-
My?

‘: ¢cycle solution is an "ordinary attractor", the attractor being the 1-D

]' object to which the phase-space trajectories are attracted at all times.

W

P Al

'J The complete motion is known once the geometry of the attractor is

oY

gj determined. Hence, it is also possible to compute the mean flow by

I averaging the flow over one complete cycle; similarly, it is possible to
gﬂ determine the Reynolds stresses from first principles, although these

s

W computations have not been performed in the present study.

g: For the flow configuration with “t'3°°’ the physics changes

L™
L)
5: dramatically, as seen in Figs. 10a,b,c. The curves for the force

)

N coefficients show that one limit cycle consists of two TE vortices

-$ sheddings, There are now two shedding frequencies, or modes, associated
o

]
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with this more complex attractor. As shown in Fig. 10a, the first frequency
is associated with the shedding which takes place at point 1, whereas the
second frequency is associated with the shedding which takes place at point
3. The LE shear layer associated with the first frequency is thinner and
more intense, as compared to that associated with the second frequency. The
energy now oscillates between the two unstable modes through a nonlinear
coupling. The appearance of subharmonics signifies small modulations in the
shedding frequency. This flow field, with its two natural incommensurate
frequencies, is referred to as a quasiperiodic flow, also known as "Hopf
bifurcation® into an invariant torus. From Fig. 10a, it is clear that the
initial state at point 10 of a new cycle is slightly different from that at
point 8. If the phase—-space trajectories were drawn, this solution may very
well show a tendency to fill a rather significant surface area of the torus.

Finally, it should be noted that the CD peaks in Fig. 10b correspond to

points 2 and 9 in Fig. 10a.

For the case with °r'53°' the results obtained up to t=T4 may be far

from approaching an asymptotic state. Figure 11a shows some resemblance of
quasiperiodic flow with three incommensurate frequencies, this fact being
further supported by the curves in Figs. 11b, ¢. From their numerical
experiments, Grebogi, Ott and Yorke [1983] have also shown the existence of
quasiperiodicity with three incommensurate frequencies. The state of the
system at a given time instant in one cycle is not quite repeated at the
corresponding time instant in the subsequent cycle. The phase—-space
portrait, not shown here, is very complex, where the surface has folded
repeatedly onto itself, so that it appears to be a strange attractor. This
is an indication, although preliminary, that the flow may be exhibiting a

route to chaos. Some of the rigorous approaches for characterizing a
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:I':.';E strange attractor consist of the determination of (i) the Lyapunov exponent;
‘{ (i1) the fractal dimension of the attractor, which is related to the number
s of degrees of freedom; and finally, (iii) the Kolmogorov entropy. These
I;s- indices still need to be studied thoroughly in order to rigorously analyze
*:‘\. the route to chaos in a meaningful way.

"1. The overall state of the total flow system was examined in terms of the
;%E%':? frequencies associated with the various sheddings and an invited paper based
::"::; on these results was presented by K. Ghia et al. [1985b]. A written version
. of the paper was also prepared by Kf Ghia et al. [1986].
::‘.:3:' Cambered Joukowski Airfoil
The 2-D unsteady flow analysis was continued for a cambered Joukowski
E% airfoil. A typical clustered conformal C-grid, with (230, 46) points, is
g_ shown in Fig. 12 for the G&éttingen 580 airfoil (i.e., an 11.8 percent thick
:;,f.ﬁ cambered Joukowski airfoil with a zero-lift angle of attack a, = -5.T11°),
o
P at effective flow angle of attack a, = 30°.
Wy
D) Results are obtained for three flow configurations with Re = 1000 and
23"‘% a, = 5.711°, 15° and 30°, the last two being in the stall and post-stall
%)
:'5_" flow regimes, respectively. Here, the effective angle of attack is

a_ Gg = Gp = Qny with ap being the geometric angle of attack between the chord
:‘%\ and the free-stream direction.
_._:::. Figure 13 shows the inviscid starting solution, the grid distribution
;:.l:':. in the near field and the steady-state stream-function and vorticity
EI:R. contours for the case with Re = 1000 and a, = 5.711°, The stream-function
P yhe
e contours show a mildly separated region in the vicinity of the trailing edge
‘;‘E: (TE). Laminar boundary layers prevail on both the suction and pressure

&

o by U

OOGE 0L DSt ORDU) 8 SO0 Yoy ’ LSRR AN D ] O MO AN
oS R, At :.‘_!,“!:5~‘:\,‘.‘.1’f.l.'_,‘:?,45‘#«2“.‘,',’a‘r ':‘1,'._‘{“,-\ef-’,l"'ﬂ,‘.l, AXAR N ,’g’t\ Y _"!:":',‘!v‘f";“‘v‘i‘n R e R



)Q surfaces, as observed in the vorticity contours, which also show a tongue-

R like behavior. The streamwise extent of the separated flow near the TE is

W 0.15¢c, as compared to approximately O.idc for the symmetric Joukowski airfoil
%

:; with ae = 5%, as given by K. Ghia, Osswald and U. Ghia [1985b].

Y]

..

"‘ The time history of the lift and drag coefficients C, and C;,

*

aﬁ respectively, is depicted in Fig. 14 for the case with Re = 1000, ag = 15°.
,0

f

Ky A time asymptotic limit-cycle solution evolves by approximately t = 12, as

compared to t = 31 for the case of the corresponding symmetric airfoil.

]
K K. Ghia et al. [1985b] had defined the period as the time interval required
&
; for the Lz-norm of the deviation of the instantaneous state of the flow from
|
L
B, a reference initial state to become smaller than a specified tolerance. For
?‘ N
3} the present configuration, the period is established by examining the
D' *
‘J‘ successive maxima of CL in Fig. 14. The period associated with this limit-
inf
:é: cycle (ordinary attractor) is 1.046 characteristic time units and the
)
ﬁs corresponding Strouhal number Su = fc (sin “f)/U-' 0.154; based on ag, 1ts
j"’l . r
- value is Su = 0,247. The corresponding period for the symmetric airfoil is
» e
oy
h 1.596 and S = 0.18. Hence, the effect of camber is to increase the
e %
K frequency of the periodic shedding of large-scale vortices from the TE
jﬁ region and from the separation zone on the suction surface.
}f The coefficients of lift CL and drag CD for the case with Re = 1000,
‘$ﬁ a, = 30° are shown in Fig. 15. These curves show that, even at t = 52, the
\J
i
d' flow has not yet reached an asymptotic state. Also, these curves show that

N one cycle consists of two TE sheddings. Thus, there are two shedding

frequencies associated with this attactor; these correspond to the sheddings

14
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associated with points 1 and 2 in Fig. 15. The LE shear layer associated
with the first frequency is thinner and more intense as compared to that
associated with the second frequency. This flow field, with its two natural
incommensurate frequencies, is again referred to as a quasiperiodic flow.
The phase-space portrait is complex and is tending towards being a "strange
attractor®. The corresponding Poincare sect_on indicates that the attractor
may be a thin torus. These results are similar to those of the symmetric

airfoil (Fig. 11), except that the CL history appears more chaotic and does L

not seem to be tending towards a limit cycle. Also, there is a peak due to

the shedding from the LE at point 3; this was not present in the results for
the symmetric airfoil. The time instants at which the detaliled flow results

are presented correspond to the TE~LE~TE sheddings.

The instantaneous stream-function contours, presented in Figs.
16a,c,e,g,1, show massively separated flow, with large eddies present over
the suction surface as well as in the wake. Figures 16a,g,i1 show the
presence of multiple separations, whereas Fig. 16c shows the presence of two
counterclockwise co-rotating bubbles, aft of the shoulder, towards the TE
and these bubbles are in the process of coalescing. The corresponding
vorticity contours are shown in Fig. 16b,d,f,h,j and various vortex
interactions can be observed from this figure. In Fig. 16b, the TE vortex
has just been shed, a new TE vortex intensifies as shown in Fig. 16d and is
being just separated from the TE by the growing LE vortex. Figure 16f
corresponds to shedding of the LE vortex. The state shown in Fig. 16]
corresponds to TE shedding and has features similar to those in Fig. 16b.

The results of this effort may be summarized as follows., Up to the
stall regime, camber causes the flow fields to be dominated by the TE

geometry. Also, the extent of the separated flow is diminished both in the
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streamwise and the lateral dimensions and the shedding frequency is

increased. For flow fields in the post-stall regime, the C. time history

L
becomes more chaotic and shows a peak associated with LE shedding. The
computation of the flow field needs to be continued to larger t, to predict
its further behaviowr with definite assurance. A paper based on these
results was presented by Osswald et al. [1986] and appears in the Conference

Proceedings.

Circular Cylinder

For flow past airfoils at high angle of attack, the airfoil behaves
like a bluff body. The large-scale structure of the separated flow past a
bluff body, e.g., a circular cylinder, is not understood well, except at
extremely low values of the Reynolds number Re around 120 where Re is based
on the cylinder diameter. The undérstanding of separated flow past the
model problem of a circular cylinder is crucial, as it may lead to a better
understanding of more complex flows such as separated flow past airfoils
with or without solution bifurcations associated with 1ift hysteresis,
symmetry breaking, etc. Also, a thorough knowledge of steady separated flow
could aid in analyzing unsteady separated flow leading to incipient
transition and, eventually, to chaos.

Hence, the flow past a circular cylinder was computed, first without
assuming symmetry. The instantaneous streamlines and vorticity contours are
presented in Fig. 17 for Re = 200. The occurrence of the bulge phenomenon
for Re = 200 and t 2 1.0, first reported by Bouard and Coutanceau [1980], |
also computed satisfactorily. It leads to an alteration in the vorticity
contours close to the surface of the cylinder in the separated zone. For

the corresponding symmetric configuration with Re s 500, the instantaneous

16
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;,':;‘ stream-function and vorticity contours are delineated in Fig. 18 at t = 100,
?s 225, 800 and 1600. The eddy length L, as seen from the stream-function

:;.‘ contours, increases fram approximately 6 diameters at t = 100 to 27

v : diameters at t=1600; the asymptotic results of Fornberg [1985] show this

:, length to be 36 diameters. Further, the region between the cylinder and the
“;,’ main eddy grows from about 1 diameter initially to 5 1/2 diameters by t =
3‘:} 1600; the corresponding asymptotic results of Fornberg [1985] show this

:g: distance to be approximately 8 diameters. This region can be considered as
&t consisting of two parts: the front part where the separating streamline

4 V2

:E;i grows in width as O(Re ), followed by a 'transition' region in which the
:f:: growth rate adjusts such that the width can grow as O(Re) in the main eddy.
Also, in this transition region, the vorticity increases from zero to the
: level of nearly uniform vorticity present in the main eddy. The kink in the

contours of the vorticity is conjectured to be related to this change in the
q growth rate of the width of the eddy. The results for the velocity do not
)-_,;% show 0(1) thickness for both the shear layer past the center of the main

eddy and the return jet, as proposed by Smith [1985]; the present results

;' need to-be scrutinized further to provide the accurate flow structure. The
¥,
t
:' Navier-Stokes calculations show that, near Re = 500, the translating
£
A cylinder drags with it a massive eddy.
’,.:‘ These results for flow past cylinder were presented by K. Ghia et al,
sy
Y (19861 at the I.U.T.A.M. Conference; a written version of the paper is to
o
appear in the Conference volume,
,’
L)
o
)
:::' 2.4 Unsteady Three-Dimensional Navier-Stokes Analysis
A
o,
_ The effort directed to this area of study was focused primarily on the
.“.
::.' careful selection of the formulation of the governing partial differential
Y
T.I
‘::.
Ky
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equations and the proper choice of discretization to produce sparse matrices
with repetitive block structure. This structure is essential for efficiency
of the inversion technique with a high degree of vectorizability in the
solution phase. The goal was to develop a direct-solution technique for the
3-D unsteady Navier-Stokes equations for general geometries. This was based
on the fact that direct-solution methodology developed by the principal
investigators for 2-D unsteady Navier-Stokes equations has proved very

robust and efficient.
After much careful study, the velocity-vorticity (V.;) formulation has
been selected, as opposed to the primitive-variable (V.p) and the several

vector-potential-vorticity (A,w) formulations. All vector-potential
formulations, which include stream—-like fungtlons, toroidal and poloidal

potentials, etc., suffer from the necessity for more boundary conditions on

the vector potential A than are available naturally from the physics of the
flow problem. This difficulty can be traced to the fact that the vector
potential is gauge invariant and 'extra' boundary conditions are required to
uniquely select a specific gauge. Conversely, the non-physical boundary
conditions selected must be consistent with a specific gauge function;

otherwise, numerical convergence difficulties can be expected.

At first glance, the primitive-variable (V.p) formulation appears to be
computationally more efficient, since it requires the solution of only four

unknowns , V1, VZ' V,, and p, rather than the six unknowns, V.,

1
3 1 12' v3l w1l
Wy s and was occurring in the velocity-vorticity (V,;) formulation. Indeed,

much effort has been directed by the technical community at primitive-

variable techniques for compressible flows. However, in the present effort,




by it is determined that the velocity-vorticity (V,E) problem can be
discretized in such a manner as to produce a sparse matrix problem with

repetitive block structure. As a result, the computational work associated

Ly

:' 3 with the implicit determination of one unknown can be effectively eliminated
%y »

AR from the solution of the velocity problem, while the computational effort
,:;a.‘ for yet another unknown can be eliminated from the vorticity-transport

l'.‘

E}. equation. Consequently, velocity-vorticity techniques deserve attention.

Yy - -

’ A philosophical point to bear in mind is that the (V,a) formulation
_tj:: leads to a more natural decoupling of the governing equations than occurs in
.,‘-;-:.'

'-'.: the primitive-variable technique. Specifically, pressure is an essential,
!eh.

"y nonlinear function of velocity, whereas vorticity is a linear function of
ALY

' velocity. Indeed, the (V,w) formulation can physically separate the spin
'9- dynamics of a fluid particle (vorticity-transport problem) from the

1,’[,.‘ translational kinematics of the fluid particle (the elliptic velocity

b

o

"E-‘,‘;':' problem). This natural decoupling, which occurs in the (V,w) formulation,
l“'!,

e,

f:;:'t may be seen to directly translate into simple and direct application of the
J

\ necessary boundary conditions. Furthermore, complete internal consistency

Y
e* -

.:::., can be maintained with the (V,w) formulation, i.e., all integral vorticity
4,

H’l

s constraints, all integral velocity constraints, solenoidal velocity, ete.,
Yoo

::‘::, can be algebraically guaranteed, irrespective of grid size and time-step
i

":‘u" discretization, throughout the entire flow solution.

1‘:.,.

DR

= Wu [1985] and his associates, Fasel [1976], and Gatsky, Grosch and
e .

e Rose [1982] have used the corresponding 2-D (V,w) formulation and are

g

(ALY - -

:ﬁ?k. presently developing 3-D algorithms using the (V,w) formulation. The

7;. present analysis, however, aims to employ efficient direct inversion for the
g

e

. 1:‘
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A
9~
o
e elliptic velocity problem which can be formulated so as to produce a
:",’:\ uniquely determined nonsingular vector-matrix problem with repetitive sparse
LN block structure.
N |
o

y 2.5 Pressure-Field Evaluation for Unsteady Flows
‘:;,1. For unsteady flows analyzed using the (w, y) formulation of the Navier-
:;:'g, Stokes equations, the surface distribution of the pressue say be obtained
b,
"f' by simply integrating the tangential component of the momentum equation
\’: along the surface. For determination of pressure in the total flow field,
.,:\ U. Ghia et al. [1976] have shown that a path-independent pressure field
' results only fras the solution of the Neusann-Poisson pressure probles
Z:',:. formed Dy the divergence of the momentum equations. With Neumann-type
fi" boundary conditions, this problem admits a solution, which {3 unique upto an
b arbitrary additive constant, only when the boundary values and the source in
::: the differential equation satisfy Green's integral theorem. This places
:E:: certain very specific requirements on the discretization of the Neumann-
' Poisson problem. This work is being pursued with the assistance of Collopy
'f',' (1986] and comprises his Master's degree thesis, expected to be completed
: shortly. The application considered was the flow through an orifice in a
R doubly infinite circular pipe. The infinite extent of the flow domain in
:.2 the streamwise direction necessitated additional considerations in order to
s'_:':‘ maintain boundedness for the working variable for the pressure.
Ay
:; 2.6 Supercomputer Usage and Graphical Post-Processing of Data
EZ- All of the research pursued towards this grant makes extremely
__L extensive use of computer resources, For acceptable productivity, all
'E:'?' available computer facilities are made use of, judiciously. During the
g
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o
;:3133 initial development stages, the programs are tested and run using the
::'o
':2 facilities of the University of Cincinnati (UC); these include the Aerospace
" Engineering Department's Perkin Elmer 3250 supermini computer system with
N
2.
\; dual processors for parallel computation possibility and the UC Computer
Q‘ L]
"h""
’

AN Center's AMDAHL 470 V/7A mainframe facility. Most of the actual results are

eventually generated using the NASA-Lewis CRAY YMP supercomputer system for

._ the IPNS camputations and the NASA-Langley CYBER 205 supercomputer system

-
i‘~ for the unsteady Navier-Stokes computations (2-D as well as 3-D). All four
;,‘. of these systems are equipped with their respective peripheral devices which
;E' are employed for post-processing the results of the computations and for
.’: presenting these results in suitable graphical form. All of the graphics
‘ packages employed are written by the present research team and are very
“j','.:. efficient. However, the retrieval of the large data bases from the remotely
SQ': located supercomputers is extremely inefficient via the present long-
\*g distance communication network. Therefore, plans are presently underway to
Eé purchase, through AFOSR funds, a superworkstation and, through the

A,

: University of Cincinnati, have a leased direct-communication line to the
';;“ NASA-Langley supercomputer site; this is most essential for the 3-D unsteady
'.::: flow simulations, which are presently being pursued. The limited
o availability of supercomputer time continues to create a great deal of
": difficulties. Much valuable time i{s often expended in transferring programs
f-.\ from one computing facility to another, in the hope of expediency, but this
i necessitates continual changes in the programs and ends up consuming
i: additional personnel time. Easier availability of larger amounts of
:: sypercamputer time would be most conducive for rapid progress in this
- research.
f",‘;k
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