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Abstract

Consider: the linear regression model y = x: + e, i = 1, 2 .... where

{x I is a sequence of known p-vectors, 1' = (_ . .. 8 I is an unknown p-

vector, known as regression coefficients, {e)I is a sequence of random errors. It is

of interest to test the hypothesis H = = 0, k = 0, 1 p.. ,k +1 .

We do not assume that the random errors are identically distributed and have zero

* means, since it is sometimes unrealistic. As a compensation for this relaxation, we

assume the errors have a common bounded support [a . a 2. Under certain*1 -  12

conditions, we obtain the strongly consistent estimate of the number k for which J

- 0 and ... = = 0, by using the information theoretical criteria.
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1. Introduction

Consider the linear model

y. = x.' + e.,i=1,2, n.

(1)

where x s are experiment points, n = Y.... )' is the regression coefficient

vector to be estimated, and e's are random errors. In the usual linear regression

model it is assumed that the random errors have vanishing expectations and common

variance. In this case, the famous least square estimation (LSE) method plays an

important role in making statistical inference upon the regression coefficient vector

a. In the literature, there are a lot of papers concerning with the LSE and many

important results are obtained (a part of work refers to [1],[2] and [3]).

However the unbiasedness and consistency (even the weak one) of LSE strongly

depend on the assumption that the expectations of errors are zero, and this

assumption is not realistic sometimes. It is of interest to find a consistent estimates

of the regression coefficients when the expectations of errors are not equal to

each other In [4] two methods for finding consistent estimates of the regression

coefficient vector a are proposed.

The first method is to use the measure
Jw.

I

' q () =  max (y. - x.' ) Min (y. - x.'B
n, 1<1<n i i <l<11 i i

The estimator B of a is defined as the vector which minimizes Q (a) The estimate

* ~is temporarily called MD estimate of a in [4] (the estimate based on the
n

Maximum Difference between residuals)

The second method is to use the measure

W. ~nB Max lyi - x.'al
n 1<<n I I

Denote by B the value of a which minimizes Q (B) Also. B is temporarily called

MA eatimate of ( (the estimate based on the Maximum Absolute values of residuals)

. .. .

E . . ..ql >..

...B.*- .
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. Under certain conditions, both B and B are shown to be strongly consistent

in [4],

Now let us consider the hypotheses

Hk: 6k+1 = Bk+2 O. = 0 and B k # 0

k = 0,1 . ,p-1.

It is of interest to determine the true model H by using the model selection

criteria Denote by B kn = (Bkin' kkn, 0 ... 0)' the vector which minimizes

Q (B) under the restriction B . - = =0 and denoted by B (B
n k+1 p kn kin

B 0 , 0Y the vector which minimizes Q (B) under the restriction
Skkn n

q= .. = =0O. Write
k+1 

p

:k - Qn{ (kn)

and

Q = Qn (0kn >

Choose a sequence of constants C, satisfying certain conditions which will be'V n
specified later, and define

"" Rk Q + kC

k k n

and

R -Q + kCk k n

Choose

i ... , .V
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k = ArgMin{R k e {0, p}}

k

and

k= ArgMin{Rk: k c {0, p}}-k
where ArgMin denote the index which minimizes the quantities following the symbol

ArgMin.

In this paper we shall consider the consistency of k and k to the true model

k.
0

2. Consistency of k

In this section, we make the following general assumptions:

Assumption 1. The errors e, i = 1,2. are independent.

Assumption 2. P{e c [a1, a J 0 and there is a positive constant 6 such

that for any c > 0 and any n, we have

P{e c [a , a + CD] > AE

and

P{e n [a2 - c, a2]} > Ae.

Assumption 3. For any a > 0, there exists a positive constant C such that for

any vector ot ft 0 it follows that

#{i < n, I (x.)-9(a) I < a} > Cn

for large n, hereafter (a) = a/1X1

.J%.
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Assumption 4. There exists a positive constant m such that

lxii > m, for i 1,2,

Now let us estimate Q (s). Define
n n

E = i <n, -x!.B -B > 0}
n I n

', (2) "
E ( i < n, x!n >0}
n I n

Split S = { x e RP: l xi 11 into d disjoint parts Z, . such that Vp 1' "' d

x. y ,x'y > 3/4. Lety Z , j = 1, . d. Define EJ = {i < n, Z(x)'y >
' J J n -

3/4), j= 1 . .. d. By Assumtion 3, there exists S > 0 such that

# > 6 n, j = 1,2, ,d.

It is easy to see that -( n - a) e Z and i c EJ implies that

n n

and that 9Aj - B) c I and i c EJ implies that
nj n

x - ) > 0, i.e. i E "

Take r satisfying

r - 0 and nr /logn -=.. n n3

we have

.%

=,"
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P(Q n(n) < a2 - a1 - 2r n

<P(max a. r~ )r + P( lE a. +8 r
n n

d --

d
E~ P( E "a ) i a 2 - rn' 91(n j
J=1 icE

n

d
+ E P( mi " > a I + r n c .

n.nnj=1 iE
n

d

Z P( max e. < a - r 9( - I
J=1  i E I 2 n ' nj

n
dA

+ " P( m i  e. > a + r -

j':' nnoC icE1
n

d

< . P( max e. < a - r )
1 ileE J  i - 2J=l C

n
d

+ [ P( min e. >a + r
,jl icEJ  , n

n

< 2d(I-r ) 1 n< 2de n 1 < 2d/n 2

n

for large n. By Borel-Cantelli Lemma we have

Q (B >a - a - 2r, a.s.

when n is large enough.

Let k be the index of the true model and let 0 be the true parameter
Then 0Then obviously we have .for p > k > k

-. , - -

04
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n ' ' n ' n Q n 'kn

:< Q( ) < Q (B) <a - a
n n 0-2 1

Thus

-,' )0 < Qn (  () < 2r , p > k > k

If we take C such that C n . C /r n, then for k > k
k ' n n n l > 0

01
,,.,[ Rk - Rk = k- kO )Cn + Q( n) - n( ) >0O,

f k knn, (2)

for all large n.

Next, we consider the case of k < k0. Denote
>00

n =Ik 0~o > 0

and define

E = i < n. 2 (x.) + 9(. - Q), < 1/2}

E n {i < n, Ik (x.) - (k n B 0 < 1/2}

Split S into b disjoint parts 11 11 b such that V x. y c fl Ix -Yp 1 b,

1/4 Let II. j= 1, b Define
J
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Fj = {i < n,J(x.) -(x < 1/41 j = 1 b.
nJ

S.. By Assumption 3. there exists 6 > 0 such that
2

#(F )> 52n, j = 1,2 ,b.

A,2

It is easy to see that

4,.-

-9( - O) 13 I. and i c Fj

-n 0 j n

which implies that

I9 x. ) + ( - < 1/2. i e. i c E.

Also,

"n c JI. and i C Fj

0 n

which implies that

.. (X- + -kI < 1/2, i.e. i E- ,kn 0n

For i E ,we have
WA3

,0-B )  xi 1 I kn-aOI 9' (xi) 9- ( n BO

. "kn%'=~

Ol0

.2

"A ..- . .- . . .; , . . , , . . . . . . . . . . : . . .. . .. .. . .. . . . .
, . . - . - . , , .. . . . . - - - - . . . . . ." . . - " , n " " " " " " " " " - " - -" - " -" -
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:S -rT1 - 1/2) = -m/2.

Similarly for i c E , we have

x! ( mn > rTI/2.

Hence

Qn(kn) > ma.e i  mine. + mT
i E iEE-E

n n

Thus

P (Qn(kn) <a 2 - a, + m'r/2)

< P( ma e. < a2 - mrn/4) + P( min e. > a + mrT/'.)
-icE icE

n n

E P( ma. e.<a2 -mn/4, -9 II..)
j=1 i c E

n

b )
+ Z P( min e > a + mn/4, 9( - B) I.)

-'.'-'.~ i E

n

bA
E P( max e. < a - mTl/4, -9( - O) e: I.)

J=1  ie-" - 2 0j
n

*OpP[ 4
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b
+ P( min e. > a + mTI/4, A

j= ieFJ I - 1 9J
n

b

E P( may e < a 2 - m/4)
j=1 i C FJ

n

b
"4 + < Z P( min e. > a + mn/4)

.
j 1  i CFI

n

n - AmI 6 n/ 4  2
< 2b(I - <m/4) 2 < 2be 2 2b/n

for large n. By Borel-Cantelli Lemma, we have, with probability one,

Qn(a a 2 - 1 + m-l/2, for all large n.

Thus for k < kO, we have

Rk - R 0  = (Bkn) - Qn (ak ) o-k) n
On 0

> mr/2 - (k - k)C > 0,-- n

(3)

for large n, since C -. 0
n

(2) and (3) imply that k is strongly consistent. Summarize the above

arguments, we get the following theorem.

Theorem 1. Choose C satisfying
n

%I



0 - 11

,,(i) C ,

'4"'

(ii) nC /logn
n

Suppose the four Assumptions given at the beginning of this section are true, then

k -, k, a.s

Proof. Use the arguments given before. We only need to note that for any

sequence of C satisfying (i) and (ii), we can always choose r such that
n n

(i)' r /C -b, 0,

(ii) nr /logn -

SQ. E. D.

3. Consistency of k

, In this section, we shall make the following general assumptions:

Assumptiom 1 The error e, i = 1, 2. ... are independent,

. %

Assumptiom 2 11 a, < a V in => P(e [a, a]) = 0 there is a positive
2 n 1 2

constant L such that for any E > 0 and for any n, we have

P(e c [a - c. a ]) > AE

n 2 2-
Assumptiom 3. Same as Assumptiom 3 in Section 2.

Assumptiom 4'. There exists a positive constant m such that

V,=,..

IxI > m, for i = 1,2, .
[

Now let us estimate (. Define
, , .n.

~ ;.,',. ,..y!. ~ . . p .. .... * ** . *,..* L*
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E { < n, x' > 0}
n -nf

Split S into d disjoint parts ,......- such that V x, y c , x'y > 3/4.
p 1 d J

Let yJ E 2., j = 1..... d. Define =n ={i < n, 9.(x )Y"J > 3/4}, j =1, . d. By

Assumption 3, there exists 6 > 0 such that

# > S n, j = 1, ,dn - 1'

It is easy to see that

S c E . and i c EJ
n J n

I nl n

Take r satisfying
n

rn -b 0, nr n/logn -n n"

We have

P(Q ( < a2 - r ) < P( max e < a 2  r nnn-2 n - 2EF n
IcE

n

d
I P( max e < a - r, 9 C)

J=1  icE J

d

SP( max e < a2 -r, -,(s
SJ 2 n n j

n
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d

P max e. < a -r)
-Ej I 2 n

- - n -Ar 6n 2
< d (0 Ar ) 1 < de n 1 < d/n

n

f or large n. By Borel-Cantelli Lemma we have

> (~ a - r , a.s.
nn -2 no

when n is large enough.

Let k be the index of the true model and let be the true parameter.
0 0

Then obviously we have for p > k > k0

n n n pn -n kn

Qn (Bkn) - n 0-< 2
0

Thus

-n k n n kn -no 0'
0

If we take C such that

C -. 0, C /r cc
n n n

then for k >k 0

@4
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R - R (k - k ) Cn +Q( ) -Q( > 0
k k 0n 0 kn n k 0

(4)

for all large n.

Next, we consider the case of k < k Denote
0

,TI
k 0 ~o > 0

and define

E- < n, .(x.) '9( -(B ) < -1/2}

Split S into b disjoint parts 11.....IV, such that V x, y c II, x'y > 1/2.
P b

Let j = 1..... b. Define F as F i < n, (x)' > 275/280}, =
J ~ n n

1,.... b. By Assumption 3, there exists > 0 such that
2

ns- 2 = 1,

It is easy to see that -9(a -k O) 0 fl and i Fn imply that
kn 0 j n

For i c , we have
n".

." A
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A'.

X1!  
1 5/

ix ( -kn 0) Ixii I kn-Yo l(x i ) ' k I > mT/2

Hence

Q(0 > maxe. + mTj/2
i n

Thus

P (Qn (5) < a2 + mn/ 4 )

< P( max e2 < a2 - mTI/4)

2 2

L b __

< P( max e. < a2 - m,'1/ 4, -,2,Bkn- BO) cE 
I

' )J

-=I i 2kn0E
n

b -

< P( max e. < a2 - mT/ 4  )

nb -

SPA ma, e. < 2- m kn/4)cn

i F

P( maxme. < a n -bi42

'.

- - n 2
<b( 0 mnI/ 4) 2 < b/n

for large n. By Borel-Cantelli Lemma, we have with probability one, when n large

enough
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Q(8k ) > a 2+ Mn4

Thus for k < k ,we have
-~ 0

R -R Q8 )-( )-(k -kCk k n kn' n knk k0 0n 0 n

<mT/4 - (k 0 k)C n> 0,

p (5)

for largh n, since C ~0.
In

(4) and (5) proves k is consistent. Summarize the above arguments, we get

the following theorem.

Theorem 2. Choose C nsatisf ying

nn

'U(ii) nC In/logn -

Suppose the four assumptions given at the beginning of this section are true, then

k -* k,as.

Proof. Use the arguments given before, we only need to notice that for any

sequence of C satisfying (i) and 60,) we can always choose r such that
nn

Wi' r /C -0
r, n

60i' nr /logn -

Q.ED,

Z .. '~
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4. General Case

N In this section we consider the same regression model (1) But the problem

we are going to solve is to determine the subset (or the model) J = {1 < j 1 <

< jk < p} such that B = 0 if and only if j c J We make the same

assumptions as given in previons sections

Of course, we can use the procedure described in section 2 and 3 to

determine the model J as follows: For each permutation Tr of = (

similarly rearranging (x I, .. x P), we get a new model Mt . Under this model,

using the approach given in section 2 and 3, we obtain estimates k = kA = min k
-T T T

and k = k - = min k and let J ={t1), ... k)} andJ =J ={T( 1).....
7T IT 11 1 1 1

(1k)}, we can easily prove that, by using Theorem 1 and 2, J J, a. s. and J

J, a. s

An alternative method to estimate J is given as follows: Suppose T is a

subset of { 1, - , p} Consider the model T:

y n x (T) (T) + e n, n n n

where x T) = lx c T) and B(T) 1. j c T)'. Let
j j1 j

Q (T) min { max (y. x.(T)'B(T)
B(T) ]<i<n

m in (y. - x. (T) B (T))}
l<i<n

and

Q (T) min max Iy - x (T)' (T)I"ny

B(T) <i<n

Define

.4..
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SRT - In(T) + #(T)Cn

and

R] Q (T) + # (T) C
2 n

Choose J such that
2

R3 = minR
2 T

and choose J such that
2

R- = min R
12 T T

We can also prove that J 2~ J, a. s. and *J 2 .J, a. s .However, there would be

too much computation involved when p is relatively large. In the first case. there are

=totally p! permutations whileas in the second there are 2Psubsets of'{ 1,.. p}.

In light of this, we propose another approach to estimate J which only involves p+

* 1 quantities to be computed.

Now let

B (j) - (B 1, - , j l . .. P

and def ine

Qn (j) -min { max (y. S x (j))
a (j) i<i<n

-min (y. - X'BU))
I<i<n

and

LIS'S * . - - - -'Vp .* ss.
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Q (j) minn max y - , x (j) I

n U() li<n

WNrite

R (n, j) =Q n(j) - Q - Cn

and

R (n,j)=Q n(j) - Q - C.n

* We choose

i ~ j n [j {jj; R (n, j) >0}

n

and

j n {j I =j {j: R(n~j) > 03
n

Then we have the following theorems.

Theorem 3. Under the conditions of theorem 1, we have that

J ,-J , a. s.
n

where model J ii .i is the true one.

Proof If c .J, by (3) with the replacement that k 0 p and k p- 1, we

have that with probability one, Rnj) > 0 for all large n. i. e., jc n Hence, when n

*. -**.r*
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large enough, J J Conversely, if j ' J, using the same argument as proving

theorem 1, we have

R(n,j) = Q (j) - Q - C
n p n

< O(logn/n) - C a. s.=1 n

which together with (ii) implies that

R(n,j) < 0, for large n,

i. e j ' J when n large enough. Therefore J J which completes the proof of
n n

Theorem 3.

Theorem 4. Under the conditions of theorem 2, we have that

J -. J, a. s.
n

where model J = j is the true one
1 k

Proof. If j c J, by (5) with the replacement that k = p and k p- 1, we

have that with probability one, R(n,j) > 0 for all large n, i. e., j c J . Hence, when n

nn'' =ilarge enough, Jn J. Conversely, if i ;J, using the same argument as proving

theorem 2, we have

R (n,j) = Q (j - Q - C
n p n

< O(logn/n) - Cn a. s.

which together with (ii) implies that
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R(n,j) < 0, for large n,

e 't J when n large enough. Therefore J J which completes the proof of
n n

Theorem 4.

. N

S.%

:-V
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