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ABSTRACT

A

- A moving target is detected at long range with an initial position given by a
probability aistribution on a grid of N cells. Also located on the grid is a searcher,
constrained by speed, who must find an optimal search path in order to minimize the
probability of target survival by time T. A branch-and-bound algorithm designed by
Pro:2ssors Eagle and Yee of the Naval Postgraduate School in Monterey, California, is
succes:fully implemented in order to solve this problem. Within the algorithm, the
probi‘cm i~ set up as a nonlinear optimization of a convex objective function subject to
the flow constraints of an acyclic N x T network. Lower bounds are obtained via the
Frank-Wolfe method of solution specialized for acyclic networks. This technique relies
on linearization of the objective function to yield a shortest path problem that is
solvable by dynan:ic programming. For each iteration, the lower bound can be found
by use of a Taylor first order approximation. Implementation of this algorithm is
accomplished by the use of a Fortran program which is run for several test cases. The
characteristics of the soluticn procedure as well as program results are discussed in
detail. [inally, some real world applications along with several questions requiring

A -

further research are proposed. e L T e
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L. INTRODUCTION

A. BACKGROUND

Coasider a target detected at long range with some position uncertainty, and a
se~rcher, constrained by speed. tasked with closing the range to the target within a
specified period of time. intelligence estimates regarding the target's probable
movements are provided to the searcher who must use this information to develop a
search path that will bring him close enough to the target for tracking or possibly
weapons delivery. This problem may represent an autisubmarine warfare (ASW)
search in which a single surface ship attempts to localize a submarine contact. In some
instances near-optimal solutions can be obtained based on experience, yet in many
other cases the best search path may not be rsadily apparent. Current search practice
dictates a systematic approach to this problem such as sweeping out areas without
overlapping until the entire area of uncertainty has been thoroughly swept. Intuitively
this procedure seems correct, however this has never been established as the best or
even nearly optimal search technique. It is for this reason that the study of optimal
search paths is of interest, for in discovering optimal paths for various prob:ems new
insights into search theory may be gained.

B. PROBLEM DEFINITION

A grid of N cells as shown in Figure 1.1 is constructed on which a target and a
searcher arc located. The target’s starting position may be represented as a single cell
or perhaps by a probability distribution over any number of cells, while the searcher’s
initial position is specified as one particular cell. The problem proceeds discretely
through a series of searches and movements that span a finite time interval of duration
T. For each time period, the target moves according to a Markov transition matrix
that is defined from prior intelligence known to the searcher. Searcher movements are
constrained such that if he currently occupies cell i, in the next time period he may
travel only to the adjacent cells specified by the set C;. In order to quantify the
effectiveness of the searcher’'s movements the probability of nondetection is adopted as
a suitable measure. Hence the solution to the problem is a feasible search path of T
sequentially adjacent cells which, if followed, minimizes the probabulity of not detecting
the target.
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Figure 1.1 Typical Grid and Numbcring Svstem.

Describing the problem a bit more graphically, we can imagine the target’s initial
probability mass disperscd over a collection of cells. The scarcher initially located in
cell i conducts a thorough scarch of that cell. If any of the target's probability mass is
located within ccll i, a percentage of this mass is detected or “cut away™. This
percentage will vary as a function of the total search effort in the cell and is specified
by 2 detection function known to the scarcher. Any target mass outside of cell i is
undetecied. After the search, all remaining probability mass is relocated on the grid
according to the Markov transition matrix. Additionally, the searcher is free to move
as long as he remains within the set of adjacent cells C,. This sequence of scarches and
movements is repeated for T time periods, with the scarcher slowly whittling away at
the target's probability mass. At the end of period T, the resic sal target mass is
collected and totailed to yicld the overall probability of nondetection.

As will be discussed in the next chapter, the problem may be formulated as a
nctwork of N x T nodes, in which nodes represent cells for specific time periods and
arcs depict the flow of scarch effort through the grid. With the objective function
defined as the T-time period probability of nondetection and a suitable detection
function specified, the problem becomes one of minimizing a convex function subject

10
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to network flow constraints. Solutions to this problem involve two cases of interest.
The first consists of divisible search effort in which the searcher is allowed to divide the
resources available for each time period among several cells. An example of this might
be an aircraft engaged in ASW search. Here the aircraft’s speed advantage allows him
to divide his efforts over a large area. Similarly, a search party consisting of several
men night fractionate into smaller groups in order to cover more ground. For this
case, the network constraints can be shown to specify a convex feasible region with the
resulting problem being solvable by a linearization method. The second case is that of
nondivisible search effort and shall be referred to as the integer programming problem.
This is more characteristic of searches involving single units such as surface
combatants or submarines. Here the searcher cannot divide his resources and speed
limitations restrict him to much smaller areas of coverage. This case is much more
Jifficult to address and is solved here with a branch-and-bound algorithm that is
presented in Chapter 1V,

C. PREVIOUS WORK

This problem has been addressed by several individuals using a variety of
approaches. Brown [Ref. 1] proposed a solution for which the search effort was
allowed to fractionate infinitelv. Within each cell he specified an exponential detection
function such that if x units of search effort were placed in cell i where the target is
located. the probability of nondetection is given by exp(—PB, x}. (Where B, is the
search effectiveness in cell i.) In doing so, he was able to formulate the problem as a
convex nonlinear problem and develop an iterative technique for computing optimal
search plans. However he allowed no constraints on searcher motion. By constraining
searcher movements and using a dynamic programming technique, Eagle [Ref. 2] was
able to find an optimal solution to a relatively small inicger problem but at the expense
ol a large amount of computer time. A apparently more efficient heuristic for solving
the integer problem was posed by Stewart [Ref. 3] in which a branch-and-bound

algorithm employed a modified version of Brown’s procedure to calculate a lower
bound on trial paths. However Brown's procedure assumes a convex feasible region
which is not the case for the integer problem . Thus the “lower bounds” generated are
only approximate, and it is possible to incorrectly fathom a branch containing an
optimal path. Nonetheless, Stewart believed that near-optimality would be achieved
and that this branch-and-bound procedure is probably a good heuristic.

11




More recently a technique designed by Professors Eagle and Yee [Ref. 4] at the
Naval Postgraduate School in Monterey, California, uses the branch-and-bound
algorithm as proposed by Stewart vet relies on a better submodel for calculating lower
bounds. The submodel used in this technique was developed by Professor Yee. It
iraposes the constraint cn seurcher motiz 1 hut relaxes the constraint on divisiblity of
search effort, therety creating a convex feasible region. This subroutine is very similar
to the procedure suggested by Stewart [Ref. 3: pp. 131-2] for solution of the divisible
search effort problem and caa be shown to yield reliable lower bounds to the integer
problem. This paper will explore implementation of this algorithm and propose some
possible uses of the procedure.

12




II. THE OPTIMIZATION PROBLEM

As originally proposed by Stewart [Ref. 3: pp. 130-132], this problem may be set
up as network of N by T nodes, where each node represents a particula: cell in a
specific time period. Borrowing from Stewart’s notation, the target’s path through the
network may be described by the vector @={w(l), w(2), ... , @(T)}, where (1)
represents the target’s position at time t and p, gives the probability that path @ is
taken. Search flow through the network is given by x(i,j,t), representing a flow of
scarch effort from cell i in time period t to cell j in time period t+ 1. The network and
some example flows are illustrated in Figure 2.1. Recall that for each time period the
searcher is constrained to the cell he previously occupied or any adjacent cells. Let Cj
be the set of all cells adjacent to cell j. Then the total search effort in cell j in time t,
X(j,1), is found by summing all flows into the cell as shown in Equation 2.1

XG0 = ¥ xGjt—1) fort=2,...,T (eqn 2.1)
i€ Ci

This equation holds for all time periods t except when t=1. The values X(j,1) are
given as an initial conditions for the problem. We will assume that X(j,1)=1 if j is the
searcher’s starting cell, and X(j,1)=0 otherwise. Using the assumption of an
exponential detection function, the probability of target nondetection in cell j during
time t is found by:

exp{ =B, X(i,t)} = exp{= B, ¥ x(ijt=1)} (eqn 2.2)
i€ C]

Here Bi gives the search effectiveness within cell j where Bi 2 0. Finally when
considering all possible target paths, the probability of target nondetection, Q, after T
periods of search is given by:

T
Q= Zm Py €Xp{ —Zt= 1 B(,)(t) X(a(t),1)} (eqn 2.3)

13
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Figurc 2.1 Network and Associated Flows,
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A possible modificatior. to this is to allow the search effectiveness parameter to
be associated with the arc instead of the node. We introduce the parameter @
representing the search effectiveness of & flow of effort from cell i to cell j. Initially a,
is assumed to be constant throughout the problern, however the procedure could easily
incorporate changes in a;, over time (for instance the parameter could become ). By
introducing the above modification and accounting for search in time period 1, the

probability Q may be rewritten as:

T :
Q=X proep(=X@DD= T _ & gqxen))  (aqn24)
1€ C(.!)(t)

This is the objective function that a searcher wishes to minimize subject to the
constraints of flow balance at each node. Note that there is no search effectiveness
parameter included with the search effort for period 1. This is because in time period 1
Bi is assumed to be equal to 1 for all j. The optimization problem is shown below:

Minimize:

T
Q=X poep(~X@DD= T _ 0 qq GomeD) (e 24)

i€ C(l)(t)
subject to :
X1 = Y x(i,j,1) = 0 iefl,.. ., N}
] € Cl
¥ x(@it=1D =Y xGkt =0 jefll, .., N)
ieCj keCj te{2,..,.T—1}

x(1,j,t) € {0,1}

The objective function as written may not be useful for computational purposes
because it requires prior knowledge of p, ir addition to the complete enumeration of
all possible target paths. For these reasons a computational formula is used within the
algorithm which exploits ths Markovian nature of the target’s motion. Derivation of

15




this formula is shown in Appendix A. It is however useful to present the objective
function as shown above because close examination reveals it to be the convex sum of
convex terms, or hence, a convex function {Ref. 3: p. 131]. Thur it can be seen that the
problem is a nonlinear optimization of a convex objective function. Furthermore, the
constraints are linear and highly structured. Specifically, thev represent an acyclic

network flow problem.

e
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IiIl. THE INFINITELY DIVISIBLE PROBLEM

A. DESCRIPTION OF THE ALGORITHM

Ideally , we would like to solve the search problem for the indivisibility of search
effort. In other words, a solution is sought for which x(i,j,t) (and hence X(j,t)) are
either 0 or 1. However for this case, the feasible region is a set of discrete points in N-
space, and the problem is very difficult to solve. If, as Brown suggests the search effort
is allowed to fractionate infinitely, the constraints describe a convex feasible region.
Then a solution to the infinitely divisible problem may be calculated iteratively by
following Stewart’s suggestion [Ref. 3: p. 131], of linearizing the objective function and
solving the resulting linear program (LP). What makes this procedure feasible is that
the LP is an acyclic shortest path problem which can be solved easily and efficiently
without the use of a general LP solver.

The method of solution used here for the nonlinear program was first introduced
by Frank and Wolfe in 1956 [Ref. §] and is described below. Given an initial set of
feasible flows, the objective function is evaluated. Let this solution point be known as
X|. Next, the objective function is linearized by caiculating all possible partial
derivatives and then substituting these as edge costs within the network. If Q
represents the value of the original objective function and ‘Qrepresents the linearized
objective function then, the linear subprogram becomes one of minimizing:

AX) = QX)) + QX)) (X-X)) (eqn 3.1)

subject to the network constraints as before (Note: VQ(X,) is the gradient of Q
evaluated at the point X,). Because each of the search flow arcs connects time period t
with time period t+ 1, the network can not cycle. Also, since increasing the flow along
any arc cannot increase the objective function, all edge cost are nonpositive. So the

linear subproblem which solves for@becomes an acyclic shortest path problem with
nonpositive costs. Graphically this is shown in Figure 3.1. At the point X, the
gradient is found and the objective function linearized. In finding the shortest path, the
algorithm decreases the value of the linearized objective function until point X, at the
edge of the feasible region is reached. It is important to note that X, is always an

17
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exiremwe point on the feasible region, and that the linearized objective function always
underestimates the value of the rc -1 objective function. This occurs because a first
order Taylor approximation underestimates a convex function. Later this
consideration becomes important when a lower bound to the integer solution is sought.

DIRECTICN CF DECRCASING
OBJECTIVE FUNCTION

~

~e NEGATIVES .
~~e_ GRADIENT

\‘\(
S

FEASIBLE REGION

Figure 3.1 Graphical Representation of the Frank-Wolfe Lincarization.

The next step is to conduct a line search from X, to X, for the point that
minimizes the original objective function Q. After updating X, with the flows defined
by the minimizing point from the line search, the procedure repeats itself until some
stopping criteria is met. This iterative technique for solving the infinitely divisibic
problem is essentially the same as proposed by Stewart with the exception that there
are no upper bounds placed on flow efforts x(i,j,t). The importance of this relaxation is
that it maintains the lincar subproblem as an acyvclic shortest path problem, which is
perhaps the easiest of all nontrivial LP’s to solve.

13
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B. IMPLEMENTATION OF THE DIVISIBLE SEARCH EFFORT PROCEDURE

The divisible search effort algorithm was coded in Fortran and run on the Naval
Postgraduate School's IBM 3033 mainirame computer. The progran: was written in
general fashion such that minimal changes are required to run problems of various
sizes. Because the infinitely divisible program is a subprogram of the branch-and-
bound solution, much time and effort was spent to develop an efficient algorithm. For
this ~eason the program makes extensive use of subroutines and special data structures
such as adjacency lists [Ref. 6: pp. 200-1] in hopes of obtaining efficiency with minimal
storage requirements. Specific details of the program are provided along with a
program listing in the Appendix B. This section will serve merely as a synopsis of the
salient features of each implementation.

An initial feasible solution is input to give a starting point for the algorithm.
This point, X, consists of a set of flows associated with the searcher remaining in his
starting cell for the entire T time periods. Given this set of flows, the probability of
nondetection, labelled PND,, is calculated via the computational formula listed in
Appendix A. Additionally the probability of nondetection can be divided into "reach”
and “survive” probabilities (also presented in Appendix A) which are used to calculate
the partial derivatives at X;. Once these partial derivatives are found and the objective
function linearized, a simple dynamic programming technique is used to find the
shortest path through the network to yield the extreme point X, that minimizes the
linear objective function. A quadratic line search is then used to find the minimum
probability of nondetection along the line from the start point X, to the extreme point
X,. This new point becomes X, for the next iteration and the whole procedure repeats
itself until the stopping criteria is met. This procedure is illustrated in the flowchart of
Figure 3.2.

Frank and Wolfe showed that a lower bound on the optimai objective function
value can be obtained at eact iteration. This is important since true lower bounds are
required fcr use in the branch-and-bound procedure. From Figure 3.3 we see that:

PND(X*) 2 PNXD(X,) + VPND(X,) (X* - X)) (equ 3.2)
By the convexity of PND(X). And furthermore:

PND(X*) 2 PND(X,) + VPND(X)) (X, = X)) (eqn 3.3)

19
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Figurc 3.2 Flowchart for Infinitely Divisible Search Effort Problem.
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since X, min‘mizes the linear subproblem objective VP.\'D(Xl) X subject to the
required network constraints. So

DELTA = = UPND(X)) (X, = X)) (eqn 3.4)
shewn in Figure 3.3 is an upper bound vn how much improvement is possiole if the

nonlinear procedurc is continued. The procedure was stopped when DELTA became

suiltciently small.

PNDY e e |

PND? e ———

~ OBJECTVE
FUNCT2

P D --_————_——-—————_—-\‘—:—-}-\—-——-‘

DELTA

TANGINT UNE 7

e o e o s e
’
’

e e e e e e R e e e e L e ——

FLCW

————p

<
a—
>
*
=<
N

Figurc 3.3 The Lower Bound Shown Graphicall:.

The resulting program was run successfully on several example problems of

various sizes inc'uding a 13 x 15 cell grid with 25 time periods. Specifics of this problem
will be discussed 10 Chapter V. All cases that were considered involved situations in i
which the target's mass was ratially locaicd at a point and then allowed to spread
uniformlv in ali directions. This type of search is commeonly referred to as a datum

scarch with the target’'s starting point known as "datum”.
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Throughout the testing and evaluation of this program several key it:ms were
observed:

¢ The Frank-Wolfe method resuited in fast initial convergence as evidenced by a
large drop on the probability of nondetection after just one iteration. When
close to the optimal solution, convergense was much slower.

* For each Frank-Wolle iteration, the start point probabilities (PND,) and the
iower bound probabilities at the extreme point (PLOW) foilowed a definite
pat.ern as shown in Figure 3.4. This observation becomes important later when
considering early termination of the lower bound calculation in the branch-and-
bound algcrithm.

® As optimality was approached the minimum value of the objective function
obtained from the quadratic line search between X, and X, moved closer to X,.
This seems somewhat intuitive when considering that the algorithm is
continuously stepping towards the optimal point.

e The algorithm was relatively quick; an important consideration for the branch-
and-bound problem, and suggested that larger problems could be solved for the
case of divisible search effort.

¢  For the datum searches it was interesting to note that as the problem started
the search effort did not fractionate but instead moved off directly towards the
target's datum. As the problem proceeded, the search effort began to divide and
disperse once the searcher was located on top of the target.

C. SUMMARY

The divisible search effort probiem was found to be solvable by the Frank-Wolfe
method which consists of the following steps: linearizing the objective function;
solving the network shortest path problem to find an extreme point; and then
conducting a line search from start point to extreme point. Each time an extreme point
is discovered, a lower bound to the solution is available through use of a Taylor first
order approximaticn. The divisible search algorithm was found to run quickly for
relatively large problems (run times for various problems will be given later). This was
extremely promising, for if a legitimate real world scenario can be modelled using this
method, practical implementation of this program may prove to be fruitful. Although
specific applications are not covered in this study, several possible scenarios are
presented in Chapter V1.
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IV. THE INTEGER PROGRAMMING PROBLEM
. A. DESCRIPTION OF THE ALGORITHM

» As previously discussed, it is the integer problem for which a solution is desired.
] Yet this problem is difficult to solve and grows in complexity very quickly as the
) number of cells and time periods increase. If we were to consider the set of all possible
seargh paths these might be displayed as a tree like the one shown in Figure 4.1 for a
nine cell problem. For a searcher starting in cell 1, for time period 2 he may proceed to

i any cell in C, ={1, 2, 4}. Rather than enumecratiag all possible paths through C,, we

would like to consider each path individually as a trial path and then systcinaticaily

/ Jiscard or "prune” trial paths that arc unacceptable. This may be accomplished by a
é branch-and-bound algorithm like the one described by Stewart [Ref. 3: pp. 133 ).

)

g SEARCHER J 10
d ) 2 tee
i ; &) veo
§ 1 2 3 /M cesn
] 4 5 6 " g @ [ 20 3 Y
i 7 8 3 & tee
f Q ea e
TARGET A -
& Q) et e
¥) “te

Figure 4.1 Tree Representing Possible Search Paths for a Nine Cell Problem.

A branch-and-bound algorithm compares a lower bound for a given trial path

e 1%

with the current best (ie., smallest) probability of nondetection, called PBEST.




(Initially PBEST is obtained from a user provided feasible solution.) If the lower bound
is greater than PBEST, the trial solution is "fathomed™. This occurs because the best
solution attainable with the proposed trial path is alwavs worse than the current
solution. On the other hand, if the computed lower bound is less than PBEST, the
trial path can not be {athomed, for there mav exist a subset of that trial path that will
vield a probahility of nondetection smaller than the current best. In this case ths trial
path must be further specified by stepping deeper into the tree, computing a new lower
bound, and then continuing the same procedure as discussed above.

These points are best illustrated with an example. Consider the nine cell preblem
discussed above. Let the first trial path be specified as {1, 2}. This represents a the set
of all poisible integer paths starting in cell 1 in time period 1 and proceeding to cell 2
in time period 2 (shown by the middle branch of the tree in Figure 4.1}. The lower
bound PLOW for this trial path is calculated and compared with the current PBEST.
For PLOW greater than PBEST, there exist no paths of the sequence {1, 2, ...} that
will vield a solution better than PBEST. Therefore the trial path would be fathomed. If
PLOW is found to be less than PBEST there miy exist a path of the form (1, 2, ...}
with a probability of nondetection less than the current PBEST. We cannot fatl.om this
path but instead must step deeper into the tree to examine the sat of all trial paths
specified by the set {1, 2, j € C,, . . .}. For each of these paths, lower bounds will be
calculated and compared to PBEST, resulting in fathoming or further branching.
Whenever branching results in the complete specification of an integer solution, the
probability of nondetection is calculated, compared with PBEST, and the current
sclution updated as necessary. After all trial paths of the form {1, 2, je C,, . . .} are
“considered” (ie., fathomed or completely enumerated), the algorithm steps “out” to
consider other trial paths of the form {1, j € C,, . . .}. When all possible paths through
C, are considered the algorithm is finished. With this in mind the only remaining
complication is the calculation of the lower bound for various trial solutions.

Suppose for a T-period problem a trial path is specified for first t time periods.
This leaves T—t time periods of search over which the probability of target
nondetection may be minimized. Slightly modifying Stewart’s notation [Ref. 3: p.134],
this probability may be written as the product of two terms:

Prob {nondetection by time t}
and
Prob {nondetection in periods t to T | nondetection by time t}
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Given the integer solution thru time t, the Prob{nondetection by time t} is a constant.
Therefore in order to minimize the overall probability of nondetection, the second term
must be minimized. Or in the case of the branch-and-bound problem, a lower bound
may be obtained from this term. By allowing the search effort to fractionate from time
t+-1 until time T, the problem becomes an infinitely Jivisible problem of T—t time
periods. As previously discussed, a lower bound may be obtained via the first order
Taylor approximation that results from the Frank-Wolfe method. Hence a lower bound
on the integer trial path is available.

i

Summarizing the branch-and-bound steps as discussed above: A trial path is
generated which specifies an integer solution for the first t time periods. Based on this
trial path we must update the target's probability distribution, accounting for those
first t periods of search and target transitions. Next a subroutine is called where the
search effort is allowed to fractionate for the remaining T =t periods in order to find a
lower bound, PLOW, for the trial path. Comparing this PLOW to the current PBEST,
the trial path is either fathomed or further branching is undertaken. This continues
until all possible trial paths are fathomed or completely enumerated. A flowchart
showing the basic integer algorithm is shown in Figure 4.2.

B. IMPLEMENTATION OF THE INTEGER PROGRAMMING PROCEDURE

Once the divisible search effort problem was available, the branch-and-bound
procedure ~ould be unplemented fairly easily. Like the previous program, this
procedure makes extensive use of subroutines and adjacency lists. A set of nested “do
loops” is used to control the generation of trial solutions and associated branching. For
each trial path, a modified divisible search effort program is called to find the lower
bound. As previously stated, for every call to the subroutine the time horizon and the
target probability distribution must be updated. In addition, an initial set of feasible
flows must be generated to span the reduced time horizon within the subprogram. This
initial solution is achieved 2s before by letting the searcher remain in the same cell for
all T—t time periods. The subprogram returns a value of PLOW which is used to
determine whether fathoming or further branching is appropriate. This procedure
continues until all possible paths are “considered”.

Initially the branch-and-bound algorithm as described above was tested on a
small 4 cell, 3 time period problem where all calculations were verified by hand. The
next implementation was a 9 cell problem with 10 time periods like the one used by
Eagle [Ref. 2: pp.1113-4] in which the searcher starts in cell 1 and the target begins in
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cell 9. In this problem the Markov transition probabilities are given as follows: the
target remains in the cell he currently occupies with probability .4, while the remaining
probability is divided equally among all adjacent cells. For this case adjacent cells are
those that share a common side, thus diagonal movements by searcher and target are
not allowed. Eagle was able to compute optimal search paths for this problem using a
dynamic programming technique, yet at the cost of 19 minutes of computer processing
time.

The first attempt at this problem using the branch-and-bound technique was
conducted with a starting solution of cell 1 for all 10 time periods. Additionally, for
each call the subprogram was allowed to run until the lower bound was known to
within a user defined interval. This approach took far too much computer time. In
fact, an optimal solution was not obtained after 15 minutes of run time. Several
improvements were necessary in order to cut down this time requirement to a
reasonable one. These are listed below:

e Using Eagle’s optimal paths, branching discipline was improved such that trial
paths closest to the optimal path were considered first. In this way better lower
bounds were achieved quicker resulting in more efficient fathoming and
therefore fewer trial paths to consider. Although this required knowledge of the
actual optimal paths, improvements are still available by implementing at least
some sort of branching discipline possibly arrived at through a best guess of the
optimal path.

e Starting solutions were improved by using a best guess of the optimal path.
With a near-optimal starting solution, a better PBEST is available. This also
resules in better fathoming of nonoptimal trial paths.

¢ The subprogram was stopped before finding the lower bound within a small
window. This was accomplished via two important changes with the result that
overall less time was spent in searching for lower bounds. Recall the trend of
converging probabilities in the subprogram as illustrated in Figure 3.4. This
same example is shown again in Figure 4.3 with a few additions. Notice how
bounds on the probability of nondetection associated with a given trial path
converge until the difference is less than a user defined value, €& Rather than
allowing this to occur, the subroutine may be stopped as soon as PLOW is
greater then the current PBEST, or as soon as PNDl is less than PBEST. First,
suppose the current PBEST is given by PBEST, in Figure 4.3. As soon as
PLOW exceeds PBEST we know that for the trial path of consideration, ihe
best possible solution will always be worse than the current solution. Therefore
the trial path can be immediately fathomed. Suppose on the other hand that the
current PBEST is given by PBEST,. It can be seen that as soon as PND, is
less than PBEST, that this path cannot be fathomed (PLOW for this path will
never exceed PBEST,). For either case, continued iteration towards a better
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lower bound is unnecessary. The computations may be halted and branching or
fathoming should occur. These last two improvements were significant in
reducing the number of Frank-Wolfe iterations and hence the time requirements
for the integer algorithm.

-~ PBEST2

— ’ EFSILCN

PRCCAE!ILITY CF NONDETECTION

o 1 ] | ! ! L L ! A !
0 2 4 6 8 10

NUMBER CF FRANK-WOLFE ITERATIONS

Figure 4.3 Stopping the Lower Bound Calculation Early.

Outside of these improvements a few others were made to try and cut off more
time. Recall that each time the objective functicn is linearized and the shortest path

found, the resulting extreme point specifies an integer solution. If the probability of

target nondetection associated with this point is better (ie., smaller) than the current
PBIST, this solution can be storcd and PBEST updated. This provides some reduction
in the time requircd to get a near-optimal solution, resulting in a lower PBEST and
therefore more efficient fathoming. Additionally, this improvement may be used to help
generate initial feasible solutions. At rhe begining of the algorithm the subprogram

may be called with an uncorrected time horizon and aliowed to run several frank-




Wolfe itcrations. For each iteration the extreme point solution is checked and the best
one recorded. In this fashion a good starting solution is easily obtained. Even though
this procedure adds some extra time to the algorithm, this time is well spent, especially
for problems where a ncar-optimal starting path is not easy to estimate.

C. SUMDMIARY

After implementation of the improvements and modifications the program was
allowed to run on the nine cell problem with the searcher starting in cell 1 and the
target starting in cell 9. Multiple optimal search paths with probabilities of

nond:tection equal to .4219 were found after 112 seconds of computer run time. These
paths are listed in Figure 4.4.
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—bt QIO W
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(&)
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O
@
wn
o
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w

Figure 4.4 Optimal Integer Paths for a Nine Cell Problem of Ten Time Periods.

These answers are somcwhat different from those found by Eagle's dyvnamic |
programming approacn because of basic differences between the structures of the two
models. Eagle’s dynamic programming model allowed for a target transition before the
first search took place; the branch-and-bound algorithm accounted for the first scarch
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and then allowed a target transition. This resulted in an extra period of search for the
dynamic programming method causing slightly different search paths to be found by
the two procedures. Also, the dynamic programing approach did not use an
exponential detection function within each cell but instead set the probability of
detection equal to one if the target and searcher occupied the same cell simultaneously.
Hence, the probabilities obtained by the dynamic programming solution are lower than
those presented by this paper. Despite these differences the key item of significance is
the great reduction in computer run time for the branch and bound algorithm as
opposed to the dynamic programming technique. For this problem it was an order of
magnitude decrease. It is also interesting to note that for this seemingly small problem
there are some 400,000 possible searcher paths, of which only 3,940 were actually
considered as trial paths by the branch-and-bound algorithm.
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V. APPLICATIONS

A.  INTRODUCTION

Following successful implementation of the two algorithms, several applications
were run on problems of various sizes. Some of these cases are listed in Table 1 along
with amplifying data regarding computer run times and for integer solutions, the
number of trial paths considered. To provide an example of the size and scope of
solvable problems, two instances from Table 1 will be discussed in detail. For the
divisible search effort case, a 15 by 15 problem with 25 search periods is examined, ‘
while a smaller 7 by 7 grid with 10 search periods is used to present the integer
application. Note that all problems discussed here are applications involving datum
searches of similar geometry and that all search effectiveness parameters (uij_) were set
equal to 1 for simplicity. This is important when considering the test results as shown
below, for the use of other geometries and encounters will undoubtablely result in
significantly different run times. This will be discussed in more detail in the last section
of this chapter.

B. A DIVISIBLE SEARCH EFFORT APPLICATION

As stated above, a datum search on a 1§ by 15 grid of cells with 25 time periods
was solved with the divisible search effort algorithm. This problem involves 44,376 arcs
and several hundred thousand possible searcher paths. Despite this, the algorithm ran
very efficiently and gave no indication of being anywhere near the upper limit on
solvable problem size.

Again this application like all others presented so far, involved a datum search.
But this time, instead of the target starting in a corner cell, he was initially placed at
the very center of the grid while the searcher started in cell 1 in the upper left hand
corner. For the target, the Markov transition matrix was chosen to allow him to

disperse uniformly in all directions. Within any given cell he stayed with a probability
of .4, with the remaining probability being distributed evenly among cells sharing a
common side. Diagonal movements by the searcher were allowed. The solutions are
illustrated best by Figures 5.1 through 5.8. Notice as the problem starts the searcher-
keeps all of his resources together as a single unit and begins to march off towards the
target’s starting cell. Later in time period 6, the searcher is two diagonal squares away
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from datum. For the next period the optimal allocation of his search effort is for him
to divide his resources. By time period 8, he is on top of datum with his search eflort
divided among three cells; but this time the division is more evenly distributed with the
largest portion centered over datum. In the next period, the searcher fractionates his
efforts even more, but curiously there is a smaller portion in the center cell and a
greater concentration in the surrounding cells. It almost looks as though the searcher
is trying to catch up to the ever-expanding probability mass of the target. The one
exception to this is the set of cells along the searcher’s previous track; probably
because of the lack of undetected target mass in these cells. For the next block of time
periods, the searcher’s efforts become dispersed somewhat symmetrically as shown for
period 16 in Figure 5.7, but this time the largest fraction of effort remains centered on
datum. This is not totally surprising when considering that this cell will always contain
the biggest part of undetected mass because of the target’s starting position and the
Markov transition matrix as defined. We might picture the searcher perched atop the
target’s mass distribution, slowly carving away at the small peak at the center of the
grid. Also note that in time period 16 the distribution of search effort is not wholly
symmetrical; the cells in the upper left section contain much smaller amounts. Again
this is because as the searcher initially came onto datum he thoroughly sanitized his
track leaving verv little target mass in these cells. Now, as time proceeds the target's
undetacted mass will slowly filter back over the track. Yet this amount of mass is so
small relative to other cells that the optimal allocation of search effort does not include
much coverage of this area. The allocations of effort change more slowly as the
problem continues. As before, search effort within the area of coverage remains
concentrated in the center and more sparsely distributed near the edges. However of
interest is the fact that the total area of coverage does not change from time period 16
to time period 25. The searcher has essentially moved to the center of datum, dispersed
his effort and remained in the same spot for the duration of the problem. In doing so

he achieved an overall probability of nondetection equal to .6142 which may seem
surprisingly high. But recall that the target was afforded eight time periods of “escape”
before the searcher reached datum.
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Figure 5.1 Allocation of Scarch Effort for Time Period 1 on a 15 by 15 Gr
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Figure 5.3 Allocation of Search Effort for Time Period 6 on a 15 by 15 Grid.
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C. THE INTEGER APPLICATION

A smaller problem is used to demonstrate the integer application. For this case a
datum search of a 7 by 7 grid for 10 time periods is discussed. The target, initially in
the lower right hand corner of the grid, transitions with the exact same probabilities as
presented in the divisible search effort problem of Section B. A searcher starting in celi
1 is once again permitted to move diagonally within the grid. Figure 5.9 shows part of
the solution output.

As the procedure begins, a user-input feasible path is used to calculate the initial
probability of nondetection as shown in the first line of Figure 5.9. This starting
solution is improved upon by allowing several Frank-Wolfe iterations to occur in the
divisible search effort subprogram. For each extreme point solution generated the
probability of nondetection is calculated and the best one recorded. This best solution
becomes the updated PBEST shown in line 2.

With this new starting solution the branch-and bound procedure begins. The
first trial path is {1, 1}. After five Frank-Wolfe iterations (listed under the column
heading "FW” in Figure 5.9), the path is fathomed because the calculaied lower bound
PLOW was greater than PBEST. Fathoming of this path is significant because literally
thousands of trial paths of the {orm {1, 1, C,, . . .} are immediately pruned from the
tree. Next the path {1, 2} is considered. In this case 4 Frank-Wolfe iterations occurred
until the start point probability PND, was found to be less than PBEST. Based on this
we known that the lower bound for trial path {1, 2} will never be gre. ter than PBEST
and therefore the path will never be fathomed. Further iterations are unnecessary and
branching must occur. Now each path of the form {1, 2, C,} is considered. For the first
five cases fathoming occurs until trial path {1, 2, 10} where P*\’Dl is greater than
PBEST. We may not fathom, but must branch again. The program continues
fathoming and branching until all possible trial paths are considered. This resulted in
the generation of 945 trial paths before the procedure was completed ending with the
discovery of two optimal integer paths shown in Figure 5.10. The probability of
nondetection for both paths was .6444. Note that the two paths are symmetrical to
each other and that, like the divisible search effort application, the optimal path has
the searcher initially speeding off towards datum and then conducting a search about
that area. Again for this case, the probability of nondetection seems somewhat high,
but recall that the target has been given ample opportunity to disperse.
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Figure 5.9 Trial Paths for a 7 by 7 Grid Problem With 10 Scarch Periods.
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Figure 5.10 Optimal Integer Solutions for the 7 by 7 Grid With 10 Scarch Periods.

D. LARGER INTEGER APPLICATIONS

Using the same 7 by 7 grid as discussed in the previous section, the problem was
run for successively longer intervals of search in order to get an idca of how rapidly
computer run time increascd with problem size. For cach of these cases the target
started in ccll 49 and the searcher started in cell 1. A summary of run times and
optimal scarch paths is shown in Table 2. Note that the optimal paths for cach
problem are essentially the same with the searcher going directly towards datum and
then spreading out to cover the target’s undetected probability mass. We can almost
detect something that rescrubles a systematic search, especially for the 12 time period
solution. Here it looks like the searcher is begining to expand his area of coverage by
moving outwards from datum. Unfortunately, the 13 time period problem was not
solvable within 1 hour of run time on the IBM 3033 mainframe, thercfore we are
unable to sce what happens with more search periods. Thus we are unable to comment
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on the validity of systematic search. Run times as a function of problem size for this
49 cell grid are illustrated on the graph in Figure 5.11. We can see how rapidly the run
time increases as the number of search periods increases from 11 to 12. This probably
results more from the increase in the number of possible searcher paths than from the
increase in the number of arcs in the network.

E. SUMMARY

The overiding consideration in all of these applications is how much larger can
we go? While the divisible search effort algorithm seems to be efficient and capable of
handling very largs problem sizes, the run times for the integer solution appear to grow
rapidly as problem size increases. With this in mind, a better question might be how
large do we need to go? Here the major consideration is the purpose for which the
problem is being solved. If we are interested only in learning about optimal approaches
to various search problems we may be willing to tolerate the long run times associated
with larger integer problems. Yet for employment of the procedure in real world
situations long run times are unacceptable. This may dictate the use of other
techniques for solving the integer problem. One possible method is to model the
problem using an infinite time horizon with discounting, where early detections are
more heavily weighted than later detections. With this model, iarger integer problems
might be solvable, however the choice of appropriate discount factors will be difficult.
Still, this technique is worthy of consideration.

Another consideration is the rype of search problem to be solved. Thus far the
integer solutions we have looked at constitute only a specific type of datum search in
which the target starts at one corner of the grid and the searcher at the opposite
corner. What happens if instead the target begins the problem in the center of the grid?
This very problem was run using the branch-and bound procedure for 5 by 5 and 7 by
7 grids with 10 time neriods of search. In each case, the algorithm did not achieve an
optimal solution after one hour of computer run time. This was surprising especially
after the “fast” run times associated with the previous 5 by 5 and 7 by 7 datum
searches. A possible explanation for this is that for some problems the relaxation on
divisiblity of search effort within the subprogram results in weak lower bounds. Recall
the 3 by 3 case with 10 time periods of search as discussed in Chapter IV. For this
problem some 3940 trial paths were generated. Yet for the 7 by 7 application of
Section 3 above only 945 trial paths were considered despite tie fact that the later case
is significantly larger. Close inspection of the divisible search effort solutions to both
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Figure .11 Graph Displaving Run Times for Integer Probleins.

problems show that for the 7 by 7 case the search effort does not fractionate until time
period 6, resulting in a near-integer solution. Conversely in the 3 by 3 casc the search
cffort is divided immediately. It appears that the divisible search effort subroutine is
better in calculating lower bounds for the 7 by 7 case than the 3 by 3 casc. This

considcration may prove very important when attempting to solve other search
problems of various geometries.
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VI. CONCLUSIONS

A. SUMMARY OF HIGHLIGHTS

. We have seen successful implementation of the branch-and-bound procedure as
proposed by Professors Eagle and Yee. After many applications of this technique and
the divisible search effort subprogram to various datum searches, there are several key
iterns of significance worth noting:

¢  The divisible scarch procedure ran quickly and efficiently on all scenarios tested.
Additionally, the relatively short run time required to solve the 15 by 15 cell
case in Chapter V, suggested that much larger problems could be solved with
this algorithm.

¢ The computer run times required to find integer solutions grew rapidly with
problem size. It appeared that simply increasing the number of time periods for
the problem had a more significant effect on run time than increasing the size of
the grid. This observation is substantiated by noting the an increase of
approximately 1 minute in going from a 5 by 3 grid to a 7 by 7 grid both with
10 search periods (see Table 1). Comparatively an increase of almost 3 minutes
was observed in going from a 10 time period 7 by 7 case to the same problem
with 11 time periods. This condition may prevent the branch-and-bound
procedure from being implemented in large grid problems, for there is a
desireable relationship between grid size and solvable time horizon. ./ith a
larger problems more search periods are required in order to allow the searcher
adequate time to span the grid. Therefore, if time horizons are most limiting,
only smaller grids may be considered.

e Lower bounds calculated in the subprogram are much stronger when the
divisible search effort solution closely parallels the integer solution. This means
that fewer trial paths are considered when the lower bound is strong resulting in
faster run times. This result may prove limiting in the types of geometries that
may be solved by the branch-and bound procedure, however more testing is
required to substantiate this conclusion.

¢ Although we would like to comment on the validity of systematic search there
are not enough test cases to do so. However, taere does seem to be some kind ‘
of systematic approach to the datum searches that were considered. Each has :
the searcher speeding off tcwards datum and then hopping back and forth
across cells adjacent to the datum cell. In one case we did actually observe
what appeared to be a searcher expanding his area of coverage, but not enough
time periods were covered in order to make a valid conclusion.
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B. PROPOSED REAL WORLD APPLICATIONS

Of the two cases considered the divisible search effort algorithm seems to be the
most promising as far as real world application. Of course modifications to the
procedure would be necessary, but some possible applications include:

s Sonobouy placement by aircraft: In this case each sonobouy may be considered
as a separate searcher. For each time period the aircraft has a finite number of
resources that he must distribute over the area of uncertainty. Because of his
speed advantage over a submarine target, he may move almost
"instantaneously” in order to spread this effort.

*  Mine placement: Here again mines could be considered as “searchers”.

o Large search parties: This might te a group of men patrolling a large area as
suggested by Stewart [Ref. 3: p.129], or perhaps a collectivn of a aircraft
sweeping over an area for a downed pilot.

¢ A single aircraft: Although this case involves a single searcher, the aircraft’'s
speed advantage allow's him to cover more than one cell in a given time period.

As far as integer applications, if faster run times are available, this procedure
could be used for any case involving a single unit as the searcher. Of course for some
applications the problam sizes as discussed within this report may be adequate. Even if
it is not possible to achieve lower run times, a hybrid combination of both the divisible
and integer algorithms might be feasible. Consider a user selecting various “best guess”
integer solutions for evaluation on a console that returns the value of the probability of
nondetection for each “best guess™. Ths divisible search algorithm might be called to
show the optimal allocation of search effort for each time period. Seeing this, the user
may generate or even modify his "best guess” path before submitting it for evaluation.
In the background of all this is the integer solution slowly churning away, eventually to
be printed out on the console. Also as Stewart noted [Ref. 3: p.135], the first full
solution generated by the branch-and-bound procedure when at the bottom of the tree
(t=T), is very close to optimality and might be suitable as a heuristic solution.

C. UNANSWERED QUESTIONS

This paper has merely scratched the surface of the complete investigation for the
integer and divisible search procedures of Professors Sagle and Yee, for there are still
many areas of interest with regard to application and implementation.

From the implementation aspect there are undoubtablely several areas for
improvement, especially concerning the line search. What is the best line search
technique for this application and how much accuracy in the line search is required in
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order t¢ find good lower bounds for use in the branch-and-bound procedure? Quite
possibly the Goldstein-Armijo conditions [Ref. 7: Chap.2] could be implemented to find
an acceptable stopping point for the line search. These questions have not been
thoroughly investigated. Also, there is the question of when to terminate the search for
the lower bound and again how much accuracy is enough? Additionally the branching
discipline for the integer program in this report is determined by the order in which the
cells are listed in the input file. Some better method is necessary to implement good
branching rules that may help reduce the overall run times. And finally for all
applications presented, the search efiectiveness parameter a; has essentially been
ignored. Recall that it was set equal to | for simplicity; the effects of varving this
parameter are still unknown.

Aside from implementation there are various scenarios vet to be considered.
What of the cases involving the search of an area where the target is initially uniformly
distributed? Or how about the search for a transiting target? And what happens if the
target is at high speed versus low speed? The possible scenarios are endless. The big
question here is just ‘what types of problems can be solved with the branch-and-bound
procedure? We've already mentioned the effects of grid size and suitable time horizons.
Will we be able te solve a large enough problem to investigate these cases? But also
there is the concern of the strength of the lower bounds for certain geometries. All of
. these things are yet to be completely understood.

Still the most crucial question is what can we learn about optimal search paths?
Will we be able to use this branch-and-bound algorithm, or for that matter any
procedure that solves the integer problem, to help substantiate that systematic search is
the best method? Or instead could the algorithm be used to help develop heuristics for
the different classes of search problems? In order to answer these questions fully more
investigation is clearly warranted.
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APPENDIX A
DERIVATION OF COMPUTATIONAL FORMULAS

1. CALCULATING THE PROBABILITY OF NONDETECTION
Recall from Chapter II that given a set of flows the probability of nondetection
could be calculated from equation A.1 as follows:

T
Q= T Py exp(~X@DD-T _ o GomtD)  (anAld)
ie CO)(()

This formula is useful for demonstrating the convexity of the objective function
yet is not very practical for computational purposes because all possible target paths
must be completely enumerated. A better way to make this calculation is to exploit the
Markovian nature of the target’s motion. We can do this by using a matrix to keep
track of the target probability mass within each cell. Then by post-multiplying this
matrix by a “nondetection probability matrix” and a target transition matrix, the
target’s probability distribution may be updated iteratively for each time period. At the
end of T time periods, the overall probability of nondetection may be found by
summing the remaining mass among all cells. This iterative procedure is illustrated
below in more detail.

Consider a general N cell, . time period problem with the target starting in cell
N and the searcher initially in cell 1. The target’s probability distribution can be given
by the 1 x N matrix P where:

£= E) 0,...0,1] (eqn A.2)

(In general let P represent any I x N matrix showing the target’s mass distribution). In
time period 1 the searcher conducts a search. For each cell the probability of
nondetection given that the target is within the cell is found by exp{ — X(i,1)} where
X(i,1) is the amount of search effort in cell i during time period 1.

In order to calculate the target mass remaining after the search in time period 1,
each entry in P must be multiplied by its associated probability of nondetection as

52




given in above. To retain the proper shape of the resulting matrix, these probabilities
are placed along the diagonal of an N x N matrix and then pre-multiplied by P as
shown below:

exp{ = X(1,1)} 0

) S [ﬂ, 0,...0, l] . (an A.3)
0 exp{ = X(N,1)!

The result is a 1 x N\ matrix showing the target mass remaining in each cell following
the search in time period 1. This mass must now (ransition into time period 2 by post-
multiplying P by the N x N Markov transition matrix I'. As before, the resultis a 1 x
N matrix of the target's mass distribution within each cell, but this time at the start of
time period 2. To account for the next search, the procedure is repeated except now the
probabilities of nondetection are computed using the flows as shown in equation A.4
below.

exp{ =Y @, x(i,j,1)} (eqn A4)
1€ Cj

As in time period 1 these probabilities can be arranged along the diagonal of an
N X N matrix and then used to update P as [ollows:

exp{ = X(1,1)} 0

p=[00,...,01] . r
0 exp{ = X(N,1)}

- 1
exp{ =Y @, x(i,1,1)} 0
ie o

. (eqn A.S)
0 exp{ = X, a X(LN,1)}
1€ CN
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These same procedures are repeated for all T time periods to yield the final P

matrix:
exp{ — X(1,1)} 0
£=[010’°"10’l] ) L] r
' 0 exp{ = X(N,1)}
[exp{ =% @, x(i,1,1)} 0]
ie C, .
. r
0 exp{ — Y, o, X(i,N,1)}
ie CN -
- . -
exp{ =, @ x(i,1,T=1)} 0
ie C, .
¢ . (eqn A.6)
5 exp{—), @ X@LN,T=1)}
) ie CN =

Once this matrix is found, the overall probability of nondetection is calculated by
summing all remaining target mass.
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2. CALCULATING PARTIAL DERIVATIVES
Consider a single variable in the previous problem, x(?,/j\,/t\ ). We would like to

calculate the partial derivative of P with respect to this variable. Rewriting the P
. . ABA
matrix from Section 1 to show the x('1, 5 t') term we have:

expi{' - X(1,1)} 0
p=[0,0,...,0,1] [ r

0 . exp{ = X(N,1)}

[exp( =T @, x(,1,1)) 0
ie C, ’

L] . r

0 exp{ =) &\ x(i,N,1)} |
i€ CN

.

rexp{—z g, x(i,1,7) 0
ie C, .

exp{-a/i\/j\x(? ’]\

y ’

0 exp{ = ¥ @ x(i,N, 1)}
i€ CN

- ) 1 '
exp{~Y @, x(i,1,T=1)} 0

1eCl .

. (eqn A.7)

) 0 exp{ =Y a X ,NT= 1}
ie CN
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As suggested by Brown [Ref. 1: pp.1281-2}, this may be rewritten again as follows:

_
exp{ =Y o x(i,1,T)) 0]
ieC, . .
i_z[j,’t‘+ 1] - 5[j,'t‘+ 1] (eqn A.8)
0 exp{ =L o x(iN, D}y .
i€ CN

where R [j,’t\+ 1] is a 1 x N matrix that shall be referred to as the “reach” matrix, and
S [j,?+ 1] is an N x N matrix referred to as the "survival” matrix. The reason for these
names will become apparent shortly. Using this matrix notation makes calculation of
the partial derivatives fairly easy, for the B and § matrices contain no terms that
include the variable x(’i\,'j\, 't\) and therefore may be treated as constants. Finally the
partial derivative of P with respect to x(/i‘,/j\,'t\) is calculated:

oP

P ROET+D (exp( =X 0px@ D) (—agp) S(38+1)  (eqnA9)
o ieCa -
J

Now R( /]\, ™+ 1) is a real number giving the probability that the target reaches cell’j\in
time period T+1 and S(’j\, 4 1) is a real number representing the probability of target
survival to time T given that there was no detection in cell? for time T+ 1. Note that
because of the diagonal matrices involved, all other terms in R and S go to 0. With
this formula, partial derivatives are easily calculated for all flow variables. Additionally
it is important to note that B[j,t} may be calculated iteratively as shown:

- . -
exp{~Y o, x(i,jt— 1) 0
1eC,
g[ic+1] = & . I (eqnA.l0)
0 exp{ =) @~y x(i,N,t— 1)} -:‘
iN i
ie CN
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Simik_arly, survival matrices S [],t] may also be calculated iteratively as shown below:

Voo [exp{ =X ¢ x(ij.0) 0]
: \ ie Cl
- | §[j,t] =T o ﬁ[j,t-i- 1] (eqn A.11)
0 exp{ =Y, U X(i,N,0)}
- 1€ CN

The recursion begins with § [j,T] being a column vector of ones and B [j,l] being a row
vector of the target’s initial distribution over the cells.
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APPENDIX B
DIVISIBLE SEARCH EFFORT PROGRAM LISTING

I.  SOME DETAILS ON PROGRAMMING METHODS

As previously mentioned the divisible search algorithm was coded in Fortran and
run in an IBM 3033 mainframe computer. The p.rogram is written to accommodate
changes in problem size very easily. This is done by the use of "Parameter” statements
to control array sizes and stopping points for iterative computations. Extensive use of
subroutines allows for efficiency as well as ease of understanding. Input is from an data ]
file which is necessary in order to handle the large amount of imformation that must be
used within the algorithm such as transition probabilities, adjacent cell numbers, etc.
To help minimize the overall storage requirements of this data, adjacency lists and
entry point arrays are used extensively to represent the arcs and flows within the
network. These wiil not be discussed here but instead are adqeuately described by
Reference 6. A program listing is provided in Section 2, for which the parameters are
<¢t up for a 25 cell problem with 10 search periods.

2. PROGRAM LISTING

PROGRAM MAIN
Fedede e e o de ek ek Aok ok o sk ok sk gk ok ek ok e e e ke e e e e e e e e e e ke e e dedede e e e dek e e e ok e e ke de ek ek

PURPOEEOGRAMMER: FRANK CALDWELL DATE: SEP 87

THIS IS THE CONTROLLING PROGRAM FOR THE CONSTRAINED SEARCH
ALGORITHM WITH DIVISIBLE SEARCH EFFORT. IT SERVES MERELY TO CALL
MAJOR SUBROUTINES THAT IMPLEMENT THE PROCEDURE.

KEY VARIABLES:
A: A MATRIX OF SEARCH EFFECTIVENESS PAPAMETERS FOR EACH

ARC IN THE NETWORK. LISTED IN ADJACENCY LIST FORM.

ADD: A MATRIX SIMILAR TQ THE ADJACENCY LIST BUT INSTEAD OF GIVING
THE HEAD OF ARCS INCIDENT TO CELLS LISTED IN THE ENTRY POINT
TEIS MATRIX GIVES THE TAILS OF ALL ARCS THAT FLOW INTO THE
CELL LISTED IN EP.

ALJ: A MATRIX THAT GIVES THE HEADS OF ALL ARCS IN ADJACENCY LIST

FORMAT.
DELMIN: THE USER DEFINED INTERVAL OF ACCURACY REQUIRED FOR THE
LOWER BOUND. THIS ALSO SPECIFIES THE STOPPING CRITERIA
DELTA: THE CHANGE IN PROBABILITY OF NONDETECTION PREDICTED BY THE
FIRSYT ORDER TAYLOR APPROXIMATION IN GOING FROM SOLUTION
X1 TO SOLUTION X2.
EP: THE ENTRY POINT ARRAY FOR THE ADJACENCY LISTS.
EPLEN: A PARAMETER THAT IS USED TO SET THE DIMENSION OF THE EP ARRAY
FRAC: A MATRIX OF DIMENSIONS NCELLS BY TMAX IN WHICH ENTRY
FRAC(I,T) GIVES THE FRACTION OF CELL I SEARCHED IN TIME T.
GRAD: A MATRIX OF PARTIAL DERIVATIVES WITH RESPECT TO EACH ARC
IN THE NETWORK. GRAD%J T& IS THE PARTIAL DERIVATIVE OF THE
OBJECTIVE FUNCTION WITH RESPECT TO ARC J FROM THE ADJ. LIST.
*LENGTH: A PARAMETER USED TO SET DIMENSIONS OF ALL ADJACENY LISTS.
ANCELLS: A PARAMEVER SPECIFYING THE NUMBER OF CELLS IN THE SQUARE GRID
* NEXT: AN ARRAY USED TO KEEP TRACK OF THE SHORTEST PATH.

b b b 2 b b b b b 3 b R I O I R 3 R R
b b b 3 2 2 b b 3 P b b S b B B B b b b B b B g 2
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PND: THE PROBABILITY OF NONDETECTION
PND1l: THE PROBABILITY OF NONDETECTION FOR SEARCH FLOWS AS GIVEN
BY X1 (THE START POINT). *
PND2: THE PROBABILITY OF NONDETECTION FOR SEARCH FLOWS AS GIVEN
BY X2 (THE EXTREME POINT). *
PND3: THE PROBABILITY OF NONDETECTION FOR SEARCH FLOWS AS GIVEN
BY X1 (THE MIDPOINT IN THE QUADRATIC LINE SEARCH). *
PND4: THE PROBABILITY OF NONDETECTION FOR SEARCH FLOWS AS GIVEN
BY X4 (THE MINIMIZING POINT FROM THE LINE SEARCH).
R: THE MATRIX OF DIMENSION NCELLS BY TMAX OF REACH PROBS.
S: THE MATRIX OF DIMENSION NCELLS BY TMAX OF SURVIVE PROBS.
START: THE SEARCHER'S INITIAL FEASIBLE SOLUTION
T: AN INTEGER REPRESENTING PROBLEM TIME.
*TGSTRT: A MATRIX GIVING THE TARGET STARTING DISTRIBUTION ON THE GRID.
* TGTDN: THE CURRENT TARGET DENSITY.
*TGTDNF: THE FUTURE TARGET DENSITY AFTER ONE MARKOV TRANSITION.
*TGTDNP: THE PAST TARGET DENSITY ONE MARKOV TRANSITION BACKWARDS.
* THETA: THE FRACTION OF THE DISTANCE FROM X1 TO X2 THAT MINIMIZES
THE OBJECTIVE FUNCTION.
TMAX: THE TOTAL NUMBER OF SEARCH PERIODS.
TRANS: A MATRIX GIVING THE MARROV TRANSITION PROBABILITIES FOR EACH
ARC LISTED IN ADJACENCY LIST FORMAT.
TRIAL: A DUMMMY VARIABLE USED TO KEEP TRACK OF VOC DURING THE SHORT-
TEST PATH ROUTINE.
VOoC: THE VALUE OF CONTINUING FOR EACH NODE ON THE SHORTEST PATH.
X: A SET OF ANY FEASIBLE FLOWS. (ALL FLOW VARIABLES ARE GIVEN
IN ADJACENCY LIST FORMAT.)
X1l: A SET OF FEASIBLE FLOWS ASSOCIATED WITH THE START POINT.
X2: A SET OF FEASIBLE FLOWS ASSOCIATED WITH THE EXTREME POINT.
X3: A SET OF FEASIBLE FLOWS ASSOCIATED WITH THE MIDPOINT IN THE
UADRATIC LINE SEARCH.
X4: THE SET OF FEASIBLE FLOWS ASSOCIATED WITH THE MINIMIZING POINT
FRCOM THE QUADRATIC LINE SEARCH.
X0: AN ARRAY GIVING THE THE AMOUNT OF SEARCH EFFORT IN EACH CELL.

REFERENCE :
CON FORTRAN WRITTEN ESSOR JAMES EAGLE AT THE NAVAL PG

BY PROF
SCHOOL IN MONTEREY, CALIFORNIA, TO SOLVE THE DIVISIBLE PROBLEM,
FARRARRRA KR KR RIAKARK KKK KKK KKK Ko A KA KK e R ek e e e e ook e e e e e ok ek ko ook

... DECLARE / INITIALIZE

FAEEXRAEA AR RXR

RN AARRERER F O H

W WOk ok ok 2k o Ok o o % Ok Ok % Ok A % % %
b b 3 b b b b b I b b b b 2

INTEGER TMAX,EPLEN

PARAMETER (NCELLS=25,TMAX=10,EPLEN=26,LENGTH=225)
INTEGER EP(EPLEN ADJ(LENGTHs,STARTETMAX),ADD(LENGTH)
REAL TRANS (LENGT S,A(LENGTH%,TGSTRT NCELLS) ,XO(NCELLS)
COMMON EP,ADJ,TRANS,A,TGSTRT,XO,ADD

CALL INPUT(START,DELMIN)
CALL LOWBND(START,DELMIN)

STOP
END

SUBROUTINE BOUND(X1,X2,GRAD,DELTA
ek s e e e e e e e ek ok Tk 7k e e i e e R ok ok e ok koK 9% 3k e 7k 7k 7k e e e sk ok e e ok ok e ok e e A ok ok ok ok ok ok ok ok ok ok ek e sk ok ok ok ok ok e e e
PURPOE%OGRAMMER: FRANK CALDWELL DATE: SEP 87
THIS PROGRAM COMPUTES THE DELTA FOR USE IN CALCULATING THE LOWER
BOUND ASSOCIATED WITH EACH FRANK-WOLFE ITERATION. THIS DELTA IS THE
CHANGE IN THE PROBAB.LITY OF NONDETECTION ACHIEVED BY GOING FROM X1
TO X2 AND IS CALCULATED BY THE FIRST ORDER TAYLOR APPROXIMATION.

INPUT:
X1: A SET OF FEASIBLE FLOWS ASSQCIATED WITH THE START POINT
X2: A SET OF FEASIBLE FLOWS ASSOCIATED WITH THE EXTREME POINT
GRAD: & MATRIX OF PARTIAL DERIVATIVES WITH RESPECT TO EACH ARC
IN THE NETWORK. GRAD%J,T) IS THE PARTIAL DERIVATIVE OF THE
OBJECTIVE FUNCTION WITH RESPECT TO ARC J.

b 2 b R
b 2 2 b 2 b b b 3P b b b b 2
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* QUTPUT: *
DELTA: THE CHANGE IN PROBABILITY OF NONDETECTION PREDICTED BY THE *
* FIRST ORDER TAYLOR APPROXIMATICON IN GOING FROM SOLUTION *

X1 TO SOLUTION X2,
Kok Rk Rk ke sk kR Ack Ak ki ek sk ik sk doksdedid sk e sk ke ok ik

* ... DECLARE / INITIALIZE
INTEGER TMAX,EPLEN
PARAMETER( NcéLLs-zs TMAX=10,EPLEN=26 LENGTH=225)
INTEGER EPéEPLEN) ADJ (LENGTH) , T,ADD(LENG z
REAL X1(LENGTH,TMAX) X2(LENGTH ang% GRAD( ENGTH, TMAX) , XO (NCELLS)
1TGSTRT (NCELLS ) , TRANS (LENGTH) , g H)
COMMON EP,ADJ, TRANS,A, TGSTRT, X0, ADD

DELTA=0)
DO 10 T=1,TMAX-1
DO 10 J=1,EP(NCELLS+1)-1
DELTA=DELTA+GRAD (J,T)*(X2(J,T)-X1(J,T))
10 CONTINUE

RETURN
END

* %

-

SUBROUTINE FRACT (X 2
ok dededd ek kR ks ke ek Rk Rk **** Fedededede o de ek e e gk de dedededede ke ok s e e e e e de e e ek de e
PURPOE%OGRAMMER FRANK CALDWELL DATE: SEP 87
THIS PROGRAM CALCULATES THE FRACTION OF CELL I SEARCHED IN TIME
PERIOD T. THIS FRACTION IS SIMPLY THE SUM OF OVER ALL ADJACENT CELLS
OF THE PRODUCT OF FLOW EFFORT AND SEARCH EFFECTIVENESS.

NPUT:
X: A SET OF FEASIBLE FLOWS

OUTPUT:
FRAC: A MATRIX OF DIMENSIONS NCELLS BY TMAX IN WHICH ENTRY,

FRA i l GIVES THE FRACTION OF CELL I SEARCHED IN TIME PERIOD T
dekdok ik k ************************************************************

b g b b b b B 2 b O b b b
L B I O B 2

«++ DECLARATIONS
INTEGER TMAX,EPLEN
PARAMETER (NCELLS=25, TMAX=10, EPLEN‘ZG LENGTH‘ZZS)
INTEGER EP( EPLEN ADJéLENGTHa ADD(L &
REAL A(LENGTH C(NCELLS, THAX) , T S(LEN TH) ,X(LENGTH, TMAX) ,
1X0(NCELLS) ,TG TRT NCELLS)
COMMON EP,ADJ, ThANS A, TGSTRT X0,ADD

«++ COMPUTE FRACTION OF CELL I
SEARCHED IN TIME PERIOD T
BY SUMMING FLOWS FROM ALL
ADJACENT CELLS

b 2 b

DO 20 I=1,NCELLS
FRAC(I,1)=X0(I)
DO 15 T=2,TMAX
FRAC
DO 10 J=EP
FRAC

15 %PéRAC(I T)+A(ADD(J) ) *X(ADD(J),T-1)
10 CONTINUE

15 CONTINUE
20 CONTINUE
RETURN
END

Fo e e e ek Ao ok ek e e e e A e e e ok s e e ok g A kR e de s e ek ko dedk e ek ok Aok ek ek ok
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PURPOESOGRAHMER: FRANKR CALDWELL DATE: SEP 87
2

THIS PROGRAM CALCULATES THE PARTIAL DERIVATIVES OF THE OBJECTIVE
FUCTION WITH RESPECT TO EACH ARC IN THE NETWORK.

*
*
*
*
*
INPUT: | *
FRAC: A MATRIX GIVING THE FRACTION OF EACH CELL SEARCHED FOR EACH *
TIME PERIOD. :

OUTPUT: *
GRAD: A MATRIX OF PARTIAL DERIVATIVES WITH RESPECT TO EACH ARC X
*

*

IN THE NETWORK. GRAD§J T%EIS THE PARTIAL DERIVATIVE OF THE

OBJECTIVE FUNCTION WITH RESPECT TO ARC J,
Fesk e e e de e e de ek sk 7k sk e ek ek ek gk ok ok gk ok e ek ek ko ok ok ko ek ok ok e i ke e s ek e Aok e ok ok e e ok ok ok ek

RN AENEA RN

... DECLARE / INITIALIZE

INTEGER TMAX,EPLEN

PARAMETER(NCELLS=25, TMAX=10,EPLEN=26 , LENGTH=225)

INTEGER E (EPLEN),AﬁJ(LENGTH ,T,ADD(LENGTH)

REAL A(LENGTH),R(NCELLS, TMAX),S(NCELLS,TMAX) FRAC(NCELLS,TMAX),
1GRAD(LENGTH, TMAX) , TRANS (LENGTH) , X (LENGTH, TMAX) , X0 (NCELLS) ,

2TGSTRT (NCELLS)

COMMON EP,ADJ,TRANS,A,TGSTRT,XO,ADD
* ++ .DETERMINE REACH AND SURVIVE
* PROBABILITIES

CALL REACH&FRAC.R)

CALL SURVIV(FRAC,S)
* «+« CALCULATE PARTIAL DERIVATIVES
* FOR EACH FLOW X(.,T)

DO 10 T=1,TMAX-1
DO 10 I=1,NCELLS
DUMMY=-R(I,T+1)*EXP(~-FRAC(I,T+1))*S(I,T+1)
DO 10 J=EP(I),EP(I+l)-1
GRAD(ADD(J),T)=DUMMY*A(ADD(J))
10 CONTINUE

RETURN
END

SUBROUTINE INPUT(START DELHIN)
e e ek ek ek ok ek Rt ek ek e ke kR e e ok e ek e e e e ek ek ko ok de ko ek de e e ek e ok ek

* PROGRAMMER: FRANK CALDWELL DATE: SEP 87 *
* REFERENCE : *
* THIS PROGRAM READS IN DATA FROM AN INPUT FILE FOR USE FOR THE *
* CONSTRAINED SEARCH ALGORITHM, X *
Fededk ok ihkddk ek dedk ok ks ks ke ok e ik dedeok de ok ok de gk e desk ok ek e e deok
* «+. DECLARE / INITIALIZE

INTEGER TMAX, EPLEN

PARAMETER (NCELLS=25,TMAX=10,EPLEN=26,LENGTH=225)

INTEGER NADJ,EP%EPLEN),ADJ LENGTH&.START(TMAX),T,ADDéLENGTH)
REAL TRANS(LENGTIH),A(LENGT %,TGST T(NCELLS) ,XO(NCELLS)
COMMON EP,ADJ,TRANS,A,TGSTRT,XO,ADD

.+« READ DESIRED ACCURACY OF
LOWBOUND, DELMIN
READ(01,*) DELMIN

+++ READ IN ADJACENT CELL NUMBERS
IN ADJACENCY LIST FORM WITH
ENTRY POINT ARRAY, EP(.), AND
HEADARRAY, ADJ(.).

AN XX %KH

T=1
DO SE I=1,NCELLS

P(I)=T
READ(01,*) DUMMY,NADJ, (ADJ(J), J=T,T+NADJ-1)
T=T+NADJ
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* & Ok

* X ¥

x> %k

5 CONTINUE
EPSNCELLS+1)= T
ADJ(T)=0

+++ GENERATE ADDRESS ARRAY ADD§ ‘)
FOR EACH CELL THE ADD A
GIVES A LIST OF ENTRY POINT
POSITIONS IN THE ADJACENCY
LIST OF ALL ARCS THAT FLOW

L=l INTO THE CELL

DO 8 I=], NCELLS

DO 8 K=),LENGTH
IF(ADJ(K% E? .1) THEN

L‘L+1
8 CONTINUE
ADD(L)=0

«++ READ IN TARGET TRANSITION
PROBABILITIES TRANS (.) IN
ADJACENCY LIST FORM
DO 10 I=]1,NCELLS

READ(O1,*) DUMMY, (TRANS(J), J=EP(I),EP(I+1)-1)
10 CONTINUE
TRANS(EP(NCELLS+1))
PRINT * ,TRANS(EP(NCELLS+l1)-1)

ves READ IN SEARCH EFFECTIVENESS
A(.), IN ADJACENCY LIST FORM
DO 20 I=1,NCELLS

20 ¢ READ(01,*) DUMMY, (a(J), J=EP(I),EP(I+1)-1)

NTINU
A(EP(NCELLS+1))=0

+++ READ IN STARTING SOLUTION,
START(.)

READ(01,*) (START(T), T=1,TMAX)

«+« READ IN INITIAL TARGET
DISTRIBUTION, TGSTRT(.)
DO 30 I=1,NCELLS
30 READ (01, *) DUMMY,TGSTRT(I)

11 PETURN
END

SUBROUTINE LOWBND(START ,DELMIN)

e e v s e e e e e T Fh vk e vk Fe v v v vk v e e v J e v 7k e T s e e ke Fe e ok e e vk v e T e vk v e e e e vk sk e vk e de e de e e e e e de ke e e e ke ke
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OUTPUTS :

PROGRAMMER: FRANK CALDWELL DATE: SEP 87

PURPOQSE :

THIS SUBROUTINE REPRESENTS THE SUBSTANTIAL PART OF THE DIVISIBLE

EFFORT PROGRAM. IT CONTROLS THE ITERATIVE SEQUENCE OF THE SOLUTION
TECHNIQUE BY CALLING VARIOQUS SUBROUTINES TO LINEARIZE THE OBJECTIVE
FUNCTION, FIND THE SHORTEST PATH, ETC.

*
%*
*
*
*
*
*
INPUTS : *
*
*
*
*
*
*
*

START: THE SEARCHER'S INITIAL FEASIBLE SOLUTION
DELMIN: THE USER DEFINED INTERVAL OF ACCURACY REQUIRED FOR THE
LOWER BOUND. THIS ALSO SPECIFIES THE STOPPING CRITERIA

SOLUTIONS TO THE DIVISIBLE SEARCH EFFORT PROBLEM. THESE ARE PRO-

VIDED THROUGH THE SUBROUTINE OUTPUT
AR AT ARA AR KA KA A KR KKK KRR AR KKK AR KA AR A T de e e e sk de e de ek sk e ok e ek

.« DECLARE / INITIALIZE
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INTEGER TMAX,EPLEN
paaanarzaéuctLLs-zs TMAX=10 , EPLEN=226 LGcra 22 3
INTEGER éEPLEnA ADJéLsnsfa START{T ADD (LENGTH)
REAL X1 (LENGT X CELL snac NCEL g
1TGSTRT( CELLS) ,S(NCELLS ) cnan(nzn T, TMAX) ,
2TRANS (LENGTH) . %2({L ENGTH TMAX &
COMMON EP,ADJ, TRANS,A, TGSTRT, ko DD

«+« CALCULATE FLOWS FOR THE
INITIAL FEASIBLE SOLUTION

* %%

PLOW=0Q
DO 10 I=1,NCELLS
X0(1)=0

10 CONTINUE
xo(STARTSI%&
ggbsx-zr S RT(l))
DO 11'J-1 Epéncgfﬁ§+1) 1

11 CONTINUE
X1 (IND g
INDEX-EP ADJ(INDEX))
12 CONTINUE

Fokkkkrhkkkikkkhkkhkk CALCULATIONS OF THE LOWER BOUND *iawkiiedikkk ik ek

* ... FIND PND1, INITIAL NON-
* DETECTTION PROBABILITY
CALL PNDET(X1,FRAC, punlz
* WRITE(11, '(1x AlG 1X,F5.4)') 'INITIAL PBEST IS',PND1
15 CALL GRADF(FRA D)
CALL NEWP(GRAD 2)
CALL BOUND(X1,%2,GRAD.DELTA)
* ... IF DELTA IS SMALL, RETURN
PLOW=PND1+DELTA
IF(DELTA GE.-DELMIN) THEN
CALL OUTPUT (X1)

RETURN
' END IF
. * ... IF DELTA IS LARGE, CONTINUE
CALL PNDET(X2, FRAC, PNDZ)
WRITE(11,'(/,3(2X,A5,6F5.4))") 'PND1=' PND1,'PND2=',PND2, |
1 PLOW=! , PLOW |
* .+. LINE SEARCH FROM X1 TO X2, THE
* MINIMIZING POINT IS X4
CALL SEARCH(X1,PND1,X2,PND2,X4,FRAC,PND4)
* oNDLap «+. UPDATE PND1 AND X1(J,T) !
: .
WRITE 11 '(1X,26,F5.4)') 'PBEST=',PND1 |
50 17 4l AR ")
Do 17 J=1, EP(NCELLS+1) 1 |
X1(3,T)=X4(J,T) |
17 CONTINUE
GO TO 15 |
END

*******éggggg}yg*iqggﬂssgg&Iszgygz***********************************
PURPOE%OGRAHHER FRANK CALDWELL DATE: SEP 87

THIS SUBROUTINE CONDUCTS A MARKOV TRANSITION ONE PERIOD FORWARD IN
IN TIME. IT ESSENTIALLY CONDUCTS THE OPERATION OF POST-MULTIPLYING
gg%nggw VECTOR OF TARGET PROBABILITY MASSES BY THE MARKOV TRANSITION

INPUT:
TGTDN: THE CURRENT TARGET DENSITY
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* *
% OUTEITS URE TARG NE TRANS .
WAL LS R LS R DER S LR LI TR R P LR L L2 L T
"

«++ DECLARE / INITIALIZE
INTEGER TMAX EPLEN

PARAMETER (NCELLS=25, TMAX=10 ,EPLEN=26 , LENGTH=225)

INTEGER E éspnnn ADJ Lsusrng T ADDéﬁENGTg&

REAL XO(NCELLS),TGSTRT(NCELLS),TRANS (LENGTH) ,A(LENGTH),
1TGTDN{NCELLS) , TGTDNF (NCELLS

COMMON EP,ADJ, TRANS,A,TGSTRT,X0,ADD

DO 5§ I=1,NCELLS
5 TGTDNF(I)=0
DC 10 I=] NCELLS

10 ng'lplt%i(ggs Z’: )E)P*(Tlgl‘glgé %;l%} (- .} ) )*TGTDN(I)*TRANS(J)

UBROUT OVEP TGTDNP
*******E******iyfag****45252&‘&**32** Rk Rk ik ik ik ki kikkkik

: PURPOEEOGRAHHER: FRANK CALDWELL DATE: SEP 87 :
*  THIS §UBROUTINE CONDUCTS A MARKOV TRANSITION ONE PERIOD BACKWARD *
* IN TIME. IT ESSENTIALLY CONDUCTS THE OPERATION OF POST-MULTIPLYING *
* THE ROW VECTOR OF TARGET PROBABILITY MASSES BY THE MARKOV TRANSITION *
: MATRIX FOR TRANSITION BACKWARDS IN TIME. :
* INPUT: *
: TGTDN: THE CURRENT TARGET DENSITY :
* QUTPUT: *
: TGTDNP: TEETPQET TARGET DENSITY ONE TRANSITION PERIOD BACKWARDS IN :
************ilt***}t**i****************************************************
*

++« DECLARE / INITIALIZE
INTEGER TMAX, EPLEN

PARAMETER (NCELLS=25, TMAX=10 ,EPLEN=26 , LENGTH=225)
INTEGER EP EPLEN%.ADJ%LENGTH; T,ADD LENGTg&
REAL XO(NC LLS%, GSTRT (NCELL § , TRANS (LENGTH) , A(LENGTH) ,
1TGTDN(NCELLS) , GTDNPSFCELLS&
COMMON EP,ADJ,TRANS,A,TGSTRT,X0,ADD

DO 5 I=] ,NCELLS
S TGTLNP(1)=0
DO 10 I=1,NCELLS
DO 10 J=EP(I ,EP(I+1&-1
10 TGTDNP(I)=TGTDNP(I)+TGTDN(ADJI(J))*TRANS(J)
i

*******gggggﬂiﬁ*ﬁgégwigﬁ*****************************************
PURPOS%OGRAHHER: FRANK CALDWELL DATE: SEP 87

GIVEN THE VALUES OF GRAD&J,T), THIS SUBROUTINE LINEARIZES THE
OBJECTIVE FUNCTION AND THEN FIND THE SHORTEST PATH THROUGH THE
NETWORK VIA DYNAMIC PROGRAMMING. IT ALSO CAL"ULATES THE SET OF
FEASIBLE FLOWS ASSOCIATED WITH THE EXTREME POINT SOLUTION, X2.
THIS METHOD OF SOLUTION IS KNOWN AS THE FRANK-WOLFE PROCEDURE.

INPUT
GRAS: A MATRIX OF PARTIAL DERIVATIVES WITH RESPECT TO EACH ARC
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IN THE NETWORK. GRAD(J, T& THE PARTIAL DERIVATIVE OF THE
OBJECTIVE FUNCTION WITH ESPECT TO ARC J.

OUTPUT:
%2: THE SET OF FEASIBLE FLOWS ASSOCIATED WITH THE EXTREME POINT.
THESE FLOWS ARE ALONG THE SHORTEST PATH THROUGH THE LINEARIZED

0
RRRRARRRIKRXAARRRRRREARRRRRRRARRRRRARRARAARARRRRAARRARRRRARRRARRRARRARR
«++ DECLARE/INITALIZE

* XXX N
2AHX*NEN

INTEGER EPLEN, TMAX
PARAMETER NC!£L5'25 TMAX=10 ,EPLEN=26 , LENGTH=225
| INTEGER E éEPL!N 6J(LENGTH) NEXT NCELLS THAX& ADD LENGTMA
‘ REAL éLEN TH) , TRANS (LENGTH) , VOC (NCELLS , THAX éhb( X),
i %¥g§%§§(§ELLS X2 (LENGTH, TMARY, D !Y(NCELLS),Xd(NCELLS).
| CCMMON EP, ADJ , TRANS ,A, TGSTRT, X0, ADD
! TNy SET VOC(I m).o
: DO 10 I=1, NCELLS
| voc

I,TMAX)=0
NEXT (1, TMAR)=0
10 CONTINUE
* .+« CALCULATE THE VALUE
* CONTINUING VOCéI 1 xssr
; * TRACK OF BEST DBCISION WITH
! * ARRAY NEXT(I,T)
. DO zo T=TMAX-1,1
‘ zo I=1,NCEL]
[ §§ fr%avocgaw(np(x)) ,T+1)+GRAD(EP(I),T)
. DO 23 §=EP(1)+1 ,EP(I+1)-1
| TRIAL=VO (ADJ(J% r+1;+cnan(a ,T)
| IF(TRIAL LT.voC(} T)
: 0C(I,T)=TRI
| {N XT(1,T)= J
20 CONTINUE
. kkkkdkkkihikikkikikk CALCULATE NEW FLOW, X2(J,T) ¥ddkkkddkikkdkkidihhkidkkk
[ * <<+ SET XCELL(I EQUAL TO START(I)
~ * WHERE XCELL(I) KEEPS TRACK OF
' * THE TOTAL SEARCH EFFORT IN
; * EACH CELL.
, DO 30 I=1 NCELLS
nuuuyfr
RCELL({I)=X0(I)
30 CONTINUE
DO 35 T=1,TMAX-l
DO 3% 3-39(13 ,EP(NCELLS+1)~1
35 CONTINUE
* .+« GENERATE X2(J,T FROH
* %X2(J,T-1) AéD & ,T).
DO 50 T=1,TMAX-1 i
DO 40 1=l NCELLS !
=Nﬁ %
gz J'% =§%J%%‘%&HHY(ADJ(J))+x2(J T) ’
A ,
40 CONTINUE i
* +++ RESET XCELL(I) FOR NEXT TIME ;
* PERIOD.
DO 50 I=1,NCELLS
¥CELL(I)=0
gCELL % =DUMMY (1)
50 CONTINUE
RETURN

|
}
|
|
t
;
J
|
i END
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SUBROUT PNDET (X C,PND
******,*******555**§°§*£*4£R£ RRARARRRIKR ARARRAXARKRRARARARIARIA Ak ke Tk

* XX NN

AN XN

* *

SUBR
***********

b b B B

PROGRAMMER: FRANK CALDWELL DATE: SEP 87
PURPOSE:

GIVEN A SET OF FLOWS, X, THIS PROGRAM CALCULATES THE PROBABILITY
OF TARGET NONDETECTION.

INPUT:
X: A SET OF FEASIBLE FLOWS

CUTPUT.
PND: THE PROBABILITY OF NONDETECTION

FRAC: A g%TRIgIGIVING THE FRACTION OF EACH CELL SEARCHED FOR EACH
**************QE***Ea*************************************************

«+« INITIALIZE / DECLARE
EPLEN

éar.r.s=z mx-m EPLEN=26 , LENGTH=225)
INTEGER EP(EPLEN LENG'I’H ADD(LENGT
asar. xo NC LLS ésra (NCELLS Y, X(LENGTH, TMAX

1A(L NGTH&_ , TGTDN NCELLS) TGTDNF (NCELLS)
¢ rmou E ADJ T GSTRT, X0, ADD

INTEGER TMAX
PARAMETER é

*
*
*
®
*
*
*
*
*
*
*
%
]

,FRAC(NCELLS , TMAX),

+«. DETERMINE THE FRACTION OF ALL

CELLS SEARCHED.

++v+ ITERATIVELY CALCULATE THE
PROB. OF NONDETECTION PND.

CALL FRACT(X,FRAC)

SET THE TARGET DENSITY EQUAL

TO THE INITIAL DISTRIBUTION

DO 10 I=1,NCELLS
TGTDN(IB=TGSTRT(I)
DO 20 MAX
DO 15 1=1,NCELLS

-
o

«++ ACCOUNT FOR SEARCH

15 TGTDN(I)=TGTDN(I)*EXP(-FRAC(I,T))
+++ TRANSITION TO THE NEXT
TIME PERIOD
-AL%OH?V§F§TGTDN ,TGTDNF)
TGTDN(I)=TGTDNF (1)
20 CONTINUE
PND=0
«+« COMPUTE PND BY SUMMING ALL
REMAINING TARGET MASS
DO 30 I=],NCELLS
PND'PND+TGTDN(I)
30 CONTINUE
RETURN
END

ETINE REACH(

PROGRAMMER: FRANK CALDWELL DATE: SEP 87
PURPOSE :

THIS SUBROUTINE CALCULATES THE PROBABILITY OF REACHING CELL I IN
TIME PERIOD T, . NOTE THAT PROBABILITIES IN THE REACH MATRIX
R(I,T) DO NOT AC OUNT FOR THE SEARCH IN CELL I FOR TIME T.

INPUT:

FRAC: A MATRIX GIVING THE FRACTION OF EACH CELL SEARCHED FOR EACH
TIME PERIOQD.

OUTPUT
R: THé MATRIX OF DIMENSION NCELLS BY TMAX OF REACH PROBABILITIES
66
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*****:hﬁ***************************************************************

*
«+o DECLARE / INITIALIZE
1NTEGER TMAX,E

*
PLEN
B o s e
/ L FRAC(NCELL é é LLQ% R?NC&LLS TMAR) , TRANS { LENGTH)
- / (LENGTR) XO(NCﬁLLSL fcwou&p ELLS) , TGTDNF (NCELLS)
: " COMMON EP,ADJ,T TGSTRT, X0, ADD

«+s SET R(I,1) EQUAL TO THE
INITIAL TARGET DISTRIBUTION

b s ey |

DO 5 I=)] NCELLS
R§I 1)‘TGSTRT(I)
{ ; com

* «+« COMPUTE R ITERATIVELY
DO 20 T=1 THAX-I
DO 1G ‘I=l,N
TG?E?(I)- R(I T)*EXP(-1*FRAC(I,T))

ONTIN
CALL HOVEF&TGTDN ., TGTDNF)

DO 20 I=]
R(I,T+1)=TGTIDNF(I)
20 CONTINUE
RETURN
END

10

********HE§2¥I£§§*§E££§§£§§ EP&&§£¢EEEf;ﬁﬁx£E£Sx552*2******************
Punpoggocnannzax FRANK CALDWELL DATE: SEP 87
3
THIS PROGRAM CONDUCTS A QUADRATIC LINE SEARCH ALONG THE LINE FROM
START POINT X1 TO EXTREME POINT X2 FOR THE POINT THAT MINIMIZES THE
PROBABILITY OF TARGET NONDETECTION. THIS MINIMIZING PQINT IS THEN
USED AS THE START POINT FOR THE NEXT FRANK-WOLFE ITERATION.

INPUT
Xl:ah SET OF FEASIBLE FLOWS ASSOCIATED WITH THE START POINT
X2: A SET QF FEASIBLE FLOWS ASSOCIATED WITH THE EXTREME POINT
PND1: THE PROBABILITY OF NONDETECTION FOR SEARCH FLOWS AS GIVEN

BY Xl.
PND2: ggEx§ROBABILITY OF NONDETECTION FOR SEARCH FLOWS AS GIVEN

* % %N

OUTPUT :
%4: THE SET OF FEASIBLE FLOWS ASSOCIATED WITH THE MINIMIZING POINT
FROM THE QUADRATIC LINE SEARCH.
FRAC: THE MATRIX SHOWING THE FRACTION OF CELL I SEARCHED DURING
TIME PERIOD T FOR THE SET OF FLOWS GIVEN BY X4&

wis D41 THE PROBABILITY OF NONDETECTION FOR FLONS SIVEN.BY X4, tunwnnn

«+«. DECLARE / INITIALIZE !
INTEGER TMAX,EPLEN
PARAMETER éNCELLS‘ZS ,TMAX=10 EPLEN=26, LENGTH=2£5

¥ N NN N NN RN NN
EREEEERRRN NN

INTEGER EP(EPLEN),ADJ(LENGTH),T, ADD LENGTH%

REAL X1(LENGTH,TMAX),®2(LENGTH,T g %0 LLSZ ,X3 (LENGTH, TMAX) ,
1X4 (LENGTH, TMAX) , TGSTRT (NCELLS) , TRAN (L
zsaacg NCELLS rn&x

O S5 by TRANS, A, TGSTRT, X0, ADD
WRITE(11,*) 'LINE SEARCH'

ENGTH) ,A(LENGTH) ,

... GENERATE X3 = ,5*%(X1+X2)
5 DO 10 T=1, THAX-1
d 10 J=1 ,EP(NCELLS+1) -1
X3(J,T)=.5*X1(J,T)+.5%X2(J,T)

10 CONTINUE

CALL PNDET(X3,FRAC,PND3)
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««+» GENERATE THETA

THETA= 5% .75*PND1+PND3- 25*PND2)/(~.5*PND1+PND3=.5*PND2)
IFSTHETA.G o OZ THETA=1.0
IF(THETA.LE..001) THETA=.001

... GENERATE X4
DO 20 T=1,TMAX-1
DO’ 20 J=1,EP(NCELLS+1)-1
X4(J,T)=THETA*X2(J, T)+(1-THETA)*X1(J T)
20 CONTINUE
CALL PNDET(X4,FRAC,PND4)

WRITE(ll,'(3(2X,A5,FS.4‘,2X,A6,F5.4)') 'PND1=',PNDl, 'PND2=',PND2,
1 PND4=' PND4, 'THETA=',KTHETA

++. CHECK TO NARROW INTERVAL

IF((THETA. LT..I OR THETA.GT..9).AND.COUNT.LT.3) THEN
COUNT=COUNT
IF(THETA. LT..S) THEN
IF(PND4 LE.PND3) THEN
PND2=PND3 .
DO 43 T=], TMAX-l
DO 40 I=1,NCELLS
Do 40 J'EP(%Q,EPME+1) -1

J,T)=X3(J,
40 CONTINUE
ELSE

PND1=PND4
DO 50 T=1 TMAX-I
DO 50 1 ,NCELLS
Do 50 "J=EP(I ,(P

X1(J,T)=X4(J
50 CONTINUE
SEEND IF
IF(PND4.LE.PND3) THEN
PND1=PND3

DO 60 T=1,TMAX-1
po 61:?0 Is=ol '§-EP(I P(I+1)-
Qs( %' ’

‘ X1(J,T)=
60 CONTINUE
ELSE
PND2=PND4
Do 70 T=1, TMAX-l
DO 70 I=1,NCELLS
DO 70 EP( ) ( +1)-1
X2(J3,T)=X

4(3,1)
70 CONTINUE

gg+1) 1

SUBROUTINE SURVIV(FRAC

KA k********'k*******************2******** Jo e sk vk e e e e vhe e ke e ok ot e e e e ok e e e e ok ek 2 ok e ke ve

b b 2 b b b b b b o

PROGRAMMER: FRANK CALDWELL DATE: SEP 87 *
PURPOSE:

THIS PROGRAM CALCULATES THE PROBABILITY OF SURVIVING TO TIME PERIOD*
TMAX GIVEN THAT THE TARGET IS NONDETECTED IN CELL I BY TIME T.

INPUT :
FRAC: A MATRIX GIVING THE FRACTION OF EACH CELL SEARCHED FOR EACH
TIME PERIOD.

OUTPUT:

b b 3 2 2 2 2
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* §; THE MATRIX OF DIMENSION NCELLS BY TMAX OF SURVIVE PROBABILITIES *
LR D R T R L R e e e L R e I R L e e e e
*

* +++ DECLARATIONS

INTEGER TMAX,EPLEN
PARAHETER(NCéLLS=25,TMAX=10,EPLEN=26,LENGTH=225)

INTEGER EPﬁEPLEN),ADJ(LENGTH),T,ADD(LENGTH)

REAL FRAC(NCELLS,TMAX),S(NCELLS,TMAX), TRANS(LENGTH) ,A(LENGTH),
lTGSTRT(NCELLS),XO(NCELLS),TGTDN(NCELLS),TGTDNP(NCELLS)

COMMON EP,ADJ,TRANS,A,TGSTRT,X0,ADD

* ... SET S(I,TMAX) = 1 FOR ALL I.
DO 5 I=1,NCELLS
S(I,TMAX)=1
5  CONTINUE
* ... ITERATIVELY CALCULATE S(I,T).
DO 20 T=TMAX,2,-1
DO 10 I=1,NCELLS
TGTDN(I)=S (I, T)*EXP(-FRAC(I,T))
10  CONTINUE
CALL MOVEP&TGTDN,TGTDNP)
DO 20 I=1,NCELLS
S(I,T-1)=TGTDNP(I)
20 CONTINUE
RETURN
END

SUBROUTINE OUTPUT (X4 _
7 7k e e e e e e e v vk v T e Tk ke 7k ke v e e 2 e ke K 7 ok 7 ok ok e ok ek e e e ok ke e ke o ok ke e ok ok ke e o ke e o 7 ke ke e ek ke ok ke ok v ok e e e ok e ok ok
oURpOEROGRAMMER : FRANK CALDWELL DATE: SEP 87 a %
THIS PROGRAM PRINTS THE OPTIMAL SOLUTION FOR THE DIVISIBLE SEARCH *
EFFORT PROBLEM. OUTPUT IS PROVIDED IN THE FORM OF MATRICES DEPICT- *
ING THE GRID OF CELLS. THE FIRST SET OF MATRICES GIVES THE SEARCH  *
EFFORT IN EACH CELL FOR ALL TIME PERIODS. THE SECOND SET GIVES THE *
REACH PROBABILITIES FOR EACH CELL FOR ALL TIME PERIODS. THESE TWO _ *
OUTPUTS ARE PROVIDED IN ORDER TO GIVE A REPRESENTATION OF THE TARGET *
AND SEARCHER LOCATIONS THROUGHOUT THE PROBLEM, *
*
*
*
*
*
*
*

INPUT:
X: THE SET OF OPTIMAL FLOWS FOR THE PROBLEM

OUTPUT :
OUTPUT IS

PROGRAM FOR

Fedskdedok kA fekkk

TO A FILE, THERE ARE NO
USE IN OTHER SUBROUTINES
Rk ke Rk ok Aok ek

VARIABLES CALCULATED BY THIS
Feede ke Rk ko kA ek kA dedok kkdek
+++. DECLARE / INITIALIZE

*

3 Ok %k % R F R Ok Ok %

INTEGER EPLEN, TMAX
PARAMETER (NCELLS=25,TMAX=10 EPLEN=26 ,(LENG1H=225)
INTEGER ADJ(LENGTH),EP(EPLENS,ADD(LENGTH),T
REAL A(LENGTH), TRANS (LENGTH), XO(NCELLS),TGSTRT(NCELLS),
1XCELL (NCELLS) ,X4(LENGTH, TMAX) , FPAC(NCELLS , TMAX) ,R(NCELLS, TMAX)
COMMON EP,ADJ,TRANS,A,TGSTRT,XC,ADD

® ... DETERMINE REACH AND FRAC
CALL FRACTSX4,FRAC)
CALL REACH(FRAC,R)
..+ INITIALIZE XCELL(.), THIS
KEEPS TRACK OF THE FLOW
EFFORT IN EACH CELL

* % %

DO 10 I=1,NCELLS
XCELL(I)=X0(1)
10 %?qunua

* .+« PRINT-OUT SEARCH EFFORT
¥R§TE(11,'(A1,T10,A13)') '1','SEARCH EFFORT!'
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WRITE(11,100) 'TIME PERIOD',T
DO 12 K=],N

WRITE(11,110) (RCELL(I), I=1+(K~1)*N,K*N
12 G ) (1) (R-1) )

DO 15 ‘I=1,NCELLS
XCELL(I)=0 .
15 CONTINUE ,
DO 20 I=1,NCELLS j

DO 20 J=EP(I),EP(I+1%-1
20 coNT XCELL(ADJ(J) )=XCELL(ADJ(J))+X4(J,T)

INUE
WRITE(11,100) 'TIME PERIOD',T+l
DO 22 K=1,N
WRITE(11,110) (XCELL(I), I=1+(K-1)*N,K*N)
22 CONTINUE
30 CONTINUE
... PRINT-OUT REACH PROBABILITIES
WRITE(11,'§A1,T10,A19)') '1','REACH PROBABILITIES'
DO 40 T=1,TNAX
WRITE(11,100) 'TIME PERIOD',T
DO 40 K=1,N
WRITE(1".,110) (R(I,T), I=1+(R-1)*N,K*N)
40 CONTINUE

100 FORMAT(T10,Al1,1X,I2)
110 FORMAT(15(2X,F5.3})
RETURN
END
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APPENDIX C v
‘BRANCH-AND-BOUND PRCGRAM LISTING

1. SOME DETAILS ON PROGRAMMING METHODS

The branch-and bound algorithm was coded in Fortran and run on the IBM
3033 computer just as the divisible search algorithm was. Because this procedure
contains a modified version of the divisible program, all the comments written at the
begining of Appendix B still apply. Within the branch-and-bound main program the
trial paths are generated by the use of nested do loops the structure of which is very
simple. Modifications to the divisible search effort program include:

e Updating the target’'s mass distribution for transitions and searches as specified
by trial paths.

s  Updating the time horizon to T —t periods for « trial path of length t.
Otherwise the divisile search program is essentially unchanged.

2.  PROGRAM LISTING

PROGRAM MAIN
Fede oo ek gk e ek Kk ek e ek gk e e ek ke ek e st e e Aok k ok ok ek ek ke ok ook ek ok ek o e de ek
FRANK CALDWELL
PURPOSE :

THIS IS THE CONTROLLING PROGRAM FOR THE CONSTRAINED SEARCH
ALGORITHM. IT IMPLEMENTS THE BRANCHING PROCEDURE BY ESTABLISHING
TRIAL INTEGER PATHS AND THEN CALLING THE SUBROUTINE LOWBND TG OBTAIN
%A%gWER BOUND ON THE PROBABILITY OF NON-DETECTION FOR THAT TRIAL

KEY VARIABLES:
A: A MATRIX OF SEARCH EFFECTIVENESS PARAMETERS FOR EACH
ARC IN THE NETWORK. LISTED IN ADJACENCY LIST FORM.
ADD: A MATRIX SIMILAR TO THE ADJACENCY LIST, ADJ, BUT INSTEAD
OF GIVING THE HEADS OF ARCS INCIDENT TO CELLS LISTED IN THE
ENTRY POINT ARRAY, EP, THIS MATRIX GIVES THE TAILS OF ALL
ARCS THAT FLOW INTO THE CELL LISTED IN EP
ADJ: ?OgﬁggIX THAT GIVES THE HEADS OF ALL ARCS IN ADJACENCY LIST
DELMIN: THE USER DEFINED INTERVAL OF ACCURACY REQUIRED FQR THE
LOWER BOUND. THIS ALSO SPECIFIES THE STOPPING CRITERIA
DELTA: THE CHANGE IN PROBABILITY OF NONDETECTION PREDICTED BY THE
FIRST ORDER TAYLOR APPROXIMATION IN GOING FRCM SOLUTION
X1 TO SOLUTION X2.
EP: THE ENTRY POINT ARRAY FOR THE ADJACENCY LISTS.
EPLEN: A PAPAMETER THAT IS USED TO SET T!HE DIMENSION CF THE EP ARRAY
FRAC: A MATRIX OF DIMENSIONS NCELLS BY TMAX IN WHICH ENT
FRAC(I T) GIVES THE FRACTION OF CELL I SEARCHED IN TIME T.
GRAD: 2 MATRIX OF PARTIAL DERIVATIVES WITH RESPECT TO EACH ARC
IN THE NETWORK. GRAD(J,T) IS THE PARTIAL DERIVATIVE OF THE
OBJECTIVE FUNCTION WITH RESPECT TC ARC J FROM THE ADJ. LIST.
IT: THE DEFTH OF THE TRIAL PATH SPECIFIED AS A NUMBER OF PERICDS.
* ITMAX: THE ADJUSTED TIME HORIZON FOR THE LOWBND SUBROUTINE.
*LENGTH: A PARAMETER USED TO SET DIMENSIONS OF ALL ADJACENY LISTS.
*NCELLS: A PARAMETER SPECIFYING THE NUMBER OF CELLS IN THE SQUARE GRID
* NEXT: AN ARRAY USED TO KEEP TRACK OF THE SHORTEST PATH.
*  PND: THE PROBABILIIY OF NONDETECTION

%ok o Ok b O Ok 3k Ok b 3 OF 3k Ok Ok - ok 3k R OF R bk F Ok Ok O

SO % OOF OF O OF O 3R O ok OF ok 0k OF 3 ok 3 A OF R R R OF R b Ok Ok 3 %6 OF B O %
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PND1: THE PROBABILITY OF NONDETECTION FOR SEARCH FLOWS AS GIVEN

RY X1 (THE START POINT
PND2: THE PROBABILITY OF NONDETECTION FOR SEARCH FLOWS AS GIVEN

Y X2 (THE EXTREME POINT).

PND3: THE PROBABILITY OF NONDETECTION FOR SEARCH FLOWS AS GIVEN

BY X1 (THE MIDPOINT IN THE QUADRATIC LINE SEARCH).
PND4: THE PROBABILITY OF NONDETECTION FOR SEARCH FLOWS AS GIVEN

BY X4 (THE MINIMIZING POINT FROM THE LINE SEARCH

R: THE MATRIX OF DIMENSION NCELLS BY TMAX OF IEACH PROBS.
S: THE MATRIX OF DIMENSION NCELLS BY TMAX OF SURVIVE PROBS.
: THE SEARCHER'S INITIAL FEASIBLE SOLUTION
: THE UPDATED TARGET MASS FOR TIME IT., ACCOUNTS FOR SEARCHES
AND TRANSITIONS UP TO TIME IT.
*TGSTRT: A MATRIX GIVING THE TARGET STARTING DISTRIBUTION ON THE GRID.
* TGIDN: THE CURRENT TARGET DENSITY.
*TGTDNF: THE FUTURE TARGET DENSITY AFTER ONE MARKOV TRANSITION.
*TGTDNP: THE PAST TARGET DENSITY ONE MARKOV TRANSITION BACKWARDS.
* THETA: THE FRACTION OF THE DISTANCE FROM X1 TO X2 THAT MINIMIZES
THE OBJECTIVE FUNCTION.
TMAX: THE TOTAL NUMBER OF SEARCH PERIODS.
TRANS: A MATRIX GIVING THE MARKOV TRANSITION PROBABILITIES FOR EACH
ARC LISTED IN ADJACENCY LIST FORMAT.
TRIAL: A DUMMMY VARIABLE USED TO KEEP TRACK OF VOC DURING THE SHORT-
TEST PATH ROUTINE.
VOC: THE VALUE OF CONTINUING FOR EACH NODE ON THE SHORTEST PATH.
X: A SET OF ANY FEASIBLE FLOWS. (ALL FLOW VARIABLES ARE GIVEN
: IN ADJACENCY LIST FORMAT.)
Xl A SET OF FEASIBLE FLOWS ASSOCIATED WITH THE START POINT,
X2: A SET OF FEASIBLE FLOWS ASSOQCIATED WITH THE EXTREME PQINT.
X3: A SET OF FFASIBLE FLOWS ASQCCIATED WITH THE MIDPOINT IN THE
UADRATIC LINE SEARCH.

X4: THE SET OF FEASIBLE FLOWS ASSOCIATED WITH THE MINIMIZING POINT*
FROM THE QUADRATIC LINE SEARC
X0: AN ARRAY GIVING THE THE AHOUN“ "OF SEARCH EFFORT IN EACH CELL. :

REFERENCE : *
THE FORTRAN PROGRAM BBS5x5 WRITTEN BY PROFESSOR JAMES EAGLE AT THE *

NAVAL POSTGRADUATE SCHOOL IN MONTEREY, CALIFCRNIA.
************x***x*x*****x*********************************************

... DECLARE / INITIALIZE
INTEGER TMAX,EPLEN
PARAMETER 3NCELL =25 ,TMAX=1C EPLEN=26 , LENGTH=200

b I b B b b b b

*
=
(214
gH

o
»o
n

S 2 b Ok b b Ok Sk Ok o Ok OF b bk 3k kM Ok b M 3k 2k 2 %k Ok 2 % % % %

*

b D b B 3 S b O 2 3B b b B b 2 B 3 3D g 3 4
o5
w

INTEGER EP(EPLEN) ADJ(L‘NGTHS IPATH(TMAX) ,ADD LE&GTH)
REAL TRANS

LENGTHS A(LENGTH), TGSTRT&NCEulS) XO(NCELLSS
1TGMASS (NCELLS)
COMMON EP,ADJ,TRANS,A,XO0,ADD,ITMAX,33
««. INPUT DATA

«+. CALCULATE INITIAL PBEST GIVEN
STARTING INTEGER PATH, IPATH

BB(TMAX)

CALL INPUT(IPATH,TGSTRT,DELMIN)

* %k %

DO 10 T=1,TMAX
BB(T)=IPATH(T)
10 CCNTINUE
CALL PNDETI(TGSTRT,TMAX+1,TGMASS)
PBEST=0

DO 20 I=1,NCELLS
20 CONngEST‘PBEST+TuHASS(I)
WRITE(OG '(1X,A14.1%,F5.4,10(2X,12))" 2 '%¥§T2%51P¥§§§;' .PBEST,

* - ... GENERATE A BEST SOLUTION
égiéoLgﬁBND(DiLMIN TGSTRT,IT,PLOW,PBEST, IPATH)
- BB(T) ‘IPATH(T)
lwa*'rE(oe '<1x’A14'lx'F5'4'1°(2x'I2))'Zgéfgf?IfflpBﬁfT;" PBEST,
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Kkddokkkdkkkkhkdkkkikkkkkk BRANCH AND BOUND hedsksor ek sk sk ks sk ok ke

*

«es INITIALIZE

IT=1

NTRIAL=0

PLOW=0

BB(1)=IPATH(1)
* +.. FORM TRIAL PATH BB(.) AND
* FIND THE LOWER BOUND PLOW BY
* CALLING LOWBND. IF PLOW IS
* LESS THAN PBEST THE PATH IS
* FATHOMED. OTHERWISE CONTINUE
* Do DFS TO NEXT LEVEL.

DO

DO

DO

jole]

DO

DO

Znggl=EP(BB(1) ) .EP(BB(1)+1)-1

BB(IT)=ADJ(J1)

NTRIAL=NTRIAL+1

CALL LOWBND (DELMIN,TGSTRT,IT,PLOW,PBEST,IPATH)
IF(PLogéegépgggT) THEN

END IF
%3%_§2=EP(BB(2)),EP(BB(2)+1)-1

BB(IT =ADJ§J2)
NTRIAL=NTRIAL+1
CALL LOWBND(DELMIN,TGSTRT,IT,PLOW,PBEST,IPATH)
IF(PLOW.GE.PBEST) THEN

GO TO 201
END IF

ZIOI;_413=EP(BB(3) ) ,EP(BB(3)+1)-1
BB (IT)=ADJ(J3) '
NTRIAL=NTRIAL+1
CALL LOWEND (DELMIN,TGSTRT,IT,PLOW,PBEST, IPATH)
IF(PLOW.GE.PBEST) THEN
GO TO 202
END IF
ggg_g4=sp(ss(4)),EP(BB(4)+1)-1

BB(IT)=ADJ(J4)
NTRIAL=NTRIAL+1l
CALL LOWBND(DELMIN,TGSTRT,IT,PLOW,PBEST,IPATH)
IF(PLowéGgénggT) THEN
G

END IF
ZIO'I?"E:IS=EP(BB(5) ) EP(BB(S)+1)-1

BB(IT)=ADJ(JS)
NTRIAL=NTRIAL+1l
CALL LOWBND(DELMIN,TGSTRT,IT,PLOW,PBEST, IPATH)
IF(PLOW.GE,.PBEST) THEN
GO TO 204
END IF

%83=$€=EP(BB(6)),EP(BB(6)+1)-1

BB(IT)=ADJ(J6)
NTRIAL=NTRIAL+1
CALL LOWBND(DELMIN,TGSTRT,IT,PLOW,PBEST, IPATH)
IF(PLOW.G. .,PBEST) THEN
GO TO 205
END IF

206 J7=EP(BB(7)),EP(BB(7)+1)-1
IT=8
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b 2

BB(IT IADJ§J7)

NTRIAL=NTRIAL+1
CALL LOWBNDéDELMIN TGSTRT, IT, PLOW,PBEST, IPATH)
IF (PLOW.GE .PBEST) THEN
GO TO 206
END IF

DO %3;=g8=EP(BB(8)),EP(BB(8)+1)-1

BB (IT =ADJ§J8)
NTRIAL=NTRIAL+1

CALL LOWBND(DELMIN,TGSTRT,IT,PLOW,PBEST,IPATH)
IF(pLogécgépgggr) THEN

END IF
DO %8§Lﬂ?=EP(BB(9)),EP(BB(9)+1)-1

BB(I{£=ADJ J9)
NTRIAL=NTRI1AL+1
«+. FOR TIME TMAX BB WILL SPECIFY
A COMPLETE INTEGER PATH,
THEREFORE CALL PNDETI INSTEAD
OF LOWBND TO GET EXACT PND.

gégL PNDETI(TGSTRT, TMAX+1 ,TGMASS)

DO 120 I=1,NCELLS -
P=P+TGMASS(I) AR
120 CONTINUE NI
+«+« IF P IS LESS THAN PSEST B3 IS
A BETTER SOLUTION. MPDATE
PBEST AND IPATH - -+ = -
IF(P.LE.PBEST) THEN
DO 100

T=1,TMAX
IPATH(T)=BB(T)
100 CORITE(0S, * (A F5.4,10(2X,I2))') 'PBEST=',PBEST
¢ 1 L] ’ 14 = ¢’ ¢
1 ;ggrn(&), T=1,THA&)

END IF

208 CONTINUE
207 CONTINUE
206 CONTINUE
205 CONTINUE
204 CONTINUE
203 CONTINUE
202 CONTINUE
201 CONTINUE
200 CONTINUE
«+. OUTPUT RESULTS

ggggE(OS,'(1X,A20,1X,I4)') 'TOTAL TRIAL PATHS = ' ,NTRIAL
END

e e deode e e K ok A e vk ke e ok e e ek o ko e e o ok e sk ok o sk ok e ok ok ok i ok ok ok e ok ke e ok e ek ke e ok ok e e e e e e A ok ok

% ok % Ok % Ok % Ok H

SUBROUTINE BOUND(X1,X2 GRAD, DELTA f

PURPOEEOGRAHMER: FRANK CALDWELL DATE: SEP 87

THIS PROGRAM COMPUTES THE DELTA FOR USE IN CALCULATING THE LOWER
BOUND ASSOCIATED WITH EACH FRANK-WOLFE ITERATION. THIS DELTA IS THE
CHANGE IN THE PROBABILITY OF NONDETECTION ACHIEVED BY GOING FROM X1
TO X2 AND IS CALCULATED BY THE FIRST ORDER TAYLOR APPROXIMATION.

INPUT:
Xl: A SET OF FEASIBLE FLOWS ASSOCIATED WITH THE START POINT
X2: A SET OF FEASIBLE FLOWS ASSOCIATED WITH THE EXTREME POINT

b3 2 3 b b
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GRAD: A MATRIX OF PARTIAL DERIVATIVES WITH RESPECT TO EACH ARC *
IN THE NETWCRK. GRAD%J,T) 1S THE PARTIAL DERIVATIVE OF THE *

OUTPUT OBJECTIVE FUNCTION WITH RESPECT TO ARC J. :
DELTA: THE CHANGE IN PROBABILITY OF NONDETECTION PREDICTED BY THE *
FIRST ORDER TAYLOR APPROXIMATION IN GOING FROM SOLUTION :

*

X1 TO SOLUTION X2,
Fededke R de sk dede sk e ek ARk A Fde ek R g dedk gk e de sk ke sk ke ke ek ek e

«++ DECLARE / INITIALIZE
INTEGER TMAX,EPLEN

PARAMETER(NCELLS=25,TMAX=10,EPLEN=26,LENGTH=200%
sNTEGER EP(EPLEN) ADJ LENGTH),T,ADD(LENGTH{.BBé HAﬁl
REAL X1 (LENGTH,TMAX), X2(LENGTH, TMAX) ,GRAD(LENGTH,TMAX) , XO(NCELLS),

lTRANS(LENGTH),AaggyGTﬂg

COMMON EP,ADJ,TRANS,A,X0,ADD,ITMAX,BB
DELTA=0.0
DO 10 T=1,ITMAX-1

DO 10 J=1,EP(NCELLS+1)-1
DELTA=DELTA+GRAD (J,T)*(X2(J,T)=-X1(J,T))
10 CONTINUE
RETURN

END

X NN NHN

SUBROUTINE FRACT(X,ZRAC
ke ek ek R ke Rk A Rk kAR kR AR AR AR A KTk e de ek de dede e Ak de ke ok ek ek ek ek e dee ek

: PURPOEEOGRAMMER: FRANK CALDWELL DATE: SEP 87 :
* " "THIS PROGRAM CALCULATES THE FRACTION OF CELL I SEARCHED IN TIME *
* PERIOD T. THIS FRACTION IS SIMPLY THE SUM OF OVER ALL ADJACENT CELLS *
: OF THE PRODUCT OF FLOW EFFORT AND SEARCH EFFECTIVENESS. :
* INPUT: *
: X: A SET OF FEASIBLE FLOWS :
* QUTPUT: *
* FRAC: A MATRIX OF DIMENSIONS NCELLS BY TMAX IN WHICH ENTRY, *
* FRAC(I Tl GIVES THE FRACTION OF CELL I SEARCHED IN TIME PERIOD T, *
e ek 7k ek ok ek e ke ok ok ¢ e s 2k e s e o 7k e ok ek e 76 e K ok Tk e Ak ke gk ok gk e e e ek ok Ak e ok ok e e ek ok ek o ok ok
*

*

.+« DECLARATIONS
INTEGER TMAX,EPLEN
PARAMETER(NCELLS=25,TMAX=10 ,EPLEN=26 ,LENGTH=200
INTEGER EP(EPLEN),ADJ(LENGTH),T ADD(LENGTH), BB(TMAX)
REAL A(LENGTH),FRAC(NCELLS,TMAX),TRANS(LENGTH) ,X(LENGTH, TMAX),
1XO(NCELLS) , TGMASS (NCELLS)
COMMON EP,ADJ,TRANS,A,XO,ADD,ITMAX,BB

* ... COMPUTE FRACTION OF CELL I
* SEARCHED IN TIME PERIOD T
DO 10 I=1,NCELLS
* ... ASSUME SEARCHER'S STARTING
* CELL IS COMPLETELY SEARCHED
FRAC(T,1)=X0(I)
DO 10 T=2,ITMAX
* ... FOR OTHER TIME PERIODS SUM
* TOTAL FLOW INTO CELL I
FRAC(I,T)=0
DO 1 J=EP§I),EP§I+1)-1
FRAC(I,T)=FRAC(I,T)+A(ADD(J))*X(ADD(J),T~1)
CONTINUE
RETURN
END

*******nggg}c}z;yf*Sﬁgﬂ,’{s&%&fﬁs&gﬁg K e sk v s o o e e o e vk e vk vk ok ok e ke e e e e ok ke de e e e e e

* PROGRAMMER: FRANK CALDWELL DATE: SEP 87 *
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* PURPOSE:
THIS PROGRAM CALCULATES THE PARTIAL DERIVATIVES OF THE OBJECTIVE
FUCTION WITH RESPECT TO EACH ARC IN THE NETWORK.

*
*
*
*
INPUT: *
T5MASS: THE UPDATED TARGET DISTRIBUTION FOR TIME IT. THIS ACCOUNTS *
FOR ALL SEARCHES AND TRANSITIONS UP TO AND INCLUDING IT,  *

FRaC: A MATRIX GIVING THE FRACTIOM CF EACH CELL SEARCHED FOR EACH :
*

*

*

*

*

*

TIME PERIOD.

CUTPUT:
GRAD: A MATRIX OF PARTIAL DERIVATIVES WITH RESPECT TO EACH ARC
IN THE NETWORK. GRAD(J,T) IS THE PARTIAL DERIVATIVE OF THE

OBJECTIVE FUNCTION WITH RESPECT TO ARC J.
****************************************************x*****************

+++ DECLARE / INITIALIZE

b b b I 2 b 3D I b b 0 O g

INTEGER TMAX,EPLEN

PARAMETER (NCELLS=25, TMAX=10, EPLEN=26 , LENGTH=200
INTEGER EP(EPLEN),ADJ(LENGTH),T,ADD(LENGTH) BB( g

REAL A(LENGTH),R(NCELLS,TMAX).S(NCELLS, TMAX), FRACéN ELLS, TMAX),

1GRAD(LENGTH, TMAX) TRANS (LENG H) X(LENGTH TMAX) , X0 NCELLS),
2TGMASS (NCELLS
COMMON EP.ADJ,TRANS,A,XC,ADD, ITMAX,BB
* «+« CALL REACH,SURVIV
CALL REACH(TGMASS,FRAC,R)
CALL SURVIV(FRAC,S)
* «++ CALCULATE PARTIAL DERIVATIVES
* FOR EACH FLOW X(.,T)

DO 10 T=1,ITMAX-1
DO 10 ‘I=1,NCELLS
D8M¥g~3R(I T+1)*EXP( I*FRAC(I T+1) )*S(I,T+1)
GRAD(AD 2J) T)—DUHHY*A(ADD(J))
10 CONTINUE

RETURN
END

SUBROUTINE INPUT(IPATH,TGSTRT 6 DELMI 2
Fedededekde ek e A R Ak Rk ek ok AR Ak e A ek e ok ek ke e e ek e de e de e e e e e ek ke s e ek e e ek

: PURPOEEOGRAMMER FRANK CALDWELL DATE: SEP 87 :
*  THIS PROGRAM READS IN DATA FROM AN INPUT FILE FOR USE FOR THE *
* CONSTRAINED SEARCH ALGORITHM. *
KRR R KR AR A RA KRk KRR R R A K e A ek ek ok ek e e dededede ek de ek ke e de e de e de e ok ok
* «++ DECLARE / INITIALIZE

INTEGER TMAX,6 EPLEN

PARAMETER (NCELLS=25,TMAX=10,EPLEN=26,LENGTH=200)
lgg?%ﬁgR)NADJ ,EP(EPLEN) , ADJ (LENGTH) , IPATH(THAX) T,ADD(LENGTH),

REAL TRANS(LENGTH) ,A(LENGTH), TGSTRT(NCELLS) XO(NCELLS)

COMMON EP,ADJ, TRANS , A ,%0,aD0D,1

voe READ IN DELMIN, THE DESIRED
ACCURACY OF THE LOWER BOUND
READ(01,*) DELMIN

... READ IN ADJACENT CELL NUMBERS
IN ADJACENCY LIST FORM WITH
ENTRY POINT ARRAY, EP(.), AND
HEADARRAY, ADJ(.)

b A 2 O S

T=1
0O 5 I=1,NCELLS
EP(I)=T

READ(01,*) DUMMY,NADJ, (ADJ(J), J=T,T+NADJ-1)
T=T+NADJ
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§ CONTINUE
apsncsnzs+1)= T
aDJ(T)=0

++os FOR EACH CELL I GENERATE THE
ADDRESS ARRAY ADD(.) WHICH
GIVES THE ADJACENCY LIST
ggg{T%ONS FOR ALL FLOWS INTO

b B 0 B g

L=l
0 8 I=1,NCELLS
DO 8 K=1,LENGT
IF(ADJ(KB E? .I) THEN

L‘L+1
END IF
8 CONTINUE
ADD(L)=0

««+ READ IN TARGET TRANSITION
PROBABILITIES TRANS (.) IN
ADJACENCY LIST FORM
DO 10 I=1,NCELLS

READ (01, %) DUMMY (TRANS(J), J=EP(I),EP(I+1)-1)

NTINUE
TRANS(EP(NCELLS+1))=0

* ... READ IN SEARCH EFFECTIVENESS
* &(.), IN ADJACENCY LIST FORM
po zlgsgﬁ(lofmff' DUMMY, (A(J), J=EP(I).EP(I+1)-1]
-
20 CONTINUE ) )
A (EP(NCELLE+1) )=0

* ¥ ¥

10 C

... READ IN STARTING SOLUTION,
IPATH(.)

* O *

READ(O1,*) (IPATH(T), T=1,TMAX)

+++ READ IN INITIAL TARGET
DISTRIBUTICN, TGSTRT(.)

* k¥

DO 30 I= 1 NCELLS
30 READ(01,*) DUHHY TGSTRT(I)

11 RETURN
END

SUB OUTINE LOWBND DELMIN,T STRT, 1T, PLOW, P IPATH)
e e e e s e e e e e e Fe e e e e e e e e e e e e 3 T 7 ok o e e e v e e i ek ek e e Fe K e e * * kdkkkikkkdkkikk
PURPOEEOGRAMHER: FRANK CALDWELL DATE: SEP 87
THIS SUBROUTINE REPRESENTS THE SUBSTANTIAL PART OF THE DIVISIBLE
EFFORT PROGRAM. IT CONTROLS THE ITERATIVE SEQUENCE OF THE SOLUTION
TECHNIQUE BY CALLING VARIOUS SUBROUTINES TO LINEARIZE THE OBJECTIVE
FUNCTION, FIND THE SHORTEST PATH, ETC.

*
*
*
*
*
*
*
INPUTS : *
DELMIN: THE USER DEFINED INTERVAL OF ACCURACY REQUIRED FOR THE *
LOWER BOUND. THIS ALSO SPECIFIES THE STOPPING CRITERIA *

TGSTRT: gNﬂgggIéaggVING THE TARGET STARTING DISTRIBUTION :
IT: AN INTEGER GIVING THE DEPTH OF THE TRIAL PATH. *
PBEST: THE CURRENT BEST PROBABILITY OF NONDETECTION. *
IPATH: THE CURRENT BEST INTEGER PATH CORRESPONDING TO PBEST. :

*

*

*

OUTPUTS :
PLOW: THE VALUE OF THE
ek ik d i ki ko ko kR ARk A X

bR R i 2 b b I b b b b b B b

LOWER BOUND.
Jede T ek 7 dede e ek ok e de e de e ok e sl ek ok de e e e e vk s ok ok ok ok e e

77




i—-—x—mmmxn

* ¥

X NNEN

«++ DECLARE / INITIALIZE
INTEGER TMAX, EPLEN

gﬁ%%g§§!§§gC§LLS'25 TMAX«10, EPLEN=26 , LENGTH=200)
INTEGER EPéEPLEgleDJ(LENGTH BB(THAX&tT ADD LENGTH) IPATH(TMAX)

REAL 6 O\NCELL raac
1TGMASS (NCELLS ), S (NC ‘ & Gnaé z
2TRANS (LENGTH) , kz LGcrn THAX ENGT rqu) rcsrni NCELLS)
COMMON EP,ADJ,TRANS,A,X0,AD

ves RESET TIME HORIZON
ITMAX=TMAX-IT+1

ICOUNT=1
CALL PNDETI(TGSTRT,IT,TGMASS)

« CALCULATE FLOW X1 FOR THE
INITIAL FEASIBLE SOLUTION.
S & THE STARTING SEARCH
FFORT IN CELL I
DO 10 I=] ,NCELLS
Xo(I)=0
10 CONTINUE
XO(BB(IT))=1

xnngg-gr{aa IT))
DO 11'J=1 EP(NCELLS+1) 1
X1(3,1)=0

11 CONTINUE
X1 (INDEX a3=
INDEx=zP( J(INDEX))
12 CONTINUE

*kkkkkkkhkkkk LOWER BOUND AND FRANK-WOLFE (F.W.) METHOD F*didkikichhddkikk

*
*

b B A B

* ¥

* ¥ % %

L 3 & 4

+++ FIND PND1, INITIAL MNON-

DETECTION PROBABILITY
CALL PNDET(TGMASS,X1,FRAC,PND1)

... IF PNDl IS LESS THAN PBEST
THE TRIAL PATH CANNOT BE
FATHOMED; RETURN.
15 TF((PND1.LT.PBEST).AND.(IT.NE.1)) GO TO 20
«.. IF NOT...CONTINUE WITH FRANK-
WOLFE METHOD. LINEARIZE OBJ.
FUNCTION AND FIND THE EXTREME
POINT SGLUTION, X2.
CALL GRADF{TGNASS ,FRAC, GRAD)
CALL NEWP(TGMASS,GRAD,%2)
... COMPUTE THE LOWER BOUND PLOW
FOR THE CURRENT SOLUTION
CALL BOUND(X1,X2,GRAD,DELTA)
PLOW=PND1~DELTA
... IF PLOW IS GREATER THEN PBEST
THE TRIAL PATH IS FATHOMED.
ALSO, IF PLOW IS5 KNOWN WITHIN
DELMIN RETURN.

IF ((DELTA.GE.~-DELMIN) .OR. (PLOW.GT.PBEST)) GOTO 20

+«« IF NOT...CHECK EXTREME POINT
SOLUTION X2 TO SEE IF IT IS
BETTER THAN CURRENT PBEST. BY
F.W. THIS IS GUARANTEED TO BE
AN INTEGER SOLUTION.
CALL PNDET(TGMASS, XZ FRAC ,PND2)
IF(PND2.LT.PBEST) TH
PBE‘T=PNDZ
00 16 T=1
IPATH(T)‘BB(T)
16 CONTINU
Lo 17 T=2 ITMAX
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DO 17 =L NeELLS
c;z % .GT..97) THEN
IT+T-1)a1

17 CONTI NUE
IF (IT.NE. 1) NRITE&OS &Ag F5. 4 1 i X,12)) ') 'PBEST=' ,PBEST,

1
END IF
«+« LINE SEARCH FROM X1 TO X2
RESULT IS X4 AND PND4

CALL SEARCH(TGMASS,X1,PND1,X2,PND2,X4,FRAC,PND4)
««. IF IMPROVEMENT FROHRg¥D1 TO

PND4 IS SHALL THEN URN.
THIS STOPS F.W. IN THE TAILS.

*> ¥

* ¥ ¥ %

IF (ICOUNT.GT.50) GO TO 20
++« UPDATE PNDl AND XI‘J ,T)
AND CONTINUE WITR

»> ¥

PND1=PND4
DO 27 T=1,ITMAX-1
po 27 a-1 BP(NCELLS+1) 1
X1(3,T)=x4(3,T)

J,
27 CONTINUE 4
ICOUNT=ICOQUNT+1
GO TO 15

20 IF(IT.NE,1) WRITE(06,100) PBEST PNDI PLOW, ICOUNT, (BB(T), T=1,IT)
100 Foanahés(z JF5.4),2X,12,3%,10(12,1%

END

*******3255293 §E °¥E££EEE£*£E§E£§£ dededededesesededk vedededede ook de e Ak v Ak e dedesk ek ok e de
* PURPOPEOGRAMHER: FRANK CALDWELL DATE: SEP 87

* THIS SUBROUTINE CONDUCTS A MARKOV TRANSITION ONE PERIOD FORWARD IN
* IN TIME. IT ESSENTIALLY CONDUCTS THE QPERATION OF POST-MULTIPLYING

: §§% ¥ow VECTOR OF TARGET PROBABILITY MASSES BY THE MARKOV TRANSITION

* INPUT:
: TGTDN: THE CURRENT TARGET DENSITY

* QUTPUT:

*
RS L L TSI DR RO CRL o R L

* +++ DECLARE / INITIALIZE

INTEGER EPLEN, TMAX

PARAMETER (NCELLS=25, TMAX=10, EPLEN=26 LENGTH-ZOO%H

INTEGER E EPLEN AﬁJsLENGTH; ,BB(TMAX) AD éLENG z
1§§a%h§° gELLLS RANS (LENGTH A(LENGTH ,TGIDN(NCELLS),

COHHON EP, ADJ TRANS ,A,%0,ADD, ITMAX,BB

DO 5 I=1,NCELLS
§ TGTDNF(I)=0
DO 10 I=1,NCELLS
0 10 J=EP(I),EP(I+1)-1
TGTDNF( J(3) )=TGTIDNF(ADJ(J) )+TGTDN(I)*TRANS (J)
10 CONTINUE
RETURN
END

AN N

SUBROUTINE MOVEP(TGTDN D.
**********************flg;***iT ***2**************k********************
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TGTDNP: TSETPQET TARGET DENSITY ONE TRANSITION PERIOD BACKWARDS IN
***********i******&**************************************x************

«++ DECLARE / INITIALIZE
INTEGER EPLEN, TMAX

PARAMETER (NCELLS=25 TMAX=10 ,EPLEN=26 , LENGTH=200

INTEGER E EPLEN%,AﬁJ LENGTH;,BB(THA¥& ADD(LENG z

REAL XO(NCELLS),TRANS(LENGTH),A(LENGTH), TGTDN(NCE LS),
1TGTDNP(NCELLS)

COMMON EP,ADJ,TRANS,A,X0,ADD,ITMAX,BB

DO 5 I=1,NCELLS
5 TGTDNP(I)=0
DO 10 I=1,NCELLS
DO 10 J=EP(I), EP(I+1)-1
TGTDNP (I)=TGTDNP(I)+TGTDN(ADJI(J))*TRANS(JI)
10 CONTINUE
RETURN
END

: PURPOggOGRAHH!R: FRANXK CALDWELL DATE: SEP &7 :
2

* THIS SUBROUTINE CONDUCTS A MARKOV TRANSITION ONE PERIOD BACKWARD *
* IN TIME. IT ESSENTIALLY CONDUCTS THE OPERATION OF POST-MULTIPLYING *
* THE ROW VECTOR OF TARGET PROBABILITY MASSES BY THE MARKOV TRANSITION *
: MATRIX FOR TRANSITION BACKWARDS iN TIME. :
* INPUT: *
: TGIDN: THE CURRENT TARGET DENSITY :
* »
x QUTPUT: *
* *®
] *
*

SUBROUTINE NEWP(TGMASS,GRAD X22
ook s de ok v 3¢ e e AR e i ek ok ok A e e de o e e e ok ok ok e e e sk sk e e e v e vl e g vk vk v e e e e e sk v ok vk v e e ke e
PURPOE%OGRAHMER: FRANK CALDWELL DATE: SEP &7

:

GIVEN THE VALUES OF GRAD(J,T), THIS SUBROUTINE LINEAKIZES THE

OBJECTIVE FUNCTION AND THEN FIND THE SHORTEST PATH THROUGH THE
NETWORK VIA DYNAMIC PROGRAMMING. IT ALSO CALCULATES THE SET OF
FEASIBLE FLOWS ASSOCIATED WITH THE EXTREME POINT SOLUTION, X2.
THIS METHOD OF SOLUTION IS KNOWN AS THE FRANK-WOLFE PROCEDURE.

*
*
*
*
*
Y
*
*
INPUT: *
TGMASS: THE UPDATED TARGET DISTRIBUTION FOR TIME IT. THIS ACCOUNTS *
FOR ALL SEARCHES AND TRANSITIONS UP TO AND INCLUDING IT.  *

GRAD: A MATRIX OF PARTIAL DERIVATIVES WITH RESPECT TO EACH ARC *
IN THE NETWORK. GRAD(J,T) IS THE PARTIAL DERIVATIVE OF THE *
OBJECTIVE FUNCTION WITH RESPECT TO ARC J. *
*

*

L3

*

*

OUTPUT :
x2: THE SET OF FEASIBLE FLOWS ASSOCTATED WITH THE EXTREME POINT.
THESE FLCWS ARE ALONG THE SHORTEST PATH THROUGH THE LINEARIZED

NETWORK .
Fodedk e sk dese e ded ok ke e de e o ok e ke ek sk o e e e e e st e ek ok e sk e e ke ek ke ke ok ok ok ok ok e e ok e ek o ke ek ok ok ok
«++ DECLARE/INITALIZE

LA B B B b B A 3

INTEGER EPLEN,TMAX
PARAMETER (NCELLS=25, TMAX=10 ,EPLEN=26 , LENGTH=200)
1§§$§§§§ EP(EPLEN) ,ADJ (LENGTH) ,NEXT (NCELLS , TMAX) , T, ADD (LENGTH) ,
REAL Aé ENGTH) , TRANS (LENGTH) , VOC(NCELLS , TMAX) , GRAD (LENGTH, TMAX) ,
1XCELL( csLLsg %2 (LENGTH, TMAX) ,D (NCELLS) , X0 (NCELLS) ,
2TGMASS (NCELLS
COMMON EP,ADJ, TRANS,A,X0,ADD, ITMAX, BB

Rddekdkdokndkdkkkkhkkkikk FIND SHORTEST PATH *ikikikkdskkiiirkikikihiiiikikik

* «+« SET VOC(I,TMAX)=0
DO 10 I=1,NCELLS
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vocC TMAX =0
°x§(trxrnaﬂ)=o
10  CONTINUE

... CALCULATE THE VALUE O
CONTINUING voc& } xnsr
TRACK OF BEST DECISION WITH
ARRAY NEXT(I

>4 %N

DO 2{?0 T;OIT%!AX- 1,1, i-l
V0§§I T%’VOC ADJ(EP(I)),T+1)+GRAD(EP(I),T)

5= P(I + LEP(I+1)-1
raran=vo (ADJ(J% T+1;+GRAD(J ,T)

(TRIAL L;r TRi T)

=

NEX i
1F
20 COMTINUE
RkddkhkkkkkhkchkRkA CALCULATE NEW FLOW, X2(J,T) #adikiikdidkiinhkikiihk

* ««. SET XCELL(I EQUAL TO START(I)
* WHERE XCELL(I) KEEPS TRACK OF
* THE TOTAL SEARCH EFFORT IN
* EACH CELL.
DO 30 I=1,NCELLS
XCELL{I;=XO(I)
DUMMY (I )=0
30 CONTINUE
DC 35 T=1,ITMAX-1l
DO 35 §;s§(13 gP(NCELLS+1)-1
35 CONTINUE
* «.. GENERATE X2 a.rg FROM
* X2(J,T-1) AND NEXT(I,T).
DO 50 T=1,ITMAX-1
LO 40 'I=1, NCELLS %
X2(J,T)=XC
uénw ADJ(J))'D&HHY(ADJ(J))+X2(J,T)
40 CONTINUE
* PRINT *, 'XCELL',XCELL
* <+« RESET XCELL(I) FOR NEXT TIME
* PERIOD.
DO 50 I=1,NCELLS
XCELL(1)=0
XCELL({I)=DUMMY(I)
DUMMY (I)=0
50 CONTINUE
RETURN
END

********Egsggiﬁ*fﬁsﬂzgﬁﬁsﬁ**Eﬁ‘&**?)*********************u*******

PROGRAMMER: FRANK CALDWELL DATE: SEP 87
PURPOSE :

GIVEN A SET OF FLOWS, X, THIS PROGRAM CALCULATZS THE PROBABILITY
OF TARGET NONDETECTION.

*
*
*
*®
¥
INPUT: *
TGMASS: THE UPDATED TARGET DISTRIBUTION FOR TIME IT. THIS ACCOUNTS *
FOR ALL SEARCHES AND TRANSITIONS UP TO AND INCLUDING IT.  *
*

%*

*

*

*

*

X: A SET OF FEASIBLE FLOWS

OUTPUT:
PND: THE PROBABILITY OF NONDETECTION
FRAC: A MATRIX GIVING THE FRACTION OF EACH CELL SEARCHED FOR EACH

TIME PERIOD,
e e de ek e g e ok ok ok e ok sk sk e e e ke e e sk ok ok o e e e ek e e e o e e e e ek ok ok ok sk e ke de e e dedede e ok ke e

b b b 2 B 3 b I I b B R
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* ... INITIALIZE / DECLARE

INTEGER TMAX,EPLEN A
PARAMETER /NCELLS=25,TMAX=10 EPLEN=26,LENGTH=200
INTEGER EP{CPLEN),ADJ(LENGTH) ADD(LENGTH) BB (TMAX),T
REAL.XO(NCELLSQ TGMAS (NCELLS?,X(LENGTH,TMAX , FRAC(NCELLS, TMAX) ,
1A(LENGTH) ,TRAN ggiNGTH),TGTDN NCELLS%,TGTDNF NCELLS)
COMMON EP,ADJ,TRANS,A,X0,ADD,ITMAX,B

* ... DETERMINE THE FRACTION OF
* EACH CELL THAT IS SEARCHED
CALL FRACT(X,FRAC)
* «.. INITIAL TARGET DENSITY IS SET
* ggUAL TO THE STARTING TARGET
* SS
DO 10 I=1,NCELLS
TGTDN(1)=TGMASS (1)
10 CONTINUE
DO 20 T=1,ITMAK
DO 15 '1=1,NCELLS
* ... ACCOUNT FOR SEARCH IN TIME
* PERIOD T
TGIDN(I)=TGTDN(I)*EXP(~FRAC(I,T))
15 ¢~ " TNUE
* ... MOVE TARGET DENSITY FORWARD
* IN TIME ACCORDING TO MARKOV
* TRANSITION MATRIX
CALL MOVEF(TGTDN,TGTDNF)
* ... UPDATE TARGET DENSITY
DO 20 I=i,NCELLS
TGTDN(I)=TGTDNF(I)
20 CONTINUE
%* ... AFTER ITMAX TIME PERIODS OF
* SEARCH, SUM REMAINING TARGET

MASS TO FIND PND
PND=y
DO 30 I=1,NCELLS
PND=PND+TGTDN(I)
30 CONTINUE
RETURN
END

SUBROUTINE PNDETI(TGSTRT, IT, TGMASS

ek e e e ke e e e K ok ok ok 7k e Tk ok SR 37k ke e 7 7k e 6k ok ek ok 7k sk o ok e e ek oK ok ke o ok ok e sk e e ok ok ok ok ok ok ke ke

PURPOEEOGRAMMER: FRANK CALDWELL DATE: SEP 87 *
GIVEN AN INTLGER SOLUTION THIS PROGRAM FINDS THE DISTRIBULTION *

OF 1HE REMAINING TARGET MASS FOR TIME PERIOD IT ACCOUNTING FOR ALL *

SEARCHES AND TRANSITIONS UP TO THE START OF TIME PERIOD IT.

[ >

INPUTS:
TGSTRT: A MATRIX GIVING THE TARGET STARTING DISTRIBUTION ON THE

*

*

x

*

GRID. * |

17: THE DEPTH OF THE TRIAL PATH. :
*

*

*

*

OUTPUTS :
TGMASS: THE YPDATED TARGET MASS FOR TIME IT.

Fokek ks ook dodk ok Rk dedok ok ok ek Aok ke ek ke ek Ak sk ok vk ook ek ek ek ok ok ok
-«. DECLARE / INITIALIZE

b o o b g b g

TNTEGER EPLEN,TMAX

PARAMETER (NCELLS=25, TMAX=10 , EPLEN=26 , LENGTH=200)

INTEGER EP(EPLEN),ADJ(LENGTH) ,T,BB(TMAX) , ADD(LENGTH)

REAL XO(NCELLS),TGMAS (NCELLss,TRANS(LENGTH),A(LENGTH),
1FRACI (NCELLS ) ,FMASS(NCELLS) , TGSTRT(NCELLS)

COMMON EP,ANJ,TRANS,A,X0,ADD, ITMAX,BB
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DC 10 I=1,NCELLS
TGMASS (1)=TGSTRT(I)
10 CONTINUE

IF(IT.EQ. }TG? TO 50

DO 30 TI=1
* +++ ACCOUNT FOR SEARCH
» TGMASS(BB(T))=TGHASS(BB(T))*EXP(-1.0)
* A .+. TRANSITION FORWARD IN TIME

CALL MOVEF(TGMASS,FMASS)

DO 30 I=1,NCELW.S
: TGMASS (T)=FMASS(I)
30 CONTINUE

50 RETURN
: END

.+« UPDATE

SUBROUTINE REACH(TGMASS, FRAC R) ‘
Fook e de Rk 7o ko ek A ek ok e ek o ke e e ke ek ek e sk ek e ok e e e ek ok ek

b O S O 2 O ol

PURPO§§OGRAMMER: FRANKR CALDWELL DATE: SEP 87 :
THIS SUBROQUTINE CALCULATES THE PROBABILITY OF REACHING CELL I IN *
TIME PERIOD T. R(I,T). NOTE THAT PROBABILITIES IN THE REACH MATRIX *
-R(I,T) DO NOT ACCOUNT FOR THE SEARCH IN CELL I FOR TIME T. :.
INPUT: *
TGMASS: THE UPDATED TARGET DISTRIBUTION FOR TIME IT. THIS ACCOUNTS *
FOR ALL SEARCHES AND TRANSITIONS UP TO AND INCLUDING IT. *
FRAC: A MATRIX GIVING THE FRACTION OF EACH CELL SEARCHED FOR EACH *
- TIME PERIOD. :
OUTPUT: *
* 'R; THE MATRIX OF DIMENSION NCELLS BY TMAX OF REACH PROBABILITIES  *
ek e i e Rk ok 3K K R ok ok e o e 7k ek ke e 3 o ke 7k 7 e ok 3k ke e ok o e gk ok e ke 3k 3k e ik ok ok ¢ ke ke K e ok 7 7k e o ke ke o ke
* 1
* - ... DECLARE / INITIALIZE /
INTEGER TMAX,EPLEN i
PARAMETER(NCELLS=25,TMAX=10 ,EPLEN=26 ,LENGTH=200)
INTEGER EP(EPLEN),ADJ(LENGTH),T,ADD(LENGTH),BB(TMAX;
REAL FRAC(NCELLS,TMAX), TGMASS(NCELLS),R(NCELLS, TMAX), TRANS (LENGTH)
1,A(LENGTH), XO(NCELLS),TGTDN(NCELLS ) , TGTDNF (NCELLS)
COMMON EP,ADJ,TRANS,A,XC, ADD,ITMAX,BB
* ... FOR TIME PERIOD 1 SET R(I,1l)
* EQUAL TO THE PROBABILITY
* THE TARGET STARTS IN CELL I
DO 5 I=1,NCELLS
R(I,1)=TGMASS(I)
5 CONTINUE
* ... ITERATIVELY CALCULATE R(I,T)
* FOR ALL OTHER TIME PERIODS
DO 20 T=1,ITMAX-1
* «++ ACCOUNT FOR SEARCH IN TIME T
DO 10 I=1,NCELLS
TGTDN(I)=R(I,T)*EXP(-1.0*FRAC(I,T))
10 CONTINUE
* .+« MOVE DENSITY FORWARD IN TIME
CALL MOVEF(TGTDN,TGTDNF)
* «e+ SET R(I,T+1)
DO 20 I=1,NCELLS
R(I,T+1)=TGIDNF(I)
20 CONTINUE
RETURN
END
*******fEEESEEEfE*EE§§E§*59¥§§§4f%*fﬂ?&*ff*f??f*fiﬁffﬁﬁifﬂ?ﬁl***********




PURPOEEOGRAHMER: FRANK CALDWELL DATE: SEP 87

THIS PROGRAM CONDUCTS A QUADRATIC LINE SEARCH ALONG THE LINE FROM
START POINT X1 TO EXTREME POINT X2 FOR THE POINT THAT MINIMIZES THE
PROBABILITY OF TARGET NONDETECTION. THIS MINIMIZING POINT IS THEN
USED AS THE START POINT FOR THE NEXT FRANK-WOLFE ITERATION.

INPUT: -
TGMASS: THE UPDATED TARGET DISTRIBUTION FOR TIME IT. THIS ACCOUNTS
FOR ALL SEARCHES AND TRANSITIONS UP TO AND INCLUDING IT.
X1l: A SET OF FEASIBLE FLOWS ASSOCIATED WITH THE START POINT
X2: A SET OF FEASIBLE FLOWS ASSQCIATED WITH THE EXTREME POINT
PND1: THE PROBABILITY OF NONDETECTION FOR SEARCH FLOWS AS GIVEN

BY X1.
PND2: ggE PROBABILITY OF NONDETECTION FOR SEARCH FLOWS AS GIVEN

b b B b 2 b b 2 2 2 b b 4

OUTPUT
x4: THE SET OF FEASIBLE FLOWS ASSOCIATED WITH THE MINIMIZING POINT
FROM THE QUADRATIC LINK SEARCH.
FRAC - THE MATRIX SHOWING THE FRACTION OF CELL I SEARCHED DURING
TIME PERIOD T FOR THE SET OF FLOWS GIVEN BY X4

4: THE PROBABILITY OF NONDETECTION FOR FLOWS GIVEN BY X4.
**********************************************************************

... DECLARE / INITIALIZE
INTEGER TMAX,EPLEN

PARAMETER (NCELLS=25,TMAX=10 EPLEN=26, LENGTH=200%
INTEGER EP(EPLEN),ADJ( LENGTH% ,T,ADD (LENGTH) , COUN é
REAL X1(LENGTH,TMAX),X2(LENGTH, TMAXQ(EEéNCELLSZ K3 (L NGTH TMAX),

H O ko OF O Ok ok ok X 3k %k 3k Ok 3k O F O Ok Ok O Ok Ok % b
b I R 3 2 B b b g b 2 )

1X4 (LENGTH, TMAX) , TGMASS(NCELLS) TRAN GTH) ,A(LENGTH) ,
2FRAC (NCELLS, TMAR)
COMMON EP,ADJ,TRANS,A,X0,ADD,ITMAX,BB
COUNT=1
* ... GENERATE X3 = .5*(X1+X2)
5 DO 10 T‘l ITMAX-

10 J=1,EP(NCELLS+1)-1
X3(J,T)=.5%K1(J,T)+.5%K2(J,T) i
10 CONTINUE

CALL PNDET(TGMASS,X3,FRAC,PND3)
* «++ GENERATE THETA

THETA= .5%(-.75*PND1+PND3~.25*PND2)/(=-.5*PND1+PND3~-.5%PND2)
IFéTHETA .GE. l) THETA=1.0
IF(THETA.LE..001) THETA=.001

* +++ GENERATE X4
Do 20 T-l ITMAX-1
0 20 J=1,EP(NCELLS+1)-1
X4(J T)'THETA*XZ(J T)+(1-THETA)*X1(J,T)
20 CONTINUE
CALL PNDET(TGMASS,X4,FRAC,PND4)

«.. IF THETA IS 'GOOD' THEN STOP
OTHERWISE FOR EXTREME THETAS
NARROW INTERVAL AND CONDUCT
ONE MORE SEARCH ;

IF((THETA.LT..1.OR.THETA.GT..9) .AND.COUNT.LT.2) THEN !
, COUNT=COUNT+1
* ... CHECK TO NARROW INTERVAL |
IF(THETA.LT..5) THEN !
IF (PND4.LE.PND3) THEN

* Ok 4

PNDZ=PND3
DO 40 T=1,ITMAX-1
D0’ 40 J=1,EP ( CELLS+1) 1
X2(J,7)=K3(J,T)
40 CONTINUE
ELSE
PND1=PND4

DO 50 T=1,ITMAX-1

84
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*

b b o b b P b 3P b S b g b

DO 50 J=1,EP(NCELLS+1)-1
X1(J,T)=X4(2,T)
50 CONTINUE
END IF

E
IF(PND4.LE.PND3) THEN
PND1=PND3
DO &0 T=1,ITMAX-1
DO 60 J=1,EP(NCELL$+1)-1

X1(J,T)=X3(J,T
60 CONTINUE
ELSE

PND2=PND4
DO 70 T=1,ITMAK-1
DO 70 J=1,EP(NCELLS+1)-1
X2(J,T)=X4(J,T)

70 CONTINUE
END IF
END IF
GO TO 5
END IF
RETURN
END

SUBROUTINE SURVIV(FRAC Sl L -
Kk kIR RRRARKKARK KKK RKFRKRRRFRAR KA R KRR AR IR AR R Rk F R ARk Rk Rk dokkkddk

PURPOEEOGRAMMER: FRANK CALDWELL DATE: SEP 87 :
THIS PROGRAM CALCULATES THE PROBABILITY OF SURVIVING TO TIME PERIOD*
TMAX GIVEN THAT THE TARGET IS NONDETECTED IN CELL I BY TIME T.
INPUT:
FRAC: A MATRIX GIVING THE FRACTION OF EACH CELL SEARCHED FOR EACH
TIME PERIOD.
CUTPUT:
S; THE MATRIX OF DIMENSION NCELLS BY TMAX OF SURVIVE PROBABILITIES
khkhkkhkhkkhkAkRRAARRkRhAkAhhkhhkRkkhkhhhrhkhhhkhkihkhhkhhkrhkhkhhkikhhkrkkhrkkhkihhkik

b I 2 b 2 B 2

+++ DECLARATIONS
INTEGER TMAX,EPLEN
PARAMETER (NCELLS=25,TMAX=10,EPLEN=26 ,LENGTH=200)
INTEGER EP(EPLEN),ADJ(LENGTH),T,ADD(LENGTH),BB(TMAX
REAL FRAC(NCELLS,TMAX),S(NCELLS,TMAX), TRANS(LENGTH) ,A(LENGTH),
1XO(NCELLS),TGTDN(NCELLS),TGTDNP(NCELLS)
COMMON EP,ADJ,TRANS,A,X0,ADD,ITMAX, BB

... SET S(I,TMAX) = 1 FOR ALL I.
DO 5 I=1,NCELLS
S(I,ITMAX)=1
5 CONTINUE

... ITERATIVELY CALCULATE S(I,T).
DO 20 T=ITMAX,2,-1
... ACCOUNT FOR SEARCH IN TIME T
DO 10 I=1,NCELLS
TGTON(I)=S (I, T)*EXP(-1.0*FRAC(I,T))

10 CONTINUE
+++ TRANSITION BACKWARD IN TIME
CALL MOVEP(TGTDN,TGIDNP)
<o+ SET S(I,T-1)

DO 20 I=1,NCELLS
S(I,T-1)=TGTDNP(I)
20 CONTINUE

RETURN
END
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