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Abstract

A general and qualitatively exact theory is developed for quantum sticking

coefficients ((k) in the small wave number limit k * 0. The theory covers

Morse-type to inverse-square potentials, the latter representing long-range

potentials. The theory gives unambiguous answers to crucial questions in the

problem and helps lead to an overall understanding of low-temperature

adsorption.
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I. Introduction

The problem of determining sticking coefficients of an atom on material

surfaces is one of the fundamental tasks in surface physics. A general

situation is depicted in Fig. Ia. If the kinetic energy of incident atoms or

molecules is large compared with the energy scale of the problem, e.g., a

potential-well depth of matter-particle interaction, then it is widely believed

that the distorted-wave-Born-approximation (DWBA) is quantitatively correct for

describing various surface phenomena. 1 ,2 On the other hand, when the incident

kinetic energy is much smaller than the typical energy scale of the given

problem, as realized in low temperatures, there has been a long-standing

controversy concerning the validity of the DWBA. 37This is partly due to the

lack of accurate experiments at small k and at low temperatures. The only

exception is the experiment done by the Edward group.8

The present theoretical situation is the following. People believe that a

one-dimensional (1-d) simplification, as depicted in Fig. lb, is good enough to

study qualitative properties of the sticking coefficients a(k) at low

temperatures. It is noted that a T-shape model as shown in Fig. lc has a

deficiency that there is no momentum sink along the direction of the particle

motion. In classical mechanics, a particle would eventually strike the surface

no matter how slow it is, releasing some energy to a matter system, and

therefore, it would definitely be adsorbed on the surface for vanishingly small

incident energy. Quantum mechanically, however, the situation is not quite soI

obvious. First, it appears natural that in quantum mechanics a low-energy wave

function of the atom must have a small wave amplitude at a high potential

barrier, i.e., at a surface. This is true for static short-range potentials due

to the following reason. Consider a static square-well potential as shown in

Fig. 2. The scattering wave function with incident wave number k can be written

as
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(Asin (Kx) for 0 < x < R
ik+ . eikx  -k.1

- S(k)eikx for R < x

where S(k) is an S-matrix element and

22 2k22-- 2 = 2 2 +  D ,(1.2)

2m 2m

where m is the particle mass. Imposing the smoothness condition on 1k+> at

x - R, one can easily find that

A a k , S(k) -* for k -* 0 . (1.3)

The linear k-dependence of the scattering wave amplitude in the potential-well

region immediately leads to a linear k-dependence of the sticking coefficient

a(k) at small k. The first quantum-mechanical calculation of c(k) by Lennard-

3Jones and Devonshire (LJD) based on the DWBA is essentially the same as the

above argument for the static square-well potential. Based on the LJD

calculation for a static Morse potential which decays exponentially at large

distance, people next considered various possible mechanisms for realizing

finite a(O). These include static long-range potentials, xn,7 and correlated

6or many-body motions of the atom-matter system such as polaron and self-

5- trapping, but for short-range potentials like square-well and Morse-type.

However, all the existing theories share a common deficiency in that they do not

answer the following two questions: How important is the long-range character

of the matter-particle interaction? How important is the many-body motion of

the matter-particle system? It is clear that a satisfactory theory must treat

these effects on an equal-footing. Are there any potentials for which C(0) are

finite? If there are such potentials, what is a borderline potential which

distinguishes between "short-range" potentials for which 1(0) = 0 and "long-

range" potentials for which z(O) *0?

p.
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In this paper, we shall develop a new theory of quantum sticking

coefficients at 0 K. We do not invoke any uncontrolled approximations, and thus

give a definitive answer to the problem. Our answer is as follows: (i)

Irrespective of the matter-particle interaction potentials, the many-body motion

of matter-particle system is not essential for the small-k behavior of C(k).

The present theory gives a firm basis to the DWRA. (ii) For potentials

decaying faster than x"2 at large distance, a(k) - k at small k. This is

essentially due to the fact that the scattering wave function has a linear k-

dependence at small k. The range of the linear k region decreases with

increasing long-range character of the matter-particle interactions. The theory

4
encourages experiments at small k < 0.1 0'. For a He atom colliding with a

liquid 4He surface, the present theory predicts a critical wave number - 0.01

A- I below which a(k) depends on k approximately linearly, which provides a deep

understanding of the experiment. (iii) The inverse-square potential is a

borderline distinguishing between short-range potentials for whish a(0) - 0 and

long-range potentials for which a(0) 0 0. This conclusion is reached by a DWBA

calculation of a(k) for the inverse square potential. Our assertion (i) in this

case means that the DWBA result cannot be changed qualitatively by higher-order

corrections. This is essentially due to the fact that, unlike the case of

short-range potentials, the scattering wave function here has a AE-singularity

at small k.

Before getting into detailed descriptions, let us try an intuitive

explanation of the present theory and its main results. To do so, consider once

more the static square-well potential, Fig. 2. In the above, we have given a

standard explanation of a(O) - 0. Our method in this simple case would proceed

as follows. We first note that the S-matrix element S(k) - exp[2i6(k)), where

96(k) is a scattering phase shift. But Levinson's theorem tells us that 6(k) is

related to the number of bound state N of the square-well potential as

_'-f:!L7- -
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6(+0) - VN (1.4)

Now for k << 1, S(k) - 1 by (1.4) and R - 0(1) for short-range potentials, and

therefore

lk+> -21kx for R < x << 1/k . (1.5)

On the other hand, 1k+> in the region 0 < x < R must be a linear combination of

tiKxtwo independent solutions of the Schrodinger equation, e . Noting that K

does not depend on k in the limit k 4 0, and requiring a smooth connection of

lk+> at x - R, one can easily see that both two constant factors before e iyx

are proportional to k, which leads to the same result as before -- 1k+> - k at

the potential well, and hence a(k) - k for small k. Now the point is, this

explanation does not use the boundary condition at x - 0, nor does it require

details of the wave function in the potential well. Therefore, under the

existence of a dynamical version of Levinson's theorem, it can be extended to

dynamical cases, which is precisely what we zhall do in the next section. The

existence of a dynamical version of Levinson's theorem for matter-particle
-2

interaction potentials decaying faster than x has recently been shown by the

present authors. 10

We have organized the present paper as follows. In the next section,

short-range potentials are examined based on formal scattering theory and the

dynamical Levinson's theorem. In Section III, a numerical calculation of a(k)

is carried out based on a self-trapping model, which demonstrates the dynamical

Levinson's theorem and determines a standard number f to be introduced in

Section II. In Section IV, we examine the inverse square potential which is

essentially different from the short-range cases and is outside the scope of the

arguments to be presented in Section II. Our DWRA calculation presents, for the

first time, an example of finite m(0). Our summary is given in Section V.

. . . -. .. ........ .. ........ . .. , ....... .... : -: , ,.. ... ,.... .N-.-. % % NI . ,-
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(After the completion of the present work, we have noticed the paper by Brivio

and Brimley in which the adsorption problem is treated by the Green's function

method. 
2 1 )

II. Short-Range Potentials

We first examine short-range potentials, that is, those decaying faster

than x2 . Let us consider the adatom + l-d matter Hamiltonian in a collinear

configuration (see Fig. lb),
.K'"

Htot = H(i,p) + V(i,x) + K(p) , (2.1)

where H(i,j) is a 1-d matter Hamiltonian with i and p, respectively,

representing position and momentum vectors for atoms in the l-d matter, V(i,x)

is an interaction potential between the adatom and 1-d matter which we restrict

-2
to those decaying faster than x at large adatom-matter separation x >> 1, and

K(p) is the kinetic energy of adatom. It is noted that the l-d matter must be

of finite size, because otherwise only one phase is possible in one dimension,
11

that is, there is no distinction between gases, liquids and solids. This

means that the matter does not have a well-defined boundary at finite

temperatures, and the question of calculating an adsorption probability becomes

meaningless.

A scattering eigenstate of (2.1) with a wave number k can be written as

*(i,k) F(i,k) - S(k)F(U,-k) , (2.2)

-ikxwhere (i,x), F(r,k) is a Jost solution having an asymptotic form e -X

at x -, where * 0 (i) is the ground state of H(x,p) (T - 0 K), and S(k) -
10

exp[216(k)J is an S-matrix element. In a recent paper, we have extended

Levinson's theorem in static potential scattering to our dynamical case. We

%.r r e

e_ A.-
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have shown that for our short-range potential V(i,x), the scattering phase shift

6(k) is connected to the number of bound states, N, of the total

Hamiltonian by

6(+0) = N . (2.3)

On the other hand, an exact expression of an adsorption rate R(k), the

number of adsorped atoms per unit time, is given by time-dependent scattering

12
theory as

R(k) = " 6(E k - Ef) I<flVflk+>l2 (2.4)

f

2k2
where Ek = -2 + E with E0 representing the ground state energy of the matter

(T - 0 K), means a su nation over final states If>, Vf is a final channel
ff

interaction, e.g., creation of phonons, and 1k+> represents a scattering

elgenstate of the total Hamiltonian, tot. The sticking coefficient a(k) is

defined as a ratio between R(k) and the flux, the number of incident atoms per

unit time, which is given by )U/m. Therefore we have

=2

za(k) = 2Tm 6(Ek - Ef I<flvfIk+>[2 (2.5)f. 2 EfIfffk

An important observation in (2.5) is that as far as the small-k behavior of a(k)

is concerned, it is given essentially by the quantity k+) 2/k. This is seen as

follows. The static potential

V(iox) - V(i,x) - Vf (2.6)

where x0 denotes a mean configuration of matter atoms in the ground state 0(i),

is by assumption a short-range potential, and supports only a finite number of

bound states with finite binding energies. Moreover, the final states If> in

9.

'U,'. . , ._

/
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e

(2.5) are eigenstates of the unperturbed Hamiltonian H -V Therefore, in the ?
tot f

+2
limit k 4 0, all the quantities other than Ik+> /k in (2.5) do not depend on k.

We now explore the small-k behavior of the exact scattering eigenstate

Ik >. From the dynamical Levinson's theorem (2.3), for k << 1 the S-matrix

element S(k) = exp[2i6(k)] - 1 in (2.2). Let us define a reduced potential

(2.mV(io,X)/(j-) U(x)(2),.
a'

and consider large distances R and R' such that

-U(R) = k2 << - U(R') << {-U(x)) (2.8)

This means that the matter system is still in the ground state in the region

-ikxR' < x, and that the Jost solution in (2.2) is F(i,k) e 0 (i) in the region

R < x. Thus we have

Ik+> (eikx - eikx) o()

(2.9)

-2ikxo (x) for R < x k

where in the second expression, we have assumed the inequality

kR < 1. (2.10)

Next consider the region R' < x < R, where the particle motion is described by

Schr6dinger equation

d2  
2*

11-+ U~)) k(2.11)
d2

dx

Instead of explicitly solving (2.11) for respective potentials U(x), however, we e

simply point out that the particle motion in this region must be somewhere

between the two extreme cases, U(x) = U(R) and U(x) = U(R'), as shown by two

S!
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horizontal dashed lines in Fig. 3. But one can easily see that in both cases

the smoothness requirement of k+> at x = R (cf. (2.9)] leads to Ik+> - k at R'

< x < R. This fact in turn leads to Ik+> a k at 0 < x < R', because in this

region, jk+> can depend on k only through a constant prefactor which, however,

again by smoothness of 1k+> at x = R', must be proportional to k. In this way

we reach

jk+> k 0 < x < R. (2.12)

From (2.12) we have

a(k) - Ik> 21k - k (2.13)

We remember, however, that (2.13) is derived under the condition (2.10) and

S(k)- 1. Little is known about the small-k dependence of S(k). Our analysis

below and numerical calculations in the next section for a Horse potential show

that the latter condition imposes a similar restriction on k as (2.10). To

P analyze (2.10) for typical long-distance behaviors of the reduced potential

U(x), let us introduce a standard number A < 1 in analogy to the "standard

13
value" in the Lindemann formula for melting, and replace (2.10) by

kR < (2.14)

With this B we can predict for each given potential a critical wave number k
C

such that

a(k) k at k < k . (2.15)

From (2.14) and U(R) k , one can easily obtain the following results:

(i) Exponential decay U(x) - -ye x
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p

-(k /i)ln(k 2 = (2.16)
C C 

e

(ii) Algebraic decay U(x) - -x n  (n > 2)

1/n k1-2/n (2.17)
C p

The results (2.16) and (2.17) make two predictions. First, the critical

wave number k decreases with increasing long-range character of the potential.
C

Our numerical calculations of a(k) in the next section for a Morse potential

(2.16) with y = 48 A - and K = 1.4 A - (numbers for the W-He system14' 1 5) show

that k - 0.1 Substituting these numbers into (2.16) gives

- 0.6 . (2.18)

The 4He atom colliding on a liquid 4He surface is described by a van der Waals

potential (2.17) with n - 3 and y = 20 A. Using 8 - 0.6 in (2.17), we have k Cc

0.01 A for this case, which is in good agreement with experiment.8  Second,

from (2.17) k approaches zero quite rapidly as the exponent n approaches 2 from
c

above, as depicted in Fig. 4 for y = 20 and [ 0.6. This strongly suggests

finite a(O) for an inverse square potential, and that n = 2 is a borderline

distinguishing between "short-range" potentials n > 2 and "long-range"

potentials n < 2. We note that the n = 2 specialty is beyond physical

intuition, but is clear mathematically as signaled in several ways: the

dynamical Levinson's theorem (2.3) breaks down for n < 2, the inequality (2.10)

does not hold for n < 2, and the zero-energy scattering wave function has a

singularity at n - 2. This last fact is seen as follows. For k - 0 and U(x)

-Yx , (2.11) becomes

+ -yx n. 0 (2.19)

A general solution of (2.19) is

S
+, . ". +. .''- • . . . '+'. ..f% t=" .. % % ,=. ." :."=% _."_, .'.' :+% % ."." .% % Y



x_ (2 xl-n/2
'41 = / 1 ( 2-n/ ) , (2.20)

2-n

where Z V is a solution of Bessel's differential equation

2
Z" + I Zv + (l -- )Zu- (2.21)

x

The singularity of * at n a 2 is clear in (2.20). In Section IV, we shall

present a thorough study of the inverse square potential and show that the

*quantum sticking coefficient a(k) is finite in the limit k + 0, thus confirming

the above prediction that n = 2 is a borderline.

III. Determination of A

In this section, we consider a self-trapping model for the adsorption of

He atom on W. A collinear configuration of He and W is shown in Fig. 5. By

calculating the sticking coefficient c(k) as a function of the wave number k, we

shall demonstrate the dynamical Levinson's theorem (2.3) and determine the

standard number 0. The model assumes a harmonic lattice, Hph j a a . a
q

surface W atom plus He atom interacting through a Morse potential, and the

surface W atom seeing another Morse potential created by the end W atom of the

1-d lattice in its equilibrium (taken to be x 0)

H " Ps/2M + 0(xs ) + Pa/2m + U(xa-x s  (3.1)

s ~ S 8 a a s

The dynamical interaction between the harmonic lattice and the surface W atom

takes the form (one-phonon process)

dO (x)
H it (1(Nw at a )(t) + (3.2)qint 0 q q -q d,

% %*s
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where N is the number of lattice atoms, and the unit step function O(t) means
0

that k +> here is a scattering eigenstate of Hs+a , not that of the total

Hamiltonian. In analogy to the second-order optical process, this is a
r.

luminescence component aproximation thereby neglecting Raman components, which

is expected to be good for short-range potentials of the Morse type. To

calculate a(k) by (2.5), we note that here Vf is Hint at t > 0, and the final

t.
state is If> = a I0>lb>, where 10> is the phonon vacuum and lb> represents a

q
bound state of Hs+a .

To solve the Schrodinger equation

H s+a=E , (3.3)

which is the main task in this section, we now specify the W-He and W-W Morse

potentials as

D(x+x )-2x

(e D-' (3.4)

where x - 3 A, x - 3.6 A, D - 0.99eV, D - 10 meV and K 1.4 -1. 1 4 ,15  Thes a

phonon dispersion w is given in terms of the W-W interaction potential 0 asq .

MWq2 . 20 (X- 0))[1 - cos(qx)] (3.5)
q xx s

It is worth noting that the problem (3.3) is essentially a three-body one and an

analytic solution is not available even for the simplest interaction potentials,

e.g., the square-well. The best we can do is to construct perturbative and

variational wave functions and solve (3.3) numerically. In doing so, we note

the following. First, the one-body problem for Morse potentials is exactly

solvable. Appendix A summarizes some results about Morse potentials. In the

case of the W-He Morse potential U(x), the quantity K as defined in (A.3) is

X_ I-
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about 7.4, which by (A.6) means that there are four bound states with the lowest

binding energy - -1.52 x 10" 2 1 J ; -9 meV. Similarly for the W-W Morse

potential 0(x), there are about 200 bound states. Measuring the energy from

that of the lowest bound state, the first four bound states have energies 0 (n

= 0), 1.35 (n = 1), 2.69 (n = 2) and 3.94 (n = 3) in the unit of 10-2 1 J. The

one-particle energy spectra for the W-W and W-He Morse potentials are

schematically summarized in Fig. 6. It is now clear from energy considerations
-1

that as long as k is small, the first three bound states are good enough to

describe the motion of the surface W-atom. As for the motion of He, there are

two situations. When the He atom is far away from the surface, the surface W-

atom is in the ground state and the wave function is written as

-ikx ikx

4=* asym(XsXa) c 0( X)[e a . S(k)e a] , (3.6)

where *0(xs) is the ground state of the surface w-atom as given by (A.2), and

C - 0 for bound states jb> and C - 1 for the scattering state jk+>. Near the

surface, on the other hand, the wave function can be written as

M-i
4  surf (xsx g (xa)(x) , (3.7)

sur a) LM p a p s

where the g 's describe a fully correlated motion of He near the surface.
p

According to the energy consideration above, we take M = 3 hereafter. One may

suggest the use of the variable x -x in place of xa in (3.7) and expand the He

motion g p in terms of the eigenstates (4n) in (A.2) for the W-He Morse potential

U. This scheme is not efficient, however, because of complexities arising from

the kinetic energy term p2/2M in (3.1). We find that the Gaussian-weighted

Hermite polynomials are the best suited orthonormal complete set over which to

expand localized g P-functions:

'e'e
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h e-T2 x2 A H(Tx) q ,1, 2 ... , (3.8)hq q Hq

where R = [T/q1Vd2-)]l1/2 and the Hq's are Hermite polynomials. In Appendix B,q qr

we have described Hermite polynomials and related integrals which appear in the

calculation of the Hamiltonian matrix elements. The scale factor T in (3.8)

must be best fitted according to the degree of locality of the gp 's. To check h

the efficiency of the h expansion, we have expanded the first four bound states
q

of the W-He Morse potential in terms of the h 's. We have found that 14 h 's
q q

reproduce these four wave functions very well, with < 1% relative error in wave

amplitudes.

Based on these preliminary arguments, we now consider the following

variational wave functions for the eigenstates of Hs+a:

2 N-i

*(xsXa) = a t(xa) + C (xs)h j(x (3.9)

i=0 j=0

where *(x a ) is an error function preventing the He-atom from penetrating into

the matter,

-x.xO-V2/v .2t 2

O(x) - v j -a s , (3.10)

where v is a variational parameter. First consider the bound states Ib>.

Substituting (3.6) with C - 0 and (3.9) into (3.3) and operating

J"dx dx a (zsAm(za

we obtain a set of coupled algebraic equations for the coefficients C ij's:

Sb cc (3.11)YHm,ijCii cC

ij

.. .. .. -. .- - .- -. ... --'-'.--'-'-- --'---- '. -. .'...-'-;.''.-'-; . -" -? --- ': '-" "'-" ¢ ."- -"'A:! -: -8 ; '; -
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where

H ~C6 6 -6 p +c C 3.2

Hm,ij = iimj - i mj g Eg m, ij (3.12)

and where c. 2mE./ 2  2cE/' 2m/2, and P and 0
g mi REm,ij'

respectively, are given by (B.7) and (B.9). Starting with (3.6) and C 1 1, one

can obtain a similar equation as (3.11) for the scattering state Ik+>. It is

noted that unlike the case of bound states, the eigenenergy is already known as

Ek = A2k2 /2m. However, there is an additional unknown, S(k), and some

additional matrix elements associated with this variable. We have obtained

HI E 6 6m -~H* C~ -H
REm,ij k Eimj Em iJ m

S i((3.13)
"H . H SH)

i-il I SS .

where ck = k 2, and HEm, Hs and Hss are certain integrals involving the error

function 0, (3.10), and are given in Appendix C.

We can now calculate the sticking coefficient a(k) as defined by (2.5). As

noted before, our self-trapping model assumes the one-phonon final states If>

a' lO>Ib> and takes as Ik+> the scattering eigenstate of Hs+a , and here Vf is

Hinti (3.2), at t > 0. Let

2 2-h2: b 2  E - 1,2,...,t o

2m0

be the binding energy of the E-th bound state. With the phonon spectrum (3.5),

the energy conservation in (2.5) becomes

6(Ek1 -Ef) {6______ + 6(q+qo)) (3.14)

WX * ' /2 R2 q- 0

where

S.

-p

................................................................ ...- -............................ ,. . . -. . __C- --. - -.. -,. - --..----.. .- -.--. -..- .,- .. .-.---.." .- --..- --.--. ;-,,-- , ,,,, , ¢ '
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B 2 2 2 1 -1, BBt . ff 4- /A /MD (k + b2), q0  L0 cos (-Bt) (3.15)

s

As for the matrix element in (2.5), from (3.2), (3.6) and (3.9) we have

+ 2 (2K) 2
I<fIVf1k >1 2NoMW q M (3.16)

with

9,= Ci Jdx h4{e- ikx - S(k)e ikx)fdx *PO0'(x)/2KD

ij

+ Cdx * '(x)/2kb
+ ij Cj f i p

ij p

N Ni0

ij

C S -N {KJ(K;i,p;l) - J(K;i,p;2)) (3.17)

ij p

where (A.11) and (C.6) are used. Substituting (3.14) and (3.16) into (2.5)

gives

L=1 /2-B 2

We have numerically solved (3.11) and (3.13) and obtained b., Cij, S(k) and

$
C We have then evaluated c(k) based on (3.15), (3.17) and (3.18). The

stability and convergence of the numerical calculation has been checked by

changing variational parameters T and v, as well as the number of Gaussian-

weighted Hermite polynomials, h . To test the validity of our numericalq

calculations, we have first checked if the numerically obtained binding energies

.'..
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are reasonable. We have found four bound states with energies -20.087, -9.053,

-2
-2.939 and -1.837 in the unit of A-. Simple estimates of these energies are

the four binding energies of the W-He Morse potential, assuming the surface W-

-2
atom to be in the ground state g0 From (A.6), in the same unit of A-, these

estimates are -20.133, -9.530, -2.846 and -0.082, which are close to the

numerical results, thus demonstrating the validity of our numerical

calculations. Figure 7 contains our final results for T - 2, v - I and N = 21.

Part a shows that the S-matrix element takes the limit S(k) - 1 as k -+ 0,

demonstrating the dynamical Levinson's theorem, (2.3). Part b shows a(k) as a

function of the wave number k. The approximate linear k-dependence of C(k) is

seen below k - 0.1 A0. Substituting this into (2.16) with K = 1.4 A and y =
c

48A 2 gives 8 - 0.6.

IV. Inverse-Square Potential

In the preceding two sections, we have investigated short-range cases,

-2
i.e., the particle-matter interaction potentials decaying faster than x at

large distance, x >> 1. Due to the existence of the dynamical Levinson's

theorem (2.3), we could develop a general and accurate theory for the small-k

behavior of the sticking coefficients a(k). As we have found, a(k) - k, thus

verifying that the DWBA is qualitatively correct in this case. One important

result is that a(k) a k only at k < k, and the critical wave number kc

decreases with increasing long-range character of the potentials. In

particular, as Fig. 4 shows, the theory predicts that k - 0 and hence c(O) isc

finite for an inverse-square potential. In other words, it predicts that the

inverse-square potential is a borderline distinguishing between short-range

potentials for which a(0) = 0 and long-range potentials for which a(0) is

finite. In this section, we shall carry out a one-phonon mediated DWBA

B'= 
. , . . ,7A%
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calculation of the sticking coefficient for an inverse square potential, and

show that this is indeed the case.

Before getting into details, it is useful to look at the problem of

sticking coefficients from the viewpoint of formal perturbation theory. The

exact scattering eigenstate Ik+> in (2.5) can be written as

Ik'> - (G0V f )nljk> ,(4.1)

n-0

where Vf is a dynamical interaction between the adatom and matter, Ik> is an

exact scattering eigenstate for a static adatom-matter potential, and Go Z (Ek

-H + io ) is an adatom propagator with the Hamiltonian H describing the adatom

moving in the static adatom-matter potential. Substituting (4.1) into (2.5)

provides a power series expansion of a(k) with respect to Vf, whose lowest

order, O(Vf 2), is the DNBA. In the case of short-range potentials, the DWBA

gives a vanishing a(O), and it has been a challenging question if the inclusion

of higher-order terms can bring about a qualitatively different answer, namely a

finite a(O). In the case of the inverse-square potential, on the other hand, as

we shall see below, the DWBA already gives a finite cL(O). Now an important

point is that the DWBA is the only term to O(Vf 2). This means that an exact

a(O) is also finite in general. In other words, as far as the qualitative

small-k-behavior of a(k) is concerned, there is no significant many-body effects

in the case of the inverse-square potential.

Another important remark is on the dimensionality of the problem. As we I

have noted in Section I, a 1-d model of infinite size is physically meaningless

for the study of adsorption. Therefore, when one uses the 1-d model, the system

size must be finite, so that the phonon spectrum has a gap. In the case of

short-range potentials, the number of bound states if finite, and therefore a

.5
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cutoff is effectively introduced in the pthonon spectrum. This is why the

ccomonly used infinite 1-d model does not show any difficulty. For the inverse-

square potential, on the other hand, as we shall see below, there are infinitely

many shallow bound states which strongly couple to very "soft" phonons, leading

to an infrared catastrophe to be explained. We thus encounter a finite-size

problem in a l-d model for the inverse-square potential. To avoid this problem,

we shall extend the commonly used 1-d model to higher dimensions -- two and

three -- thereby expecting that the phonon density of states at higher

. dimensions would suppress the contribution of very soft phonons and remove the

infrared catastrophe.

Let us consider a particle of mass m striking the material surface in the

normal direction. The Hamiltonian is written in general as

N0
H M p2/2m + Iph + i i ) (4.2)

Writing A. = + 64. and following the standard procedures, we oivide the

third term into a static potential

v(z) - IV(r-Aid (4.3)

i

and a dynamical interaction

V f - v~ " 4 Iv io )'61
i

- -) iNo( +) 4 e£( r

* qX

X ) (a + a ) (4.4)q INow- qX -qX

,..%.. . -. "- '. .'-. -. 4 .'-F . ' J " -

. .. '-' ',. . ' -4," " .". " .¢-.'? : .- " "'" ;.. -5 "* / " "44 , , .?".4 " ;. ',, - ' 4 ,;
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In (4.3), we have assumed a translational symmetry parallel to the surface. In

(4.4), , is a phonon polarization, V is a Fourier 6-component, and 6 is a

reciprocal lattice vector. Now the one-phonon mediated DWBA for a sticking

coefficient (k1 means that in (2.5), the final state is If> -

a_. l0>Ib>e '
, and 1k+> and lb> are, respectively, scattering and boundqX

eigenstates of the static potential v(z). Here the subscript 1 denotes a

component parallel to the surface. From (2.5) and (4.4) we have

a(k) =2rm 6( e,(,2 _q2 + W)II2(4.5)2 2m 2=xk $3  2 -~ + b2) - $W ) IMI (.5
A k qqX

b,qk

with

___0__bo i(qz + Gz)zM Nf iN 0  <ble z k+>

M -TN=; (O,O,G Z)

X (q + 6).E V (4.6)

In deriving (4.5) and (4.6), we have put G 11 0 because at low energy a nonzero

G 1 does not satisfy energy conservation. Moreover, in a standard situation,

such as a He-atom colliding on W-matter, we see from energy conservation that

q << 1, which enables us to neglect the q2-term compared with w in (4.5), and
qA

approximate (4.6) as

iG z+
N0  <bI e iGzc V G Ik+> . (4.7)

GN~, qX z

We note that the G - 0 term in (4.6) is negligibly small. On the other
h

hand, one can easily show that
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z

G
z

With (4.8), (4.7) can be written as

bd k> (4.9)
qq

Here it is noteworthy that the result (4.9) justifies replacing the dynamical

interaction (4.4) by an effective one,

L 2N/Mw (a+ +a ) daz (4.10)f 2JNoMw . _ dz

which is a natural extension of the commonly used 1-d model of low-temperature

adrption to higher dimensions.

To explicitly evaluate (4.5) and (4.9) for a(k), we must specify the static

potential v(z) and the phonon dispersion w, For the static potential we take
qX

the form

- m "2 z > z0
v(z) = , (4.11)

O z < z

where z - z0 denotes the surface. It is noted that our phonon argument above is

not consistent with the long-range potential, (4.11). Conduction electrons will

17
be more relevant than phonons for the long-range interaction. However, as

will become clear below, the specific form of the interaction term Vf is not

essential for finiteness of a(O), and (4.10) is good enough to study qualitative

aspects of quantum adsorption for the long-range potential. For a similar

. reason, we consider W and He as an example of matter and atom. Clearly the W-He

*" interaction is not of the type (4.11), and the choice of W and He here is simply



V" IL IC ICI!'W~V _r'.V "T 7W1V

22

for the purpose of specifying the atom and the phonon dispersion. We replace

W_# by w q of (3.5), which upon substitution of (3.4) becomes
qX

wq -2K[{ - cos(qxo)) . (4.12)

This is based on the observation that (4.12) gives a sound velocity - 4 x

3
10 m/s, which is close to the geometrical mean of the longitudinal and

transverse sound velocities in three dimensions, - 3.4 " 103 m/s. With this

simplification and

Z )2 
"

(E 1 (4.13) ;
XqX

the dimensionality, D, appears only in the phonon density of states

E L0 dq pD(q) (4.14a)
q 2 T(x ) 0

s

with

0 0 2
P0(q) - 2 (D - 1), xq (D - 2) and (x sq) /i (D = 3) (4.14b)

Our final task towards the calculation of a(k) is to solve the Schr6dinger

equation
2 2

1 d 2  2 2
__-+ v(z)) A2 C 2 (4.15)

2m dz 2  '

which is carried out in Appendix D. Figure 8 contains the long-range potential

(4.11) in the unit of A- with z0  0.5 A and P =  F - 5.0, and its bound

states calculated from (D.9). From (3.14), (4.5), (4.9) and (4.11)-(4.14), we

have

4..
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(2y)) -2 12
cx(k) P _____ I<t 3 Ik+ > 1 (4.16)4 kc/DM =D 2 k 2 + b 2

where b t is the 2-th b as given by (D.9), and I> is the E-th bound state

(D.14), with the first bound state being the lowest bound state. Substituting

(D.4), (D.6), (D.14) and (D.18) into (4.16) gives

2

a(k) = 4-_A - e- ffp 1 ko-2 (q0)
W15Mz2 kz 0)IL PD(Q

1 0 1 y 1 1 ) I 2

k2 2 v+(b)zo - I(b)l IMEI2 (4.17)

12 - B2k + b E

2
where v = and

M f dz z 3{J(kz)J ~(kz0) - J(k)J(kzo)}
z0

{I (b tz) - I V(b z)} (4.18)

For given values of parameters z0  p and k, one can calculate the prefactor in

. (4.17) and bound-state spectrum b t by (D.9), (D.11) and (D.12), which in turn

- determines B and pD(q 0 ) by (3.15) and (4.14b), and II_, +l(bzo) - I V- 1(b z0 )I-2

by (D.11). Finally, the matrix element (4.18) can be evaluated numerically,

with some remarks given in Appendix E.

We can now discuss some properties of a(k). First of all, the finiteness

of c(O) can be seen as follows. Consider the lowest bound-state contribution in

* (4.16). It is clear in this expression that in the limit k -+ 0, the k-

dependence of a(k) is determined by that of the quantity k+> 2/k, which,

however, approaches a constant due to the A-dependence of Ik+ > in the limit k -

0, (D.7). Therefore, the lowest-bound-state contribution to a(0) and hence the

................ - .. . . . . ,
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value of a(O) itself is constant. An important point here is that this

conclusion of finite a(0) does not use details of the interaction Hin t . Thus,

we have seen that the finiteness of a(0) is a general consequence of the

inverse-square potential. Secondly, we have observed a logarithmic divergence

of ca(k) in the 1-d case,

a(k)D-- - ink for k -+ 0 (4.19)

To see the origin of this catastrophe, consider the matrix element M in the

limit k,b -) 0. In this limit, substituting (D.2) and (D.11) into (4.18) gives

S -2 -Z),r(), -(

M, dz z (zV - z ) zV - (B Z) v

lr(l+v)" t. E

r(I-v) Vi - V 1 (4.20)
r(1+v) 9t 1-2v 9E 1+2v

where S. b z 0/2. From (4.20) and (D.12) we have

IMjl2 - - v2/l+2vI 4 = constant. (4.21)

On the other hand, in the same limit k,b - 0, (D.2), (3.15), (D.18) and (D.19)

give

IJ v (kz0) 1 constant, B - 0

II.,,+I( E V-1(S )I cc BZ (4.22)

Substituting (4.21) and (4.22) into (4.17) and using the density of bound states

(D.13), we find the contribution of the bound states 0 < b < b0 << 1 to a(k) as

f 0 db PD(k 2 + b2) 2 b  2 (4.23)

-. '4 " , .- ".-"...~0 k. + "b "" ". . . •..'-".. ..'........... , "
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which, for D 1, diverges logarithmically in the limit k - 0. That is, in the

limit k - 0, each of the contributions from very shallow bound states remains

finite, and a(k) diverges logarithmically due to the linearly diverging density

of bound states. However, as we have pointed out in Section I, the obtained

infrared catastrophe does not imply a new surface many-body problem, but reveals

a pathological aspect of the infinite 1-d model.

Finally, we have numerically evaluated (4.17) and (4.18) for the D 1, 2

and 3 cases. Figure 9 contains sticking coefficients a(k) as functions of the

wave number k. The parameters used are z0 = 0.5 A and p - 5.0. Note that a

logarithmic divergence of a(k) in the D = 1 case is spurious. Although the

infinite 2-d model has in general the same pathological aspect as the l-d model

in that there can be no lattice formations in one and two dimensions just as

there can be no spontaneous magnetizations in the isotropic Heisenberg model in

20
these dimensions, the spurious contribution of very soft phonons is suppressed

by the decreasing phonon density of states at q -+ 0 [cf. (4.14b)], as a tiny

difference between a(0) and a(2) in the D = 2 curve demonstrates. The results

for the cases D = 2 and 3 demonstrate finite a(0) for the inverse-square

potential.

V. Summary

In this paper we have developed a new theory of quantum sticking

V. coefficients at 0 K. Based on the dynamical Levinson's theorem, we have first

considered the cases where the adatom-matter interaction potentials decay faster

than x-  We have demonstrated that the many-body motion of adatom-matter

system is not essential in determining the low-energy behavior of the sticking

. coefficients. The essence is instead in the long-distant part of the

interaction. The theory predicts that a(k) k at k < kcP and that the critical

. *.. ... .. . - .-. .... ,, 0- , -.-.. - , - %". - ", ,, '.
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wave number k decrease with increasing long-range character of the adatom-C

matter interaction. To give a quantitative measure of k c , we have introduced

the standard number 8 in analogy to the "standard value" in the Lindeman melting

formula. To determine 0, we have considered a self-trapping model for the W-He

system. By carrying out precise numerical evaluations of a(k), we have

determined that 8 - 0.6. As a test of the present theory, we have then applied

our results to the case of 4He-atom colliding with a liquid 4He surface, for

which accurate experimental data are available. The theory predicts that a(k)

k at k < 0.01 A- , in good agreement with experiments. Next, we have considered

the inverse-square potential. Our study based on the dynamical Levinson's

theorem has already verified that k c- 0 as the potential approaches thec

inverse-square one, which strongly indicates a finite a(O) for the inverse-

square potential. We have carried out the one-phonon-mediated DWBA for the

quantum sticking coefficient at 0 K and have shown that the inverse-square

potential is a borderline distinguishing between "short-range" potentials for

which a(O) - 0 and long-range potentials for which a(O) x 0. We note that the

finite a(O) result of DWUA would hardly be changed qualitatively by including

higher-order corrections. It is also noted that this result depends on the fact

that the scattering wave function has a A-singularity in the small-k limit, in

sharp contrast to the linear k-dependence in the case of short-range potentials,

and therefore it is a general consequence of the inverse-square potential. In

brief, the essence of quantum sticking coefficients at 0 K is in the k-

dependence of the scattering wave function Ik+> in the low-energy limit k -+ 0.

For short-range potentials, 1k+ has a linear k-dependence which leads to a

linearly vanishing a(k). On the other hand, for long-range potentials, 1k+> has

a A-singularity leading to a finite c(0).

.v''.. --..
. - ..-........................

..- . . .
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Appendix A. Some Results about Morse Potentials

The ore-body problem for a Morse potential,

2 2Yd + 'C-X - 2e - C ) OW = Eo(x) ,(A.1)

2m dx2 +De

is exactly solvable. 14The bound states are

On =Nen/e z (Knl/ n (z) ,(A.2)

where

Y=-M IK ,z =-Ke'Cx (A.3)

and the F n's are Laguerre polynomials,

nn

(z K-2n- 1 ()m K-n-i z

M-0

satisfying the differential equation

d 2F dF(A5- + (K-2n-z) + nFO(A5
dz 2d

The corresponding binding energies are

E 21'2-- (K-2n- )2 0< n < (K-1)/2] (A.6)

The normalization constant N nis determined by the orthonormal condition

6 ij dx *j(x)# j(x)

N " -zK-i-J-2 K- 21-l LK-2 -l
- dz ez Li (z) L z) .(A.7)

The integral in (A.7) is a special case (~0) of the Nieto and Simmons

W'
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in'-egral
1 6

J(K;i,j;&) -= dz eZ zK-i-j-2+E L K-2i-l(z) L K-2j'I(z)

- m(K-j-l)L r(K-ioj-1+E+m)r(+l-E-m)
j-m ml itr(j-i+l-&-m) (A.8)

M=0

where r is a gamma function. In particular,

J(K;i,i;0) = (K-i- ) r(K-2i-1) , (A.9)
i

from which the normalization constant Ni is determined as

Ni = t/Kil(K-2i-l)/(k-i-l)l . (A.1O)

Similarly,

Jdx bjeX = KN J(K;i,j;-.) . (A.11)
V.C

Appendix B. Hermite Polynomials and Related Integrals

*The Hermite polynomials

H (x [n/2_;. , ~t ~! n n-2r

n I 2r.Hn)=L )'~(rll rx (B. I)

r=O

have the properties

H" - xH' + nH - 0 (B.2)

* n n n

Hn+l - xHn +nHn- 0 (B.3)

H' - nH (B.4)

n n-1

l a '4l . . '.. .,- ..

- . . .p .p.. ... . . . .. , - .- . ...- . . . " " 4.' ,.'' ... , ,
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_x2/2

dx ex H H n V' n! 6 (B.5)mBn m~n

Using (B.2)-(B.4), we obtain

h" e -T x /4 T2(T2x2/4 - 1/2 - n)n(Tx) . (B.6)

With (B.3), (B.5) and (B.6) we have

P dx h h",mn m n 7

= 9mn T f.(dx ex 2/2 (x2/4 - 1/2 - n)Hm Hn

-- OD

4-[-(2n + 1) 6 + V(n+1)(n+2) 6m-l,n+1

+ 47-)6 .l,n.i (B.7)

Next, using the expansion (B.1) we have

Qmn(A)B r dx hm  n

s [m121 [n/2)
M M (-1)r+r' (2r-1)11 (2r'-1)t1
T L L

r=O r'inO

m ( n d -x 2/2-Ax/T m-2r+n-2r'
2r :r'' dxe

2(-A/T)m + n  A2/2T2 
./12 

En/21 [(m+n)/2-r-r'
-( /. e A/ T (-I)r+r '

r=nO ri =0 k=O0

(2r-1)1! (2r'-1)!t (2k-1)!! (A/T) 2r-2r'- 2k

(r)(2,)( m+n - 2 r- 2 r'
X 2Z )r2 (B.8)

2r.,".--""".

%.*. . * *...~..**.** ***. .***. * ./. . .. . . . .. .
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Using (All1) and (B.8) we evaluate the integral

em,ij =  f ds da S(s 5 iiX)(aXs) hm(a hj a)

fdx t e 2 x  dx h h e(- 2 X2K K in the first term}

2

J(K;E,i;-2) Q (20cmj

KN N

= 'J(K; t,J; -2) Qj(21)

1" 2K i ( ; ,;l mj(Z (B.9)

Appendix C. Some Integrals Involving 0

First consider the integral

- - 8kHt 2m dx ik0h a
Hm ff dx s a Yohme

(-2iks' + se') + (xaXs )W)

- t - 0A + E B (C.l)

With (3.8), (3.10) and (B.3), A becomes

A * (-2ikv/v + 2/2v2/v ')R(m, ik)

2v
3

- jA/mTR(m+lik) + VR(.-1,ik)) (C.2)

where we have defined

R(m,c) I dx ha eOK 2(x-V7/v)2  (C.3)

- Using (3.8) and (B.1) and carrying out a standard Gaussian integral, we obtain

R(m,c) - ;4:wmlT e2e(24/uc)2/(T2+4v2)

.. . . . .. . . . . . . .
4  

.
*. . * *-am4,
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[m/21 [m/2]-r

(-l)r( 2r-1 )11 (2t-1)!l (m 2r" e-
2r12

r=0 =0

S2T )m-2r-t+1/2 (2Vv-c)m-2r-2t (C.4)
T2+4v2  T

As for the term B, from (3.4) and (A.11) it becomes

2K NN KN N
B = J(K;t,0;-2) Y(m,2K) 2----- J(K;t,0;-l) Y(m,K) , (C.5)

K1

where we have defined

Y(m,c) f dx hm 0 e
- (c+ ik )x . (C.6)

Integrating by parts and using (3.8), (3.10), (B.3), and (B.4), we have

1 v e-(c+ik)x -v2 (x-7/v)2
Y(m,c) = c + ik Tit dx hm

1 T
C tm Y(m-1,c) - V;i Y(m+l,c)) (C.7)+ ik

Frog (C.3) and (C.7) we have the recursion relation

Y(m+l,c) - Y(m,c) + Y(m-lc)

+ T 2v R(m,c+ik) (C.8)

The first term Y(O,c) cannot be evaluated analytically, but the dimension of

integrations can be reduced from 2 to 1. In the expression

W(c,T,kv) * Y(0,c) - J dx h * e-(c+ik)x
f 0

2T x 22
0 o dx er4 dt -vt (C.9)

we make the variable change t - x+t, and the order of integrations as

• .......,-.. ." , -'-.,--. ..'--.,.- --.¢ .",.,,'-..,;,.->- ...- - -, .." , 'i.'.;.'.'-'.-:..''-,', .,''.,',. ,-. :'.-
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dx fdt dx ft dt dx

Carrying out a Gaussian integral over x, we reach the results

Y(Oc) 0 -2 e(c+ik-2v1v) 2 (4v 
2+T )

Y(0vT 2 42 + 2

0dt exp[- t2 - 4-(T 2/V2v + c + ik)t)} (C.10)
_-GO 4v2+T 2  T2

Next consider integrals which involve the error function t twice. First

consider

1 2. 21kx
-(k) m dx2 2 aD( )

ss - 2 fdXdXa e Oa0a s

C 2 2 2c KN 2

- -- J(K;0,0;-2) G(k,2,) + 0 J(K;0,0;-I)G(k,K) , (C.1l)

where

G(k,c) f dx °2 e(21k-c. (C.12)

With the use of (3.10), an integration by parts and (C.9), we have

G(k,c) " e uW(c-2v*7vv2v,-2kv) (C.13), c-21kVv

. We must also carry out the following integrations:

If 2  dx *(#"-21k#') - (ik+v/v'2i) (C.14)

2 2
H 2 B-- dx * (0"+2ik*') e21kx v A /2v 2 + 2Vik/v (C.15)
ss-72ss

H and H in (3.13) are then given by
1 25

H H 1  ) + H2  (C.16)" H5 SS Hs(

w
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Hss =Hss ()+Hss(C17

Appendix D. Solution of (4.15)

The solution of (4.15) can be written as

-"-za [AJ V(Ez) + BJ_(cz)] ,(D.1)

where y 1/ -v 1 /4 and A and B are constants of integration. i v is

the Bessel function of the first kind,1

J (z) =(z/2)v (_,)n(z/2) 2n (D.2)
vL n~r(v + n +

n=O

Since (4.15) is real, we can take *, as real. First consider a scattering state,

where c - k is positive. Noting that J*(z) =J- (z), we can satisfy the realityv -V

condition and the boundary condition *(z 0  0 by taking

B* A iJ-(kz 0) (D.3)

With (D.1) and (D.3) we now write the scattering state as

jk>- iN k V/-i (kz)J_ (kZO 0 -J (kz)J kz0 )] 0 (D.4)

To find the normalization factor N k" note the asymptotic property at 121* 18

~~~(9 ~~cosz -2v + 1

By setting the prefactor of the eikz component in jk > at z -~equal to 1, N k

-IF)1/2 s/2 -1

Ik IJ(kz) eI/ J(kz 0  e

V 0
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where in the second expression we have assumed p >> 1. The case p < 1

corresponds to an unrealistically narrow and deep potential. A particular

interest is in the limit k -* 0, where from (D.2), (D.4) and (D.6) we have for z

<< k
- I

Ik>kO = ivz/P [z/z 0 )V - (z/z0 )_ v1  (D.7)

* +This VA-singularity of the scattering state Ik > is in sharp contrast to the

linear k-dependence of 1k+> for the short-range potentials, (2.12). As we see

in the text, this is the key point of finite a(O) for the inverse-square

potential.

Next we consider bound states. In this case, E = ib (b positive). The

reality condition is met by taking

B - A*e-I' (D.8)

On the other hand, the finiteness requirement for the wave function at z - =

leads to a pure imaginary A. With (D.8) and the fact that A is pure imaginary,

the boundary condition *(z0) = 0 provides the quantization of bound states,

Iv(bz O ) - I v(bz 0 ) 0  , (D.9)

where I (z) is the modified Bessel function of the first kind.
18

Alternatively, one can look at the Jost function f(-k), the prefactor of the

ikz component in the scattering state "k+> at z ,

f(-k) - Jv (kz 0 ) 
e i/2 - J (kz ) e.-W/2 , (D.10)

whose zeroes at k - ib in the complex k-plane describe the bound states. The

condition f(-ib) = 0 is nothing but (D.9). Unlike the short-range potentials

studied in Section II, the inverse-square potential has an infinite number of
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bound states. To see this, consider the limit bz + 0. In this limit, only the

000

n = 0 term in the power series expansion of I (z),18  I

Iz/) 2n (1
v L nir(v + n + 1) '

n=0

is kept and the quantization condition (D.9) becomes

1 . r( +v) _n

b =-2 e 2 v  r 1-v) (D.12)
z0

where n is any integer such that bz0 << 1. That is, there are infinitely-many ',

shallow bound-states, whose density of states diverges at b 0 as

p(b) p u/ib (D.13)

Finally, to normalize the bound states, we use (D.8) and ReA - 0 to write

lb> - iNbAZ [I (bz) - I_ (bz)] B iNbV_ [ 2sin( v) K(bz)] (D.14)

With the property
19

2 2 2(-1K ( Z) - K vI(Cz)K (rCz)])' zK (Cz) ,(D.15)
2 vV1 v+1

the normalization integral is carried out to give

N 1K (bz0)K (bz W (D.16)
b 2sinhj V-u v+1 0

It is noted that k (bz0 ) 0 due to (D.9) and (D.14). With the use of (D.14)
V 0

and the recursion formula
18

I V-1(z) - I l (z) - (2v/z)IV(z) , (D.17)

(D.16) can be written as

S°
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N = -V+l(bZ , (D.18)

which is more suitable for numerical calculations based on (D.11). In

particular, in the limit b -* 0, from (D.11), (D.12) and (D.18), we have

N Ebw l - (bz0/2 - b (D.19)

Appendix E. Evaluation of (4.18)

Here we give some technical remarks on the numerical evaluation of (4.18).

Using k E kz0 and S bz0, one can write (4.18) as

Mt a I [J- (R)O(6,k) + c.c.] , (E.1)

where

odz z-2[I (SZ) - I_ (z)lIJ (z) (E.2)

The first thing to do is to replace - by a finite zm in (E.2). For a given S,

z is roughly a classical turning point of the potential (4.11),

z a /b . (E.3)m

Next we evaluate the Bessel functions Iv M * and J for the variable ranges

< z < 4 and I < iz < kz . For a realistic situation 4r < 10, the Bessel

function Iv can ;a evaluated accurately by the power series expansion (D.I1).

On the other hand, even for an interesting situation, k - 1, Kz a Er4y/ can be

large for small S. We have found that the power series expansion (D.2) is good

for z < 30. For z > 30, one can use Hankel's asymptotic expansion,18

Jr(z) F [P(Vz) cos(z 42v + w )  Q(vz)sin(z - 2v+ n)] , (E.4)

4~2,
where with 4v

. . . . . .
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P(v,z) - 1 ...(- )+ I ( - )( - 5 ( ~9 (E.5) '

21 (8z)2  41 (8z) 4  "" (.

Q(v,z) = L - (&-1)(E-9)(&-25) + (E.6)8z 31 (8z) 3

Though it is a bit time-consuming, the integral representation 1
8

(z/2rv f 2vI (Z) = vr-v-r yJ d8 cos(zcose) sin 6 (E.7)

is good for an arbitrary argument z. A caution for the integration in (E.7) is

that at small 6 << 1, the integrand oscillates with a period - 8.

I

LI
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Figure Captions

1. (a) Three-dimensional geometry for the scattering eigenstate characterized

by the parallel and perpendicular wave numbers, k and kx z

(b) One-dimensional simplification when the parallel and perpendicular

motions are approximately separable.

(c) Two-dimensional T-shape model for low-temperature adsorption.

2. Static square-well potential.

3. Schematic figure of the reduced potential U(x) and its modifications (dashed

lines) in the region R' < x < R.

4. k as a function of the exponent n for y - 20 and B -0.6.c

5. Self-trapping model for He adsorption on W.

6. One-particle energy spectra for the surface W-atom and He-atom.

7. (a) IS and ReS vs. k. It is seen that S - 1 as k -* 0.

(b) a(k) vs. k. Below k - 0.1 I, a has an approximate linear dependencec
on k.

8. The solid curve is the long-range potential (4.11) in the unit of A- with

z0 M 0.5 A and W - 5.0. The horizontal solid lines denote its bound states

calculated from (D.9). Bound states with very small energies are described

by (D.12).

9. a(k) vs. k for D - 1, 2 and 3. The parameters are z0 = 0.5 A and - 5.0.

For the D - 1 case, a spurious logarithmic singularity is seen for small k,

as described in the text. The other cases D - 2 and 3 demonstrate finite

quantum sticking coefficients at k * 0.

a.
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