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EXECUTIVE SUMMARY

The research conducted under contract AFOSR 83-0278 is reported in seven tech-
nical reports corresponding to Chapters 1 through 7 in this report. A brief
description of each study follows:

B CHAPTER 1 USING TWO SEQUENCES OF PURE NETWORK PROBLEMS
~ TO SOLVE THE MULTICOMMODITY NETWORK FLOW PROBLEM

Summary: This paper presents a new algorithm for solving large multicommodity
network flow problems. The work was motivated by the Casualty
Evacuation Model originally developed by Lt. Col. Dennis Mclain,
Captain Robert Chmielewski continued this activity and eventually a
modification of this model was solved by the P.I. and Captain
Chmielewski on a CDC Cyber 205. All of this activity was directed by
Mr. Thomas Kowalsky of DSC/Plans of MAC Headquarters,

Publication Status: This work has not been submitted for publication.

Background: This was the dissertation research of ™. Ellen Allen.
CHAPTER 2 ORKS WITH SIDE CONSTRAINTS:
,AN LU FACTORIZATI N_QPDATE) o ~

Summary: An important class of mathematical programming models which are fre-
quently used in logistics studies is the model of a network problem
having additional linear constraints. A specialization of the primal
simplex algorithm which exploits the network structure can be
applied to this problem class. This specialization maintains the
basis as a rooted spanning tree and a general matrix called the
working basis. This paper presents the algorithms which may be used
to maintain the inverse of this working basis as an LU factoriza-
tion, which is the industry standard for general linear programming
software. Our specialized code exploits not only the network struc-
ture but also the sparsity characteristics of the working basis.,
Computational experimentation indicates that our LU implementation
results in a 50 percent savings in the non-zero elements in the eta
file, and our computer codes are approximately twice as fast as MINOS
and XMP on a set of randomly generated multicommodity network flow
problems.

Publication Status: Published in The Annals of the Society of Logistics
Engineers, 1, 1, (1986), 66-85.

Background: This work is a summary of the dissertation research of Dr,
Keyvan Farhangian.
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QHAPTER 3 THE FREQUENCY ASSIGNMENT PROBLEM:
A SOLUTION VIA NONLINEAR PROGRAMMING

Summary: This paper gives a mathematical programming model for the problem of
assigning frequencies to nodes in a communications network. The
objective is to select a frequency assignment which minimizes both
cochannel and adjacent-channel interference. In addition, a design
engineer has the option to designate key links in which the avoidance
of jamming due to self interference is given a higher priority. The
model has a nonconvex quadratic objective function, generalized
upper-bounding constraints, and binary decision variables. We
developed a special heuristic algorithm and software for this model
and tested it on five test problems which were modifications of a
real-world problem. Even though most of the test problems had over
600 binary variables, we were able to obtain a near optimum in less
than 12 seconds of CPU time on a CDC Cyber~-875.

Publication Status: Published in Naval Research Logistics, 34, (1987), 133-
139,

Background: This was our first application in the communications area.

™ CHAPTER 4 A GENERALIZATION OF POLYAK'S CONVERGENCE RESULT
= = "FOR SUBGRADIENT oPrlMIZATIBN

Summary: This paper generalizes a practical convergence result first presented
by Polyak., This new result presents a theoretical justification for
the step size which has been successfully used in several specialized
algorithms which incorporate the subgradient optimization approach.

Publication Status: Published in Mathematical Programming, 37, 3, (1987) 300-
313,

Background: The convergence theory presented in this paper was
motivated by the good computational results achieved by
Drs. Ellen Allen and Bala Shetty in their dissertations.

\EHAPTER 5 THE EQUAL FLOW EBOBLEM)

Summary: This paper presents a new algorithm for the solution of a network
problem with equal flow side constraints. The solution technique is
motivated by the desire to exploit the special structure of the side
constraints and to maintain as much of the characteristics of pure
network problems as possible. The proposed algorithm makes use of
Lagrangean relaxation to obtain a lower bound and decomposition by
right-hand-side allocation to obtain upper bounds. The lLagrangean
dual serves not only to provide a lower bound used to assist in
termination criteria for the upper bound, but also allows an initial
allocation of equal flows for the upper bound. The algorithm has
been tested on problems with up to 1500 nodes and A000 arcs.
Computational experience indicates that solutions whose objective
function value is well within 17 of the optimum can be obtained in

17-65% of the MPSX time depending on the amount of imbalance inherent
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0 in the problem. Incumbent integer solutions which are within 99.997
N feasible and well within 17 of the proven lower bound are obtained in
a straightforward manner requiring, on the average, 30% of the MPSi
. time required to obtain a linear optiium.
-
o
-
F}j Publication Status: This paper has been accepted for publication in the
N European Journal of Operations Research.,
.\.

’

hn X

Background: This work is a summary of the dissertation research of Dr.
: Bala Shetty.

A
_CHAPTER 6 A PARALLELIZATION OF THE SIMPLEX é}GORITHME

Summary: This paper presents a parallelization of the simplex method for
linear programming. Current implementations of the simplex method on
sequential computers are based on a triangular factorization of the
inverse of the current basis. An alternative decomposition designed
for parallel computation, called the quadrant interlocking factoriza-
tion, has previously been proposed for solving linear systems of
equations. This research presents the theoretical justification and
algorithms required to implement this new factorization in a simplex-
based linear programming system.

Publication Status: This paper has been submitted for publication and is
currently under review,

Backzround: This paper is a summary of the dissertation research of
Dr. Hossam Zaki.

‘ CHAPTER 7 MINIMAL QPANNING TREES:

A COMPUTATIONAL INVESTIGATION OF PARALLEL é}GORITHMS, —— -

Summary: The ohjective of this investigation is to computationally test
parallel algorithms for finding minimal spanning trees. Computa-
tional tests were run on a single processor using Prim's, Kruskal's
and Boruvka's algorithms. Our implementation of Prim's algorithm is
superior for high density graphs, while our implementation of -
Boruvka's algorithm is best for sparse graphs. Implementations of
parallel versions of both Prim's and Boruvka's algorithms were tested
on a twenty-cpu Balance 21000. For the environment in which a min-
imum spanning tree problem is a subproblem within another algorithm,
the parallel implementation of both Boruvka's and Prim's algorithms
produced speedups of three and five on five and ten processors,
respectively. The one-time overhead for process creation negates
most, if not all of the benefits for solving a single minimum
spanning tree subproblem.

Publication Status: This paper has been submitted for publication and is
currently under review,

Background: This is our first computational investigation which has
been completed since the parallel computer arrived at
Southern Methodist University.
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CHAPTER I

INTRODUCTION

This dissertation presents a new technique for solving very
large multicommodity network flow problems. The specific application
which motivated this work originated with the United States Air force
and was first presented to us by Lt. Col. Dennis McLain, the Assistant
Director of Operations Research for the Military Airlift Command at
Scott Air Force Base. The problem is an extremely large casualty
evacuation model to be used by the Air Force in forming a plan for the

evacuation of wartime casualties. This plan would be implemented in

"

i

case of a BEuropean military conflict involving United States troops.

PAY A 4

f"ffft.fl'

Lt. Col. Mclain was the first to model this problem as a multi-

1,

commodity network flow problem where the commodities correspond to the
various types of wounds. The nodes represent such entities as European
bases and United States medical facilities, and the arcs represent
specific aircraft flights. (A complete description of this problem is
given in Section 1.3.) This problem is far too large to be solved by
any known existing computer codes. In addition, since many of the

data are only rough estimates {(the number of casualties of various
types expected at given locations), an exact technique is not called
for. Instead a technique is needed to discover a guaranteed ¢-optimum

for any given e >0.
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This is precisely what our technique accomplishes. It generates
successively better upper and lower bounds on the optimum, stopping
when the two bounds are within a prescribed tolerance. We exploit
the multicommodity network structure in both the lower and upper bound
routines so that only a single commodity minimum cost network flow
optimizer is needed. EVAC, the computer code which implements our
technique, has been used to solve a series of test problems in less
time and requiring less memory than MCNF, a specialized multi-
commodity network flow problem solver. In addition EVAC is capable of

solving very large problems which MCNF is unable to solve.

1.1 Notation and Conventions

The notational conventions employed throughout this work are
described in this section. Malrices are denoted by upper case Latin
letters. The element of a matrix, A, which appears in the ith row and
jth column is indicated by Aij' Tne symbol I is used to denote an
identity matrix with dimension appropriate to the context. Lower case
Latin and Greek letters are used to denote vectors. The symbol 0 is
used to represent a vector of zeroes with dimension appropriate to
the context. The unit vector, whose only non-zero component is a one
in the jth position, is denoted ej. Subscripts are used to indicate

individual components of a vector, or as an index to indicate which of

Y
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a sequence of related vectors is meant. Superscripts on vectors corre-
spond to individual commodities. Note that vectors are considered to
be row vectors or column vectors as appropriate to the context; that
is, no special notation is used to indicate the transpose of a vector.
The inner product of two vectors, x and y, is denoted simply by xy.
The notation ||x|| is used to express the Euclidian norm, (xx)1/2.
Scalars are written as lower case Greek or Latin letters.

Euclidean n-dimensional space is denoted R". Functions are
written as lower case Latin letters, and functional values have their
arguments in parentheses. For example g{y) is used to denote the
function g evaluated at the point y. The one exception to this
convention 1is the projection operation described in Chapter III. In
this case P[x] is used to express the projection of x onto the
specified region.

Upper case Greek letters denote sets, with the exception that
=g’y) is used to denote the set of subgradients of a functicn g at a
point y .n the domain of g. The svmbol ¢ is used as the set inclusion
symbol and as a termination tolerance.

We use MAY .S’ to denote the largest element of a set S;
similarly MIN{S} indicates the smallest element of S. The symbol « is

used for infinity, and ® denotes the end of a proof. All other

notation is standard.
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1.2 Problem Definition

A network is composed of two entities: nodes and arcs. The arcs
may be viewed as undirectional means of commodity transport, and the
nodes may be thought of as locations or terminals connected by the
arcs and served by whatever physical means of transport are associated
with the arcs. We limit our consideration to networks with finite
numbers of nodes and arcs. For a given network we denote the number
of nodes by m and the number of arcs by n. We impose an ordering on
the nodes and arcs so as to put them in a one-to-one correspondence
with the integers {1,...,m} and {1,...,n}, respectively. The struc-
ture of a given network may be described, then, by an m x n matrix
called a node-arc incidence matrix. Such a matrix, A, is defined in
this way:

+1, if arc j is directed away from node i
Aij z -1, if arc j 1s directed toward node i

0, otherwise.

Additionally, for a multicommodity network, we are concerned with more
than one type of item (commodity) flowing through the arcs. We order
these commodities to correspond to the integers {1,...,K}.
We define the following quantities to be used in the formulation
of the multicommodity network flow problem:
-- A is the m x n node-arc incidence matrix corresponding to the
underlying network.

- xk is an n vector of decision variables for k = 1,...K. Note

that x? represents the amount of flow of commodity k on arc j.
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-- ck 1s an n vector of unit costs for k = 1,...,K. So

o
cg denotes the cost for one unit of flow of commodity k on arc
Je
k . . k
. -- r 1is an m vector of requirements for k = 1,...,K, so that ri
denotes the required number of units of commodity k at node i. 1If
r? < 0 then node i is said to be a demand node for commodity k
. with demand = |r‘;| If rli( > 0 then node i is said to be a

supply node for commodity k with supply = rt. And if r? =0
then node i is said to be a transshipment node for commodity k.
-- u is an n vector of mutual arc capacities. That is, the total
flow of all the commodities combined for arc j cannot exceed Uj'
-- vk is a n vector of arc capacities for commodity k (k = 1,...,K).
vg , then, represents an upper bound on the flow of commodity k

on arc J.

We sometimes refer to the entire vector of decision variables
(x1,...,xK) as simply x. Similarly we use c, r, and v to denote the
entire vector of costs, requirements and upper bounds, respectively.

Using these ideas, we may formulate the multicommodity network

flow problem for a given network with m nodes, n arcs, ana K commodities

as follows:

Minimize I ckxk
k
. k k
Subject to Ax =T, k= 1,...,K (MP)
by xk i u
k
k k

ke e ety N
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1.3 The Casualty Evacuation Model

A large European military conflict involving U.S. Armed fForces
could result in more casualties than could be effectively handled in
European medical facilities. Yo alleviate this overcrowding, the
Department of Defense plans to implement the following evacuation
policy:

"During the first 30 days of a conflict, if a wounded

soldier cannot be returned to duty within 15 days, then

he will be evacuated to a medical facility in the United

States. In the next 30 days the limit on treatment time

1s increased to 30 days."
Given a scenario concerning such a conflict (i.e. the number and loca-
tions of wounded and the types of wounds), this evacuation problem may
be modelled as a multicommodity network flow problem. Lt. Col. Dennis
McLain was the first to model the problem in this way. In Lt. Col.
McLain's model the nodes correspond to 9 ELuropean recovery bases and
95 United States locations. The arcs correspond to aircraft flights
connecting European and U.S. facilities. The commodities are 11
different patient types.

In order to enforce a capacity on a given facility, it is
necessary to duplicate the corresponding node using the capacity as an
upper bound on the arc between the duplicate nodes. For example, if

node A represents a hospital with 300 beds, then we substitute two

Aaal S aci s Al ~dva -
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nodes, A1 and AZ, along with an arc whose capacity is 300. Ffurther,
it 1s necessary to include 60 coples of the entire network, one for
each of the 60 one-day time periods. Additional arcs are created to
link each time period to the next. The model includes a dummy "sink"
node for each time period and one "super sink" node, along with
capacitated arcs to allow patients who have recovered to exit from the
system. These considerations produce a very large model. The

dimensions of the constraint matrix are shown below:
r— g
A f12,5a1 TOWS

(28

where A1 = ... = A11. The row dimension of this model is over 137,000,
which is far bevond the scope of any known existing computer code. To
put tnhese figures in perspective, we note that Kennington reports that
the largest models he has solved using his primal partitioning code,
MCNF, have been on the order of 3000 rows [2].

Our plan has been to develop a specialized solution procedure
which would sclve & scaled-down version of Lt. Col. McLain's model. We

anticipate aggregation of the data, possibly using some of the

following ideas:

AT
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1) Aggregation of the time periods. Note that simply using

t

3-day time periods instead of 1-day time periods reduces the

problem size to around 46,000 rows.

| S
R S R R R |

(2) Aggregation of similar patient types.
(3) Aggregation of U.S. medical facilities so that facilitiet

- which are located within a given number of miles of one
N another are treated as one node.

At the writing of this dissertation we have not yet received any
large test problems from the Air Force. As a result, we are unable to
report on the problem size limitations of our technique. However, in
an attempt to test our software on a relatively large problem, we
7 solved a randomly generated test problem with around 9,000 rows. (See
Chapter 4 for the details of this problem.) This is the largest

problem we have attempted so far.

y 1.4 Accomplishments of This Investigation

&

This dissertation proposes a new technique for solving extremely

large multicommodity network flow problems. Our method involves

D R Rt W Sy e

generating upper bounds on the optimal objective value by partially
solving the problem using a resource-directive decomposition technique,

and generating lower bounds on the optimal objective value by partially

s a €.t

solving a Lagrangian dual of the problem. Both the upper

\*

and lower bound routines exploit the network structure of the problem,

.- decomposing it by commodities and solving the resulting pure network
problems. In the limit both bounds must converge to the optimal
objective function value; in practice we stop when the difference

between the two bounds is within some termination tolerance.

S acmt At e e P R W S L, e e e, ., e e e M. L U T T N e e . EE T
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Whether solving for lower bounds or for upper bounds a sub-
gradient optimization technique is used. At each iteration this
procedure requires the computation of a subgradient, the selection of
a step size, and a projection operation. In Section 3.1, we obtain a
new convergence result for a particular class of subgradient pro-
cedures. Then, in Section 3.2, we introduce a new beuristic, closely
related to the subgradient optimization procedure, which has worked
well for our test problems.

Qur technigue has been tested on randomly generated test
problems and on one problem which was formulated specifically to
represent the class of evacuation planning problems for which the code
was developed. In addition, the same set of test problems was solved
by MCNF [51], a general purpose multicommodity network flow problem
solver which uses a primal partitioning scheme. Computation times for
both codes are presented. Our code used an average of 68% of the time
needed by MCNF, performing significantly better on the problems with
fewer commodities. In addition our code required on the order of 1/K

the amount of main memory for a K-commodity problem, so it can solve

significantly larger problems than MCNF.
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CHAPTER 11

A SURVEY OF RELATED LITERATURE

In this chapter we present an overview of the existing work on
which this dissertation is based. Section 2.1 deals with the work that
has been done in the area of pure network models. Then in Section 2.2
we address the broader area of multicommodity network methods. Since
our algorithm involves a subgradient optimization technigue, both in
the Lagrangian dual portion and in the resource-directive decomposition
routine, we provide some references involving subgradient optimization

in Section 2.3

2.1 Pure Networks

Network problems are linear programming problems with node-arc
incidence matrices as their constraint matrices. Within this class,
known formally as minimal cost network flow problems, there are several
variations including transportation problems, transshipment problems,
assignment problems, maximal flow problems, and shortest path problems.

Ideas for solution of network problems can be traced at least as
far back as 1939, to the work of Professor Leonid Kantorovich [41].
Kantorovich, along with Professor Tjalling C. Koopmans received the.
Nobel Prize in Economic Science in 1975, for contributions to the

theory of optimum allocation of scarce resources. Koopmans and Reiter
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[54] and Frank L. Hitchcock [42], working independently, were the first
to formulate the transportation problem. The mid-fifties saw a surge
of interest and work in the areas of network algorithms. It was around
this time at Alex Orden [59] generalized the transportation model to
allow transshipment points. Lester Ford and Delbert Fulkerson [22]
[20] formulated and investigated solution techniques for the maximal
flow problem and the minimal cost network flow problem. The spe-
cialized algorithms that have been developed for solving network
problems may be classified into two groups: primal-dual techniques, and
specializations of the primal simplex algorithm. Primal-dual methods
for solving networks began with Harold Kuhn's Hungarian Algorithm for
the assignment problem [55] and culminated in Fulkerson's Out-of-Kilter
Algorithm [23]. Primal simplex based techniques originated with the
work of Professor George Dantzig [17] and continued through Ellis
Johnson's 1965 paper [47]. The basis for Johnson's work can be traced
to the work of Dantzig [18] and Charnes and Cooper [14].

Since that time much work has been done in the area of solution
techniques, and computational advances have been made by the develop-
ment of more efficient data structures. The credit for much of this
work goes to Professors fFred Glover and Darwin Klingman and their
colleagues at the University of Texas. This is evidenced by such
papers as Barr, Glover and Klingman [9] [10], Glover, Hultz and
Klingman [26] [25], Glover, Karney and Klingman [27], Glover, Karney,
Klingman and Napier [28], Glover and Klingman [29] [31] [30], Glover,
Klingman and Stutz [32], and Karney and Klingman [49]. Others who have

contributed to the research include Srinivasan and Thompson [63] (647,




Y
to

Bradley, Brown, and Graves [13], and Mulvey [57] [58]. In additior

significant work has been performed by Professors Jeff Kennington,

~

Richard Barr, and Richard Helgason of Southern Methodist University as

seen in such works as [3], [41], and [52].

e e

Today network algorithms have been demonstrated to solve linea:

network problems 50 times faster than general linear programming

algorithms [6]. Additionally a computer implementation of such s
technique may require only half the memory of the general L.P. pac-o:
[6]. These advances are due to the efficient data structures wh.~
have been developed to allow a basis for a network problem to be si::ec
as a rooted spanning tree on the nodes in the network. Using this .cré
all the simplex computations such as pricing, ratio test, anc upss'¢c,
can be performed via labelling algorithms on the basis tree. Th:«

eliminates the need to store the basis inverse 1in factored form,

2.2 Multicommoditv Networks

Multicommodity network flow problems are problems in whic ”
several different types of items {commodities) must share arcs
capacitated network. Each solution technigue for multicommodi‘s
network models can be classified as one of two main types of ®

algorithms: partitioning algorithms and decomposition algorithm: .

2.2.1 Partitioning Algorithms

Partitioning algorithms are specializations of the simplex me!nhod
which exploit the multicommodity network structure by partitioning the

basis into more than one part. 1In one part sdvantage is taken of tne
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special network structure. Those who have studied primal partitioning
algorithms include Kennington [50], Helgason and Kenniriton [40], Ali,
Helgason, Kennington, and Lall [4], Hartman and Lasdon [36] [35],

Maier [56], and Saigal [61]. Ali and Kennington [6], in their
computational research, reported solution times averaging 5 times
faster than general linear programming codes. A dual partitioning
method was proposed by Grigoriadis and White [34). A primal-dual
partitioning scheme was developed by Jewell [46]. In addition a
factorization technique was proposed by Graves and McBride [33]. MCONF,
the multicommodity network code with which we compared our solution

times, is a primal partitioning program.

2.2.2 Decomposition Algorithms

Decomposition schemes seek to solve the problem by decomposing it
into several smaller subproblems, each of which takes the form of &
pure minimum cost network flow problem. A master program coordinates
the solution process. Decomposition procedures for the multicommodity
network flow problem fall into two categories: price-directive schemes
and resource-directive schemes.

Price-directive decomposition is based on the well-known research
of Dantzig and Wolfe [19]. In a price-directive approach, the K-
commodity problem is decomposed into K single commodity problems. The
master program then uses the simplex method while the subproblems test

for optimality and select candidates to enter the basis of the master

problem. Fford and Fulkerson [21] were the first to develop this
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approach for solving multicommodity network flow problems. Tomlin [67]
was the first to develop a computer code implementing this technique.
Others who have studied price-directive decomposition schemes are
Jarvis [43], Jarvis and Keith [44], Chen and DeWald [15], and Jarvis
and Martinez [45]. Price-directive approaches for generalizations of
this problem have been proposed by Cremeans, Smith, and Tyndall [16],
Swoveland [65] [66], Weigel and Cremeans [68], and Wollmer [£9].
Resource-directive decomposition schemes decompose the problem by
commodities, and the master problem systematically distributes the
mutual arc capacities among the commodities. At each iteration the
optimal solutions to the single commodity subproblems are used to
compute a new set of allocations. Robacker [60] was the first to
suggest this approach for multicommodity network praoblems. Research on
this technique has been presented by Swoveland [65], Assad [8], Ali,

Helgason, Kennington and Lall [3], and Kennington and Shalaby [53].

2.3 Subgradient Optimization

The subgradient optimization technique was first proposed by Shor
[62] in 1964. Since that time subgradient algorithms have been applied
to many different optimization problems. Held and Karp [37] and Held,
Wolfe and Crowder [38] made use of the approach in solving the
symmetric travelling salesman problem. Bazaraa and Goode [11] applied
the algorithm to the asymmetric travelling salesman problem. Sub-
gradient methods have been used to solve the assignment problem [38].

Glover, Glover and Martinson [24] applied a subgradient technique to

R
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solve a special network with side constraints, and Ali and Kennington

[7] made use of it in research involving the m-travelling salesman

problem,
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| CHAPTER 111

8 THE ALGORITHM

2 Here we present a new solution technique for the multicommodity
network flow problem. This technique involves finding successively
better upper and lower bounds on the optimal objective function value.
The algorithm terminates whenever the two bounds are within a prescribed
tolerance or when it can be shown that the current solution is an exact
optimum.

Lower bounds are generated by partially solving a Lagrangian dual.
At each iteration a Lagrangian relaxation of the original problem is
) solved; since these relaxations decompose on commodities, only a
E (single-commodity) minimum cost network flow optimizer is needed. A
. subgradient direction is used to adjust the Lagrange multipliers for the
next iteration.

Upper bounds are generated using a modification of the resource-
directive decomposition technique first suggested by Robacker [60]. We
introduce a specialization of the subgradient direction approach which
was first applied to this class of problems by Held, Wolfe, and Crowder
9 [38].

“ With minor restrictions on the step sizes we show that both the
upper and lower bounds converge to the optimal objective value of the
original multicommodity network flow problem. Hence in the limit the

1 algorithm will converge to an exact optimum. In practice we seek a

near-opt imum.
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~ 3.1 Subgradient Optimization
A
: Let us first consider the general subgradient algorithm for
L "
: optimization of convex functions; later we will present specializations
’ of the technique for the upper and lower bound problems. Consider the
w;
; nonlinear programming problem
é Minimize g(y)
’ Subject to ye T
Zf where g is a real valued function that is convex over the compact,
0 convex, nonempty set . A vector n is called a subgradient of g at a
. point x if
. gly) - gix) > r(y - x) for all ye .
;ﬂ Note that if g is differentiable at x, the only subgradient at x 1s the
; gradient. We denote the set of all subgradients of g at x by zqix’.
E The subgradient algorithm proceeds in this manner: Given a point
E x in 7, find a subgradient of g at x, obtain a new point by moving a

given step size in the negative subgradient direction, and finally

project this new point back onto I. This projection operation takes a

A b R Rt

point x and finds the point in I that is '"closest" to x with respect to
the Euclidean norm. We denote the projection of x onto I by P[x].
Using this notation we present the general subgradient optimization

algorithm for minimizing a convex function g [52].
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ALGORITHM 3.1  SUBGRADIENT OPTIMIZATION ALGORITHM

Ster 0 !Initialization®

Let Yo be any element of I. Select a set of step sizes,
s1,sz,53,..., and set 1+0.

Step 1 (Find Subgradient)

Let r, ¢ Eg(yi). If rn, = 0 terminate with y, optimal.

Step 2 {Move to New Point)

Set v. .~ P[y. -s.r.]. Set i< i + 1. Return to step 1.
1+1 1 1

Let us now turn our attention to the selection of step sizes.
Several 1ideas for choosing step sizes have been proposed. These
typically involve a seguence of constants, ﬁ.1,kﬂ.23,...} which satisfy
the following conditions:

}i > 0, for all i,

The subgradient algorithm can be shown to converge when any of the

following three formulae are used for determining step sizes [52]:

(i) s, = ;i ,
(i1) s, =5 /| 12, (3.2)
i i i
, . 2
(i11) s =2 laly,) - g ]/||ni||

where g* denotes the optimal objective value.

. _.‘:,. .
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Propositions 3.1, 3.2, and 3.3 may be found in Kenningtor and

Helgason [52]), and are given here as necessary preliminary results.

Proposition 3.1 [52]

Let yer, and let xR, Then (x-P[x])(y-P[x]) <

Proof

Choose o so that 0<a<1. Since T is convex, ay+(1-a)P[x]cr.

0.

the definition of P[x], ||x-P[x]||<||x-(ay+(1-a)P[x])]].

||x—(ay+(1-a)P[x])||2

| |x-P[x]-aly-P[x])] |2

| |x-P[x]} |2

(TR LN

Then (x-P{x])(y-P[x]) < ||y-P[x]||a/2. And, since & can be taken

arbitrarily close to O,
(x-P[x]){y-P[x]) <0 . @

Proposition 3.2 [52]

Let x, y ¢ R™. Then [|P[xJ-P[y]|] < [Ix-y]].

Proof

Case 1: Supose P[x] = P[y]. Then

[1PIxI-PLyI]] = 0 < [x-y1].

Case 2: Suppose P{x] # P[y). Then since P[x]eT,

and P[yleT, from Proposition 3.1 we have that
(x-P[x])(P{y]-P[x]) < O
and
(y-PLlyD(P[x]-P[y)) < 0.
We may rewrite the above inequalities as
x(PLy1-PLx])-PLx]PLy]+] [PLx]] % < O

and

h-’ ------- ) - L] L4 -
ORISR Y i Y, (L

e PR

. » k) il C- R - . Te T - "
AN R LT O RO N ".'. AP

Thus

|1x-PIx]| | %+02]|y-PIx]]|]% -2a(x=P[x]) (y-P{x]).
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.......

(N4




- - e . .o o ' A 2'8 a' bl St ‘& are At . .
AV A N aTaVa¥aTaTeTa¥ylm < L » (S - . R o 2% S8 B0a Koe S £ o IR SRR

20

v(P(x3-P[y )-p[y P[xJ+] IP1y 111 < o.
Adding these inequalities, we obtain

=y} PLy)-PLxD+ | [PLy)-PLx]] |2 < O
Then from the Cauchy-Schwartz inequality,

-0y (PLy)-PIxD) < [ x=yl| |PLy]-PIx]]].
Thus

[1PLyI-eLxd] 12 < [lxeyl] HPLYI-PIx]]]-
And since P{x] # P[y],

HPIxI-PLyIIT < [lx-yl]. =

T

Proposition 3.3 752]

If i # 0, then, for any yc7,
2 2 2 2
1y jq =y 17 <y =y 1S+ s 0 ng P28 my Cymy )

';. Proof

Let i be any iteration of the subgradient algorithm. Suppose

n. # 0. Let ve7., Tnen, by Proposition 3.2,
i )

| A

. :
® PIPLy =87 3-POy 3010 <y -5yl

, 2 2 2 '
Hz\l-vll + si Hr'lH + zslrl(y—‘yly.

' - v s ~ 1 =
Since P[yl)=y and P‘yi s, i] = y.

ie1? we have that

|1y

a2 Ny vl s s B 12 s 25,n (y-y) . ®

Our main convergence result is for the particular step size

scheme:

- 2
- ( -
s. = li[g\yi) g]/llnill

1




where g is a lower bound for the optimal objective and where we are
liberty to select bounds o and £ for the {li} such that for each i, 0 <

a < .

<2< 2.
1—

Proposition 3.4

Let (i) g be a known lower bound for the optimal objective, g*,
with g*>g;
(i1) {Ai} be any infinite sequence such that
for all i, 0<q§ki38<2; and
(1i1) s, = 2,[aly)-81/]|n, 117

If there is a constant C such that for all i, ||n;]} < C, and if v > O
is given, then there is some n such that g(y ) < g*+[8/(2-8) N g*-q)+
.‘-

Let v>0 be given. Let (i), (ii), and (iii) hold. Let y* be an
optimal point, and for all i, ||ni|| < C. Suppose, contrary to the
desired result, that for all n, g(yn)>g*+[e/(z-s)](g*-§)+y. Then, by
Proposition 3.3,

2 2 2r =2 2
I|Yi+1-y*|| h H)l'y*H +)\i [g'yl)'g] /Hﬂl'l
+ 20, {Laly )-8/ | ny 1P 3y (y*ey )
< lyy* 2 Platy )-8/ [ |12

+ 25 {laly;)-3)/| |ni||2}[g"9(yi)]’
since nicag(yi)-

Since £>5.>0,then £).2> A.z. So,
- 1 i 1

2 2 -2 2
-y 115y =yr 1178 Lgly )-a1%/ | |ng 1]

I|y1+1

T, S ST LA RS SO gt



+

-t re 2 *
zAix[g(yi)—gl/[lﬂill Hg —g(yi)]

[y =y* 11 2e(2-825 (L aly )81/ [, 113

[(g*—g(yi))+(s/(Z-s))(g*—E)].

Since gly;) > g*+(8/(2-8))(g*-g)+vy, then -y > g*-gly,) +
(e/(2-8))(g*-g). So,

1y 3=y 1P <y mye 112 (2=805 Loty 0-80v/] I ny 112

Since gﬁig(yi), «<; , and ]]nill < C, then

Hy gy 112 < Hyg-y* P-L2-8)alg-2) )/,

We can choose an integer N so large that
2 ’ ~ ’ s {
C2||)1—y‘]| /(2-2)alg*-g)y < N.
Thus, since 2-£>0 and g*-3>0,

N(2-2)a(g-8)y/C8 > ||y, -y 1%

(3.3)

Adding together the inequalities obtained from (3.3) by letting i take

on all values from 1 to N, we obtain

Hypeg=y* 12 < yg-y*] 1 282-p)algr-3)v/e? < o,

a contradiction. @

................

......
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It is shown in [39] that when I is compact, g is continuous on some open
set containing T, and 3g(y) # ¢ for all yer, there exists a

constant C such that ||r||<C for all yer, and neag{y), so that the
boundedness condition on the subgradients in Proposition 3.4 is easily

met.

3.2 Generating Lower Bounds

In this section we present a technique for generating lower bounds
for the multicommodity network flow problem. This technique involves
partially solving the Lagrangian dual problem using a subgradient
technique to update the Lagrange multipliers at each iteration.

Recall that the multicommodity network flow problem, MP, may be
stated as follows:

Minimize C ckxk

K

Subject to Ax = %, k= 1,... K (MP)

k

0<x < v, k=1,...,K

where
A is an m x n node-arc incidence matrix,
ck is an n vector of unit costs for k = 1,...,K,
rk is an m vector of node requirements for k = 1,...,K,
u is an n vector of mutual arc capacities,
vk is an n vector of individual commodity bounds for k=1,...,K,

k . . .
x 1s an n vector of decision variables for k =

T,0..,K,
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and K is the number of commodities. :

o b
Consider a Lagrangian dual problem for MP, denoted by DP: b

MAX  h(.) ",

A0 .

}

® h(x) = MIN[ T kK & Az K - u): (opP) I
k k o

Axk=rk (k = 1,...,K); Oixkivk (k = 1,...,K)] -

where X is an n vector of lagrange multipliers. -]

®
First we show that any feasible solution for DP is a lower bound =

RS

for MP. o

' Proposition 3.5 [12] 3
S -
Let X = (§1,§2,...,§K) be a feasible solution for MP. Let

"2,

X be a feasible solution for DP. Then h(3) < cx. =

Proof ]

© y
Since h{.) is a minimum, and since x is feasible for MP, h{7)« -3

- k=k — -zK \ : - . 4

IC x + A{Lx = u). Further since ; is feasible -

k k :

for DP and x is feasible for MP, then 3(CZx - u) < O .

- " A
Hence h(7.) < cx. = =

In addition to this result, Bazaraa and Shetty [12] have proved 2

that if MP has an optimal solution, then DP has an optimal solution, and "

that their optimal objective function values are equal., As a result, we '.

see that we may indeed solve (or partially solve) DP in order to obtain B

. a lower bound for MP. 2
In order to justify using a subgradient optimization technique for A5

.

solving DP, we must show that the objective function is concave and ::'

-y

develop an expression for a subgradient. :
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Proposition 3.6

. . . n R
The real valued function h is concave over /i = {A:XeR; 2 >0},

Proof

Let A" >0. Let 22 >0. Let 0 < a< 1. Then

h(ax + (1-a)32) = MINLT c*x® + (ar + (1-a)32)(Ix*-u):

k k
a2 tM(k=1,000 K050 < xK < VK (ke1,..0,K)]
= MIN[achxk + ak1(2xk-u)+(1-a)chxk + (1-u)kz(2xk-u):
k k k k

AxK = tM (ka1 .0 K)5 0 < XK < VK(k=1,..0,K) ] ‘

2_aMlN{:ckxk + 11(Exk-u):
k k

k

Ax = rk(k:1,...,K);D :_xk

< vk(k:1,...,K)]

v (1-a) MIN [rc®X + 32(oxkow)
K K

K Kk,

A = PUke, .., K000 < X VK

(k=1,...,K)] -

A 2 .
z ah’: ) + (1-a)h{;°). Hence h is concave over /.. @

Proposition 3.7

[

Let 7:2 0. Let x represent an optimal value of x corresponding N

to h(%). Then d = E;k-u is a subgradient of h at 7. :
"

Proof -
.

Let ) be any other point in A with corresponding optimal decision .
variable values x. Then f
~ ~ a Ak -:

h() = £ e iz x50 ;

k k rq

O

.

-
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<z 5K+ D ¥w) (since x is optimal)
k k

=1 K e A KW . (R D RTT RS« (G-t
k k k k

S R YO L R DLW O
k k

2
k
= (7)) + dla3).
Therefore d is a subgradient of h at ». ®
We now present our algorithm for computing lower bounds for MF.
Note that it is a specialization of the subgradient optimization
algorithm for this problem, and its convergence follows as a maximiza-

tion analog of Proposition 3.4.
ALGORITHM 3.2 LOWER BOUND ALGORITHM

Step 0 {Initialization

Let UB be any upper bound on the solution to MP, Set