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ABSTRACT

Based on randomly right-censored data, a smooth nonparametric estimator of the

quantile function of the lifetime distribution is studied. The estimator is

defined to be the solution xn (p) to Fn(Xn(p))= p, where Fn is the distribution

function corresponding to a kernel estimator of the lifetime density. The

strong consistency and asymptotic normality of xn(p) are shown. Some

simulation results comparing this estimator with the product-limit quantile

estimator and a kernel-type estimator are presented. Data-based selection of

the bandwidth required for computing Fn is investigated using bootstrap

methods. Illustrative examples are given.

Key words: Right-censoring; Percentiles; Asymptotic normality; Bootstrap

method.
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1. INTRODUCTION

Right-censored data arise frequently in industrial life testing experiments

and medical studies. From such data it is important to be able to obtain good

nonparametric estimates of various characteristics of the unknown underlying

lifetime distribution. One characteristic of the lifetime distribution that is

of interest is the quantile function. For example, in product development it

is typical to estimate certain percentiles of the lifetime distribution of the

product based on the right-censored observations from life tests. That is,

estimates of possible guarantee times for the product are desired.

For a probability distribution function G, the quantile function is defined

by Q(p) a G-1 (p) a inf ft: G(t) > p}, 0 < p < 1. For a random (uncensored)

sample from G, several ncnparametric estimates of Q(p) have been suggested.

The sample quantile function, G7 (p) s inf {x: Gn(x) _ p), has been studied,

where Gn (x) denotes the sample distribution function (see Csbrgb , 1983, for

example, for many of the known properties of Gn1). Another approach has beenn

to solve Gn(xp ) - p for xp, where Gn x) - x (t)dt, with g being a kernel

estimator of the density function of G (see Nadaraya, 1964). Recently, Yang

(1985) studied a kernel-type estimator which smocthed the sample quantile
-1.

function Gnl(p).n ( )

For right-censored data, Sander (1975) proposed estimaticn of the quantile

function by the product-limit (PL) estimator, defined by Qn * Fn where Fn
.

denotes the PL estimator of the lifetime distribution (Kaplan and Meier, 1958;

Efron, 1967). Sander (1975) and Cheng (1984) obtained scme asymptotic

properties of Qn' and Csbrg6 (1983) discussed strong approximation results.

Padgett (1986) studied a kernel-type quantile estimator from right-censored

observations, extending the complete sample results of Yang (1985). Lio,

Padgett, and Yu (1986) and Lio and Padgett (1987) presented some asymptotic

, .-
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properties of the kernel-type e~timator, including asymptotic normality and

mean square convergence. Also, the kernel-type estimator, Padgett and

Thombs (1986) presented results t extensive simulations and investigated the

use of bootstrap methods for bandwidth selection and confidence intervals.

In this paper, a smooth nonparametric estimator of the quantile function is

studied which is defined as the solution Xn(p) to Fn(xn(p)) - p, where Fn(x) is

the distribution function corresponding to a kernel density estimator fn (x) of

the lifetime density from right-censored data. The kernel density estimator

proposed by F6ides, Rejtb, and Winter (1980) and McNichols and Padgett (1986)

is used here. The estimator Xn (p) is intuitively more appealing than the

kernel-type estimator of Padgett (1986) since it is a nondecreasing function of P-

p. The kernel-type estimate can decrease for large p due to the scarcity of

large uncensored observations in the sample.

The estimator x n(P is defined in Section 2, and strong consistency and

asymptotic normality are presented in Section 3. In Section 4, some simulation

results are discussed comparing this estimator with the PL quantile estimator

and the kernel-type estimator of Padgett (1986) with reszect to estimated mean

squared errors. Bootstrap methods for choosing a data-based bandwidth value

for the kernel density estimate fn (x) are presented in Section 5. A confidence

interval for the true lifetime distribution quantile based on the bcotstrap

percentile interval method is also given in that section.

2. NOTATION AND PRELIMINARIES

Let X 0  X° denote the true survival times of n items or individuals thatLe l,... n

are censored on the right by a sequence U1 ,...,U n , which in general may be

either constants or random variables. The X's are nonnegative, independent,

i

identically distributed random variables with common unknown continuous

00 -1distribution function F0, unknown quantile function (p)F0 (p)=

'
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infft:Fo(t)_pl, O<p<l, and unknown density function fo.

The observed right-censored data are denoted by the pairs (Xi, i), I-

i1, ... ,n, where

( if X? < U.1 . 1 L ix>UXi - min{Xi' Ui} 1i -X. i

0 if 1

Thus, it is known which observations are times of failure or death and which

ones are censored or loss times. The nature of the censoring depends on the

Ui's. (i) If Uit,...Un are fixed constants, the observations are time-

truncated. If all Ui's are equal to the same constant, then the case of Type I .J,

censoring results. (ii) If all Ui - X(r) the rth order statistic of

0 x0
X01 ' ...I then the situation is that of Type II censoring. (iii) If

UI,...,Un constitute a random sample from a distributicn H (usually unknown)

and are independent of XX...,X0 then (Xi,.a), i=l,2,...,n, is called a. n' 12.

randomly right-censored sample.

For the asymptotic results in Section 3 of this paper, the random

censorship model (iii) is assumed. For this model the distribution function of

each X. is F = 1 - (1-F )(1-H). This assumption is typically necessary for

asymptotic results under censoring. For example, see Breslow and Crowley

(1974), F5!des, Rejt and Winter (1980), Fadcet (1986), and Lic, Padgett and

Yu (1986).

A pccular estimator of the survival function 1-F (t) from the censored
0

sample (Xi,6i), i-l,...,n, is the product-limit (PL) estimator of Kaplan and

Meier (1958). The PL estimator, which was shown to be "self-consistent" by

Efron (1967), is defined as follows. Let (Zi,A.), i=l,...,n, denote the

ordered Xi's along with their corresponding 6i's. Values of the censored

sample will be denoted by the corresponding lower case letters, (xi,6 i) and

(ziox), for the unordered and ordered sample, respectively. Then the PL

estimator of l-F 0 (t) is
a

:7
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, 0i <t<Z '

Pn(t)= 4 , ,...n ~ n - l k-I.

0, Z <t.

The PL estimator of F (t) is denoted by Fn(t)=l-P n(t), and the size of the jump

ofn (or Fn ) at Z. is denoted by s. Note that s.=0 if and only if z. iso.
) J r

censored for j<n, i.e. if and only if XjO. Define Si = z sj - Fn(Zi+l) ,

i=l,...,n-1, and Sn-l.
n0

A natural estimator of QO(p) is the PL quantile function

Qn(P)=inf{t:Fn(t)>P_ (see, for example, Sander (1975), Cheng (1984), and Csbrg.

(1983) for some of the properties of Qn). Since Qn is a step function with

jumps corresponding to the uncensored observations, it is desirable to obtain a

smoothed estimator of Qo. The kernel srcothed Qn' considered by Padgett

(1986), Lio, Padgett and Yu (1986), Lio and Padgett (1987), and Padgett and

Thombs (1986), is such an estimator, and is defined as follows: Let [h-h be

a "bandwidth" sequence of positive numbers so that hn-O as n--, and let K be a

bcunded probability density function which is zero outside a finite interval

(-c,c) and is sy~rnetric about zero. (For asymptotic results, other conditions

cn hn, K, and F0 are needed, but these are the only assiz.oticns that will be

made for purposes of definition.) Then for O<p<l, the kernel quantile function

estimator is given by

-1 lQn(p) h fQn(t)K((t-p)/h)dt

n S.
h Z1Zi f. "_K((t-p)/h)dt' (2.1)

where S 0--0. An approximation to Q n(p) was given by Padgett (1986) as

n
n) n

E~ ~ V~. 22
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Although neither estimator is difficult to compute (2.2) will be simpler for

some kernel functions.

In this paper a different smooth nonparametric quantile estimator than S

(2.1) is studied. It is defined as the quantile function corresponding to the

distribution function obtained from a kernel smoothed density estimate. To 'S

define this estimator from the ordered censored data (ZiA ), i=l,...,n,

consider the kernel density estimator of f0 written by McNichols and Padgett

(1986) as

n
f (t) - h1 E s.K((t-Zj)/h), t>O,
nj

where h and K are the bandwidth and kernel function defined earlier. The

distribution function corresponding to the density fn can be written as

Fn(X) f'. fn(t)dt = W((x-t)/h)dFn(t)

n
= E s. W((x-Z )/h), (2.3)

j= j 3J I

where W(t) t _ K(u)du is the distribution function for the kernel K. Then

o
the estimator xn(p) of the pth quantile, Q (p), is defined to be the solution

to the equation Fn (x)=p. This solution can be fotund iteratively by the Newton-

Raphson method, for example, using a starting value such as the PL quantile,

Q (p). In all com.utaticns reported in this paper, the iterations converged
n

rapidly.

Although the estimate Xn (p) must be obtained by an iterative procedure,

whereas Qn (p) can be calculated directly, Xn (p) is more appealing since it is

always a nondecreasing function of p. The estimate Qn (p) can decrease for '.

large p (see Figure 1 of Padgett, 1986). This is due to the scarcity of

uncensored observations from the tail of F and can possibly be avoided by
0

appropriately increasing the bandwidth h to compensate for fewer observations.

-'..-- .
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However, this would tend to oversmooth the estimate. A small computer

simulation study to be discussed in Section 4 will indicate some further

comparison of xn (p) and Qn(p) for small sample sizes. In fact, the simulation

results indicate that, while both Xn (p) and Qn(p) are better than Qn(p) in the

sense of smaller estimated mean squared errors for a range of bandwidth values,

neither performs uniformly better than the other. ,.

3. SOME ASYI4PTOTIC RESULTS

In this section, the consistency and asymptotic normality of the estimator

xn(p) will be presented assuming the random right-censorship model. The
n1'

results will be stated, and their proofs will be outlined in the appendix. The

consistency will be stated first.

For any distribution function G, define TG a sup {t: G(t) < 1}.

Theorem 1. Suppose F0 is continuous and strictly increasing on [0,-). If

either (i) H(TF < 1, where t denotes limit from the left, or (ii) TF <
F0 F0

T < , then xn(p)-)°Q(p) almost surely as n-.

The conditions H(TF ) < 1 and TF < TH < guarantee a positive
0 0

probability of observing uncensored data points from the entire support of the

lifetime distribution Fo . The condition in (ii) allows both the lifetime
0*

distribution and censoring distribution to have the same support and to have

support equal to the interval [0,-). Hence, F and H can both be exponential,

Weibull, or ga-a distributions, for exm..ple.

As the next theorem states, x (p) has the same limiting normal distribution
n

as Q (p) (Lio, Padgett and Yu, 1986). The proof, given in the Appendix, uses
n -

the concepts of Kiefer processes (see Cs6rg6, 1983). -.

P- P WI. P
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Theorem 2. Let T satisfy I-F(T)-[l-Fo (T)]Il-H(T)]>0. Assume that Q (p)<T,

f (1-H) is continuous and positive at Qo (p), the density function of H is

continuous, and K is a continuous density defined on the finite interval
[-c,c]. If h-0, nh--, and vnh40 as n-=, then 0n(P)-Q°(P)I Zp in

Zp .p

distribution, where Z is a normally distributed random variable with mean zero
p

and variance

02[fo(2°(p) pQ  ~
2 (l-p))] 2 OQ(p) (-F(u) 2 dF 0 (u),

0

with Fo(u) = P(X<u,A=l) denoting the subdistribution function of the uncensored

observations.

An example of a bandwidth sequence {hn} satisfying the conditions of

-d
Theorem 2 is h n=cn , <d<!.

4. SCME SI.LJATICN RESULTS

A small Monte Carlo simulation was perfcrmed to obtain an indication of the %

performance of Xn(p) compared with t-he ker:-el-type estimator, Qn(p), for small

sample sizes. For these simulaticns the triangular density on [-1,1] was used

for K, K(u)=l-jul, Iu<l. The censoring distribution h was taken to be the

exponential distribution with mean C- and the lifetime distributions used were

Weibull with shape parameter c and scale parameter equal to one, that is,

Fo(X) = l-e (c=0.5,1, and 2).

The bandwidth values of h=0.01 (0.04) 0.62 were used for cuantiles at

p- 0.10, 0.25, 0.50, 0.75. Sample sizes of n= 30,60,100 were studied.

In each case simulated (i.e. each distribution, bandwidth, p, and samp le

size combination), 300 censored sa.ples were generated using the random number

generators in the International Mathematical and Statistical Library (IMSL,



-8-

1985) on a VAX 11/8300 computer. From the 300 samples the estimated mean

squared errors (Average Squared Error=-ASE) of the estimators Xn(P) , Qn(p ) and

were computed, and the ratios of these ASE's, ASE[Qn(p)]/ASE[xn(p)] and

ASE[Qn(p)]/ASE[xn(p) ], were calculated.

Some of the results of the simulations are given in Tables 1-3. In all

cases for each p, except for small p for the Weibull lifetime distribution with

c=0.5, there is a range of bandwidth values for which xn(p) has smaller ASE

than that of the PL quantile estimator, Qn(p). Also, in many of the simulated

cases, there is a range of h values for which the ASE of Xn (p) is less than

that of the kernel estimator, Qn(p). This is the case for the exponential

lifetime distribution for all values of p simulated. However, neither xn (p)

nor Qn(p) is uniformly better than the other over all values of p and

bandwidths used in the simulations.

In the next section the bootstrap will be used to determine, based on the

given censored sample, the "best" value of h to use (in the sense of the

smallest bootstrap MSE) in calculating xn (p) as p varies. Bootstrap confidence

bounds for the true quantile Qo(p) will also be discussed, and an example using

switch failure data adapted frcm Nair (1984) will be presented.

5. BOOTT?P MZ-7ET:C. DS: NDWIDTH SELECTION AN D CCNFIDECE I1N=E.R-S

Since the estimator xn(p) is implicitly defined as the soluticn to Fn(xn(p))

p, where Fn(X) f _ (t)dt, it depends on a bandwidth value h used in the
n -) n n

kernel smoothed density estimate f n(t). Thus, in practice hn must be chosen

before the estimator xn (p) can be computed. A natural cuesticn to ask is:

"Which bandwidth value yields the 'best' estimate xn(p) of QO(p), in the sense of

minim m mean square error (MSE)?" Due to the censoring, exact or even asymptotic

expressicns for M-SE(xn (p)) are difficult to derive. In this section we propose a

method of selecting bandwidths based on minimizing the bootstrap estimate of

MSE(Xn(p) ).•

de" - " -."1,-.- o,-.,.,' o. ' " " ; " '' ' ' '.,.,, - - , . ,,'%-"; """""-% . . . -- "- , , . . . . ",",'•"-"-""''
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TABLE 1. Ratios of Average Squared Errors (300 samples)
Exponential (X=1) Life Distribution and

Exponential ( =3/7) Censoring Distribution (30% censoring)

n-30,

p\ h I .01 .05 .09 .13 .17 .21 .25 .29 .33 .37 .45 .57

a .127 1.016 1.028 .965 1.035 1.044 1.024 1.206 1.126 .867 .794 .611
.10 b .123 1.082 1.046 .940 .909 .880 .951 1.124 1.152 1.370 1.923 1.742

.25 a .226 .026 1.027 1.121 1.183 1.105 1.192 1.119 1.332 1.197 1.345 1.238
b .216 .235 .958 .938 .995 .988 .976 1.040 1.020 1.093 1.295 1.689

a 1.008 1.048 1.061 1.044 1.055 1.092 1.093 1.136 1.134 1.174 1.156 1.241 .
.50 b .972 .957 .932 .930 .960 .976 1.032 1.088 1.016 1.052 1.538 1.645

a 1.005 1.021 1.022 1.033 1.068 1.086 1.112 1.074 1.191 1.149 1.177 1.205b .865 .938 1.058 .941 .839 .964 .786 .864 .911 .595 .515 .536

n=6 0

a 1.018 1.116 1.136 1.146 1.366 1.204 1.163 1.140 1.060 1.030 .745 .266.10 b 1.018 .978 .958 .943 .938 .982 1.022 1.260 1.287 1.484 1.725 1.604

a 1.006 1.033 1.102 1.111 1.178 1.198 1.274 1.244 1.276 1.290 1.296 1.248.25 b .979 1.001 .977 .992 .999 .999 .969 1.030 1.082 1.102 1.325 2.650

a 1.007 1.033 1.040 1.093 1.134 1.119 1.155 1.147 1.129 1.234 1.205 1.285. 50 b .974 .976 .956 .964 .945 .994 .991 1.046 1.040 1.205 1.386 2.659

a 1.003 1.027 1.029 1.063 1.034 1.069 1.100 1.133 1.174 1.165 1.193 1.203
.75 b .959 .870 .962 .953 1.080 1.002 .962 1.256 1.076 .948 .817 .859 -1

n=100

a 1.024 1.125 1.216 1.291 1.2E5 1.257 1.275 1.326 1.177 .732 .559 .227
b .980 .983 .953 .951 .923 .998 1.084 1.666 1.875 1.621 1.858 1.682

a 1.017 1.033 1.041 1.228 1.184 1.206 1.220 1.212 1.317 1.294 1.253 1.189.25 b .988 .991 .988 .977 .983 1.013 1.022 1.069 1.121 1.264 1.524 2.897

a 1.009 1.014 1.035 1.059 1.107 1.173 1.132 1.064 1.218 1.168 1.238 1.243.50 b .985 .996 .938 .955 .971 .971 1.018 1.079 1.294 1.253 1.924 3.112

a 1.007 1.014 1.038 1.089 1.072 1.078 1.088 1.093 1.089 1.209 1.248 1.202b .954 .943 .95 .879 .934 1.202 1.459 1.6.7 1.153 .925 .816 1.419

a. ASE(Qn)/ASE(xn

b. ASE(Qn)/ASE(xn )

.S%

~Z'Z'...&-* -
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TABLE 2. Ratios of Average Squared Errors (300 samples)
Weibull (o=0.5, X=l) Life Distribution and

Exponential (0=3/7) Censoring Distribution (69.7% censoring)

n= 30

\ h .01 .05 .09 .13 .17 .21 .25 .29 .33 .37 .45 .57

a .795 .636 .443 .443 .507 .486 .280 .231 .114 .074 .034 .028
10b 1.229 1.049 .946 1.006 .968 .975 .821 1.009 .721 .725 .925 1.087

a 1.021 1.120 1.122 1.127 1.196 1.129 1.024 1.091 .931 .787 .818 .674
.25b 1.010 .963 1.025 1.099 1.163 1.220 1.241 1.523 1.586 2.081 3.183 6.655

a 1.006 1.019 1.037 1.050 1.064 1.076 1.128 1.121 1.152 1.168 1.143 1.174
.50b .966 .977 1.009 .993 1.123 1.226 1.436 1.443 1.748 2.131 3.449 4.194

a 1.002 1.010 1.018 1.022 1.031 1.036 1.052 1.051 1.071 1.075 1.086 1.133
b .971 .866 .898 .875 .778 .647 .608 .596 .579 .452 .347 .265

n=60

a .827 .650 .652 .552 .391 .317 .109 .073 .051 .045 .032 .060.1 0 b 1.070 .895 .860 .889 .781 .913 .534 .558 .459 .552 .624 .623

.25 a 1.007 1.029 1.125 1.047 .959 .831 .851 .687 .614 .588 .509 .401.
b 1.020 1.070 1.046 1.084 1.174 1.116 1.234 1.360 1.741 1.947 3.126 9.496

a 1.003 1.010 1.024 1.063 1.052 1.136 1.065 1.175 1.086 1.167 1.137 1.119
.50 b .991 .988 .925 1.033 1.127 1.341 1.762 1.902 2.023 3.505 4.118 11.417

a 1.003 1.010 1.021 1.030 1.032 1.054 1.040 1.065 1.081 1.073 1.117 1.141 •b .865 .961 .782 .759 .819 .794 .833 .756 .779 .436 .396 .234

a. ASE(Qn)/ASE(xn )
b. ASE(Qn )/ASE(xn)

• . , • • o • . • . . I
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TABLE 3. Ratios of Average Squared Errors (300 samples)
Weibull (a=2, X=I) Life Distribution and

Exponential (0=3/7) Censoring Distribution (27.6% censoring)

n=30 5

p \h .01 .05 .09 .13 .17 .21 .25 .29 .33 .37 .45 .57

a .939 1.081 .981 1.220 1.226 1.318 1.386 1.565 1.531 1.348 1.417 1.052
. .872 .904 .720 .801 .745 .664 .685 .593 .564 .544 .451 .306

a .708 .429 1.083 1.125 1.180 1.156 1.312 1.287 1.393 1.290 1.493 1.464.25 b .678 .404 .956 .966 .950 .946 .899 .883 .866 .855 .780 .702

a 1.012 1.015 1.114 1.118 1.104 1.161 1.161 1.276 1.316 1.326 1.243 1.302.50b .991 .990 .978 .947 .957 .976 .958 .963 .940 .928 .987 .906

a 1.012 1.023 1.065 1.091 1.109 1.166 1.168 1.220 1.292 1.415 1.532 1.345

.75 b .967 1.001 .958 .937 .872 .978 .924 .863 .913 .820 1.276 2.537

n=60

a 1.030 1.125 1.210 1.267 1.454 1.373 1.400 1.394 1.394 1.374 1.123 .536
.10 b .981 .930 .876 .821 .791 .716 .776 .738 .650 .542 .371 .163

.25 a 1.009 1.043 1.104 1.097 1.166 1.257 1.289 1.294 1.209 1.365 1.340 1.220
b .997 .996 .965 .984 .939 .927 .905 .887 .902 .890 .841 .749

a 1.000 1.002 1.076 1.088 1.149 1.207 1.189 1.203 1.220 1.293 1.303 1.439.50 b .993 .984 .961 .972 .958 .979 .977 .976 .962 .963 .948 .927

a 1.000 1.027 1.095 1.128 1.111 1.151 1.144 1.227 1.217 1.247 1.350 1.165
b 1.005 .965 .959 .957 .954 .984 1.025 .951 .914 .929 2.011 4.094

a. ASE(Qn)/ASE(x_)

b. ASE(Q )/ASE(x n )
n.

_S

2-p
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Marron and Padgett (1987) have determined an asymptotically optimal bandwidth

for the density estimate fn(t) which minimizes the integrated squared error (ISE)

of fn" Since their bandwidth value is based on minimizing the (asymptotic)

global ISE of fn' it does not work well in the setting of quantile estimation for

small samples. Bandwidth values for the quantile estimates considered here

depend on p, and results regarding bandwidth selection for f (t) with respect to

the asymptotic minimum ISE criteria do not carry over to the estimator xn(P).

Recently, the scope of the bootstrap has been extended from the iid case to

include more complex data structures such as censored data and correlated data

(see Efron and Tibshirani, 1986). By creating bootstrap replicates which are

intended to "mimic" the statistical properties of the sample (and thus the

population) one can learn about the sampling distribution of a statistic,

regardless of its complicated form. In this paper the nonparametric bootstrap

for censored data is used to investigate the MSE(xn(p)) as a function of

bandwidth.

Recall that (Xi,.i), i=l,...,n, denotes the observed censored sample. Unlike

the iid case, there is not a well-defined method for obtaining a bootstrap

replicate (Xi~Ai), i=l,...,n. There have been several proposed methods for

resamnling censored data. Reid (1981) proposed resaznp!ing from the Kaplan-Meier

estimator F of F , which results in bootstrap samples that contain onlyn 0
uncensored observations. In Efron's (1981) plan, one simply takes a random

sample with replacement from (X,6l),..., (Xn,6n). While Reid's approach is

analogcus to resa.mpling in the uncensored case, it is not clear what is being

estimated by the bootstrap since no censored observations are present in any of

the bootstrap replicates. Akritas (1986) studied the asymptotic properties of

Efron's and Reid's procedures for bootstrapping censored survival data. He

showed that Efron's approach yields asymptotically correct ccnfidence bands for
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F based on the Kaplan-Meier estimate Fn , while Reid's does not. Since x n(p)

involves Fn, we have adopted Efron's approach of drawing at random, with

replacement, from the n data values to get (X.,A), i 1,...,n.

For fixer; p and h, we define the bootstrap estimate of MSE(Xn(p) as follows:

For each hootstrap replicate, the quantile estimate xn(p) is calculated. As isn

usually the case, a large number, B, of bootstrap samples and the corresponding

estimates Xn (p) are obtained. The bootstrap estimate of variance is given by
- 1 Fip)_.*(p 12

Var (x (p)) - (p)x , (5.1) n iB-ln

where xn (p) denotes the estimate xn (p) calculated from the ith bootstrap

replicate and xn(p) - x (p)/B. The bias estimate is
i-Il

Bias (Xn(P)) - Xn(P)-xn(P),  (5.2)

where Xn(p) is the estimate calculated from the original data. Then for a

bandwidth value h and fixed p, the bootstrap estimate of MSE(Xn(p)) is

MSE*(h) - Vat (xn(p)) + [bias*(xn(p ))]n n

The value h which yields minimum MSE (h) is the bandwidth selected to calculate
Xn(P) •

• nl~p,...

Once the bandwidth h has been selected, the set of B values x (p),...,
n

Bh*
Xn (p) corresponding to h can be used to construct a confidence interval for

Cp). Define the bootstrap culative distribution function of x (p) by
**

G*(y) - (number of values xn (p) < y} / B. (5.3)

Then the endpoints of the interval are quantiles of G ; that is, a 100(1-a)%

confidence interval for QO(p) is given by

(G (GV2), G (l-oV2)]. (5.4)

Note that this is an application of Efron's (1980) percentile interval method. A

refinement of this method, called the "bias-corrected acceleration constant

percentile interval," has recently been proposed by Efron (1987) but was not

considered here.

. " % -& % % '- ". % " " " ° " %- ', , % - % % %, %, ", %' " - ' % "- " "- " % "% "- - ' "- ', - "- "- 9, %- '" "
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To illustrate the performance of bootstrap bandwidth selection and confidence

intervals, a sample of size n=60 was generated using an exponential (mean-i)

lifetime distribution and exponential (mean-i) censoring distribution. The

triangular density on [-1,1] was used as the kernel function K(u) for fn

Bandwidth values h=.02(.02).60 were considered and quantile estimates for

p-.025(.025).975, as well as p=.Ol and .99, were studied. For the calculation of
*1*-

bootstrap MSE, B=300 was used. Some results are given in Table 4 and Figure 1. "

Note that the values of h are small for small p, increase for p up to about

0.75, and then tend to decrease for larger p. For p-.10, Figure 2 shows a graph

of bootstrap MSE (h) vs. h. The general quadratic shape of the MSE curve is

obvious. Table 4 indicates that the estimator xn(p) is often very close to the

product-limit estimator, but when the two differ, xn(p) is closer to the truen

quantile. In Figure 1, the close agreement of x (p) to QO(p) for all p isn

illustrated. Note that the confidence bands become wider as p increases. This

was the case in all the simulations and is probably a result of the random right .

censoring present in the data. In order to better estimate the sampling

distribution of xn(P), B=1000 was used in obtaining confidence bounds.

Next, as an application of the bootstrap bandwidth selection procedure, we

consider mechanical switch failure data adapted from Nair (1984) (see Table 5).

The triangular kernel was used and estimators were obtained for p-.05(.05). 9 5.

Table 6 gives the estimates, bootstrap bandwidths, and MS_ values for scme

values of p. The quantile estimate and confidence bands are plotted in Figure 3.

."'
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TABLE 4. Bootstrap Bandwidth Selection for x n(p)

Exponential Lifetime Distribution (mean-i) and
Exponential Censoring Distribution (mean-i).

n-60

n(P) Qn(p Q(p)

.01 .02 -.001 .001 .010

.10 .26 .101 .053 .105 -

.25 .06 .310 .311 .288

.50 .58 .757 .755 .693

.75 .54 1.523 1.521 1.386

.90 .58 2.344 2.106 2.303

.99 .40 4.627 4.491 4.605

TABLE 5. Failure Times (in Millions of Operations) of Switches

Z. A Zi  Ai  Zi  Ai  Zi  Ai

1.151 0 1.667 1 2.119 0 2.547 1
1.170 0 1.695 1 2.135 1 2.548 1
1.248 0 1.710 1 2.197 1 2.738 0
1.331 0 1.955 0 2.199 0 2.794 1
1.381 0 1.965 1 2.227 1 2.883 0
1.499 1 2.012 0 2.250 0 2.883 0
1.508 0 2.051 0 2.254 1 2.910 1
1.543 0 2.076 0 2.261 0 3.015 1
1.577 0 2.109 1 2.349 0 3.017 1
1.584 0 2.116 0 2.369 1 3.793 0

TABLE 7. Quantile Estimates for Switch Data
p h xn(p) MSE "'.

.05 .10 1.653 .01027.

.25 .24 2.163 .01323 V

.50 .60 2.581 .01923

.75 .44 3.015 .03188

.95 .60 3.785 .10917
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FIGURE 1. xn(p) and Confidence

Intervals for Simulated Data. "
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FIGURE 3. x (p) for Switch Failure Data.
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APPENDIX: PROOFS OF THEOREMS ,,

Denote QO(p) .

Proof of Theorem l(i). For fixed 0<p<l, write

IFo(Xn(P)) - FO(q)I - IFo(Xn(P))-pI

- IFo(Xn(P))-F n(x(P))I

sup IFo(X)-Fn(X)L. (A.1)
x

The right-hand side of (A.1) converges to zero almost surely by Theorem 5.3 of

F l .o ".F6ldes, Rejt8 and Winter (1980). Since F is continuous, then x n(p) -* almost

surely. ///

To prove part (ii) of Theorem 1, the following lemma is needed. Let Kn(.)

W(./hn) and Rn(Y;X) , l-Kn(x-y).

Lemma. Let F be continuous and TF <TH< . Then sup IFn(X)-Fo(X) I- 0o - -<x<T F

almost surely. 0

Proof. By Corollary 2(ii) of Csdrg8 and Horv~th (1983),

sup IFn(X)-Fo(X) 1-0 almost surely. From Lemma 5.2 of F6ldes, Rejt5 and
-- <x<TF

F
0

Winter (1980) and by definiticn of TF , letting Fn(x)=Fo(y)dKn(y;x),

0

IF- IFn(Y)d*n(Y;x)-Fn(X)l

TFI o [F n(Y>-Fo (Y>l: ]n(Y;X>

_ sup IF n(x)-F o(x) l  _ o dFn(YX
- <x<T F

0

o
Sup IF n(x)-Fol(X)I-

-<X<TFo

.

;'::. - : :< ..:: - .. - . :9 . ,. ,,< . ::, -' .-: : -' " .2 2 ;'i'2 .. ' ' ' ',,. '.'; : , S:
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Thus, sup IFn(X)-Fn(x)lH*O almost surely.
-M<x <TF

Now, given c>O, let 6>0 be such that IyI<S implies sup IFo(x-y)-F 0 (x)]<c.
x

Then

In(X)-Fo(X)I I I F0 (x-y)dKn(y)-fF0 (x)dK n(Y)I

e + f dKn(y). (A.2)
lyI<

But as n-o the last integral in (A.2) approaches zero, so suplF (X)-FoW 1-0.

The result of the lenmm now follows by the triangle inequality. ///

Proof of Theorem l(ii). The result follows from the Lemma, the continuity of

FoI, and writing
00

IFo(Xn(P))-Fo();)- IFo(Xn(n))-pl
-IFn (xn (P))-Fo0(x n (p )) I -

< sup rFn(x)-Fo(X) . //-- <x <TF!

- F

Proof of Theorem 2. Approximating F (x (p))-p by its two-term Taylor
n n

expansion about 0, write

0

0~f(& )[xn(P)-& ] -V nv' fFo)F() (n(A3

where & is some (random) point between Xn(P) and . "

Now, Ifn ( &) - f O  )  f n ( &) - f O( &) + I f O( &)-fo( F ) 1. Under the assumptions

of the theorem, by Corollary 2 of Mielniczuk (1986),

Sur) If(X)-f 0 (x) [-O almost surely.

From Theorem 1, xn(P)-E almost surely, so &-*F almost surely. Hence, by thenV

continuity of fo' Ifn()fo( ) I 0 almost surely. Therefore, (A.3) has the same

limiting distribution as / [Fo(?)-Fn() ] . 7

Now, consider /n[Fn(E)-Fo( = I + II, where I - rn[F( )Fn( )] andn n(F ] andII

- 'n[Fn(E )-Fo(F)]. Next, write

nS
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h+uh K

n [ fp J hK((u-x)/h)dFn(X)du- Fn(&)]

h- -+cho
/~n jh J K((u-x)/h) dud~'' Fn ]

L0 x-ch du-0

Since f h-iK((u-x)/h)du < 1, for n sufficiently large,

0 +ch h-I g((u-x)/h)du < 1, so

x-ch

I < n dFn(X) = r[(Fn(& + ch) - Fn(E)] (A.4)

Next, letting K(t,s) denote a Kiefer process and On(t) - /[Fn(t)-ro(t)] be

the PL process (see Csbrg8 1983, for these definitions), the right side of (A.4)

can be written as

[On ( O+ch)-n- K( +ch,n) ]

'n( Ei K(E ,n)]

+ 0

+ n (FO( +ch)-F()]. (A.5)

From Theorem A of Aly, Csbrg8, and Horvith (1985), under the assumptions of the

theorem, the first two terms of (A.5) converge to zero as no. Also, by a proof

similar to that of Lermma 1 of Lio, Padgett, and Yu (1986), the third term of

(A.5) converges to zero in probability as n-. For the last term of (A.5), since

fo(E )>0 by assun.tion,

IF (+ch)-F (y).
ch c0

as n- since /-nh-W0 by the conditions of the theorem. Therefore, I-0 in

probability as n-*. Hence, Fn([E.)-Fo(E)] has the same well-known

limiting distribution as II, which is the normal distribution with mean zero and

variance (1-p) [l-F(u)] 2 dFo(u), completing the proof.///

00
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