R18S 841 MASSIVELY MLEL INPLEMENTATIONS OF THEORIES FOR 7 |
APPARENT MOTIONCU) MASSACHUSETTS INST OF TECH CAMBRIDGE
MRTIFICIAL INTELLIGENCE L.. N M GRZYWACZ EE AL. JUN §
UNCLASSIFIED AI-N-888 NOOO14-83-K-0124 F/G 14/4




R R D N AN VXY NN , o, A
AR L Y LA Ty ﬂ.u.........._ p i ; ' f 7 [ g
N INCSSASA P L _ N N
A0 I IS Y -a:x..«..x..x....ﬂ.n AR . e
S RAAIIAL, R LLLL LIRS svurva.ul. .M b~ A A A ﬁ.x..\.\..\...-\
-\n-. L-\-\.-\..\-ﬂi—.
«
.5. o~ o .B / :O /
EEEE
= = EE === N.
ofll ~i of o
dgaa o«
N . ’ I V4
mwvmr_,l.l_u._.:._ —
ofll =Ml 2
—_ =
—— _— ==
e — et
- « P .
"y m'#.»-v-..:- u‘h\\. PR 4 e e AP X g T I JA SO R TR Tk Y
Sl PSR S ) . » .

AP RSERRARND STUAAAIE 1K



AD-A185 841

UNCLASSIFILED . /Q

SECUOITY T ASS' FITATION OF TwiS PAGE When Dets Entered)

?xtv WORDS (Continue on reverse side il necossary and identity by block number)

<

5

<
§ motion using the assumptions of minimal mapping and rigidity.

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
\ REPORYT NuUMBER 2. GOVY ACCESSION NO | ) RECIPIENT'S CATALOG KUMBER
A. 1. Memo 888
4 TITLE (and Subritle) S. TYPE OF REPORT & PERIOD COVERED
Massively Parallel Implementations Al-Memo; 1987
of Theories for Apparent Motion §. PERFPORMING ORG. REFORT NUMBER
7. AYTHOR( 8. CONTRACT OR GRANT NUMOBER(S)
Norberto M. Grzywacz and Alan L. Yuille N00014-85-K-0'".4
. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGAAM ELEMENT PROJECT, TASK

AREA & WORK UNIT NUMBERS

Artificial Intelligence Laboratory
545 Technology Square
Cambridge, MA 02139

V. CONTROLLING OFFICE NAME AND AODRESS 12. REPORT DATE
Advanced Research Projects Agency 1987
L _____June
1400 Wilson Blvd. 15. NUMBER OF PAGES
Arlington, VA 22209 38
T4 MONITORING AGENCY NAME & ADORESS(I! difterent from Contrelling Olfice) 8. SECURITY CLASS re/ (hie repert)
Office of Naval Research
Information Systems UNCLASSIFIED
Arlington, VA 22217 18a. DECL ASSIFICATION/ COWNGRADING
SCHEDULE

16 DISTRIBUTION STATEMENT (of thie Repert)

Distribution is unlimited.

. }‘b',.:»: n :rv ﬂ\-;‘
- b 4
17. DISTRIBUTION STATEMENT (of (No abatract entered in Bieck 30, !l dillerent trem Repert) 2L . A

ELEL . o

NOV 0 6 1387 fgg
<D

18. SUPPLEMENTARY NOTES

None

Analog networks 3-D structure
D Rigidity Vision

20. ABSTRACT (Continue en reverse ¢lde i necocssary and tdentity by bleck mumber)

We investigate two ways of solving the correspondence problem for

Massively parallel analog ‘networks are designed to implement these
theories. Their effectiveness is demonstrated with mathematical
proofs and computer simulations. We discuss relevant psychophysical

experiments/

DD |r)<::~” 1473  eoition oF ' OV 88 IS ORSOLETE UNCLASSIFIED

S/N 0:02-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (When Data Bnterec

At ee _._- ""."~:.':.".;--"'-_:':-‘\;-\':'."}\—-4’";h-'_p";'._',-- -
- -




"b.‘ n AN .»\\‘\\‘.\'.\.'.,l AT A e W WV --- R A= o= la e At e of. LA MR ahe " " e * oAl gl
1
-~ N
k::: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY
and

CENTER FOR BIOLOGICAL INFORMATION PROCESSING
WHITAKER COLLEGE

AL Memo No. 888 June 1987
C.B.I.P. Memo No. 016

MASSIVELY PARALLEL IMPLEMENTATIONS
OF THEORIES FOR APPARENT MOTION

Norberto M. Grzywacz and Alan L. Yuille!

ABSTRACT We investigiate two ways of solving the correspondence problem for mo-
tion using the assumptions of minimal mapping and rigidity. Massively parallel analog
networks are designed to implement these theories. Their effectiveness is demonstrated

with mathematical proofs and computer simulations. We discuss relevant psychophysical
experiments.

(© Massachusetts Institute of Technology 1987

Acknowledgments. This report describes research done within the Artificial Intelligence
Laboratory and the Center for Biological Information Processing (Whitaker College) at
the Massachusetts Institute of Technology. Support for the A.I. Laboratory’s artificial ) h
intelligence research is provided in part by the Advanced Research Projects Agency of 0
the Department of Defeuse under Office of Naval Research contract N00014 -85-K-0124. -
Support for this rescarch is also provided by a grant from the Office of Naval Research,
Engincering Psychology Division.

————

' Current address is Harvard University Department of A pplied Mathematics, G12e Pierce
Hall, Cambridge, MA 02138,

ae Laralaslas Y

Laslaaalin

RGN
2y EL

a
-
)
.

AN
‘,:‘I.‘v TS
LR N

TELLC
1y 8

¢’
1

AT AR A A
"" .
‘tﬂ'\" N

T
)

Lo R
[
1 ',\‘-.:

x

RIS

A
v
'.‘-'v‘
e

e &Y

h‘{ v,
s

g

I T I i A T S T e B ) B P TN ST T TEY e et
L S AR I T e e AT T T TN A e



A L e M memL e mm e e e N e NN e N e e i e e N e el
. R A T Tt S D I DN AN DA A S i
"b‘:‘-.{';:\fﬂti'.u ey | m’khn o B Aaldal A Ll la

Table of Contents

1 Introduction
2 The Minimal Mapping Theory for Apparent Motion
2.1 A Network Implementation
2.1.1 Computer Simulations
3 Theoretical results

4 The Structural Theory for Apparent Motion
4.1 A Network Implementation

4.2 Comparison with the Minimal Mapping Theory
5 Discussion

References

P AL

» .

'}"1'1/// o

s

M

N

—rTA-m 14
._5

S A



Tl S

' I |

N

1 TIntroduction

One of the most important roles of the early human visual system is the extraction of the three-
dimensional (3-D) structure of surfaces (Marr, 1982). It has been proposed that the system deals
with this task through different modules, each analyzing a different type of image information.
One of the most important of these modules is the one that recovers the 3-D shape of objects from
their motion cues. Indeed liumans are capable of recovering structure from motion, under both
orthographic and perspective projection, and in the absence of all other cues to 3-D structure (for
cxamples of the early work see Wallach and O’Connell, 1953; Gibson and Gibson, 1957; White and
Mueser, 1960; Green, 1961; Braunstein, 1962; Johansson, 1964; for a review of the psychophysical
literature see Hildreth, Inada, Grzywacz and Adelson, 1987).

The problem of the recovery of structure from motion is underconstrained because the
image information available in the retina is two—dimensional (2-D), and therefore, not enough to
determine the 3-D shape of the visual world. To solve this problem, Ullman (1979) proposed that
the human visual system uses assumptions about the world, such as rigidity of objects, to constrain
the solution. His ideas led to a large body of computational work testing the validity of different
assumptions directed to solve the structure from motion problem (for examples of the early work
see Ullman, 1979; Clocksin, 1980; Prazdny, 1980; Longuet-Higgins, 1981; Longuet-Iiggins and
Prazdny, 1981; Tsai and Huang, 1981; for a review of the computational literature see Grzywacz
and Hildreth, 1987).

Ullinan used psychophysical data to argue that the process is divided into two stages.
The first is solving the so-called correspondence problem, which consists of matching tokens, such
as points or straight lines, between different image frames (see explanation below). IHe suggested
that once this matching is done the second stage assumes rigidity of the object’s structure in order
to recover its 3-D shape. (Later, Ullman relaxed the assumption of rigidity in favor of a scheme in
which the transformations of structure from frame to frame would be as rigid as possible, although
not strictly rigid; Ullman, 198.1.)

It is not necessary to postulate a solution of the structure from motion problem in
terms of isolated features. In fact, optical flow approaches to the problem have been suggested
(e.g. Prazdny, 1980; Longuet Higgins and Prazdny, 1981; Hoflman, 1982; Waxman and Ullman,
1985). There are reasons, however, to consider feature-based schemes. The main reason is that
the optical flow field (a 2-D field that can be associated with the variation of the image brightness
pattern) and the 2 1) motion field (the projection on the image plane of the 3-D velocity field of a
moving scene), rarely coincide. For some analytic models of surface reflectance this can bhe proven
(Verri and Poggio, 1986). The problem stems from the fact that image brightness patterns and
their changes do not correspond directly to physical entities and their motion (Ullman, 1979). Not
surprisingly, however, it turns out from Verri and Poggio’s work, that the optical flow and motion
field nearly coincide at brightness edges and thus at the most elementary type of features.

Another reason to consider the feature based schemes is that a reliable recovery of
structure from motion seems to require, a simultaneous inspection of image frames that have large
separations in time (Wallach and O’Connell, 1953; White and Mueser, 1960; Green, 1961: Braun-
stein and Andersen, 1984, Doner, Lappin and Perfetto, 198:1; Andersen and Siegel, 1986; Braun-
stein, Holfman. Shapiro, Andersen and Bennert, 1986; Hildreth et al., 1987, Grzywacz, Hildreth,
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Inada and Adelson, 1987). This requirement brings back the correspondence problen menwmed
above. In simple words, this is the problem of matching parts in different hmage frames suclo tha
matched primitives correspond to the same features in the viewed object.

The human visual system is able to solve the correspondence probler ever when the

motion is presented in discrete frames which have large separations in time. Titis is the phenonenan
of long-range apparent motion. (Two distinct processes for the measurement of motion scem 1o exi-1
in the human visual system (Braddick, 1974, 1980), one dealing with large separations in space w
time, the long-range motion process, and the other dealing with small separviations. the short raner
motion process.) Apparent motion has been studied extensively in.the psvchoplvsical Hterature
(see, for example, Wertheimer, 1912; Korie, 1915 Kolers, 14720 Attneave. 0040 Braddick, 1950
Ullman, 1979: Anstis, 1980; Green, 1983, 1986; Mutch, Smith and Yonas, 1983: Ramachandran
and Anstis, 1983, a,b,c, 1985; Anstis and Mather. 1985; Mather, Cavanagh and Aunstis, JOx3:
Ramachandran, 1985; Anstis and Ramachandran, 1986; Green and Odom. {9%6: von Grunan.
1986G; Grzywacz, 1986, 1987; Prazdny, 1986; Ramachandran. Inada and Kiama, 10%6; Witean,
1986; Finlay and Dodwell, 1987).

Ullman (1979) proposed a computational theory for apparent motion, which lie called
the Minimal Mapping Theory. Minimal mapping is the process by which features in a given frame
are matched to features in another frame such that the sum of the distances traveled is minimal
{For psychophysical evidence supporting minimal mapping as an important factor in apparent mo-
tion see Ullmau. 1979; Williams and Sekuler, 1981; Green and Odom, 19%6.) T'his theory proposes,
therefore, to solve the correspondence problem through the minimization of a cost function. (How
ever, note that strictly speaking Ulliman’s theory does not require the minimization of the surm of
Fuclidian distances, but it allows for most abstract distances such as difference of orientation o
brightness of the features. In this paper we consider only the Euclidian version of the theorv,)

Finding the correct cost function, however, is only half the problem. We need a fust aud
reliable method of minimizing it. If the cost function is convex there exist many fust and reliable
methods for finding the global minimum. For non-convex cost functions ~tochastic jelaxation
strategies like the Metropolis (Metropolis, Rosenbluth. Rosenbluth. Teller and Teller. 1953) o1
the simulated annealing algorithms (Kirkpatrick, Gelatt and Veechio 19%3) will peneraily tind the
global minimumn, but reportedly take a long time to do so. (For examples of the awe of stochastic
relaxation methods in computational vision see. Ballard, Hinton and Sejnowski. (9530 Hinton aned
Sejnowski. 1983 Geman and Geman., 19845 Marroquin, 1986 Divko and Schadten, 106 Kienher.
Seinowski, Hinton and Schumacher. 1986: O Toole and Kersten, 1456: Sereno, 1956 Ulhian
(170 vised o linear programming method to solve the correspondence probbomn, and althoual
thi~ alwave converged correctly it did so very slowly (Ullman, pers commy Iistead of 0 slos
aworithm that alwavs converges to the right answer it mav often he o hotter stiateev 1o nee o Lo
algorithun that converges to almost the right answer most of the time This coneer ot nmpbean ntine
the problem i terms of deterministic analog networks with parallel dictin crnie (o oviphes o
ther e of deterministic analog networks in computationan vision, oo N ovar 0 Tl e 100
AMoarr and Poggio, 1976, Ullan, 1979; Feldman and Ballard, 1952 Pocvia borre and Kook, 1o~
Pakushima, 186 Grzyvwacz and Yuille, TORG: Hutelinson and Kocle 1900 loor - i uin and
Yonlleo 1as6: Rummelhart, Hinton, Williams, 1956 Little, Bolthotland Froeco 10

Ncimportant example of nonlinear analog networks stoudied v ihe oo 00
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RSN terns whose wloncorvor o e bt out of resistors, capacitors and induetanees. and whose
- . . . . . .

elementany ant e s ted thoough devices that iinplement a static nonlinearity. If this non-

liearity s a semontal inpet output relationship, similar to those implemented by synapses, then
these networks wie caltedd neural networks™ (Hopfield, 1952, 1984; Hopfield and Tank, 1985) since
it units ey be regarded as sinpdtied maodels of neurons. We emplasize, however, that real neu-

e s s

rons ate compley conpatational devices (von Neumann, 1958; Koch. Poggio and Torre, 1982; Crill
coschamde Tass Ratffers Nichols and Marting 1984) and that the name “neural-network” is

Hoed nere ondy s o metaphon

Currentlhv, rescarch is being done to construct electronical devices that implement such
networks, 1 budt, they will perform caleunlations extremely fast because of their parallel, analog
nature. fHopfield and Tank (198)) have shown that these networks are capable of calculating good
approximate solutions to complex minimization problems, such as the Traveling Salesman Problem.
Koch, Marroquin and Yuille (1986) successfully applied them to the surface interpolation problem
of early vision.

The present paper proposes and studies massively “neural -network” implementations
designed to solve the correspondence problem in apparent motion (where “massively” means that
every two elementary units are interconnected).

In Section 2 we describe a “neural-network” implementation of a version of the Minimal
Mapping Theory. In the same section we give examples of computer simulations of this implemen-
tation, and show that it accounts for the basic psychophysical apparent motion phenomenology.
- This section also presents a demonstration of the speed of the “neural-network™ implementation
and of the fact that even for very complex, nonrigid motion, a nearly optimal solution is obtained.
In Section 3 we prove theorems about the convergence of the network and show that for some
! situations the system will always find the correct solution. In the same section we will discuss how

we chose the network parameters for our computer simulations.

Section 4 is directed to another question. It is natural to ask whether errors are caused
by dividing the structure from motion process into two stages; first solving the correspondence
. problem and then using the correspondence information to recover the 3-D shape of objects. Both
' processes are solved using different assumptions and it is possible that these conflict for some
stitnuli. In this section we use the same mathematical formalism used in the preceding sections
to determine whether rigidity alone (the basic assumption used to recover the 3-D structure from
motion) is sufficient to solve the correspondence problem (and simultaneously the structure from
motion problem). Weshow that further constraints are usually needed to obtain the correct answers.
This result gives a computational argument in favor of a division of the structure from motion
. process in the above two stages. We will also discuss a theory that combines the minimal mapping
r and rigidity assumptions and is able to solve the correspondence and the structure from motion
problems simultaneously.

. 2 The Minimal Mapping Theory for Apparent Motion

Ihis ~ection will begin with a formal introduction to the Minimal Mapping Theory and propose
a neural network™ implementation of this theory (Section 2.1). We then proceed to demonstrate
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that this implementation simulates the basic apparent motion psychophysical phenomenology (Sec.
tion 2.1.1), i.e. ambiguous and unambiguous 2-D motions, wagon -wheel type illusions. and trans
parent and opaque 3-D motions. We also analyze the convergence tinie of the network in comparise:
with the time constant of its basic units and discuss the quality of the solutions obtained. [«
solutions are not strictly correct since the minimization procedure may become trapped in loca!
minima. We show, however, that those solutions are near optimal. Our main result in this section
is this: provided that the motion is sufficiently small, network parameters can be chosen such that
convergence to the optimal solution is guaranteed,

2.1 A Network Implementation

In the Minimal Mapping Theory (Ullman, 1979), the image of an object with N features is describied
by the 2-D coordinates of point on the object, (z;(t).y.(¢)), ¢=1,---.N. Let images be given
at two instants, t — 8t and ¢, and let us begin by assuming that the number of features in the
two instants are identical. We now define a set of binary correspondence variables 1V, such that if
feature ¢ in the first frame maps to feature a in the second frame then Vi, = 1, otherwise 1, = (.
From the assumptions of the Minimal Mapping Theory we want to define a matching cost function.
Erar, which is minimized only when the total distance traveled by the features is minimal. \We
follow Ullman and let:

N
f"/\l,\l = Z‘;n(‘lun (21!
where,
2 2\'/*
dia = ((2a (0~ (0= 00V + (g (1)~ y (10— 80))?) (22)

To find the correspondence, the Minimal Mapping Theory proposes to minimize Eyy s with respect
to Vi, requiring a bijective mapping, i.e. that all teatures in the first frame are matched exactly to
one feature in the second frame.

In order to perform a fast minimization we adapt in this paper a “nenral network”
method proposed by Hopfield and Tank (1955). Consider a system with V¥ neural like elementary
units symmetrically connected to each other. Each unit «ill represent a possible correspondence
between feature ¢ at instant t — #¢ and feature a at instant ¢.

We first define a new array of variables, [{7,,]. which will represent the internal voltage
of the “neural™ units. These are internal variables of the new problew and have a monotonically
increasing relationship to V,, (which will represent the output of these units):

1
A P =
1 v
g = —loy—1— 2.4
e 3 )vl/l T (2.4
where A is a positive parameter of the problem. Althongh  ~ < 1., ~ . one can see from 1 0.

2.3 that Vo is stili bounded between 0 and 1. We next dehue the £l cnergy funetion 1o h

L
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where A, B,(’ and r are positive parameters of the problem. (We will informally identify each
of the terms of the right hand side of Eq. 2.5 by the parameter leading it.) Minimization of the
first component of the A term forces each feature in the second frame to maintain correspondence
with as few features as possible in the first frame, (and vice versa for the second component).
Minimization of the B term tends to force the total number of correspondences to be N. Thus the

terms A and B together will tend to force a one-to-one correspondence between features in the
two frames. The 7 term is necessary to give a time constant for convergence of the network, as will
be seen below. Finally, the parameter (7 serves to provide scaling for the physical dimensions, i.e.
if the image of a given object is just an expausion of the image of another, then the network will
. obtain the same solution for the two objects, provided that ' is scaled properly.

Perceptually, if the two image frames have a different number of features, say N; and

s - N usually splitting and fusion will take place, such that no feature will be left alone. It is easy

i-‘ to incorporate this effect into the energy function by substituting N in the B term of Eq. 2.5 by
Noar = max( Ny, Nz). This was done for a few of our computer simulations.

Observe that if the [/, variables are updated according to the differential equations:

":t :_%L 1<i<N., 1<a<A, (2.6)
then the system will stop in a point of the solution space in which the function E is at one of its
minima. To see this, observe that because of the monotonicity between U;, and V;, expressed in
Fq. 2.3, the update rule, Eq. 2.6, will tend to force V,, to descend down the gradient of E. Note
that if A is large enough the variables V;, will tend to be either 0 or 1 and thus, in spite of the fact
that the search process is in a continuous space, it will tend to force a binary decision to determine
whether a correspondence is to be established or not. In fact using the chain rule for differentiation

and Fq. 2.6 we find

Flalial 2l 1

dE 0Via OF OF

A T ~ QUiq OVia Vo'

(2.7)

“rom b, 2.1 we caleulate
I b 20w leulat




Therefore dE/dt < 0, which together with the fact that £ > 0 proves that the systewn will reach
equilibrium, and in that situation £ will be at a minimum. Technically this means that £ isa
Liapunov function of the system (see also Hopfield, 1984).

The solution of Eq. 2.6 can be implemented by a “neural-network™. To caleulate
the symmetric connection strength, Tj, jb», between unit ¢ @ and unit j b, and the external input
currents, I;, (data), we substitute Eq. 2.5 into Eq. 2.6:

dU; o , : , ) . L,
d”::—Auf0L+lJW”—-ﬂ%)+UL\—&)—(Um———< (2.0

t T
Here we have introduced a new notation. V = Zia Vieo VOOU = 2o Ve and \’,"'”)W =3 Vi

Equation 2.9 is the equation of motion of the system and was what we siimulated in the computer.
Note that the time constant is 7. That immplies that the internal resistivity and capacitance of the
network units can be set constant, equal to each other and independent of the problem to be sofved.

Tiaj» is the contribution to the rate of change of I/, (the voltage of unit ¢ a) by V'
(the output of unit j b) and can therefore be readily obtained from Fq. 2.9:

T,“,b] = ~A(ba (1 - b'.j) + (S,'J(l —d)) = B (2.10)

Similarly [;, is the contribution to the rate of change of I, which is independent of the state of
other unijts:

lie = BN - Cd,,. (201 h
The A term in Eq. 2.10 represents inhibitory connections within each row aud cacli column of [17,,
I'he B term in Eq. 2.10 represents a global inhibition between every pair of units. Therefore, every
two units are mutually connected, with a total of N4 - N2 connections.

The B term on Eq. 2.11 is the excitation bias and is equally applied to every unit. The
(' term in Eq. 2.11 is the inhibitory current through which the data is provided ro the system. The
larger the dig, the more a feature would have to travel between place v the fiest frame to place
a 1n the second frame, and the less favorable this connection shonld b ther fore more inhihition
is applied to the corresponding “neural unit™.

It is important to note that in contrast with Hoplicld amd Tank’s method for the
traveling salesman problem (Hopfield and Tank. 19%5). the dats entor into ur svetem as applied
currents and not as modifications of the connectivities between unite.

In the next section we present the results of onr computer cnnubtion< by the nmerical

integration of Eq. 2.9.

2.1.1 Computer Simulations

We simulated this network an a Syimbolics 3600 LISP macloone by o siinndatios we dod not 1y
to optitnice the parameters 4 B Cor and Ain any ~ense. (Althongh for the sinndations reportad
in this paper, we took into acconnt the rules discussed in Section 30 Doctead v found thar the

asvinptotic heliavior of the system was the same for a large ranee of paraiineteor valoes [few orders
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a different number of features. For all the simulations reported in this paper (unlese reported
otherwise) we used A4 = 10°. 8 = 10*,C = 1,7 = 1 and A = 1, and the maximal distance

between features in an object was always 1. Finally, we used homogeneous initial conditions for
our simulations. i.e.:

1
Vialt =0) = . (2.11)

The first simulations showed that the network can correctly replicate apparent motion percepts.
Figure 1 illustiates the matching predicted for a 10 feature object rotating by 10°. (Our simulations
extended to objects containing up to 20 features.) In Fig. 1b the same object translates slightly.
In our figures the features in the first frame are always represented by squares and those in the
secoud frame by triangles. The labels for the features are maiutained after the motion, so that the
expected values for the {1,,] matrix at equilibrium should be close to 1 at the diagonal, and close
to 0 off disgonal. The temporal evolution for this matrix in the rotation case of Fig. 1 is shown
in a 3-D plot in Fig. 2. (A similar temporal evolution was obtained for the translation.) The
solid lines in Fig. 1. and in similar figures afterwards, indicate the cstablished correspondences,
i.e. the maxima of the [Vi,] arrays. The durations of network computation for this figure were
0.067 and 0.0457 for the rotation and translation respectively. (We point out that the dependence
on the complexity of the problem. of the convergence time of the simulated parallel network, is
different than that of the CPU time of the computers in which the simulation was performed. This

is because these computers were serial. Thus the CPU times were irrelevant for our conclusions
and were not monitored.)

] ;,Aa a a3 b

i, % TR
b

-

LI

Figure 1. The network matching predictions for a moving object of 10 teatures  The positions of the
features are represented in the first friaome by squares and i the second by tnangles. A specific feature is
mdicated by the same index in the two frames and the solid hies indicate the correspondences established
hy the network. a. The object is rotated by 107 arcund the optic axis he randicates the center of the
rotation. b The object is translated to the el The correct Gurespordences were established in both

ca~e~  They are expected to be correct when the e placoment hotwer s frames s siall
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Note that the correct correspondence was obtained. i.e. the diagonal of thearrav (V] was preferied R
(Fig. 2). Incorrect matches were suppressed to several orders of magnitude helow the correct ones
In the rotation case, even for feature number 10, which by simple proxinity would prefer to marnd,
features 1,2 or 4 (Fig. 1}, the global consensus held and the carrect correspondence was made,

Note in Fig. 2, that at t = 0 the array is flat, which indicates the lack of preference iy
any particular correspondence. Afterwards. a colapetition between the correspondences is initiated
until the diagonal is preferred (¢ = 0.003757,0.00757.0.0157). Only after this diagonal is cliosen
the last false matches are eliminated (¢ = 0.037,¢ = 0.067).

| Vig ot ‘o 0003757
)

Prrare 20 A 4 dupensional plot of the time evolution of the carrespondence array for the rotatin cis
of bFig 1 Tn the six graphs, the Vi axis represents the value of the arne crangioe foom 0 to 1y and
the rand a axis represent the features indices 1 the first and secom! franes rocpectinely The tines of
computation for the arravs are diplaved on the upper right corner of each vrapn The camectoedies o

the correspondence found in Fiye 1 s illustrated here by the convergence of the arran (oo diagonal forn,

Another result of terest e Figes Toand 2 s that the tinn of converoone were shorter i

e constant of the elementary npite of the network (< 0.06- and < 00007 o the rotajon Lo
the translation respectivelvy Tn Section 30 we prove that even inccqurhbeinn the coahdoo b
different fron 0 or Foalthoneh thev can approach theer valoes b i e 0 T gl we o
for practwal purposes a crtterion threshold has to he arbitrarily cor 1o dedin. corereonce, oo e

Cofor esamiples we cot this threshiald at Voo« 0,00 or Vo0 0 1 o N Tt et

i H06- 10 the rotation case and GO an the transhation case ol the oy elemt e v

coter betow 000 o above 050 CT s criterion was used Tor o e, o o prapre o e v
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that the convergence of the syetem was faster than the time constant of the elementary units means
that the variables Vi, can pass the tlireshold criterion very fast, althiongh technically they will reach
equilibrium only after a time constant or so had elapsed. Atany rate. the time of convergence of the
system is limited only by 7, and can be very short. In all the figures in this paper the convergence
tirne was much shorter than 7.

[

The example of Fig. 1 is such that the extent of motion is small. In Section 3. we
prove a theorem which states that for short motions a choice of parameters can be made such that
a convergence to the correct solution is guaranteed. The result in Fig. 1 confirms this theorem.

Not only for small motions, however. does the network simulate psyvchophysical per-
cepts. In the case of large rotations, for example, perceptual illusions often ocenr. This is because

AL s

in these situations, features can travel large distances, and may approach positions in the second
frame that originally were occupied by other features. Such an example is the wagon-wheel illusion,
a well known motion picture effect, in which a spoked wagon wheel scems to rotate in the «irection
- opposite to its real sense of rotation. This illusion is also obtained by the network. and is illustrated
B in Fig. 3. In this example, eight features disposed in the corners of a perfect octagon rotate 11°15
in one case (Fig. 3a) and 33°45" in another case (Fig. 3.b). The 3 D plot of the matrices [V},] at
the convergence time are shown in Fig. 3c and 3d for Figs. 3a and 3b respectively. The convergence
time for this figure was 0.027.

The wagon - wheel illusion is established by the incorrect correspondences that happen
in the large rotation. (Instead of the diagonal, a rotation permutation of the array [V;,] was
selected.) Onee again, the incorrect matches were suppressed by many orders of magnitude.

‘ o The network can also deal in a psychophysically appropriate way with ambiguous
- situations, i.e. cases of perceptual metastability, An example of such a situation is shown in Fig.
1 and has been studied extensively in the psyehophysical literature (Von Schiller, 1933: Gengerelli.
- 19:4%; Ramachandran and Antis, 1983, a.b.c: 1985). Tt consists of two features disposed at the
.. end of an imaginary rigid rod. The rod rotates at each new frame by 90° around its center. The

features in the second frame are equidistant to each one of the features in the first frame. It follows

that a given feature in the first frame is equallyv likely to match both features in the second frame,
. thus giving rise 1o a metastable situation. The numerical values in the matrix [V3,] at the time of
» copvergenee are given in the figure, The time of convergence was 1.6 < 10747 and the array did

not change even after 107.

The metastability of the motion display is expressed in the fractional resalts computed
by the network, This is possible, becauge the variables are not hinary i Fq. 2,300 althongh often tend
to 0 or 1 at equilibrium, The interpretation of these fractional results should be in probabiliste
terms: e a given feature in the first frame has a probability close to 0.5 of matching a given
feature in the second frame. Indeed. when noise intervenes in the data to the network, e wihen
there is a random modulation of the distance between the features, the svstem no longer converges

', 1o 0.5, but rather. a one to-one matching choice is made by the network. inally, we point out
that the sum of the matching probabilities for a feature reported by the network i< fess than I
since all the Vo = 04975 < 0.5, This result is not a numerical artifuct. as in Section 3w prove
. arcalviically that 1< N (where 17 was defined in Fq. 2.9). We also prove in the same -ection,

however, that a chiowee of network parameters can be made such that Vois arbitranily close to N
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Figure 3. The wagon-wheel illusion. The symbols in Figs. a and b are the same as in Fig 1. and the axes
of Figs. ¢ and d are the same as in Fig. 2. An object whose features lie on the corners of a perfect octagon
is rotated around the optic axis. The rotations were 11°15’ and 33°45 in Figs. a and b, respectively. The
established correspondence was correct for the small rotation but incorrect for the large one; the reported
direction of rotation was reversed as is the case for humans. Figures ¢ and d show the correspondence array
at the time of convergence for the small and large rotations respectively. The illusion corresponds to the
network converging to a diagonal form in the first case, but to a non-diagonal form in the second case.

(In humans, if the visual display of Fig. 1 is presented repeatedly. the percept is cither
of oscillation or rotation depending on the temporal parameters of the stimulus ( Ramachandran
and Antis, 1983, a,b,c; 1985). However, the percept predicted by the Minimal Mapping theorv, and
thus by our network, is random from presentation to presentation. In fact, 1t can be shown that ot
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. Figure 4. An ambiguous situation. The symbols are the same as in Fig. 1. The two features of the first
frame are equally likely to match either fcature of the second frame. The network deals with this problem

.- by converging to values that are neither 0 nor 1. For all of the previous examples the networks converged

: to binary values. The matrix shown in the figure is the final value reached by the correspondence array. Its

N values are close to 0.5, and therefore close to the probability that a particular match is made. For humans

) such a display is bistable. The reason why the result is not exactly 0.5 is not a numerical artifact and is

. explained in the text.)

- the solution V;; =~ 0.5 is unstable, and any noise pushes the final values to 0 or 1. This discrepancy

‘- between the predictions and the psychophysics is accounted by the Minimal Mapping Theory’s

- . oulission of information about the past motion of the features; see the Discussion section for more

i. details on the limitations of the Minimal Mapping Theory.)

y As pointed out in the introduction, Ullman (1979) suggested that the main role of

: apparent motion is to serve as the first stage in the process of recovering the 3-D structure of

:'. objects from their motion. It follows, therefore, that the apparent motion mechanism has to cope

) with perceptual oddities due to 3-D motion, particularly nonrigidity in the image, and appearance
and disappearance of features due to occlusions. Figure 5 illustrates how the network deals with

-: these problems and shows that its solutions are similar to those of the visual system.

E: In the figure, a 3- Dimensional 5-feature object is rotated by 27° around an axis which is

: perpendicular to the viewing axis, and which belongs to the plane that divides the head between left

‘ and right. From a bird's eye view, the features of the object lie on the corners of a perfect pentagon
(Fig. 5a). and are projected orthographically into the image plane. This projection is shown in

: Figs. 5 b and ¢ under the assumption that the object is transparent and opaque respectively. In

: the opaque case it ix assumed that only the front features can be seen by the observer (see Fig.

: Da).

. In the transparent case all five features are seen, and the relative distance between
Latures in the image change, because features in different positious in the surface have different
velocities. Note in Fig. 5b that this image nonigidity does not disturb the ability of the network

ﬁ' to solve the correspondence problem. The convergence time for this figure was 0.127.

In the opaque case only three of the features are seen in the first frame and two in
the second. The other features are occluded by the surface, The main problem that the network
. faces in this case is that the first frame has more features than the second. Perceptually this leads
~ a7
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Figure 5. Nonrigidity and the appearance and disappearance of features a. A bird’s exe view of an object
rotating by 27° around an axis perpendicular to the viewing axis and vertical in relation to the head ol
the obsorver (shown schematically in the figure). The features of the object lie on the corners of a perfect
pentagon b The object is assumed transparent. The correspondences are computed correctly, in spite of
the nonrigidity of the image, i.e. features travel by different amounts. c. The features are assumed to lie

on the surface of an opaque cylinder Note that feature 2 appears in the first frame, but not in the secand
I he solution of the network matches that of the human visnal system. and features 1 and 2 fuse i the

second frame
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to fusion, i.e. two features or more from the first frame match one in the secand (Kolers, 18721,
I'lie network also obtained this solution (Fig. 5c, t = 0.17) when N in Eq. 2.5 was substituted
by N,.az as explained in Section 2. Note also, that the fusion obtained by the network had the
minimal mapping property, t.e. features tended to travel as little as possible. The same strategy
(i.e. substituting N by N,,.r) leads to splitting, i.e. a feature in the first frame matches two or
more in the second, if the number of features in the second frame is larger than that of the first.
(This result is again similar to human perception; Kolers, 1972. Fusion and splitting, however,
have been shown to disappear if the knowledge of occlusion is present; Ramachandran and Anstis,
1983.,b.)

We show in Section 3, that for short motions, the right parameters can be chosen, such
that the correct solution is obtained by the network. This seems to be the reason for the success of
the network in the simulation of perceptual data (Figs. 1-5). This fact does not imply, however,
that the network converges in general to the global minimum of the energy function given in Eq.
2.5. In fact we illustrate in Figs. 6 and 7 that for random motions an incorrect matching may be
found. We also show, however, that even if the correspondence is incorrectly established, it is near
optimal.

For Fig. 6 a computational experiment with 450 runs was done. For each run the first
and second frame consisted of two objects of 6 features each, randomly placed in a disc of radius
1. The correct match, i.e. the one that minimizes the total distance traveled by the features, was
established by exhaustive search. The network was then applied for the 450 runs and the number of
cases that fell in each of the following four categories was observed: 1. correct answers, 2. incorrect
answers but one-to-one matching, 3. lack of one-to-one matching but six matches, and 4. less than

six matches. The frequency histogram is shown in Fig. 6.

Note that a one-to-one mapping was always established (and consequently the number
of matches was always six). In this experiment, however, only 58.4% of the solutions computed by
the network corresponded to minimal mapping.

In the other 41.6% of the cases, an incorrect answer was found. These incorrect solu-
tions, however, were near optimal as seen in Fig. 7. Four motions for which a incorrect mapping
was established are displayed in Figs. 7 a-d. In these figures the correct matches, as found by
exhaustive search, are marked by the dotted lines, and the predictions of the network are marked
by the solid lines. Note that the solutions found by the network were almost identical to the optimal
ones, and the errors were each time the switching of only one pair of correspondences.

The histograms in Figs. 7, e-li, correspond to Figs. 7, a—d, respectively. They plot
the distribution of the total distance traveled by the features, for the 6! = 720 possible cases of
one-to one matching. The arrows in these histograms show the total distance traveled for the
answer given by the network. Note that as predicted by Figs. 7 a-d, the network results fell in
near optimal positions, i.e. many standard deviations away from the mean of the distribution.

Another fact of interest related to the experiment in Fig. 6, and which may provide a
psychophysicallv testable prediction for such types of networks, is that the time of convergence is
much longer on average for incorrect matches than it is for correct ones. In fact, for the last 150
runs of the experiment in Fig. 6, the mean time of convergence for cases where correct matches
were predicted was 0.167 £ 0.0017 (standard error), and the mean time for the incorrect cases was
03667 + 0.013r. Lrrors are due to a conflict hetween the necessity for minimization of the total
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Figure 6. A frequency histogram for correct vs. incorrect matchings. For 450 runs the first and the second
frames consisted of two random objects of six features each (the features were randomly placed on a disc

of radius 1). The first column corresponds to the cases where a true minimal mapping was found by the

network, t.e. the sum of the distances traveled by the features is minimal as verified by an exhaustive
search. The second column corresponds to the cases where the minimal mapping was not found by the
network, but a one-to-one matching was still made. There was not any case where a one to one match
failed to appear (third and fourth columns of the histogram). Thus, the correct solution is not alwavs
obtained.

distance traveled and the necessity for one- to -one matching. These conflicts often cause a delav in
the decision process of the network. In Fig. 8 we illustrate this fact for the paradigm of Fig. 7 d.
Similarly to Fig. 2, we show the temporal evolution for the [V,,] array.

Note that at ¢ = 0.067, the values of 1y, and Vi begin to rise, mainly diiven by the
proximity of feature 3 in the first frame to features 2 and 3 in the second frame (see g, 7d).
Given the imposition of one-to -one matches, this leads to a slow competition between Vi, and Vyy
(t = 0.12r,0.247). In the meantime the values of Vi Vi Vs and Vigy raised and converged to |
about { = 0.247. From the exhaustive search we found that the optimal solution implied 1, 2|
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\ Pignre 7. Near optiimal computations by the network. a-d. The four cases were taken from the experiment
done in Fig. 6, and show examples where minimal mapping was not found by the network. The symbols
e are sitnilar to those of Fig. 1. The dotted lines represent the correct minimal mapping as found by an
- exhaustive searcli. The mistakes made by the network were always the switching of only one pair of
. correspundences. e I correspond to a d respectively. These histograms show the distribution of the total
~ d . . -
o Costance traveled by the features for all of the possible cases of one to one mapping. The abscissa hasx
* arbitrary scale (but equal in all histograms). The histograms have the same area,; 6! = 720 matching cases.
y 7?. The arrows indicate the total distance traveled for the solution obtained by the network (in figures fand g
) 7 kN . . .
. {:-'- this vitlue was contained by the left most bin of thie histogram). In the cases where errors were made, the
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Figure 8. How errors are made by the network. The figure shows the time evolution of the correspondence
array for the example shown in Fig. 7 d. For an explanation of the details see Fig. 2. The mistake is made
because of the conflict between minimal mapping and one to-one matching. From a minimal mapping
point of view, the matches Va2 and Va3 would be preferred. This, however. goes against the one to one
matching requirement. While V3; and V33 compete, other matches, which are not necessarily correct from
a minimal mapping point of view, develop.

This was an impossible solution for the network after 1 = 0.247, becanse Vi = 1. 1t followed tha
the network could not reach an optimal solution anymore and had settled 1o a nearly optimal one.

in which V33 = 0 and Vj2 = V33 = 1. The long time of convergence was due to the tnability of 1},
to rise due to the imposition of one-to-one matching and to the weak capacity of the network to
increase Vi, because of the large distance between feature | in the first frame and feature 2 in the
second.

The main reason for building an implementation of the Minimal Mapping Theory i
terms of “neural- networks™ is to obtain a fast convergence to the solution, This was the case for :
the examples showed so far, in which the convergence happened in a fraction of the time constiant J
of the elementary units of the network. We now bring evidence that this fastness persists oven
when the number of features in motion increases. In order to demonstiate this we pertormed an
experiment whose results are plotted in the graph of Fig. 9. For eacli eutey in the graph o fow rune

were performed. Each ran consisted of an object of a given numiber of features (uhacissa) randomlv
placed on a disc of radius 1. The object was identical in the first and second Tromes tao suarantoe »

that a correct solution wonld be obtained. The average time of convergence and the standard erea:
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Figure 9. Convergence time of the network vs. serial algorithms. The data points show the average time
of convergence (and standard error) of the network as a function of the number of object features. The
features were randomly positioned on a dise of radius 1, and the image in the first and the second frame were
b identical to gnarantee a correct solution by the network. The thick line is fit to the data and corresponds to

a power law (Fq. 2.12), with a power of about (.52 'The thin line is drawn for comparison and has a slope

of 1. The dashed line has the same slope as the theoretically calculated worst- case time of convergence for

serial algorithms solving the same problem. Simnilar slopes were obtained for average times of convergence
. for related algorithms (Lawer, Lenstra. Rinnooy Kan and Shmoys, 1985.) The network dependence on the
nurmber of features is mild and much weaker than serial algorithns.

[ for these rmns were measured (ordinate).

The results are plotted in a log log scale in Fig. 9. The thick solid line shows the
results of the experiment. 'I'he fact that this curve was a straight line in a log log plot implies that
the dependence of the convergence time, T,., on the number of features, N, was a power law, i.e.
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where F and 4 are positive constants. For comparison the thin solid line shows a tinear dependence,
(adjusted to be equal to the experiment for the two features case). ie. 5 = 1. Note that the

dependence of the solution obtained by the network is sublinear. In fact its power was abou:
¥ = 0.52. (This means that from the point of view of discrete optimization the network methaod
has a complexity of about O(n'/?).) One sees, therefore, that the convergence timne of the “nenral
network”™ scales weakly (square root) with the number of features in motion.

The strength of this result is emphasized if one considers good serial algorithms to <ol e
the same problem. Mathematically, minimal mapping is a discrete optimization problem know
as the linear assignment problem (Burkard, 1979). Some of the best serial algorithms proposed
to solve this problem scaled with the third power of the number of features, (Dinic and Kronrad.
1969: Tomizawa, 1971), i.e. v = 3. (Once again, this implies that from the poiut of view of discrete
optimization these methods have a complexity of about O(n?).) The relatively strong dependence
of the serial methods are illustrated by the dashed line of Fig. 9. Note the much steeper slope of
the serial algorithms, compared to the network implementation. (There are not at the present time,
as far as we know, studies of the complexities of other parallel solutions for the correspondence or
related problems. Therefore a comparison between our network with other parallel methods was
not possible.)

In conclusion we have shown evidence that the convergence time of the “neural
network” implementation of the Minimal Mapping Theory scales weakly with the number of features
in motion, and therefore, remains short even for cases with a large number of features. This is due
to the massive nature of the connectivity of the network, which allows information to travel at high
rates from unit to unit in the network.

In the next section we prove *Lieoretical results related to the quality of convergence of
the “neural network” implementation of the Minimal Mapping Theory.

3 Theoretical results

Hopfield and Tank (1985) demonstrated good solutions to the Traveling Salesmau Problem for up
to thirty cities. It seems that for a larger number of cities the solutions beconie less good (Hopfield.
pers. comm.). We have reasons to believe that the network reported in this paper behaves similariv.
Our problem, however, is different in an important aspect. The size of the d;,’'s depeud on the
time between matched image frames. We prove this theorem: provided that the extent of motion
is sufficiently small the network will always obtain the correct match. Therefore, an increase in the
number of features to be matched can be compensated for by reducing the time between frames.

In order to show this result we prove that if the diagonal terms of the [d,.,] matrix are
sufficiently small compared to the off diagonal terms, then one we can choose the parametors of
the system such that it will always converge to the correct solition. At the end of the section, we
will use this and other results to explain how choices of parameters were made in this work.

We will first show, however, that the strength of matches, V. are never exactly 0 o
Io hat can only approach these values arbitrarily closely. In the proof for this cldm we will also

provide a derivation of an analytic expression for the equilibrinm <olutions of the network.
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XN As shown in Section 2, Eq. 2.5 is a Liapunov function for the syetem. Therefore the 5;
~7 )
solutions of the system are asymptotically stable. It follows that at equilibrium dU,,/dt = 0 or ’
from I.q. 2.9: 2
i~
._\
Uig = 7 (B(N = V) = Cdia = A(VEOL + VOV —2Vi,)) | (3.1) o3
“x
which is an analytic expression for the equilibrium solution of the system. The values of Vi, are o
bounded; 0 < ¥y, <1 (Eq. 2.3). It follows that the right wing of Eq. 3.1 is bounded from helow a-
and above. Indeed: ;-.;'
T(B(N = N?) =Cdia ~2NA) < Uiy < 7(BN - Cdia). (3.2) Y
This proves that at equilibrium, 0 < Vi, < 1, because by Eq. 2.3, Vi, — 1 (0) if and only if
U — o0 (—x). .
The values of V;, are different than 0 and 1 not only for equilibrium. Indeed, differen- L
tiating F£q.2.4 and substituting in Eq. 2.6 yields:
dV; OF
2 = oAV (1 = Vig) = 3.3 -
dt a( ta)a‘/ia ( ) .
It follows that if at 0 < t' < 00, V), = 1 (0), then dV;,/dt = 0. (One can show that 3E /017, is ..::
always finite.) Therefore, if at a given instant, V;, = 1 (0), then it remains there forever. e
6 Let us now state the main result of this section.
THEOREM: For given A and N > 2, if di; < djp, 1< i,j,b < N, j # b, then
for any 1 > € > 0, there are By > 0 and Cg > 0, such that if B > By and C > (y. it a0
follows that at equilibrium 1 — Vj; < ¢ and V,, < €. :-:‘_
L/
In the process of proving this theorem we will provide bounds for By and (5 in terms of A, the A
data parameters and «. We begin our proof with three short lemimas. L
o
LEMMA 1: At equilibrium N > V. :
Proof: , .
Consider the update Fq. 2.9. This can be written as .
::::
RN
e
7o)
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-dét. (Ugaet/f) =e'/" (—A(vEoL 4 yROW _ 2,4)

(3. 1)
+B(N - V)y—Cd.,).

If N =V =0, then Uj, exp(t/7) decreases, because the sum of the terms on the right-hand side of
3.4 is negative. This implies that U;, and consequently V,, and V decrease. The assertion of the
lemma then follows from the fact that at t =0, V = N (see initial conditions in Fq. 2.11).

LEMMA 2: For given A, if d;; < djp, 1<4,5.6 <N, j#b. then for any a > ().
there is Cg > 0, such that if C > Cy, it follows that at equilibrium {7, = U7, > ar.
Proof:

From Eq. 3.1 one obtains that at equilibrium:

(U;'i - (j]b} =
- AV + yROW _ 1'JC‘OL _ pRow

7 (3.5
S+ W) + Cldyy — dii) ’

> =NA+Cd,

where d™ = min, j, (djo~d;;). This inequality holds because by Lemma 1, | VkCO" + V,"“)W =20
NoLet ("> Co=(a+(NA))/d*, then:

(Ui = Uj) > ar. (3.6

LEMMA 3: For given A,C and N > 2, and for any € > 0, there is By > 0 such that
if B> By then at equilibrium N — V < ¢,
Proof:

From Eq. 3.1 and by Lemma 1, the following inequality can be written at equilibrium:

Uia

> —-AN+ B(N - V) - (", (3.7

where d®* = max, , d,. Let B > By = (AN + Cd™)/e. Then N =V < . This is becanse, if an
the contrary N = 1V > ¢, it follows:

(]m ;) ” o

Ve
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RN From Feq. 2.3 this implies that Vi, > 1/2 or:
: ve s, (3.9)
N which is in contradiction to Lemma 1 and implies ¥ -V <ee.
: °
4
’
5 We now proceed with the proof of the theorem.
.
X
r. Proof of the Theorem:
o Let
- AN + Cd**
B> By = —(———t———) (3.10)
and
Qe
. lo 2N —€)(2(N? = N) —¢€)) /€¥) + 2ATAN
: o o Toa (@Y~ (N~ N) - 9) /¢) | o)
-, 2Ard*
- We want to prove that Vj, < ¢ and Vi; > 1 — €. In the first case we will prove a stronger result,
& namely Vj, < ¢/(2(N? = N)). Suppose on the contrary that Vj, > ¢/(2(N? — N)). In that case
€ .
Y Vi > 5 (3.12)
J#b
and from Eq. 2.4
Up > ~1o ‘ (3.13)
- 29N By NT_N)—¢ ‘
From the proof of Lemma 2 and Condition 3.11, one obtains:
2 1 (2N — ) (2(N? = N) =) _
4 (/ii—'"/jb> alog( P . (-‘]1)
- Combining Eqs. 3.13 and 3.14 and substituting the result into Eq. 2.3 one obtains:
\ V> 1= (3.15)

2N

[l A Ot L AR O




24

ZV;; >N - % (3.16)

However,

V:ZV,-,-{»ZVJ,,. (3.17)
t J#£b
Thus, from Eqs. 3.12 and 3.16 one obtains that 1" > ¥V, which is a contradiction to Lemma 1. This
implies Vj, < ¢/(2(N? — N)) < «.
Let us now prove that Vi; > 1 — ¢. Becanse Vj, < ¢/(2(N? — N)), we obtain

€
Vi < ~. BIEN
2 Ve <3 (3.1)
J#b
Also, from Condition 3.10 and the proof of Lemma 3:
V>N- ¢ (3.19
4 2 . ). .
From Eqgs. 3.17, 3.18 and 3.19 one obtains:
Z Vie > N — €. (3.20
k
But Vix <1, thus:
V>N —e=) Vie>1-c (3.21)
k#i
which is the desired result.
[ )

We have shown, therefore, that the network is capable of exactly solving the correspondence problem
for motions smaller than the internal distances of the object. This is particularly important for
non dense objects, i.e. those containing small to medium numbers of features (e Fig. 1). Our
computer simulations confirm this result, and indicate *hat for such objects. a near optimal match
is obtained for complex large motions (Fig. 7).

The development of the theorem, and other resnlts, suggest rules of thumb for the
choice of the network’s parameters. Consider the energy function in Fq. 2.5, For given V. .,
proportional change of parameters A, B.C and /X will only scale the shape of £ and thius, wi!]
not change the equilibrium solutions of the system. Also, the dynamics of convergence will 1o
be changed. because a modulation of these parameters will cause an inverselv propartional ¢hange
in A, leaving the equation of motion unmodified. (To understand this claim more easily see the
cquation of motion in the form expressed in Eq. 3.3.) It follows, contrary to wha' was conelud.
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by Hopfield (1950, that the absolute valne of the parameter X is irrelevant; only ite relative value

to the other parameters matters. In all of our simulations and in the rest of this discussion. A was
set to 1.

A few extra rules of thumb can also be derived from our results. Equation 3.10 snggests
that the parameter B has to be high compared to AN and ("d”. The equation gives formulas for
how large B should be in terms of the precision required in the problem (¢). Fquation 3.11 suggests
that ('d= shonld be relatively high compared to AN for short motions. Simulations showed that
AN should be high if the system has to solve ambiguous situations in which multiple matchies to
given feature are possible (Fig. ).

4 The Structural Theory for Apparent Motion

In this work so far, we developed and analvzed a “neural-network™ implementation of the Minima!
Mapping Theoryv. The justification for the Minimal Mapping Theory is based on Ullman’s argument
11979) that the structure from motion process is divided in two stages; first solving the correspon-
dence problem. then using the correspoudence information to recover the 3 D shape of objects. Tn
this section the same mathematical formalism of the preceding sections is used, i.e. that of the
“neural networks”, to bring some support to Ullinan's two-stage hypothesis. We study whether
rigidity alone (the basic assumption used to recover the 3 D structure from motion) is sufficient
to solve the correspondence problem (and simultaneously the structure from motion problem). We
assume rigidity in the form used by Ullman (1981). We call the theory ba:. ! on rigidity alone the
Structural Theory for apparent motion. It is shown that further constraints a-e usually needed to
help this theory obtain correct answers.

4.1 A Network Implementation

In this section we do not use the assumption of strict rigidity, but rather Ullman’s incremental
rigidity schemes which allows for nonrigid motions (Ullman. 1984; Grzywacz and Hildreth, 1986.
19570 Gravwaez, ot al.. 1987: Hildreth et al. 1987). In the incremental rigidity scheme an object
with .V features is described by a model (r;(1).y,(t).z,(t)). fori = 1,.... N. The r,y components are
directly observable (assuming orthographic projection) and the z components are to be deduced.
At £ = 0 the 2 components are set to zero. Then, at each instant, one uses the previous values of
tHie 2’0z 00— &1y to caleulate the new ones. 2! = z,(t). This calculation minimizes deviations of
the object’s rieiditve AKL between frames. AR mayv be defined as follows. First define L, (1) by

Lyt = Gty = 0 4000 = iy () + (200 = =,(10)° (1.1)
P 0 ‘!4"iH"
\
AN L(I,.Jm Lo (t— ). (1.0)
L

Live St tural Theooy proposes tosolve simmltaneously the correspondence and the structure from

motion problems. his is to he done by finding the correspondences. which upon application of the
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incremental rigidity scheme, yield the minimal AK. We now use the set of binary correspondence

variables V;, to define a new matching cost function F'g, whose minimization is equivalent to that
proposed by the Structural Theory:

N
Er= ) (Lap(t) = Lij(t = 60 ViV (1.4
i,7,a,b

To find the correspondence and structure simultaneously by using incremental vigidity, we mininiize
E g with respect to 2] and Vj,, requiring that all features in the first frame are matched to exactly
one feaiure in the second. The method is similar to the one described for the Minimal Mapping
Theory. It begins by substituting the Easps term of Eq. 2.5 by Fpr of Eq. 1.3, It proceeds by
updating the U;, variables (see definition in Eq. 2.4) by using simultancously the equations of
motion 2.6 and

o g08 <
dt 0z!
where 3 is a positive parameter of the problem. As in the case of the Minimal Mapping Theory,
E is a Liapunov function of the system. This is because for the Structural Theory Fq. 2.7 can he
rewritten as:

IN

N. (1.1

e DALY B L) gy LA (45
- U, Vi, - Jz!
which together with Eq. 2.8 proves that dE/dt < 0. It follows that also for the Structural Theory
the system will stop in a point of the solution space in which the function K is at one of its minima.

The next section illustrates the results of our simulations with the equations of motion
2.6 and 4.4, and compares the results to those obtained for the Minimal Mapping Theory. It also
discusses a theory which is a hybrid between th. Structural and the Minimal Mapping theories.
and which seems to give rise to better behaviors than any of the isolated theories.

4.2 Comparison with the Minimal Mapping Theory

Despite extensive experimentation with the parameters, the system based on the Structural Theory
rarely converged to the correct answer, unless given a hint of the correct matches. 'The systenn made,
however, some interesting mistakes. It would sometimes choose matches and depth values for the
features. in such a way that the model of the object for the second frame had almost the same
3 1) structure as the model for the first frame, but sucl that the motion Letween frames wi-
complicated. We illustrate this phenomenon in Fig. 10.

In the example shown in this figure, a three feature object was rotated aronnd an axi-
perpendicular to the v — 2 plane by 30°. (It can be shown that i this case. if we use a matchine
cost function of the form expressed in Eq. 4.3., the y coordinates of the features are irrelevant 1o
the problem.) When observed from a bird’s eye view the object looked like a rectangular trianale
of sides 3.1 and 5 (solid straight lines of Fig. 10a). The r coordinates of the three teatures in the
first frame where 0.0 and 4 for features A, B and (' respectively. The ¢ coordinates for the same
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Figure 10. The errors of the Structural Theory. The solid triangles are the bird’s eye views of the moving
object. a. shows the first framme and b. the second. The dashed triangle in a. is the triangle computed
by the network implementation of the Structural Theory. The image coordinates of A’, B' and "’ are the

e same as the image coordinates in the second frame of A, B and C, respectively. The curved arrows show

‘ the computed correspondences. The computed structure and correspondences were incorrect. However, if
the computed structure is superimposed on the true structure, while forcing their corresponding corners to
be close, then they are shown to be similar (Fig. b). Thus, such a theory may be able to compute a rough
estimate of the structure of an object, without having to solve the correspondence problem.

features were (.3 and 3. The rotation was anticlockwise (with feature A fixed), when observed
from the bird’s eye view. The solid lines of Fig. 10 b show the position of the object in the second
frame from this view. The values of z were directly measurable by the observer. We assumed that
the observer knew the values of z in the first frame. The values of z for the second frame and
the values of the Vs were calculated by integrating the equations of motion 2.6 and 4.4. (The
parameters used in this display were A = 5000, B = 10000,C = 10,7 = 1,A = 50 and 3 = 10. The
iitial values of the » coordinates in the second frame were close to zero, but randomly chosen. In
this example these coordinates were 0.01,—0.01 and 0.005 for features A, B and (', respectively.)
A bird’s eye view of the solution is shown in the dotted lines of Fig. 10a. The curved
arrows indicate the motions observed (as shown by the correspondence variables, V,;). Note that
these motions were incorrect and very complicated. The 3-D structure of the new triangle, however,
was not very different from the original one. The dotted lines of Fig. 10 b represent the dotted
triangle of Fig. 10 a. but with the sides rotated and “mirror imaged”. These transformations were
done in such a way that the matched corners in the two frames were now close in space. Note the
similarity of structures between the original and computed triangles. This indicates that although
the “neural network” implementation of the Structural Theory is unable to compute the matehes
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correctly, it may be used in some situations to bypass the correspondence problem altogether, and
make a fast (but rough) estimation of the parameters of 3 D structure of the ohject.

The failure of this system to obtain the correct correspondences does not papty 1l
the Structural Theory would fail for any implementation. On the contrary. for most rigid motiog-,
an exhaustive search based on the Structural Theory would give the correct answer. This is becinse
the right correspondences and structure of the object is often thie only situation where the eneran
function is exactly 0. The above failures. however, are to be taken as a sericus handicap of 1he
Structural Theory. It shows that the solution space explored by this theaiy v complexs ol it has
mauy local minima. This argument shows that only very elaborate. and therefore, ~low methods can
find the global minimum. The Minimal Mapping Theory, on the other hand, wonld only vield i
correct matches for translations or relatively short rotations. independently of the implementation.
As we have shown, however, for the Minimal Mapping Theory a very fast “nenral network™ iimple
mentation is always possible. The evidence that apparent motion in humans is mainly based on
minimal mapping. therefore, seems to point ont, that their solution of the maotion correspondence
problem gives up precision under all circumstances in favor of speed.

We call the attention to the fact that the complexity of the solution space in the

Structural Theory is not due to the use of two equations of motion. Fqs. 2.6 and 1.1 instead of

onlv one used by the Minimal Mapping Theory. This complexity is becanse of the more complicated
dependence of Fy on the correspondence variables, Vo, . than of Fagay (compare FEas, 2.1 and 1.3,
bn fact. Grzyvwacsz (1986) has demonstrated that problems similar to those ilicriated in Fig. 10 still
exist i a 2 Dy version of the Structural Theory. In this version a search for depth values (equation

of thation -11) 1s not necessary.

Besides being able to bypass the correspondence problem under some circumstances
cbres 1ob the Structural Theory may also turn ont 1o be useful in cases for which minimal mapping
fails. Such situations may include large rotations and motion of featnres past occluding bonndaries
Sfan obect. We found in our simulations that a theory that is a hvbrid between the Stro tural aud
e Minaual Mapping theories can often handle these situations. Onrimplomentation o't hvbpud

thecry was done by including both the Fagar and the Ep terms in the energy hinction 0 . 2 50

s tvhnd thieory proved to be the best of both worlds, beine ahle to compute simaanconsly
ared correcthy the correspondences of the features in motion aud their depth We conclnde that
althouel the rigrdity assnmption used by the Structural Theory has serions drawhbacks when used
aline o salve the correspondence problem, it can siguificant!v he o when need in conjunction with

e ranoenal mapping sumption.

S Iscussion

Ll pagper s described methods of implementing theories of wotion correspondence using mas
tveln paraltel networks. Our emphasis has been on networks that wree et o which obtains the
correct result mo-t of the time rather than on networks that e infallible bat slow. We showed
how to despn a network implementing Ullman's theory of minmal nappine and demonstrated its

cttectivenc 0 We proved some convergence results for this network, Neat we questioned whethien

vt e was sinflicient to determine correspondence and tested oo heory bised on s assugp
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tion. This theary hehaved poorly hut a hybrid version incorporating come elements of the Ninimal
Mapping Theory worked well.

An aim of our work was to see if rigidity alone was sufficient to solve the correspondence
problem. There are a number of ways that rigidity could be used and it is infeasible to test all of
them. Instead we concentrated on a method based cn the incremental rigidity scheme (Ullman,
1984), and conjectured that other schemes would give similar results. Our results snggest that
rigidity alone is unable to solve the correspondence problem, but there are two reservations. Firstly
it is possible that other methods of using rigidity may give better results. Secondly it is possible
that the fault lay in the use of our choice of network and that other implementations would succeed.
To check this second possibility we designed a scheme based on simulated annealing (Kirkpatrick
et al.. 1983). Trial runs indicated that the convergence of the Structural Theory did not improve.
The energy function seems to have a number of minima of similar depth and so no method, even
simulated annealing, will succeed in a reasonable time.

There are some simple psychophysical experiments that could be done to see if rigidity
i~ used for correspondence. Consider a triangle in space lying in a plane along the line of sight of the
viewer so that the projections of the three vertices onto the image plane lie in a straight line. As the
triangle is rotated the order of vertices in the projection will reverse. In these situations minimal
mapping will give the wrong answer. The modified version of the Structural Theory (including
minimal mapping terms) will give the correct answer. Informal psychophysics suggests that human
perception may be wrong in this case, but the results are not conclusive.

We were able to prove that our minimal mapping network converged to the right answer
only if the displacement of the features between frames was smaller than the average distance
hetween features, There are probably few situations for which minimal mapping wculd give the
correct answer if the displacement of features is larger than the average distance between them. It
would be interesting to devise examples of these situations and do psychophysics experiments.

Minimal mapping is an elegant theory that gives a good description of a range of physi-
cal phenomena. Recently, however, two psychophysical effects have been discovered that the theory
cannot account for without modifications. The first is motion inertia (Ramachandran and Anstis
10983.1987; Eggleston, 1984; Grzywacz, 19587). This shows that the matching of features between
two frames is influenced by their matching in previous frames; features have inertia and tend to
prefer matches in the directions in which they have been moving. In contrast the Motion capture
effects can be dramatically illustrated by Ramachandran’s moving leopard analogy. If the boundary
of the Jeopard is invisible then the spots on the leopard are matched to their nearest neighbor. If
“captures” the spots and their matches are different. Effects like
this can be demonstrated by experiments in which dot stimuli are captured by surrounding con-
tours, moving periodic gratings or other dots (Mackay, 1961: Ramachandran and Anstis, 1983.h:
Ramachandran and Inada. 1985 Williams, Philip and Sekuler, 19%6). These experiments show

the houndary is visible then it

that minimal mapping has limitations and some modifications are needed.

The main reason for using a massively parallel network is the reduction in computation
tine. The advantage arises because many problems are parallelizable, and with such a network we
can exploit the trade off between the number of elements and the time of computation. Currently.

researeh is heing done to construet electronical devices that implement such networks. This massive

parallelism may also lead to Tault tolerance. Networks are attractive because they offer a method of
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turning a problem with discrete elements into one with continuous ones, thereby making it possible
to solve a decision problem with an analog machine. Another method of turning a discrete prolilem
into a continuous one has been described by Marroquin (Marroquin, 1987).

A further advantage of networks of this type is their possible biological plausibility
This argument, however, must be used cautiously. The network is composed of simple electrical
components that could simulate the dynamics of the membrane of simple neurons. Moreover there
is similarity between the sigmoid input-output relations of the network elements and the hehavior
of the synapses of neurons. However there are a number of important differences: real neurons are
very complex (von Neumann, 1958; Koch et al., 1982; Crill and Schwindt, 1983: Kufller et al. 1951,
and certainly do not have symietric synaptic connections. Moreover the brain is not one large
homogeneous network and instead has many different levels of organization. The interconnection-
between neurons are constrained to be local, although well defined fiber tracts exist for long distin .
communication. Therefore networks of the type we have been considering can only model focal
regions of the brain.

Our networks make fast decisions, but not always the right ones. It can be argued
that sometimes it is more important to obtain fast approximate solutions to problems rather thar
slow accurate ones. This is curiously similar to the argnments of Simon in decision theory (Simon.
1979). The claim being that a decision maker should, and in practice does, make quick approximate
decisions rather than being perfectly rational and finding the hest possible decision regardless of
the time it takes to compute it.
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