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b Abstract

\/Wc treat the ’approximately’ optimal control problem for tandem queueing
or production networks (with local feedback allowed) under heavy traffic. The
buffers (scaled with traffic) are finite. The controls allow various inputs,
connecting links and the processors to .bc shut down or opened, in order to
manage the system. The service and arrival rates, as well as the routing
probabilities can also be controlled, and the system statistics can depend on the
system state (scaled buffer occupancies). The associated costs involve holding
costs, costs for shutting off/on the links or processors and the opportunity cost
for lost production. It is shown that the (scaled) controlled system converges
weakly (in an appropriate sense) to a controlled limit ’reflected’ diffusion. In
the rescaled time, the actions of the controllers lead to multiple ’simultaneous’
impulses in the limit problem. Thus we have a non-standard limit control
problem, and the usual methods of weak convergence for systems under heavy
traffic must be modified. Since the optimal or nearly optimal controls for the
physical process are usually not possible to get, it is of considerable interest to
know whether an optimal or nearly optimal control for the limit process is also
nearly optimal for the physical system with heavy traffic. This is shown to be
true, under reasonable conditions. Although the limit control problem is

non-standard and there 1is little available theory concerning it, acceptable

numerical procedures are available. L

Key Words: Weak convergence, queueing networks, production networks, heavy
traffic approximations, controlled reflected diffusions, controlled queueing
networks, approximately optimal stochastic controls, “numerical methods for
stochastic control;, .-
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I. Introduction

We consider optimal and ’'nearly optimal’ control problems for the open
queueing networks in heavy traffic of the tvpe dealt with in the fundamental
papers of Rc¢iman [l] and Harrisonv. [2], [3]. Owing to the state and control
dependence (in our problem) of the routing, arrival and service time processes,
as well as to our use of finite buffers, and to some approximations which are
used in [1] - [3] in the modeclling in these papers, much of their methodology
cannot be carried over. We do try to retain their structure and results
wherever possible. One of the main motivations behind the heavy traffic
approximations [1] - [4] of queucing networks is the idea that the limit process
(which is a reflected Brownian motion in the past work, and a more general
impulsively or singularly controlled reflected diffusion here) is easier to analyze
than the actual physical process, and that it is much easier to find good or
optimal control policics for the limit than for the physical process. This is
undoubtably true, particularly if the traffic is truly heavy the buffer size large
or if the routing parameters and input and service times are correlated or state
(queue size) dependent.

In [1], onc has several interconnected service or processing stations, and at
each there is an infinite buffer (ours is finite, but suitably scaled with traffic
intensity). At each there are possible arrivals from outside the network as well
as arrivals routed from other service stations. The departures are routed
(perhaps randomly) to other service stations (perhaps to one that they had
previously visited) or leave the network. Eventually (w.p.l) all customers leave

the network. Under reasonable conditions on the interarrival and service times
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and with appropriate spacial and temporal normalizations, in the heavy traffic
case the vector of the normalized queue lengths (the normalized number in the
buffers plus in service) converges weakly to a reflected Brownian motion with
constant drift and covariance parameters [1]. This will be generalized here in
several directions, although we work with a somewhat simpler network
structure.

Although it underlies a lot of the motivaiion for the limit theorems, there
seecms to have been very little work on the usefulness of the limit process for
purposes of getting a good or nearly optimum control for the physical process.
Let ¢ index the traffic intensity. As ¢ = 0, the ’intensity’ goes to = For
whatever cost criteria is used (this will be defined in later sections), let V€&(m)
denote its value for the physical system when a policy n is used. Suppose
that 7 is an ‘'adaptation’ of the optimal (or S-optimal) policy for the limit,
applied to the physical process. (We will say more about such adaptations later.)
For M€ to be a 'good’ policy for the physical process we need at least that
vé&me) - igf Vé&n) be small for small €, where the inf is over an
appropriate sct of policies for the physical process. This is the problem
addressed here. In the course of the development, a number of interesting and
non-classical problems arise; for example, the appropriate 'limit’ control problem
might involve multiple ‘simultaneous’ impulses, and we must treat state
dependent service, arrival and routing processes.

There are many possibilities for the structure of the control problem. Ours,
to be described below, illustrates the main problems and develops a (weak
convergence based) method which applies to many other formulations. We are

forced to differ in several important respects from models used in earlier work
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Ry on the limit theorems for queueing networks in heavy traffic. If the service or

:l.: arrival rates can be controlled, then the limit process is no longer a reflected

»:‘l: ‘ Brownian motion with constant coefficients; we wish to allow these rates to

;:: . depend on the system state; we must deal with (implicitly or explicitly) a

ii" dynamically controlled upper bound to the buffer size. (Even if the buffer size

:o is infinite, the optimal control might force it to be shut down); owing to the

)

:"_ control, there might be °travel’ along the boundaries; some controls (e.g., on/off

WX controls with associated impulsive costs) might yield nice process paths in ’real’

- time¢ but in the usual interpolated time (i.e, for the sequence for which we scek

)

::: the weak convergence) the paths between the on/off times move faster and

i faster as € - 0 and converge to a discontinuity - but not in the Skorohod

a topology; the nature of the convergence at these discontinuities can yield (an

E interesting) limit process with ’'multiple simultaneous impulses’; the lumping
together of all idle times as done in [1, eqn(3)] in the B, (1) argument is a

‘ useful ’approximation’, but it is inappropriate in our context owing to the state

and control dependencies, and is not quite the exact physical model in any case

,:‘ (although it yields the correct results); to show that the ’limit’ controls and

k other quantities are ’admissible’, or non-anticipative with respect to the limit

J Brownian motions or reflected diffusions, we neced an approach that is at least

;:; partly along the lines of the martingale method. In fact, we combine the ideas

E; _ of [1] with those of the martingale method and the weak convergence techniques

;i:; of [5), [6].

2 The work here is a continuation of the lines of development in [6], {7], [8]

™,

;' where approximations to other optimal control problems are dealt with. Owing

:‘ to the special features of the controlled heavy traffic network of queues, this
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past work is not applicable to this problem without major change. We refer to K
it where helpful in simplifying or reducing an argument,
In Section 2, the basic system is described, the control problem defined
and assumptions stated. Many of the results are true for controlled networks t
allowing general feedback as in [1]. But, in order to avoid some quite
complicated bookkeeping, we eventually specialize to a tandem case - with only
two processors and feedback only allowed from a processor to itself. The
general results can be readily extended to problems where (except for the
) possibility of rerouting an output back to the input of the same processor), the
flow is all ’forward’. In Section 3, we discuss representations for the processes
which facilitate the weak convergence analysis, and in Section 4, we describe

the proper ‘'limit’ control problem (and some of its peculiarities), ie., the

YW

1 appropriate controlled reflected diffusion whose optimal (or SB-optimal) controls
are to be used for the physical process.

Section 5 contains the basic weak convergence results, and we state and
) prove the results concerning the 'almost optimality’ of the 8-optimal (for small A
8) controls for the limit process, when applied to the physical process. Some

1 computational questions are discussed in Section 6. Although the ’limit’ control

problem is not always simplc, effective and convenient numerical methods are

available.
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2. Problem Description and Assumptions

We start by describing a network with K  service stations (processors),
the ith referred to as P. Each processor services only one customer at a time
(although, as will be seen from the development in the sequel, batch or multi
server cases can all be handled and even controlled. Shortly, we specialize to
the case K = 2, but it is simpler to first use a unified terminology. We retain
the basic interconncction structure of [1], but use a discrete time parameter for
notational simplicity. Each processor can be connected to an external input as
well as receive (and deliver) outputs from (to) other processors.

Let {(« '€} denote the scquence of interarrival times of the customers
coming from the exterior of the network directly to P, and let iin" denote
the indicator of the event that there was an arrival from the exterior to P, at
time n. As is frequently done (eg., as in [l]), we adapt the convenient
representation where the processor keeps processing even if the queue is empty,
with the ‘errors’ generated by this convention accounted for by an added
reflection term. With this convention in mind, let {A;"} denote the sequence
of service times for P, and d:’;,'e the indicator of the event that a service at
P, is completed at time n (whether or not there are actual ’physical’
customers in P, at that time). As in [1}, we suppose that if there is an
arrival to P, in the midst of a service interval when the queue at P, is
empty, then the actual service time for that customer is just the residual service
time for the current service interval. Under the heavy traffic assumption, this

does not affect the limit formulas. Let D€ j = 1,..., K, j=0, -, K, denote

the indicator function of the event that a completed service at P, at time n

\

&
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is scheduled to be sent to PJ. (or to the exterior, if j = 0). We use {pu, 1,) =

-,K} to denote the probability that a completed service from P, is to be
K
routed to Pj, and write pg,=1-1L Pj The buffer size at P, is B,/v¥, for

=1 l
B, > 0.

The allowable control efforts are as follows. We work with impulsive
controls only, although the results can be extended to the case where the service
and interarrival ‘rates’ as well as the routing probabilities are controlled
contiuously. The processor P, can be shut off for a time, at a cost k; > O,
to be paid at the moment of shut off. The external inputs to P, can be shut
off for a time, at a cost ko > 0, to be paid at the moment of shut off. 1f P,
communicates to Pj, in licu of shutting P, off, we can open or break the
link connecting P, to Pj. In that case the output of P, which is destined

for P.i will be shunted to the exterior and lost, or sold as a ‘’partially
completed’ product. The cost for shutting the link off is kij > 0, to be paid at
the moment of shut off, and there will be an additional cost for the lost
customers. This cost is q;;v€ per lost customer, qQ; > 0. By convention, we¢

atlow all customers in P, who have completed service there and are destined
to return to P, immediately to do so. If the buffer of P, s full, then one
or more inputs must be turned off, ie., either the input links to P, are
shunted to the exterior, or the Pj connecting to P, are shut off.

The bulk of the work will use the above control possibilities. The
extension to the case where the marginal service or external arrival rates (or
even the routing probabilities) are controlled is not a difficult extension and is

discussed at the end of the paper.

Let Pi€ POL€ and Pii€ resp., denote the indicators of the events that

4 e oa MW s e AL NIl A KIS AR
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P. is working at time n (i.e, processing or not shut off). the external input

to P. is not shut off at time n, and the link connccting P to P 15

1 1

th time that P is

open at time n, resp. Let NI'¢ (resp, 111:1") denote the n
turned off (resp., turned back on), and set .1;12)-6 = 0. Let N (i = 0.,

K, j = 1,---K) (resp., &inj") denote the n'® time that the link connecting
P, to Pj 1s shut off (turned back on, resp.) (If 1 = 0, then it’s for the link
connecting the exterior to P;) Define viE€ = eNLE Vi€ o NIE D and
similarly define Vin'e and Vinj'é.

Let X;ve = vE [Number of customers in or waiting for rervice at P, at

time n] and set Xb€(t) = Xit'/g. This is the quantity of interest in the desired

interpolated time and amplitude scale. Then, in this interpolated scale,
[vi€,¥1:€), n 3 1, etc, are the intervals of closure of P, etc. When ratios t/e
are used as indices, we use the integral part. Until Sections 5 and 6, w.lo.g.,
and for notational convenience, we¢ always assume that all processors and links

«,€

= QL€
= 0 and v > vp

are working at t = 0. Thus ¥§ for n > 0. In

general, it is possible that v‘l"'€ = 0 also (instantaneous change in the system
at the starting time¢). The optimal value function will depend on the initial
system configuration, and the true state of the system is actually the pair (Xg,
status of links and processors). We return to this in Section 5.

In order to keep track of the flows in the system for purposes of the
control problem and the limit theorems, we need to separate out the corrections
to the flows due to empty qucues and to the flow components due to the
contro! actions. Throughout the paper. €-superscripts will be omitted in the terms

in sums or integrals. The subscript ¢ is for ’combined’, since we use it when

there is a condition on the status of two controls simultaneously. Define
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(2.1a) YO = ve Ty ID P It <o)
n=1
) e | f
(2.1b) USE(t) = ve Ty, IV (1 -P),i#0,j#i
n=1
) t/e .
(2.22) U%¢(t) = ve L ¢ (1-PY),i=#0,
n=1
) e o :
(2.2b) U’c"‘(t) =ve LY 1IN -PYP), j#I
n=t i#o,
J
N e ]
(2.2¢) Y€1) = ve I ¢, VP, P} Iixizopd # i5J # 0. '
n=1 [}
. te t/e
(2.3) Aty = ve L&, DV =ve Ly I)i#0. :
n=1 n=1
]
. ve L
(2.4) Z3&(t) = ve Ly, 11 - P) PL Iixisop 1 # 3 i # 0.
n=1
¥
With the definitions (2.1) to (2.3), we can write ;
§
. . . . )
(2.5) Xu€(t) = Al€(t) + I DI€(t) - I D) )
i1 a1 j#i :
+ D YUE@) - DYRED) - U%EQ) )
j#i i®
+ I Ul€r) - TUl€). :
j#i j#i ¢
The first term in (2.5) represents the potential external arrivals to P, the
second represents potential arrivals from other Pj. j # i, all neglecting the . o
effects of controls or empty queues. The third term represents potential \
departures from P, again neglecting the cffects of controls or empty queucs. .',
1
The other terms correct for these omissions. The Y#€(.) corrects for -3
departures from P, when P, is working and its queue is empty, and the -
,

AT AT R A AT AT A .o -..'qiq ",



T T TR AT VR AT AT W UN NI T R LA 7T SO I O Gr i T D Y T BGPTSR RGPT I P WO WO WY Y P RO Y WY U IO

Y €(.) corrects for arrivals to P, from P, when the buffer of P s

empty and neither P.i nor the link from PJ. to P, is shut off. The

U%€(.) corrects for the stopped external arrivals, when the input to P, from

L= & & o o 4

the exterior is shut off. The UW€(.) corrects for the stopped departures from

P, when P, is closed, and the UI"€(.) corrects for the stopped arrivals l

b

from P.i to P, when either Pj is not working or the link from P.i to P,

Canan o o & d

is shut off (i.e, shunted to the exterior).

The ZU€(-) represents the lost output when the link from P, to P,

is shunted to the exterior. There can only be lost output at time n if
Xi€ >0 and PL€ =1 (as well as PU€ = 0). Write X¢ = (XM€,... XK€
and let n® or n denote control policies (i.e., rules for determining the v“€,
vhe  yi€  gu€y  and et Ef denote the expectation, given policy n and
initial condition Xg = X. Let P denote the vector of indicator functions

(P%} of the processors and links. In general, the value function depends on

the initial value of P (although we set (w.lo.g.) the initial values Pg‘ = 1

until Section 5). Then, for a bounded and continuous k(:) and B8 > 0, our

cost will be of the discounted form (2.6).

(2.6) VEMX,P) = E"J -Bt (X €(1))dt
0
K _Bvi,e
+El Lk L e ®
i=1 n
K K Bvii €
+E] L L k; Le °
i=0 j=1 n

@ K
+ ET Jc‘& [ L ap dU%) + L q dZU¢()
0 i iJ=1
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The first term in (2.6) is the holding cost. The next two are the costs for the
impulsive switching, and the last the <cost of lost output via either
non-admittance of customers or forcing them out of the system before the total
required processing is completed.

The average cost per unit time problem could be handled as well, but is
somewhat more complicated. See, for example the average cost per unit time
problems in [6], [8], for other models.

We now specialize to the case of Figure 2.1. We specialize since it is
awkward to keep track of the effects of the controls in a network with general
feedback allowed, particularly of the effects of empty queues which are (at
least partly) due to the control actions. With mainly notational changes, the
case dealt here with can be extended to the general case where the only allowed
feedback in the system is from the output of a processor to its own input -
otherwise the flow is 'forward’,

Refer to Figure 2.1, and assume (A2.1). The first part of this assumption
(or restriction on the control actions) says simply that if a queue is empty, then
we won't continue to ’starve’ it - but will turn on all the inputs. The
assumption seems to be quite unrestrictive, and it does simplify the bookkeeping

quite a bit

A2l If XX€ = 0, then all inputs to P, are open: ie, PL¢ = PL2€ =
PO%€ = 1. If XY€ = 0, then the input to P, is open (i.e., POV€ = 1) [If some
n n 1 n

Xi:€ = B, then all inputs to P, are closed.

For the system of Figure 2.1, and under (A2.1), we have that (2.1) -
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(2.5) take the forms (2.7) - (2.9). Here, P:" = 1, since there is never a need to

shut P, off. ((2.7) is written for easy reference; all the Y, Ul are still

defined by (2.1) - (2.2).)

t/€
2.7 YI2€ (1) = ve I ¥} 112 P! pl? Ixi=0)
1

t/€
Y2 = ve T U] 10 I
1

t/€
20 = ve L, 121 - PRY) Pp Iy
1

o 12y
= U12,€ (t) - Ul2,€(t) -7 I n dyl2,€(s)
¢ 1 vrllzﬂt

The Y'€(.) will converge to a continuous function and ¥i%€ . v12.€ £ ¢

Thus the last term on the right of the last equation will disappear in the

limit. Define UL€(.) = U0€(.) + U%€(.). Then

(2.8a) X1E(t) = ALE(t) - DIOE() - DIZE(y)

+ Y0t + YI2E(r) - ULE() + ULE(y)

(2.80) X2€(1) = APE(1) - D?€(1) + D€(1)

+ Y20,€(t) - Y:Z,G(t) . UOZ,E(t) R U‘1:2,€(t)

2.9) VE€mx,P) = ET I B (X €(1)dt
0
n B 1,€ 2 n B 0i,€
+ kl E, e Pn + L ko E, L e ¥
n i=1 n

n _B 12,‘
+ k,, E; L eP"n
n

® 2
+ ET I eBt [ L g, dU% <€) + q,, dZ'2€()].
0 i=1
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Dibe] » WO
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9,

’ . ... .
N We now give some more definitions and state the heavy traffic
K assumptions. It will sometimes be convenient to write the multiple sequence
o . . . . _ ¢

:,. ve = (vioE, i€ i€ §10€)  as a single sequence. Let (75} denote the
})

4 . . .

Y sequence of event times indicated by all the elements of v€ in order of

-
»

increasing time, but without respect to which events they indicate, or whether

they indicate multiple events. Define R = (R1.€, ROLE ROZE RIZE)  where

el

Rg"‘ =1, -1 or 0 depending on whether or not the ‘control’ with the same
superscript was opened (turned on), closed (turned off) or left unchanged at T:.
q From (Rﬁ,Tﬁ), we can recover all the control actions and their times.

Let Sia:f, = ;I orfi", Si,:f, = ; A}'e. Let Ei.:: denote the expectation
given the arrival, ii=elparture and control intervals and actions which ended by
real time Sia:fl, as well as the lengths of all other arrival and service intervals
(other than °“;;'+f) which started by but which might not have been completed by

time S’ Analogously, that EL'€ denote the expectation given the arrival,

departure and control intervals and actions which ended by real time Sid'f,, as

well as the lengths of all other arrival and service intervals (other than A‘n;f)

which started by Sy Define the conditional variances vari: € wvarl€

N analogously. Define

Ebé o€ = o€

i,€ i€ i€ 2
n+1 n+1* Varl,n dn+l = (o'n,n+l)

i,€ i€ AlL€ i,€ Ai,€ i€ 2
Ecl,n An+l = An+1’ val’d,nAn+l = (c‘d,n+l)'

' Hence forth when we say that P, Py or P, resp. is open (closed) at time

n, we mean that processor i is working, the link from the exterior to P, s

; open or (resp.). the link from P, to P, is open for traffic.

We will use

- -

LT T " ] -y ™ b S

BR L. Y Y ™ - AP IS e S TmopTe L Te e e e '-‘
b .‘:i .r._.(.f: "'\.”\': m S' r: f\a"f{ak Lo : > z! .r,_.r: Pl :._~r: .r: e
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A22. There are positive numbers g, and 84 and bounded continuous functions

a'(-) and di(-) such that

(&€ =g, + vEa,_ + o(ve),

in

155

n-(»-ll-1 = B4 *+ ﬂdin + o(ve),

where a, = ai(Xs‘i'e) and d; = g (xsei.i)

a,n dn

Comment on (A22). We allow the (marginal) external inter-arrival
intervals and the service intervals to depend on the system state. The argument

X‘si ¢ (for cxaniple) is the proper one, since S‘“f is the (real) starting time

a,n

for the (n+1)* (external) inter-arrival interval to P, (the moment of arrival to

P. of the n+1®* customer from the outside), and X:}i€ is the system state at

s,n . .
that time. We could let the marginal mean rates a'(-) and d'(-) be

controlled. We then use a‘(X;ile, rsi;fe), ctc. Here the rf§ is the control over
the mean marginal rate. Therc.';‘s n:)'n problem in incorporating controlled rates
into the weak convergence and approximation results of Section 5. An
appropriate associated cost would include a direct cost (higher for higher rates)
and an indirect cost due to the possible gain in production due to the higher

(input) rates. Similarly, the g, can be controlled or even state dependent,

provided only that the heavy traffic assumption (A2.4) below continues to hold.

A23. The set (|a‘;‘-‘|’, |Ain"|’, i, n < = small ¢, all control actions) is

uniformly integrable.

RN TR AN RRZMMQ&%L\Q&AK‘J
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A24. (Heavy traffic assumption)

8 = (1 - ppyley

[plzgdl + 8.2]/(]'p23) = gd?'

(A2.4) is also what one would get from Reiman’s [1] formulas for the case
of Figure 2.1 If either condition in (A2.4) is violated, then either some
buffer will always be full as ¢ = 0 (and the cost will go to *) or else some

X'€(t) ~ 0 as ¢ - 0 (and the cost will go to =). With little extra trouble

it is possible to control the P also - but this seems to be of not much
interest for the case of Figure 2.1. The results for our case can readily be
extended to the case of ’feedforward’ systems, where the only allowed feedback
in the routing is from a processor to itself. For these general cases, it might
be worth controlling (marginally) the Dij The extension is simple, and follows

the same lines as would the extension to marginally controlled rates.

A25. The routing variables (Iij-‘,i,j,k) are mutually independent and independent

of the (o:€,80€) and P(I}¢ = 1) = p,.

A2.6. There are continuous functions a,(-) 04i(*) such that

o€ o..i(X;. ¢) + 5,

s,n+l i,
a,n
GE .y = 04(XE ) + B
d,n+1 4, € €
d,n

where 8% £+ 0, uniformly in all other variables.

Comment on (A2.5) and (A2.6). We allow the conditional variance to

a4 AR RSPt " RN

B SR RE b R i
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depend on the state here, just to show the possibilities. Controlled variances :‘
can also be handled. In many applications (and in most past works on the ;
.
heavy traffic model) the Oq; arec just constants. The independence in (A2.5) ":'
can also be weakened, and the sequence of interarrival times or service intervals ,:
(]

can be correlated (in ways other than via the ‘state’ dependence used here). This
would involve a more complex method for obtaining the weak convergence. The ‘
perturbed test function methods of [5] (see also [6]) are quite suitable for that A
<

task, and would require only moderate changes in the proof of Theorem 5.1, but
‘
the additional notational, etc, burden seems hardly worth it now. EZ
2
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3. A Convenicnt Representation for X€(-).

In this section, we center and rewrite the terms of (°8), so as to facilitate
the weak convergence analysis in Section 5. We will do three things.  First,
the A and D processes will be centered, the centering terms simplified, and the
centered processes written as a rescaling of simpler processes. This is similar
to the procedure of [l]. Then we will represent the YU€ and UW€ ip
terms of simpler processes Y"¢ and U"¢ (not depending on j) plus a term
which will go to zero as € - 0. Finally, we will represent Y"¢ and Xi€
as continuous (and unique) functions of the ’other’ data, similar to the
representation used in [1].

Centering of the Arrival and Departure Processes. Now, several processes
will be defined. Define §i."(t) (and analogously §L"(t)) to be the inverse of

the interpolated arrival time function eSi,'f/e in the sense that
Qi€ . i€
Sy5(t) = max {ek: ¢ S..k £ t).

Define the centered processes

si€
~i€ t/€ k41" 1
Apy()=yve L T [&)-=])
k=1 l:skfk ak
t/€

=ve LU -4/,
1

(3.1)
~ij.€ e Sdu+rl o p
D () =ve L I 1=
k=1 '=s:ifk Kik
t/€ y .
= oo p.A )
v killlsld k puAk/KL]

4 I'-‘o.\‘ t" w5y )

* 4

e R R e e A S B A A
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b
' : The sccond equality in the first definition follows from the fact that i€
" = | only at the left endpoint in the interval [S'.f,S' +1) and the length of
YW R
" the interval is o'¢ (and similarly for the second definition).
S
":', . Owing to the independence assumptions in (A2.5), we can (and will,
K henceforth) replace the Ii{ by Ii". We can write A"€(.) in the form (which
: ~ . -~ d'k
P defines A"€(.) and BLE(.))
3
N i€ .e
(3.2) AS@Q = v b -

N €k=1 n:s:fk
|3
" 0
;.. + VE )‘.' oﬂ/?
[ €k=1
o = AL (SL€ (1) + BYE(1) = AVE(r) + BLE(u).
A
; Doing the same thing for the DW€(.), we have (which defines DU¥€(.) and
i B4()
’ -~ — -, -~ -,
b (33) Di€(t) = DFFSHEm) + Bt = DUt + BYYw
"l
::: where .

~ 54°(0 i
> (3.4) Bi€(t) = ve = p;;

€k=1 Ak

X
:s For purposes of calculation below, write
0
y t/€ Ai
b D1 + D) = ve - Y- (- py) 5
t
I .
L
. We now cancel the ’principal parts’ of the I;ia" terms. By taking the
: terms in the order in which they would appear in the centering of the first
C}
A,n three terms of(2.8a) and using the expansion in (A2.2), we write
L)
-
2
'J"

"F.“'Fff* - ""',.'I q‘\l“
O L l’b-'-o ‘-".'P‘

n'. -"-I"\\‘&

AR \‘\‘\‘\‘\‘\.\ TN
‘:.\) '}."}'s"& PR Ny .’ fo

- [Se RV "8,
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BLE(t) - (B¢ (1) + BI€ (1) =

SLE) "

(3.5) ve boadg, + vea, + o(vo) )

€k=1 .

"

- vE 8; 8, + vE dpy + o(vO)l(I - pyy). :

€k=1 y

0 :

Since I o = t/e (mod. 0(1)), the principal term of the first sum is s,
€k=1

8,t/¢ (mod 0(v¥)), and of the second in Bail/ve (mod 0(v¥)). These cancel by
(A24). By using the definitions of o and a,, and the fact that X

changes by at most O(e) per step, we can write the sum of the middle terms

in the first sum of (3.5) as
t/€ ;

e Ia'(X,)) + (term which -0 as ¢ = 0) ]

1 ':

and similarly for the analogous terms in the second sum, 'Y
\!

With the above cancellations and the last representation, we can rewrite . ':L

(3.5) as (3.6) (where Sie(~) £+ 0, uniformly on bounded intervals). Equation i:t
(3.6) defines BY€(.) and bl(-). 3
W

t/€ :,u

(3.6) e I [al(X)- (1 - pdi(X)1+ 6L(v) .
1 ¢ b

= J bY(X€(s))ds + 8L(1) = BLE(r) + sL(1). _

0 oy

,

Repeating the procedure for the ’biases’ arising from (2.8b), we get (which '.:c
.

defines B%€(.) and b%.)) )
e

D

R

e

¢

V,‘ » ‘-J'i-:':'fv-lgt-:"
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| (3.7) B2€(1) - B¢ (1) + BL2¢(1)

} 2,€ t

; = B, (1) + 83(t) = Ib’(X‘(s))ds + 62(1)
4 3 o

: t/€

= ¢ I [a%(X)- (1 - pp)d¥(Xy) + pdi(X)] + 8(1)
1

(4 t
X = J bA(X€(s))ds + 8%(1) = B2E(t) + 8%(v).
!" 0
]
: A Representation for Uij",Yij". Define the processes (with Pf]'e = 1)
B
; i€ t/€ )
y (3.8) Y () =ve Ly Pl -0
¥ 1
7 We can also write
I/
o e
n
(3.92) UlZE(t) = I I dy &),
. n=1 *vl€ry
" n
‘- - vi2.€
Y = I py, I"* dYLE(s).
" n=0 ;:2'6
|}
! It will turn out (Section 5) that the limits in (3.9b) hold
)
' YUEC) - p Y 3 0
b)
: Y20E() - (1 - py)YHE(1) 3 0
1
i V12,6~
5 bt +1
Y24 - I p, J " ayles) 3 0
=12,€
n=0 Vn "R

Y:Z,G(_) - plel'e(') 0
(3.9b) |
Ul"'e(') - Ul'e()p“/(l - pll) > 0, J = 092

t/€

E ’ UR&t) - vep,, I $300 - PIPI) 3 0
h

0
ZEC) - UPEC) - UE1 3 0

V:" - v:'e - 0, each «an.

'-:"\'.". \._ﬁ' 'n’ »," 'p. '-’ " -’ ';’.'-.:' ..".'-‘v'." ."n'-ﬂ
A0, PL VLN VPG L AT AT NS N e
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In order to prepare for the utilization of these convergences and simplifications.
rewrite (2.8) and (2.9) as follows, where the pi'e(-) and 3"‘ are ‘small error’
processes and the W3"€(.) are defined to be the sum of the first three terms

in the middle part of (3.10a) and (3.10b), resp.

XLE() = ALE(D) - (DIO€1) + D2E()) + BYE()
(3.10a) + (Y041 + Y€1) - UM€1) + UME(1) + ph4)
= Wheé() + BYE() + (1-p, YD)

- UM + UMY + phE()

a0 0.000

(3.10b) X2E(1) = AME(t) - DPOE(r) + D2E() + BE(N) *

+ Y20.€q) - Y121 - UOREQ) - Uclz,e(t) + p2E() .

= W2E) + BRE() + (1-p)Y2E() - p,YRE (1)

. Uo:,e(t) . U:“(t) + Sz,e(t) ;

(3.11)  VE&mx) = [eqn (29) with Z'€(.) replaced by UH€(.) - UME(.)

and an ‘error’ term  p¥€(.) added]. 5

5

It will turn out (Section §) that, for any sequence of controls n¢ with ;

sup VE€nEx) < = s&g lpi"(t)| - 0 in distribution for any T < < and

similarly for the pi'€(.). ,

Owing to the impulsive nature of the ’'control’ part of the cost (2.9), on :

iy

any bounded time interval there are only a finite number (w.p.1) of subintervals :

on which the controls are active (i.c., where some P, or Pij is shut off). By t.'
the definitions, the reflection terms YUW€(.) cannot increase on thes= ’control

intervals’. In particular, Y"¢(-) (and Y!€(.)) can only increase wh=~ ‘h

P,, and P, are on (recall that Py is on when X! = 0). Also, Y2€(.) and

.

°
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Y20:€(.)) can increase only when all of P,, P, and Py, are on (by (A2.1), if

Xi" = 0, then all inputs must be turned on). Because of this, the setup of [I, l

Lemma 1} can be used to obtain the ’reflection’ terms as continuous functions
of the other ’non-control’ data, simply by using the representation of [1] on the

appropriate 'non-control’ time segments, and we now formalize this.

Let JI€ = (ul€7ul€) denote the sequence of successive intervals (of j

)

interpolated time) such that P}¢ = PPV€ = 1 for ek € J1€, and let J2€ = 3
(12 €72€) denote the successive intervals such that Pl€ = pl2€ = pi2€ - |

for ek € J2¢.  The Y“$(.) can increase only on the Ji:€

We can use the representation for the YWY€¢ of [1] in the pieces between
the control intervals. For any function f(-) define fi'n(-) = f((uin'€ + )N
B - f(ue). By [I, Lemma 1], there is a unique continuous function
I~—‘(-) = (§1(~),E7(-)) (the continuity in the arguments which are functions is
taken to be continuity in the topology of uniform counvergence on bounded time

intervals) such that

(3.12)  Y{%€+ viRE = FIOXMER®), WREC), BYEC), oS )

YIR© = FAXPEG0®), Wont) Byn () Y3Rf0) + YZRE 0 p250)).

Furthermore E(~) is ’non-anticipative’, the corresponding XHE() is
non-negative and the (resp.) left hand sides of (3.12) can increase only at those
times when the (resp.) X.:€(.) are zero.

Alternatively, there is a unique continuous function F(.) such that
(3.13) (YI0() + YI2E(), YO =

F(WE(-), BE(-), p€C- ) X§& XME(ube), uh€B€ i = 1,2, n < @)

n

R R AP TS T AT T AT A A AT € Tt a T e W M T Y ML et A e am - . . B,
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L am e an un m o

where F(-) has the properties ascribed to -I:‘(-) above. In particular, the
value of the left side of (3.13) at time t depends only on the arguments of
the functions in F at times ¢ t and on the ui'¢, '€ with values less
than or equal to t. Owing to (3.13), we will not need to concern ourselves
with the weak convergence of the arguments of the YW€(.). This will follow

from the weak convergence of the arguments of F(.).

e YW Y S e

A Tentative Form for the Limit Control Problem. Purely formally, let the

arguments of F(-) converge to W(-), B(:), uin, T, (p(-) = 0) and let Yi(.)

n’ A

be the limit of Y"€(.). Then, on each bounded time interval the complement

i of ([ui‘,ﬁin ),n < =}  will just be a finite set of points, and the controls will be

impulses acting at these points. Using this assumed convergence and (3.9b) we :

E will have :
(3.14) Xl(t) = X}0) + W) + BY(1) + (1 - p,,)YXt) - U%(t)+ U'(v) i

X3(t) = X%0) + WAt) + BA(t) + (1 - pr)Y%1) - p,Y'(t)

T T

- U%) - U (). !

The Y!*(:) can be obtained from the limit. Y!.) wvia (3.9). The limits

(1 - pY!() = Lm(YI*€() + YIH() and (1 - pp)Y() = lim Y€() are

to be obtained from the limit of (3.13). Furthermore, (as in [1]) the (l-pii)Yi(~) .

obtained from the limits in (3.13) are the unique continuous functions which

can increase only when Xi(t) is zero and which guarantee that Xi(t) » 0. ]
The UM(.) can be used to define U!%(.) via limits in (3.9). We will |

have Ulz(') = plzul(')/(]'pll)-

r.’;;/ ‘e a,vf.:- ".'.".;I‘.J"'.‘_'f..-
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4. Description of the Limit Control Problem

In this section, we define the proper limit control problem for the system
of Figure 2.1. First, it will be convenient to picture the effects of various
control actions on the X€(.) for small €. We do this in some detail, since
the limit problem is somewhat non-standard, partly owing to the possibility of
‘'multiple simultaneous impulses’. Also, the set of admissible impulses and
associated costs are defined via the possible limits of the controlled X€&(:).
associated with bounded costs.

Given the limit controlled reflected diffusion X(-), we will need to
determine an optimal or &6-optimal policy for it In order for the ‘limit’
problem to make sense, for any admissible policy m for the limit X(-), there
must be a sequence n¢ of policies which can be applied to the X€(.) (re.,
PP, on/off or rate controls) and such that, under 7%, X(.) converges to
X(:) (with policy m), and the associated costs also converge. Because of this,
the limit control problem must be defined in terms of limits of what is possible
for the X¢(-). This yields a rather interesting limit control problem.

Controls for the Limit Problem. Refer to Figure 4.1, where some typical
paths are constructed, under the heavy traffic conditions. Start at point (a)
with all P, Pij on except that P, s off. The path moves to the left and
as € - 0, it converges to the horizontal line (a,b). The mean (interpolated)
movement to the left in time A is g_8/vE + 0(4). Hence in the limit, as
€ = 0, there is an impulsive change.

Now, restart at (d) with only P,, off. The path drops, and as ¢ = 0

it tends to the wvertical line (d,e). In time A, the mean drop 1s




NN A AN
LR A el A

Py484,8/vE + 0(8). The same path is followed if only P, is off or if P,

and P are both off, although the ’drop’ speed will be different. Now,

01

restart at (e) with only P, off. The path moves toward (f) (for small ¢),

and the limit slope can be calculated from

net mean flow into P g., - (1-p.,)g
@ 1 Ew 2842 pagy
net mean flow into P, 2.1 £a1

If the path reaches (f), then P, must be turned off. If, at (g), we turn P,
back on (but leave Py off), then the path moves toward (h). The effects of
both P, and P,, being off simultaneously are the same as for P, being
off alone. Over small intervals of length 4, the :\ D and Y terms in
(3.10) contribute very little to the paths (compared to the effects of the control
actions), since they converge weakly to continuous functions.

Now refer to (i), and let only P, and P, be off. Then the path

moves to (j) with a limit slope calculated as in (4.1) and yielding the slope

(4.2) [(1 - pn)gdg - pugdll/(l - pll')gdl

Similarly, if only P, and P, are off at (i), then the path moves toward (j)

with a limit slope

(4.3) [(1 - Pgy)Bay - 843)/(1 - Pyy)By;

All finite sequences of arbitrary lengths of the impulses described in
connection with Figure 4.1 are possible. Suppose (e) = (f) = (g) = (h). Then
as € = 0, it would appear that the limit X(-) jumps from (¢) to (h) directly.

But this (¢) = (h) impulse must be realized as a concatenation of the basic

Col ol e S g X 3 ha
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impulses described above. In general the limit control is specified by a

sequence of off/on actions for the P, Pij, in a specified order, and with the
impulsive distance travelled between successive (’simultaneous’) control actions
specified. The cost paid for the impulses is precisely the impulsive costs
defined by (2.9). The described limitation on the ways in which the impulses
for X(-) <can be created is important, if the control problem for the limit
X(-) is to bc properly related to that for X€(-). In Section 6, we show that
the problem can be quite tractable from a numerical point of view.

The instantaneous changes in the U%) can be readily read off from
the limit sequences of simultancous impulses. For illustration, we do it for the

th

(e.f,g,h) sequence of Figure 4.1. Let e, etc. denote the i*" coordinate of the L

point (e), and let ®U% decnote the increment in U% On (ef), sUI° + sU!? =

f, - e, 8U2 = ¢, - f,, On (f,g), 8U% = sU + sU'% and the value is
unimportant, since their effects cancel in (2.8a). Also, SUC” = f, - g, On
(g.,h), 8U% = g, - h,. All non-specified &U® are zero. The 8UY always
occur as (8U0 + sU'?),

The Limit Dynamical System. The Wiener Process. The limit system will
be (3.14). It will turn out that the limit W'(.) can be decomposed as
follows (using the limits of the threc terms in (3.10) which are used to define
the WH€(.)).

Wi = AlC) + Wi, Wi() = -DI%) - D)
W) = AX.) + WA(H), W) = -DFO(.) + DM(.).

Here, all the terms are continuous martingales, with AY.), A%.), D®(-) and

(61°(~)j)12(-)) being mutually orthogonal. The quadratic variation of ;i(')

S P IR I T I I LTS A AP LT g g R Y R L IRl YL Y WA BRI '
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s [tel oL(X(9)ds and that of W) = (W), W) is E(® = (Zn),

where

t
Ih() = gylpy,(1 - pyt + g3,(1 - pn)’I o?, (X(s))ds]
0

(4.4) t
Lia(t) = -g3;pya(l - pyy) 1031(x(5))d5 " P1aPni8art
0

t
L5(t) = 84ylpap(] - Palt + D383, J 03,(X(s))ds)
0

t
+ gy lpa(l - Pt + plygl, Jogl(xu»ds].
0

2
ai

If the oﬁi and o are constants, then the covariance is precisely that
obtained by Reiman [1] (with a different notation used there).

It is evident from (4.4) and the cited orthogonality properties that there
are mutually independent Wiener processes wi(:), wi(.), w2%(.), (wil(-), wit()),
where each scalar valued process is standard, and with respect to which X(-)
is non-anticipative and Ewli(t)w}¥t) = -[p,,p,,/(1-p,,) (l-pn)]%t and

t

K0 = a2 [, cxpavio
[

t
WD) = [84,Pyy(1 - PyPWO+ (1 - p, g2 jodl(X(s))dw;(s>
0
200} = . ¥, 20 . %12
(4.5) W3 = [84gP0(1 = Pl W30(t) + [84,P,(1 - Py IV W2 (D) +
t
¢ Daotd? [ onXNawio
0

t
+ pusdft [ caX(E)awie).
0

The terms involving wii(-) are due to the variations in the routing,
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whereas the terms involving wc’l(-) are due to variations in the service times.

The drift terms Bi(:) in (3.14) came from (3.6) and (3.7) and are

t
Bl(t) = f{a‘(X(s)) - (1 - py)di(X(s)))ds
0
t
BX(t) = J [a%(X(5)) - (1 - py)d¥(X(s)) + p,,d(X(s))]ds.
0

Then the limit problem is defined by (3.14).

Admissible Control Actions. The Uf‘ and U% in (3.14) are
non-decreasing piecewise constant functions which have only a finite number of
jumps on each finite interval, and they can be taken to be right continuous.
They thus correspond to ‘impulsive’ controls. We first identify the allowed

control impulses in the limit model (3.14) with those described above for the

discrete model (2.8). The allowed impulsive effects of U! in (3.14) are those

described for UY€ in (28), as € = 0. Also the impulsive effects of U!? are
the lLimits of those of U!%€ and the effects of the U® are those of the
U%€ a5 € -~ 0. This completely characterizes the possibilities for the impulse

control of (3.14). Generally, several components of the controls might jump

R AR it et A, s S D % W WX X R R AW XX N A Y M. R v A ¥ A vEm

simultaneously, or a single jump in one component might be a consequence of a

multiple simultaneous off/on sequence, We must allow these possibilites and
distinguish an order for the ’‘simultaneity’, as discussed above, not only because
they are possible control actions, but because they are possible limits of control
actions for the physical processes. Thus, we count the parts of the multiple
simultaneous impulses as distinct impulses. We now develop the notation for
keeping track of the necessary information. Recall the definitions of T: and
R given below (2.9).

Let 71 denote the secquence of event times. The T, are not necessarily

T TS f €3 2RIV O MARZLE LBTW AL LAY PSS 5D
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distinct, but T 3T and the subscript n denotes the correct ordering,

n+1 n

‘simultaneous’ or not. At each event time one or more of P, or Pij might
shut off or on. What happens is indicated by the vector R, =
(ROLRIROZR!?%) where RiJ = 1, -1 or 0 (resp, R}) according to whether or
not Pu (resp., P,) is turned on, off or not changed at T, Associated with
(Tn,Rn) is 8U = (BUgl,Gng,SU:,SU:?n), the instantaneous (at T_ ) change in the
controls U(-). To illustrate the procedure refer to the path (e,(f,g,h) in Figure
4.1. There are four event times, T, associated with (e) T, with (), etc. Also
T, =T,= Tg =T, At T

R!' = 1. At 7,, R% = 1. At 1, R!' = -1 and at

l’

T,, R% = -1. All non listed R® are zero. The associated impulses 8U_ are

‘1
given in the discussion below (4.3).
The (8U_,7 ,R} s said to be a control policy. The policy is said to

be admissible if the function
(4.7) R(t) = {XO, sq,‘l{-rn‘t]' Tnl(Tn‘t)’ Rnl{Tn‘C}’ ]{Tn‘t), n < = X(t), Y (t)}

is non-anticipative with respect to the Wiener processes wg(-). An equivalent
definition of admissibility is if the A’ Di(.) are martingales with respect to
the filtration generated by (;E(t), ‘;\i(~), b”(-)}, with the quadratic variation
defined in and above (4.4).

Given W(:), B(:), U(:), there are unique processes X(-) and Y(-) such
that Y ,(.) increases only when X(t) = 0, and where X (t) » 0 and (3.14)
holds, as in [1] (see the end of Section 3). Of course, here B(-) and w(:)

might depend on X(-), so it is not known a-priori that (4.6) has a unique

Py

solution. If the o.i,odi,bi do not depend on x, then the situation (without

controls) is like that in {1} and we do have uniqueness of the solution to (3.14)
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for each admissible contre' policy. The Y(:) in (3.14) is obtained from (5.1)
below, which is in turn obtained by taking limits in (3.13). In (5.1), {u,ll) is
the subset of (T} at which or both P, and P, are on, with at least one

turned off at T and {uf‘} is the subset of times at which all of PP,

n-1°

and P, are on, with at least one being off at 7 _,.

For an admissible policy, the cost function (the limit of (2.9)) is

V(nx,P) = ET JC'B‘k(X(t))dt + KET LB
0 n
2 oi 12
(4.8) + Tky ET TeBn 4 h, ET I B
1 n n

2
+ ET I B [: ay dU%(t) + q,d[UZ (1) - U”(‘)]]
0 i=1

In (4.8), the vl vi are defined as the moments of shutting off/on the

indicated links or processors, as in Section 2.
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5. Weak Convergence

We will use

AS.1. The uncontrolled X(-) has a unique solution (in the weak sense) for each

initial condition.

Note that (AS5.1) implies weak uniqueness of the solution X(-) for any

admissible control policy.

Theorem 5.1. Assume (A2.1) to (A2.6) and (AS5.1). and let sxexp V‘(ne,Xg) < ®
for m¢ = (RETE8Ufn < =) admissible. Then
(AL€(.), A%E(.), (D1O€(), DI%€()) , D))

is tight in D50,2) (Skorohod topology) and the limits of any weakly convergent
subsequence of the four sets (we pair f)m and f)”) are orthogonal continuous
martingales. On each [0,t] . the mean number of control actions is finite, and the
set of intervals on which some control is active converges to a finite set of points.
The pieces(” of X€(-) on the intervals where no controls are active are tight. and
the weak limits of these ‘pieces’ are continuous. The convergences (3.9b) all hold.

Let € index a weakly convergent subsequence of RE¢ =
(XEAVE(),DIE(),BE(-),RE,TE,BUS i,ij,n)  with limit denoted by R .  Define the

! process R/ -) from the limit processes by

! R(t) = (x();Zl(t)QBU(t)oa(t)ii’js (Rn"rnqun)I{Tn‘t}e n < D)'

(”More precisely, define the ‘pieces’ by shifting the start of the intervals to the origin, and
continuing the 'piece’ to the right of the interval by setting its value there to be equal to the value
at the right end point of the interval. )




-cul'l

AN

b

Y g

=3]=-

Then Al.) and Di(.) are martingales on the filtration engendered by the R(1),
with the quadratic variations given in and above (4.4). The limit policy
n = (R 718U} is admissible for X(-). Except at points where there is control
action. (3.14) holds, where Y'(.) is defined by (5.1). (See (3.13)). We define
(wlog.) X(t) by (3.14) even at points of control action.

(1 - Py Y, (- ppp) Yy =
(5.1)
F(W(-),B(‘),O,Xo,Xi(uin),u;,u;,i=1,2,n<°°) .

A

In (5.1) i is the limit of both ¢ and ¢ and X)) is the limit of
the values of X"€(:€) (the (ul)} are obtainable from the (T R }). The Y'(.)
increase only when. Xi(t) = 0 . The limits of the uncontrolled sections of X&)

do not depend on the the subsequence, except for their initial conditions.

Proof. (a) First, we show the convergences (3.9b). We do it for UN€(.) =
U€() - poUb()/(1 - py,) only, for the rest are treated in the same way.

We have that

€
U0 = ﬂ_t‘/\: (12°p1; - 132py0l

1 (Pyy + Py))

¢, (1-PY)

t/€

is a martingale and its variance is bounded by O(¢) E L (l-Prl,) =C&%) . It
1

is easily seen that

P t/€
lim ve T (1-P}) < =,
1

for otherwise the buffer of P, will fill up (one or more times), forcing the

P,. to shut off (one or more times) such that EU%:€(1) will diverge and the

01

costs will go to infinity as € - 0. Thus, C¢(t) — 0 as € — 0 , which yields

the desired result.

N
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By (3.9b), the p€(-) and ph€(-) of (3.10), (3.11) go to zero.

Below, the tightness of ({W€(-)} will be shown, together with the fact
that its limits are continuous. This and the representation (3.13) implies that
(for any weakly convergent subsequence) the YhE() converge (in the Skorohod
topology) to continuous processes Yi() . Thus, via (3.9), we have
YI3() = py,YC).

(b). We have eSiq:f/‘ and §ia-‘(() converging weakly to the processes
(Si() and §ia(-), resp.)with t}f?lues t/84 and g, t, resp. This is more or

. . i€ _ Ti€ . .
less obvious since (e.g.) ¢ Ll a "] has orthogonal increments and its
1

variance tends to zero as € — 0 . The increments of each Zio'e(-) and
B‘Oj"t) are also orthogonal. Due to the uniform integrability in (A2.3), those
processes are tight and all weak limits are continuous martingales.
The four elements of (D' and D! are paired)

(Xg‘(-), Zg"(-), (B},o"(-), B},’"(-)),Bgo"(-)) are mutually orthogonal, and so
are the weak limits. To see the mutual orthogonality, one uses a calculation
of which the following is typical. Take a ‘'typical’ term from R‘O"() and
ng"(.) and use the definition of Eia:f, above (A2.2) and the centering in

(3.1) to get (drop the € for simplicity)

E[I] -p,; 8,/ 111 - /&)

= EIY - oy /RN e (gie (B0 - @/E)
dk-1 a,n-

+ E[1 - o/al)l EgSa(y - py; 84/B)

(Sena<Sda) *
=0 .

Using the results in the first part of (b) above, and the definitions of

AY€(.) and DU€(.), all weak limits of AL€(.), AZE(.), (DI%€(.)DI%E(.y),

D?€(.) are continuous martingales. All the assertions of the theorem

Badond 200

q.-f-."r};'-.q.\..\ '.‘.;’:-'r'i . -
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(except for the non-anticipativity assertion and the quadratic variation values)
follow from the results in part (a) and (b) above.

(¢) Owing to the mutual orthogonality of the four processes Xi"t), etc.,
and to (A23), we can calculate (for the limit process) the quadratic variation
and prove the martingale property with respect to the o-algebra engendered by
R(-) separately for each component. We do it only for (D10.€(.) D12€(.)). Let
¢ index a weakly convergent subsequence of R¢ and define R(-) as in the
theorem statement. Let f(-) be a smooth function with compact support and
h(-) a bounded and continuous function, both real valued. Let t,t+s and
1€t beclow be points such that the probability

P(T equals t or t+s or t) = 0
for each nk . Define 8¢ i€ = 1i€ . piin)"/'A'ni'6 )
By the uniform integrability (A2.3), the representation of 5”"(-) as a

sum, and a truncated Taylor series expansion, we can write (we can assume

wlog that T¢ €t for only finitely many n)

(5.2) Eh (X €(t), A€ (t,), D€(t,), BhE 1) (RETE,SUS I , k.n).

(TE€t)
[ £(D%€(t45), D3¢ (t+s)) — £ (D10€(t),D12¢ (1))

1,€
S4q (t+s) a1
fxa[

n-1
-ve L I vT L 8plo vt L sw}f]- Byl
o=0,2 —=1,€ 1 1
Cn:Sd (t)
-1,€
] Sd (t+s) n-1 n-1
-5 L DR N TR AR L T B 618
o,B=0,2 —1,€ 1 1
€n=Sd (t)
€
— 0.
N NN R N S N PRI A NN RN
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Now, use the definition of E}S given above (A22), the centering of &y,J¢

and the assumption (A2.6) on the conditional variances to replace Scb,l]“ in thc

first sum in (5.2) by zero and the sw;“sis in the second by E€ w}lasw,"B.

dnl

This latter quantity is

1,€ 1 é)lg 18 éllg

. a .

Egkaf! Pra ~ I Pig _,
k by

1 re Y
= P1aBaB - P1aP1B * PiaPi8 Var 8y /(4))

(5.3)
= P1obaB ~ P1aP1B * P1aP18 831%: (XSéﬁ )
1
+ (negligible terms) .
The limit (as € — 0) of the double sum in (5.2) is
Si(t+s)
T J f ('I“)lo ~i12 2
(T),D™4(T)) - Log(MmdT
«,B=0,2 *oB
Sl
where
Loot) = Pyg = Plo + Plo8303(X(1/84))

Loalt) = = PygPyy + PyoP o830 X (1/84y)

Lh(t) = Pyg - P3o + ProBaCafX(1/84y))

where we used (5.3) and the .act that eSé'f/( — t/g4, to get the proper limit

of the argument of o3,( ).

\'\. '\ A ) \ - <..-_..-..<_.'. EREN . < K - T
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o, _
: Now, recalling that S§y(t) = g4t , and taking limits in (5.2) vields
' ~ ~ .. .
3 . Eh(X(tk),Al(tk),DnJ(tk),Bl(tk),(Rn.Tn,BUn)l{Tn(tk}, n,k}).
~ ~ ~ ~
£(Dt+s),D%(t+s)) = (D7), D 1))
2 (5.4)
a_:, (t+s)8,;
')'. 1 ~ ~ A
‘ - = £, . (DT),D(T) L g(mdT | = 0 .
S
¥ 184
4
o
?
;; The arbitrariness of h(-), f(-), and t, t+s, {t} (possibly excluding a
5 countable set) imply that (D'°(.),D'%(.)) is a martingale with respcct to the
wf
; asserted filtration.
P, The quadratic variation can be obtained from (54) via a change of
variables and is IB L(T)dT , where E(-) = {EaB(-),OQB = 0,2} and
; Loo(t) = 8aslPyo = Plo + PIoOG{X (1))
- Log(t) = 84il-P1gPyz + P1oP1383,03(X(1))]
-
: Lyp(t) = 8ailPyo - Pl + PRo05(X(D)] .
~
; With analogous calculations for DZ20€(.) and for the AM€(.) , we get
. quadratic variation for the WL(-),X‘(-), Dii(.),as given in Section 4.
<

By the above argument the limit policy (7 ,R_ ,8U_} is 'non-anticipative’
with respect to the martingales, or their generating Wiener processes wg(-),
Owing to the way they were obtained as limits of the ({75 RE8UE), the limit

policy {7 ,R_,8U_} is admissible in the sense that it corresponds to admissible




by o0y 5 ¥ 0.8 00 88 0 L 10’0 40 0 0.0 R K. 0 ol 876, 0 H N g K 4 0 M 8 Rat Vol ol dap dgb ¢0p Vab iad Sod Sal tal tak el tal Sad_va) ¢ A"t ata BY, YYY DY U

\
-36- ¢
Y
.l
f
sequences of impulses corresponding to the sequence of off/on controls as :
discussed in Section 4, 0
By the above argument, the limit policy ({7 ,R_ ,8U_} is 'non-anticipative’ ' ?:
‘l
with respect to the martingales or their generating Wiener processes. ':‘
Q.ED. '
L]
»
Extension. Consider the graph of X€(-) (XY€(-) plotted vs. X2%€(.)) in v
LY
the state space during a fixed control action. It can be shown that the graph =
converges uniformly (in probability) to the limit straight lines given by Figure :;
. .

4.1, or the considerations leading to it in other cases. The convergence is in
]
the sense that the maximum value of the distance between any point on (this o
part of) the graph of X€(-) and the closest point on the limit straight linc g
goes to zero in probability. ks
)
Theorem 5.2. Assume (A2.1) to (A2.6) and (AS.1), and let € index a weakly X
convergen! subsequence with limit R(-) . Then (with n defined as in Theorem t

5.1) for any P
‘
(5.5) lim V¢ (n€x,P) 3 V(nx,P). 4
€

§
LY
.

Define N%€(t) to be the number of actions of the control Py on the interval
0.4 . If o
]
(5.6) {(N®€(n+1) = N®*€(n) , « , n < =) "
0
is uniformly integrable, then -
W9
(5.7) VE(nt x,P) — V(nx,P). N
N
::
~d
.
Y
g e R S e A e NS i N AL e )
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Proof. The relation (5.5) is just a consequence of Fatous” Lemma and the
weak convergence. Now, let the uniform integrability hold. Then, certainly the
holding costs and the impulsive control costs in (2.9) converge to their limits, as
given by the terms in (4.8). We need only work with the last integral in (2.9).
The arguments for each component are essentially the same, and we work with
the U®€(.) term only assuming that P, is on. If P, might also be off
part of the time, the argument is a little more involved (involving the X%€ a5
well as the X€), but is essentially the same.

When P is off, the increments in the Y¥€(.) are zero. [If XY

01

= 0, we must have P, on, by (A2.1)]. We can write

UOl’e(t) = ¥ [UOI.E(Vgl.Em) - UOl,((V :l,im)]

n

= T (wl,G(Vgl,em) - wl,i(vgl,imn

n

- I [XBEELEm) - XBE(WOLEn) + L[BVE(TOMEt) - BUE(VOw)).

n n

+ (terms which -0 as ¢ -~ Q)

For some K, < = the last two sums on the right are bounded by K, N,
which is uniformly integrable by hypothesis. By the orthogonality properties of
the summands in the expression for the W}€(.) | the mean square value of the
middle term is O(t+]) . This yields the uniform integrability of (U°M€(t)} for
each t and of (U%%€(n+l) - U%%€(n), ¢ > 0, n < =} By the weak
convergence and the uniform integrability of these and the other terms in the

last integral of (2.9), the assertion (5.7) follows.
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It is not a priori obvious that there is a control policy for which (5.6) is
uniformly integrable, since we must shut off the inputs to P, whenever its
buffer is full. We will define a standard ‘comparison’ control policy called the
Aj-boundary policy. 1t will be useful since its properties imply that we can
always assume the uniform integrability of (5.6) for the optimal or 8-optimal
policies for the X€(.) . Let A, € (0,min(B,,B,)/4) and refer to Figure 5.1 If
X%¢ = B, then shut off all inputs to P, until X%€ reaches B, — 4, Then

turn them back on. If at the end of that time B, — &, < X1¢ ¢ B, shut P,

1

off until X =B, —-4,. If X" =B, , then shut P, off until X!¢
reaches B; — 4, . Then turn P, back on. We use the analogous definition
for the b,boundary policy for X(:) . Then, if ever X€(-) or X(:) hits
the outer boundary, we control it to a distance at least 4, (in each

coordinate) from the outer boundary.

Theorem 5.3. Assume (A2.2) to (A2.6). Then for the by -boundary control and each

k <=
k
(5.8) sup E_[N%¢(n+1) - N®¢(n)| < =, all «
€ small
a,x,.n

and similarly for the 'jump numbers’ of the limit process X(-) .

Remark on the proof. Refer to Figure 5.1. Let tf denote the i*" time of

return of X€(-) to the outer boundary after the i*"® time that the control
takes the process to the set [0,(B, — 45)] x [0(R, — 4y)]. One can readily show

that for any 6, € (0,1) , there is T, > 0 such that
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L)
A%
N € € €
) (5.9) sup P17, — {7 < T, | data up to t7} €1 — &, .
Wi,

; amall €
-
2
] This is just a consequence of the properties of W€(-), B€(-) and of the fact
|.:

that dU%€(.) = 0 on the intervals of interest. With (5.9), it is not hard to
'\f show that all the moments of N“-‘(iT0+T0) - N®€(iT,) are bounded, uniformly
o
0 in i and € and in the initial condition. (Similarly, for the X(-) process.)
k2

This vields the desired result. See the proof of Theorem 5.3 in [7] of a related
e
: result for a problem with a more complicated statistical structure.
N
L The optimality and ‘almost’ optimality theorem. At the present time
- almost nothing is known about optimal or 8-optimal (8>0) policies for the
-j’ X€(-) . This is one of the basic reasons for considering suitably adapted
".-‘ policies which are ‘good’ for X(-) . Unfortunately, we know little about the
- optimal or 6-optimal policies for X(:) . Thus, we must postulate (in (A5.2))
- the existence of a 6-optimal policy with certain smoothness properties. The
o
-, assumption appears to be eminently reasonable, since there is usually enormous
[
]

flexibility in the smoothing that can be put on 6&-optimal controls. The
' numerical results obtained via the methods described in Section 6 satisfy (AS.2)
5
38 for all the cases tried, in the sense that the ‘control decision’ surfaces
- (discretized for the numerical calculation) seem to have the required properties.
> In fact, the situation in Figure 5.1 is more or less typical, in the sense that
y some continuous deformation of these decision surfaces is usually the case.
¥
A For our current purposes, it is best to view the path X(:) as its graph
o
| in the state space. The uncontrolled sections are the graphs of the paths of the
| uncontrolled reflected diffusion, and the controlled sections are straight lines,
1%
: each one (or perhaps part of one) correspond to a different value of the set of
2
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indicators P = (POLPP2P!P!?). In a sense, (A5.2) is a long-winded and formal
way of saying that the lengths of the straight line segments are piecewise
continuous in their starting point. It also deals with the possibility that the
initial P might be inappropriate for the initial state x, and that we might
have to change the control settings instantaneously at t = 0. We tried to give
a general description of what reasonably seems to be expected. The situation
might be simpler in special cases - but it seems likely that the useful &-optimal
(or even optimal) control policies would be described by (A5.2), due to the
nature of the impulse sequences. Note that (the k., are the cost coefficients
in (2.6))

1 + sup [V(x,P) + 1}/min k = K
x,P «

is an upper bound for the numer of ’simultaneous impulses’ (the above number
of sequential line segments) for the B-optimal controls, with © € 1.  We know
that sup V(x,P) < =« owing to the properties of the comparison Aj -boundary
contr(;(l,};f Figure 5.1.

We require some ’smoothness’ in the 6-optimal 'feedback’ controls, since we
need to adapt them for use with the X¢(:) process and will require that the
corresponding sequence (X€(-) (and the associated costs) converge
appropriately to X(-) (and its associated cost).

The boundaries of the sets G(1) and G;(P) below are smooth in that
they are composed of a finite number of differentiable curves which are not
tangent at the points of intersection. We use P to denote the control value
just before a decision to change the control is made, and P, to denote the

new control value just after the decision is made. Recall that P = 1 is used

for P = (1,1,1,1).

g,
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We could replace (A5.2) by the simpler assumption that for each & > 0

™

5 there is a ®-optimal admissible policy mg for X(-) and admissible policies
ng for X€¢(-) such that X¢(-) (under mg) 3 X(-) (under mg), and the

L]

\ associated costs converge. (AS5.2) simply defines a reasonable g for which

A

this can be done. The interiors of all sets in (AS5.2) are relative to G = [0,B]

At

x [0,B,].
w
W
»
o AS5.2. For each & > 0, there is a 'feedback’' policy ng for X(-) which is
l
’ 8-optimal in the sense that it satisfies (A2.1) and
(5.10) V(x,P) = inf V(Lx,P) » V(Rgx,P) - 6
- Madm.
' for all x,P and which has the following properties.
A (a) Let P =1. Then there is a decision set G(1), whose boundary is divided
into a finite number of segments. Each segment is associated with a switch to
. some P, # 1 when  X(-)  hits it from the outside. The segment
1]
' associated with each P, is strictly interior to one of the sets G(P,) below.
(b) For each P # 1, there are a finite number (perhaps zero - see remark in
: (c) below) of sets G(P) whose interiors are disjoint. If x € G(P) and
) P is used. then it is used until the boundary of G,(P) s reached. The
distance (taken by the graph of X(.). which is a straight line) from
. x € G(P) to the boundary of G(P) is a continuous function of Xx. The
(straight line) graph is (uniformly) not tangent to the boundary at any point
of contact. The boundary is divided into a finite number of segments, each
- .
~ associated with a new control setting. perhaps with P = 1.
)
\
‘
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These segments are strictly interior to some se! G,'(Pl) for the new value

P,
At the corners of the segments of aG.l(P) or 9G(l), any policy associated
with the intersecting segments can be used. There is 8, > 0 such that after
a finite number of swilches. we have P = 1 and X(-) is a distance 3
a, from G(l).

(c) It is possible that there will be an immediate change P = some P, # P
ar t = 0. If this occurs, we want the line segment of the graph of X(-)
after the switch to correspond (o P, Jor at least a minimum distance.
independent of x. (This seems to be rather unrestrictive). We formalize this
as follows.

(¢;) If we do not switch at t = 0, then assume that x € some G(P) ahove.

(c,) 1If we do switch (to some P, # P) at t = 0. Then assume that x € some
G,(P,) above and inf d[x,8G,(P))] > 0.

xéGi(Pl)

Remark. The assumption concerning 'points in common’ to several 3G,(P) does

not seem to be restrictive. Generally, in dynamic programming, when the state

is on the boundary of sets corresponding to different policies, any one of the

policies is optimal. Condition (A5.2) is intended to be illustrative of the

possibilities that we can allow.
Adapting mg to X€(-). By adapting the policy mg for use with

X€(-) we simply take as the moments of decision the moments when X€(.)

hits the decision boundary segments.
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5 We¢ now prove the ’'almost 8-optimality’ of mg-applied to X€(-). Theorem

5.4 says essentially that a ’nice’ control which is almost optimal for X(-} will
N also be almost optimal for X€(.). This justifies the wuse of the limit
approximations for purposes of getting good or nearly optimal controls.
)
o Theorem 54.  Assume (A2.2) to (A2.6), (AS5.1) and (AS5.2) . Let n§ denote the
< policy of (AS5.2) adapted 1o X€(.) . Then
” (5.11) VE(mg x.P) — V(ngx,P)
E uniformly in x . For admissible ¢ and small € ,
3 (5.12) sup sup [VE(MExP) = VE(REx,P)] € 26 . .
P (n€y
_'- Proof. The proof is a consequence of the wcak convergence in Theorems 5.1
L
™ and 5.3, the piecewise continuity properties of (AS5.2) and an estimate of the
e type obtained in Theorem 5.2, and we only outline some of the argument.

(a) The facts that the segments of G(l) are piecewise differentiable with

. non-tangent corners and that the uncontrolled X(:) 1is non-degenerate imply
f that the hitting times (and locations) of X€(-) on G(l) converge to those
5
E for the limit X(-), for any initial condition outside G(l).
g

(b) Similarly for the hitting times and locations of the boundaries of the

G,(P), when P # |

! (¢) The uncontrolled segments of X€(.) converge to those of X(-). The

)
y graphs of the controlled segments of X€(.) converge uniformly to their limit
_ straight line segments, as discussed in the remark after Theorem S.1.

:' (d) If a limit point of X€(.) or a limit point of an end point of a
.: segment of the graph during a control interval - is on a corner of the boundary
=

- .

)
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of G(!1) or of some G,(P), then the limit control actions just after contact
with the boundary there 1is, of course, specified by the limit of the control
actions of X€(.) iust after contact with the boundary. But, by (AS5.2) which
of the actions associated with that boundary point are used for  X(.)is
irrelevent.  Whatever it is, it will be used for a positive minimum distance (on
the graph).

(¢) Let N€() denote the number of distinct control actions on [0,1].
Then a proof such as would be used to prove Theorem 5.3 together with the
wecak convergence and the fact that 4, > 0 can be used to show that (N€(n+1)

N€mn), n < = € > 0} is uniformly integrable. (This is then used as in
Theorem 5.2.).

(f) Let € index a weakly convergent subsequence. The limit process is
the X(-) associated with Mg, By (AS.1) and (AS.2), the particular sequence
used is irrelevent.

(g) (5.11) follows from the above facts and theorems 5.1 and 5.2.

(h) (5.12) follows from the theorem 5.2 and the fact that ng is
6-optimal for X(-). The limits of the controls (n€} might depend on the

subsequence. But (5.12) holds uniformly in the subsequence.

Extensions. The arrival and service time sequences can each be correlated,
(e.g., service in 'random batches’, ctc.), provided that they satisfy suitable mixing
conditions. If they are correlated and state dependent, then the °first order
perturbed test function method' of [5, Chapter 5] (see also [6]) can be adapted.
It is possible to control the service or arrival rates (marginal ald') also.

Impulsive controls (hence piecewise constant rates) are easy to accomodate here.
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Otherwise, one can introduce relaxed controls as in [6], writing (c.g.) the drift
term as Igbi(xe(s),u)mt(da) where my(-) is the measure associated with the
relaxed control. We do need to maintain heavy traffic, of course. The

variances can also be allowed to be control dependent. There is no problem

allowing this 'impulsively’, but for continuously controlled variances, there is
still some wuncertainty concerning the appropriate description of the limit
problem.

For more general feedforward - branching networks, controlling the P

might also be of interest. One could use Pj = Pj; + VE 6p; + o(ver). Then,

ij
when the ’'principal terms’ are cancelled in (3.5), we are left with an additional
0(1) term-depending on {Spij), and this corresponds to an additional drift
associated with the ‘’'marginal’ control of the routing. Various types of
controlled priority service are possible - and might be the subject of a future
paper. For example, the customers might fall into various priority classes which A
relate, for example, to service time distributions. We might control the priority
service subject to holding costs depending on the priority.

The average cost per unit time problem is trickier, but one can adapt the

scheme for the ergodic problem in [6]. Here (X€(.), vector of elapsed times

since the last service completions or arrivals}) would replace the vector {X€(.),

t€(-)) of [6]. Then, under appropriate ergodicity conditions concerning the

8-optimal processor, we can extend Theorem 5.4,
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6. A Numerical Method for Approximating the
Optimal Value Function and Control

The control problem defined by the cost (4.8), system (3.14) and the
control actions described by the possibilities associated with the off/on impulses
associated with the discussion about Figure 4.1 can be approximated by the
numerical mecthods studied in [9]. The method in [9] involved a Markov chain
(indexed by a 'finite difference’ approximation parameter) approximation to the
optimal continuous time problem. One then showed that the sequence of value
functions for the chains converged to the optimal value function for the
continuous parameter problem, and that suitable continuous paramecter
interpolations of the chain converge weakly to the optimal controlled continuous
parameter process. The methods of [9] can be readily adapted to our problem,
and only an outline will be given. The weak convergence methods used in [9]
will have to be replaced by the methods here - owing to the reflection term,
but the general idea is the same.

Let h be a finite-difference approximation parameter, and B, be
integral multiples of h. Let G, denote the h-grid on G = [0,B,] x [0,B,).
Define a; by Zij(t) = Igaij(X(s))ds, and generally omit the x-argument in the
aij(-) and bi(-) below. For the Markov chain approximation, the status of the !
controls at any time is defined by the vector P = (P°LP%2pP!Ppl1?) where P% = )

1 (resp., 0) denotes that the control is on (the iink is operating normally) q

(resp., closed). Recall that, when P = (1,1,1.1), we write P =].

Let {X:) denote the approximating Markov chain, and let x denote the

canonical current state, y the canonical successor state and P, the canonical

- e 8 e «_~

control which will be used at state x to bring the chain to the next state.
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Xh(‘), the interpolated process to be the right continuous piecewise

process with interpolation intervals Ath(x,Pl). Both these intervals and

the transition probabilities ph(x,y/Pl) depend on the new chosen control a.

well as

on the current state. If P, # 1, we use Ath(x,Pl) = 0; ie. the

interpolation interval has zero length. In this case, several steps of (XE) all

occur simultancously in the interpolation XP(.). Define Qu(x) = 2[a;; + a,, -

lalZI] +

ath(x,P)) =

We

h(|b‘| + |b2|), and let a, -

i ialZI 30,i=12 For P, =1, we use

h?/Q(x).

now define the transition probabilites ph(x,y|P1) for the chain when

th

P, =1, for x,y € G,. Let e denote the unit vector in the i*" coordinate

direction.

(6.1)

If some

We use

pPixxaeh| Py = 1) = [a; - |ag,| + h(b)*]/Qu(x),

ph(x,x+ep-eh|Py= 1) = ph(x,x-c;h+e,h|Py = 1)

[312]/QulX).

x'  (the i** component of X) equals zero - then the transition

probability (6.1) is modified as follows, as a concatenation of two transitions,

the first being (6.1). For the second (the ‘refiection’) step, we distinguish two

cascs.

Case 1:

h

The 'y’ argument in the p" in (6.1) is not in G,, but x! # 0 or

y # x -e,h + e;h. Then simply project (reflect) the process back to the nearest

point in
Case 2:

back to

G,
Let x! =0 and y = x -¢,h + e,h. Then the second transition is

y = x, with a probability pu,/(l - py) and back to y = x + e,h

with probability [l - P;/(1 - Py} This step is to account for the puY1

term in (3.14).
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If P, =1 always, then XP(-) 3 X(-), uncontrolled and unreflccted (9]

Let P denote the control used to get the current state x. The actual
state for the problem is the pair (x,P), since the cost associated with the next
transition depends on whether or not some element of the current control vector
is changed. Let Kh(x,P,Pl) denote the costs associated with the transition,

For P, =1

when current state is x, and control P changes to P 1

¥
K"x,P,1) = atP(x,1)k(x), the holding cost only.

We now define some of the transition probabilities and costs when
P, # 1. There are 15 possibilities, and only some typical ones will be described.
These are constructed so that the limit (as h = 0) of XP(.)  will be the
reflected controlled X(-), and so that the associated costs for XP()y  will also
converge to that for X(.). Write P = (POLPO2PIZpY) p = (PYLPY2PI%P)).

Let P$' = 0, with other P¥ = 1. Then use p"(x,x-¢;h[P)) = 1 (by
(A2.1), x> 0 here) and Kh(x,P,Pl) = qgh + k011{p°1=1,p‘il=o}‘ Now, let
PY? = 0 with other PY = 1. Then p"xx-e;h|P) = 1 and KMx,PP) = qgh
+ kol (02 pcl)2=0}' For Piz = 0 and other P§ = 1, we have ph(x,x-czh:Pl)
=1 and KMx,PP) = q;,h + Kyg (p1221 5120y

Now, let P} = 0 with other P{ = 1. Let p,,8, € 8, (the reverse case
is treated anologously) and refer to Figure 6.1. The line from x to (a) is the
mean direction of the appropriate impulse, and its slope (see Section 4) is [g,, -
(1 - Pyy)84s)/8,; = -P12841/8s In order to 'simulate’ this mean line, we use

ph(x,x + ¢h - €h|P) = D184, /8, = | - ph(x,x + e,h|P)).
The instantaneous cost is KP(x,P,P)) = kll(pl=l,pll=0}‘
Now, let P12 = P9* = 0 with all other P¥ = 1. Then p"(x,x - ¢,h|P)

= 1. The 'impulsive’ part of Kh(x,P,Pl) is obvious, namely klzl(p"":l,p}zzo} +
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. » . ’ 12 -02 :
l\ml(pozzl‘p?zzo}. But the ‘opportunity’ cost - that due to Z and U 18
less obvious. This is obtained from the relative rates at which XZ(-) decreases
due to the effects of P,, and Py, (resp.) being off. This is (resp.) p;,84;
and g,,, Thus we use the ‘opportunity’ cost
h[Q13P1284; + Q02802)/(P12841 *+ Ba2):

The ph(x,ylPl) and Kh(x,P,Pl) are calculated in a similar way for all the
other possibilities.

The dynamic programming equation for our 'approximation’ problem is

(6.2) VH(x,P) = min [(exp - BAt"(x,P )L p“(x,y|P1)V“(y,P1)
P y

1
+ KMx,P,P)).

The weak convergence methods of this paper can be used to show that Vh(x,P)

- V(x,P) = iar;fn Vx,n). It can be shown that, for each x there is an (wt)-

dependent control such that the approximation methods (for the control) in [9,

Chapter 9] can be used. For reasonable grid sizes, say 50 x 50, the numerical
problem is quite tractable.

For the numerical problem, we do not need to duplicate the dynamics of

the original system X€(-), but we can use any controlled process which has the

same controlled limit equation. See the book [9] for a fuller development of

this computational point of view for a large class of more classical problems.
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