FATIGUE, FRACTURE AND STRAIN HARDENING OF HIGH CARBON HARDENED ALLOY STEEL

FINAL REPORT

GEORGE KRAUSS
JUNE 4, 1987

U.S. ARMY RESEARCH OFFICE

CONTRACT/GRANT NUMBER
DAAG29-84-K-0127

COLORADO SCHOOL OF MINES
GOLDEN, COLORADO 80401

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED
Title: Fatigue, Fracture and Strain Hardening of High Carbon Hardened Alloy Steels

Author(s): George Krauss

Type of Report: Final

Time Covered: From 7/84 to 3/87

Date of Report: 1987, June, 4

Page Count: 6

Subject Terms: High Carbon Steel, Fatigue, Fracture

Abstract: The view, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, unless so designated by other documentation.

Distribution/Availability of Abstract: Unclassified

Distribution/Availability of Report: Approved for public release; distribution unlimited.

Security Classification: Unclassified
ABSTRACT

Medium and high carbon alloy steels have been heat treated to microstructures of low-temperature tempered martensite and retained austenite. Four point bending fatigue testing of 0.8 pct C steels showed that low cycle fatigue resistance was directly related to retained austenite content. The strain-induced transformation of retained austenite substantially increased strain hardening rates of the composite tempered martensite-austenite microstructures at high strains and increased the number of cycles required to initiate fatigue cracks at prior austenite grain boundaries in specimens with the highest retained austenite content. Transmission electron microscopy identified the transition carbides formed on tempering as the orthorhombic eta carbide, and the increasing density of the transition carbides with increases in carbon content was the major carbon-dependent structural parameter which correlated with flow stresses and strain hardening rates in medium carbon tempered martensite. Elastic limits, as measured with strain gages mounted in compression specimens, decreased with increasing retained austenite content. In medium carbon steels with lath martensite morphologies the retained austenite transformed to martensite by stress induced mechanisms, and in high carbon steels with plate martensite morphologies, the retained austenite transformed by strain-induced mechanisms.
CONDIMENTS

STEAM CONDENSERS

CONDIMENTS
OF PEPPER
SEASONINGS
SPICES
BT FOOD

CONDITIONED RESPONSE
BT *RESPONSE(BIOLOGY)

CONDITIONING(LEARNING)
BT *LEARNING

CONDUCTION BANDS
BT ENERGY BANDS

CONDUCTION(HEAT TRANSFER)
BT HEAT TRANSFER

CONDUCTIVE LIQUIDS
BT LIQUIDS

CONDUCTIVITY
BT PHYSICAL PROPERTIES
N *ELECTRICAL CONDUCTIVITY
THERMAL CONDUCTIVITY

CONDUIT PLIERS
BT PLIERS

CONDUITS

CONFERENCING(COMMUNICATIONS)
BT COMMUNICATION AND RADIO SYSTEMS

CONFIDENCE LEVEL

CONFIDENCE LIMITS
BT *STATISTICAL ANALYSIS

CONFIGURATION MANAGEMENT
BT MANAGEMENT

CONFIGURATIONS
N *AERODYNAMIC CONFIGURATIONS
ANTENNA CONFIGURATIONS
COAXIAL CONFIGURATIONS
CRUCIFORM CONFIGURATIONS
*SHAPE
STUE CONFIGURATION

CONFINED ENVIRONMENTS
Restricted or isolated environments involving any number of people, such as in spacecraft, submarines, or bomb shelters
BT ENVIRONMENTS

CONFINEMENT(GENERAL)
NT CONFINEMENT(NUCLEAR REACTORS)

CONFINEMENT(NUCLEAR REACTORS)
Systems or equipment that provide total isolation of hazardous materials in case of reactor accidents
BT CONFINEMENT(GENERAL)
NUCLEAR REACTORS

CONFINEMENT(Psychology)
BT *STRESS(Psychology)

CONFLICT

CONFLUENCE

CONFORMAL MAPPING
BT *COMPLEX VARIABLES
MAPPING

CONFORMAL STRUCTURES
BT STRUCTURES

CONFORMITY

CONFRONTATION

CONGENITAL ABNORMALITIES
BT ABNORMALITIES

CONGESTION

CONGO RIVER
BT *RIVERS

CONGRESS
(81/09) - Legislature of the United States consisting of the Senate and the House of Representatives
BT UNITED STATES GOVERNMENT
NT HOUSE OF REPRESENTATIVES
SENATE

CONICAL ANTENNAS
BT *BROADBAND ANTENNAS
NT BICONICAL ANTENNAS
DISCONE ANTENNAS

CONICAL BODIES
BT BODIES
GEOMETRIC FORMS
NT FRUSTUMS

CONICAL NOZZLES
BT NOZZLES

CONICAL SCANNING
BT SCANNING

CONICAL WINGS
BT *DELTA WINGS

CONJUGATED PROTEINS
use PROTEINS(CONJUGATED)

CONJUNCTIVITIS
BT *EYE DISEASES

CONNECTICUT
BT *NEW ENGLAND

CONNECTICUT RIVER
BT *RIVERS

CONNECTING RODS

CONNECTIVE TISSUE
BT *TISSUE(BIOLOGY)
NT ADIPOSE TISSUE
*EDGES
CAPILLARY
FASCIA
MAST CELLS

CONNECTORS
NT *ELECTRIC CONNECTORS

CONSCIOUSNESS

CONSERVATION
NT SOIL CONSERVATION
WATER CONSERVATION
WATER RECLAMATION

CONSERVATION LAWS(MATHEMATICS)
use DIFFERENTIAL GEOMETRY

CONSISTENCY

CONSISTENCY PROOF
use CALCULUS OF VARIATIONS
and MATHEMATICAL LOGIC

CONSOLES
BT *CONTROL PANELS
NT KEYBOARDS

CONSORTIUMS

CONSTANT SPEED DRIVES
use DRIVES
and SPEED REGULATORS

CONSTANTS
NT GRUNEISEN CONSTANT

CONSTELLATIONS

CONSTRUCTIONS
NT VASOCONstricting

CONSTRUCTION
NT *CONSTRUCTION MATERIALS
FILAMENT WOUND CONSTRUCTION
*MODULAR CONSTRUCTION
TAPE WOUND CONSTRUCTION
UNDERWATER CONSTRUCTION

CONSTRUCTION EQUIPMENT
NT ROAD BUILDING EQUIPMENT

CONSTRUCTION MATERIALS
BT CONSTRUCTION MATERIALS
NT *CONCRETE
MORTAR(MATERIAL)

CONSUMABLE ELECTRODE PROCESS
BT *ARC MELTING

CONSUMER PROBLEMS
BT CONSUMERS

CONSUMERS
NT CONSUMER PROBLEMS

CONSUMPTION
NT *ALCOHOL CONSUMPTION
ENERGY CONSUMPTION
FOOD CONSUMPTION
*FUEL CONSUMPTION
OIL CONSUMPTION
OXYGEN CONSUMPTION

CONTACT FUZES
use IMPACT FUZES

CONTACT LENSES
(84:12) - A thin lens fitted over the cornea to correct defects of vision
BT *OPTICAL LENSES
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTIC RETRIEVAL AND INDEXING TERMINOLOGY</td>
<td></td>
</tr>
<tr>
<td>COMPUTED SIMULATION</td>
<td>BT COMPUTER APPLICATIONS</td>
</tr>
<tr>
<td></td>
<td>*MATHEMATICAL MODELS</td>
</tr>
<tr>
<td></td>
<td>NT ANALOG SIMULATION</td>
</tr>
<tr>
<td></td>
<td>DIGITAL SIMULATION</td>
</tr>
<tr>
<td></td>
<td>HYBRID SIMULATION</td>
</tr>
<tr>
<td>COMPUTED TOGRAPHY</td>
<td>BT DATA PROCESSING EQUIPMENT</td>
</tr>
<tr>
<td></td>
<td>NT ANALOG COMPUTERS</td>
</tr>
<tr>
<td></td>
<td>ASYNCHRONOUS COMPUTERS</td>
</tr>
<tr>
<td></td>
<td>*CENTRAL PROCESSING UNITS</td>
</tr>
<tr>
<td></td>
<td>COMPUTER ARCHITECTURE</td>
</tr>
<tr>
<td></td>
<td>*DIGITAL COMPUTERS</td>
</tr>
<tr>
<td></td>
<td>*FIRE CONTROL COMPUTERS</td>
</tr>
<tr>
<td></td>
<td>GUIDANCE COMPUTERS</td>
</tr>
<tr>
<td></td>
<td>GUIDED MISSILE COMPUTERS</td>
</tr>
<tr>
<td></td>
<td>HYBRID COMPUTERS</td>
</tr>
<tr>
<td></td>
<td>*INPUT OUTPUT DEVICES</td>
</tr>
<tr>
<td></td>
<td>*MEMORY DEVICES</td>
</tr>
<tr>
<td></td>
<td>MICROCOMPUTERS</td>
</tr>
<tr>
<td></td>
<td>MINICOMPUTERS</td>
</tr>
<tr>
<td></td>
<td>NAVIGATION COMPUTERS</td>
</tr>
<tr>
<td></td>
<td>SUPERCOMPUTERS</td>
</tr>
<tr>
<td>CONCEAL BODIES</td>
<td>BT BODIES</td>
</tr>
<tr>
<td>CONCENTRATE FOODS</td>
<td>BT FOOD</td>
</tr>
<tr>
<td>CONCENTRATION CHEMISTRY</td>
<td>BT CONCENTRATION(COMPOSITION)</td>
</tr>
<tr>
<td>CONCENTRATION COMPOSITION</td>
<td>NT CONCENTRATION(COMPOSITION)</td>
</tr>
<tr>
<td></td>
<td>DEUTERIUM ID CONCENTRATION</td>
</tr>
<tr>
<td>CONCRETE</td>
<td>BT *CONSTRUCTION MATERIALS</td>
</tr>
<tr>
<td></td>
<td>NT *REINFORCED CONCRETE</td>
</tr>
<tr>
<td></td>
<td>SHOTCRETE</td>
</tr>
<tr>
<td>CONCUSSION</td>
<td>BT WOUNDS AND INJURIES</td>
</tr>
<tr>
<td>CONDENSATION</td>
<td>Change of state from gas or vapor to liquid or solid; also meteorological</td>
</tr>
<tr>
<td></td>
<td>phenomenon Excludes chemical reaction NT *ATMOSPHERIC CONDENSATION NUCLEI</td>
</tr>
<tr>
<td>CONDENSATION NUCLEI</td>
<td>BT CONDENSATION</td>
</tr>
<tr>
<td>CONDENSATION REACTIONS</td>
<td>UF REFORMASKY REACTIONS</td>
</tr>
<tr>
<td></td>
<td>BT CHEMICAL REACTIONS</td>
</tr>
<tr>
<td></td>
<td>NT GRIGNARD REACTIONS</td>
</tr>
<tr>
<td>CONDENSATION TRAILS</td>
<td>UF CONTAILS</td>
</tr>
<tr>
<td></td>
<td>EXHAUST TRAILS</td>
</tr>
<tr>
<td></td>
<td>VAPOR TRAILS</td>
</tr>
<tr>
<td>CONDENSER TUBES</td>
<td>BT TUBES</td>
</tr>
<tr>
<td>CONDENSERSliquefiers)</td>
<td>NT REFRIGERANT CONDENSERS</td>
</tr>
</tbody>
</table>
SUMMARY OF RESULTS

A major research effort previously supported by the Army Research Office at the Colorado School of Mines had led to the identification of the microstructural features associated with the fracture surface morphologies of hardened medium and high carbon steels. The findings were based on impact and fracture toughness testing with CVN and compact tension specimens. The work related carbide structures produced during the austenitizing, quenching and tempering stages of heat treatment to various fracture morphologies and levels of toughness.

The present contract was dedicated to extending the fracture studies to fatigue of hardened steels and to evaluating the effects of tempered martensite-austenite composite microstructures on the plastic flow and strain hardening of medium and carbon steels.

Table I lists the personnel associated with the present ARO contract and Table II lists the theses and papers which have been prepared as a result of the research efforts of the personnel involved in the ARO program. The following paragraphs summarize the results of the various component investigations of the program.

TABLE I

Personnel Associated with the Research of ARO Contract DAAG29-84-K-0127

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. Bruce Kelley</td>
<td>M.S. Candidate</td>
</tr>
<tr>
<td>Kenneth P. Hayes</td>
<td>M.S. Candidate</td>
</tr>
<tr>
<td>Mark A. Zaccone</td>
<td>M.S. Candidate</td>
</tr>
<tr>
<td>Craig Van Thyne</td>
<td>M.S. Candidate</td>
</tr>
<tr>
<td>Gu Baozhu</td>
<td>Visiting Scientist</td>
</tr>
<tr>
<td></td>
<td>Beijing Aeronotical Institute</td>
</tr>
<tr>
<td>J.M.B. Losz</td>
<td>Postdoctoral Associate</td>
</tr>
<tr>
<td>George Krauss</td>
<td>Principal Investigator</td>
</tr>
</tbody>
</table>

Kelley (2,6) performed four-point bending fatigue studies of a series of 0.8C steels with varying amounts of chromium. The various amounts of chromium in the alloys were designed to change austenite-carbide boundaries during austenitizing, but the major effect of increasing chromium content was to lower M_s and increase the amount of retained austenite in the tempered martensite-austenite microstructures of heat treated specimens. Reheating treatments produced dispersions of retained carbide particles, similar to those studied by Brown (10) and Hayes (1), and resulted in finer martensite-austenite structures. The fatigue tests showed that improved low cycle fatigue life directly correlated with increasing amounts of retained austenite and microstructural refinement.
Zaccone (3,13) examined the plastic deformation and strain hardening of the same steels tested by Kelley in an effort to understand the role retained austenite plays in the tempered martensite-austenite composite microstructures. He examined the plastic response in both the microstrain and macrostrain regimes by compression testing. Strain gages were used to follow the microstrain deformation behavior. Three stages of deformation behavior were found. The first stage was directly dependent on the amount and morphology of the retained austenite, with the specimens with the most retained austenite having the lowest elastic limits. The second stage was independent of the amount of retained austenite, while the third stage, marked by a decrease in the rate of decrease in strain hardening rates, was again dependent on austenite content. The specimens with the highest austenite content had the highest strain hardening rates, behavior which was shown to be a result of strain-induced transformation of austenite to martensite. It is high strain hardening rates associated with microstructures with high retained austenite contents which explain the results of Kelley's fatigue testing. Instability and crack initiation at embrittled austenite grain boundaries is delayed in specimens with high retained austenite content. Examination of plastic zones at points of fatigue crack initiation confirm that substantial strain induced transformation of retained austenite is associated with fatigue crack development.

The morphology and fine structure of tempered martensites in medium and high carbon steel (5,7-0) were further characterized. In particular, the very fine transition carbide distributions, dislocation substructures, and retained austenite contents (11,12) of a series of medium carbon 41XX steels containing 0.3, 0.4, and 0.5 pct carbon were evaluated by transmission electron microscopy and related to deformation and fracture behavior. The flow stresses of tempered martensite in steels containing 10.3 to 0.5 pct carbon was linearly dependent on carbon content. Austenite grain size, martensite lath size and martensite packet size were constant. However, the density of transition carbides increased, and spacing of the carbides decreased, and retained austenite increased with increasing carbon content. Strain hardening and flow stresses in the microstrain regime were dependent on retained austenite and stress controlled transformation of the austenite to martensite. At higher strains, the substructure of the tempered martensite controlled deformation, with the higher carbon structures exhibiting higher strain hardening rates consistent with the finer spacings of the transition carbides in these structures.

The study (4) on the boron-containing carburizing steels is still in progress. The work is being done in cooperation with the ASME Gear Research Institute. Gears have been fabricated and heat treated and single teeth have been subjected to low cycle bending fatigue. The boron containing steels showed low cycle fatigue resistance intermediate to that of carburized 8627 and 4820 gear teeth. All steels failed by intergranular fatigue crack initiation, apparently in association with oxides produced during gas carburizing.

The details of the various investigations performed in the ARO program are or will be given in the theses and papers listed in Table II.
TABLE II
List of Publications Based on Research Supported by
ARO Contract DAAG29-84-K-0127
July 1984 through February 1987

THESES

TECHNICAL PAPERS

END
DATE
FILMED
DEC.
1987