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ABSTRACT

Based on randomly right-censored data, a smooth nonparametric estimator of the
quantile function of the lifetime distribution is studied. The estimator is
defined to be the solution xn(p) to Fn(xn(p))= p, where Fn is the distribution

. function corresponding to a kernel estimator of the lifetime density. The
strong consistency and asymptotic normality of xn(p) are shown. Some
simulation results comparing this estimator with the product-limit quantile
estimator and a kernel-type estimator are presented. Data-based selection of
the bandwidth required for computing Fr is investigated using bootstrap

methods. 1Illustrative examples are given.

Key words: Right-censoring; Percentiles; Asymptotic normality; Bootstrap
method.
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1. INTRODUCTION
Right-censored data arise frequently in industrial life testing experiments
and medical studies. From such data it is important to be able to obtain good
nonparametric estimates of various characteristics of the unknown underlying

lifetime distribution. One characteristic of the lifetime distribution that is

of interest is the quantile function. For example, in product development it’
is typical to estimate certain percentiles of the lifetime distribution of the
product based on the right-censored observations from life tests. That is,
estimates of possible guarantee times for the product are desired.

For a probability distribution functicn G, the quantile function is defined
by Q(p) = G-l(p) e inf {t: G(t) > p}, 0 < p < 1l. For a random (uncensored)
sample from G, several ncnparametric estimates of Q(p) have been suggested.

The sample quantile functicn, Ggl(p) = inf {x: Gn(x) > P}, has been studied,
where Gn(x) denotes the sample distribution function (see Csdrg8 , 1983, for

1). Another approach has been

example, for many of the known prcperties of G_
to solve an(xp) = p for xp, where an(x) = Ifa gn(t)dt, with 9, teing a kernel
estimator of the density function of G (see Nadaraya, 1964). Recently, Yang
(1985) studied a kernel-tyre estimator which smccthed the sample quantile
function G;l(p).

For right-censored data, Sander (1975) preposed estimaticn cof the quantile
function by the product-limit (PL) estimator, defined by 6n B ;;l, where gn
denotes the PL estimator of the lifetime distrikbution (Kaplan and Meier, 1958;
Efron, 1967). Sander (1975) and Cheng (1984) coktained scre asymptotic
properties of 6n' and Cs8rgd (1983) discussed strong approximation results.
Padgett (1986) studied a kernel-type quantile estimator frem right-censored

observations, extending the ccmplete sample results of Yang (1985). Lio,

Padgett, and Yu (1986) and Lio and Padgett (1987) presented some asymptotic
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properties of the kernel-type e-timator, including asymptotic normality and
mean square convergence. Also, the kernel-type estimator, Padgett and
Thombs (1986) presented results -f extensive simulations and investigated the
use of bootstrap methods for bandwidth selection and confidence intervals.

In this paper, a smooth nonparametric estimator of the quantile function is
studied which is defined as the solution xn(p) to Fn(xn(p)) = p, where Fn(x) is
the distribution function correspending to a kernel density estimator fn(x) of
the lifetime density from right-censored data. The kernel density estimator
proposed by Fdldes, Rejtd, and Winter (1980) and McNichols and Padgett (1986)
is used here. The estimator xn(p) is intuitively more appealing than the
kernel-type estimator of Padgett (1986) since it is a nondecreasing function of
p. The kernel-type estimate can decrease for large p due to the scarcity of
large uncensored cbservations in the sample.

The estimator xn(p) is defined in Section 2, and strong consistency and
asymptotic neormality are presented in Section 3. 1In Section 4, some simulation
results are discussed ccmparing this estimator with the PL quantile estimator

and the kernel-tyre estimator of Padgett (1985) with reszect to estimated mean

squared errors. Bootstrap metheds for chcosing a data-based bandwidth value
for the kernel density estimate fn(x) are prasented in Secticn 5. A confidasnce
interval for the true lifetime distribution quantile based on the bcotstrap

pezcentile interval methed is also given in that section.

2. NOTATICON AND PRELIMINARIES

o,...,XO denote the true survival times of n items or individuals that
1 n

Let X
are censored on the right by a sequence UpreeadUyy which in general may be
either constants or random variables. The X?'s are nonnegative, independent,
identically distributed randem variables with common unknown continuocus

distribution function Fo' unknown quantile function Qo(p)aFgl(p)=

- - - - L -
e
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inf{t:Fo(t)Zp}, 0<p<l, and unknown density function fo'

The observed right-censored data are denoted by the pairs (Xi,Ai),
i=1,...,n, where
o { 1if X7 < U
X, = min{X;, U.}, &, =
: oy 0ifx°>u. .
. i i
Thus, it is known which observations are times of failure or death and which

ones are censored or loss times. The nature of the censoring depends on the

<y,

Ui's. (i) 1If Ul,...,Un are fixed constants, the observations are time-

s
&

truncated. If all U,’s are equal to the same constant, then the case of Type I

s
S

censoring results. (ii) If all U, = X?r)' the rth order statistic of .
x%,...,%2, then the situation is that of Type II cemsoring. (iii) If ,
Upreessly constitute a random sample from a distributicn H (usually unknown)
and are independent of xg....,xi, then (¥;,8;), i=1,2,...,n, is called a

randomly right-censored sample.

For the asymptotic results in Section 3 of this parer, the random
censorship model (iii) is assumed. For this model the distribution function of
each X isF=1- (l—Fo)(l-H). This assumption is typically necessary for
asymptotic results under censoring. For example, see Breslow and Crowley
(1974), F3lces, Rejtl and wWintsr (1580), Palgett (1985), and Lic, Padgett and
Yu (1586).

A pepular estimator of tre survival function l—Fo(t) from the censored
sample (X;,8{), i=1,...,n, is the product~limit (PL) estimator of Kaplan and
Meier (1958). The PL estimator, which was shown to be "self-censistent" by
Efron (1967), is defined as follows. Let (Zi’Ai)' i=1,...,n, denote the
orderz2d Xi'é along with their corresgonding 8, 's. Values of the censored
sample will be denoted by the corresponding lower case letters, (xi,ai) and
(zi,xi), for the unordered and ordered sample, respectively. Then the PL

estinator of l—Fo(t) is

~'. \-\J 1- -



1, 0<t<z,,
A
R k-1 n-i i
Z, 4<t<Z, ,k=2,...,n
Pylt)= g (‘H:III'] TRl
0. z <t.

The PL estimator of Fo(t) is denoted by Fn(t)=1—Pn(t), and the size of the jump

of Pn {or Fn) at Zj is denoted by sj’ Note that sj=0 if and only if zj is

~

i
censored for j<n, i.e. if and only if xj=o. Define §; =1 sj = F
=1

n{Zis)s
i=1,...,n-1, and snsl.

A natural estimator of Qo(p) is the PL quantile function
én(p)zinf{t:;n(t)gp} (see, for example, Sander (1975), Cheng (1984), and Csdrgd
(1983) for scme of the properties of én)‘ Since 6n is a step functien with
jumps corresponding to the uncensored cbservaticns, it is desirable to obtain a
smoothed estimator of Q°. The kernel smcothed 6n’ considered by Padgett
(1986), Lio, Padgett and Yu (1986), Lio and Padgett (1987), and Padgett and
Thombs (1986), is such an estimator, ard is defined as follows: Let [hzhn} be
a "bandwidth" sequence of positive numbers so that h 20 as n>=, and let K be a
becunded protability density function which is zero outside a finite interval
(-c,c) and is symmetric akbout zero. (For asymptotic results, other conditions
cn hn’ K, and F, are needed, but thess are the only assumcticns that will be
macde for purposes of definition.) Then for O<p<l, the kernel quantile functicn
estimator is given by

Q. (p) = h™HIgQ ()K((t-p)/h)dt

1D S

-nt 2t K((ep)/midt, (2.1)
i=1 51

where SOEO. An approximation to Qn(p) was given by Padgett (1986) as

~ —_11’1
Q. (p)=h iflzisiK((Si—p)/h). (2.2)




Although neither estimator is difficult to compute (2.2) will be simpler for
some kernel functions.

In this paper a different smooth nonparametric quantile estimator than
(2.1) is studied. It is defined as the quantile function corresponding to the
distribution function obtained from a kernel smcothed density estimate. To
define this estimator from the ordered censored data (Z;0A), i=1,...,m,
consider the kernel density estimator of fo written by McNichols and Padgett

(1986) as

1

n
£.(t) = h™" 1 s.x(<t—zj)/h), t20,

j=1 7
where h and K are the bandwidth and kernel function defined earlier. The

distributicn function corresponding te the density fn can be written as

F(x) = /¥, £ ()dt = [T W((x-t)/h)dF(t)
n
= [ s, W(x-Z.)/h), (2.3)

j=1 J J
where W(t) = IEQ K(u)du is the distribution function for the kernel K. Then
the estimator xn(p) cf the pth quantile, Qo(p), is defined to be the solution
to the equatiocn Fn(x)=p. This solution can be found iteratively by the Newton-
Rarhscn methcd, for example, using a starting value such as the PL quantile,
én(p). In all coxputaticns reported in this parer, the iterations converged
rapidly.

Althouch the estimate xn(p) must be obtained by an iterative procedure,
whereas Qn(p) can ke calculated directly, xn(p) is more apcealing since it is
always a nondecreasing functicn of p. The estimate Qn(p) can decrease for
large p (sée Figure 1 of Padgett, 1986). This is due to the scarcity of
uncensored observations from the tail of F_ and can possibly ke avoided by

appropriately increasing the bandwidth h to compensate for fewer observations.
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However, this would tend to oversmooth the estimate. A small computer
simulation study to be discussed in Section 4 will indicate some further
compariseon of xn(p) and Q (p) for small sample sizes. In fact, the simulation

results indicate that, while both x.(p) and Q,(P) are better than 5n(p) in the

l“' ,1

sense of smaller estimated mean squared errors for a range of bandwidth values,

=
l.l

» W

neither performs uniformly better than the other.

[ 90

3. SOME ASYMPTOTIC RESULTS

In this section, the consistency and asymptotic normality of the estimator

xn(p) will be presented assuming the randcm right-censorship model. The
results will be stated, and their proofs will be outlined in the appendix. The
consistency will be stated first,

For any distribution function G, define TG = sup {t: G(t) < 1}.
Theorem 1. Suppcse Fo is continuous and strictly increasing on [0,=). 1If

either (i) H(T; ) < 1, where t~ denotes limit from the left, or (ii) Tp <
) )

TH < =, then xn(p)er(p) almost surely as n-=,

< T,. £ @ guarantee a positive

The cenditions H(TF ) <1 and TF 5

o o}
prckability of cbserving uncensored data pecints from the entire support of the

lifetime distributicn Fy- The conditicn in (ii) allows both the lifetime
distribution and censoring distributicn to have the same support and to have
support equal to the interval {0,=). Hence, Fy and H can both be exponential,
Weibull, or gamma distributions, for example.

As the next theorem states, xn(p) has the same limiting normal distribution

as Qn(p) (Lio, Padgett and Yu, 1986). The prcof, given in the Aprendix, uses

the concepts of Kiefer processes (see Csdrgd, 1983).
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Theorem 2. Let T satisfy l—F(T)s[l—FO(T)][l—H(T)]>0. Assume that Q°(p)<T,

fo(l-H) is continuous and positive at Qo(p), the density function of H is
continuous, and K is a continuous density defined on the finite interval
[-c,c]. If h-0, nh-o=, and vnh»0 as n-=, then /"[x (p)-Q° (p) ]+Z

distribution, where Zp is a normally distributed randoem varlable with mean zero

and variance

2 2 @ -2
0% = (1-p)[£,(Q°(p)) ] [P o™ arg,

with Fo(u) = P(X<u,8=1) denoting the subdistribution function of the uncensored

observations.

An example of a bandwidth seguence {b } satisfying the conditions of

-d

Theorem 2 is hn=cn , Y<d<l.

4. SCME SIMULATICN RESULTS
A small Mcnte Carlo simulation was perfcrmed to cbtain an indication of the
performance of xn(p) cermpared with the kerrel-type estimator, Qn(p), for small
sarple sizes. For these simulaticns the triangular density on [-1,1] was used
for K, K(u)=1-|u|, |u|¢l. The censcring distrituticn E was taken to ke the
exponential distributicn with mean B_l ard the lifetime distributions used were

Weibull with shape parameter « and scale parameter egual to cne, that is,

[ 2
Fo(x) = 1-e™* (a=0.5,1, and 2).
The bancdwidth values of h=0.01 (0.04) 0.61 were used for gquantiles at

p= 0.10, 0.25, 0.50, 0.75. Sample sizes of n= 30,60,100 were studied.

N

In each case simulated (i.e. each distribution, kandwidth, p, and sample

r

size ccmbination), 300 censored samples were generated using the random number

J;)&}

generators in the International Mathematical ard Statistical Library (IMSL,
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1985) on a VAX 11,8300 computer. From the 300 samples the estimated mean &3
squared errors (Average Squared Error=ASE) of the estimators xn(p)' Qn(p) and éi
6n(p) were computed, and the ratios of these ASE’s, ASE[én(p)]/ASE[xn(p)] and E_
ASE[Qn(p)]/ASE[xn(p)], were calculated. a
Some of the results of the simulations are given in Tables 1-3. 1In all 'E-
cases for each p, except for small p for the Weibull lifetime distribution with 53
o=0.5, there is a range of bandwidth values for which x.(p) has smaller ASE :f
than that of the PL quantile estimator, én(p). Also, in many of the simulated ;E
cases, there is a range of h values for which the ASE of xn(p) is less than Ez
that of the kernel estimator, Qn(p). This is the case for the expcnential :«
lifetime distribution for all values of p simulated. However, neither xn(p) §
nor Qn(p) is uniformly better than the other over all values of p and SE;
bandwidths used in the simulations. ~
In the next section the bootstrap will be used to determine, kased on the E;
given censored sample, the "best" value ;f h to use (in the sense of the Ei
S
smallest bootstrap MSE) in calculating xn(p) as p varies. Bootstrap confidence *
bourds for the true quantile Qo(p) will also ke discussed, and an example using E;
switch failure data adapted frcem Nair (1984) will be presented. 5?
5. BOCTISTRAP METHCDS: TZANDWIDTH SELECTICN AND CCNFIDENCE INTERVALS
Since the estimator xn(p) is implicitly defined as the scluticn to Fn(xn(p)) E
= p, where Fn(x) = Ifafn(t) t, it depends on a kancwidth value hn used in the &i.
kernel smoothed density estirmate fn(t). Thus, in practice hn rust be chcsen Ht;
tefore the estirmater xn(p) can ke ccmputed. A natural questicn to ask is: «é
"which bandwidth value yields the ’'besi’ estimate xn(p) of Qo(p), in the sense of ii‘
minimum me&n sqguare error (MSE)?" Due to the censoring, exact or even asymptotic >
expressicns for MSE(xn(p)) are difficult to derive. In this section we propose a
method of selecting bandwidths based on minimizing the bootstrap estimate of
MSE(xn(p)).
&
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TABLE 1. Ratios of Average Squared Errors (300 samples) L
Exponential (A=l) Life Distribution and )
Exponential (B=3/7) Censoring Distribution (30% censoring) ,:
'
n=30 j;
p\h/| .01 .05 .09 .13 .17 .21 .25 .29 .33 .37 .45 .57
10 @ .127 1.016 1.028 .965 1.035 1.044 1.024 1.206 1.126 .867 .794 .611 2
U b .123 1,082 1.046 .940 .909 .880 .951 1.124 1.152 1.370 1.923 1.742 5
\."
25 2 .226 .026 1.027 1.121 1.183 1.105 1.192 1.119 1.332 1.197 1.345 1.238 o
**“ b .216 .235 .958 .938 .995 .988 .976 1.040 1.020 1.093 1.295 1.689 ;:
50 2 1.008 1.048 1.061 1.044 1.055 1.092 1.093 1.136 1.134 1.174 1.156 1.241 .
T b .972 .957 .932 .930 .960 .976 1.032 1.088 1.016 1.052 1.538 1.645 T,
g’
75 2 1.005 1.021 1.022 1.033 1.068 1.086 1.112 1.074 1.191 1.149 1.177 1.205 :?
"7 b .865 .938 1.058 .941 .839 .S64 .786 .864 .911 .595 ,515 .536 v
n=60 A
10 2 1.018 1.116 1.136 1.146 1.366 1.204 1.163 1.140 1.060 1.030 .745 .266 f:
**“ b | 1.018 .978 .958 .943 .938 .982 1.022 1.260 1.287 1.484 1.725 1.604 -3
'.\
25 @ 1.006 1.033 1.102 1.111 1.178 1.198 1.274 1.244 1.276 1.290 1.296 1.248 i?
7 b .979 1,001 .977 .992 .9%9 .999 .969 1.030 1.082 1.102 1.325 2.650
N
g5 2 1.007 1.033 1.040 1.093 1.134 1.119 1.155 1.147 1.129 1.234 1.205 1.285 oS
b 974 .976 .955 .964 .945 .994 .951 1.046 1.040 1.205 1.385 2.639 -]
N
75 2 1.003 1.027 1.029 1.063 1.034 1.069 1.100 1.133 1.174 1.165 1.193 1.203 ~
" b .959 ,870 .962 .953 1.080 1.002 .962 1.256 1.076 .948 .817 .859 g
n=100 N
10 @ | 1-024 1.1251.215 1.291 1.263 1,257 1.27% 1.326 1.177 .732 .S535 .227 ﬂﬂ
b .680 .,983 ,953 ,951 ,023 ,9¢8 1.084 1.6356 1.875 1.621 1.8323 1.682 2
2z 2 1.017 1.033 1.041 1,228 1.184 1.206 1,220 1.212 1.317 1.294 1.253 1.189
b .988 .9°1 .988 .977 .983 1.013 1.022 1.049 1.121 1.264 1.524 2.897
5 2 1.009 1.014 1.0351.03% 1.107 1.173 1.132 1.064 1.218 1.168 1.238 1.243 N
b .985 .996 .938 .955 .971 .971 1.018 1.079 1.294 1.253 1.924 3.112 i
S
75 2 1.007 1.014 1.038 1.089 1.072 1.078 1.088 1.093 1.089 1.209 1.248 1.202 - @
: b L9534 .943 .9C5  .879 .934 1.202 1.4%9 1.617 1.153 ,925 .816 1.419 ‘
a. ASE(Q )/ASE(x.) .
b ASE(Qn)/ASE(xn)
5
R
.
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TABLE 2. Ratios of Average Squared Errors (300 samples)
Weibull (e=0.5, A\=1) Life Distribution and
Exponential (B=3/7) Censoring Distribution (69.7% censoring)

n=30

.21

.486
.975

.129
.220

.076
.226

.036
.647

n=60

.827 .630 . .317
1.070 .895 . 913

1.007 1.029 . .831
1.020 1.070 . .116

a | 1.003 1.010 . .136
b .991 .988 . .341

a | 1.003 1.010 . .054
b .865 .961 . . .794

ASZ(Q)/ASE(x_)
ASE(Q_)/ASE(x )
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TABLE 3. Ratios of Average Squared Errors (300 samples)

Weibull (e=2, X=1) Life Distribution and N
Exponential (B=3/7) Censoring Distribution (27.6% censoring) }'
n=30 k
— ~
)
p\h .01 .05 09 .13 17 0 .21 .25 .29 .33 .37 .45 .57 e
10 2 .939 1.081 .981 1.220 1.226 1.318 1.386 1.565 1.531 1.348 1.417 1.052 :i'
**Y b .872 .904 .720 .801 .745 .664 .685 .593 .564 .544 .451 .306 K
) -
25 @ .708 .429 1.083 1.125 1.180 1.156 1.312 1.287 1.393 1.290 1.493 1.464 13
*““ b .678 .404 .95 .966 .950 .946 .899 .883 .866 .855 .780 .702 it
50 @ 1.012 1.0151.114 1.118 1.104 1.161 1.161 1.276 1.316 1.326 1.243 1.302 i’
b .991 .990 .978 .947 .957 .976 .958 .963 .940 .928 .987 .906 N
-
R
75 @ 1.012 1.023 1.065 1.091 1.109 1.165 1.168 1.220 1.292 1.415 1.532 1.345 }2
""" b .967 1.001 .958 .937 .872 .978 .924 .863 .913 .820 1.276 2.537 .
n=50 N
- N
10 2 1.030 1.125 1.210 1.267 1.454 1.373 1.400 1.394 1.394 1.374 1.123 .536 :\
=Y b .981 .930 .876 .821 .791 .716 .776 .738 .650 .542 .371 .163 X
)
25 2 1.009 1.043 1.104 1.097 1.165 1,257 1.289 1.294 1.209 1.365 1.340 1.220 e
*““ b .997 .995 .965 .984 .939 .927 .905 .887 .902 .890 .841 .749 .o
50 @ 1.000 1.002 1.076 1.088 1.149 1.207 1.189 1.203 1.220 1.293 1.303 1.439 N
b 993 .984 .96L .972 .958 .979 .977 .976 .962 .963 .948 .927 o
75 2 1.000 1.027 1.0951.128 1.111 1.151 1.144 1.227 1.217 1.247 1.350 1.165 s
" b} 1.005 .965 .959 .957 .954 .984 1.025 .951 .914 .929 2.011 4.094 .
=(Q,)/ASE(x ) -1
ASE(Q)/ASE(x_) 2
a1 ‘
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Marron and Padgett (1987) have determined an asymptotically optimal bandwidth
for the density estimate fn(t) which minimizes the integrated squared error (ISE)
of £,- Since their bandwidth value is based cn minimizing the (asymptotic)
global ISE of fn' it does not work well in the setting of quantile estimation for
small samples. Bandwidth values for the quantile estimates considered here
depend on p, and results regarding bandwidth selection for fn(t) with respect to
the asymptotic minimum ISE criteria do not carry over to the estimator xn(p).

Recently, the scope of the bootstrap has been extended from the iid case to
include more complex data structures such as censored data and correlated data
(see Efron and Tibshirani, 1986). By creating bootstrap replicates which are
intended to "mimic" the statistical properties of the sample (and thus the
population) one can learn about the sampling distributicn of a statistic,
regardless of its ccmplicated form. 1In this paper the nonparametric bootstrap
for censored data is used to investigate the MSE(xn(p)) as a function of
kbanéwidth.

Recall that (xi,Ai), i=1,...,n, denotes the cbserved censored sample. Unlike
the iid case, there is not a well-defined method for cobtaining a bootstrap
replicate (X;,AI), i=l,...,n. There have been several proposed methcds for
resampling censored data. Reid (198l) prorosed resampling from the Kaplan-Meier
estimator ;n of For which results in bootstrap samples that contain only
uncensorad observaticns. In Efron’s (1981) plan, cne simply takes a random
sample with replacement from (Xl,Al),..., (Xn,An). While Reid’s approach is
analogous to resampling in the uncensored case, it is not clear what is being
estimated by the bootstrap since no censored observations are present in any of
the bootstrap replicates. Akritas (1986) studied the asymptotic properties of
Efron’s and Reid’s procedures for bootstrapping censored survival data. He

showed that Efron’s approach yields asymptotically correct ccnfidence bands for
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Fo based on the Kaplan-Meier estimate Fn’ while Reid’s does not. Since xn(p) -
R o
involves Fn' we have adopted Efron’s approach of drawing at random, with t
* * bt
replacement, from the n data values to get (Xi,Ai), i=1,...,n. N
{
For fixed p and h, we define the bootstrap estimate of MSE(xn(p) as follows: i
For each hLoctstrap replicate, the quantile estimate x;(p) is calculated. Aas is ;
usually the case, a large number, B, of bootstrap samples and the corresponding S‘
estimates x;(p) are cbtained. The bootstrap estimate of variance is given by >
B . @
® l *i - 2 .:-
var (xn(p)) =51 ifl[xn (p)—xn(p)] ’ (5.1) }:
1} F-
where x;l(p) denotes the estimate x;(p) calculated from the ith bootstrap ¥
B . ”
replicate and i;(p) = x;l(p)/B. The bias estimate is
i=1 .
'
R - N
Bias (xn(p)) - xn(p)—xn(p), (5.2) “
where xn(p) is the estimate calculated from the original data. Then for a ;
¥
bandwidth value h and fixed p, the kootstrap estimate of MSE(xn(p)) is _
* * . * 2 .:_
MSZ (h) = Var (x (p)) + [bias (x (p))]". g
The value h" which yields minimum MSE*(h) is the handwidth selected to calculate El
xn(p). ';l
Once the bandwidth h” has been selected, the set of B values x;l(p),..., )
x;B(p) cerresgonding to h" can be used to construct a confidence interval for l:‘
Qo(p). Define the becotstrap cumulative distribution functicn of xn(p) by T
G*(y) = {nurker of values x;l(p) <y} /B. (5.3) ‘:‘
Then the endpoints of the interval are quantiles of G*; that is, a 100(1-«)% ﬁ
"~
confidence interval for Qo(p) is given by
1 o1 f'
(G (&), G (l-92)]. (5.4) A
Note that this is an application of Efron’s (1980) percentile interval methed. A i;
refinement of this method, called the "bias-corrected acceleration constant -
percentile interval," has recently been proposed by Efron (1987) but was nct 2
considered here. ::.
-
e
@
%
Ty S L S I AT o o T T T o 23
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To illustrate the performance of bootstrap bandwidth selection and confidence
intervals, a sample of size n=60 was generated using an exponential (mean=l)
lifetime distribution and exponential (mean=l) censoring distribution. The
triangular density on [-1,1] was used as the kernel function K(u) for fn'
Bandwidth values h=.02(.02).60 were considered and quantile estimates for
p=.025(.025).975, as well as p=.01 and .99, were studied. For the calculation of

bootstrap MSE, B=300 was used. Some results are given in Table 4 and Figure 1.

« L]

Note that the values of h" are small for small p, increase for p up to about

£ e
g4 a

Ay fata '

0.75, and then tend to decrease for larger p. For p=.10, Figure 2 shows a grarh

Py
5 %y

of bootstrap MSE*(h) vs. h. The general gquadratic shape of the MSE curve is

L

obvious. Table 4 indicates that the estimator X,(p) is often very close to the

product-limit estimator, but when the two differ, xn(p) is closer to the true

'.'-‘.:‘.""’.'.; ". .;:‘

quantile. 1In Figure 1, the close agreement of xn(p) to Qo(p) for all p is

illustrated. Note that the confidence bands become wider as p increases. This 182

N

was the case in all the simulations and is probably a result of the random right :f

>, \-
"

censoring present in the data. 1In order to better estimate the sampling :$

distributicn of xn(p), B=1000 was used in obtaining confidence bounds.

Next, as an applicaticn cf the bcotstrap bandwidth selecticn procedure, we
consider mechanical switch failure data adapted from Nair (1984) (see Table 5).
The triangular kernel was used and estimators were obtained for p=.05(.05).95.
Table 6 gives the estimates, bcotstrap bandwidths, and Msz” values for scme

values of p. The quantile estimate and ccnfidence bands are plotted in Figure 3.
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TABLE 4.

Bootstrap Bandwidth Selection for x (p)

Exponential Lifetime Distribution (mean=1) and
Exponential Censoring Distribution (mean=l).

n=60
* - 0
P h x.(P)  Q,(p) Q(p)
.01 .02 -.001 .001 .010
.10 .26 .101 .053 .105
.25 .06 .310 .311 .288
.50 .58 .757 .755 .693
.75 .54 1.523 1.521 1.386
.90 .58 2.344 2.106 2.303
.99 .40 4.627 4.491 4.605

TABLE 5. Failure Times (in Millions of Operaticns) of Switches

Z; A 2 A Z; A Z; A
1.151 0 1.667 1 2.119 0 2.547 1
1.170 0 1.695 1 2.135 1 2.548 1
1.248 0 1.710 1 2.197 1 2.738 0
1.331 0 1.955 0 2.199 0 2.794 1
1.381 0 1.965 1 2.227 1 2.883 0
1.499 1 2.012 0 2.250 0 2.883 0
1.508 0 2.051 0 2.254 1 2.910 1
1.543 0 2.076 0 2.251 0 3.015 1
1.577 0 2.109 1 2.349 0 3.017 1
1.584 0 2.115 0 2.369 1 3.793 0

TABLE 7. Quantile Estimates for Switch Data
P h* x_(p) MSE"
.05 .10 1.635 .01027
.25 .24 2.165 .01323
.50 .60 2.581 .01923
.75 .44 3.015 ,03188
.95 .60 3.785 .10917
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FIGURE 1. x,(p) and Confidence
Intervals for Simulated Data. - - e
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FIGURE 2. Bootstrap MSE vs. h  (p=.10).
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xn(p) for Switch Failure Data.
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APPENDIX: PROQOFS OF THEOREMS -
O Q :: '
Denote Q7 (p) = % N
Y
Proof of Theorem 1(i). For fixed 0<p<l, write it
o)
|F (x (p)) - FO(EP)I = |F (x (p))-p| N
= - o
[F (x (P))-F (x_(p))] . =
-— r‘
< sx;:p |F°(x) Fo(x)]. (A.1) -
The right-hand side of (A.l) converges to zero almost surely by Theorem 5.3 of
Foldes, Rejtd and Winter (1980). Since Fgl is continuous, then x (p) - Eg almost E:
surely. /// -
s
To prove part (ii) of Theorem 1, the following lemma is needed. Let Kn( v) = .,
s
. ® . = 1- - “a
Wi /hn) and Kn(y,x) 1 Kn(x v) . :::
Lemma. Let F_ be continuous and T, <Ty< ®. Then sup  |F (x)-F_(x) [0 =
o] -°<ng]:. %
almost surely. ° 5:
A
-4",
Proof. By Corollary 2(ii) of Csdrg# and Horvath (1983), ot
sup |g'n(x)-Fo(x) |%0 almest surely. From Lemma 5.2 of F&ldes, Rejtd and lj::
-<=’<x_<_"l‘F ]
o
winter (1980) and by definitica of T, , letting Fn(x)ajro(y)din(y;x), .
e} -
|E (x)=E (x)]| = |JF (y)dR (y;x)-F (x| Y
\
jTFo [F_(y)-F_(y) &R _(y;x) ‘
= o n'¥' 'Y n'Yi 0
- Tp
< su F_(x)-F (x) o dK_{y;x)
-'-“XETF ¥ ot I-w n'Y \
o X
< sup |F_(x)-F_(x)]. ‘
-=x<Ty n © o
o A

TOTOEN N
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Thus, sup  |F_ (x)-F (x)|+0 almost surely.
-l x<T
Now, given €>0, let 80 be such that |y|<8 implies sup IFO(x—y)—Fo(x)]<s.
X

Then
[E (x)-F(x)| = | [ F (x-y)dK (y)-JF_(x)dK_(y)]

<e+ [ dr (y). (A.2)
lyl<s

But as n-o= the last integral in (A.2) approaches zero, so supl?n(x)—Fo(x)leo.

The result of the lemm: now follews by the triangle inequality. ///

Procf of Theorem 1(ii). The result follows from the Lemma, the continuity of

Fgl, and writing

o
|Fo (%, (R))-F () |

|F (x (n))-p]

IA

[E(x (P))=F (x_(p))]

< sup  [F(x)-F(x) . /77
—@(ngF
o

Proof of Thecrem 2. Approximating Fn(xn(p))-p by its two-term Taylor

expansion abcut E;, write

£ (&)
o o) Oy = ;0 0
/1 fo(Ep)[xn(p)-Ep] = -/n [Fn(Ep)-:o(Ep)] ?;T;?_' (A.3)
where & is scme (randcm) point between xn(p) and E;.
New, |fn(E)-fo(E;)|$|fn(i)—fo(E)l+|fo(a)-fo(E;)|. Under the assumptions
of the theorem, by Ccrollary 2 of Mielniczuk (1986),

sup Ifn(x)—fo(x)lﬁo almost surely.
0<x<T

From Theorem 1, xn(p)eag almost surely, so EﬂE; almost surely. Hence, by the
continuity of fo' lfn(E)—fo(Eg)I»O almost surely. Therefore, (A.3) has the same
C s . . . ° o
limiting distribution as v/n [FO(EP)—Fn(ip)].
Now, consider /E[Fn(ig)-Fo(ig)] =1 + II, where I = /H[Fn(E;)—Fn(Eg)] and 1I
~ (g0 o ‘va
= /E[Fn(ip)—Fo(Ep)]. Next, write

---------------------------------------------------------

-
ba, &,
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h - -
1=/ | jﬁg f "l K((u-x)/h)dF_(x)du - Fn(ag)]

h h o
= /N JC +Ep Jx+c h™ K((u—x)/h) du dF (x) - fap an(x)].
x-ch 0

Since | h-lK((u—x)/h)du <1, for n sufficiently large,

+ch -1
0 < Ix h * K((u-x)/h)du < 1, so
x-ch

h+£p N o
I:p dF = /ﬁ[F (Ep + ch) - Fn(ip)]- (A.4)

Next, letting K(t,s) denote a Kiefer process and sn(t)

/E[Fn(t)-ro<t)] be
the PL process (see Csdrg® 1983, for these definitions), the right side of (A.4)

can be written as
1
[Bn(Ep+ch -n Ep+ch ,n)
- (8 (Ep)—n Ep )]
+n %[K(Ep+ch n)-K( Ep ()]
+n [FO(Ep+ch —FO(EP)]. (A.5)
From Theorem A of Aly, Csdrg8, and Horvath (1985), under the assumptions of the
theorem, the first two terms of (A.S5) converge to zero as n>=, Also, by a proof
similar to that of Lemma 1 of Lio, Padgett, and Yu (1986), the third term of
(A.S) ccnverges to zero in prctabkility as n»=. For the last term of (A.S5), since
e} s
fo(ip)>0 bty assumption,

° _ o
o /A [ Fo(Ep+ch) FO(EP)]» 0

cn

as n-= since /nh-0 by the conditions of the theorem. Therefore, I-»0 in
probability as n-=, Hence, /E[Fn(ag)-Fo(E;)] has the same well-known

limiting distribution as II, which is the normal distribution with mean zero and

variance (l—p)2 fap [1-F(u)]~2 dgo(u), completing the proof.///
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