
062 DEVELOPMENT AMEVILUATION OF A CNS4WTV EVNCURTIU LIMMODEL FOR R EUMOPEML. (U) RIR FORCE OFFICE OF
SCIENTIFIC RESEMRCN BOLLING AF@ OC J L KENNINTON

UNLSSFE 9 U hhhE-T-0-97 $F hh0209F/ hI6M

.% %.'

*%

5 . 2

S.

r~~% 4.4, .1"p

% %~

S%... ,

.1 P1 "P, Ile

. '.". oo

,,,,. ,,.

5., . 5pM, ,-' .- , .". .v, , , , _ - p _ _ . _ = ,, o ', .% _-_, , _%" ."
,,: :..............,......,. ..- ,

.:o .:.: , ,:', -,'-..- -.......,..,,.._,.-..,, , ---,,-. _ _,...,-,._-.._ , .-.... , . . .i
, .--. ' . ,_' '-' -- ', ",. ,..:*'" ..,.: " .'. ...

, -,. ,,:.....'.,.,,',.',"• , ,", J .,.,r.. . . ., ,,., .. ,.-,:_,_, :.,,.. ., ..

k'% -- "-" % • .,,1",". ° ".iv. .. _..,, ,.. , .. w v ,j.. .m.,,.. ",". . % % -. % _' "% % % . • . . • . .-- ..

-- %-..-. . . % - 4% ... % " . .• - • - . . , • % • ".'- " •• - " " ". - ,% % - " % ° ".". % k, " % . % -. . % ." ."

5p". M ,- -'.."-."." ' .. ".,". " , . .' 3 . ,'-' ' " "J ." " " ." ' .. ,.. .. , ,,..,,., .. ,.

..P ,. ,,', ..-.,.. .'L.5a.L , .. I, ,,d,,m,
' ' ' "

*- '' I r , : : : , . ,,

7*X Xr% aw 1%.V T-. T-.

00

DEVELOPMENT AND EVALUATION OF A

0CASUALTY EVACUATION MODEL FOR A EUROPEAN CONFLICT

* by DTIC

Jeffery L. Kennington ~ OCT 0 119870

C'

for

Air Force Office of Scientific Research

Boiling Air Force Base, DC 20332-6448

and

Headquarters Military Airlift Command
Scott Air Force Base, Illinois 62225

DISThRWU'r1oN ~':h'~
Final Technical Report Approved for public relcusoI

Distribution Urnimtod

August 18, 1987

Contract No. AFOSR-83-0278

LLj

unclassified
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE M O No. 0704-O18e

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION I AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)AFOSR.-T . .7 U 9 ?0

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable),) "-AFOSR/NTI

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
AFOSR/ NM

41 Bldg. 410

Bolling, AFB 20332-6448
8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)
AFUSR I7___-___ _____ .>

Bc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
AFOSR PROGRAM PROJECT TASK WORK UNIT
Bldg. 410 ELEMENT NO. NO. NO ACCESSION NO.
Boiling " u(C 20 3 3 2:'- 6 4

11. TITLE (Include Security Classification)

Development and Evaluation of a Casualty Evacuation Model for a European

ConfIict (unclassified)
12. PERSONAL AUTHOR(S)

Dr. lefferv L. Kennington
13a. TYPE OF REPORT 113b TIME COVERED 14. DATE OF REPORT (YearMonthDaY) D PAGE COUNT

Fi na I FROMO' 8 TOI j3.J8I 87/8/17 15
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This proj ie t assi. Lted the Operations Research Division, DCS/Plans, Headquarters MAC in
the development oI and solution algorithm for the Casualtv Evacuation Model. In addition,
we.' continued our investip'at ion into new and improved algorithms for optimization on both
serial and pairallel computers.

/

DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
C1 UNCLASSIFIED/UNLIMITED 0 SAME AS RPT 0 DTIC USERS

, 22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code)7 22cOFFICE SYMBOL
Dr. Samual Rankin ;- , I .: FFI I I CE

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
ul" n -s if jed

C

EXECUTIVE SUMMARY

The research conducted under contract AFOSR 83-0278 is reported in seven tech-
nical reports corresponding to Chapters 1 through 7 in this report. A brief
description of each study follows:

CHAPTER 1 USING TWO SEQUENCES OF PURE NETWORK PROBLEMS
TO SOLVE THE MULTICOMMODITY NETWORK FLOW PROBLEM

Summary: This paper presents a new algorithm for solving large multicommodity
network flow problems. The work was motivated by the Casualty
Evacuation Model originally developed by Lt. Col. Dennis McLain.
Captain Robert Chmielewski continued this activity and eventually a
modification of this model was solved by the P.I. and Captain
Chmielewski on a CDC Cyber 205. All of this activity was directed by
Mr. Thomas Kowalsky of DSC/Plans of MAC Headquarters.

Publication Status: This work has not been submitted for publication.

Background: This was the dissertation research of n . Ellen Allen.

CHAPTER 2 UTWORKS WITH SIDE CONSTRAINTS:
AN EU FACTORIZATI ON UPDATE

Summary: An important class of mathematical programming models which are fre-
quently used in logistics studies is the model of a network problem
having additional linear constraints. A specialization of the primal
simplex algorithm which exploits the network structure can be
applied to this problem class. This specialization maintains the
basis as a rooted spanning tree and a general matrix called the
working basis. This paper presents the algorithms which may be used
to maintain the inverse of this working basis as an LU factoriza-
tion, which is the industry standard for general linear programming
software. Our specialized code exploits not only the network struc-
ture but also the sparsity characteristics of the working basis.
Computational experimentation indicates that our LU implementation
results in a 50 percent savings in the non-zero elements in the eta
file, and our computer codes are approximately twice as fast as MINOS
and XMP on a set of randomly generated multicommodity network flow
problems.

Publication Status: Published in The Annals of the Society of Logistics
Engineers, 1, 1, (1986), 66-85.

Background: This work is a summary of the dissertation research of Dr.
Keyvan Farhangian. 60

iV

QHAPTER 3 THE FREQUENCY ASSIGNMENT £ROBLEM:

A SOLUTION VIA NONLINEAR PROGRAMMING

Summary: This paper gives a mathematical programming model for the problem of
assigning frequencies to nodes in a communications network. The
objective is to select a frequency assignment which minimizes both
cochannel and adjacent-channel interference. In addition, a design
engineer has the option to designate key links in which the avoidance

0 of jamming due to self interference is given a higher priority. The

model has a nonconvex quadratic objective function, generalized
upper-bounding constraints, and binary decision variables. We
developed a special heuristic algorithm and software for this model
and tested it on five test problems which were modifications of a
real-world problem. Even though most of the test problems had over
600 binary variables, we were able to obtain a near optimum in less
than 12 seconds of CPU time on a CDC Cyber-875.

Publication Status: Published in Naval Research Logistics, 34, (1987), 133-
139.

Background: This was our first application in the communications area.

CHAPTER 4 A GENERALIZATION OF POLYAK'S CONVERGENCE RESULT
SFOR SUBGRADIENT OTIMIZATIN

Summary: This paper generalizes a practical convergence result first presented
by Polyak. This new result presents a theoretical justification for
the step size which has been successfully used in several specialized
algorithms which incorporate the subgradient optimization approach.

Publication Status: Published in Mathematical Programming, 37, 3, (1987) 309-
318.

Background: The convergence theory presented in this paper was
motivated by the good computational results achieved by
Drs. Ellen Allen and Bala Shetty in their dissertations.

CHAPTER 5 THE EQUAL FLOW PROBLEM -

Summary: This paper presents a new algorithm for the solution of a network
problem with equal flow side constraints. The solution technique is
motivated by the desire to exploit the special structure of the side
constraints and to maintain as much of the characteristics of pure
network problems as possible. The proposed algorithm makes use of
Lagrangean relaxation to obtain a lower bound and decomposition by
right-hand-side allocation to obtain upper bounds. The Lagrangean
dual serves not only to provide a lower bound used to assist in
termination criteria for the upper bound, but 'ilso allows an initial
allocation of equal flows for the upper bound. The algorithm has
been tested on problems with up to 1500 nodes and 6000 arcs.
Computational experience indicates that solutions whose objective
function value is well within 1 of the optimum can be obtained in
1%-65% of the MPSX time depending on the amount of imbalance inherent

.

. - -,.- - - . , -- ...- - - . c .. _, , - .-. . , . , , ,

4

%
in the problem. Incumbent integer solutions which are within 99.)9'7

feasible and well within 1% of the proven lower bound are obtained in
a straightforward manner requiring, on the average, 30% of the MPqX
time required to obtain a linear optimum.

Publication Status: This paper has been accepted for publication in the
European Journal of Operations Research.

Background: This work is a summary of the dissertation research of Dr.
Bala Shetty.

CHAPTER 6 A PARALLELIZATION OF THE SIMPLEX ALGORITHM

Summary: This paper presents a parallelization of the simplex method for
linear programming. Current implementations of the simplex method on
sequential computers are based on a triangular factorization of the
inverse of the current basis. An alternative decomposition designed
for parallel computation, called the quadrant interlocking factoriza-
tion, has previously been proposed for solving linear systems of
equations. This research presents the theoretical justification and
algorithms required to implement this new factorization in a simplex-
based linear programming system.

Publication Status: This paper has been submitted for publication and is
currently under review.

Background: This paper is a summary of the dissertation research of
Dr. Hossam Zaki.

CHAPTER 7 t1INIMAL ZPANNING TREES:
A COMPUTATIONAL INVESTIGATION OF PARALLEL ALGORITHMS. _ - S

Summary: The objective of this investigation is to computationally test
parallel algorithms for finding minimal spanning trees. Computa-
tional tests were run on a single processor using Prim's, Kruskal's
and Boruvka's algorithms. Our implementation of Prim's algorithm is
superior for high density graphs, while our implementation of
Boruvka's algorithm is best for sparse graphs. Implementations of
parallel versions of both Prim's and Boruvka's algorithms were tested
on a twenty-cpu Balance 21000. For the environment in which a min-
imum spanning tree problem is a subproblem within another algorithm,
the parallel implementation of both Boruvka's and Prim's algorithms
produced speedups of three and five on five and ten processors,
respectively. The one-time overhead for process creation negates
most, if not all of the benefits for solving a single minimum
spanning tree subproblem.

Publication Status: This paper has been submitted for publication and is
currently under review.

Background: This is our first computational investigation which has
been completed since the parallel computer arrived at
Southern Methodist University.

.................................. -.:. : '-. .-......... ta,;..--... ''';-.

CH1APTER 1

USING TWO SEQUENCES OF PURE NETWORK PROBLEMS TO SOLVE

THE MULTICOMMODITY NETWORK FLOW PROBLEM

A Dissertation Presented to the Graduate

Faculty of the School of Engineering

and Applied Science

of

Southern Methodist University

in

Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

with major in

Operations Research

by

Ellen Parker Allen

B.A.S., Southern Methodist University, 1975

M.S.O.R., Southern Methodist University, 1981

May 1985

°-

p.z*~''ivy~-- -- . .L I -- p .. . r

TABLE OF CONTENTS

page

ABSTRACT iv

LIST OF TABLES vi

ACKNOWLEDGEMENTS vii

CHAPTER 1. INTRODUCTION 1
1.1 Notation and Conventions 2
1.2 Problem Definition 4
1.3 The Casualty Evacuation Model 6
1.4 Accomplishments of This Investigation 8

CHAPTER II. A SURVEY OF RELATED LITERATURE 10
2.1 Pure Networks 10
2.2 Multicommodity Networks 12

2.2.1 Partitioning Algorithms 12
2.2.2 Decomposition Algorithms 13

2.3 Subgradient Optimization 14

CHAPTER Ill. THE ALGORITHM 16
3.1 Subgradient Optimization 17
3.2 Generating Lower Bounds 23
3.3 Generating Upper Bounds 27
3.4 The Algorithm 34

CHAPTER IV. COMPUTATIONAL EXPERIMENTATION 36
4.1 Description of the Computer Programs 37

4.1.1 MCNF 37
4.1.2 EVAC 37

4.2 Description of the Test Problems 39
4.3 Summary of Computational Results 39
4.4 Analysis of Results 41

CHAPTER V. SUMMARY AND CONCLUSIONS 47
5.1 Summary and Conclusions 47
5.2 Areas for Future Investigation 48

LIST OF REFERENCES 50

v

J.

LIST OF TABLES

Table Page

4.1 Description of the Test Problems and Summary 44
Comparison of Solution Times for EVAC and MCNF

4.2 Detailed Timing Statistics for EVAC Runs 45

4.3 Graphical Comparison of EVAC and MCNF Solution Times 46

vi

i- • - ' i - - --* '-"--"".'," 'iLt' - '"--° ,",''- " -'-'"-" "'". . . -'-"-" ,-''-'-''-- -'- -- -- .- " .-. ', ,'-.- -'-•

.'I

CHAPTER I

INTRODUCTION

This dissertation presents a new technique for solving very

large multicommodity network flow problems. The specific application

which motivated this work originated with the United States Air Force

and was first presented to us by Lt. Col. Dennis McLain, the Assistant

Director of Operations Research for the Military Airlift Command at

Scott Air Force Base. The problem is an extremely large casualty

evacuation model to be used by the Air Force in forming a plan for the

evacuation of wartime casualties. This plan would be implemented in

case of a European military conflict involving United States troops.

Lt. Col. McLain was the first to model this problem as a multi-

commodity network flow problem where the commodities correspond to the

various types of wounds. The nodes represent such entities as European

bases and United States medical facilities, and the arcs represent

specific aircraft flights. (A complete description of this problem is

given in Section 1.3.) This problem is far too large to be solved by

any known existing computer codes. In addition, since many of the

data are only rough estimates (the number of casualties of various

types expected at given locations), an exact technique is not called

for. Instead a technique is needed to discover a guaranteed E-optimum

for any given c>O.

S.!

.VI , -r nr - . _V.

2

This is precisely what our technique accomplishes. It generates

successively better upper and lower bounds on the optimum, stopping

when the two bounds are within a prescribed tolerance. We exploit

the multicommodity network structure in both the lower and upper bound

routines so that only a single commodity minimum cost network flow

optimizer is needed. EVAC, the computer code which implements our

technique, has been used to solve a series of test problems in less

time and requiring less memory than MCNF, a specialized multi-

commodity network flow problem solver. In addition EVAC is capable of

solving very large problems which MCNF is unable to solve.

1.1 Notation and Conventions

The notational conventions employed throughout this work are

described in this section. Matrices are denoted by upper case Latin

thletters. The element of a matrix, A, which appears in the i row and

thj column is indicated by A... The symbol I is used to denote an

identity matrix with dimension appropriate to the context. Lower case

Latin and Greek letters are used to denote vectors. The symbol 0 is

used to represent a vector of zeroes with dimension appropriate to

the context. The unit vector, whose only non-zero component is a one

in the jth position, is denoted e.. Subscripts are used to indicatei

individual components of a vector, or as an index to indicate which of

* *: f-

3

a sequence of related vectors is meant. Superscripts on vectors corre-

spond to individual commodities. Note that vectors are considered to

be row vectors or column vectors as appropriate to the context; that

is, no special notation is used to indicate the transpose of a vector.

The inner product of two vectors, x and y, is denoted simply by xy.

1/2,
The notation i1xil is used to express the Euclidian norm, (xx) 1 /

Scalars are written as lower case Greek or Latin letters.

Euclidean n-dimensional space is denoted Rn. Functions are

written as lower case Latin letters, and functional values have their

arguments in parentheses. For example g('y) is used to denote the

function g evaluated at the point y. The one exception to this

convention is the projection operation described in Chapter III. In

this case P[x] is used to express the projection of x onto the

specified region.

Upper case Greek letters denote sets, with the exception that

gy' is used to denote the set of subgradients of a function g at a

point y -n the domain of g. The symbol c is used as the set inclusion

symbol and as a termination tolerance.

We use MAX×5' to denote the largest element of a set S;

similarly MIN:S} indicates the smallest element of S. The symbol is -

used for infinity, and 0 denotes the end of a proof. All other

notation is standard.

-0

p%

S

. .. o

-~ 4

1.2 Problem Definition

A network is composed of two entities: nodes and arcs. The arcs

may be viewed as undirectional means of commodity transport, and the

nodes may be thought of as locations or terminals connected by the

arcs and served by whatever physical means of transport are associated

with the arcs. We limit our consideration to networks with finite

numbers of nodes and arcs. For a given network we denote the number

of nodes by m and the number of arcs by n. We impose an ordering on

the nodes and arcs so as to put them in a one-to-one correspondence

with the integers {1,...,m) and {1,...,n), respectively. The struc-

ture of a given network may be described,
then, by an m x n matrix

called a node-arc incidence matrix. Such a matrix, A, is defined in

this way:

+I, if arc j is directed away from node i

A.. -1, if arc j is directed toward node i
j

0, otherwise.

Additionally, for a multicommodity network, we are concerned with more

than one type of item (commodity) flowing through the arcs. We order

these commodities to correspond to the integers {1,...,K).

We define the following quantities to be used in the formulation

of the multicommodity network flow problem:

-- A is the m x n node-arc incidence matrix corresponding to the

underlying network.

k.
-- x is an n vector of decision variables for k = 1,...K. Note

k
that xk represents the amount of flow of commodity k on arc j.

E.-"-

-- c is an n vector of unit costs for k : ,...,K. o

k

c k denotes the cost for one unit of flow of commodity k on arc

j.
k k

-- r is an m vector of requirements for k : 1,...,K, so that r.

denotes the required number of units of commodity k at node i. If

r. < 0 then node i is said to be a demand node for commodity k

w i t d e a n d = j i < . I f r k > 0 t h e n n o d e i i s s a i d t o b e ai

supply node for commodity k with supply = r i And if r i=

then node i is said to be a transshipment node for commodity k.

-- u is an n vector of mutual arc capacities. That is, the total

flow of all the commodities combined for arc j cannot exceed u..

k.
-- v is a n vector of arc capacities for commodity k (k = 1,...,K).

k
v , then, represents an upper bound on the flow of commodity k

on arc j.

We sometimes refer to the entire vector of decision variables

(x ,... ,/x as simply x. Similarly we use c, r, and v to denote the

entire vector of costs, requirements and upper bounds, respectively.

Using these ideas, we may formulate the multicommodit network

flow problem for a given network with m nodes, n arcs, ano K commodities

as follows:

kk
Minimize E c x

k

Subject to Axk = rk, k 1,...,K (MP)

kx < u
k

k k
0 < x < vk

, k 1,...,K.

• -' ." ? ; "' " 2" " '" " .'
" " " - "

" " " " -' " - " " " " . '
"

"|

6

1.3 The Casualty Evacuation Model

A large European military conflict involving U.S. Armed Forces

could result in more casualties than could be effectively handled in,

European medical facilities. To alleviate this overcrowding, the

Department of Defense plans to implement the following evacuation

policy:

"During the first 30 days of a conflict, if a wounded

soldier cannot be returned to duty within 15 days, then

he will be evacuated to a medical facility in the United

States. In the next 30 days the limit on treatment time

is increased to 30 days."

Given a scenario concerning such a conflict (i.e. the number and loca-

tions of wounded and the types of wounds), this evacuation problem may

be modelled as a multicommodity network flow problem. Lt. Col. Dennis

Mc.ain was the first to model the problem in this way. In Lt. Col..

McLain's model the nodes correspond to 9 European recovery bases and

95 United States locations. The arcs correspond to aircraft flights

connecting European and U.S. facilities. The commodities are 11

different patient types.

In order to enforce a capacity on a given facility, it is

necessary to duplicate the corresponding node using the capacity as an

upper bound on the arc between the duplicate nodes. For example, if

node A represents a hospital with 300 beds, then we substitute two

%Z %

7

nodes, Al and A2, along with an arc whose capacity is 300. Further, I
it is necessary to include 60 copies of the entire network, one for

each of the 60 one-day time periods. Additional arcs are created to I
link each time period to the next. The model includes a dummy "sink"

node for each time period and one "super sink" node, along with

capacitated arcs to allow patients who have recovered to exit from the

system. These considerations produce a very large model. The

dimensions of the constraint matrix are shown below:

A1 12,541 rows

A 2 A

where A, ... = A T he row dimension of this model is over 137,000,

w.ich is far beyond the scope of an'. known existing computer code. To

put tnese figures in perspective, we note that Kennington reports that

the largest models he has solved using his primal partitioning code,

MCNF, have been on the order of 3000 rows [2].

Our plan has been to develop a specialized solution procedure

which would solve a scaled-down version of Lt. Col. NcLain's model. We

anticipate aggregation of the data, possibly using some of the

following ideas:

.. t-.

8

(1) Aggregation of the time periods. Note that simply using

3-day time periods instead of 1-day time periods reduces the

problem size to around 46,000 rows.

(2) Aggregation of similar patient types.

(3) Aggregation of U.S. medical facilities so that facilitiet

which are located within a given number of miles of one

another are treated as one node.

At the writing of this dissertation we have not yet received any

large test problems from the Air Force. As a result, we are unable to

report on the problem size limitations of our technique. However, in

an attempt to test our software on a relatively large problem, we

solved a randomly generated test problem with around 9,000 rows. (See

Chapter 4 for the details of this problem.) This is the largest

problem we have attempted so far.

1.4 Accomplishments of This Investigation

This dissertation proposes a new technique for solving extremely

large multicommodity network flow problems. Our method involves

generating upper bounds on the optimal objective value by partially

solving the problem using a resource-directive decomposition technique,

and generating lower bounds on the optimal objective value by partially

solving a Lagrangian dual of the problem. Both the upper

and lower bound routines exploit the network structure of the problem,

decomposing it by commodities and solving the resulting pure network

problems. In the limit both bounds must converge to the optimal

objective function value; in practice we stop when the difference

between the two bounds is within some termination tolerance.

Whether solving for lower bounds or for upper bounds a sub-

gradient optimization technique is used. At each iteration this

procedure requires the computation of a subgradient, the selection of

a step size, and a projection operation. In Section 3.1, we obtain a
V

new convergence result for a particular class of subgradient pro-

cedures. Then, in Section 3.2, we introduce a new heuristic, closely

related to the subgradient optimization procedure, which has worked p

well for our test problems.

Our technique has been tested on randomly generated test

problems and on one problem which was formulated specifically to

represent the class of evacuation planning problems for which the code
-.,

was developed. In addition, the same set of test problems was solved

by M'NF [51], a general purpose multicommodity network flow problem

solver which uses a primal partitioning scheme. Computation times for

both codes are presented. Our code used an average of 68% of the time

needed by MCNF, performing significantly better on the problems with
0

fewer commodities. In addition our code required on the order of 1/K

the amount of main memory for a K-commodity problem, so it can solve

significantly laroer problems than MNF.

10

CHAPTER II

A SURVEY OF RELATED LITERATURE

In this chapter we present an overview of the existing work on

which this dissertation is based. Section 2.1 deals with the work that

has been done in the area of pure network models. Then in Section 2.2

we address the broader area of multicommodity network methods. Since

our algorithm involves a subgradient optimization technique, both in

the Lagrangian dual portion and in the resource-directive decomposition

routine, we provide some references involving subgradient optimization

in Section 2.3

2.1 Pure Networks

SNetwork problems are linear programming problems with node-arc

incidence matrices as their constraint matrices. Within this class,

known formally as minimal cost network flow problems, there are several

variations including transportation problems, transshipment problems,

assignment problems, maximal flow problems, and shortest path problems.

Ideas for solution of network problems can be traced at least as

far back as 1939, to the work of Professor Leonid Kantorovich [41].

Kantorovich, along with Professor Tjalling C. Koopmans received the.

Nobel Prize in Economic Science in 1975, for contributions to the

theory of optimum allocation of scarce resources. Koopmans and Reiter

S.

11

[54] and Frank L. Hitchcock [42], working independently, were the first

to formulate the transportation problem. The mid-fifties saw a surge

of interest and work in the areas of network algorithms. It was around

this time at Alex Orden [59] generalized the transportation model to

allow transshipment points. Lester Ford and Delbert Fulkerson [22]

[20] formulated and investigated solution techniques for the maximal

flow problem and the minimal cost network flow problem. The spe-

cialized algorithms that have been developed for solving network

problems may be classified into two groups: primal-dual techniques, and

specializations of the primal simplex algorithm. Primal-dual methods

for solving networks began with Harold Kuhn's Hungarian Algorithm for

the assignment problem [55] and culminated in Fulkerson's Out-of-Kilter

Algorithm [23]. Primal simplex based techniques originated with the

work of Professor George Dantzig [17] and continued through Ellis

Johnson's 1965 paper [47]. The basis for Johnson's work can be traced

to the work of Dantzig [18] and Charnes and Cooper [14].

Since that time much work has been done in the area of solution

techniques, and computational advances have been made by the develop-

ment of more efficient data structures. The credit for much of this

work goes to Professors Fred Glover and Darwin Klingman and their

colleagues at the University of Texas. This is evidenced by such

papers as Barr, Glover and Klingman [9] [10], Glover, Hultz and

Klingman [26] [25], Glover, Karney and Klingman [27], Glover, Karney,

Klingman and Napier [28], Glover and Klingman [29] [31] [30], Glover,

Klingman and Stutz [32], and Karney and Klingman [49]. Others who have

contributed to the research include Srinivasan and Thompson [63] [64],

12

Bradley, Brown, and Graves [131, and Mulvey [57] [58]. In additio,
0J

significant work has been performed by Professors Jeff Kennington,

Richard Barr, and Richard Helgason of Southern Methodist University as

seen in such works as [3], [41], and [52].

Today network algorithms have been demonstrated to solve lines:

network problems 50 times faster than general linear programming

algorithms [6]. Additionally a computer implementation of such a
S

technique may require only half the memory of the general L.P. pac-, ,

[6]. These advances are due to the efficient data structures w,-

have been developed to allow a basis for a network problem to be s:

as a rooted spanning tree on the nodes in the network. Using this .

all the simplex computations such as pricing, ratio test, anc upca't,

can be performed via labelling algorithms on the basis tree. Th:',,

eliminates the need to store the basis inverse in factored forr.

2.2 Multicommoditv Networks

Multicommodity network flow problems are problems in .c"

several different types of items (commodities) must share arcs

capacitated network. Each solution technique for muLticommodis

network models can be classified as one of two main types of

algorithms: partitioning algorithms and decomposition algorithm.

2.2.1 Partitionino Algorithms

Partitioning algorithms are specializations of the simplex mpthod

which exploit the multicommodity network structure by partitioning tn.

basis into more than one part. In one part advantage is taken of tne

..................

'. Y -

13

special network structure. Those who have studied primal partitioning

algorithms include Kennington [50], Helgason and Kenniriton [40], Ali,

Helgason, Kennington, and Lall [4], Hartman and Lasdon [36] [35],

Maier [56], and Saigal [61]. Ali and Kennington [6], in their

computational research, reported solution times averaging 5 times

faster than general linear programming codes. A dual partitioning

method was proposed by Grigoriadis and White [34). A primal-dual

partitioning scheme was developed by Jewell [46]. In addition a

factorization technique was proposed by Graves and McBride [33]. M2NF,

the multicommodity network code with which we compared our solution

times, is a primal partitioning program.

2.2.2 Decomposition Algorithms

Decomposition schemes seek to solve the problem by decomposing it

into several smaller subproblems, each of which takes the form of a

pure minimum cost network flow problem. A master program coordinates

the solution process. Decomposition procedures for the multicommodity

network flow problem fall into two categories: price-directive schemes

and resource-directive schemes.

Price-directive decomposition is based on the well-known research

of Dantzig and Wolfe [19]. In a price-directive approach, the K-

commodity problem is decomposed into K single commodity problems. The

master program then uses the simplex method while the subproblems test

for optimality and select candidates to enter the basis of the master

problem. Ford and Fulkerson [21] were the first to develop this

,o'

- .*. .*#. .-

14

approach for solving multicommodity network flow problems. Tomlin [67]

was the first to develop a computer code implementing this technique.

Others who have studied price-directive decomposition schemes are

Jarvis [43], Jarvis and Keith [44], Chen and DeWald [15], and Jarvis

and Martinez [45]. Price-directive approaches for generalizations of

this problem have been proposed by Cremeans, Smith, and Tyndall [16],

Swoveland [65] [66], Weigel and Cremeans [68], and Wollmer [69].

Resource-directive decomposition schemes decompose the problem by

commodities, and the master problem systematically distributes the

mutual arc capacities among the commodities. At each iteration the

optimal solutions to the single commodity subproblems are used to

compute a new set of allocations. Robacker [60] was the first to

suggest this approach for multicommodity network problems. Research on

this technique has been presented by Swoveland [65], Assad [8], Ali,

Helgason, Kennington and Lall [3], and Kennington and Shalaby [53].

V

2.3 Subaradient Optimization

The subgradient optimization technique was first proposed by Shor

[62] in 1964. Since that time subgradient algorithms have been applied

to many different optimization problems. Held and Karp [37] and Held,

Wolfe and Crowder [38] made use of the approach in solving the

symmetric travelling salesman problem. Bazaraa and Goode [11] applied

the algorithm to the asymmetric travelling salesman problem. Sub-

gradient methods have been used to solve the assignment problem [38].

Glover, Glover and Martinson [24] applied a subgradient technique to

AI

15

solve a special network with side constraints, and Ali and Kennington

[7] made use of it in research involving the r-travelling salesman

problem.

-°•%

- -. F -1- . --.-V.

16

CHAPTER III

THE ALGORITHM

Here we present a new solution technique for the multicommodity

network flow problem. This technique involves finding successively

better upper and lower bounds on the optimal objective function value.

The algorithm terminates whenever the two bounds are within a prescribed

tolerance or when it can be shown that the current solution is an exact

optimum.

Lower bounds are generated by partially solving a Lagrangian dual.

At each iteration a Lagrangian relaxation of the original problem is

solved; since these relaxations decompose on commodities, only a

(single-commodity) minimum cost network flow optimizer is needed. A

subgradient direction is used to adjust the Lagrange multipliers for the

next iteration.

Upper bounds are generated using a modification of the resource-

directive decomposition technique first suggested by Robacker [60]. We

introduce a specialization of the subgradient direction approach which

was first applied to this class of problems by Held, Wolfe, and Crowder

[38].

With minor restrictions on the step sizes we show that both the

upper and lower bounds converge to the optimal objective value of the

original multicommodity network flow problem. Hence in the limit the

algorithm will converge to an exact optimum. In practice we seek a

near-optimum.

...

3.1 Suboradient Optimization

Let us first consider the general subgradient algorithm for

optimization of convex functions; later we will present specializations

of the technique for the upper and lower bound problems. Consider the

nonlinear programming problem

Minimize g(y)

Subject to y r F

where g is a real valued function that is convex over the compact,

convex, nonempty set 7. A vector n is called a subgradient of g at a

point x if

gy) - g~x) > r(y - x) for all yr c.

Note that if g is differentiable at x, the only subgradient at x is the

gradient. We denote the set of all subgradients of g at x by " ' .

The subgradient algorithm proceeds in this manner: Given a point

x in 7, find a subgradient of g at x, obtain a new point by moving a

civen step size in the negative subgradient direction, and finall%

project this new point back onto 7. This projection operation takes a

point x and finds the point in " that is "closest" to x with respect to

the Euclidean norm. We denote the projection of x onto 7 by P[x].

Using this notation we present the general subgradient optimization

algorithm for minimizing a conve.x function g [52].

S.

18

ALGORITHM 3.1 SUBGRADIENT OPTIMIZATION ALGORITHM

Step 0 -'Initialization

Let yo be any element of r. Select a set of step sizes,

s 1 , s 2 , s 3 , and set i*-O.

Step 1 (Find Subgradient)

Let ri c g,yi). If r.i = 0 terminate with y, optimal.

Step 2 (Move to New Point)

Set v. P[Y -sr.]. Set i-i + 1. Return to step 1.

Let us now turn our attention to the selection of step sizes.

Several ideas for choosing step sizes have been proposed. These

typically involve a seqjence of constants, 39 I which satisfy

the following conditions:

> 0, for all i,

1

lir 0 , an d (3.1)

1-.

The subgradient algorithm can be shown to converge when any of the

following three formulae are used for determining step sizes [52]:

(i) s. ,1 1

(ii) s 2 (3.2)

s J 9g!)Y - g*]/ll J'j 1

where g* denotes the optimal objective value.

.A e- e

pa, 19

Propositions 3.1, 3.2, and 3.3 may be found in Kenningtoni and

Helgason [52]j, and are given here as necessary preliminary results.

4 Proposition 3.1 52]

n
Let yeT', and let xcR .Then (x-P[x])(y-P[x]) < 0.

Proof

Choose a so that O<a(1. Since r is convex, cy+(l-a)P[xhr7. B

the definition of P[x], llx-P[x]lk. lx-(ay+(l-a)P[x])Hl. Thus

I Ix-P[x]j 12 < I I X-(ay+(1-.a)P[x])1 2

zjjx-P[x]-Cz(y-P[x])jj2

* jx-P[x]H2 +C' Iy-P[x]I2 -2a(x-P[x])(,y-priX]).

Then (x-.P[x])(y.-P[x]) <~ Ijy-P[x]Ija/2. And, since a can be taken

arbitrarily close to 0,

(x-P[x])('y-P[X]) < 0.

Proposition 3.2 [52]

Let x, y cRn. Then JfPIX]-.PIy]II < jx-yI1.

P roof

Case 1: Supose Pjx] = P[y]. Then

jIP[x]-P[Y]11 = 0 < IIX-yM1.

-Case 2: Suppose P[x] i P[y]. Then since P[xlcr,

and P[yc', from Proposition 3.1 we have that

(x-P[x])(P[y]-P[X]) < 0

and

(y-P~y])(P~x]-P[y]) < 0.

We may rewrite the above inequalities as

x' P[y]-P[x])-P[x3P[y]+jjP[xjj 2_ 0

and

W.. T VYW7WV xW1 W 1F.'1TW W -T.. Z

20

y(P~j-Pb-P[]P~~+~ ~(y112< 0.

Adding these inequalities, we obtain

(x-y/> [y3-Px1)+j 1P~y3-P~xj1 <I

Then from the Cauchy-Schwartz inequality,

Thus

Ijjp[y'J-prxfl12. (I xy11 I jp[yJ-p[x1jI.

And since Plix] J' P~y],

I lP[X]-P[1] <I I x-y I1.a

Proposition 3.3 i2

If r. i 0, then, for any, yc7,

2 K ij-'I 2 + Sj2 -II 2 +2s r (y-yy'

Proof

Let i be an\, iteration of the subgradient algorithmr. Suppose

r. i ? 0. Let y _7. Tnen, b'. Proposition 3.2,

*i i .I, 12 s -i y 2
IlP[Yi i LJjj K

1IYll 2y IIi- S 211rjlI2 + 2sii(-

Since P[y]=y and PLy.- s 1il = ,il we have that

11i+-Y12 _ 1iY12+s ri1 2 + 2s ir).(y-y.).U

Our main convergence result is for the particular step size

scheme:

1 1 g1 1

0I

_P A

21

where g is a lower bound for the optimal objective and where we are at

liberty to select bounds a and 6 for the JLi) such that for each i, 0 <

< , < : : < 2.

Proposition 3.4

Let (i) g be a known lower bound for the optimal objective, g*,

with g*>5;

(ii) {?i} be any infinite sequence such that

for all i, O<a<>,i<a<2; and

(iii) si =),ilg(vi)-5]/ll 2 .

If there is a constant C such that for all i, Cjnij K C, and if -' > 0

is given, then there is some n such that g(yn) < g*+[B/(2-5)](g*-g)+

Proof

Let),>O be given. Let (i), (ii), and (iii) hold. Let y* be an

optimal point, and for all i, 11ril K C. Suppose, contrary to the

desired result, that for all n, g(y)>g* [E/(2-6)](g*-g)+y. Then, by

Proposition 3.3,Y.I2 222ll~ +2 1_ lli-Y*ll +Xi2[g Yi)_-32/IIriI12

+ 2x {[g(Yi)-]/Ii 1 1 2 ,i(Y*-Yi)

Q< Ilyi-Y*l12+ I~ i2 [g(yi)-] 2/HI l 2 11

+ 2xi{[g(yi)-g]/1 J ill 2 [g*-g(y)],

since nicag(yi).

Since 6>). >O,then 6. i , 2. So,

I I -y. 1_-y I I 1 22> ,i g *i) -] 2/> I lk 122

22

+ 2-/, {g(y Tg] i 2~I JAg*.g(Y.)I

1y-* 2 +2axigyi5/Irj 2

Since g(y.) > g*+(/(2-6.))(g*-5.)+-y, then --y > g.*-.g(y.) +

(a./(2-))(g*-). So,

Since g*<g(y.i), a<; , and jjn _ ii < C, then
11'i+1->'1 12 < 1y1-y*1f f2_[(2-0)c(g*-g9)y]/C2. (3.3)

We can choose an integer N so large that

Cl 1y* 2 2, (2-:c,'*g) N.

Thus, since 2-E>O and g*.-g>O,

Adding together the inequalities obtained from (3.3) by letting i take

on all values from 1 to N, we obtain

HIYNlyH 2 < Hjy1.y* 1
2 _N(2-.B)a(g*..)Y/C 2 < 0,

a contradiction. a

23

It is shown in [39) that when T is compact, g is continuous on some open

set containing r, and ;g(y) J c for all y&T, there exists a

constant C such that I1rf,1C for all ycr, and neag'y), so that the

boundedness condition on the subgradients in Proposition 3.4 is easily

met.

3.2 Generating Lower Bounds

In this section we present a technique for generating lower bounds

for the multicommodity network flow problem. This technique involves

partially solving the Lagrangian dual problem using a subgradient

technique to update the Lagrange multipliers at each iteration.

Recall that the multicommodity network flow problem, MP, may be

stated as follows:

Minimize - c kxk

k
SujettoAk : k

Subject to Ax k r , k = 1,...,K (MP)

k
k

k k0 < x V , k 1,...,K

where

A is an m x n node-arc incidence matrix,
k.
c is an n vector of unit costs for k : 1,...,K,
k.
r is an m vector of node requirements for k 1,...,K,

u is an n vector of mutual arc capacities,

k
v is an n vector of individual commodity bounds for k=1,...,K,

k.
x is an n vector of decision variables for k

I,...,K

24

and K is the number of commodities.

Consider a Lagrangian dual problem for MP, denoted by DP:

MAX h(.)

X>O

k k k
h(X) = MIN[I c x + (Z x - u): (DP)

k k

k k k k
Ax = r (k = 1,...,K); 0 < x < v (k

where X is an n vector of Lagrange multipliers.

First we show that any feasible solution for DP is a lower bound

for MP.

Proposition 3.5 [12]

Let X = (-x 2 ,K) be a feasible solution for MP. Let

i be a feasible solution for DP. Then h(77) < ci.

Proof

Since ht) is a minimum, and since x is feasible for MP, h",7<

k-k -- k
_C X + A,ZX u) Further since ;--is feasible
k k
for DP and - is feasible for MP, then T(:x - u) < 0.

k
Hence h) < ci. a

In addition to this result, Bazaraa and Shetty [12] have proved

that if MP has an optimal solution, then DP has an optimal solution, and

that their optimal objective function values are equal. As a result, we

see that we may indeed solve (or partially solve) DP in order to obtain

a lower bound for MP.

In order to justify using a subgradient optimization technique for

solving DP, we must show that the objective function is concave and

develop an expression for a subgradient.

Y" "" "" "" "" " "" '..- - -,_..,, ..., , ,.- .- . . ,, , ,. . . . ,/ .' . ,. , ". "$w '. " ". ".",, '." . .- -"v'- " ",'""". " "" "' -" -" .." .'-.'-.'-

25

Proposition 3.6

The real valued function h is concave over X: {:>, ER; > 0).

Proof

Let X1 > 0. Let X2 > 0. Let 0 < a < 1. Then

h(aX + (1-a)X 2 MIN[Z ck x + (ax1 + (1-a) X)(Xx k-u):
k k

k k k kAx = r (k=l,...,K);D < x <V (kl,...,K)]
kk 1 k kk2

MIN[a7ccx + aX (Ix -u)+(1-a)zc x + (1-a) X,xk-u):
k k k k

Axk = rk(k=1,...,K); 0 <xk < vk(k=1,... K)]

k k 1(k_> MlN[:c x + X (x -u):
k k

Ax k = r (k= ,...<,K); x < Vk(k=3 ,... ,K)]

+ (1-o) MIN [.-c k X (x -u) :
k k

Ax k = r k (k=1 ,...,K): O < x k < v k =1 . . K ,

= h' + l-)h(,2) . Hence h is concave over ,.. U

Proposit ion 3.7

Let 'A > 0. Let x represent an optimal value of x corresponding

to h(,). Then d = is a subgradient of h at '.

Proof

Let X be any other point in A with corresponding optimal decision

variable values x. Then

h(;') r Ckx' + -(Z

k k

Si

-: ;K-. ;-.* .

* k-k ' -k
< Zc x -u) (since x is optimal)

k k

-X x k :'x.. Uk) + (, k k) + (u-Mu)
k k k k

ckk -k_ k_
- (Z x -u) + (Z xku)(-A)

k k k

h(X) +

Therefore d is a subgradient of h at A. a

We now present our algorithm for computing lower bounds for MP.

Note that it is a specialization of the subgradient optimization

algorithm for this problem, and its convergence follows as a maximiza-

tion analog of Proposition 3.4.

ALGORITHM 3.2 LOWER BOUND ALGORITHM

Step 0 'Init ialization<

Let U6 be any upper bound on the solution to MP. Set i -:

1 K,
0; '0 2. Compute yO -h(>'O) and let x0 = (x .. , 0 be the

corresponding optimal values)f the decision variables.

Step 1 rrind Suboradient

Set r, Z xk-U. If r,i 0, stop with y. optimal.
k

Step 2 (Move to New Point)

2 .th
Sets- C1 (UB-y.)/Ilr i . Compute the j component of

X 1 as:

j'i1)j 1 , ,

"
"

27

Compute y1 - h(i+1) and let xi+ I be the corresponding optimal values

of the decision variables. Set a+1 - ci/2. Set i -i1. Return to

step 1.

3.3 Generating Upper Bounds

Here we describe a procedure for generating upper bounds for the

multicommodity network flow problem. This procedure is a specialization

of the resource-directive decomposition (RDD) algorithm using a sub-

gradient direction. First we describe the general RDD procedure; then

we present our specialization.

I
The RDD technique produces a sequence of feasible solutions by

distributing the mutual arc capacity among commodities in such a way

that the solutions to the K individual subproblems provide a solution to

the composite problem. At each iteration an allocation is made and the

resulting K (single commodity) minimum cost network flow problems are

solved. If the solution meets an optimality criterion then the

procedure terminates; otherwise, a new allocation is made, and the

process is repeated.

kAfter introducina artificial variables, (ak), MP becomes:

Minimize Zc k xk + M Z la_
kk kk k k

Subject to Axk + ak r (k

kx <u
k

k k

0 xk < v (k 1,...,K)

k
a > 0 (k 1,...,K)

.- '~~..."............... , . -. " ." ."- - -- '- ' ' 6 ",f'. ' ,z ._

-~V* T. 67 -.. 7 ..

28

where M is a very large positive number and 1 is an m vector of all

ones.

Let us restate the problem as:

Minimize z(yl .. ,K

Subject to z(y ,...,yK) Z z k(yk) (RP)
k

k
y = u

k

0 < yk < vk (k 1,...,K)

k, k\ k M~ k k k k k k k k
where z \v MIN ckx .M1ak: Ax +a =r ; O<x <y ; a >0) for k =

1,...,K. We shall refer to this formulation as RP. Note that z ,,k) =

M,:k k k k k k k k kMAX{rk kv :A -. <c ;< <M1:. >0'1, by duality theory.

In order to justify using a subgradient optimization technique we

must sho4 that z\ ,... 9Y) is a convex function and develop an

expression for a subgradient.

Proposition 3.8 [52]

The real valued function z is convex over

1 k 1 VY = { ,.. , > y O:,... ; >0:.

Proof

Let (,.K) an (1 -KLet ,... an.y),¥. Select a so that

O<c,'I. Then

^1 _K (1)-K]

k k

k

k k k + k k
Z MAX r Y - [ay + (l-c)y 3.
k

k k k k
A-. - .

29

kk -k k k kkk
MAXa[rk -y] (1-c)[r i- -y +]:

k
kAk<_k k ~ O}0

A- <c j<41; k,>

k k-k k
< Z MAX {r k -y v

k

k k k k klA--k<ck k<Ml k>0}

k k ^k k
+ (1-a) Z MAX{ r , -y v

k

k kk kkA-,, k<c ; k <M1; vk>o}

z(1) + (1-c,)z(y ,...,y).

Therefore z is convex over Y. 8

Proposition 3.9 [52]

1 K -k-k
Let y = (y. y.. 4Y be any allocation and let (k,-k

denote the corresponding optimal solution to zk (k) for k
-1 -V

Then r. -,... ,- K) is a subgradient of z at y.

Proof

1 K k k
Let y: (y ,...,yK)cY be any allocation and let (k) denote the

corresponding optimal solution to zk(y k) for k 1,...,K. Then:

1 K kk kk k-k-k k
z(y ,. ..,y)-Z, .) = (-y v) (-y v)

k k

k-k k-k k-k -k-k
> Z (rk~k-ykV) - E (r kk-y V)

k k

(-7k)(yk_ Y k)

k

. .

Hence is a subQradient of z at . .

Recall that the subgradient optimization algorithm requires a

technique for projecting a point onto the feasible region. We nori

explore the projection operation for this problem.

Let us denote the feasible region for RP by 2,. That is,
I yK) k vk "= {(y y.... : y k u;O < _ (k =1,...,K)}. Given an

-1 -K "
arbitrary allocation, ...,y), to project it onto i, we solve

1 -1 V
MIN:Il , K ... ,y)-(y ,... 9 11: y "

k -k,2)1/2M MI N :" , (-v,_ : y C: }
'KJ

Or, equivalentlN, we can solve: "5

N k -k,2
kj Y -J S.2

Note that this problem decomposes on j. Hence, for each arc j, we

solve:

k -k,2 k k k
vM u.• 0 < y' < v ; (k=1 ...,K)).k k J , k u , - - J 'i

We will denote the above projection problem by P. The following

algorithm [521 is used to solve P for any arc, j.

ALGORITHM 3.3 PROJECTION ALGORITHM

Step 0 (Initialization)

kIf u. > . or u. < 0, terminate with no feasible

k
solution. Otherwise set 1 - 1; r-2K; L-Z v. R-0O. Compute

k1k j' "

31

-k -k k
the breakpoints, bi (i=1,...,2K), as yj and yj-vj (kl...K).

Oroer the breakpoints so that bI b2 < . b 2K

Step 1 (Test for Bracketing)

If r-i =1 go to step 4; otherwise, set m-[(1+r)/2]1 where [K] I

is the greatest integer < K.

Step 2 (Computer New Vilue)
a

Set C - MAX{MIN[y-y m , v.], 0)
k

Ste- 3 (Update

If Czc then set .-y* and go to step 5. If C>c then

set l-m: L-1': and go to step 1. If C<c then set r-m; R-C: and o to

step 1.

Step 4 'Interpolate'

Set),*-b [(b -b)(c-L)]/(R-L).
1 ri

Step 5

k
Compute the feasible 'projected) allocation, yv, for

k=1,...,K in this way:

k -k k
V if)'* < y -v.

k -k -k -k
= y. , if yj-vj<XK<yj

-k

0 if X* > yj

Terminate with the feasible allocation for arc j, (yl,..y.).

An upper bound algorithm using the subgradient procedure is now

presented. Its convergence is a direct result of Proposition 3.4.

-- ,. . . , .. •, ., . o . , . -,J" . " ," ._j d# ' a , . . - .. -. ' ' ,'r, . . ' ' -

32

ALGOR:THM 3.4 UPPER BOUND ALGORITHM

Step 0 'Initializatioq'

Let LB be any lower bound on the solution to MP. Choose a set of

1 K by tn kinitial allocations, yo (y0, ,yK)by setting 0 P[(1/K)(u)]

for k = 1,...,K. Set 0 2 i -; UB-.

Step 1 (Find Suboradient)

k k k(k
Let(,) solve z ky.) for k = 1,...,K. Let

Set UB-'' -(y'). If 0, then terminate with

zy i) optimal.

Step 2 (Move to New Point)

:i -LB],'I l'i S t i
Compute s. I ,il Set i -

PLv'-S .1 Set '2; i-i-+1-. Return to step 1.P i-s]. S t : N-"'i "

We now introduce a heuristic modification of the upper bound

algorithm, which has produced better results on our test problems.

1 1 K,
Recall tnat - , ... K is a subgradient of z at (y ,.. ,

Then for each arc j, the vector

2 , n-j 2 " '"(k-1)nj .j

serves to isolate the components of T) associated with the commodities

flowing on arc j. For each such arc j we compute an individual step

size at iteration i as

si(j) = .[z(yif,...,y) -z]/Hri(J)f 2

where z* is approximated b\ LB.

,S

* :.

&WV. -V

33

Using this idea we now present our heuristic upper bound

algorithm.

ALGORITHM 3.5 HEURISTIC UPPER BOUND ALGORITHM

Step 0 (Initialization)

Let LB be any lower bound on the solution to MP. Choose a set of

initial allocations, y 0 =(y 0... ,y 0) by setting y 0 P[(l/K)(u)]

for k =1',...,K. Set /<-2 0~ O B~

Step 1 (Find Subaradient)

k k k, k
Let (i solve z 'V.) for k =1,...,K. Let r, i

1K) k k
x.,. ..,.-.). Set UB-:z (y.). If n*,O, then terminate with

z(y1) optimal.

Step 2 (Move to New Point)

1 K .B]I~(j)11 2

Compute s.(j)- 2.Lz(v.,...)-B1jj for each arc j.

SetS-diag(,s 1)...si(n)). Set

K 1 K

Set (y set x i1 *-X/2; i4*-a~..

Go to step 1.

34

3.4 The Aloorithm

In this section we present the composite algorithm for solving MP.

This procedure involves partially solving DP for successively better

lower bounds and partially solving RP for successively better upper

bounds on the optimal objective function value. The algorithm

terminates whenever (a) the solution to DP can be shown to be an exact

optimum; (b) the solution to RP can be shown to be an exact optimum; or

(c) the greatest lower bound and the least upper bound generated are

within a prescribed tolerance, In case (c), the best solution to RP

is presented as a guaranteed c-optimal solution.

ALGORITHM 3.6 COMPLETE ALGORITHM

Step 0 (Initiaization'

Let c-termination tolerance 'O<c<l); NOLB-number of lower bound

iterations to perform on each pass; NOUB-number of upper bound

iterations to perform on each pass; LB---; UB-.

Step -- Lower Sound'

Perform NOLB iterations of the lower bound algorithm (Algorithm

3.2). Let LB denote the best lower bound attained so far. If Algorithm

3.2 terminates in step 1 with an exact optimum, terminate with that

solution optimal for MP.

Step 2 (Upper Bound)

Perform NOUB iterations of an upper bound algorithm (Algorithm 3.4

or 3.5). Let UB denote the best upper bound attained so far. If

Algorithm 3.4 terminates in step 1 with an exact optimum, terminate with

that solution optimal for MP.

% "

- Ste. 3 (.heck for Termination)

If E(UB)<LB then terminate with UB a guaranteed -optimum;

otherwise, go to step 1.

In this algorithm the best solutions for the lower bound and upper

%. bound problems at each pass are retained and used as starting solutions

For the respective problems on the next pass. The details of our

implementation are presented in Chapter 4.

7

36

CHAPTER IV

COMPUTATIONAL EXPERIMENTATION

This chapter provides descriptions of our computer implementation

of Algorithm 3.6 and of the test problems used. Our code, EVAC, uses

MODFLO [1] to solve the single commodity minimum cost network flow

subproblems which arise in Algorithm 3.2 and in Algorithm 3.5. MODFLO

is a set of routines which may be used to solve a network flow problem or

to reoptimize a previously solved problem after changes are made in some

of the data. MODFLO, which is based on NETFLO [52], allows the user to

change bounds, costs, and/or requirements and then reoptimize from a

basis which was optimal for the original problem.

We tested EVAC on 22 randomly generated multicommodity network

flow problems and on one test problem which was specially structured to

be solved by EVAC. The test problems ranged in size from 22 to 754

nodes and from 53 to 1,102 arcs with from 0 to 599 linking constraints

and from 3 to 20 commodities. The equivalent LP sizes are between 232

and 8,904 rows and between 470 and 12,111 columns. The 22 randomly

generated problems were created using MNETGN [5], a multicommodity

network problem generator. The problems were solved by EVAC and by MCNF

[51], a multicommodity network flow code which uses a primal parti-

tioning algorithm. Solution times are compared and conclusions are

drawn concerning the relative effectiveness of the techniques.

.!

37

4.1 Description of the Computer Programs

In this section we present a description of MCNF and EVAC, the two

computer codes used in our experimentation. Both programs are written

in standard FORTRAN and have been tailored to neither our equipment nor

our FORTRAN compiler.

4.1.1 MCNF

MCNF was developed by Jeff Kennington at Southern Methodist

University, Dallas, TX. It is an incore multicommodity network flow

problem solver which uses the modification of the revised simplex method

known as the primal partitioning algorithm [36]. In this algorithm the

basis inverse is maintained as a set of rooted spanning trees (one for

each commodity) and a working basis inverse is maintained in product

form. The working basis inverse has dimension equal to the number of

binding linking constraints corresponding to the current basis. The

initial basis is created using a multicommodity variation of the routine

used in NETFLO. A partial pricing scheme is used; the pricing tolerance

is 1.E-6 and the pivot tolerance is I.E-8.

4.1.2 EVAC

EVAC is our implementation of Algorithm 3.6 for solving the

multicommodity network flow problem. Note that Algorithm 3.6 alternates

between generating lower bounds using Algorithm 3.2 and generating upper

bounds using Algorithm 3.5. Since both the lower bound problem (DP) and

the upper bound problem (RP) decompose on commodities, EVAC maintains

only the information concerning the current commodity in main memory.

The problem data and most recent bases for all the other commodities are

I

38

kept on peripheral storage. At the user's option EVAC stores in main

memory as much of the current set of allocations, (y1,...,) and

41 kcurrent dual variables i) as desired. All our test

problems (with the exception of Problem 23) were solved with all the

allocations and dual variables in core.

Both the lower bound routine and the upper bound routine use

MODFLO as the optimizer for the single commodity subproblems. MODFLO'p
uses the same partial pricing scheme as NETFLO and drives the flow on

artificial arcs to zero using the Big-M method. The Big-M value that

was used for our test problems, except as noted in Table 4.1, was 7

times the largest unit cost in the given problem. At subsequent

iterations, initial bases for each commodity are just the optimal bases

for the previous set of Lagrange multipliers. A basis for the upper-

bound problem is generated by constructing a feasible basis from the

previous optima! basis using the rules described in [1].

In practice we did not update the multipliers for the step sizes

in Algorithm 3.2 and %. in Algorithm 3.5) at every iteration, but

onl when the improvement in the objective function was too small. As

Algorithm 3.2 requires a finitie upper bound (for calculation of the

step size in step 2) we used an initial value of UB - 1.1*LB.

Thereafter for UB we used the best upper bound generated so far. The

parameters and tolerance used in all our testing were these:

= .90

NOLB = 5

NOUB = 5

Pricing Tolerance 1.E-2

4.2 Description of the Test Problems

The multicommodity network problem generator, MNETGN, was use z to

create 22 random test problems. We modified the MNETGN output so that

every arc appeared in every commodity's subproblem by adding arcs witn

upper bounds of zero where necessary. The test problem ranged in size

from 22 to 754 nodes and from 53 to 1,102 arcs with from 0 to 599

linking constraints and from 3 to 20 commodities. The equivalent

sizes are between 232 and 8,904 rows and between 470 and 12,111 colj .

The number of linking constraints corresponds to a wide variet> of

problems from pure network problems (no linking constraints) to prot ems

in which over 75% of the arcs are included in linking constraints.

Problem 15 was provided by Lt. Col. Dennis McLain, the Assistarit

Director of Operations Research at the Military Airlift Command loca:ed

at Scott Air Force Base.

4.3 Summatv o' Comoutational Results

All the testing (except for Problems 15, 21, and 23) was don) o- a

CD 6600 at Southern Methodist University, using the FTN compiler i

the optimization feature enabled. Except for Problems 7 and :3, a

guaranteed E-optimum was obtained for each problem with i > 90%.

Problem 7 experienced convergence difficulties when run using EVA-.

Problem 8 was created from Problem 7 by increasing the linking

constraint bounds by 10%. As indicated in Table 4.1, this slight

modification enabled EVAC to solve the problem easily. We limited tthe

number of lower bound iterations and upper bounds iterations to 10'.

2,U

even though Problem 7 had not achieved 90' optimality b) that point.

Because of this the solution times for Problem 7 are given in Table 4.1

but are not included in the summary data.

Problem 23 was created to allow us to test EVAC on a relatively

large problem. This problem (with 8,904 LP rows and 12,111 LP columns'

was too large for MCNF to solve in the available memory, so we were not

able to compare solution times for the two codes on this problem. In

addition, due to the memory limitations on the CDC 6600, we were forcec

to use a CDC 205 to test Problem 23. For this reason the times for

Problem 23 are included in Tables 4.1 and 4.2, but are not included in

the totals and summary information. Since the testing on the CDC 205

involved a real-dollar expense, we were satisfied to stop when a 75'C

optimum was attained. The test runs for Problems 15 and 21 were ma7 o-

a CDC Cyber 73. But since both the EVAC and MCNF runs for these

problems were made on the Cyber 73, the totals and summary data inclut,

the times for Problems 15 and 21.

Details of the test problems are given in Table 4.1. The times are

in CPU seconds and exclude the time required to input the problem data

and print the solution reports. Table 4.1 also presents a comparison o'

the times required for MCNF and EVAC to solve each problem. In order to

present a meaningful comparison of the solution times for MCNF and EVA",

we also present the solution times for EVAC exclusive of the extra I/0

required to maintain the costs, bounds, and old bases for the sub-

problems on peripheral storage. Since MCNF maintains all this informa-

tion in main memory, this seems to be the most reasonable way of

comparing timing statistics. The column titled "Guaranteed % Optimal"

gives the best lower bound generated by EVAC as a percent of the best

'S-0

-, 4V

upper bound generated by EVAC. The column titled "Actual I Optima:"

presents the actual optimal objective (as obtained by MCNF) as a percent

of the best upper bound generated by EVAC.

Table 4.2 provides the details of the times required by EVAC to

perform various steps of the algorithm. The column titled "1 of Time in

Other" for the lower bound computations shows the time required for such

activities as computing the Lagrange multipliers, updating the unit

costs to reflect these changes, computing the resulting dual variables,

and various bookkeeping activities. The corresponding column for upper

bound computaticis reflects such activities as calculating the dual

variatles, testing the termination criteria, and various other short

computations.

Table 4.3 summarizes the time comparisons grapsical!>. The

problems are grouped b\ number o' commodities, as they, are in Tables 4.1

and 4.2.

4.4 Analysis of Results

It seems clear from Tables 4.1 and 4.3 thaL EVAC severel>.

dominates MCN7 whenever the number of commodities is small. This is due

0 to the fact that, for EVAC, quite a bit of additional overhead is

involved in alternating between commodities. This overhead is not just

a result of I/O, although that is a great deal of it, but is also due to

the set-up time required for activities such as constructing a new

feasible basis from an old basis and calculating the resulting dual

variables. MCNF, on the other hand, is primarily driven by the number

of binding linking constraints in the optimal solution. This is because

MCNF seeks an exact optimum.

Letting T EVA. deote the a.erag,- ir- reux.- .

'excIus ve of 1/0 , and T rNF , derote tht- a'.e a,- j .p zj.,' - :

MCNF, we can express the following relationships:

For the 3-commodity test problems,

T(EVAC) = .354 * T,MCNF).

For the 4-commodity test problems,

TEVAC) = .469 * TMCNF).

For the 5-commodity test problems,

T'EVAC' = .666 * TMCNF).

And for the test problems with 6 or more commodities,

T'EVA2j = .975 * T[M2NF).

It should also be noted that EVAC is capable of solving larger

problems than MCNF. This is due to the fact that EVAC stores only one

copy of the network defining data in main memory, where MCNF requires

one cop\ for each commodity. Also, EVAC maintains in main memory the

current basis, cost and bound data for only one commodity at a time.

Thus, for a K-commodity problem, EVAC uses on the order of 1/K the main

memory required by MCNF.

Note that the entries in the "Guaranteed % Optimal" and "Actual %

Optimal" columns of Table 4.1 are quite close. This indicates that the

sequence of lower bounds converged to values very near optimality. In

addition, from Table 4.2, we see that the lower bound iterations are

typically less time consuming than the upper bound iterations.

It is worth observing that EVAC was designed for very large

problems which would never be solved to optimality. Even if a protlem

does not converge to within the requested tolerance in a prescribed

number of iterations, EVAC always provides a feasible solution which is

'.

43

a guaranteed E-optimJm for some E >0. In contrast, M'NF provides only an

upper bound on the optimum objective value, with no indication of how

close it is to optimality until an exact optimum is actually attained.

We conclude that EVAC works extremely well in obtaining a

guaranteed E-optimum for the multicommodity network flow problem. While

it is not as "robust" as the simplex-based MCNF, it is a good choice for

the class of problems for which it was developed, the very large

casualty evacuation models.

VV

Ia~ atata be al at a aat at 9a a atat'at

CC

V' 10 r4 u*4 a NO &1

0'O'Os 0'0wO 0' O '0 Of

-J
6N .0- ~ ~ 0 8O4'0 ~ '

10 01P *1 7ar VF6

eL.

he! ,Fit 6P i T vat at be a T a t eb at at be
V,414 1 , 'D -' ,) C -"C

- - - - - -- - ----

I:, IW

-OD

-d- ' Nf -I 6ml~C 60'0N ''c
6.J 60

Ln-

' 0 0 0 cc m-oolM0 4N O Q'Oq

C.0Q

41 _0 40 -.- #'o Jo 0.

*~. -

IA at~ 0 tta o Jat a at at at at at a a

at. ! !aaaa at ot at a at a at a !&a

- -. C1 ~ j(

Ata~ & taa at bt, 9t t at &VattataVta 19 t tat
- - ~~~~~~~c'- ~ ' mN-- ' 4.

at

2L. = a at a' a! at at at la a! t at att at ' a! at IV 49 at at att

0. -r 4 tCoC a'

al4 at !I ati at at;at. AVa v a .9 ta 4

a, 101, -a!a a a, I at &CO be IV atlat aT a a,a'! at ! at a
cc 0.- W,~ o" - '. c

tN -

4rl I

-! alp~ t at a at all a ! a! at ATata a ? Tat a p a' at alei!cK = L-01:
a!37cr '~

I 4.

514. . - ata ST a!p a at a! at a9 !a ta 'a at!a at at be x
99 999 = c-0~ 0 -r

at- -- I

a, -2 P a oaata a!P a' a' at rat a a! a' a at at atat bit at at air at 1at 2
0 CMCO1 1NN% - C IA"J-.-.- I

4n 4

r1r
ate 47w M

dN ZN 'D

I ~o cc

Ai c
zr

CL~

c~ w'&L:I ------C (14c -
CL.. C

.q.p-.,%F- '

46

TABLE 4.3

GRAPHICAL COMPARISON OF EVAC AND MCNF SOLUTION TIMES

E EVAC (EXCLUSIVE OF I/O)

250 MCNF

DEVAC I/O

200

r.

150

4-e

47

CHAPTER V

SUMMARY AND CONCLUSIONS

This chapter presents a summary of the results reported in

Chapter IV and shares conclusions regarding the relative effectiveness

of our technique. It also includes ideas for further investigation in

the area. 4

5.1 Summary and Conclusions

Algorithm 3.6 describes our technique for finding an E-optimal

solution for the multicommodity network flow problem. Our technique

differs from other approaches to the problem in that, rather than

solving the multicommodity problem directly, we compute sequences of

lower and upper bounds on the optimal objective function value,

terminating when the bounds are within a prescribed tolerance. Both

the lower and upper bound algorithms use a subgradient optimization

technique and both decompose on commodities so that only a single

commodity minimum cost network flow optimizer is required. At each

iteration of the lower bound routine (Algorithm 3.2), an initial basis

is generated from the previous optimal basis by modifying the costs to

correspond to the new Lagrange multipliers, and updating the dual

variables. At each iteration of the upper bound routine (Algorithm

3.5), an initial basis is constructed from the previous optimal basis v

o'

*- - --
: ' i

17Y

4E

using the rules described in [1] to restore feasibility ,if

necessary) after changing the bounds to correspond to the new

allocations.

The subgradients for the lower bounds are computed to be the sum

of the flows on the mutually constrained arcs minus the associated

mutual arc capacities. For the upper bounds, subgradients are

computed using the dual variables obtained when solving the single

commodity network problems.

Our computational work included solving each one of 23 problems

twice; once using MCNF, a primal partitioning code, and once using

EVAC, our implementation of Algorithm 3.6. On the average EVAC

required only 65% of the time required by MCNF (ignoring I/0. EVAC's

performance was far superior on the problems with fewer commodities

and was not as impressive on the problems involving many commodities.

In addition EVAC required on the order 1/K the amount of main memory

as MCNF for a K-commodity problem.

5.2 Areas for Future Investioation

Algorithm 3.6 involves two more or less independent processes.

That is, there is no reason why the lower bound generator (Algorithm

3.2) and the upper bound generator (Algorithm 3.5) could not proceed

independently, stopping now and then to exchange their best bounds and

test for optimality. Hence it appears that this procedure is

well-suited to exploit the benefits of a parallel processing

environment. In addition to the partitioning of the technique into

two separate procedures, within each of these procedures the

decomposition by commodities could take advantage of a parallel

- tfl f l A~A.

t - N 4 * a . . j-. . W.. - , C' . - a a . S-k .

V

."

49

processing scheme as well. It would seem reasonable to expect such a

scheme to speed up the execution time considerably, especially when

solving a very large problem. 0

There is also room for additional experimentation with the step

sizes, specifically with the multipliers on the step sizes. Perhaps a

scheme in which the multipliers were allowed to be reset to their

starting values a finite number of times would speed up convergence.

One might reset these multipliers whenever the improvement in the

sequence of upper (lower) bounds fell below some tolerance. This

would have the effect of restarting the algorithm at that point, but

with a far better "starting solution".

In addition this problem has a multiperiod structure. Since the

network is replicated for 60 one day time periods, it might be

advantageous to exploit this structure using a forward simplex

approach.

6=
'a

a.

- - - -a = 4 A 'a- 4 N

LIST OF REFERENCES

1. Ali, A., Allen, E., Barr, R., and Kennington, J., "Reoptimization -'

Procedures for Bounded Variable Primal Simplex Network Algorithms",

to appear in European Journal of Operations Research. .

2. Ali, I., Barnett, D., Farhangian, K., Kennington, J., McCarl, B., .'

Patty, B., Shetty, S., and Wong, P., "Multicommodity Network Problems:"'2

.4.

-'p W

Applications and Computations," lIE Transactions, 16, 2, 127-134 "-

(1984).-,''

,.,

3. Ali, A. I., Helgason, R. V., Kennington, J. L., and kall, H.,,,

-.

"Primal-Simplex Network Codes: State-of-the-Art ImplementationAgrhs

Technology," Networks, 8, 315-339 (1978). .i

4. Ali, A. I., Helgason, , rha Kennington, J. L., and Lall, H.,

"Computational Comparison among Three Multicommodity Network Flowlems

Algorithms," Operations Research, 23, 995-1000 (1980). 2 7-

3. Ali, A. and Hengon, R.., MNETGN Program Documentation",

4. All, A. Ianed aon . .Kennington, 3. ., an"alH.

Technical Report IEOR 77003, Department of Industrial Engineering and

Operations Research, Southern Methodist University, Dallas, TX, (1977). A.

. °°4 .

'.',---4'.:-. -. . A.- ,- . and,-,'.-% ,-nint,- ,, 3%,.v,," ."MN-..----.'T-.GN.--. P-grm-ou nttin ,-'- ---..- - .-.
'],' ""''" _; .Tech,nil. Report " " -II -.# IER703"Dprmn of Inds trial Engineering" " and", '] ' '' ' "_ _ -. _-X.......

51

6. Ali, A. I., and Kennington, J. L., "Network Structure in Linear

Programs: A Computational Study," Technical Report No. 83-OR-I,
*,

Department of Operations Research, Southern Methodist University,

-Dallas, TX (1983).

7. Ali, A., and Kennington, J., "The Asymmetric M-Travelling Salesman

Problem: A Duality Based Branch-And-Bound Algorithm," to appear in

Discrete Applied Mathematics.

B. Assad, A. A., "Multicommodity Network Flows -Computational

Experience," Working Paper OR-058-76, Operatons Research Center,

Massachusetts Institute of Technology, Cambridge, MA, (1976).

9. Barr, R. S., Glover, F., and Klingman, D., "The Alternating Basis

Algorithm for Assignment Problems," Mathematical Programming, 13, 1,

1-13 (1977).

10. Barr, R. S., Glover, F., and Klingman, D., "Enchancements of

Spanning Tree Labelling Procedures for Network Optimization," INFOR,

17, 1, 16-34 (1979).

11. Bazaraa, M., and Goode, J., "The Travelling Salesman Problems: A

Duality Approach," Mathematical Programming, 13, 221-237 (1977).

12. Bazarra, M. and Shetty, C., Nonlinear Programming: Theory and

Algorithms, John Wiley and Sons, New York, NY, (1979).

|I

.'. . . .

52S

13. Bradley, G. H., Brown, G. G., and Graves, G. W., "Design and

Implementation of Large-Scale Primal Transshipment Algorithms,"

Management Science, 24, 1, 1-34 (1977).

14. Charnes, A., and Cooper, W. W., Management Models and

Industrial Applications of Linear Programming, Vols. 1 and

2, John Wiley and Sons, New York, NY, (1961).

15. Chen, H., and DeWald, C. G., "A Generalized Chain Labeling

Aloorithm for Solving Multicommodity Flow Problems," Computers and

Operations Research, 1, 437-465 (1974).

16. Cremeans, J. E., Smith, R. A., and Tyndall, G. R., "Optimal

Multicommodity Network Flows with Resource Allocation," Naval Research

Locistics Ouarterl\, 17, 269-280 (1970'.

17. Dantzig, G. B., "Application of the Simplex Method to a Trans-

portation Problem," in T. C. Koopmans, Ed., Activity Analysis of

Production and Allocation, John Wiley and Sons, New York, NY, (1951).

18. Dantzig, G. B., Linear Programming and Extensions, Princeton

University Press, Princeton, NJ (1963).

19. Dantzig, G. B., and Wolfe, P., "Decomposition Principle for Linear

Programs," Operations Research B, 101-111 (1960).

20. Ford, L. R., and Fulkerson, D. R., "Maximal Flow

through a Network," Canadian Journal of Mathematics, 8, 3,

399-404 (1956).

21. Ford, L. R., and Fulkeson, D. R., "A Suggested Computation for

Maximal Multicommodity Network Flow," Management Science, 5, 97-101

(1958).

22. Ford, L. R., and Fulkerson, D. R., Flows in Networks,

Princeton University Press, Princeton, NJ, (1962).

23. Fulkerson, D. R., "An Out-of-Killer Method for Minimal-Cost Flow

Problems," Journal of the Society of Industrial and Applied Mathematics,

9, 1, 18-27 (1961).

24. Glover, F., Glover, R., and Martinson, F., "The U.S. Bureau of

Land Management's New NETFORM Vegetation Allocation System," Technical

Report of the Division of Information Science Research, University of

Colorado, Boulder, CO (1982'.

25. Glover, F., Hultz, J., and Klingman, D., "Improved Computer-Based

Planning Techniques," Research Report CCS 283, Center for Cybernetic

Studies, The University of Texas, Austin, TX, (1977).

26. Glover, F., Hultz, J., and Klingman, D., "Network Versus Linear

Programming Algorithms and Implementations," CCS 306, Center for

Cybernetic Studies, The University of Texas, Austin, TX, (1977).

pI

7r-7 7 .. 7 ow 77r,

f.

2'. Clover, F., Karne\., D., and Klingman, D., "Implementato- a-o

2ompjtationa' Comparisons of Primal, Dual, and Primal-Dual Computer

Codes for Minimim Cost Network Flow Problems," Networks, 4,3, 191-212

28. GLover, F., Karney,D., Klingman. D., and Napier, A., "A Computa-

tional Study on Start Procedures, Basis Change Criteria, and Solution

Algorithms for Transportation Problems," Management Science, 20, 5,

793-813 (1974).

29. Clover, F., and Klingman, D., "New Advances in the Solution of

Large-Scale Network and Network-Related Problems," Technical Report CCS

177, Center for Cybernetic Studies, The University of Texas, Austin,

TX, (1974).

30. Glover, F., and Vlingman, D., "New Advances in the Solution of

Large-Scale Network and Network-Related Problems," CCS 238, Center for

Cybernetic Studies, The University of Texas, Austin, TX, (1975).

31. Glover, F., and Klingman, D., "Some Recent Practical Miscon-

ceptions about the State-of-the-Art of Network Algorithms," Operations

Research, 2, 370-379 (1978).

32. Clover, F., Klingman, D., and Stutz, J., "Augmented Threaded Index

Method for Network Optimization," INFOR, 12, 3, 293-298 (1974).

C.A..

55

33. Graves, G. W., and McBride, R. D., "The Factorization Approach to

Large-Scale Linear Programming," Mathematical Programming, 10, 1,

91-110 (1976.

34. Grigoriadis, M.D., and White, W. W., "A Partitioning Algorithm for

the Multicommodity Network Flow Problem," Mathematical Programming, 3,

157-177 (1972).

35. Hartman, J. K., and Lasdon, L. S., "A Generalized Upper

Bounding Method for Doubly Coupled Linear Programs," Naval

Research Logistics Quarterly, 17, 4, 411-429 (1970).

36. Hartman, J., and Lasdon, L., "A Generalized Upper Bounding

Algorithm for Multicommodity Network Flow Problems", Networks, 1,

333-354, r1972).

37. Held, M., and Karp, T., "The Travelling Salesman Problem and

Minimum Spanning Trees: Part II," Mathematical Programming, 1, 6-25

(1971).

38. Held, M., Wolfe, P., and Crowder, H., "Validation of Subgradient

Optimization", Mathematical Programming, 6, 66-68, (1974).

S

U-,

,|

. . . % "'

56

39. Helgason, R., "A Lagrangian Relaxation Approach to the Generalized

Fixed Charge Multicommodity Minimum Cost Network Flow Problem,"

unpublished dissertation, Department of Operations Research and

Engineering Management, Southern Methodist University, Dallas, TX,

(1980).

40. Helgason, R. V., and Kennington, J. L., "A Product Form

Representation of the Inverse of a Multicommodity Cycle Matrix,"

Networks, 7, 297-322 (1977).

41. Helgason, R. V., and Kennington, J. L., "An Efficient Procedure

for Implementing a Dual-Simplex Network Flow Algorithm,"

AIIE Transactions, 9, 1, 63-68 (1977).

42. Hitchcock, F. L., "The Distribution of a Product from Several

Sources to Numerous Localities," Journal of Mathematics and Physics,

20, 224-230 (1941).

43. Jarvis, J. J., "On the Equivalence Between the Node-Arc and

Arc-Chain Formulation for the Multicommodity Maximal Flow Problem,"

Naval Research Looistics Quarterly, 15, 525-529 (1969). A

44. Jarvis, J. J., and Keith, P. D., "Multicommodity Flows with Upper

and Lower Bounds," Working Paper, School of Industrial and Systems

Engineering, Georgia Institute of Technology, Atlanta, GA, (1974).

0::'

...

57

45. Jarvis, J. 3., and Martinez, 0. M., "A Sensitivity Analysis of

Multicommodity Network Flows," Transportation Science, 11, 4, 299-306

(1977).

46. Jewell, W. S., "A Primal-Dual Multicommodity Flow Algorithm," ORC

66-24, Operations Research Center, University of California, Berkeley,

CA, (1966).

47. Johnson, E. L., "Programming in Networks and Graphs," Technical

Report ORC 65-1, Operations Research Center, University of California

at Berkeley (1965).

48. Kantorovich, L.V., "Mathematical Methods in the Organization and

Planning of Production," Publication House of the Leningrad State

University, 1939. 68pp. Translated in Management Science, 6, 366-422

(1960).

49. Karney, D., and Klingman, D., "Implementation and Computational

Study on an In-core, Out-of-core Primal Network Code," Operations

Research, 24, 1056-1077 (1976).

50. Kennington, J. L., "Solving Multicommodity Transportation Problems

Using a Primal Partitioning Simplex Technique," Naval

Research Logistics Quarterly, 24, 2, 309-325 (1977).

'.

S-

-7777

58

51. Kennington, J., "A Primal Partitioning Cooe for Solving

Multicommodit) Network Flow Problems", Technical Report No. 7900E,

Department of Operations Research, Southern Methodist University,

Dallas, TX, (1979).

52. Kennington, J., and Helgason, R., Algorithms for

Network Programming, John Wiley & Sons, New York, NY, (1980).

53. Kennington, J. L., and Shalaby, M., "An Effective Subgradient

Procedure for Minima2 Cost Multicommodity Flow Problems," Manaoement

Science, 23, 9, 994-1004 (1977).

54. Koopmans, T. C., and Reiter, S., "A Model of Transportation," in

T. C. Koopmans, Ed., Activity Analysis of Production and Allocation,

John Wiley and Sons, New York, NY, (1951).

55. Kuhn, H. W., "The Hungarian Method for the Assignment Problem",

Naval Research Locistics Quarterly, 2, 83-97 (1955).

56. Maier, S. F., "A Compact Inverse Scheme Applied to a Multi-

commodity Network with Resource Constraints," in R. Cottle and J.

Krarup, Eds., Optimization Methods for Resource Allocation, The English

University Press, London, England (1974). .

57. Mulvey, J. M., "Pivot Strategies for Primal-Simplex Network

Codes," Journal of the Association for Computing Machinery, 25, 2,

266-270 (1978).

,,4

59

58. Mulvey, J., "Testing of a Large-scale Network Optimization

Program," Mathematical Programming, 15, 291-314 (1978).

59. Orden, A., "The Transshipment Problem", Management Science, 2, 2,

276-285 (1956).

60. Robacker, J. T., "Notes on Linear Programming: Part XXXVII,

Concerning Multicommodity Networks," Memo RM-1799, The Rand

Corporation, Santa Monica, CA, (1956).

61. Saigal, R., "Multicommodity Flows in Directed Networks," ORC

67-38, Operations Research Center, University of California, Berkeley,

CA, ('1967).

62. Shor, N., "On the Structure of Algorithms for the Numerical

Solution of Optimal Planning and Design Problems," unpublished

dissertation, Cybernetics Institute, Academy of Sciences, U.S.S.R.

(1964).

63. Srinivasan V., and Thompson, G. L., "Accelerated Algorithms for

Labelling and Relabeling of Trees, with Applications to Distribution

Problems," Journal of the Association for Computing Machinery, 19, 4,

712-726 (1972).

S- .. - --.

60

64. Srinivasan, V., and Thompson, G. L., "Benefit-Cost Analysis of

Coding Techniques for the Primal Transportation Algorithm," Journal of

the Associatioq for Computing Machinery, 20, 194-213 (1973).

65. S~oveland, C., "Decomposition Algorithms for the Multicommodity

Distribution Problem," Working Paper 184, Western Management Science

Institute, University of California, Los Angeles, CA, (1971).

Si

66. Swoveland, C., "A Two-Stage Decomposition Algorithm for a

Generalized Muticommodity Flow Problem," INFOR, 11, 232-244 (1973).

67. Tomlin, J. A., "Mathematical Programming Models for Traffic

Network Problems," unpublished dissertation, Department of Mathematics,

University of Adelaide, Australia (1967).

68. Weigel, H. S., and Cremeans, J. E., "The Multicommodity Network

Flow Model Revised to Include Vehicle per Time Period and Mode

Constraints," Naval Research Logistics Quarterly, 19, 77-89 (1972).

69. Wollmer, R. D., "Multicommodity Networks with Resource

Constraints: The Generalized Multicommodity Flow Problems," Networks,

1, 245-263 (1972).

.....

66 CHAPTER 2

Networks with Side Constraints:
An LU Factorization Update

Richard S. Barr, Keyvar Farhangian, Jeffery L. Kennington

An important class of mathematical programming models which are fre-
quently used in logistics studies is the model of a network problem having
additional linear constraints A specialization of the primal simplex algorithm
which exploits the network structure can be applied to this problem class This
specialization maintains the basis as a rooted spanning tree and a general
matrix called the working basis This paper presents the algorithms which may
be used to maintain the inverse of this working basis as an LU factorization,
which is the industry standard for general linear programming software Our
specialized code exploits not only the network structure but also the sparsity "'
characteristics of the working basis Computational experimentation indicates
that our LU implementation results in a 50 percent savings in the non-zero

CP elements in the eta file, and our computer codes are approximately twice as fast
as MINOS and XMP on a set of randomly generated multicommodity network
flow problems

0

ACKNOWLEDGEMENT

Thts research was Supported inl part by the Department of Defense under
Contract Number MDA9O3-82-C-0440 and the Air Force Office of Scien-
tific Research under Contract Number AFOSR 83-0278.

'.%

%

ACKNOWLEDGEMENT

67

Good software for solving linear programming models is one of the
most important tools available to the logistics engineer. For logistics stud-
ies, these linear programs frequently involve a very large network of
nodes and arcs, which may be duplicated by time period For example,
nodes may represent given cities at a particular point in time while arcs
represent roads, railways, and legs of flights connecting these cities
Some nodes are designated as supply nodes, others demand nodes,
while some may simply represent points of transshipment The mathemat-
ical model characterizes a solution such that the supply is shipped to the
demand nodes at least cost while not violating either the upper or lower
bounds on the flow over an arc.

If the main structure of a logistics problem can be captured in a net-
work model, then the size of solvable problems becomes enormous
Hence, more realistic situations can be modelled that would otherwise lie
outside the domain of general linear programming techniques. For exam-
ple, one current logistics planning model involves 200 nodes and (365
days!yr) (30 years) = 10,950 time periods to give over 2,000.000 con-
straints Network problems having 20,000 constraints and 20,000,000
variables are solved routinely at the U. S. Treasury Department.

Unfortunately, the pure network structure may require simplification of
the problem to the point that key policy restrictions must be omitted The
work presented in this study builds upon existing large-scale network
solution technology to allow for the inclusion of arbitrary additional con-
straints. Typical constraints include capacities on vehicles carrying difter-
ent types of goods, restrictions on the total number of vehicles available
for assignment, and budget restrictions. The addition of even a few non-
network constraints can greatly enhance the realism and usability ot
these models Our approach exploits-to as great an extent as possible-
the traditional network portion of the problem while simultaneously en-
forcing any additional restrictions imposed by the practitioner

For general linear programming systems, the most important compo-
nent is the algorithm used to update the basis inverse Due to the excel-
lent sparcity and numerical stability characteristics, an LU factorization
with either a Bartels-Golub or Forrest-Tomlin update has been adopted
for modern linear programming systems For pure network problems, the
basis is always triangular and corresponds to a rooted spanning tree The
modern network codes which exploit this structure have been found to be
from one to two orders of magnitude faster than the general linear pro-
gramming systems In this paper, we have combined these two powerful
techniques into an algorithm for solving network models having additional
side constraints

Let A be an m x n matrix, let c and u be n-component vectors, and let
b be an m-component vector. Without loss of generality, the linear pro-
gram may be slated mathematically as follows:

r

V4Z

68

minimize ex (1)

subject to: Ax b (2)

0 -x5 -u. (3)

The network with side constraint model is a special case of (1)-(3) in
which A takes the form

A=LS P m

where M is a node-arc incidence matrix.
If m = 0, then (1) - (3) is a pure network problem.

1.1 Applications

There are numerous applications of the network with side constraint
model. Professor Glover and his colleagues have solved a large pas-
senger-mix model for Frontier Airlines and a large land management
model for the Bureau of Land Management (see [7, 8]). A world grain
export model has been solved to help analyze the port capacity of U. S.
ports during the next decade (see [2]). A cargo routing model is being
used by the Air Force Logistics Command to assist in routing cargo
planes for the distribution of serviceable spares (see [1]) Lt. Col. Dennis
McLain, has developed a large model to assist in the development of a
casualty evacuation plan in the event of a European conflict (see [14]). A
Nationai Forest Management Model has been developed to aid forest
managers in long term planning for national forests (see [10]) In addition, -

work is currently underway which attempts to convert general linear pro-
grams into the network with side constraint model (see [4, 161).

1.2 Objective of Investigation
Due to both storage and time considerations, the basis inverse is main-

tained as an LU factorization in modern LP software (see [3, 5, 15]). The
objective of this investigation is to extend these ideas to the primal parti-
tioning algorithm when applied to the network with side constraints
model

1.3 Notation

The ithcomponent of the vector a will be denoted by a,. The (ij)lh ele-
ment of the matrix A is denoted by A,, A(i) and A[i] denotes the iih column
and ith row of the matrix A, respectively. 0 denotes a vector of zeroes, I
denotes a vector of ones, and ek denotes a vector with a 1 in the kt

position and zeroes elsewhere Sigma is used to denote the scalar sig-
num function defined by

7 -,

69

0. c(y) 0 i = 0

The identity matrix is given by '"I".

II. THE PRIMAL SIMPLEX ALGORITHM

We assume that A has full row rank and that there exist a feasible
solution for (1l)-(3). Given a basic feasible solution, we may partition A, c,
x, and u into basic and nonbasic components, that is, A = {B:N], c
[CB:.CN], X = [XBI:XN], and u [0;0u]. Using the above partitioning, the
primal simplex algorithm may be stated as follows:

PRIMAL SIMPLEX ALGORITHM
0. Initialization. Let [XB:XNJ) be a basic feasible solution.
1 . Pricing. Let ir c'B'. Define

*1 i:XNI = 0 and vrN(i) >c
02 = i: xN = uN. and ir N(i) < c.).

If 4,1 U 02 = 0, terminate with (XB:XN] optimal- otherwise, select k E
, u 01 and set *-i1 if k e 01 an~d 6 1-, otherwise.

2. Ratio Test. Set y - B -IN(k). Set

4- ~ay) X,{.~

A2 = -a MLfJ) }yl
Set A 4min jiA, A2, ukU).
If A s 0 then go to 3, otherwise, terminate with the conclusion that 1ie
problem is unbounded.

3. Update Values. Set XN _- XN' B _8adx~41 48y. if A=UN,re
turn to step 1.

4. Update Basis Inverse. Let

*3 = bj: x = 0 and a(y1) = 6

0" = ij:xB = u,8 and -(y) = 5).

Select any f e 03 u it'd In the basis, replace 13(f) with N(k), update the
inverse of the new basis, and return to step 1.

b. I. I, VV.-IT.-W 'W r

70

Ill THE PARTITIONED BASIS

The network with side constraint model may be stated as follows:

minimize c1x1 + c2x2 (4)

subject to: Mx' = b' (5)

SXI + PX2 = b2 (6)

0:x -- u" (7)

0: -x2 u 2 . (8)

We may assume without loss of generality that,
(i) The graph associated with M has n nodes and is connected (i.e.,

there exists an undirected path between every pair of nodes)
(ii) [S:P] has full row rank (i.e., rank IS:P] = m).
(iii) Total supply equals total demand (i.e., lb' = 0).
Since the rank of system (5) is one less than the number of rows, we

add what has been called the root arc to (5) to obtain

Mx' + ePa W

where0 s a :0and 1 - p:sn.
Then the constraint matrix for the network with side constraints model
becomes

and A has full row rank S P

* QIt is well-known that every basis for A may be placed in the form
"T _iC]

D ! F - -, F --

where T corresponds to a rooted spanning tree and

B_-= T-1 + T-CQ-DT-1 i -T-'CQ-]--------------------------- ------------Q- DT- i 0-l (10)

where Q = F - DT-IC. The objective of this paper is to give algorithms
which maintain Q- as an LU factorization.

IV. THE INVERSE UPDATE

Recall that the partitioned basis takes the form

key nonkey

D: I

* * * . * D ! F.1 . - .

- a 71
al,

Let

and let

B=BL- L DT_' ! Oj

The inverse update requires a technique for obtaining a new 0' after a
basis exchange Let B,, L,, B,, and 0, denote the above matrices at itera-
tion i. Then we want an expression for 0,- in terms of Q,- . The transfor-
mation takes the form

B1+- = EB, - (11)

where E is either an elementary column matrix or a permutation matrix.
Let E be partitioned to be compatible with B. That is,

E E 4 }n

n m

By examining the (2,2) partition of B,-, we obtain

0+1 = (E4 - E3T-1C)QT((12)

In determining the updating formulae, we must examine two major
cases with subcases.
Case 1. The leaving column is nonkey. For this case, E takes the form

1 i _E2
E4m

and (12) reduces to Q,-1 = E4 Q,.
Case 2. The leaving column is key.
Let y = V T C. If -, :P 0, then the k 1h column of C can be interchanged
with the jth column of T and the new T will be nonsingular.
Subcase 2a y 0 0 Suppose "yk i- 0.
Then E4 - E3 T-' C reduces to

- rowj (13)

IJ ,and
Q,-1 = RQ- . Case 1 is applied to complete the update.
Subcase 2b Y' = 0 For this case no interchange is possible, the entering
column becomes key, and Q,+'1 Q,-'.

,

" o " " . .." " " " i 1" " " " ' ' " " " " r ' " . ' " > - - . . _ - . ' , " . - - . ' " " " " " " "

F]

72

V. AN LU UPDATE

* Let

1 I
I I
I Mi-iI

1 I

and

Ii 0

--- ---. --- -
o e,

I I

Matrices of the form given by U' and L' are called upper etas and lower
etas, respectively. Suppose we have a factorization of 0-' in the form

Q-1 = UIU 2 ... UrFSF- -I ... Fl, (14)

where F' . F5 are a combination of row and column etas The right
side of (14) is referred to as the eta file where only the non-identity rows
and columns are stored. Suppose that the kh column of Q is replaced by
6(k) to form the new m by m working basis 6. This section present
algorithms which may be used to update (14) to produce 0- in the same
form,

5.1 Nonkey Column Leaves The Basis

If k = m, then let , = Fr F'6(k), let

and let

mAll

L I

: ~.._. _........,.....-....,.-.....'...-,.-./-. ,... . , ...
... .= - • 1, • ' " t 11 " "• " %' , " """ =

* / .
, " J" .- * . " . . .'..- - ".

73

We will show that &'=U .Umn~nr~..F

If k < m. then let RI =and

()- = U1 .. UkRkUk+l .. UtmF .. F'. (15)

We next define a new upper eta, Uand a new row eta, Rk+I, such that

RkUk+ I LikRk+1. (16)

Substituting (16) into (15) yields

()-I = U1
. . .Ukok Rk+ Uk+ 2 . .. UmFs . .. Fl. (17)

We again define two new eta's, U"'and RM, such that
RkIUk+2 = k+IR k+2. (18)

Substituting (18) into (17) yields
o-

1 UI = ul .uk~k~k+ Rk+ 2 Uk+ 3 . . . F1.
Repeating this process eventually yields

()-1 = U1 . Uko . m -'R m Fs ... Fl. (19)

Let v 'F .rn . F16(k), let

- -I------------

VYk+l/.Y

Yr .

and let

Then U-L-V = k and we will show that 6-' U1 . .. Uk-lLok

D-mL-R-P-.s F'.
* We now present the algorithm which updates the LU representation of

0- when the leaving column is nonkey Assume that 0(k) is replacing
0(k) in the working basis

74

ALG 1: LU UPDATE FOR NONKEY LEAVING COLUMN
S1. Set P ---- Fs ... F'd(k).

2. If k - m, set (4-k, R -- I, go to 4.
3. Set 1m . I, where I is m by m.

Set , ,.- 1/fil.
Set Um - I, where I is m by m.
Set O m- -- 3I, for 1 :s j < m.
Stop with Q-' U' ... Ur-'0mnLrFs. . F'.

4. Set a - R'fk]U'(f+ 1).
Set R'+I +- R'.
Set Rkl 1 I-a
Set U' +-U ' 1.
Set U 0, -0
(R'U'+' = OIR(*')
Set (- t+1.

5. It (< m, go to 4.
(Uk*' ... UM = O k.. . OM - 1Rm.)

Set .-
-.

6. Set Lm - I, where I is m by m.
Set Li - 1/16k
Set t.T,- -,0fi/, for k < j S m.
Set Um - I, where I is m by m.
Set W - -,9, for 1 -5 5 k
Set U,,, 4- 1 I.
Stop with -' = U. .U. . ULrmRrFs ... F'.

We now present the justification for step 3 of ALG 1. For k = m, we
claim that b-' = U' . . L-rLmLrnFS ... F'. Note that 6-' (m) =
U' ... U U m Lrpi But by construction UmLm1 = e m , Consider

Proposition 1.

Let , be any m-vector and E' be any column eta. If 3, = 0, then E',6 =

By Proposition 1, U' . . . U*-m = em. Therefore, -d(m) = em. For
1< <m, let-y= Fs. . F1Q(f).Byconstructiony,=0for <i smand
= 1. By Proposition 1, U . . . Um-UmLmy = y. By the construction

of U' . . . U', we have U1 . . . U''y = 91. Therefore, if the leaving column is
0(m), then step 3 of ALG 1 produces 0'.

We now present a theoretical iustification for step 4 of ALG 1.

%-

S

i..

R#

75
%Proposition 2.

Let

Up+' .. and R= 1- rowV

i' ir

: . J _ ,.

column t

where f # .
If

UP [a R 1
= RP'= [*-row V

T
column f

where
,0, if i= C*

n,, otherwise, and
n,, if i = f

,,= ,otherwise,

then RPU p 1 Op-R 1.
Proposition 2 is a theoretical justification for step 4 of ALG 1 The propo-

sition to follow shows the precise structure of R'Fs .. F10 Consider

Proposition 3.

Let U* = Fs .. F'OQ. If U*=R mU, then

1e0, otherwise.

We now present the results to prove that d- = U1 . Uk-lok

UmLmRmFs . Fl.

Proposition 4.

U1 ... Uk-'U' ... OmLRmFs... F'Q(k)=

Proposition 5.

U1
.' Uk-;ib ... O mLmRrFs ... F'Q(i) = ' for i k.

." .-- -.- --... "- - . -_- .-.V,--.-.......---....",,.,.-....,,.,,..,,.......,....... -- J i~h li~ i

k

76

By Propositions 4 and 5, we have*
Corollary 6.

6-' =U'... Uk - lUk.. UrnLrRrFS... F'.

Hence. ALG 1 produces the updated working basis inverse.

* 5.2 Key Column Leaves The Basis

In this section, we present an algorithm for updating the working basis
inverse to accomplish a switch between a key column and a nonkey
column. That is, 0 = RQ-'where R is given by (13) and

U' . . UrF . . Fl. (20)

We wish to obtain d- in the same form as (20)
To accomplish this update, we begin with Q-' = RU' . . . UmFS . .. F1

We apply Proposition 2 to RU' creating the factorization 0-1 = O'R 2U 2

S. U s .F1.We continue with the application of Proposition 2 until we
obtain 1- = i' . .Jk-1RkUk. . .U'F . .. F'. Proposition 2 does not
apply to RUk. However, a simple update would be to let =

= u= I and use the below tactorization:

6-1 = 1 mRU UFs .. F'1

LEFT FILE RIGHT FILE

This update simply involves application of Proposition 2 until it does not
(D apply ((= V) and then shihing the remainder of the left tile to the right

file We call this update the TYPE I UPDATE.
We will now give an update in which RkUk . . . U m is modified as op-

posed to moving them to the right file Let

E)= RkUk= iN row k

Then we define matrices 0k. 1 and Eklsuch that EkUk *l = O"kEk"
Following this procedure, R"U" . . Un can be replaced by UJ'
UmEr, ' so that

b-'= U' uk'J.1 . O Em+'Fs .. F',

Further, we define a row eta R4 and a column eta F such that E m RF.,,

Therefore,

b-= U1 Ok-'UI ' LIM RFF F1

LEFT FILE RIGHT FILE

% %.

77

We call this update the TYPE 2 UPDATE.
We now present a set of propositions which justify the TYPE 2 UPDATE

Proposition 7.

Let

'I IM 0Ii

I 0I 1

: I

I 71n I A

IfI
whr df- I nd A,0

I I

P+ =/ l 0 4 ! -*1
wher = L andnd Ep A, A' I A, An

II

1 0

I a n I
InI: I

where

, "lif I = C,

f "1, otherw ise,

+ M*., otherwise,

then EPU P* = P +
- E

The following proposition is used to replace the cross matrix E ' with
a row eta R and a column eta F

S"

ii. .

78

Proposition B.
Let

I: 0

E= y, y4 Y -1 jV.

0 0

0 7,
0

v'.. E-i 11 YE-1.Yn.ndF=.

where X and Y are such that

XYE

then E 'RF
We now present the update algorithm for the case in which the f' column
of T is being switched with the k" column of C Let y e'T- IC

ALG 2 LU UPDATE FOP A KEY LEAVING COLUMN
1 Set R - 1

Set R'[k] 4- y
Set i•

2 IIi=k,goto4
Set a ~-R'ik]U'(i)
Set R'~ R
Set R 4-

Set U,~ U1

* . .4

Set U.. .

4 Se U" --

Se E' -" RU

I-

I-

79

5. Apply Proposition 7 to E'U' to form 1 E'"
Set i*--i + 1.

6. If i<m, goto 5.
7. Apply Proposition 8 to Em to obtain RF where X = 1.

At the completion of step 7 we have Q = U . . . urRFFS . .. F'

VI. COMPUTATIONAL EXPERIMENTATION

Three test problems were selected for the experiment Sc205 is a stair-
case linear program which was generated by Ho and Loute [12] and
transformed into a network with side constraints Gifford-Pinchot is a
model of the Gifford-Pinchot National Forest [10] which has also been
transformed into a network with side constraints RAN is a randomly gen-
erated problem

These problems were first solved and the pivot agenda was saved.
That is, entering and leaving columns for each p-vot were saved on a file
This file was then used by each code so that all three basis updates follow
the same path to the optimum The number of nonzeroes required to
represent Q-' at various points in the solution process is illustrated in
Figures 1 and 2 For both problems, the LU Type 2 update dominated
both the LU Type 1 update and the product-form code in terms of
nonzeroes in the inverse The average core storage required for C'

using the product-form update is approximately double that required for
the best LU update.

Given the above results, we developed three specialized network with
side constraints codes and computationally compared them with three
general in-core LP systems and a special system for multicommodity
network flow problems All codes are written in FORTRAN and have not
been tailored to either our equipment or our FORTRAN compiler None of
the codes were tuned for our problem set A brief description of each
code follows

NETSIDE1, NETSIDE2 AND NETSIDE3 are our specialized network
with side constraints systems The first maintains Q-' in product form,
while the second and third maintain Q- in LU form using a Type 1 and
Type 2 update, respectively All use the Hellerman and Rarick [11] rein-
version routine The working basis is reinverted every 60 iterations The
pricing routine uses a candidate list of size 6 with block size of 200

MINOS [15] stands for "a Modular In-Core Nonlinear Optimization Sys-
tem" and is designed to solve problems of the following form.

minimize f(x) + cx

subject to. Ax = b

where f(x) is continuously differentiable in the feasible region For this

%

80

nonzeroes In Q

5000 Product Form

4000

3000

LU Type I

2000

LV Type 2

1000

IIterations
so 160 240 320

Figure 1. Nonzero Buildup In The orking Basis Inverse On

0 SC205 [221.
(317 columns, 119 nodes, 87 side constraints)

study f(x) =0 at all x and therefore none of the nonlinear subroutines
were used for problem solution.

For linear programs, MINOS uses thf, revised simplex aigorithm with all
data and instructions residingj in core storage The basis inverse is main-
tained as an LU factorizat ion using a Baitels-Golub update. The reinver-
sion routine uses th Hellerman-Rarick [11' pivot agenda algorithm.

XMP is a library ot FORTRAN subroutines which can be used to solve
near programs The basis inverseis maintained in LU factored form. The

pricing routine uses a candidate list of size 6 with two hundred columns
oeing scanned each time the list is refreshed. The basis is reinverted
every 50 iterations.

LISS stands for "Linear In-Core Simplex System" and is an in-core LP
solver with the basis inverse maintained in product form. The reinversion
routrea is a modification of the work of Hellerman and Rarick [11]). The
bas ,; inverse is refactored every 50 iterations. A partial pricing scheme is
Used oith 20 blocks

A. A *-

81

-onzeroes in Q-

600-

Product Form

500

LU Type 1

400 LU Type 2

300

200

100

, Iterations

1o 320 480 640 oo

Figure 2. Nonzero Buildup In The Working Basis Inverse On

Gifford Pinchot 120].

(1160 columns, 533 nodes, 84 side constraints)

MCNF stands for "Multicommodity Network Flow". MCNF uses the pri-

mal partitioning algorithm also The basis inverse is maintained as a set of
rooted spanning trees (one for each commodity) and a working basis

inverse in product form. This working basis inverse has dimension equal
to the number of binding GUB constraints. A partial pricing scheme is
used. Our computational experience is given in Table 1.

The row entitled GUB Constraints, gives the number of LP rows which
correspond to "GUB Constraints". The row, entitled "Binding GUB Con-
straints", gives the number of GUB constrants met as equalities at opti-
mality using MCNF. All runs were made on the CDC 6600 at Southern
Methodist University using the FTN compiler with the optimization feature
enabled,

9 82

I If) N- - (n-. D
OD W Co R, - -. m: (,: -

cc CjC It4~ wN rn M - D 4 O CC

1N to R ~ -- R

_ r w wO ?z

E CON M CC cc ~ RON C . W~, O

.2' COOv

b- NT -C .. - W 10 -

C~r P) 1 - N

N v)00N IDt-

U) COj R)C. R~ ,e 'i O' C - .) -T .- ,a"r O 4

M v rN0- vod c c ,O C.)C I C,CO In .!_r MC, (n C) n NN .- N 1. Nl.

ND N f C\. In cl D C. D :!2 - - -

z fll C\'C M O N

MMMNO-C. 2 O co 0W NM U-N NN 8 - n (f S; OnC,0
LU -- NN; vN R I .-v M 0 C n0L

wI N \ In M- \ 0 0 - X

N 1 N N

(-M oOCNC' C'OOI el I COCOl WN'0 - NC

Eq C) -w -

M N 0 M - R D -D

M CO .) a, ND D

In O -m V)) 6)D 'W00 0 C IO m COO 00 0

50) r)N -C

C, ~N oCO N *5 10N 8 C0 8 1 v Lo v -
CO CC In Ln- vN' I N NNO N,

M CN N

N) InN Z *
0

N N'a C\ N, F:5~- N N CJ N

L))

"D C" R I

CID to co - 04- C\'-

v A 'Q4co 0~ T
V') NC~. V) (n m ul s n a

C, z z*C

0 N to0 co 'q o '0, t

* * * 4 5 * ~ . S). . . .
*~~~~~~ a. * .. P .-. n....*.-Cr

2, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 5 am.n a - oc s Ic oM8c

IF 7

83

Based on these results, we conclude that for lightly constrained mul-
ticommodity network flow problems

(i) XMP and MINOS run at approximately the same speed,
(ii) NETSIDE1, NETSIDE2 and NETSIDE3 run at approximately the

same speed, and
(iii) the three NETSIDE codes are approximately twice as fast as XMP

and MINOS.

References

1. Ali, A., R. Helgason, and J Kennington, "An Air Force Logistics Deci-
sion Support System Using Multicommodity Network Models", Tech-

nical Report 82-OR-1, Department of Operations Research, Southern
Methodist University, Dallas, Texas 75275, (1982).

2. Barnett, D., J. Binkley, and B. McCarl, "The Effects of U S Port Ca-
pacity Constraints on National and World Grain Shipments", Techni-

cal Paper, Purdue Agricultural Experiment Station, Purdue University,
West Lafayette, Indiana, (1982).

3. Bartels, R., and G. Golub, "The Simplex Method of Linear Program-

ming Using LU Decomposition", Communications of ACM, 12,266-
268, (1969).

4 Bixby, R E., "Recent Algorithms for Two Versions of Graph Realiza-

tion and Remarks on Applications to Linear Programming", Technical
Report

5 Forrest, J J H., and J A Tomlin, "Updated Triangular Factors of the

Basis to Maintain Sparcity in the Product Form Simplex Method",
Mathematical Programming, 2, 3. 263-278, (1972).

6 Glover, F., and D Klingman, "The Simplex Son Algorithm for LP/

Emuedded Network Problems", Technical Report CCS 317, Center

for Cybernetic Studies, The University of Texas, Austin, Texas,

(1977).
7. Glover, F., R. Glover, J. Lorenzo, and C. McMillan, "The Passenger-

Mix Problem in the Scheduled Airlines", Interfaces, 12, 3, 73-80,
(1982).

8 Glover, F., R Glover, and F. Martinson, "The U S Bureau of Land

Management's New Netform Vegetation Allocation System", Techni-

cal Report, Division of Information Science Research, University of

Colorado, Boulder, Colorado, (1982)
9. Graves, G W., and R D McBride, "The Factorization Approach to

Large-Scale Linear Programming", Mathematical Programming,
10, 1, 91-110. (1976)

TIMM

84

10. Helgason, R, J Kennington, and P Wong, "An Application of Net-
work Programming for National Forest Planning", Technical Report

* OR 81006, Department of Operations Research, Southern Methodist
University, Dallas, Texas, (1981)

11 Hellerman, E, and D Rarick, "Reinversion With the Preassigned
Pivot Procedure", Mathematical Programming, 1,195-216, (1971).

12 Ho, J K., and E. Loute, "A Set of Staircase Linear Programming Test
Problems", Mathematical Programming, 20, 2. 245-250. (1981)

13. Kennington, J. L., and R. V. Helgason, Algorithms for Network Pro-
gramming, John Wiley and Sons, New York, New York, (1980)

14 McLain, D. R., "A Multicommodity Approach to a Very Large Aero-
medical Transportation Problem", (working paper) Operations Re-
search Division, Military Airlift Command, Scott Air Force Base, Illi-
nois, (1983)

, 15. Murtagh, B, and M Saunders, "MINOS User's Guide", Technical
Report 77-9, Systems Optimization Laboratory, Department of Oper-
ations Research, Stanford University, Stanford, California, (1977).

16 Wagner, D. K., "An Almost Linear-Time Graph Realizat on Algorithm",
unpublished dissertation, Department of Industrial Engineering and
Management Sciences, Northwestern University, Evanston, Illinois,
(1983).

p

" " '" *"" ~~~~~~~~~.. :..,,..,-.,. .:1.;.,:...,..............,.J./.

85

JEFFERY L. KENNINGTON

Jeffery L. Kennington is a professor and chairman of the Operations
Research Department of Southern Methodist University. He received his
Ph.D. from the Department of Industrial and Systems Engineering at
Georgia Institute of Technology. He is a co-author of the John Wiley book
entitled Algorithms for Network Programming. His other publications have
appeared in Mathematical Programming, Operations Research, Manage-
ment Science, Naval Research Logistics Quarterly, Networks, and Insti-
tute of Industrial Engineering Transactions.

RICHARD S. BARR

Richard S. Barr is Associate Professor of Operations Research at the
School of Engineering and Applied Science, Southern Methodist
University, Dallas, TX. He received his B.S. in Electrical Engineering,
M.B.A. and Ph.D. in Operations Research, all from the University of Texas
in Austin His current research interest include ultra-large scale mathemati-
cal programming, with an emphasis on network optimization; micro-
computer applications of operations research; microeconomic simulation
models; and algorithms for new computer architectures. He is a contribut-
ing editor for Interfaces, and has published in Operations Research,
Mathematical Programming, and European Journal of Operational
Research.

KEYVAN FARHANGIAN

Keyvan Farhangian is a systems designer with Consilium Associates,
Inc. of Palo Alto, CA. He received his B.A. in Business Administration from
the University of Tehran, Iran. and his MS. and Ph.D. in Operations Re-
search from Southern Methodist University

IL

o . ° -.. . . - . - ., - * . , V V . - •••- • -i

' -:"';" '' " °""" "'(" "'" ;*-*. " ."* "' " m.. * - ... * '' ** '-. - *, " '. ';.-.

bP CHAPTER 3

The Frequency Assignment Problem: A Solution via
Nonlinear Programming*

J. David Allen
0 Switching Systems Division, Rockwell International, P.O. Box 10462, Dallas,

Texas 75207

Richard V. Helgason and Jeffery L. Kennington
Operations Research Department, Southern Methodist University, Dallas,

Texas 75275

This paper gives a mathematical programming model for the problem of assigning
frequencies to nodes in a communications network. The objective is to select a
frequency assignment which minimizes both cochannel and adjacent-channel inter-
ference. In addition, a design engineer has the option to designate key links in which
the avoidance of jamming due to self interference is given a higher priority. The
model has a nonconvex quadratic objective function, generalized upper-bounding
constraints, and binary decision variables. We developed a special heuristic algorithm
and software for this model and tested it on five test problems which were modi-
fications of a real-world problem. Even though most of the test problems had over
600 binary variables, we were able to obtain a near optimum in less than 12 seconds
of CPU time on a CDC Cyber-875.

1. INTRODUCTION

One of the most critical design problems in a radio communication network is

the assignment of transmit frequencies to stations (nodes) so that designated key
communication links will not be jammed due to self interference. In this inves-

tigation, we describe a novel new optimization model and a solution technique
which can be used to assist design engineers in this process.

1.1. Problem Description

A radio communications network consists of radio stations, each equipped with
one or more transmitters and receivers. When a given station has the ability to
receive information intelligibly from a transmitting station, a link is said to exist
from the transmitting station to the receiving station. The interconnection of
these stations and links may be viewed graphically as a set of nodes, representing
the radio stations, joined together by directed arcs, representing the links.

We assume in our model that one transmitter and several receivers are located
at each radio station (node). The transmitter is tuned to a specified center fre-
quency, and the receivers are tuned to the transmit frequencies of the neighboring
stations to which the station is to be linked. A channel is associated with each

*Comments and criticisms from interested readers are cordially invited.

Naval Research Logistcs, Vol. 34, pp. 133-139 (1987)
Copyright C 1987 by John Wiley & Sons, Inc. CCC 0028-1441/87/010133-07504.00

II

134 Naval Research Logistics, Vol. 34 (1987) a

center frequency in a way similar to the way channels and frequencies are as-
sociated in a television set. When a TV is tuned to channel 4, for example, it is
really being tuned to receive video signals being broadcast at 67.25 M~Iz.

For our model, a given center frequency will be associated with each channel
number. Using tuiff definition, the frequency assignment problem may be defined
as follows: Given N transmitting stations (nodes), assign 1 of F transmit channels
to each node in such a way as to minimize the number of designated key links
jammed due to cochannel and adjacent-channel interference. We say that a ink
is jammed if either of the following conditions occurs: (i) a node receives two
signals on the same channel that are less than a dB apart in signal strength, or
(ii) a node receives a signal on a given channel while a neighboring node transmits
on an adjacent channel. If the neighbor's signal strength exceeds the signal
strength of the current node by more than 1 dB, then the incoming signal will
be garbled. The constants a and 0 are functions of the hardware used in the
network. Some of the determining factors are the receiver selectivity, the type
of signal modulation, and the purity of the signal.

We now introduce the notation used to describe the mathematical model. Let
f E {1, . . . F) denote a channel and n E {1, . . . N} denote a node. e, will
denote a vector whose entries are 0 except for the ith, which is 1. Let x,, = I if
channel f is assigned to node n and 0 otherwise, I; = the row vector
[x. ,x*], and g(x A . F.. x,) = a weighted number of jammed links with
assignment (xIIF). Using the above notation, the mathematical model of
the frequency assignment problem is

min g(x 1, .. F) (1)

s.t. xf. 1=, for all n (2)
I

xfi E {0,1), for all fn. (3)

For this application. g(-) is a nonconvex quadratic function and therefore (1)-
(3) are members of the class of binary nonconvex cost nonlinear programs.

1.2. Related Literature

A heuristic procedure for solving a similar problem using a graph coloring
algorithm has been evaluated by Zoellner and Beall [7]. Closely related models
have been investigated by Morito, Salkin, and Williams 15] and by Mathur, Salkin,
Nishimura, and Morito [4]. Their models are general linear integer programs
with a single constraint. Using a special branch-and-bound algorithm, they suc-
cessfully solved their model with up to fifty channels.

1.3. Accomplishments of the Investigation

We developed a novel new mathematical model of the frequency assignment
problem which takes the form of a binary nonconvex quadratic cost nonlinear
program. The model incorporates weighting constants that allow a design engineer
to tune the model to a particular application. We present an elegant specialization
of the convex simplex algorithm to obtain a local optimum for this model. In
addition, specialized software has been developed for this model and tested on

.-

- . C .

Allen et al.: Frequency Assignment 135

4 five versions of a real-world problem. The software works quite well, requiring
less than a minute of computer time for all five test problems.

2. THE OBJECTIVE FUNCTION

In this section, we define the weighted interference function, g(x . .xF).

This function is generated from a set of signal strength matrices, (Al, . AF),
two weighting matrices, and a set of critical values a, 1, and 1, . ,,i8. Let a''
denote the received signal strength in dBu/m of a signal which originates at node
i and is received by node j, and let Af denote the matrix whose elements are a,'.Let the weighting matrices P and W be determined as follows:

T , if (i,j) is a designated key link
0' P=; IP2, otherwise

and

r1, if (i,j) is a designated key link

li, otherwise.

The constants T,, w, and ' are tuning parameters which are used to provide
weights in the interference function for the key links.

Gamma is used to denote the scalar function, defined by

1, if X > 0,
(x) = , otherwise.

Using y(. we define the three matrices

- Ia , - a{AJ)vw + p,,, i 9 j
A,,

otherwise.
y(af' - a,, - 1)w+', i j

.',

0, otherwise,

and

{f y(a,'A' - -f. O~, 76j,

otherwise.

Using these matrices, the interference function is given by

f- F f-f- I f-F

g(1,) X; Q If+ E X; R,;+1 + Y X; , .SX
f-I f-1 f-2

cochannel adjacent channel adjacent channel
interference interference from interference from

channel above channel below

S
* . a'a *'*5.~...,.S

a . a

136 Naval Research Logistics, Vol. 34 (1987)

In addition it is often desirable to use all of the channels. Therefore, we
appended the function

i-NI -1-N

to g(.) so that in the absence of self interference, the channels would be equally
distributed among the nodes. The scalar W is also a tuning parameter.

Using the above formulae, we now give an example which presents the matrices
required to define g(). Let a = 2, 3 3, w3 = 0, 8. 0 for all n, and p, =
W" = 1 for all ij. If

A , 2 3 0 2

4 3 2

and

2 0 5 5,
32 5 0 1

5 5 1 0

then

0 1 2 1 0 10 0

Q1 1 1 0 2 = 0

0 1 1 0 1

1 0 0 10

0 0 10

" 0 0 0 0

0 2 0 0 0and

0 0 0 0

0 0 0 0

3. THE ALGORITHM

Let z' = [x] .. ,z-]. Then the frequency assignment problem takes the
general form:

mn g(x) I' C X (4)

-

*%K " V_

Allen et al.: Frequency Assignment 137

Ss.t. x, = I, for all n (5)

f

x, E {O,1}, for all fn (6)
where the diagonal elements of C are 0 and all other elements are positive. The
continuous relaxation of (4)-(6) is obtained by replacing (6) with

0 :5x .:5 1, for all f,n. (7)

The model (4), (5), (7) is a nonconvex quadratic program and a local optimum
can be efficiently obtained by application of the convex simplex algorithm as
described in Zangwill [6]. Suppose we begin with a feasible integer solution
1' = [i ,i]. We assume that all nonbasic variables have a value of zero.
Let I, ... 1,N denote the subscript such that X,, = 1, = 1. Then a nonbasic
variable xA with a value of zero prices favorably if [Vg (i)]'(e, - e,) < 0, where
i = (f - 1)N + n and j = (f - 1)N + in. The line search for this problem
requires that we solve the problem

min g(i + (e, - e,)A). (8)
Osas

But

dg (i + (e, - e,)A) (e, - e,)'Vg (I + e -

dA
= (e, - e,)'(C + C')(i + e, - e,)

= [Vg (i)]'(e, - e1) + (e, - e)'(C + C')(e,- e,).
I

II

0 RELAY NOOE

Figure 1. 43-node communication network with designated key links.

138 Naval Research Logistics, Vol. 34 (1987)

Since xf, priced favorably, then [Vg (x-)]'(e, - e,) < 0. Also, (e, - e,)'(C +
C')(e, - e,) = e:(C + C')e, + e'(C + C')e, - e:(C + C')e, - e;(C +
C')e,. But the diagonal elements of (C + C') are 0 and all other elements are
non-negative. Hence, the solution to (8) is A* = 1 and the exact change to the
objective function will be Vg (i')(e, - e,) - e'(C + C')e - e,(C + C')e,, a
strict decrease. Therefore, in the new solution xfr is set to I and xi, is set to 0.
Since this holds for every iteration of the convex simplex algorithm, integrality
is maintained and a local optimum for (4)-(6) can be obtained by finding a local
optimum for (4), (5), (7).

Let i be any initial assignment for the frequency assignment problem. Using
this initial assignment, the algorithm may be stated as follows:

Forf = 1, ... F.

For n = 1 ... N.

1 :=k, where . = 1.

i (f - 1)N + n.

j:= (f - 1)N + l.

p := [Vg (i)]'(e, - e,).

Ifp <0

then

0

Repeat as long as p < 0 for some f and some n.

4. COMPUTATIONAL EXPERIENCE

We implemented the frequency assignment algorithm in a FORTRAN code. All
data, including the matrices Qf, R, and Sp, are stored in high speed core. Special
subroutines were w-itten to evaluate both g(.) and Vg (.) at a point. The code
begins with Fdifferent starting solutions and stops when a local optimum is found.
The initial assignment for run r E {1. F} is to assign frequenc\ {[(n + r -
2) modulo F] + 1 to node n. The best solution obtained from all F runs is the
output.

Table 1. Computational Results With 43 Node Model

Problem

Row description 1 2 3 4 5

a dB 10 10 12 10 10
P dB 25 25 25 25 30
F (channels) 10 12 14 14 14
Binary variables 430 516 602 602 602
Iterations 525 341 497 540 526
Solution time (secs) 5 7 10 11 11
Initial objective value 3153 1561 1875 1671 1670
Final objective value 164 103 79 5 4
Jammed key links 8 4 3 0 0

- .,,-. .". .",- , -'-.-" ,..' . .','. x.'''.,,,.,' .. " % ,, 7:"'-',.":'".: ''.,..''''€,''.,..'''. ."-.%,

Allen et a].: Frequency Assignment 139

Five test problems were generated from the real-world 43-node network illus-
trated in Fig. 1. The lines connecting nodes are the designated key links. The
problems all have the same topology but differ in the selection of the critical
values and the weighting constants. A random assignment was generated and the
matrices were modified so that this assignment produced a cost of zero. Hence,
the optimal objective value for each problem is zero.

Our computational experience is reported in Table 1. AD runs were made oa Is,
a CDC Cyber-875 using the FTN5 compiler with OPT = 2. The initial objective
value row is the average objective value for the F initial solutions. Note that all
five problems were run in less than 1 minute of CPU time and the final objective
values were quite close to the optimum as compared to the initial assignments.

5. CONCLUSIONS

Our optimization model and computer software provide a practical approach
to assist communication network designers in obtaining near-optimal solutions
for the frequency assignment problem. The fact that the diagonal elements of C
in the quadratic objective function x'Cx are zero allows a very efficient imple-
mentation of the convex simplex method which maintains integrality. Hence, if
we begin with an integer assignment, the convex simplex algorithm follows a
sequence of integer points until a local minimum is obtained. This procedure is '-

so fast that very large problems can be easily handled by this approach. -N

ACKNOWLEDGMENT "

This research was supported in part by the Air Force Office of Scientific
Research under Contract No. AFOSR 83-0278.

REFERENCES

[1] Collins. M., Cooper, L., Helgason, R., Kennington, J., and LeBlanc, L., "Solving
the Pipe Network Analysis Problem Using Optimization Techniques," Management
Science. 24(7), 747-760 (1978)

[2] Kennington. J. L., and Helgason, R. V., Algorithms for Network Programming, Wiley,
New York, 1980.

[3] Kennington. J. L.. "'A Convex Simplex Code For Solving Nonlinear Network Flow
Problems." Department of Operations Research Technical Report No. 82-OR-6.
Southern Methodist UniversitN. Dallas, TX, 1982.

[4] Mathur, K.. Salkin. H., Nishimura, K., and Monto, S., "The Design of an Interactive
Computer Softvare System for the Frequenc.,-Assignment Problem." IEEE Trans-
actions on Electromagnetc Companbiln, EMC-26(4). 207-212 (1984),

[5] Morito, S., Salkin, H., and Williams, D, "Two Backtrack Algorithms for the Radio
Frequency Intermodulation Problem," Applied Mathematcs and Optimization, 6, 221-
240 (1980).

161 Zangwill. W. I., Nonlinear Programming A Unified Approach, Prentice-Hall, Engle-
wood Cliffs, NJ, 1969.

[7] Zoellner, J. A., and Beall, C. L.. "A Breakthrough in Spectrum Conserving Frequency
Assignment Technology," IEEE Transactions on Electromagnetic Compatibiity, EMC-
19(3), 313-319 (1977).

Received November 27, 1985 ,
Accepted December 3, 1985

%"' -'.9-

.. 1N.e.-.,._, NN - r'N -'- .'.'. -_ -.......

-PC: C7, , _

'

Mathematical Programming 37 (1987) 309-317 309
North-Holland

CHAPTER 4

A GENERALIZATION OF POLYAK'S CONVERGENCE
RESULT FOR SUBGRADIENT OPTIMIZATION

Ellen ALLEN, Richard HELGASON and Jeffery KENNINGTON

Department of Operations Research, Southern Methodist University, Dallas, TX 75275, USA

Bala SHETTY
Department of Business Analysis, Texas A A M University, College Station, TX 77843, USA

SReceived 20 August 1985
Revised manuscript received 17 November 1986

This paper generalizes a practical convergence result first presented by Polyak. This new result
presents a theoretical justification for the step size which has been successfully used in several
specialized algorithms which incorporate the subgradient optimization approach.

Ket words Subgradient optimization, nonlinear programming, convergence

1. The subgradient algorithm

Let G *0 be a closed and convex subset of R'. For each V E R', define the
projection of Y on G, denoted by P(y), to be the unique point of G such that for

all E G, II P(l) - Y : - Y It is well known that the projection exists in this case
and that for all x, vE R', IPix) - P()1 - I'x- W-'

Let g be a finite convex functional on G. For each V E G, define the subdifferential

0 of g at V bN

igf)={ 1 R" and for all :C G, g(:) ai g(.) l 7. (z -Y)

An.,r E 'g(v) is called a suhgradient of g at v It is well known that if v is a point

at Wshich g is diflerentiable, then ig) = v i). a singleton set

It is also Well know~n that on thr relalise interior of G. g is con.nuous and the

subdifferential of g al%%a~s exists That this maN not be the case on the relatise

boundar, is shown in the following simple example

Example 1. Let G [0, 1] in R The fini:e con% ex functi-n I G R given bN

0, 0 = I.

fails to have a subgradient and is discontinuous at the boundar, point y= I.

, .. ,. ,..,~ ' . .. K- , < -. ... I-.&*,.. .. .-. •.. -- € -. - .', '-"- ., .- .- .. -. - ,_,.

RDLFOR R EUROPEM.L. (U) KIN FORCE OFFICE OF
SCIENTIFIC RESENIRCN DOU.INO AFS DC J L KENININGTON

UWCLSIFIED 19 MAG 6? AFOSR-TR-97-0979 SROSR-83-6276 FIG 23/6 NL

1122

.................-

%Wv.
5, a. 4'.

-l.b.

%-' ~.,~U2B 1W12
%uI 5*55l4l % u-

-p"225*5*w~

W-. V- - Y

310 £ Allu et a/ Polyat's con,,rgewn rest-

That the notions of continuity and subdifferentiability are independent on the
relative boundary of G is shown by the following examples.

Example 2 [2 1,p. 229]. Let G=[O, I] in R. The finite convex function f: G- R %.J.

given by f(y) _ -(1 _y)1/ 2 is continuous on G but fails to have a subgradient at
the boundary point y = 1.

Example 3 [6,p.96]. Let G={(y 1,y 2):0 y2 cy3<I} in R 2. The finite (but
unbounded) convex functional f: G -i R given by

[(Y2)2/yn, 0r-tY2 < Y 1, 0 <y Y1
f(Y) ={t, Y = Y2 = 0,

is discontinuous at (0, 0) but has a subgradient everywhere on G.

Consider the nonlinear programming problem given by

minimize g(y) (NLP/SD)

subject to y EG,

where we assume that for all y E G, ag(y) # 0 and that the set of optimal points
F #0. We denote the optimal objective value by y.

The subgradient optimization algorithm for the solution of NLP/SD was first
introduced by Shor [23] and may be viewed as a generalization of the steepest
descent method in which any subgradient is substituted for the gradient at a point
where the gradient does not exist. This algorithm uses a sequence of positive step
sizes {s,}, which in turn depend on a predetermined sequence of fixed constants
(A,) and (in some cases) certain other quantities.

Subgradient optimization algorithm
Step 0 (Initialization)

Let yo E G and set i -0.
Step I (Find Subgradient and Step Size)

Obtain some 7, F ag(y,).
If 17, = 0, terminate with y, optimal; otherwise, select a step size s,.

Step 2 (Move to New Point)
Set y,. I - P(y, - svi,), i - i + 1, and return to step 1.

Unfortunately, the termination criterion in step I may not hold at any member
of F and is thus computationally ineffective. Hence, some other stopping rule must
be devised. In practice this is often a limit on the number of iterations. The functional
values produced by the algorithm will be denoted by g, = g(y.).

".9.

.-. " -.. F . . 6

.- m

.4 '4

E. Allen et al / Polyak's convergence result 311

Various proposals have been offered for the selection of the step sizes. Four
general schema which have been suggested are: %

si = ,. (1)

si = A ,111m,, (2) 4:

S= A,/I1"n,112, (3)Si = i(g, - p)/JJII ,I2,)"
(4)

where p, the target value, is an estimate of 3' and all A, > 0.
The papers of Polyak [19] and Held, Wolfe and Crowder [12] have provided the

major impetus for widespread practical application of the algorithm. Schema (4)
has proven to be a particularly popular choice among experimenters. Theorem 4 of
Polyak [19] is the most often quoted convergence result justifying use of this schema.
For many mathematical programming models, the target value is a lower bound on
the optimum (see, e.g., [2, 3, 4, 5, 13, 14, 22]). For this case Polyak's Theorem 4,
using schema (4), requires that A, = I for all i. For all the above studies, a decreasing
sequence of A's was found to work better than Aj = I for all /. Hence, the existing
theory did not justify what we had found to work well in practice. The objective of
this paper is to present improved theoretical results which help to explain what has
been found to work well in practice. Specifically, we loosen slightly the restrictions
imposed on the sequence {A,), and obtain a more general result when the target
value is less than the optimum.

The literature on the subgradient algorithm is extensive, much of it in Russian.
Good coverage is contained in the bibliographies of [20], [24], and [25]. Much of
this literature has grown up in conjunction with the relaxation method for solving
linear inequalities (see, e.g., [1,7, 10, 11, 15]).

2. Polyak's convergence results

The results of Theorem 4 of Polyak [19] use the following general restrictions on
the sequence {A,} used with schema (4):

0 <a A,. i <2, (5)

where a and P are fixed constants.
The results contained in this theorem include, under (4), (5), and (essentially) -..

the assumption that there is some K > 0 such that 7i, < K:

(A) if p > y, either

(a) there is some n such that g < p, or

(b) all g. ; p and lim g. = p;

and

(B) ifp < y and all A. = 1, given 8 > 0,
there is some n such that g. v y+(3y-p)+S. .- "

..'

eP-0.%

%_N

312 E A/Men et aL / Polyak's convengeuece rmut

If (b) occurs in part (A), the convergence is geometric. Polyak's theorem contains
additional results for G = R" (so that the projection is superfluous), with all A, = 1
and p ;f y, in which case geometric or faster convergence to the target value is
obtained.

In the next section we will relax condition (5) to the following:

0<A,,rf<2 and F.A,=o, (6)

where P is a fixed constant. With this relaxation (which allows the sequence {A,}
to approach zero) we present results analogous to (A) and an interesting generaliz-
ation of (B).

Stronger convergence results are available for special cases, e.g. where set G
contains a set

H ={(x:f (x),!O , i = I,, IM),

with each P convex and H having a nonempty interior (see, e.g., [8, 16, 17, 18] and
[25, Ch. 2]).

.do

3. New convergence results

The main results in this section appear in Propositions 5, 7,9, and 10. Propositions
5 and 7 correspond to part (A) of Polyak's Theorem 4 with slightly weaker conditions
on the sequence {AJ and Proposition 9 is a generalization of part B of Theorem 4.
Proposition 10 is a new result apparently obtainable only when the conditions on
{,} are weakened so that we may require A, -*0.

Proposition 1. If y E G, then

,.. -y y, I 2 Iy_- y. II2+ s'Il,[12+ 2s,(g(y)_ g,).

Proof. Let y E G.
IIY -" I Y .+, 11' = IIY - P (y, - sM,11' = 11 P (y) - P (y,- S,77,)[11j I(, y, + S., I!

= lIy-y, II+sf'11.III+ 2s,,7,. (y-y,)
4 Ily-y.2 +s',1,,l .II+2s,(g(y)-g,).

Proposition 2. If y E F, then under (4),

Iy-y,+, I Ily- y,f12 +A ,(g,- p)[A,(g,-p)-2(g,- y)]/ 11,7, 11.

Proof. Let yE F. Substituting in Proposition I for s, from (4) and using g(y) y,
* we obtain

ly -_ y,..112 , Ily -_ y' III+ A2(g, -_ P)2/11,1,112 + 2A,(S , -_ P)(Y _ g', 11 7,1,12l

= ly - y, II+ A, ,(g, - p,)[A. (g. -p,) - 2(g. - Y)I/ 1 , 1If2.

. . . .-.:.....:..-...-- - -- - - - - -- - - - - - - - -- - - - - - - - -

E. Allen et al / Polyak's convtvqencr resul 313

Proposition 3. If y E r, p ;?-" y, and g, ;o p, then under (4),

I1Y -_y,, 111< 1Y -_ Y, 112 + Ai(A , - 2)(g, - p)'l/1I7, 11l.

Proof. Let y r., p ;- y, and g, ;i p. Now
A,(g, -p) -2(g, - y) < A ,(g, -p) -2(g, -p) = (A,- 2)(g, -p).

Thus,
A, (g, - p)[A,(g, - p) - 2(g, - y)]/II ml2 c , (A, - 2)(g, -p) 2 /, 1 I 11.

The result now follows from Proposition 2.

Proposition 4. IfyE F, p ;! y, and all g, > p unde -(4) with aliA, < 2, then the sequence

f fly - y. 11') is monotone decreasing and converges to some / ;?O.

Proof. Let y E F, p -y, all A, < 2, and all g, at p. Since each A. < 2, then also each
SA,,(,-2)(,-p)/l,,I<0, and from Proposition 3, {ly-y, 11 2 is a monotone

decreasing sequence. This sequence is bounded below by zero and thus converges
to some nonnegative value, say 0.

Proposition S. If p -- y and there is some K > 0 such that all f1i7, i < K, then under (4)

and (6), given 5 >0, there is some M such that gm c p+ .

Proof. Let 8>0 be given, with p>- y, and all (17,((<K. Suppose, contrary to the

desired result, that all g, > p + B. Take any y E F. Then from Proposition 3,
,A,(2 - A,)(g, - p)'/ 11,7, 11'-< Ilr- y, 11'- Ily -y,...11'.

Since A, <- A < 2, ll, II1 < K, and g, -p > ,

A, (2-)15/K' fly -y, lf- fly- y,., 1'. (7)

Adding together the inequalities obtained from (7) by letting i take on all values
from 0 to n, we obtain

(,%+''' + A.)(2 - 3)S21/ 2< 1- Y.ol,- IY -Y..',11' (8)

As n goes to oc, the left side of (8) goes to cc, whereas, by Proposition 4, the right

side of (8) goes to 11)- yo1- I_, 2 a contradiction.

Proposition 5 gives a practical convergence result when the target exceeds the
optimal value. At worst we eventually obtain an objective value arbitrarily close to
the target value. At best we may obtain an objective value as good as or better than
the target value, in which case it may be desirable to restart the algorithm after
supplying a new target value.

It does appear theoretically possible that no iterate may have an objective value
as good as or better than the target value. In this case, we obtain convergence results
in Proposition 7 analogous to Polyak's Theorem 4, part (A), alternative (b).

-'.' • " " " " ", ,, ".'. ",-". ' " ". -'- €.'- • , , ' '-' °,r .'' " ' " ." t" " ." ." " . , "
J " *"

" ,I

314 - Alen ei .1 / Polyak's wnvcrgene rmsult

Proposition 6. If p;w y and all g, > p under (4) and (6), then the sequence {y,) is

bounded.

Proof. Let y e F, p y, and all g, > p. Now,

HyIf = Iiy, -y+yi' - tIy, -y1 + IlyII.
From Proposition 4, we then have that

Ily, -C I1yo-yll + Ily1l-

Proposition 7. If pa- y, there is some K > 0 such that all l11 < K, and all g, > p under
(4) and (6), then {y,} converges to some z E G and some subsequence {gNu)j converges
to p - g(z). If g is also continuous on G, then {g,} converges to p = g(:).

Proof. Let p ;, , all g, > p, and all 17, 1I1 < K. Using Proposition 5, we obtain a
convergent subsequence of {g,}. There is some M(0) such that gM(o, p

- p + I. Having

determined M(j), define h,=min{go,...,gM(j)}-p>O and 5-min{(2) , h/2}.
Applying Proposition 5, there is some M(j+I) such that 8Maj I)<P+ 8 . and
furthermore, M(j+ 1) > M(j). As constructed, {gA~u) converges top. By Proposition

6, { ymj} is bounded, so a subsequence of {yM(j)}, say {yN(j)}, converges to some
point z. Obviously, {gj} also converges to p. Since G is closed, ZE 0. Let 17 be
any subgradient of g at z. Thus for each j, gNv j) g(Z)+ 77(yNj)-Z), from which

it follows that p >- g(z). Now consider the ancillary functional g: G -, P, given by

g'(y) = max{g(y), o}). Note that g' is convex and finite on G and z is a minimum

point of g' over G. Also, since g'(y) ;, g(y) and each g, > p, each subgradient 77,

of g at y, is also a subgradient of g' at y,. Thus under (4) and (6), for each i, g, = g".
By Proposition 4, applied to g, {y,} converges to z. When g is continuous on G,
lim g, = g(z) = lim gNj)= p.

If we simply require that subgradients exist for all points generated by the
subgradient optimization algorithms, and relax the requirement that subgradients
exist at all points on the relative boundary of G, then, contrary to the result in

Proposition 7, when all g, > p, {y,} can converge to a point z with g(z)> p, as shown
in the following example.

Example 4. Let G={(y 1 ,y 2): OYJ1,Y- < 1} in R 2.The finite convex functional
f:G-,R given by

fPy) = (yI-1)', (yt,y2);d(1,1),
(Y1, Y2) ,

fails to have a subgradient at the boundary point z = (1, 1). Also, y = 0 with F=

{(Y1, Y2): Y1 = 1 Oc y 2 < 11. Letting A, = 1, for all i, (6) holds. Then under (4), starting
from yo = (0, 1) with p = 0 = y, the subgradient optimization algorithm generates the
points y, = (I - ()', 1) with g, =(). Now lim y, =z, but lim g, =0 =p < g(z) i.

V

~1

P

p.

E Allen et a./Polyak' convergence resul 315 '4

Proposition S. If y E r, g, w p, and A, w # 2, then under (4),
HY v- Y..,l 11 v- y - y Y. 2 11+, (g, - p)(2 - 0)[(y- g,) + ((2 - p))(y - p)]/U 11 . "

Proof. Let ye, g,wp, and A,r#2. Now,

SA,(g, - p) - 2(g, - y) 4 S(g, - p) - 2(g, - v)

= ,(g,- p) - (2 - 0)(g,- ,) -(g, -)

j9(v - p) + (2- 0)(y- g,)

= (2 - i)[(y - g,) + (1/(2 - P))(y - p)].

Thus,

A. (g, - p)[A,(g, - p) - 2(g, - II
c. ,A,(g, - p)(2 - p!)[(.y - g,) + (,B/(2 - ,P))(,-, - p)]/1 11 Iq. 11'

The result now follows from Proposition 2.

Proposition 9. If p < y and there is some K > 0 such that all 1im7,! < K, then under (4)
and (6), given 6 > 0, there is some-M such that gM i -y + (0/(2 - A))(y - p) + 8.

Proof. Let 8 > 0 be given, with p < y, and all tm! < K. Suppose, contrary to the
desired result, that all g,> y+(O/(2 -13))(v,-p)+6, or (y-g,)+(6/(2 -iS))x
(y,-p) <-8. Since A <2 and g,>p, then

< - 8A,(g, - p)(2 - 0ll)/11I7. 11'. (9)

Take any y E F. Then by (9) and Proposition 8, we have that

BA,(g, - p)(2 -B)/ I 7, 11-2 < Iy -y, 111 - Ijy- ,1, 2j.

Since 1117,1I < K and g, ; y > p, then also

A,6(y - p)(2- 0)/ K'< I , - 1" - b .yII'. (10)

Adding together the inequalities obtained from (10) by letting i take on all values
from 0 to n, we obtain

(Ao+. • • + A.)M(- p)(2 - #)/K < 1b' - YolI, l) -y.- 1II'. (11)

As n goes to cc, the left side of (1) goes to oc, whereas, by Proposition 4, the right

side of (11) goes to 1ly-y,11' - o, a contradiction.

The above is our generalization of Polyak's Theorem 4 Part (B). At worst we
eventually obtain an objective value whose error is arbitrarily close to 8/(2-,)

times the error present in the target value estimate of y.

-l

S1

316 E. Allen et at / Polyak's contrgence result

Proposition 10. If p 'Y , there is somle K > 0 such that all <1~f K, and all g, > Y
under (4) and (6) with A, - 0, then there is a subsequence {gMjp)} which converges to

Proof. Let p < y, all 117, 11 < K, A, - 0, and all g, > -y. Using Proposition 9, we obtain
a convergent subsequence of 10,. Define lo = mint], 1/(yv-p)) and b = 1. There
is some N(0) such that for all i 0 N(0), A, <,6o. Then also (0o/(2 -,6))(y-p)c 1.
Applying Proposition 9 to {g,-N o), there is some M(0)? N(0) such that gA4(o1)

vy+(Po)/(2-Po)(y- p)+ 6o y+2. Having determined M(j), define h,=
min{go,...,gMJ,)}-y>0, 6 , = min{(1)'', h,/3), and P,., =min{, 8, 1/(,-p)}.
There is some N(j+l) such that for all i-*N(j+l). y, < ,n Then also (P,.,/
(2 -#,.l))(v-p)< 8,,t. Applying Proposition 9 to Jg-Ntj+1)), there is some
M(j+ 1)-N(j+1) such that

Then also

S.,+() and gMwI v/+(2 /3)h <min{go, ... ,g aj},

so that M(j+ I)> M(j). As constructed, fg,)) converges to y.

4. Conclusions

Propositions 5 and 7 give the convergence results obtained under (4) and (6) for
a target value at or above the optimal value. It is readily apparent that Proposition
5 is compatible with Polyak's result (A). Proposition 9 gives the corresponding result
for a target value under the optimal value. We have found this to be a more practical
result (see, e..g., [2, 3, 4, 5, 13, 14, 22]). Taking 1 = 1, we have Polyak's result (B)
as a special case of Proposition 9. Proposition 9 shows more clearly the dependence
of the demonstrably attainable error on the upper bound 6 for {A,}. Requiring A,- 0
allows us to produce a subsequence of objective values converging to the optimal
objective as shown in Proposition 10. This paper has not addressed the question of
any convergence rate associated with the use of (4) and (6). Goffin [9) has provided
such results when schema (2) is used.

Acknowledgment

This research was supported in part by the Air Force Office of Scientific Research
under Contract Number AFOSR 83-0278. We wish to thank David Anderson of the
Department of Mathematics at Southern Methodist University for helpful sugges-

* tions concerning the form of Proposition 9. We are deeply indebted to referee
Jean-Louis Goffin of McGill University, who has provided extensive assistance and
valuable suggestions for improvements in this paper, especially Propositions 7 and
10. He has also furnished key elements in the proof of Proposition 7.

%. . .. - . .

E Al en et al / Pblyak's convergence result 317

References

[1] S. Agmon, "The relaxation method for linear inequalities." Canadian Journal of Mathemaic.s 6
(1954) 382-392.

[2] 1. Ali, "Two node-routing problems," unpublished dissertation, Department of Operations Research.
Southern Methodist University (Dallas, Texas. 1980).

[3] i. Ali and J. Kennington, "The asymmetric M-travelling salesman problem: A duality based
branch-and-bound algorithm," Discrete Applied Mathematics 13 (1986) 259-276.

[4] 1. Ali, J. Kennington and B. Shetty, "The equal flow problem," Technical Report 85-OR-I. Operations
Research Department, Southern Methodist University, Dallas, Texas (1980).

[5] E. Allen, "Using two sequences of pure network problems to solve the multicommodity network
flow problem," unpublished dissertation, Department of Operations Research, Southern Methodist
University. Dallas, Texas (1985).

[6] M. Bazaras and C.M. Shetty, Foundations of Optimization, Lecture Notes in Economics and
Mathematical Systems No. 122 (Springer-Verlag, Berlin, 1976).

[7] I. I. Eremin, "An iterative method for Cebysev approximations of incompatible systems of linear
inequalities," Soviet Mathematics Dokady 3 (1962) 570-572.

[8) 1.1. Eremin, "On systems of inequalities with convex functions in the left sides," American Mathe-
matical Society Translations, 88(2) (1970) 67-83.

[9] J.L. Goffin, "On convergence rates of subgradient optimization methods," Mathematical Program-
ming 13 (1977) 329-347.

[10] J.L. Goffin, "Nondifferentiable optimization and the relaxation method," in: C. Lemarechal and
R. Miffin, eds., Nonsmooth Optimization, IIASA Proceedings Series (Pergamon Press, Oxford, 1978)
31-49.

[11] J.L. Goffin, "Acceleration in the relaxation method for linear inequalities and subgradient optimiz-
ation," in: E.A. Numrinski, ed., Progress in Nondifferentiable Optimization (IIASA, Laxenburg,

* Austria, 1982) 29-59.
[12] M. Held, P. Wolfe and H. Crowder, "Validation of subgradient optimization," Mathematical

Programming 6 (1974) 66-68.
[13] R. Helgason, "A Lagrangean relaxation approach to the generalized fixed charge multicommodity

minimal cost network flow problem," unpublished dissertation, Department of Operations Research,
Southern Methodist University, Dallas, Texas (1980).

[14] J. Kennington and M. Shalab), "An effective subgradient procedure for minimal cost multicom-
*l modity floi, problems," Management Science 23(9) (1977) 994-1004.

[15] T. Motzkin and IJ. Schoenberg, "The relaxation method for linear inequalities," Cand in Journal
of Mathematics 6 (1954) 393-404.

[16] E.A. Nurminskii, "Convergence conditions for nonlinear programming algorithms," Cybernetics,
8(6) (1972) 959-962.

[17] E.A. Nurminskii, "The quasigradient method for solving of the nonlinear programming problem,"
Cybernetics 9(l) (1973) 145-150.

[18] B.T. Polyak, "A general method of solving extremum problems," Soviet Mathematics Doklady 8
(1967) 593-597.

[19] B.T. Polyak. "Minimization of unsmooth functionals," USSR Computational Mathematics and
Mathematical Physics, 9(3) (1969) 14-29.

[20] B.T. Polyak "Subgradient methods; A survey of Soviet research," in: C. Lemarechal and R Mifflin,
eds. Nonsmooth Optimization, IASA Proceedings Series (Pergamon Press, Oxford, 1978) 5-29.

[21] R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, NJ, 1970).
[22] B. Shetty, "The equal flow problem," unpublished dissertation, Department of Operations Research,

Southern Methodist University, Dallas, Texas (1985).
[23] N.Z Shor, "On the structure of algorithms for the numerical solution of optimal planning and

design problems," dissertation, Cybernetics Institute, Academy of Science, USSR (1964)
[24] N.Z. Shor, "Generalization of gradient methods for non-smooth functions and their applications

to mathematical programming," Economics and Mathematical Methods (in Russian) 12(2) (1976)
337-356.

[25] N.Z. Shor. Minimization Methods for Non.Differentiable Functions (Springer-Verlag, Berlin, 19t951

%2

•.....-....~--.-' -. ,-...-.-.. -- -. ,....--'* % ---.. , '.-- ',"** ', ' S,L .T . _" " .K'. - -.

CHAPTER 5

The Equal Flow Problem
Agha lqbal Ali
University of Texas at Austin

* Jeff Kennington
Southern Methodist University

Bala Shetty
Texas A&M University

May 1987

Abstract. This paper presents a new algorithm for the solution of a network problem with
equal flow side constraints. The solution technique is motivated by the desire to exploit the special
structure of the side constraints and to maintain as much of the characteristics of pure network
problems as possible. The proposed algorithm makes use of Lagrangean relaxation to obtain a
lower bound and decomposition by right-hand-side allocation to obtain upper bounds. The
Lagrangean dual serves not only to provide a lower bound used to assist in termination criteria for
the upper bound, but also allows an initial allocation of equal flows for the upper bound. The al-
gorithm has been tested on problems with up to 1500 nodes and 6000 arcs. Computational expe-
ience indicates that solutions whose objective function value is well within 1% of the optimum
can be obtained in 1%-65% of the MPSX time depending on the amount of imbalance inherent
in the problem. Incumbent integer solutions which are within 99.99% feasible and well within 1%
of the proven lower bound are obtained in a straightforward manner requiring, on the average, 30%
of the MPSX time required to obtain a linear optimum.

Keywords. Networks, Algorithms, Computational Mathematical Programming, Decompos-
* ition, Lagrangean Relaxation

Acknowledgement. This research was supported in part by the Air Force Office of Scientific
Research under Contract Number AFOSR 83-0278, the Department of Defense under Contract
Number MDA 903-86-C-0182, and Rome Air Development Center under Contract Number
SCEEE PDP/86-75.

I

* d, . *

I Introduction

*O . This paper makes use of relaxation in conjunction with decompostion for the sol-

ution of the equal flow problem. The problem is easily conceptualized as a minimal cost

network flow problem with additional constraints on certain pairs of arcs. Specifically,

given pairs of arcs are required to take on the same value. The problem is defined on a

* D network represented by an m x n node-arc incidence matrix, A, in which K pairs of arcs

are identified and required to have equal flow. Mathematically, this is expressed as:

Minimize cx

s.t. Ax =b

xk= xl+K, k = 1,2,...,K

x, integer

where c is a 1 x n vector of unit costs, b is an m x I vector of node requirements, 0 is

an n x I vector of zeroes, x is an n x I vector of decision variables, and u is an n x I

vector of upper bounds. This mathematical statement of the problem, henceforth re-

ferred to as problem 11, assumes that the first 2K arcs appear in the equal flow con-

straints. This is not a restrictive assumption, since by rearranging the order of the arcs,

any equal flow problem with K pairs can be expressed in the above form. Note that the

K pairs of arcs are mutually exclusive, i. e., an arc appears in at most one side constraint.
* We also assume without loss of generality, that u, = u,., for k = 1,2,...,K.

Applications of the equal flow problem include crew scheduling [51, estimating
driver costs for transit operations 1141, and the two duty period scheduling problem

111. When integrality constraints are not present, the model is referred to as the linear

equal flow problem (PI). The linear model is applicable to problems where integrality

is not restrictive. For example, in federal matching of funds allocated to various projects

[41. The linear equal flow problem may be solved using a specialization of the simplex

method for networks with side constaints [31. It has also been solved by transformation

to a nonlinear programming problem [4].

The use of relaxation techniques and/or decomposition techniques in the solution

of problems with special structure in the constraint set is motivated by potential com-

putational efficiencies. Glover, Glover and Martinson 161 address a generalized network

problem in which arcs in specified subsets must have proportional flow. The solution

approach is via solution of a series of problem relaxations and progressive bound ad-

- ~~ .: K
S P

Vb

justment. The underlying principle is shared in the ensuing development for the equal
flow problem.

Lagrangean relaxation has been used to aid in the solution of the integer equal flow

problem in two specific instances. Shepardson and Marsten [I I reformulate the two

duty period scheduling problem as a single duty period scheduling problem with equal

flow side constraints and integrality constraints on the variables. Turnquist and

Malandraki (141 model the problem of estimating driver costs for transit operations as

an integer equal flow problem. In both studies, the side constraints are dualized and the

Lagrangean dual solved using subgradient optimization to yield a lower bound on the

optimal objective value. In [141 step-size determination during the subgradient opti-

mization process is aided by a line search.
The objective of this investigation is to develop and computationally test a new

algorithm, based on relaxation and decomposition, for the linear equal flow problem and

its use in solving the integer equal flow problem. The linear equal flow problem is a

natural relaxation for the integer problem and also provides an approximation to the

integer model. Because the problems are very closely allied, primarily due to the

unimodularity of the node-arc incidence matrix, solutions to the integer model can be

obtained by using a slight modification of the technique for the linear model. By em-

ploying relaxation and decomposition, solution of the equal flow problem is via two se-

quences of pure network problems, totally eliminating the computational overhead

associated with maintaining the inverse of a basis matrix. The exploitation of the special

structure of the side constraints and the network structure results in a decrease in both

computer storage and computation time since reoptimization procedures are applicable

for solution of subproblems of the two sequences.

The solution technique consists of making use of the Lagrangcan dual of the equal

flow problem with the side constraints dualized to obtain a lower bound. The

Lagrangean relaxation of the equal flow problem does not enforce the equal flow con-

straints. The Lagrangean dual for the linear and the integer equal flow problem is cx-
actly the same, since the constraint set for the Lagrangean relaxation is identical. This

Lagrangean dual is similar to the quadratic programming problem used in 141. The

similarity lies in penalizing the violating equal flow constraints.

Upper bounds are obtained by use of a decomposition of the equal flow problem

based on parametric changes in the requirements vector. The Lagrangean dual provides

a lower bound which is used to aid the the solution of the decomposition model in de-

termining an initial right-hand-side allocation as well as providing a lower bound on the

objective so that a solution is known to be within a percentage of the optimal. As such,

2

- . . -

-- -_L

the algorithm can terminate when a solution with a prespecified tolerance on the objec-

tive function value is obtained. By enforcing that the parametric changes in the re-

0 quirements vector be such that integral allocations of equal flow be obtained, upper

bounds on the integer problem can be obtained.

The solution technique makes use of subgradient optimization in the solution of

both the Lagrangean dual for obtaining a lower bound and the decomposition model for

40 obtaining the upper bound. Both the lower and upper bounding algorithms have been

developed in the context of the general subgradicnt algorithm which is briefly presented

in Section 2. Section 3 introduces the Lagrangean dual for the equal flow problem and

the lower bounding algorithm. Section 4 presents the decomposition of the linear equal
0 flow problem and the upper bounding algorithm. The overall procedure which makes

use of the algorithms of Sections 3 and 4 is given in Section 5, computational resits are

given in Section 6 and conclusions drawn in Section 7.

2 The Subgradient Algorithm

The subgradient algorithm was first introduced by Shor 1131 and provides a frame-

work for solving nonlinear programming problems. It may be viewed as a generalization

of the steepest descent (ascent) method for convex (concave) problems in which the

gradient may, not exist at all points. At points at which the gradient does not exist, the

direction of movement is given by a subgradient. Subgradients do not necessarily pro-

vide improving directions and consequently, the convergence results of Zangwill [15] do

not apply. Convergence of the subgradient algorithm is assured, however, under fairly

minor conditions on the step size.

Given the nonlinear program P0,

Minimize fly)

s.t. yE G

where f is a real-valued function that is convex over the compact, convex, and nonempty

set G, a vector T1 is a subgradient of f at y' if fy) - [(y') > ri(y - y') for all y G G. For

any given y' E G, the set of all subgradients of f at y' is denoted by cfly'). Moving a

sufficiently large distance s along -'q can yield a point x = y' - sri such that x 4 G. The

projection of the point x onto G, denoted by Pix], is defined to be the unique point y E

3
2n

- *= , , r- " --".,.", '-" n'"': "" " ? . ""i, ; "''- , -"" - =- " ''- # / - ,7" " \/". ", ". ' , ,',/ .-S-

G that is nearest to x with respect to the Euclidean norm. Using the projection opera-
tion, the subgradient algorithm in its most general form follows:

E

ALGORITHM 1: SUBGRADIENT OPTMIZATION ALGORITHM

0 Initialization

Let y* e G,

Select a set of step sizes s., s,, s2 ...

- +- 0.

I Find Subgradient

Let l, e af(y').

If TI = 0, then terminate with y' optimal.

2 Move to new point

..yi* I Ply' - sml

i - i + 1, and return to step 1.

There are three general schema which can be used in determining the step size when

the subgradient algorithm is implemented for a specific problem:
~i. s= X.

ii. S, = XI/lII12
iii. s, = X (f(y') - F)/lii,112

where F is an estimate of f'*, the optimal value of f over G. A summary of the known

convergence results for this algorithm may be found in [2] and 1101.

3 The Lower Bound

A lower bound on the objective function of the equal flow problem, II or P 1, can

be obtained by using the Lagrangean dual of the problem. The lower bound is used in

the step size determination, termination criteria, and determination of an initial equal

flow allocation for the upper bound procedure. Associating the Lagrange multiplier w,

with the kth equal flow constraint and defining the K-vector w = (w, w2, . .. , wK), the

Lagrangean dual for Pl, referred to as problem Dl, may be stated as

maximize h(w)

w E RK

4

A. V ,~--~...
.

where h(w) - min{cx + 1, w,(x,-xK,L) 1 Ax b, 0 < x < u}. Since PI is a linear

program, it is easily established that the optimal objective values of PI and DI are equal

and that any feasible solution to DI provides a lower bound on the optimal objective

value for problems PI and II. For any given value of the vector w, the Lagrangean re-

laxation is a pure network problem. The subgradient of h at a point w is given by the

K-vector

d = (x - XK,- X2)

* where x solves the Lagrangean relaxation at w, given by

(min cx + Z wk(x,-xKk) I Ax = b, 0 < x < u}.

ALGORITHM I assumed the function fRy) to be convex, whereas h(w) is piece-

wise linear concave. The lower bounding algorithm, ALGORITHM 2, modifies the

framework of the previous algorithm for a concave function. The step sizes used are

given by X0 = p, and successive values of ,, depend on the progressive improvement of

the objective and a parameter m*. As long as the objcctive function continues to im-

prove across m* iterations, the same value of the multiplier is retaincd. If the objective

does not improve over m* iterations, the multiplier is halved, and successive iterations

* continue from the point where the incumbent best objective function value is found for

the previous value of the multiplier. The algorithm makes use of a scalar, UBND, re-

presenting an upper bound for the problem. Since the solution procedure progressively

improves both the lower bound and the upper bound for the cqual flow problem, each

time the lower bound algorithm is invoked the value for UBND is obtained from the

upper bound procedure. For this algorithm, we assume that both bounds are greater

than zero.

Several termination criteria are pertinent to the lower bound algorithm. If the

value of the multiplier becomes negligibly small, further improvement in the lower bound

is negligible. Such termination criteria are relevant particularly to the initial invocation

of the lower bound algorithm since no valid estimate of the upper bound is available.

Further, the maximum number of iterations allowed in the initial invocation of the lower

bound procedure should be chosen to be larger than in subsequent invocations.

5

ALGORITH4M 2: LOWER BOUND ALGORITH4M

I Initialization

Initialize UBND, step size p, in', and tolerance c.

w 4- 0, mn' +- 0, d' - oc), I 4- 0.

2 Find Subgradient

I 1+ 1.

Let x solve h(w) =min~cx + Y- wk(Xk-XK1k)I ALX b, 0 x u)

d~ ~ K1 -9 Kx - K,.. - X2K)*

If 11 dl 11 < 11d'1I, d' 4-- d, x' -x

If d =0, terminate.
If h(w) < LBND,

miion m' +;,

n if mi' U ND p e p/2, w m*, d ted, n' 0;

* otherwise,

i 4-- 0,

LBND ~- b(w).

1 *I4-- W

d* d- d

If (UBND -LBND) c(UBND), terminate.

3 Move to new point

(a) w 4- w + pd.

(b) If maxpd,) < .005, terminate.

(c) Go to step 2

-~%d

The choice of the initial value of p should be directed by the range of objective

function coefficients for the problem as well as an estimate of the elements of the vector

d. This choice can be made automatically when the Lagrangean relaxation is solved with

w - 0. Since it is the elements of d which cause the objective function coefficients to

* change in each successive iteration of the subgradient optimization procedure, an initial

value of p which keeps objective function coefficients from taking on values far away

from the original range is a prudent choice. Note that termination of the lower bound

procedure can occur when further changes in objectivc function coefficients is mriinimal

as in step 3(b).

6

---------------.. W- -..- ..

d* U2" d

p

,r

4 The Upper Bound

• An alternate formulation of problem P I, referred to as P2, obtained by decompos-

ing the problem is given by

Minimize g(y)

s.t. yES

where for any vector y = (y1, y2,. .. ,

g(y) = {min cxlAx = b; 0 < x < u; x,= XKk=y , k= 1,2,..,K},

and,

S -- {Y 0 5 yk < uk, fork

The decomposition assures the satisfaction of the equal flow constraints. The decom-

posed problem P2 is equivalent to the problem P1 1121 and may be solved using a spe-

* cialization of the subgradient optimization algorithm. The objective function is

piece-wise linear convex and the subgradient TI ofg at a point y is obtained from the dual
variables, v,, i = 1,2,...,2K, associated with the equal flow constraints in the subproblem,

referred to as P3 and given by,

Minimize cx

s.t. Ax b
xi y (v,)
XK+, = y, (vK.I)

x = yK (v)

X2K - YK (v2K)

O x~u.

The K-vector

T) = (v +vK-I,v2 +vK4 I . .. , VK + v2)

7

A

is a subgradient of g at y = (YI,Y2,...,YK).

The dual variables vk, k = 1,2,...,2K may be easily constructed from the solution

to the pure network problem, referred to as problem P4;

{min cxl Ax = b, y x< 0 ,L

where the lower and upper bound n-vectors y and 0 are defined by

y. = O = yk, k = 1,2,...,K

YK k= 0 X ,:= Y, k = 1,2,..., K

,00, = ut, k = 2K+ ,...,n.

Let 11 be the vector of optimal dual variables associated with the conservation of flow

constraints, Ax = b in P4 and the arc associated with the variable x, be incident from

node j, and incident to node j,. The optimal dual variables for P3 are given by,

vk - I +11 + c, k 1,2,...,2K.

In using the subgradient optimization algorithm for the decomposed problem at each

point y, the subgradient I can be calculated directly using the above development.

It is possible that moving a step along the negative subgradient yields a point which

does not belong to the set S. As pointed out in SectionllI, this point is projected onto

the set S by means of a projection operation in the algorithm. For this model, the

projection operation decomposes on k so that Ply] = (Ply, 1, P[Y21, . .. , P[YKj), where the

projections PIyJ are defined by:

Ify, < 0, P[y,] = 0.

If Y, > U,, Plyd = u,-,

If0 r y, r u,, P[yd = Y,.

The subgradient optimization algorithm for problem P2 makes use of a lower bound,

LBND, on the optimal objective value which is used in step size determination using a
variant of scheme (iii) given in Section I, as well as in the termination criteria. Again,

we assume that both bounds are greater than zero.

W," S,,.

ALGORITHM 3: UPPER BOUND ALGORITHM
I Initialization

Select y E S and construct y and 0.

Initialize LBND, E, q, n*, J -- 0.
2 Find subgradient and step size

J-- J + 1.

Let x and Il be the vectors of optimal primal and dual variables

for Min (cxl Ax = b, y : x <0).

If cx > UBND,

n' 4-n' + 1,
if n' = n*, q 4-- q/2, n' 4-- 0;

otherwise,

n' - 0

UBND 4- Cx.

If (UBND - LBND) < (UBND) and x feasible, terminate with x optimal;

otherwise,

v-- -f + 11't + c,, k = l,2,...,2K.

I V (v + -v1.. . v + V20)

3 Move to new point

(a) y ,- P[y -q((UBND - LBND)/(711r1 2))rTI.

(b) If max (q((UBND - LBND)/(1irfl1))rlI), < .01 then terminate.

(c) Go to 2.

The use of the algorithm parameters q and n* is to help condition the step sizes

based on the relative norm of the subgradient with respect to the difference in the lower

and upper bounds. The norm or the subgradient is dependent on the problem rather

than the algorithm. That is, it is quite possible that the norm remains high throughout

the algorithm. The initial choice of q is directed by an estimate of the maximum of the

absolute values of the elements of the vector d' as well as the objective function coeffi-
cient associated with artificial variables in the solution of the pure network problem.

When allocations yield infeasible solutions, the elements of r' are large rendering JIrj jI1
very large. An initial value of q, if chosen arbitrarily, can be small, thus requiring more

iterations since the improvement at each iteration is small. On the other hand, if the

initial value of q is large, then for several sets of n* iterations no improvement in the

9 J

. ". -".- " % %. .• . o .- .- •

objective occurs until the value of q becomes smaller. Here again, a secondar' termr

nation criterion in Step 3(b) is when further changes in the allocation in step 3(a) arc

minimal.

The modification required for the integer problem occurs only when the terni

nation criteria have been met for the linear problem. The alternate formulation for thc

integer problem is obtained by requiring that the equal flow allocation, y be integral

Minimize g(y)

s.t. y E S'

where for any vector y = (y,, Y2, ..),

g(y) = {mincxlAx = b;0 s x < u;x,=xK.,=yk,k=l,2,..,K},
and,

S' = {y1 0 . yk < u, fork = 1,2,...,K andy integcr}.

Once termination occurs for the linear problem, the uppcr bound algorithm can be U,

by requiring that the projection in step 3 of the algorithm yield an integer equal ilk'.,

allocation. Since the objective retains the piece-wise convex nature of the objectivc I

the linear problem, the linear optimum obtained can be expected to be close to the in-

teger optimum. Adjacent integer allocations can be expected to provide bounds on the

integer optimum or else be near-feasible points for the intcgcr problcm.

5 The Algorithm

The solution of the equal flow problem using decomposition, as given in the prc-

vious section can be implemented without the lower bound procedure, It is also possibic

to implement the lower bound algorithm independently for the purpose of obtaining a

lower bound on the optimal value of the equal flow problem. For the upper bound

problem, some measure of the lower bound on the problem must be used to aid in tCr

mination. By merging the two procedures, an algorithm which adjusts the lower and

upper bounds progressively can be used to advantage and tied to the accuracy desired

for the solution. Not only can such a procedure be used for obtaining feasible solutions

with relative ease, but it can also provide a measure of how close this solution is to the

optimal.

The algorithm for the solution of the equal flow problem iterates between the lmk L:

bound procedure and the upper bound procedure. The lower and upper bounds, I B\ I)

and UBND, progressively become tighter, closing in on the optimal solution to thc

IO

* . . - . -. . . * . . .~ ." ."" " " - " ," " ". - . " -" " " "I '" " " " " '

problem. Each time the lower bound procedure is invoked, a maximum of ITERL iter-

ations are performed. Each time the upper bound procedure is invoked, a maximum of

S o ITERU iterations are performed. However, the initial invocations of the lower and up-

per bound algorithms are allowed to terminate using criteria in those algorithms as op-

posed to these iteration counts. The initial invocation of the Lagrangean dual is

important primarily because it affords a very tight lower bound on the oblective value

* of the integer or linear optimum and further it provides near-optimal values of the

Lagrange multipliers. The near-optimal values of the Lagrange multipliers tend to aid

the subgradient optimization of the decomposition model. The tuning parameters for

the algorithm are as follows: ITERL, ITERU, m*, n*, and r (the termuination criterion.)
'3

ALGORITHM 4: RELAXATION/DECOMPOSITION ALGORITHM

FOR THE EQUAL FLOW PROBLEM

0 Initialization

Initialize ITERL, ITERU, c.

T - 0, R - 0, w - 0, UBND -- c, LBND -- cX.

Call ALGORITHM 2 and y, -- min[u,, (x',4-x'K.,)/2 1, k = 1,2,...,K.

Call ALGORITHM 3

1 Compute Lower Bounds

(a) Call ALGORITHM 2 (Steps 2 and 3 (a)).

(b) T - T I i

If T < ITERL, then go to step I (a).

2 Compute Upper Bounds

(a) Call ALGORITHM 3 (Steps 2 and 3 (a)).

(b) R - R+I

If R < ITERU, then go to step 2 (a).

3 Reset iteration counts

T -- 0, R -- 0, and go to step I.

6 Computational Experience

The computer implementation of the algorithm is written in standard FORTRAN

(called EQFLO) and makes use of MODFLO Ill to solve pure network rubproblems.

Based on NETFLO 181, MODFLO is a set of subroutines which allows parametric

changes in costs, bounds and/or requirements for a network problem and subsequent

II

. -. v - -'*.-

II

reoptimization. Computational testing was carried out on the IBM 3081D at The Uni-

versity of Texas at Austin using the FORTVS compiler-with OPT = 2. In cder to as-

sess the computational gains afforded by the decomposition/relaxation algorithm for the

equal flow problem, each problem was solved using MPSX [71. All MPSX solutions

have been obtained on the IBM3081D at Southern Methodist University.

The algorithm has been tested on a set of 10 test problems generated by using

NETGEN 191, and referred to by their NETGEN numbers. Of the 10 problems used, the

first three are transportation problems (problems 5, 9, and 10), the next four are capac-

itated transshipment problems (problems 20, 21, 24, and 25) and the last three are un-

capacitated transshipment problems (problems 28, 30, and 35). The test problems have

between 200 and 1500 nodes, and between 1500 and 6600 arcs. For each problem, the

first 2K arcs were paired to form K equal flow side constraints. In order to gauge the

performance of the algorithm for various values of K, some of the problems were gen-

erated using the same base network problem data with K varying from 75 to 200.

The benchmark NETGEN problems have a specified percentage of arcs which are

uncapacitated. For these arcs, the capacity was defined to be the maximum of all sup-

plies and demands. For arcs in equal flow pairs which emanate from supply points, the

capacity used is the supply at the point of incidence. Similarly, for arcs incident to de-

mand points, the capacity used is the corresponding demand. If an equal flow pair is

incident to a demand point or incident from a supply point, then the capacity assigned

is the upper integer ceiling of half the corresponding requirement. Such allocation of

capacity is prudent, allowing a tighter relaxation.

Table I details the computational testing of the algorithm with parameters and m*

- 5, n* = 10, ITERU = ITERL = 10, c = .01. For the test problems, EQFLO ob-

tained feasible solutions whose objective function values were within 1% of the optimal

" in a fraction of the time required by MPSX to obtain an optimum. The table reports

'he total solution times required to produce an a percent solution for the linear equal

* flow problem and an integer solution. The number of lower and upper bound

interations, respectively I and J, required are provided along with the norm, Id'II, ob-

tained during subgradient optimization of the Lagrangean dual. Note that this norm

typically provides a metric for gauging the difficulty of a specific problem instance. Be-

cause of the fact that the lower bound procedure does not enforce equal flow, the norm

-* provides a measure of the infeasibililty of equal flow constraints, or the amount of im-

balance which exists in the problem. The zero-tolerance used for flows on artificial arcs

,* is .05. Of the 10 problems, feasible solutions were obtained for all linear problems.

12%a

.*

• ~~~~~~~~~~~.-. ..-.-."". ' -...-. ' -. ". .'. ,-. -'.""'. .'' .'-,,' .• ".- '- °i. .++- L' -L+-'+ -" -
L"..'..-.+........ ..- ." ,, .) " " - .' "......kbl lanm

m i n n m m n i n

p

-V

Termination criteria employed for this computational testing are stringent and the de-

composition algorithm continues to attempt improvement until not only the solution is
6 within 1% of the lower bound, but also until changes in subsequent allocations are

negligible (.001).

Initial allocations, as determined by x', obtain feasible solutions well within l% of

the lower bound obtained in 6 of the 10 problems. For the other problems, the initial

allocation can be feasible or infeasible. Capacities in the randomly generated problems

are such that infeasibilty occurs due to the following: When a particular level of allo-

cation is enforced, the problem can become infeasible due to capacities falling below a

level required to ensure all demand be met.

An upper limit of 5 iterations were allowed in performing integer equal flow allo-

cations with the initial integer allocation obtained by truncating the optimal linear allo-

cation. No more than 29 units of demand go unsatisfied corresponding to 99.99%'

feasible integer solutions well within 1% of the lower bound obtained. The trade-off

between enforcing integer equal flows and 100% feasible solutions tips in favour of

making use of near-feasible solutions, given the relative computational ease with which

they are produced. Problem 5 was attempted with MPSX-MIP where integrality was

only forced on the 75 equal flow pairs. After over 220 seconds the active branch-and-

bound tree had over 2000 nodes and had not as yet obtained the first feasible integer

solution. In less than 9 seconds, the decomposition procedure obtained an integer sol-

ution which satisfied 399,996 units of the 400,000 units of demand.

To determine the impact of an increase in the number of side constraints on prob-

lem characteristics and the algorithm, additional testing with 21, 24, and 28 is reported

in Table II. Each of these base problems was used to generate equal flow problems with

75, 100, 150, and 200 equal flow constraints. As evident from the behavior of the norm

of d', as the number of side constraints increases, more imbalance in the problem is in-

troduced and in order to enforce equal flow, more effort is required. Problem 24 be-

comes infeasible once the number of side constraints enforced becomes 200. As would

be expected, the algorithm expends more effort for the more tightly constrained prob-

lems, with the exception that it recognizes an infeasible problem readily. Again, for the

problems which are feasible, near-feasible integer solutions are obtained in approxi-

mately 1%-60%,' of the time required to solve the linear problem using MPSX.

13

14
- - = . .. aim .m i lli .I l i " i -

, n n n n - 1 -ll: . . : t - ...-. . . .F ,. - ., : . . . •. .

N

7 andV 7

7 Summary and Conclusions

The equal flow problem lends itself to solution by decomposition and relaxation.

The use of these techniques in the solution procedure developed is advantageous because

the essential solution mechanism required is the solution of sequences of pure network

problems. By dispensing with the working basis required by other techniques, not only

are computational efficiencies afforded but the natural characteristics of the problem

enhanced.

The algorithm has been shown to assist in solving the integer equal flow problem.

The lower bound automatically produces integer flows and the projection of the sub-

gradient in the upper bound routine is altered to require integrality on the equal flow

allocation once a near-optimal linear solution has been obtained. The equal flow allo-

cation for the linear model is expected to be close to the equal flow allocation for the

integer model due to problem structure. Thus the solution procedure provides near-

feasible, near-optimal solutions for the integer equal flow problem efficiently.

The structure of the equal flow problem provides a metric on the relative difficulty

of any specific problem instance. The proposed solution procedure has the innate ca-

pability to distinguish between easy and difficult instances of an equal flow problem and

thus can require only 1% of the M PSX time to solve an easy problem. As the number

of equal flow constraints grows, a problem can become progressively infeasible, since the

enforcement of equal flows can serve to reduce the capacity of a cut-set of the network

to well below required levels for feasibilty. The development for the linear equal flow

problem in this paper can be instructive in modelling and solving other network prob-

lems with specially structured side constraints such as proportional flow models used in

manpower planning. The solution technique is best suited for a real-world situation in

which one must quickly produce near-optimal, near-feasible solutions.

14

"r r i IL

m ',,.,, i m~g i-i hm 'u'nlnm am- ,,- -----

REFERENCES

[I Ali, A., E. Allen, R. Barr, and J. Kennington, "Reoptimization Procedures for

Bounded Variable Primal Simplex Network Algorithms," European Journal of

Operational Research, 23, 256-263 (1986).

121 Allen E., R. Helgason, J. Kennington, and B. Shetty, "A Generalization of Polyak's
Convergence Result for Subgradient Optimization," Technical Report 85-OR-7,

Department of Operations Research, Southern' Methodist University, Dallas,

Texas, 75275 (1985), to appear in Mathematical Programming.

131 Barr, R., K. Farhangian, and J. Kennington, "Networks with Side Constraints: An
LU Factorization Update," The Annals of the Society of Logistics Engineers., I,

1, 66-85 (1986).

141 Beck, P., L. Lasdon, and M. Engquist, "A Reduced Gradient Algorithm for Nonlin-
ear Network Problems," ACM Transactions on Mathematical Software, 9, 57-70

(1983).

151 Carraresi, P. and G. Gallo, "Network Models for Vehicle and Crew Scheduling,'
European Journal of Operational Research," 16, 139-151 (1984).

(61 Glover, F., R. Glover, and F. Martinson, "The U. S. Bureau of Land Management's

New NETFORM Vegetation Allocation System," Technical Report of the Divi-

sion of Information Science Research. University of Colorado, Boulder, Colorado,

80309 (1982).

[71 IBM Mathematical Programming System Extended/370 Program Reference Manual,

File No. S370-82, IBM Corp., White Plains, New York (1979).

[81 Kennington. J., and R. Helgason, Algorithms for Network Programming, John Wiley

and Sons, New York (1980).

[91 Klingman, D., A Napier, and J. Stutz, "NETGEN: A Program for Generating Large
Scale Minimum Cost Flow Network Problems," Management Science, 20, 814-821

(1974).

1101 Poljak, B. T., "A General Method of Solving Extremum Problems," Soviet Math-
ematics Doklady, 8, 3, 593-597 (1967).

[11] Shepardson, F., and R. Marsten, "A Lagrangean Relaxation Algorithm for the Two

Duty Period Scheduling Problem," Management Science, 26, 274-281 (1980).

1121 Shetty, B., "The Equal Flow Problem," unpublished dissertation, Department of

Operations Research, Southern Methodist University, Dallas, Texas, 75275

(1985).
I5'

is it-

"-. Y "
'

¢-L.g',€ *" - "- . .- - - --.-. . '. ---"- ''..., . -. 2 "" -" "h
"

""" - - --' , --. "
"

"' ' "- - *'- " "'

VW3

.. r -y - ,r - , - Y- Y J

[131 Shor, N., "On the Structure of Algorithms for the Numerical Solution of Optimal

Planning and Design Problems," Dissertation, Cybernetics Institute, Academy of

Sciences, U.S.S.R. (1964).

1141 Turnquist, M., and C. Malandraki, "Estimating Driver Costs for Transit Operations

Planning," Joint National Meeting of ORSA/TIMS, Dallas (1984).

[151 Zangwill, W., Nonlinear Programming: A Unified Approach, Prentice Hall,
Englewood Cliffs, New Jersey (1969).

€.5

I

i16
d

d 16
4

: ,~~..,,-...... ,..., . .-. __,. _ ':-"

Table 1. Comparison of EQFLO with MPSX (All Problems I lave 75 equal flow pairs).

* NETGEN MPSX LINEAR INTEGER
Number Nodes Arcs Time (Ild'I I J Time Infeas Time

5 200 3100 11.4 0.15 377 151 1 8.6 4 8.8
9 300 6395 38.4 0.01 1296 145 1 19.6 3 19.9
10 300 6611 34.2 0.00 698 165 1 15.3 3 15.7

4 20 400 1484 34.8 0.10 4729 544 262 23.3 2 23.6
21 400 2904 73.8 0.00 1 6 1 00.7 1 1.1
24 400 1398 37.8 0.29 8875 280 498 21.4 3 21.7
25 400 2692 93.0 0.01 8356 148 1 5.7 1 6.3
29 1000 3000 52.8 0.14 3865 235 220 27.8 29 28.3
30 1000 4500 69.6 0.00 490 95 1 7.9 0 7.9
35 1500 5880 145.2 0.09 5386 218 151 46.7 6 47.7

* 591.0 177.0 181.0

Times reported are in CPU seconds on an IBM3081D

Table 11. Effect of Increasing the Number of Equal Flow Pairs.

NETGE.--N MPSX LINEAR TGR
Number Pairs Time a Ild'Il I J Ilime Infeas T ime

V21 75 73.8 0.00 1 6 1 00.7 I 1.1
21 100 648 0.00 1 6 1 001.8 I 1.1
21 150 83.4 0.08 880 130 202 14.6 I 2 15.1
21 200 76.2 0.47 2937 214 18R 17.5 26 17.9

24 75 37.8 0.29 8875 280 498 21A4 3 21.7
24 100 36.0 0.53 18283 240 307 19.8 5 19.9

*24 150 42.0 2.32 24867 258 505 30.7 37 30.9
24 200 infeasible infeasible

29 75 52.8 0.14 3865 233 220 27.8 29 28.3
28 100 57.6 0.23 5206 213 182 28.3 35 29.q
28 150 65.4 0.30 6043 202 179 30.4 45 30.9
28 200 72.0 1.00 15206 224 423 50.5 49 51.0

_____________ 1_ 661.81 262.51 246.8

Timeg reported are in CPU seconds on an 1BN1308 11)

%

,%

_7!

CHAPTER 6

A PARALLELIZATION OF THE SIMPLEX METHOD

by

R. V. Helgason *, J. L. Kennington *, and H. A. Zaki **

February 1987.

ABSTRACT

This paper presents a parallelization of the simplex method for linear programming.

Current implementations of the simplex method on sequential computers are based on a

triangular factorization of the inverse of the current basis. An alternative decomposition

designed for parallel computation, called the quadrant interlocking factorization, has pre-

viously been proposed for solving linear systems of equations. This research presents the

theoretical justification and algorithms required to implement this new factorization in a

simplex-based linear programming system.

* Department of Operation Research
Southern Methodist University
Dallas, TX 75275

** Department of Mechanical and Industrial Engineering
University of Illinois at Urbana-Champaign
Urbana, IL 61801

,-
..P

J°

ACKNOWLEDGEMENT

This research was supported in part by the Air Force Office of Scientific Research -

under Contract Number AFOSR 83-0278, the Department of Defense under Contract

Number MDA 903-86-C-0182, and Rome Air Development Center under Contract

Number SCEEE PDP/86-75.

LS
S•'

* . ~ . h p A'77 .9JI* A

-3- 4

I. INTRODUCTION

The introduction of parallel computers into scientific computing in the past decade

is the beginning of a new era. The invention of new algorithms will be required to ensure

realization of the potential of these and future architectural improvements in computers.

Already the use of parallel computers has given rise to studies in concurrency factors,

vectorization, and asynchronous procedures. These have led to multifold increases in

speed over conventional serial machines after the calculations have been rearranged to

take advantage of the specific hardware. This paper presents a parallelization of the sim-

plex algorithm for general linear programs. Our work begins with new results for solving

systems of linear equations and is directed toward the hardware design currently adapted

by Sequent Computer Systems, Inc. of Beaverton, Oregon.

The following notation is used throughout this paper. Let Bi:jk:l represent a subma-

trix of B composed of rows i through j and columns k through 1. If i =j (k =1), we write

B,.- (B, 1 k). The jl row (column) of B is denoted by Bj,. (B.,j). The ij,1 h element of

B is B,,.

The linear programming problem is represented mathematically as follows:

minimize cTX

subject to Ax = b

0 x 5u,

where A is a known m by n matrix, all other quantities are conformable, and all vectors

are known except x.

The upper bounded version of Dantzig's simplex method for solving the linear pro-

gramming problem may be stated as follows:

Algorithn 1.1 The Simplex Method

* - - - -* - *

-4-

0. Initialization

Let [xB IXN] be a basic feasible solution with A = [B IN]. Let the cost vector

(c B IcNI and bounds (u B l uNi be partitioned similarly. Assume that B- 1 is avail-

able in some factored form. Initialize iter to 0 and the reinversion frequency,

freq.

1. Calculate the Dual Variables (BTRAN)

7t C cBB - . (1.1)

2. Pricing

Let K ={j: xN = 0 and cN - nN < 0},

N N Nand K 2 =(j: x = uj and cN - i.N.,J > 0}.

If K, I.t) K 2 = D, terminate with [xB IxN] optimal;

otherwise, select k E K1 I.. K 2 and setfU
1, if keK,

1, otherwise.

3. Column Update (FTRAN)

B B-N J (1.2)

4. Ratio Test

A2 <- min {---r },
sign (yj) = sign (I) [yj I

• A2 min u- X ,B l

. sign (yj) = sign (-4)[f yj I

A- min{Al, A2 , uN

5. Right Hand Side Update

-5-

xB XB - A~y.

NIf A = Uk, return to 1.

6. Basis Inverse Update

Let p denote the index of xB which produced A and set

-Yi /Yp if i *p

1'yp otherwise,

E <-Iepep+ leT

B -- EB-. (1.3)

7. Reinversion Check

iter <- iter + 1.

If mod (iter freq) = 0, then refactor B-1 .

Return to 1 using B-1 as B-, the current basis inverse.

Two of the most common factorizations of the basis matrix inverse are the product

form and the elimination form, which correspond to the methods for solution of linear

equations known as Gauss-Jordan reduction and Gauss reduction (LU factorization),

respectively, where L is a lower triangular matrix and U is an upper triangular matrix.

The elimination form produces a sparser representation of the basis inverse than the pro-
€s,.-

duct form, and accordingly leads to faster implementation of a simplex iteration and a

considerable savings in storage. .-

Historically, the elimination form of the inverse, due to Markowitz [1957-1], was

the first LU factorization method and was introduced to preserve sparsity during reinver-

sion. However, once reinversion was completed further pivot operations were handled

2S.

m : t " "
"

" "81 k: I - " f] t- " II
:r

d "

-6-

using product form. Bartels and Golub proposed updating L and U in a numerically

stable way, (see Bartels [1971-I]). Their updating scheme tends to promote the growth of

nonzeros in U, leading to a potentially severe loss of sparsity. Forrest and Tomlin [1972-

I] designed a different updating scheme for the triangular factors to preserve sparsity at

some sacrifice in numerical stability. Subsequent implementation of the Bartels-Golub

method, designed by Reid [1982-1] and Saunders [1976-1], combine the virtues of accu-

racy and speed.

Several parallel versions of the LU factorization algorithm for solving general linear

systems of equations are presently available (Chen et al. [1984-1] and Dongarra and

Sorensen [1984-2]). All versions are based on restructuring the original serial algorithm

to reveal possible independent tasks that can be carried out concurrently.

Evans and Hatzopoulos [1979-1] proposed a matrix factorization, called the Qua-

drant Interlocking Factorization (QIF), as an appropriate tool for solving linear systems

on parallel computers. The QIF is similar to the LU factorization, but is claimed to be

more suitable for concurrent computation.

This paper presents a parallelization of the simplex method using the QIF. The out-

line of the paper is as follows. In Section II, the QIF is developed. An algorithm for

updating the QIF of B -1 is presented in Section III. Mathematically, the problem is to

efficiently obtain a factorization of B-1 (see step 6 of Algorithm 1.1) from the factoriza-

tion of B-1. In Section IV, we develop a parallelization of the reinversion routine used in

step 7 and propose a parallel implementation of both the BTRAN and FTRAN operations

of steps I and 3.

The parallel algorithms presented in this study are designed for a MIMD parallel

computer that incorporates p identical processors sharing a common memory and capa-

ble of applying all their power to a single job in a timely and coordinated manner. The

Balance Systems 8000 and 21000 from Sequent Computer Systems are examples of such

machines.

,..',.. " _ , ° :,'.: t, ",'.. " " r' " , - " -" alti dnnhlll, lildlnl ulh nnl~h /l~lilhl~lhlnhl i / l I.

at

WV.

-7-9

11. THE QUADRANT INTERLOCKING FACTORIZATION .

In this section we describe a matrix factorization suggested by Evans and Hatzo-

poulos [1979-1] known as the Quadrant Interlocking Factorization (QIF). This decom-

position is designed to solve linear systems on parallel computers (see Evans and Hatzo-

poulos [1979-1], Evans and Hadjidimos [1980-1], Evans [1982-1] and Feilmeier [1982-

1]). The factors and some of their characteristics are described in Section 2.1. We show

that any nonsingular matrix can be factorized into its QIF in two ways, the Forward QIF

and the Backward QIF The factorization algorithms are developed in Sections 2.2 and

2.3. The relationship of quadrant and triangular matrices is presented in Section 2.4.

2.1 The Quadrant Interlocking Factors

Consider the following matrix

1 0 . .. 0 0
w2.] 1 0 .w2,0

"'3, 1 V,3,2 w3.m-I w 3 ,M

W . .(2.1)

lin-2.1 Wm-2.2m-2,m- 1 Wm-2.,m

im -1.1 0 . .. I Wm-1jM

0 0 ... 0 1

Note that the non-arbitrary entries of W are given by

0, i=,.j m"2,w, = 0 i=1 m/2] , j=(i+l) (22i ""

0, i =I ...m j=M -i+.

where

.S%

-8 -

Ix I = the largest integer not greater than the value of x
ri= m+ I -[rn/2].

Also, consider the matrix

Z1.1 Z 1,2 . Zlm- 1 ZI.M,

0 Z2,2 • . Z 2 ,m- 1 0

0 0 ... 0 0

7= (2.3)

0 0 ... 0 0
0 Zm-1,2 ... Zm-l,m-1 0

Zm, l Zm2 . . . Zpr,m- Zm,m

Note that

[j=l I(m-1)/2] ,i=j+ .^ -j;
O, (2.4)

= 1 ,....., , i =m +2-j,.... j-1.

Any square matrix may be partitioned by its diagonal and secondary diagonal into

f our quadrants. The potentially nonzero elements of W are in the left and right quadrants

%while those of Z are in the upper and lower quadrants. Therefore, we call any square

matrix whose nonzero structure follows (2.1) and (2.2), or one that can be brought to

such a form by row and/or column interchanges a left-right quadrant (LRQ) matrix.

Similarly, any square matrix whose nonzero structure follows (2.3) and (2.4), or one that

can be brought to such a form by row and/or column interchanges is called an upper-

lower quadrant (ULQ) matrix. Examples of W and Z matrices for an odd and an even m

are given below:

Example 2.1 (m=5)

S

.S

...............

-9-

1 0 0 0 0 Zfl Z1,2 Z13 Z1,4 z,5

'2.1 1 0 0 W2, 5 0 Z2,2 Z2,3 Z2,4 0
I.= t'3,1 1V3,2 w 3,4 W3,5 ,Z= 0 0 z 3 ,3 0 0

It' 4 1 0 0 1 w 4 ,5 0 Z4,2 Z4,3 Z4.4 0

0 0 0 0 1 5,1 Z 5.2 Z5.3 Z54 Z5.5

Example 2.2 (m=6)

1 0 0 0 0 0 ZI, Z1 ,2 Z1,3 Z1,4 Z ,5 21.6

21 1 0 0 0 W 2 6 0 Z2.2 Z2,3 22,4 Z2,5 0
w3.1 '3,2 1 0 w3,5 W 3.6 0 0 Z3,3 Z3,4 0 0

"'4.1 14.2 0 1 VV4,5 W4,6 ' 0 0 24,3 Z4,4 0 0

W5.1 0 0 0 1 W5, 6 0 Z5,2 Z5,3 Z54 Z5.5 0

0 0 0 0 0 1 Z63 Z6.2 Z6,3 Z6.4 Z6,5 Z6,6

Without loss of generality we assume that m is even. For linear programming, we

can always append a nonbinding constraint so that the total number of constraints is

even.

The set of all LRQ matrices of order m is denoted by (MI} and the set of all ULQ

matrices of order m is denoted by (Mz}. Let A eR mm- and A=A1j.e 1 .eT . If

(A +/){, ,) we say that A,,j is a W-element ; otherwise, it is a non-W-element . Simi-

larlv, if A c{AfMr} we say that Ai. is a Z-element" otherwise, it is a non-Z-element.

Proposition 2. 1

(Al," and (Af, I are closed under addition, scalar multiplication, multiplication and

inversion

(The proof of this Proposition may be found in Zaki [1986-1]).

2.2 The For,,ward Quadrant Interlocking Factorization Algorithm

In this section we present an algorithm which obtains the WVZ factorization of any

nonsingular matrix. That is, given a nonsingular matrix B, find 11' and Z such that

B = 'ZQ, where Q is a permutation matrix. This factorization is analogous to the LU I
!'

%k *W V -. ICT1. 'k, X7- . L -

- 10-

factorization in common use in many production linear programming packages.

Definition 2.1

* An elementary left-right quadrant (ELRQ) matrix of order m and index k is a matrix of

the form:

Nk IUk -el -vk e7 (2.5)

* where

I =m - k + I ,k El,2,..,(m / 2)-I, (2.6)

e7-14k=0 and eTfVk=O foril2.,kIIl.,m (2.7)

The conditions (2.7) require that the first k and last k components of uk and vk be zero,

that is, u iandvk' have the form:

k (0,0'..0'uk+1 ,14'42, U k -k , , 0..,,,...,0)T (2.8)

(0,O,0,vi ,Vk+ - 2, -. , VM..kO,.o) (2.9)

In general an ELRQ matrix of order m and index k has the form depicted in Figure

* 2. 1. Thus, an ELRQ matrix of index k is a LRQ matrix whose only nonidentity columns

are columns k and I (I=m-k+1). ELRQ mat-ices are easily inverted. It is apparent that

[Nk>' + Uk-eJ + Vk e7 (2.10)

Afilch is also an ELRQ matrix of index k.

Proposition 2.2

Let

N(k) N IN2 ... (2.11)

where N, is an ELRQ matrix of index i , i=l,2....,k. Then N(k) is a LRQ matrix whose

jhand (rn-j+J). columns are those of NJ.

* (The proof of this Proposition may be found in Zaki [1986-1]).

Definition 2.2

*~ ~ *.k'. V " .

-Il-

A partially reduced upper-lower quadrant (PRULQ) matrix of index k and order m is a

square matrix whose non-Z elements are zero in columns 1 through k-1 and 1+1 through

in, where k = 1,2,...,m /2 and I =m-k+l. Its general form is shown in Figure 2.2. Note

that B I has no special zero structure and B'' 2 is an ULQ matrix.

Proposition 2.3

Let Bk be a PRULQ matrix of index k. If Bk is nonsingular then there exist j, and j2

such thatk __j < j2:l and

6=B,j, .BAj, - B.j .BAj 1 0. (2.12)

Proof

Suppose 5=0 for every k<jI<j2:51. Then Bt.. must be a multiple of B,... This contradicts

the assumption that B k is nonsingular.

Permuting the columns of a PRULQ matrix so that certain elements provide a non-

singular 2x2 submatrix is analogous to interchanging rows and columns in matrix inver-

sion to obtain a nonzero pivot element. Now, let Bk be a nonsingular PRULQ matrix of

index k. Let J, and j2 satisfy Proposition 2.3 and define Qk to be the permutation matrix

such that

Bk k Qk=Bk ..

where
-k k-k

B k Bkj and B,, =B k (2.13)

Let A be any square matrix of order m and let kF{l..,m/2). Define Sk(A) to be the fol-

lowing 2x2 principal submatrix of A

[Ak k Ak.t1
Sk(A)= [Ak, at,1 (2.14)[AI~k A,,j

where I =in-k+l. Using these definitions and Proposition 2.3, it is clear that

fi = Bk Qk is a nonsingular PRULQ matrix of index k and Sk(C) is nonsingular.

We now show how one may transform a PRULQ matrix of index k into a PRULQ

.A~b .~. .1-

k I

1 0 k

Uk vk _+

Figure 2.1. Illustration of the ELRQ matrix of ordermr and index k.

kI
a.~ ______________ ________________

A~~ . . . x x . . . x x . . . x

Figure ~ ~ 2.2. Ilutrto of a arx fodrmadidxk

I-I

-12-

matrix of index k+l.

Proposition 2.4

Let B k be a nonsingular PRULQ matrix of index k and let Q k be the permutation matrix

that interchanges columns k and m-k +l with columns jI and j2, respectively, where j2

and j2 are obtained so that they satisfy Proposition 2.3. Let Nk be an ELRQ matrix of

index k whose Ilk and vk vectors are determined by solving the following (m-2k) 2x2

linear systems

[I k Sk(Bk)= [ik . i=k+ 1,...,m -k. (2.15)

Then Bk +I = Nk B k Qk is a nonsingular PRULQ matrix of index k+l.

Proof

Since Bk is nonsingular and Nk is nonsingular, then Bk+ 1 is nonsingular. Bk+I is a

PRULQ matrix of index k+1 if all non-Z-elements in columns I through k and ! through

in are zero. Since Bk is a PRULQ matrix of index k , we only need to show that the

effect of A 'k on irk is to zero out the non-Z-elements in columns k,1. To show this, we

begin by revriting (2.15) as I 1"
B ,

or for i =k+l,k+2,..,m -k

u,k
.

. k + V.- Btk Btk (2.16)

uk" +., g[, "BA,• (2.17)

k+ IWe now consider the non-Z-elements of B j

Fori =k+l.k+2,...,m -k

B" - •Bk

-U k -vf B-, +/ik =0 by(2.16). (2.18)
B,-t' = NA, Bt

=-u . - v, ' Bt+,. =0 by(2.17). (2.19)

.2

-13-

B -+I =N i,.k.=0 forj= 1,...,k-I and 1+1..' m. (2.20)

Also we note that the desired zeros created in earlier stages in Bk are i. i affected by ,N

,since for i=l.k-i

B1k "+I = N. •*k -h - h* Ik.. (2.21)

From (2.18) through (2.21) we conclude that Bk+l is a PRULQ matrix of index k+1.

Given the above definitions, the forward quadrant interlocking factorization algo-

rithm may be stated as follows.

A Aorithmn 2. 1 The Forward Quadrant Interlocking Factorization

Let B ERmn . The following steps decompose B to its quadrant interlocking factors with

B =WZQ.

Initialize

B =B,

K =m/2.

Main Loop

Fork = 1,2,....K-I

1. Column Permutation

Find jI and 12 satisfying Proposition 2.3.

If none exists, then terminate with the conclusion that B is singular.

Otherwise, construct Qk using j and j2.

2. Compute the vectors uk ,V
k

by solving the (n -2k) 2x2 linear systems, (2.15).

3. Construct Nk

NK = k1 -uke - vk-el.

4. Construct B k-I

Bk+l =Nk Bk Qk

Next k

cA

-14-

Proposition 2.5

Let B be a nonsingular matrix of size m. Then Algorithm 2.1 decomposes B to its for-

ward quadrant interlocking factors,

* B = W Z Q (2.22)

where

(1) WE F(M-) , W = (NK-1NK-2 .
. N')-I,

(2) Z {FMz } , Z = BK,and

(3) Q is a permutation matrix , Q = (QIQ 2 ... QK-I)-.

Proof

Let B = B. Applying Proposition 2.4 for k =1,2,...,(m/2)-1, we obtain

BK =NK-I NK-2 ... N BI QI ... QK2QK -1, (2.23)

where BK is an ULQ matrix, Ni, j = 1,...,K-I are ELRQ matrices as computed in (2.15)

and QJ are permutation matrices. From (2.23),

BI = (NK-I NK- 2 ... NI)-1 BK (QI ... QK-2 QK-I)-I. (2.24)

Let N(K- I) = (NK - I NK - 2 ... N')-' . By Proposition 2.2 N(K-I) is a LRQ matrix. Also,

let Q(K-1) (Q I ... QK-2 QK-1I. Since the product of permutation matrices is a per-

mutation matrix, Q(K-1) is a permutation matrix. Thus, (2.24) can be written as

BI =B =N (K -) BK Q(K-), (2.25)

and (2.22) follows by setting W =N(K-1),Z =BK, and Q = Q(K-1) in (2.25).

Proposition 2.6

Algorithm 2.1 without column permutations requires

m 3/3 + m 2/2 - 4m/3

multiplications on a sequential machine.

Proof

Ignoring column permutaibons, we trace the operations in the main loop excluding step I

• " ", ~~~.....................................,...." , ,,," ' .. ,,- ,, -. -. ,,,,:

-15-

The number of multiplications to compute u k and v k

K-I
= ;[2 + 6(m-2k)]

= m + 3m (m-2)/2. (2.26)

The number of multiplications to compute B k+I

K-1= " = 2. k; (m -2k)2

= m. (m - I).(m -2)/3. (2.27)

Summing (2.26) and (2.27) we obtain the specified total number of multiplications.

In Algorithm 2.1 the columns of the PRULQ matrix are permuted to find a 2x2

matrix with a nonzero determinant. There are obvious alternatives that may' be used. To

ensure numerical stability for instance, we may find the matrix whose determinant has

the largest absolute value, or the matrix that has the smallest condition number. Another

approach is to permute the rows of the PRULQ matrix to find the required nonsingular

2x2 matrix attempting to minimize fill-in in the nonpivot rows. Both row and/or column

permutations can be selected on numerical stability and/or sparsity grounds.

2.3 The Backward Quadrant Interlocking Factorization Algorithm

Unlike the triangular factors (L,U) of a matrix, the quadrant interlocking factors

(W,Z) possess different potential density. That is, the number of potentially nonzero ele-

ments in W is different than that in Z. In this section we present an algorithm which

obtains the ZIV factorization of any nonsingular matrix. We refer to this algorithm as the

Backward QIF algorithm, as opposed to the Forward QIF algorithm of Section 2.2 that

produces the WZ factorization. The development of this algorithm is very similar to the

previous one. The proofs of Propositions 2.7 through 2.10 in this section, use arguments

similar to those used in Propositions 2.2 through 2.5 and hence are omitted.

I

-16-

Definition 2. 3

An elementarv uipper lower quadrant (EULQ) matrix of order n and index k is a matrix

of the form

M k =I _rk.jT -sk "eT - ek .e - el"ef (2.28)

where

I =m -k + 1,k 1,2,..,rn/2,

CT.rk=O and eT'sk-O fori=k+,k+2,....I. (2.29)

The conditions (2.29) require that components k+1 through m-k of rk and sk be zero,

vhich are the non-Z-elements of rk and sk inMk. That is, rk and sk have the form:
-..

r = (r r .,O,rr T.. .) (2.30)
s=(s,0 .0,s..s)T. (2.31)

Thus, an EULQ matrix of index k and order n is an ULQ matrix whose only nonidentity

columns are columns k and I (l=rn-k+l). In general, it has the form depicted in Figure

The set of all nonsingular EULQ matrices is closed under inversion, and the inverse

of anv nonsingular EULQ matrix of index k is another EULQ matrix of index k.

Proposition 2.7

Let ,(K =,A,,A - " M' where M i is an EULQ matrix of index i, i=1,2.k. Then

Af 'k is a ULQ matrix whose jh and (m-j+l)st columns are those ofMJ , j=l,2,...,m12.

The proof is similar to that of Proposition 2.2.

Definition 2.4

A partially reduced left-right quadrant (PRLRQ) matrix of index k and order m is a

square matrix whose non-W-elements are zero in columns k+1 through m-k. Note that

B m'2 has no special zero structure and B is an LRQ matrix. In general, a PRLRQ matrix

is of the form shown in Figure 2.4.

%..

0 0

,.

Mk

0 0

Mk=

5,.
5'.

Figure 2.3. Illustration of the EULQ matrix of order in and index k.

S k

T k

1 0
iX 0 1

* .
Xk

.X T 01

Figure 2.4. Illustration ofa PRLRQ mauix of order n and index k.

k 11

2: . x

" . , ' , - - , r e , - -" • , : ' : " : ' ' " " -: : : : - " - i : I " : - ; --z z k=

17 -

Proposition 2.8

Let Bk be a PRLRQ matrix of index k. If Bk is nonsingular then there exist j, and j2 %

such that 1 !5 j 1_k and 1 :_j2:_m and

8 = Bj, • Bj 2 - Bkj 2 •Bj, 0 (2.32)

The proof is similar to that of Proposition 2.3.

Now let j1 and j2 satisfy Proposition 2.8 and define pk to be a permuted identity

matrix with column j, in the kth position and j2 in the P h . Let Bk be a nonsingular

PRLRQ matrix of index k. Obviously, Bk =Bk pk is a nonsingular PRLRQ matrix of

index k , and Sk (!dk) is nonsingular.

Using Mk of (2.28) and the pk defined above, the elimination operation needed to

reduce a PRLRQ matrix of index k a step further is given by the following Proposition.

Proposition 2.9

Let Bk be a nonsingular PRLRQ matrix of index k , let j, and j2 satisfy Proposition 2.8,

let P k be the permutation matrix that permutes columns k and j, and columns m-k +1

and j2. Let Mk be an EULQ matrix of index k whose rk,sk vectors are determined by

solving the following 2k-2 linear systems

Lt s] • S(Bk) - [k BI] , i=1 ... ,k-1 and 1+1,...m (2.33)

along with the system

[t j [Sk (fk) (2.34) L

Then Bk-1 = Mk Bk pk is a nonsingular PRLRQ matrix of index k-i.

Given the above definitions, we may state the backward QIF algorithm as follows:

Algorithm 2.2 : The Backward Quadrant Interlocking Factorization

Let B cR 'm m . The following steps decompose B to its QIF with B = Z W P.

'

,',

.4

.-18-

Initialize

B m /2 = B,

K =m/2.

Main Loop

For k = K,K -1,K-2,...,l

1. Column Permutation

Find j1 and 12 satisfying Proposition 2.8.

If none exists, then terminate with the conclusion that B is singular.

Otherwise, construct p k using j and j2.

2. Compute the vectors rk , sk

by solving the (2k-I) 2x2 linear systems (2.33) and (2.34).

3. Construct Mk

Mk = Im - rk.e - sk .e7 -eke -el "eT.

4. Construct Bk-I

Bk-l=Mk Bk pk.

Next k

Proposition 2.10

Let B be a nonsingular matrix of size m. Then Algorithm 2.2 decomposes B to its back-

ward QIF,

B =ZWP (2.35)
where

f(1) ZF{M , Z = (MtM2 ... M K)- 1,

(2) WE (M,m) , W = B ',and
(3) P is a permutation matrix, P = (pK ... p1)-.

The proof is similar to that of Proposition 2.5.

As with the Forward QIF Algorithm, row and/or column permutations can be

adopted to ensure numerical stability and/or sparse factors.

o i. -, .. . - , -. ., " • , '. ' . . ." ." . . - , ' .,, . " .' - i,',' ' x ' . , ' ',- "-" ', . , . , . I

"'? -" "".,. , d~,,, -' -,,.. lw lk.ek~"/'l l'-l lS lddl :m .. i' - i I . | . '- . / ° I

-19-

2.4 Some Characteristics of Quadrant Matrices
Uw

In this section we reveal a relationship between the quadrant and triangular

matrices, which has not previously appeared in the open literature (e.g. Evans and Hatzo-

poulos [1979-1), Evans and Hadjidimos [1980-1], Evans [1982-1], Feilmeier [1982-1],

Hellier [1982-1], and Shanehchi and Evans [1982-1]). A permutation algorithm that res-

tructures any quadrant matrix as a block triangular one is presented.

Consider the following matrices

1 Oxx xx
xx lxx.xx .xx I X .xx
XxxX 1 .XX

Sx xxx , I= (2.36,

X XX X X "
xxxx xx 10

I

Where x stands for a potential nonzero element. Note that Z is a lower Hessenber.

matrix with a special zero distribution on the superdiagonal. Also, W is a unit upper tri

angular matrix with special zero distribution on the superdiagonal.

Now we present an algoithm that relates W of (2.1) and Z of (2.3) to W and Z o

(2.36).

A lorithin 2.3 ' The Permutation Algorithm p

Let R, S, and T be square matrices of order m, where R is the input matrix to the alg,

rithm and T is the output matrix. The following algorithm permutes the columns an(

rows of R such that:

(a) if R is a LRQ matrix then T is a W of (2.36), and

(b) if R is a ULQ matrix then T is a Z; of (2.36).
S

1. Column Permutation

I-or j= 1,2 .,rn/2

r

-20-

S..m_2j+l - R.,j

S.,m-2j+2 4-- R.,m-j+l

Next j

2. Row Permutation

For i =1,2,...,m/2

Tm-2i+l,. - Si,

Tm-2i+2,. - Sm-i+l,.

Next i

An example of the permutation algorithm is given below for m =6.

Example 2.3 (m=6)

1 0 0 0 0 0 1 0 W3,2 W3,5 W3,1 W3 ,6
w2, 1 0 0 0 W 2 6 0 1 w 4 ,2 W 4 ,5 W 4 . 1 W4, 6

"'3.1 w'3,2 1 0 w3.5 w3, 6 0 0 1 0 W2,1 W2, 6
W 4 ,1 W 4 .2 0 1 W 4 ,5 W 4 ,6 ' = 0 0 0 1 w5 ,1 w 5 6

wS, 0 00 1 w5,6 00 0 0 1 0
0 0 00 0 1 0 0 0 0 0 1

1 L

1.1 1.2 Z1,3 Z1 ,4 Z 1,5 Z 1,6 Z3,3 z 3 .4 0 0 0 0

0 Z 2, 2 z 2 ,3 z 2 ,4 z 2 , 5 0 Z4 , 3 Z 4 ,4 0 0 0 0

0 0 Z3.3 Z3.4 0 0 Z 2 3 Z 2 ,4 Z2,2 Z2,5 0 0
Z 0 0 Z 4 ,3 Z 4 ,4 0 0 Z 5 ,3 Z 5 ,4 Z5 ,2 Z 5 ,5 0 0

0 z5,2 Z5.3 Z5,4 Z5. 5 0 Z1 .3 Z1.4 Z1,2 Z1.5 Z 1,1 Z1,6
Z 6 ,1 Z 6,2 Z 6 3 Z6,4 Z 6,5 Z 6,6j Z 6 ,3 Z6,4 Z6,2 Z 6 ,5 Z6,1 Z6,6

This clearly shows that the quadrant matrices are permuted block triangular

matrices with blocks of size 2. That is, the Forward (Backward) Quadrant Interlocking

factorization is equivalent to a block Doolittle (Crout) decomposition with blocks of sizc

On sequential computers, a QIF is not expected to be faster than any triangular

,° ~ i* ." + J -" " + - ° -*' *" ", - -" -'q+ . -'I +'n ° " + + i +
m •

i " " . - + PIT q +"s '' "' ~ ll"'i +"i "kl " I

-21 -

decomposition. Since computing the entries of the factors by solving 2x2 systems
W

requires more operations, as shown in Proposition 2.6. Also, finding a nonsingular 2x2

submatrix is more expensive than finding a nonzero element. However, on parallel com-

puters, the QIF is expected to be competitive. Since the number of entries that can be

produced concurrently in every stage is doubled, and the number of stages is halved as

compared to a triangular factorization algorithm. Therefore, we may view the column

permutation step in Algorithms 2.1 and 2.2 searching for a nonsingular 2x2 submatrix as

a computation decoupling price we pay for the concurrency gained in steps 2-4.

Determining the relationship between quadrant and triangular matrices is a key

observation that we will use in the following section to design appropriate updating

scheme for the quadrant interlocking factors of the basis matrix in the simplex method.

S

I

.i -.- - .-,..-;'..".,'.-2, -.i'.. .-);-. i.'"---" " -'.,':-'-.'---'- .---- "-'- --"'. '- ---'.-<'-"- ".".-' "---,".-. .. ." -:-

. .. .•. ..." '- *1. " 'i.
' "

-. ' . . .

- 22 -

III. UPDATING THE QIF OF THE BASIS

At the beginning of a simplex iteration, suppose the basis has the form

B =Z WR, (3.1)

where we assume forms (2.36) for Z and W, and R is a permutation matrix. When the

entering column A , replaces the leaving column B.,p at the end of the simplex iteration,

we have a new basis matrix B which is related to the previous basis matrix B by the for-

mula

9=B E (3.2)

where E is an eta matrix whose p1h column is (B- 1 A .), and all other columns are the

identity columns. From (3.1) and (3.2) B can be written as

B =Z WR E. (3.3)

An updating scheme is a sequence of operations applied to the right side of (3.3) to

return it to the form given by (3.1), i.e.

B =Z W R, (3.4)

where It , Z are the new Q.I. factors and R is a permutation matrix. We present an algo-

rithm designed to derive (3.4) given (3.3). It is similar to the Forrest-Tomlin [1972-1]

update for the triangular factors of the basis. Since the spike is in W, our strategy is to

reduce the spiked W, i.e., WE, to an LRQ matrix using elementary ULQ matrices. The

following algorithm exploits the triangular form of W and the existence of 2x2 identity

blocks on the diagonal of W.

In this presentation we use the term brother columns (rows) to indicate columns

(rows) that have the same potential nonzero structure, execluding the diagonal entries in

case of LRQ matrices. Thus, for LRQ matrices in the form of (2.36) columns (rows)

_ -,,."...- - ' ',- ' *1- -. . - -.r IlaIk". -- .

-23-

,i + I are brother columns (rows) for i =1,3, n ,rn-1.

The first step of this scheme is a column permutation followed by a row permuta-

tion. In Figure 3.1 an example is presented to illustrate this step, in which R of (3.3) per-

mutes columns 2 and 4 of W and x stands for potentially nonzero elements. Thus, 1WV and

WR are as illustrated in Figure 3.1 (a) and (b). From (3.3) we obtain

Z-1 B=W'R E'.

where S is illustrated in Figure 3.1 (c) and y stands for the elements of the column vector

(Z- 1 A .. Note that if (Z- 1 A.,.) has the same zero structure as W..q, then the new fac-

tors are immediately available. That is, -7 is S and f is Z. If this is not the case, we

place S in a spiked-W form S as shown in Figure 3.1 (d), by applying the column permu-

tation R-I to S to undo the effect of R. That is,

Z-' 1BR- I =W R E R-

-S R-1
=S. (3.5)

Suppose q < n-1. We apply the column permutation to S, placing the spike and the

brother of the leaving column in the positions rn and m-i, respectively, and moving all

intervening columns forward to produce the matrix Hq, as illustrated in Figure 3.1(e).

We then apply the row permutation R-1 to Hq placing the qAh row and its brother row in

positions rn and m-1, respectively, moving all intervening rows two places up to pro- 0

duce the matrix Hq as shown in Figure 3.1 (f), where

.fq, ifq is odd;
= q -1, if q is even..S

Note that q is odd. Of course, if q _ rn -1, then R -1. Now (3.5) becomes

k-' Z-1 BR-1 W =k' WV R E R-1R

S s

• "• . - " • - " . . • " +k ° - . - - -

loxxxxxx lxxoxxxx lyxoxxxx loxyxxxx loxxxxxy loxxxxxy
olxxxxxx oxxlxxxx oyxlxxxx olxyxxxx olxxxxxy olxxxxxy
ooloxxxx ooloxxxx oyloxxxx oolyxxxx ooxxxxly ooloxxoy
000 lx xxx 01oxx OOXX oyOOXXXX ooayxxxx ooxxxxoy oool xxoy
ooooloxx ooooloxx oyooloxx oooyloxx ooloxxoy oooolooy
ooooolxx oooolxx oyooolxx oooyolxx ooolxxoy oooooloy
ooool oooooolo 00000 oyooool oooyoolo oooolooy ooxxxxly

W WR S SqH

(a) (b) (C) (d) (e) Mf

Figure 3.1. Illustration of the double column and row permutation
(m =8, p =2, q =4, q-=3)

o lx x xxxxxxxx xXX x I
10 1x x ... xxxxxxxx ... x x xy

Il xxxxxxxx x xx y

lol xxxxxx xxxy

Iolxxxxxx x xx y
11 o x xxx x xo0y I
10 1x xx x .. xx0oy

Ilo x x x x 0y
lol1x x x xo0y

Ico x xo0y
l01 x xo0y

1l 0 0 y
lo 1 o y

lx XlX XlXx ... x Xfly
Ix XIXXIX x .. xlO y m

Figure 3.2. Illustration of Lhc general form of the matrix H'

- --. . - --

-24-

- - H q

=H. (3.6)

Consider the matrix H' whose general form is depicted in Figure 3.2. Note that the

matri) resulting from the above permutation is H' when I = ,. Note also that all non-

W-elements in HI are in the last two rows in columns I through m. Our objective now is

to reduce Hq to a LRQ matrix by eliminating these non-W-elements. We consider elim-

inating them four at a time using the 2x2 identities on the diagonal of H I . The necessary

matrices that should reduce HI to H 1+2 , for I ,m-3, are the following EULQ

transformations.

l-1 l

0 0

0 0

Z= 1 0
0 1

0 0

0 0

-t -H I

-Hm~l-1- , ,.

-1*1' _

By repetitive application of Zt to H I , for I , +2 ,m-3, we get H'--1 which, in N
0

general, has a non-W-element in its m-lm entry and a nonconforming element in the
"a,

in .m' entry. Therefore. the following rank-one elementary transformation is sufficient to

reduce // ' - I to the LRQ matrix it',

, ..- ¢€'t , f,, t '¢' ,-',5 ,,:,,:' ' ;, ; ;5 '2 " " : " ", " " - -"."" .'7.",".-". : . -:-¢ .:.-;, -, ;r"-

a

-25-

m

Zm-1 - _ -1 _ -I

-Hm- 1,rn Hm, m-1

rn-I

Theoretically, H,,, is a nonzero element, since otherwise B is singular. Now, combin-

ing all transformations applied to Hq, we obtain,

Zm-1 Zm-3 • zq Hq= W,

and (3.6) becomes,

{Zm-lZ1 m-3 ' Zql -lZ-l) B(R-1t)=Z-1Zm- 3 ... Z H (3.7)

(Z- 1} B (R 1I)=W,

which is equivalent to the required updated form (3.4), with

Z =Z I Z ... Zm- 3-1Z m - 1 , (3.8)

R =R- 1 R,and

1J' =Z 'm-I Zm- 3 ... Z tt4.

Note that Z in (3.8) is not a ULQ matrix, even though all its factors, except the permuta-

tion matrix R, are ULQ matrices. In practice, Z-1 is stored factorized as in the first

braced term in the left hand side of (3.7).

Using the above, the updating algorithm may be stated as follows:

Algorithm 3.1 . The B.C.I.F. Updating Algorithm

0. Begin with the m x m matrix B = Z W R, and suppose column p of

B is replaced by A

1. Define q such that R ., = eq.

- 26-

2. Set

Z - 1 A0j,i=q;
S.,i

W.,, otherwise.

w
3. Let

{q+l,ifq is odd;

q =]q-l, if q is even.

4. Set

e,, 1 <i <q
e,+2, q i <m-I.I ,i " e4,,i = m _

eqi m.

5. H - 1 SR.

6. Let

q, ifq is odd;
q q-1, ifq is even.

For I =-,l-+2, •m -3.

7. Set 1, i1
-Hm-i, i=m-1;
-Hm,, i =m;

0, otherwise.

1, i=/+l;
-Hm -1,1+1, i =m - 1 ;

1+1 - -Hmil+,i=m;
0, otherwise.

Z.,j <- e,, j#1 and j I1+ 1.

" -" '* " >. .',",I" ") ", ", " " " '-
-'

",':* " : ", "" "" - , ," • -' '.• " - . -
" "

".

-27-

8. H -Z H.

Next 1.

9. Set

{-H , /H , , i =m - 1;r aF

0, otherwise.

10. H <--Z 1 H.

11. Set

B = (Z R (Zq)- 1 ... (Zm-l)-) H (-' R}

=Z It R.

This updating scheme inherits the major characteristics of the Forrest-Tomlin

update for the triangular factors of the basis. First, no new nonzeros are created in the

right factor W, since only deletions of items are required. Therefore, sparsity of W is

preserved and fill-in is minimized. Second, the lack of choice of the pivot elements

makes this update less numerically stable than the Bartels-Golub-based updates. Thus,

there is a gain in speed and storage at some sacrifice in numerical stability.

€I

€A

. .-'*.* ---. -, --'--.-.,--. -"..*.-- -- , ,- -. . . -.-.. .---- .-. .-.-.- -- -.-.- .-.- .- .. .-.*. • .

- 28 -

IV. PARALLEL IMPLEMENTATION

In this section we describe a parallel implementation of two basic tasks of any sim-

plex based linear programming code, namely, basis reinversion and solution of the linear

systems. A parallel version of the Backward Quadrant Interlocking Factorization Algo-

rithm (BQIF) is presented in Section 4.1. Only the left factor is produced in its product

form while the right factor is produced in its explicit form. This form conforms with the

updating scheme of Section III. In this algorithm, parallelism is gained by reformulating

the BQIF Algorithm in terms of high-level modules such as matrix-vector operations.

These modules represent a high level of granularity in the algorithm in the sense that they

are based on matrix-vector operations, 0 (m 2) work, not just vector operations, 0 (m)

work. The module concept has already proven to be very successful in achieving both

transportability and high performance of some linear algebra routines across a wide range

of architectures, as reported by Dongarra and Sorensen [1984-2] and Dongarra and

Hewitt 11986-1.

Given a basic feasible solution with basis B, each iteration of Dantzig's simplex

algorithm involves solving the systems of equations n B = cB and B y = A ." An

efficient parallelization of the simplex algorithm requires efficient parallel algorithms for

solution of these systems. Parallel algorithms for solving these linear systems using the

quadrant factors are presented in Section 4.2. The parallel implementation discussed in

this section is proposed for an MIMD parallel computer that incorporates p identical pro-

cessors sharing a common memory and capable of multitasking, that is, the processors

are capable of applying all their power to a single job in a timely and coordinated

manner.

4.1 The Module-Based BQIF Algorithm

" • :k , "'I " d " : " - rai I - i -' - " " :1 I ' - '

-29-

Given an m x m matrix B, the algorithm either indicates singularity of B or pro-

duces

[, "Z m - 1 Z r - 3 ... Z 1 B R = W, (4.1)

where R is a permutation matrix, Zk is a rank-2 matrix of the form,

k k+l

I

x x k
x x k+1 (4.2)

Zk~ --

X X

.11

X x

This form conforms with the updating schemes of Section III. Its LU version has been

used in several LP codes (Reid [1982-1]) . At every stage a new Z i is produced and two

rows of 11' are updated. The availability of the updated rows of W at every stage allows

for parallel implementation when searching for a nonsingular 2x2 submatrix. Moreover,

it facilitates finding the 2x2 submatrix of largest determinant rather than finding one with

a nonzero determinant. This reduces the rounding error in the factorization process and

hence improves the numerical accuracy of the results (Shanehchi and Evans [1982-11).

The major part of the algorithm is formulated in terms of three basic modules:

Module I : Search for a nonsingular 2x2 submatrix

Input : A F-R2.,

Purpose Find column indices j I and j2 such that

DET =A ljI . A 2.J2 -A 2.1 . A 0,J2 0.

Output '1, 12, and DET or a singular indication.

%5

- 30-"

Module 2: Matrix - 2 vectors product

Input :l Rny2 , A t _Rnn2 l ,2.

Purpose Compute y such that y y1 + A 1 x1

Output •y.

Module 3: 2 vectors - matrix product

Input : y 2 F 2.l2,x 2 2.1, A 2 ER l
i'Z..

Purpose : Compute y 2 such that y 2 (.- y 2 + x 2 A 2.

Output :y 2.

These modules represent a high level of granularity in the algorithm in the sense -'

that they are based on matrix-vector operations, 0 (m 2) work, not just vector operations,

O (in) work.

Algorithm 4.1 . Reinversion

Let B ER J ,' . Then the following steps produce a singular indication if B is singular, or

decompose B as in (4.1) if B is nonsingular. The column indices are stored in IPVT (m).

Define the 2x2 submatrix Sij (A) to be

[A, 1i3j+)
Sij (A)= LAi+, j Ai+ij+l (4.3)

0. Initialize.

Wi:2.1:m B:21:m

For i =1,3, • -3

I. Find a nonsingular 2x2 submatrix.

Set n <-- m - i + I and A <-- Vi:i+1,i:r.

Call Module I (A ,n).

If A is singular, then terminate with B singular;

0°

: ."a" . ,. , . -. , _, __ _ . -,"- -" -" " " " " "." . ,"-' '"-".- "-.'-- .-. - -,- " -" -.. '--".. / - ''2--- ''--" ''°." -""'-- '" . '- '' - ''

-31 -

otherwise, permute columns

W :mi with W :m,j, and W i:m,i+1 with W 1:m.j 2-

Record permutation, IPVT (i)=j l, IPVT (i +1)=j2.

2. Obtain a new Z.

Z i - I , w h e r e I is m x m , S i j i(Z i) [S i j (W) - . ,

n <-- mr-i-1, n2 +- i-1.y l B i + 2 :m ~ i :i + l , X 1 -- W l :i - l~ i :i + 1 .

Fort = 1,3, ,i-2 /

A .1:1+1 4 Zi+2:m.1: l+ l " -.

Next I.

Call Module 2 (v x1 ,A 1,n1 ,n 2)
i+

3. Update rows i +2, i +3 of W.
l l i+ l, 12 1-- M - i+ l

'

A 2 < 1 :+1,.+2:M. 4Y Bi+2:i+3,i+2:m.

For I= 1,3, j
-1,:+1 Z +2:i+3,1:1+1 '"

Next 1.

Call M odule 3 '2 ,2 A 1,1 2)

1 ,i+2:i43.i+2:m +- y 2.

Next i.

4. U pdate W . .

For i =1.3 , m -3

S, (W) +- I, where I is 2 x 2.

.

.-.".

- :i l.i 2:m - S, i (z i) ' "i:s+.i+2: m

-32-

Next i.

The general approach we propose for parallel implementation involves having the

parent processor prepare the parameters for a module and make use of the kids (subtask

processors) to work concurrently on that module. In Module 1, at most n (n-1)/2 column

pairs should be checked. The parent sends to each kid the column indices to be checked

for nonsingularity, and stops all kids whenever one succeeds. As mentioned before, it is

possible to find the nonsingular 2x2 submatrix of largest determinant. To do this, the

parent sends the column indices to the kids, each kid finds the column pair of largest

determinant in his list, sends them to the parent, then the parent selects the best by com-

paring only p -I values.

The concurrency in Modules 2 and 3 is obvious since they involve matrix-vector

operations. In Module 2 (matrix - 2 vectors product) parallelism is obtained by perform-
ing 2n 1 independent inner products, where n 1 is the row dimension of the matrix. Simi-

larly, in Module 3 (2 vectors - matrix product) concurrency is gained by executing 212

independent inner products, where 12 is number of columns of the matrix. Step 3 needs

only Z + 2 i+3.ii+1 from Step 2. These are the first two rows ofy 1 . Thus, as soon as these

elements become available Step 3 may proceed. This can easily be synchronized. Finally.

in Step 4 the loop divides over i with completely independent tasks. However, the tasks

require different amounts of computation. Two solutions are possible. Either we adopt

dynamic task queue allocation, or we statically allocate i=I, m-3 to one processor,

i =3, "1 -5 to the second, and so on.

4.2 Solving the Linear Systems

In this section we investigate the possible parallelism involved when we solve the

systems of equations TOB = cB and B y = A .. We assume that the basis matrix B is in

the form (4. 1), that is

.
............. ~.......................

-33-

Zm-I Zm- 3 . . . Z 1B R =W,
I

,here Z has the form (4.2), and W is a block unit upper triangular matrix with blocks of

size 2,that is it has the form (2.36). We compute the dual variables (7r) using the follow-

ing steps:

(1) Permutation n it = cBR.

(2) Solve a block triangular system •tW = t.

(3) BTRAN: = 7zZm-l Zm- 3 .. z 1.

We compute y, the basis representation of the incoming column A .j, as follows:

(1) FTRAN: =-1 ZlZ m - 3 ...Z1A

(2) Solve a block triangular system : W Y =y".

(3) Permutation : y = R T.

We present parallel implementations of the FTRAN operation, the solution of a

block triangular system, and the BTRAN operation in Sections 4.2.1, 4.2.2, and 4.2.3,

respectively.

4.2.1 The FTRAN in Parallel

The rules for applying a Zk to an arbitrary vector v are as follows:

a) Extract cak +- vk, and otk+l <-- vk+1.

b) Set vk +- 0, and Vk+1 <-- 0.

c) Compute V = v + 0Xk Zk:m.k + 0Xk+I Zk:mk+l.

Note that if 1k = Vk+I = 0, then V = v and no element of v will change.

An example is now given for m = 6, k = 3. Suppose we have

0 o 11
0 0 2 12
2 1 3 0

Z 3:4 1 2 , v 4 ,and u= 0
1/3 1/4 5 15
1/6 1/2 6 16

L

' ".'"""" -" . ". .- .
~~~. ... .. . ....... .....2.,... ' " " " '_' 7,; " ,' ': 

"
. . . . . . . . . . . . . . . " " . . "" "



"V4 ~ R a - - - - '- .. - . ". ---

- 34-

Then the computation of Z3v is given by

1 0 0 1
2 0 0 2
0 2 1 10

Z3 v= 0 3  1 +  2 = 11
5 1/3 1/41 7
6 1/6 1/2 8.5

and the computation of Z3u is given by 1**

Il1 0 0 ,1.

12 I 0 1201 2 1 01

Z 3 u=10 +0 1 +0 2 0
15 13 14 15
16 1/61 1/2 16

L J

These rules are implemented in the following module: 4.

4-

Module: FTRAN Operation (A ,v ,n)

Purpose : Apply Zk to an arbitrary vector v.

* Input •n, A ERn, 2, V E R' 1.

Output •v,wherev = Zk v.

Steps • 1. Extract c <--- v1 , and a 2 (--V2..

2. Set v I-- 0, and v 2 <- 0.

3. Compute A ..j +- c 1 ..1.

4. Compute A ..2 - X2 A .,2-

5. Compute v <- v + ,A + A, 2..

Obviously, steps 3 and 4 are independent and can be executed in parallel. In step 5,

the work is partitioned over the rows of v, assigning each kid a block of rows to evaluate.

"p

m'.



bI

- 35-

4.2.2 Solving the Block Triangular System

The solution of an m x m triangular system of equations on a sequential computer

can be obtained by either a forward or backward substitution process which requires

0 0(m 2) steps, each defined as one multiplication followed by one addition. In order to

solve the system on a parallel computer, methods which require 0 (m3) processors and,

hence, reduce the computation time to 0 (log2m) have been developed ( e.g. Chen and

Kuck [1975-11 and Sameh and Brent [1977-1] ). Evans and Dunbar [1983-1] introduced

methods that run in 0 (m) time using 0 (m) processors. For practical purposes the pro-

cessor and storage requirement of these methods is unreasonably large.

In this subsection we consider solving the linear system

xW =b, (4.4)

where x, b R' and W is an upper triangular m x m matrix with 2x2 identity diagonal

blocks. This system may be solved by a forward substitution (FS) process described in

algorithmic form as follows.

Fori = 1,2,,m
i-1

xi = bi - , 'ij x.•
j=1

Next i.

It is obvious that a uniprocessor will solve (4.4) sequentially in rn (m-2)/2 steps by the

FS process. Let T. denote the time required to solve (4.4) using p processors, where one

,. step requires one unit of time. Then

Tt=m (m -2)/2.

With a parallel computer that has p processors, a minimum time requirement for the

solution of (4.4) is

min (T)-Tt/p =m (m -2)/(2 p ). (4.5)

. . .. . .' .



- 36 -

The minimum completion time of any algorithm based on FS is equal to the number of

terms in the expression that evaluates xm, that is

Tin = m - 2.

From (4.5) it is clear that a minimum of m /2 processors is necessary to solve (4.4) in the

minimum time of m-2 operations. Again this processor requirement is unreasonably !N

large for our application. -

The machine we consider has a limited number of identical processors (p _30).

Therefore, we consider the question: if we are given a fixed number of processors, how

should the parallel operations be scheduled on the processors to minimize the solution

time of (4.4)? We propose to answer this question using a directed graph model that

represents the FS process as follows. The nodes of the graph represent tasks of equal exe-

cution time and the edges represent the precedence relationships between the tasks. Then

we apply a simple scheduling algorithm due to Hu [1961-11, called the level algorithm, to

schedule the tasks on the processors such that the total execution time is minimized. This

algorithm is known to be optimum for a tree graph, and it gives extremely good results

for general graphs as reported by Ramamoorthy et al [1972-1], Huang and Wing [1979-

11, and Wing and Huang [1980-1].

We first organize the FS process in terms of operations of equal time and define the

corresponding directed graph. Let xi = [xi ,xi+ 1. Partition x, b, and W into blocks of

size 2. Using Sjj as defined in (4.3), the above FS process can then be written as

For i 1,3, m -1

Xi =b i - . )Sij(W).
j=1,3, .,-2

Next i.

Let the following operation, where xi is used to update x], define a task

Xi <--x X Sij(W). (4.5)

lei'



7..W

-37

For Hu's algorithm we assume that the execution time of an operation (4.5) is one unit (4

multiplications and 4 additions). We can see that the FS process consists of a set of

operations (4.5), on which a set of precedence relations exists. That is, to complete the

evaluation of xi we require xi - 2, for i = 3,5,' ,m-m1. The process can therefore be

represented by a directed graph G (V ,E) where the vertex set V is defined as

VE=(vi,j I vij represents an operation (4.6)),

and the edge set E is defined as

E-(Vi,j , vk) I operation vkl requires the direct result of operation vij.

We shall call G (V ,E) the forward substitution task graph, and refer to it by FSTG.

In Figure 4.1 the FSTG for m=10 is presented. For every vij in the FSTG, the pair ij is

indicated. A node is an initial node if it does not have a predecessor and is a terminal

node if it has no successor. It is clear that the FSTG has only one terminal node, at which

i = m -3 and j = m-1. Accordingly, the minimum completion time, denoted by D, of the

FSTG is equal to the number of nodes on the longest path from an initial node to the ter-

minal node. Thus, D = (m/2) - 1, which is the number of times operation (4.6) is exe-

cuted for x-.

We next determine the levels of the vertices of the FSTG. Define the level number

(l1j) of a node vi. as follows: 1) the level of the terminal node is D, 2) the level of a
-V

node that has one or more successors is equal to the minimum of the levels of its succes-

sors minus one. Applying this definition to the FSTG, we can conclude that

li~j =(i + 1 )/2. (4.6)

The level number is simply the latest time by which node vjj must be processed in order

to complete the task graph in the minimum time D. The level numbers of the nodes of

Figure 4.1 are given as shown.

Once the level numbers of the operations are determined, we apply Hu's scheduling

Fad

"F '', . " ,- "- ".",". -.- -.- -, . ., • . ,.. , . . ... ..



level k

7,9

Figure 4.1. The FSTG for 11 10.

%'



W -V- W 'I N X -F: .v

- 38 -

algorithm to assign operations to processors. Define a ready task to be one whose

immediate predecessors have all been processed. The scheduling algorithm is as follows.

Algorithm 4.2.: Hu's Scheduling Algorithm

1. Among all the ready tasks, schedule the one with smallest level number.

2. If there is a tie, schedule the one with the largest number of immediate succes-

sors.

Applying this Algorithm to the FS process represented by FSTG, the computations

are organized as follows.

Algorithm 4.3 : Forward Substitution

Setx 1 - b1.

Fork =3,5,• - ,m-1

xk <--bk -x 1 Sik(IV).

Next k.

Fori =3,.,m-3

For j = i+2,i+4, . ,m-1

xJ +--xJ -x' Si.j(W).

Next j.

Next i.

All operations in loop k are independent and have the same level number. Their

level number (i.k = 1) is the smallest among all other operations in the Algorithm, and

hence they are executed first. Similarly, all operations in loop j are independent and have

the same level number as given by (4.6). The ordering of index i predicates the execution

of the operations by increasing level number. This satisfies the first criterion in Hu's

Algorithm. The second criterion imposes the ordering of the index j. That is, the number

of immediate successors of vij is always greater than or equal to that of Vij,+2 for

• .



I-I

- 39 -

i -i+2,i+4, ,m-1.
S

A parallel implementation of Algorithm 4.3 involves having the parent processor

partition the work in loop k among the kids. Then for every i, the computational tasks of

loop j are again divided among the kids.
*q

Lower bounds on the completion time of a task graph given a fixed number of pro- -

cessors were derived by Ramamoorthy et al. [1972-1]. Let nk be the number of nodes in

level k. Let t (p) be the minimum completion time to process a task graph with p pro-

cessors. Then

n1t
t* t(p)> !max -k +D- , (4.7)

i - P

where D is the minimum completion time of the task graph and [x] denotes the smallest

integer > x. The first term in the expression denotes the minimum number of time units

required to complete all the operations of the first i levels using p processors. The term

D -i is equal to the number of remaining levels yet to be processed. This bound may be

useful in demonstrating optimality of the scheduling using Hu's Algorithm.

4.2.3 Parallel Implementation of the BTRAN Operation

In this section, we consider the parallel implementation of the following operation

7t=7Zm- Zm- 3 ... Z',

where t is an arbitrary vector of m elements and each Zk is an m x m rank-2 matrix that

has the form (4.3).

The rule for computing Wf = u Zk is as follows:

a) Set , <-- ui for i#k and i k+l.

b) Set Wk Uk:m Zk:,,k.

c) Set 1_+l Uk, Zk:k+1.

.: ,t t~~r _,., ( , .', ,r ,t ¢ . ; .-. ., ..-.- 3.o A. ... - -. . . ..... .. . ... _ ...



--, A- -V -j -4 W- VPAw

-40-

For example, let m = 6, k -3 and suppose we have

00
00

1..3:4 ,and u=[111 111].

34
6 2

TheniU=uZk=[1 1 12 9 1 1].

Note that 7 differs from u in only the kth and the k+ls elements. Note also that the

elements u,, i =1,. ,k -1, are not required in computing W7. Using these observations,

the BTRAN process may be represented by the following.

Fork =m-l,...,1

tlk < Ilk:m Z:mk.

Ilk-,] <-- Uk:m Zk:m,k+l

Next k.

We now apply the methodology stated at the end of the previous subsection. Let the fol-

lowing operations define a task

ilk < uk Sk.k(Zk). (4.8)

Id (- u) + ui Sili(Zi. (4.9)

We assume that the execution time of both operations is one unit. The task graph

G (V ,E) of the BTRAN process is defined by the vertex set V, where

an operation (4.8), if i =j;
'-vij I vij represents an operation (4.9), otherwise

and the edge set E, where

E ={v, , v ) operation vkj requires the direct result of operation v,,.

"S

; --" -'- -" " ,. -. -,'- :". -:-,-'- :-5--: --- : L- - -" --' --;'. --.,- .- ';- -.-- -: -':,.. -' -. '



-41 -

G (W,E) has only one terminal node at which i = 3 and] = 1. Following the same argu-

ments used earlier with FSTG, we conclude that

D =m /2,

and

iP " II'if i=j;

im -i + 3 ) /2, otherwise.

Applying Hu's Algorithm to the BTRAN task graph yields the following ordering

of computations.

Algorithrn 4.4 : BTRAN Operation

Fork =rn-l,m-3,".,1

ilk -- U k Sk~k (Zk).

Next k.
V

For i = -l,m-3,- ,3

For i -2,i -4, 1

<u- 1- J + U4 Si~j(ZJ).

Next j.

Next i.

The ordering of the index i is imposed by the first criterion of Hu's Algorithm. The

ordering of the indices k and j is the result of applying the second criterion. Parallelism

is gained by having the kid processors work first on loop k in parallel, and then for every

i, having the kid processors work on loop j in parallel.

%1



- 42 -

V. SUMMARY

Evans and Hatzopoulos [1979-1) developed a new matrix factorization, known as

the Quadrant Interlocking Factorization (QIF), for solving linear systems on parallel

computers. In this paper we have presented the algorithms required to use this new fac-

torization in Dantzig's simplex algorithm for linear programming. This work may be

viewed as a parallelization of the simplex method using a quadrant interlocking factori-

zation for the basis inverse.

In Section II, the factorization algorithms are developed, and the relationship of

quadrant and triangular matrices is presented. In Section III, a new algorithm is presented

for updating the factorization during a basis exchange step. In Section IV, we present a

parallel implementation of the factorization algorithm, and develop the algorithms

required to solve the linear systems of the simplex method on a parallel computer using

the QIF of the basis. For each algorithm the concurrency among the steps is revealed, the

computations are organized and a parallel implementation is proposed. The algorithms

are designed for an MIMD parallel computer that incorporates p identical processors

sharing a common memory and capable of applying all their power to a single applica-

tion in a timely and coordinated manner.
i

0

2"

V. -. .. '

- - • S



-43-

REFERENCES

Bartels, R. H., 1971-1, "A Stabilization of the Simplex Method," Numer. Math., 16, pp.
414-434.

Chen, S. C., and D. Kuck, 1975-1, "Time and Parallel Processor Bounds for Linear
Recurrence Systems," IEEE Trans. Comput., C-24, pp. 101-117.

Chen, S. S., J. J. Dongarra and C. C. Hsiung, 1984-1, "Mtiprocessing Linear Algebra
Algorithms on the CRAY X-MP-2: Experiences with Small Granularity,"
J. Parallel and Distributed Computing, 1, pp. 22-31.

Dongarra, J. J., A. H. Sameh and D. C. Sorensen, 1984-1, "Implementation of Some
Concurrent Algorithms for Matrix Factorization," Argonne Nat. Lab., Argonne, IL, Rep.
ANL/MCS-TM-25.

_____,and D. C. Sorensen, 1984-2, "A Parallel Linear Algebra Library for the Denelcor
HEP," Argonne Nat. Lab., Argonne, IL, Rep. ANL/MCS-TM-33.

, and T. Hewitt, 1986-1, "Implementing Dense Linear Algebra Algorithms Using
Multitasking on the CRAY X-MP-4," SIAM J. Sci. Stat. Comput., 7, pp. 347-350.

tip Evans, D. J., and M. Hatzopoulos, 1979-1, "A Parallel Linear System Solver,"
Intern. J. Computer Math., 7, pp. 227-238.

___ , and A. Hadjidimos, 1980-1, "A Modification of the Quadrant Interlocking Fac-
torisation Parallel Method," Intern. J. Computer Math., 8, pp. 149-166.

____, 1982-1, "Parallel Numerical Algorithms for Linear Systems," in
Parallel Processing Systems, (D. J. Evans, ed.), Cambridge Univ. Press, Cambridge, pp.
357-384.

__, and R. C. Dunbar, 1983-1, "The Parallel Solution of Triangular Systems of Equa-
tions," IEEE Trans. Comput., C-23, pp. 201-204.

Feilmeier, M., 1982-1, "Parallel Numerical Algorithms," in
Parallel Processing Systems, (D. J. Evans, ed.), Cambridge University Press, Cambridge,
pp. 285-338.

Forrest, J. J. H., and J. A. Tomlin, 1972-1, "Updated Triangular Factors of the Basis to
Maintain Sparsity in the Product Form Simplex Method," Mathematical Proramming.
2, pp. 263-278.

Ilellier, R. L., 1982-I, "DAP Implementation of the WZ Algorithm,"
Comp. Phys. Comm., 26, pp. 321-323.

Htuang. J. W.. and 0. Wing, 1979-1, "Optimal Parallel Triangulation of a Sparse
latrix," IEEE Trans. Circuits Syst., CAS-26, pp. 726-732.

flu. T. C.. 1961-1, "Parallel Sequencing and Assembly Line Problems,"
Operations Research, 9, pp.841-8 48 .



-44-

Markowitz, H. M., 1957-1, "The Elimination Form of the Inverse and its Application to %
Linear Programming," Management Science, 3, pp. 255-269.

Ramamoorthy, C. V., K. M. Chandy and M. J. Gonzalez, 1972-1, "Optimal Scheduling
Strategies in a Multiprocessor System," IEEE Trans. Comput., C-21, pp. 137-146.

Reid, J. K., 1982-1, "A Sparsity Exploiting Variant of the Bartels-Golub Decomposition
for Linear Programming Bases," Math. Programming, 24, pp. 55-69.

Sameh, A. H., and R. P. Brent, 1977-1, "Solving Triangular Systems on a Parallel Com-
puter," SIAM J. Numer. Anal., 14, pp. 1101-1113.

Saunders, M. A., 1976-1, "A Fast, Stable Implementation of the Simplex Method Using
Bartels-Golub Updating," in Sparse Matrix Computations, (J. R. Bunch and D. J. Rose,
eds.), Academic Press, New York, New York, pp. 213-226.

Shanehchi, J. and D. J. Evans, 1982-1, "Further Analysis of the Quadrant Interlocking
Factorisation (Q.I.F.) Method," Intern. J. Computer Math., 11, pp. 49-72.

Wing, 0., and J. W. Huang, 1980-1, "A Computation Model for Parallel Solution of
Linear Equations," IEEE Trans. Comput.. C-29, pp. 632-638.

Zaki, H. A., 1986-1, "A Parallelization of the Simplex Method Using the Quadrant Inter-
locking Factorization," unpublished dissertation, Department of Operations Research
and Engineering Management, Southern Methodist University, Dallas, Texas.

.9

-- . . . . •. . .-_. . -. . i-.i . . ". . ," .". . "-" ". " - ... . . - -. -. - ' - . - . - - - . . . . -



IL.

CHAPTER 7

Technical Report 87-OR-02

MINIMAL SPANNING TREES:

A CCMPIJTATIONAL INVESTIGATION OF PARALLEL ALGORITHMS

by

R. S. Barr

R. V. Helgason

and

J. L. Kennington

Department of Operations Research
School of Engineering and Applied Scienct

Southern Methodist University
Dallas, Texas 75275

July 1987

Comments and criticisms from interested readers are cordially invited.

.. rV -. .**' -

,4444 4.***



ABSTRACT

The objective of this investigation is to computationally test parallel

algorithms for finding minimal spanning trees. Computational tests were run on

a single processor using Prim's, Kruskal's and Boruvka's algorithms. Our

implementation of Prim's algorithm is superior for high density graphs, while

our implementation of Boruvka's algorithm is best for sparse graphs. Implemen-

tations of parallel versions of both Prim's and Boruvka's algorithms were

tested on a twenty-cpu Balance 21000. For the environment in which a minimum

spanning tree problem is a subproblem within another algorithm, the parallel

implementation of Boruvka's algorithm produced speedups of three and five on

five and ten processors, respectively; while the parallel implementation of

Prim's algorithm produced speedups of three and five on five and ten

processors, respectively. The one-time overhead for process creation negates

most, if not all of the benefits for solving a single minimum spanning tree

subproblem.

ACKNOWLEDGEMENT

This research was supported in part by the Department of Defense under

Contract Number KDA 903-86-C-0182, the Air Force Office of Scientific Research

under Contract Numbers AFOSR 83-0278 and AFOSR 87-0199, the Office of Naval

Reseirch under Contract Number N00014-87-K-0223, and ROME Air Development

Center under Contract Number SCEEE PDP/86-75. The authors wish to express

their appreciation to Professor Hossam Zaki of the University of Illinois and

Professor Iqbal Ali of the University of Massachusetts at Amherst for their

h-,;,ful comments.

i



I. INTRODUCTION

The United States along with other developed countries is entering a new

generation of computing that will require software engineers to redesign and

reevaluate standard algorithms for the new parallel processing hardware that is

being installed throughout the developed world. It may well be that algorithms

which proved to be superior for single processor machines may prove to be

inferior in some of the new parallel processing environments. One of the more

popular new parallel machines is Sequent Computer Systems' Balance 21000. The

objective of this investigation is to computationally test parallel algorithms

for finding minimal spanning trees on a twenty-cpu Balance 21000.

An undirected graph G = [V,E] consists of a vertex set V and an edge set

E. Without loss of generality we assume that the edges are distinct. If G'

[V',E'] is a subgraph of G with V' = V, then G' is called a spanning subgraph

for G. If, in addition, G' is a tree, then G' is called a spanning tree for G.

A graph whose components are trees is called a forest, and a spanning subgraph

for G, which is also a forest, is called a spanning forest for G. We will call

l[ViTi): Vi = (ui), Ti = E, ui c V) the trivial spanning forest for G and the

[Vi,Ti ] trivial trees. Associated with each edge (u,v) is a real-valued cost

c(u,v). The minimum spanning tree problem may be stated as follows: Given a

connected undirected graph each of whose edges has a real-valued cost, find a

spanning tree of the graph whose total edge cost is minimum.

Applications include the design of a distribution network in which the

nodes represent cities or towns and the edges represent electrical power lines,

water lines, natural gas lines, communication links, etc. The objective is to

design a network which uses the least length of cable or pipe. The minimum

spanning tree problem is also used as a subproblem for algorithms for the

travelling salesman problem (see Held and Karp [6, 7] and Ali and Kennington

I[[



(3]). Some vehicle routing algorithms require the solution of a travelling

salesman problem on a subset of nodes. Hence, a wide variety of applications

require the solution of minimal spanning trees. Some applications require a

single solution and some use the model as a subproblem within another

algorithm.

Q

-7,

p

€-

ISI
• .. , .",('r ," - ",,; "'- '" " 1... "" - ki d~udI ldblill ln ilg2



II. THREE CLASSICAL ALGORITHMS

*The algorithms in current use may be traced to ideas developed by Prim,

Kruskal, and Boruvka. These three classical algorithms all begin with the

trivial spanning forest Go = ([Vi,Ti], i - 0,...,IVI-1 }. A sequence of

* spanning forests is obtained by merging spanning forest components. Given

spanning forest Gk, a nonforest edge (u,v) is selected and the components

[Vi,Ti] and [Vj,Tj] with u c Vi and v e Vj are removed from Gk and replaced by

* [Vk,Tk], where P= k + IVI, Vk ViLUVj, and T9 - Ti]Tj LJ({(u,v)), yielding

spanning forest Gk+l. After m = IVI-1 edges have been selected, Gm =

([V2m,T2m ]) = {[V,T]) is a minimal spanning tree for G.

Let [Vi,Ti] and [Vj,Tj] denote two disjoint subtrees of G. Define dij,

the shortest distance between the trees, by dij min (c(u,v): (u,v) E E, u E

Vi, v c Vj). The three classical algorithms may be viewed as different

applications of the following result:

Proposition 1.

Let V0, V1, ..., Vn denote vertex sets of disjoint subtrees of a minimum

spanning tree for G. Let c(u,v) =dn P n djn with (u,v) E Vj x Vn . Then

(u,v) is an edge in a minimal spanning tree for G.

A proof of Proposition 1 may be found in Christofides [4, pp. 135-136].

In Prim's algorithm, the nonforest edge (u,v) for Gk is always selected so

that (u,v) c Vi x Vj*, where j* is the largest index j such that [Vj,Tj] c Gk.

Thus a single component continues to grow as trivial trees disappear. An ex-

cellent description of Prim's algorithm is given in Papadimitriou and Steiglitz

[15, p. 273], along with its (serial) computational complexity of O(1V1 2). It

is believed that this algorithm is best suited for dense graphs.

In Boruvka's algorithm, the nonforest edge (u,v) for Gk is always selected

so that (u,v) E Vi* x Vj, where i* is the smallest index i such that [Vi,Ti] £

3i•

- 7. ,



Gk. Thus a variety of different-sized components may be produced as the

algorithm proceeds. All trivial trees will be removed first in the early

stages of this algorithm. A description of Boruvka's algorithm is given in

Papadimitriou and Steiglitz [15, p. 277], along with its (serial) computa-

tional complexity of O(IEI log lVi). This algorithm appears to be best suited

for sparse graphs.

Kruskal's method may be viewed as an application of the greedy algorithm.

The minimum spanning tree is constructed by examining the edges in order of

increasing cost. If an edge forms a cycle within a component of Gk, it is

discarded. Otherwise it is selected and yields Gk+l. Here also different-

sized components may be produced. A description of Kruskal's algorithm is

given in Sedgewick [18, pp. 412-413), along with its (serial) computational

complexity of O(JEJ log tE).

4

*2

'- N - .. -o



III. COMPUTATIONAL RESULTS WITH SEQUENTIAL ALGORITHMS

40 Computer codes for Boruvka's algorithm, Kruskal's algorithm, and three

versions of Prim's algorithm were developed. SPARSE PRIM maintains the edge

data in both forward and backward star format, while DENSE PRIM maintains the

4 W edge data in an IVI x IVI matrix. HEAP PRIM maintains the edge data in both

forward and backward star format and makes use of a d-heap as described in

Tarjan [19, p. 77). KRUSKAL makes use of a partial quick sort as described in

4[1, 8] to produce the least cost remaining edge. BORUVKA is a straightforward

implementation of the algorithm presented in [15).

Random problems were generated on both n x n grid graphs and on completely

random graphs. All costs were uniformly distributed on the interval

[0, maxcost]. All codes are written in FORTRAN for the Balance 21000.

The computational results for grid graphs are presented in Table 1. These

graphs are very sparse and BORUVKA was the clear winner. The computational

results for random graphs may be found in Tables 2 and 3. SPARSE PRIM was the

winner for problems whose density was at least 40% with HEAP PRIM running a

close second. For problems with densities of 20% or less, HEAP PRIM was the

winner with KRUSKAL running a close second. KRUSKAL appeared to be the most

robust implementation, working fairly well on all problems tested.

Tables 1, 2, 3 About Here

S!
- - - - - - - - - - - ----

5:



IV. PARALLEL ALGORITHMS

Parallel versions of the three classical algorithms have appeared in the

literature (see [2, 5, 9, 10, 11, 12, 16, 17]), however; no computation

experience has been reported. The overhead required for coordinating the work

of multiple processors can only be determined by actual implementation on a

parallel processing machine.

A parallel version of Boruvka's algorithm was developed for grid graphs

and a parallel version of Prim's algorithm was developed for high density

random graphs. Both algorithms use modules (subroutines) which may be executed

in parallel. Suppose there are p processors available for use. The parallel

operations are initiated by the main program using statements of the form:

for m = 1 to p, fork module z(m).

The main program and p-l clones will each execute module z in parallel.

Processing does not continue in the main program until all processors complete

module z. The argument "m" allows each of the p processors to process

different parts of the data or follow a different path. We assume that all

data in the main prc _am is shared with module z. If module z has local non-

shared variables, then these will be explicitly stated in the description of

the module. Multiple processors which update the same variable, set, or list

use locks to insure that only one processor has access to a given item.

6

"9". . .. . .. .'< i ' ., .- '-.-. .- -. -' -. ]'. -'- , ,<i :.,<, i . ,



4.1 Parallel Boruvka For Grids

Using the fork and lock constructs we present a parallelization of Boruvka's

algorithm for grid graphs. The most expensive component of Boruvka's

sequential algorithm may be described by the following procedure:

for all (u,v) e E

let i and j denote the subtrees containing u and v, respectively;

if i # j then

if cost(u,v) < min(i) then min(i) 4- cost(u,v)

if cost(u,v) < min(j) then min(j) 4- cost(u,v)

end if

end for

That is, all the edge costs must be examined and certain subtree data are

updated. Our parallelization of this scan relies upon a partitioning of the

grid into p components (one for each processor). A three processor paz: '-

tioning of a 7 x 7 grid network is illustrated in Figure 1.

Figure 1 About Here

The above edge scan is performed in two stages. The first stage performs

a parallel scan over edges bo-h of whose vertices lie within the same partition.

The second stage performs a parallel scan over edges across cut sets. If each

partition consists of at least two rows of the grid, then all subtree data up-

dating can be performed independently without the requirement of a lock.

The second part of Boruvka's algorithm is to merge two subtrees by

appending a new edge. The merger of subtrees, both of which lie in the same

partition can also be executed in parallel.

Using this datq partitioning approach, the parallel algorithm may be

!ted as follows:

7

.51



,-. 
-

.•v wq - -: - -. -.- w w.,-_ .' ..- • . . - . -Y' 7

g

PARALLEL BORUVKA FOR GRIDS

Input: 1. An n x n grid graph G = [V,E] with V - [vl,..., Vq).

2. For each edge (u,v) c E a cost c(u,v).

3. The number of processors, p, available for use.

Output: A minimal spanning tree [V,T].

Assumption: G is connected and has no parallel edges.

begin

T 4- 0, r 4- fn/pl, 4 n - rp;

If r < 2, terminate.

for i = 1 to q, Si 4- vi);

C 4- (S1,..., 
Sq);

W1 - {v: v E V and v is in grid rows 1 through v + £);

for m = 2 to p,

W - (v: v E V and v is in grid rows (m-I)r + 2 + 1 through mr + );

for m = 1 to p, Xim 4- {(u,v): (u,v) E E, u E W and v E Win;

for m - 1 to p - 1,

X2m -- ((u,v): (u,v) F E with u £ Wm, v E Wm+ 1 or u E W,+,, v W Wm);

for i = 1 to q, cpu(i) 4- m, where vi c Wm;

(comment: SI,..., Sq are assigned to the p processes)

create p-i clones

(comment: create p-i additional processes and place them in the wait
state)

while IcI 1

for m - 1 to p, fork module edgescan(l,m);

(comment: forks are executed in parallel and processing does not continue

in the main program until all processes complete edgescan)

for m - 1 to p-i, fork module edgescan(2,m);

L 4-0;

]8
F.

* . . . . . . - . . . . . . . - -. * .



for m 1 to p, fork module merge(m);

for all (u,v) E L do

* let Si and Sj be the sets containing u and v, respectively;

if ISil < ISjI then

Si <- Si U Sj, C <- C\Sj;

else

Si <- S i U Sj, C <- C\Si;

end if

T 4- T U(u,v);

end for

end while

kill the clones

end

module edgescan(k,m)

qbegin

(comment: k = I implies the scan is within partition m,
k = 2 implies the scan is across the cut set separating partitions

m and m + 1)

for all (u,v) c Xkm

let Si, S. be the sets containing u and v, respectively;

if i # j then

if c(u,v) < min(i) then min(i) <- c(u,v), shortest(i) <- (u,v);

if c(u,v) < min(j) then min(j) 4- c(u,v), shortest(j) 4- (u,v);

end if

(conmment: shortest(i) is the least cost edge incident on Si )

end for

end

9

%



module merge(m)

begin

for all vk E Wm do

(u,v) 4- shortest(k)

let Si, Sj be the sets containing u and v, respectively;

if i I j then

if cpu(i) = cpu(j) then

if Isil < Isjl then

Si 4- Si U s i, C 4- C\Sj;

else

Sj - Si U S j C 4- C\Si;

end if

lock T

T - T U{(u,v))

unlock T

else

lock L

L - L U{(u,v))

unlock L

end if

end if

end for

end

10



-777 -,'~'7 -*-.*-

4.2 Parallel Prim

The most expensive part of Prim's sequential algorithm is to find a

minimum entry in an JVi length array. This search can be allocated over p

processors, each of which finds a candidate minimum. The best of the p candidates

becomes the global minimum. Under the assumption that parallel edges do not

exist, there is also a scan of edges over the forward and backward star of a

given node which can be executed in parallel. Data partitioning via the use of

independent cut sets could also be used for random graphs in a manner similar

to that described in Section 4.1. That has not been done in this

investigation.

The parallelization of Prim's algorithm may be stated as follows:

PARALLEL PRIM

1. A graph.G = [V,E] with V = (vl,..., Vn.

2. For each edge (u,v) E E, a cost c(u,v).

3. The number of processors, p, available for use.

Output: A minimal spanning tree, [V,T].

Assumption: G is connected and has no parallel edges.

begin

U 4- {vl), w 4- vi , T 4- 0 ;

for i = 1 to n, d(i) 4- ;

create p-I clones

(comment: create p-i additional processes and place them in a wait
state)

F 4- ((w,v) c E);

partition F into mutually exclusive sets FI,....F s , s < p;

for m = 1 to s, fork module forwardscan(m);

B 4- ((u,w) c E);

V.4



partition B into mutually exclusive sets Bi, ...,IBt, t < P;

for m - I to t, fork module backwardscan(m);

while U -# V do

globalmin <- -,

for w 1 to p, fork module nodescan(m);

(comment: forks are executed in parallel and processing does not
continue in the main program until all processes complete
nodescan)

T <- T Ufe(ibest)), U <- U UJw);

F <- ((w,v) E )

partition F into mutually exclusive sets Fl,..., F5, s < P;

for m = 1 to s, fork module forwardscan(m);

B 4- (u,w) cE)

partition B into mutually exclusive sets B11 . . Bt, t < P;

for mn = 1 to t, fork nodule backwardscan(m);

end while

kill the clones

end

module nodescan(n)

local data: min, x

begin

for i m to n step p do

if d(i) < min then min 4- d(i), x <- i;

end for

lock global mm

if min < globalrnin then globalmin 4- mmn, ibest 4-- x, w 4- x0

unlock globalrnin

end

12



module fowardscan(n)

begin

Sfor all (u,v) c F~ do;

if c(u,v) < d(v) then d(v) <- c(u,v), e(v) 4-(u,v);

end for

0 end

module backwardscan(m)

begin

0 for all (u,v) E Bm do;

if c(u,v) < d(u) then d(u) 4- c(u,v), e~u) <- (u,v.);

end for

end

13



V. COMPUTATIONAL RESULTS WITH PARALLEL ALGORITHMS

Both algorithms of Section IV were coded in FORTRAN for the Balance 21000

loca' ' in the Center for Applied Parallel Processing at Southern Methodist

University. The Balance 21000 is configured with twenty NS32032 cpu's, 32

Mbytes of shared memory, and 16K user-accessible hardware locks. Each cpu has

8 Kbytes of local RAM and 8 Kbytes of cache. The Balance 21000 runs the DYNIX

operating system, a version of UNIX 4.2bsd. DYNIX includes routines to create,

synch.onize, and terminate parallel processes from C, Pascal, and FORTRAN. More

details about the Balance 21000 may be found in [13].

lable 4 gives the computational results with Boruvka's algorithm. The

times are wall clock times and are the average for three runs. The first row

in e:- h table contains the time for the sequential version of BORUVKA and all

ot:i- rows contain times for the parallel version. The sequential version is

25 -_es of code, while the parallel version required over 400 lines. The

s ;r- for a row is calculated by dividing the best sequential time by the

t ,- that row.

<:.tially, the parallel code creates the additional processes to be used

Fi, -: ; ires each of them to build data tables which give the location in

vi-' memory of all shared data. Once this is done, the processes can be

us'- repeatedly with little system overhead. However, this initial creation

and the subsequent killing of those processes at termination can be very

expensive for this type of problem. The first column of times includes the

creation and process termination time while the second does not. Hence, if a

350 x 350 minimal spanning tree was to be obtained one time, then the best

speedup is 2.6 using seven cpu's. If however, this is a subprogram of a larger

system, then a 350 z 350 problem can yield a speedup of four on six processors

and a speedup of five on ten.

14



Table 4 About Here

Table 5 gives the computational results with Prim's algorithm. No speedup

is achievable for a one-time solution. For environments in which the minimum

spanning tree problem is a subproblem, speedups of three and five were obtained

on five and ten processors, respectively. 7-
Table 5 About Here

.

%5

S

15 .4.

S1

......................................... *.~ ~.'J** -. 4 4.' '

~*45 5 S. . . .. .- . .-. 5 5 % \ ~ \ 4

55*... 4., --.*\. '..'



VI. SUMMARY AND CONCLUSIONS

Five computer codes were developed to solve the minimum spanning tree

problem on a sequential machine. These codes were computationally compared on

both grid graphs and random graphs whose densities varied from 5% to 100%. The

implementation of Boruvka's algorithm (see [15, p. 277]) was the best for grid

graphs. An implementation of Prim's algorithms using a sparse data representa-

tion (see [15, p. 273]) was best for high density random graphs while an imple-

mentation of Prim's algorithm using a d-heap (see [19, p. 77]) was best for

lower density random problems. Kruskal's algorithm using a quicksort is the

most robust of all the implementations, ranking either second or third in all

computational tests. Both Boruvka's and Prim's algorithms were parallelized by

the method of data partitioning (also called homogeneous multitasking). This

involves creating multiple, identical processes and assigning a portion of the

data to each processor. For the environment in which a minimal spanning tree

problem is a subproblem within a larger system, speedups of five on ten

processors were achieved with both Prim's and Boruvka's algorithms. The

overhead for parallel processing on the Balance 21000 negates most of the

benefits of parallel processing for the first solution of the minimal spanning

tree.

0

16

Vo-



REFERENCES

1. Aho, A. V., J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, Massachusetts (1974).

2. Akl, S., "An Adaptive and Cost-Optimal Parallel Algorithm for Minimum
Spanning Trees," Cooputing, 36 (1986) 271-277.

3. Ali, I., and J. Kennington, "The Asymmetric M-Travelling Salesman Problem:
A Duality Based Branch-And-Bound Algorithm," Discrete Applied Mathematics,
13 (1986) 259-276.

4. Christofides, N., Graph Theory: An Algorithmic Approach, Academic Press,
New York, New York (1975).

5. Deo, N., and Y. Yoo, "Parallel Algorithms for the Minimum Spanning Tree
Problem," Proceedings of the 1981 International Conference on Parallel.
Processing, IEEE Computing Society Press, (1981) 188-189.

6. Held, M., and R. Karp, "The Travelling Salesman Problem and Minimum
Spanning Trees," Operations Research, 18 (1970) 1138-1162.

7. Held, M., and R. Karp, "The Travelling Salesman Problem and Minimum
Spanning Trees: Part II," Mathematical Programming, 1 (1970) 6-25.

8. Knuth, D. E., Sorting and Searching, Addison-Wesley, Reading,
Massachusetts (1973).

9. Kwan, S., amd W. Ruzzo, "Adaptive Parallel Algorithms for Finding Minimum
Spanning Trees," Proceedings of the 1984 International Conference on
Parallel Processing, IEEE Computing Society Press, (1984) 439-443.

10. Lavallee, I., and G. Roucairol, "A Fully Distributed (Minimal) Spanning
Tree Algorithm," Information Processing Letters, 23 (1986) 55-62.

11. Lavallee, I., "An Efficient Parallel Algorithm for Computing a Minimum
Spanning Tree," Parallel Computing 83, (1984) 259-262.

12. Nath, D., and S. Maheshwari, "Parallel Algorithms for the Connected
Components and Minimal Spanning Tree Problems," Information Processing
Letters, 14, 1 (1982) 7-11.

13. Osterhaug, A., Guide to Parallel Programming on Sequent Computer Systems,
Sequent Computer Systems, Inc., Beaverton, Oregon (1986).

14. Parallel Computers and Computations, Editors J. van Leevwen and J. K.
Lenstra, Center for Mathematics and Computer Science, Amsterdam, The
Netherlands, (1985).

15. Papadimitriou, C. and K. Steiglitz, Combinatorial Optimization: Algorithms
and Complexity, Prentice-Hall, Englewood Cliffs, New Jersey (1982).

17

%I



16. Pawagi, S. and I. Ramakrishnan, "An O(log n) Algorithm for Parallel Update
of Minimum Spanning Trees," Information Processing Letters, 22 (1986) 223-
229.

17. Quinn, M. J., Designing Efficient Algorithms for Parallel Computers,
McGraw-Hill, New York, New York (1987).

18. Sedgenwick, R., Algorithms, Addison-Wesley, Reading, Massachusetts
(1983).

19. Tarjan, R. E., Data Structures and Network Algorithms, Society for
Industrial and Applied Mathematics, Philadelphia, Pennsylvania (1983).

18

0

..................... .... ... .... ... ...

N i

-4. . -. , -, A A



partittion I .

cut 1

partittion 2 '.}

cut 2-

partition 3

cut19

Fisue I.A Thee Pocesor artiionig of• 7 7 i ar tition" ..3.

_____ i _ _ _ _ _ _ _ _ _ ___

-" I

19," -

4."



Table 1. Comparison of Sequential Algorithms on Grid Graphs

(cost range is 0 - 10,000)

Grid Size dges Graph DENSE SPARSE HEAP KRUSKAL BORUVYA

Density PRIM PRIM PRIM I

15 Z 15 420 1.7% 1.70 .36 .27 .19 .12

18 x I 612 1.2% 3.54 .74 .42 .30 .17

20 x 20 760 1.0% 5.43 1.10 .54 .39 .21

24 x 24 1,104 .7% 11.32 2.19 .82 .63 .30

28 x 28 1,512 .5% 21.01 4.09 1.13 .86 .46

30 x 30 1,740 .40 27.82 5.41 1.37 1.15 .55

Total Time (secs.) 1 70.8: I 13.89 I 4.55 I 3.52 I 1.81 I
-- -- ---------k,,nk 1 5~ 3 1 2 I i

II

_q

-,-T-" -'' . -T . --. " - -. ,.-.-*- - . ....



DEVELOPMENT ANM EYNLUNTION OF R CAIMtLTY EVACUTIO 3n
SCIENTIFIC IESERRCH BOLLING NO DC J L KENNINGTON

UCLSSIFIED 18 NUG 97 EOSR-TR-B97?7 $NWOSR-93-0278 F/G 23/6 ML

Monso"



~YAf ~'~' 'V X'~'j'~7J. . VY3~r~J. '.-" i.- ..- ' .~ '.9.- 9-., ~-v 1.~Wi.'~ ~FafWI'~

lb

LA~~

r

*9999

hal. ~. .9 9.

b~.

a..
.9

.,llfl~28 ~I~~25 p.
I,', ~ 9.

Iwu.~
~32 h... *~

L.
~. I~1~2.O

a- U~ 1W 9\\ __ K.
9.

lull

99 IIIIII.11H1 _______

_____ r.
S.

sr..N
p.-'
9.

I..
a'. ~

I..

I ." 9- . 9.

.9'.

I-.
~I.

-'.9

I-
L

I,.

'a. -9. .J~.
99-.

'9".

K -.

.5.

.9 ... ~ - ~

.99.999.~99.*. P.9 *99
*99,19,9 9.9% .9.'-.-

.9~..% *. I'. - %%*9.**
--- 9- .9... .9.9~9.9.* *

.. 9~4.9~ *9****99 .- ~ 9)

I 0 6 0 0 0 0 0 6 0 0 0 0 0 0 0
* 9 ~ S 9 9 d - *99.,4.~9 .* -

9.9 *~. 99.9% 9999
.9.9.9.9
~~%~9*'% '9*

.9 .9 9. *



Wi*- W- .0177F7 -7.-.

Table 2. Comparison of Sequential Algorithms on High Density Random Graphs.

(cost range is 0 - 10,000)

Vertices Edges Graph DENSE SPARSE HEAP [RUSKAL BORUVKA
Density PRIM IPRIM I PPRIM I I

200 19,900 0%. 1.39 1.14 1.44 1.52 3.01

200 15,920 800% 1.39 .97 1.22 1.52 1.96

200 11,940 60% 1.39 .79 .99 .96 1.47

200 7,960 40% 1.39 .61 .76 .89 1.02

400 79,800 100% 5.67 4.55 5.42 4.45 12.03

400 63,840 807% 5.69 3.85 4.53 3.58 10.28

400 47,880 60% 5.70 3.13 3.62 2.82 7.26

400 31,920 40% 5.71 2.49 2.68 1.97 4.85

600 179,700 100% 13.28 10.39 11.98 12.38 29.85

600 143,760 80% 13.66 8.79 9.99 14.99 23.72

600 107,820 60% 13.16 7.15 7.99 10.63 17.79

600 71,880 40% 13.02 5.55 5.67 6.05 11.80

ITotal Time (secs.) 81.45 I 49.41 I 56.29 I 61.76 I 125.04 I

IRank I 4 1 1 2 1 3 1 5 1

21

. --.- ;: - . 3 :>.;:?- o-.N%-..:-. .%-...'...¢. .. . N, .:



Table 3. Comparison of Sequential Algorithms on Low Density Random Graphs.

(cost range is 0 - 10,000)

Vertices Edges G raph PRENSE SPARSE HEP RUAL 1OVADensity PRIM PRIM PRIM

SAS HPI IRSA BORUVKA

200 3,980 20% 1.40 .44 .49 .50 .52

200 1,990 10% 1.40 .36 .39 .40 .35

200 995 5% 1.39 .32 .32 .35 .17

400 15,960 20% 5.66 1.75 1.62 1.47 2.46

400 7,980 10% 5.71 1.40. 1.12 1.53 1.30

400 3,990 5% 5.72 1.21 .86 1.20 .72

600 35,940 20% 13.04 3.94 3.39 3.99 6.02

600 17,970 10% 13.04 3.05 2.14 2.89 2.86

600 8,985 5% 13.07 2.73 1.50 2.12 1.52

ITotal Time (secs.) I 60.43 I 15.20 11.83 I 14.45 j 15.92

IRank I 5 1 3 1 1 1  2 1 4 1

22"

C ,.,

'.

, C,

"c" , . ' _22

,- -'", ."-. ", ." " "" .-" < " "-. " - v .""" ."-. .'.. -" ' " ", *. " " ' " "" '. -'



Table 4. Parallel Boruvka on 350 x 350 Grid Graph
lvi - 122,500 IlE - 244,300
(cost range is 0 -100,000)

Cpu's PARALLEL BORUVKA PARALLEL BORUVKA
(includes process creation) (excludes process creation)

time speedup time speedup

1+ 98.21 1.00 98.21 1.00

1* 112.57 .87 103.86 .95

2 66.93 1.47 57.49 1.71

3 50.26 1.95 40.92 2.40

4 40.25 2.44 29.95 3.28

5 39.00 2.52 26.52 3.70

6 38.69 2.54 23.45 4.19

7 37.70 2.60 21.62 4.54

8 40.98 2.40 21.58 4.55

9 42.49 2.31 20.85 4.71

10 41.30 2.38 17.52 5.61

best sequential BORUVKA code
* parallel code run with a single processor

23

Z'



Table 5. Parallel Prim on G - [V,E] with IvI - 900 and IJE - 404,550

(cost range is 0- 100,000)

Cpu's PARALLEL PRIM PARALLEL PRIM

(includes process creation) (excludes process creation)

time speedup time speedup

1+ 24.88 1.00 24.88 1.00

* 1* 27.09 .92 26.98 .92

2 23.35 1.07 15.12 1.65

3 22.63 1.10 10.84 2.30

4 25.31 .98 8.74 2.85

5 28.43 .88 7.39 3.37

6 31.54 .79 6.62 3.76

7 36.51 .68 6.03 4.13

8 41.08 .61 5.62 4.43

9 46.04 .54 5.30 4.69

10 50.54 .49 5.02 4.96

+

best sequential PARALLEL PRIM code
parallel code run with a single processor

24



u... ~ .. ~ :A 2.A ~a -.az'~a r.a -.~m ..w -- -~ ~

I~. *4~

I
*~ q-.. i. 9.

9...

~.

I

~.- '
4' .J.

9.9.

* 9.1

.. J. -~

I\~. 9..r

?~ ~4'

9.'

~4'

I.? .9.
~4~4

9.

d

S.
S.


