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{ For a pair of reaction diffusion equations with one diffusion coefficient
¥
Y

! very large, there is associated a reaction diffusion equation coupled with an
', ordinary differential equation (the shadow system) with nonlocal effects which
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1. Introduction

Many models of chemical, biological and ecological problems involve
systems of reaction-diffusions in a bounded domain 0 with Neumann
bound ~onditions. Of major concern is an understanding of the mechanism
for the creation of stablec patterns; that is, stable solutions which are spatially
dependent (sce, for example, Turing [1952]), Nicolis and Prigogine [1973]). For
the understanding of how stable patterns occur, it is obviously of interest to
characterize those situations for which stable patterns do not exist and, even
more particularly, thosc systems for which the flow 1is essentially determined by
an ordinary differential equation. This situation was studied rather extensively
by Conway, Hoff and Smoller [1978] for the situation where the system of
partial differential equations had an invariant region and by Hale [1986] for
the genecral situation. Due to the generality of the methods in the latter work,
the theory applies equally as well to functional differential equations or delay
cquations with diffusion. The basic result is that no patterns exist if the
diffusion coefficients are sufficiently large.

Once the results arc known to be valid for large diffusion coefficients,
the next step is to try to understand the occurence of qualitative changes in the
flow through bifurcations as the diffusion coefficients become smaller. If all
diffusion coefficients are allowed to be completely arbitrary, many complications
occur and it is therefore natural as a first step to allow some diffusion
coefficients to become small while others remain very large. For a system of
two equations with special types of nonlinearities that occur in biological and
ccological models, such a theoretical investigation has been made for the

bifurcation and stability of equilibrium solutions by Nishiura (1981} and
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Nishiura and Fujii [1985]. With the aid of numerical methods, the bifurcation
of equilibria for the same system for arbitrary diffusions has becen discussed by
Fujii, Mimura and Nishiura [1982].

In the work of Nishiura [1982] and Nishiura and Fujii [1985), if d,d,
are the diffusion cocfficients, an important role was played by a limiting
system called a "shadow" system which is obtained by letting d, — * and
consists of a single reaction-diffusion equation with diffusion coefficient d,
coupled with an ordinary differential equation. It was shown that the existence
and stability properties of equilibrium for the shadow system were reflected in
the original pair of reaction-diffusion equations for the diffusion coefficient
d, large. It is the purpose of this paper to carry this idea further by showing
that the existence of a compact attractor for the shadow system implies the
existence of a compact attractor for the original system if the diffusion
coefficient d, is large.

Let us now be more precise in the statement of the results. Let 0 be a
bounded domain in RN, with 30 smooth and consider the system of
reaction-dirfusion equations

du/dt = D,bu + f(u,v)

(1.1)
dv/8t = D,Av + g(u,v) in Q

subject to Neumann boundary conditions
(1.2) du/dn = 0 , dv/on = 0 on an

where u € R™ v € R" are vectors, D, = diag(d,;,---.d,.) ,

D, = diag(d,;, --.d,)) where  each d; > 0, f : R®m x R* — R™ |

,.."" ~n-$¢.'v-.l-% [ATRLR AL N ". N -’ ( ’ "\ ‘i-. il J‘ "4 n’ I -\' .. \ "-"II\’. s f.-_l'\n’\f ’
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g ¢ R™ x R®™ — R™ are C%functions.

Let X = L¥2R™), Y = L¥,R™ . Using the operator A = —A , one
can define the usual fractional power spaces X%, Y% . For convenience in
notation, let us assume that N €3 and choose X < «a < 1. The latter
choice of « is made to ensure that X% c WL3QR™) n LQR™) ,
Y*C WY RM N LT(,R®) . For N =1, we can take a« = % . One can
then show (see, for example, Henry [1980]) that, for any (ugpvy) € X% x Y,
a > X, there is a unique solution (u(t, -, ug,ve)v(t, -, ugvy)) € X* x Y of (L1),
(1.2) through (ug, vg) at t = 0 which is continuous in (tug,vy) .

A set A C X% x Y is  invariant under (1.1), (1.2) if
(ut,- ,A)v(t,-,A)) = A for t 3 0. The set A is a compact attractor if it is
compact, invariant and there is a neighborhood U of A such that the w-
limit set of u is A . The wlimit set WU) of U is defined as

wU) = ‘r(;o cl t\;T (u(t,-,U),v(t,-,U0)) .

By the shadow system of (1.1), (1.2), we mean the system

8u/8t = D;su + f(u,f)
(1.3)
de/dt = |7 [ g(u(-x),t)dx  in @
Q

with the boundary condition
(1.4) du/dn = 0 on an .

The concept of a compact attractor in X% x R™ for (1.3), (1.4) is defined in a

manner analogous to the one for (1.1), (1.2).
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If d(l’ > 0 is a given positive constant, we use the notation D, 3 df_,’ln .

In general, we let N(8,A) be the ®-neighborhood of a set A of a Banach :
space. k
We will impose the following hypothesis: d
(H) Suppose there is a compact set K € X% x R"™ and a constant 8, > 0 K
such that (1.3), (1.4) has a compact attractor ADIC K, '

w(N(So,ADI)) = ADl for every D, 3 dcl’lrn

Theorem 1. If (H) is satisfied, then there is a dg such that, if D, 3 dgl o

n ?

then there is a compact attractor ADI'DZ C X% x Y for (1.1), (1.2) and, for

€ >0, there is an n > 0 such that ADI,Dz C N(e,ADIX {0y) if Dy 2 nl,

“
where {0} in ADxx {0} means {0} C Yé with Y% = R x Yé ]
The last statement of the theorem asserts that the attractor AD1,02
cannot be much larger than ADl x (0} if D, is large. On the other hand, ‘
it could be smaller if we make no further hypotheses about the flow on ADl B
of (1.3), (1.4).
In Section 2, we prove Theorem 1. The proof follows some of the ideas -
in Hale [1986] except that a new argument must replace the use of Lyapunov E
functions to obtain a priori bounds of the solutions of the full system. These 2
functions seem to be of little use due to the fact that one cannot obtain ;:
information about a perturbed partial differential equation using the derivative ‘
of the Lyapunov function. :"
In Section 3, we discuss the difficulties involved in obtaining ADI D, S ,.
a graph over (u,z)-space. Some restricted conditions for the existence of a .
graph also are given. A
R
“

o "R’*QW S



Under the assumption that the shadow system has a compact attractor with

certain properties, Theorem | asserts the existence of a family of compact

L
E‘ attractor ADI.D2 for the full system which are upper semicontinuous at
d, = . It is natural to ask the opposite questions: supposc that the full
:;‘ system has a compact attractor for each D, 3 d‘.}ln . Does the shadow system
:.:' have a compact attractor A, and is the set (ADI,Dlez ? dgln,A,) lower
',':, semicontinuous at d, = @ ? Section 4 is devoted to a discussion of conditions
i which ensure that this is the situation.
*' In Section 5, we discuss the relationship between the shadow system and
PDE’s with nonlocal spatial effects and hereditary dependence.
" Theorem 1 can be considered as a first attempt to understand the behavior
'_': of the solutions of systems of reaction-diffusion equations. Further information
'..:: could be obtained in the following way. In Theorem 1, there is a restriction
that D, 3 dcl’lm . In any particular problem, one could first try to analyze the
Y-
E shadow system for all D, 3 0 and obtain a clear picture of the dynamics of
E. the attractor. Taking the limit as D, — 0 gives some information about the
N types of singular solutions that can occur at D, = 0 . Ideally, one would then
S hope to obtain an attractor ADrDz for D, 3 d)I_ and all D, > 0. This
.: will involve a very difficult analysis of the existence and stability of large
C amplitude singular solutions near D, = 0. These solutions will play an
] important role in understanding the global flow for the original equations in
;; ' the region in (D,,D,) --space where D, is not very large. Such a program
" has been partially carried out analytically and numerically for a system of two
: equations modecling problems in ecology by several Japanese mathematicians (sce
N
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the survey article of Nishiura, Fujpr and Hosono [1986])  They have w2

detail the bifurcation curves in (D D,)-space for tiue <ne and twa ST
equilibrium solutions and have discussed the stability of these solutione [heeo
results explain well the formation and coexistence of stable patterne e
manner 1n  which the equilibria are dynamically connected has not becr
discussed and is certainly an important factor.

Various generalizations of Theorem | arc possible. For example. ditterens
boundary conditions may be allowed. Consider the equation (111 with the
boundary conditions

Dlau/an + Ej(x)u =0

(1.5)
D,3v/8n + E,(x)v = 0 in 30

where EE, are diagonal matrices and let
(1.6) g, = - 101 [ Eyx)dx
an

The appropriate shadow system for the system (1.1), (1.5) with D, large

is the system

du/dt = D,Au + f(u,z) in 0
(1.7)
dz/dt = {,z + IQI"I g(u,z)dx
0

with the boundary conditions
(1.8) Dlau/an + Ef(x)u =0 in dn

Following essentially the same proof as below for Theorem 1 and the

D, at
estimates on ¢ 2 from Hale and Rocha [1987a,b]. one obtains (XJ .YE
1
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Hoale boMe tnar the ab o 1o ool ocoea Wl e it
durterential cgquaty neowth g ia
v o= Dtu e fiu
9
Ov It = Dylu + glu v in QN
with the boundary conditions (1275 or (15) where the notation  u v designate
u B = ulteBx VIBX) = (e B 8 € [-r0) . The functions wu.v, arc
supposed to belong to the spaces C([-r.0L.X% ., C([-r.0.YY The shadow
svstem 1S
du dt = D,bu + flu,.z,) in
11,10
dz dt = t,z(t) + ||} I g(u,.z,)dx
4]

1. a functional

differential equation.

partiai differential equation coupled with a functional ordinary

We do not state the precise result on the existence of an

attractor for (1.9) which would be analogous to Theorem 2.
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2. PROOF OF THEOREM 1

Let ZcCcyYy“ be the linear space of the constant functions,

Y°‘=ZGY£, v=z+w where z € Z, weY‘aL,

. 2.1 z = |n|-1j' v(x)dx ,
[0}

(x)dx = 0
Inwx)x

We can identify Z with R"™ and therefore will consider z as an element

of Z as well as a vector in R" .,

If wu(t,-), v(t,-) are solutions of (1.1), (1.2) and wv(t,-) = z(t) + w(t,-) ,

z(t) € Z , w(t,.) € Y'L then

o ?

- - s

Qu/dt = D,Au + f(u,z+w)
dz/dt = || [ g(u,z+w)dx
n

dw /3t

D,aw + g(u,z+w) — |a]-t fn g(u,z+w)dx in Q

du/8n = 0 , dw/dn = 0 in an .

We are going to consider this equation as a perturbation of the system

du/ot

D,Au + f(u,z)

(2.4) dz/dt

12| [ g(uz)dx
Q

8w/dt = D,Aw in Q

with the boundary conditions (2.3). By hypothesis (H), (2.3), (2.4) has a compact

! attractor A, x {0) .
1
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Let us rewrite (2.2) as
Su/6t = D,Au + f(u,z) + F(u,z,w)
(2.5) dz/dt = |n|-! Ing(u,z)dx + Z(u,z,w)
dw/8t = D,aw + g(uz) — (@[] In g(u,z)dx + G(u,z,w) .
Then using the fact that « > X and standard types of estimates (see, for

example, Hale [1986] or Hale and Rocha [1986a]), there is a constant kg such

that

nF(u,z,w)"Lz s |Z(u,z,w)| . |G(u,z,w)|L2 4 ksuw“Yi
(2.6)

"8(\1,2) - 10! J’n g(u,z)dx”L2 € kg

for (u,z,w) € N(5,K x {0}) .

There are p > 0, k; > 0, such that, for dzj 3d> 0, we have

D,A
"e 2 tw”Y'& £ klc'd“tlwlyé . t 30
2.7)

"cD2At

w"yé ¢ l<1<:""“t'°‘|w|Lz :

(see, for example, Hale [1986]).
If we now use the variation of constants formula on the equation for w
in (2.5), then, as long as {u(t),z(t),w(t)) € N(B,ADl x {0}) , we can use the

relations (2.6), (2.7) to obtain

---------------------
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=10~

t
"w(t)”Yé ¢ kyethdt "‘V(O)llyi + klks,‘; (t-s) e kd(t-s) g
+ kikg ,I't (t-s) X e~Hd(t-s) ||w(s)||YJ_ds
0 «

Choose 0 < 0 < u and let n(t) = eodt "W(t)"YJ. , Y(t) = sup{n(s), 0 € s € t)
[+ 4
X and

) «©
,Q'. L = J’ s-ae-(l-O/U-)s ds
‘ 0

¥ Then
; n(t) ¢ kye (B-0dtn0) + k kgeOtL(ud)®1 + K kgL(pd)™ 1 y(t)
) Now choose d so that
0 2.8) 0 =1 = kkgL(ud)* > 0 .
Then
y(t) € 87k e (¥ 0dtn(g) 4 871k keIt L(ud)™!

0 Since n(t) = eodt "W(t)"Yl , we have
x
. (2.9) ||w(t)||Yl ¢ 071k, erkdt "w(O)Hyl + 0k kgL(ud)™? |
[+ x

1y Remember that (29) is valid for all t € [0,7] if (u(t),z(t),w(t)) €
N(S-Anl" (0)) for t € (0,7].
.' If (u(t),z(t),w(t)) € N(S,ADlx ) for all t 2 0, then inequality

y (2.9) implies that

. y PO P IR o L R AN I GVIL N SR S ‘.,.r_-.-,-\-“-.-..-_‘.-‘-.‘q.|_--_.-..-,\"\
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4
, -1 -1 o-1
"w(t)"Y# <9 k,”w(O)"Y_OL‘ + 0k kgL(ud)®?, 30
52
¢ (2.10)
&
[
. : -1 o-1
‘f Iim SUD,..@ "w(t)"Yé € 07k kgL(ud)
' Therefore, w(t) can be made as small as desired by taking w(0) small and
n
:{l d large and the lim sup of "w(t)"Y_L can be made small by making d
W, <
e large.
& Now let us obtain a priori bounds on wu(t) , z(t) ; namely, the solutions
[ of
L)
)
X
3u/8t = DAu + f(u,z) + F(u,z,w(t))

’.

2.11)
1)
N dz/dt = 0] [ g(uz)dx + Z(uzw(t) .

0

K
:‘ Choose constants €n, 0 <2n < e < 8, and let ty(n) be the constant
‘\
‘ such that the solution (u(t),z(t)) of (1.3) (1.4) with (u(0),z(0)) € N(sl,ADl)
‘-

satisfies  (u(t),z(t)) € N(n,ADl) for t 3 t(n), which is ensured to exist by
}u‘ (H) . There is a constant € such that, if "F(u,z.w)" 2 IZ(u,z,w)I < T,

then any solution (u(t),z(t)) of (2.11) with (u(0),2(0)) € N(e,ADI) must stay

in N(8A,) for 0 ¢t ¢ to(m and satisfy  (u(to(M),z(ty(Mm)) € N(zn»on)-

:,E: Therefore, the same will be true for t € [ty(m),2ty(n)] , etc, and the solution
' will remain in N(S,ADI) for t » 0. To obtain this estimate on F, Z,
‘ choose "W(O)"Yl so small and dg so large that the right-hand side of the
j first inequality iz (2.10) is less than T/kg .

Therefore, we have shown that there is a neighborhood U of AD1 x {0}
‘ such that the solution (u(t),z(t),w(t)) of (2.2), (2.3) with initial data in U
;:

‘:

- -
-

-
-
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M
and d9 sufficiently large stays in N(§,A; x {0)) for t 3 0. Thus, wU)
. .
! is compact (see Henry [1980), Th. 3.3.6) and wU) = ADID2 is a compact
4,
" attractor for all D, » dJI_ and D, » dJI_.
'y
[
From the second inequaiity in (2.10), we can use an argument similar to the
one above to show that, for any sequence n, — 0 as j — « , there is a
" sequence dgj — ® a5 j — = such that
= wWU) € N(n, A, x(0
. Ao, WU) € N(nAp x(0)
- This implies the last assertion in Theorem 1 and the proof is complete.
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3. THE ATTRACTOR AS A GRAPH

In this section, we discuss the possibility of the attractor ADID2 7
being a graph over (u,z)-space. It is tempting to try to obtain such a graph by
applying the method of center manifolds to the system (2.2), (2.3) attempting to
obtain an invariant manifold which contains ADI'DZ and is defined by
w = h(u,z) for some function h . After appropriately re-defining f , g
outside a necighborhood of the attractor so that they are bounded functions, such

an integral manifold would be required to satisfy the equations

du/8t = D Au + f(u,z+h(u,})) :

dz/dt = |1 [ g(u,z+h(u,{))dx
[0}

LS IR

u(0) = yy, z(0) = z,
def o0 -D,As
h(ugyzg) = (Th)(u,zy) = _f e [g(u(s),z(s)+h(u(s),z(s))) -

|a|! Ig(u(s,x),z(s),h(u(s,x),z(s)))dx]ds .
0

To define this integral operator Th requires that u(s) must be defined on

(-»,0] . One does not expect such solutions to exist for all values of u,
because of the smoothing properties of the solutions of 8u/dt = D,Au . N
These remarks seem to indicate that the standard method of center :‘

manifolds will not apply to this problem. X
Another approach that could make use of center manifold techniques is to h
assume that Ap for the extended f, g lies in a finite dimensional
1

invariant subspace which is normally hyperbolic for the shadow system. This

-.'. - .,...’...“. 87 T LY LA M LA P 5 W ) s 3% I TS % T L \“-\1__\‘-“-\‘--\"\ AN )
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can be accomplished, for example, if the spectrum of the Laplacian has
sufficiently large gaps. The proof can be supplied as in Mallet-Paret and Sell )
[1986] for inertial manifolds or one can use the integral equation approach for
center manifolds in a form similar to that mentioned above. This implies, for
example, that the attractor will be a graph if the equation for u acts in

only one space variable.
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4. LOWER SEMICONTINUITY OF THE ATTRACTORS

In this section, we assume the existence of compact attractors Ap b for

172
(1.1), (1.2) satisfying certain properties and conclude that the shadow system

(1.3), (1.4) has a compact attractor.

Lemma 1. For € > 0. T >0, there exists d, = dy(€,T) such that: if
{(u(t),v(t)) and (w(1),t(1)) are solutions of (1.1), (1L.2) and (1.3). (1.4) respectively
with  uw(0) = w(0) . ¥(0) = E(0) then. for D, 3 d,(e,T)I . the following are
valid:

sup |u(t) - w(t)l « < €, sup IV(t) - k)| < €
t€0,7) X tg0,7)

sup {v(t) — V(1) < €
tqo,n‘ |YI

where v() = |07 [ v(t)dx .
0

Proof. By g (¢ )W), ¢ € X*, ¢ € Y, we denote the projection of the
function g(¢(-),¥(-)) onto Yf along Z . Let us first give an estimatc on

v () = v(1) = V(1) , which satisficd the following
' D,A(t-s) _
vi(t) = f ¢ g (u(s),¥(s)+v(s))ds
0

By using the estimates in (2.7), one obtains

R I I
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t
il ¢ b0 [ sz o oo 0

(4.1)
€ k,Mr(1-0)/(udz)!" for t € [0,T]

where M = sup{"gl(u(s),v(s))"Yo | 0 ¢5s ¢ T}.
Now rewrite the equations for (u,¥) as follows:
8u/8t = D,Au + f(u,7) + Ry(vy)
dv/dt = 1011 [ g(u(y.t),¥(t))dy + Ry(v))
Q
where Ry(vy) = f(u,v+v)) - f(u,v)
and
Ryvp) = 1917 [ [g(u(r,0.9(0)+v (v.0) = g(u(y.1).9())]dy .
Q

By using the estimate in (4.]), one can find a constant K > 0 such that

sup ”Ri(vl)"Yo € Kd&!, =172
1€0,7]
These estimates prove the existence of d, = d,(¢,T) in the lemma.
Let us denote by TDpDz(t) the semiflow on X% x Y* generated by
(1.1), (1.2) and make the following hypotheses:
1-1) TDx'Dz(t) has a compact attractor ADI'D2 #¢ in X% x Y¥
(H-2) For any bounded set B € X* x Y and any ¢ > 0, there is a
ty, = ty,(€,B) such that:
Tp p (VB € N[e,ADPDz] R

(H-3) C1 U Ap , is compact for some d}> 0.
D2d0n 1732
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Theorem 3. Under the hypotheses (H-1)-(H-3), the shadow system (1.3), (1.4) has a

compact attractor Ap and, moreover,
l ®

Apb, = n Cl U A
D D, D
L= 83d] pyer, V2

Proof. N CI U Ap  is non-empty and compact because of (H-1)and (H-3).
63d) D, 12

Let us denote by TD: °(t) the semiflow on X% x Z generated by the shadow

system (1.3), (1.4).

Firstly, we show that T (t) has a compact attractor A and that
D Dje

A cn Cl v A holds. For any bounded set B C ch x Z , the
Dy 0 D,.D,
' §3d; D,38I
n
{TDPDz(t)Blt 3 O) is bounded by virtue of (H-1). We therefore repeat the
arguments in the proof of Lemma 1 uniformly in the initial data (¢,9) € B ,

namely, for any € > 0 and T > 0, there exists a constant 8, = 5,(¢,7,B)

such that

disty o va(Tp, SUBTp p (OB) < ¢

for t € [0,T], D, 3 8,(7,e,B)I . By the hypothesis (H-2), there is a ty(€,B)
such that Tp (VB C N[e,ADPDz] for t 3 ty(e,B) D, » d%_. For any
increasing sequence (T,-);;p T;te, jt=, let j, = j€) be the least index

j for which T, > to(¢,B) and

N[e, N 0Cl v ADI,D,] ODClu {ADI,Dlez 3 so(e,rj,B)In]
!5>d2 D 81

hold.
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For this choice of j,(¢) , we have:
(1) dist(Tp p (T, ¢))B.Tp (T;()B) < €  for Dy > seT; B,
(2) Tp p(Tie)B € N(©Ap p), VD, 3 agr,

(3) N(e, 0 Cl U Ap ) D ClU(Ap o |D, » §y(e.T; B} .
0 172 1Pz jo(€)™/"n
83d3 D381,

From these three properties, it follows that

Tp, (T, (e)B € NBe, 0 CL U Ap p).
: 82d) D361

Let j, = jy(1/k) , k 3 1. Hence, the limit

limit T, (T JBBC n Cl VU Ay, exists.
k@ & 63d) D6 1?

Since the sequence ('rj};”___l, Tjtﬂ, jte is arbitrary, we have thus

established

(4.2) wT (B)= nCluT s)BCc n CI v A
D Dy w 0 D,.D,
1 30 s3t b §3d0 D351

This, in particular, implies that TDP,(t) is bounded dissipative and
(Tol,w(t)BI‘ 3 0) is bounded for B C€ X% x Z bounded. One can also show
that TDP.,(t) is compact for t > O (see Hale [1985] for detail). These three
properties are sufficient to guarantee that Tol,“’(t) has a compact attractor

Ap o (see Hale [1985)). From (4.2), it follows that

1

Ap eC N Cl U Ay

0 102~
8>d D, 361
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In order to prove Ap @2 N Ci U  Ap p. . it suffices to notc that
! 82d)  pyEr, 177

Lemma 1 actually shows that the semiflow Ty D (t) is continuous in D, at
172

2

infinity. This fact together with the existence of AD:" and (H-3) is sufficient

to ensure that Ap [ is upper-semicontinuous in D, at infinity, namely,
172

Ap =2 N Cl U Ay, .
83d]  D,26I

This completes the proof of Theorem 3.
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% 5. SHADOW SYSTEMS AND FUNCTIONAL DEPENDENCE
For a system of two reaction-diffusion equations with one diffusion
K coefficient large relative to the other, we have seen that the flow on the
8
' attractor can be reduced to the discussion of the shadow system consisting of a
: PDE coupled with an ODE with nonlocal terms. In some situations, the flow of
the shadow system can be reduced to the discussion of a scalar PDE with
nonlocal effects in the spatial variables. In this section, we give some
: illustrations of this fact.
Suppose the shadow system is given by
: u, = dau + f(u,})
’ (5.1)
X ¢, = lo|t J’ g(u(-,x),£)dx in 0 .
e}
with the boundary condition
» (5.2) Bu/8n = 0 in an .
”
Suppose that (5.1), (5.2) has a compact attractor A4q and that
(5.3) g(u,v) = -)\[v-h(u))
where > > 0 is a positive constant and h(u) is a C2?-function.
. If  (u(),8(1)) € Ad4 for t € R, then, in particular, &(t) is a solution
t
' of the equation
)
)
§, = U0 + (0] [ h(u(tx))dx
o}
A which is bounded on R . Therefore, §&(t) is uniquely defined by the formula }

"
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(5.4) (0 = [ e MU HuKs)ds

-0

where

(5.5) H[u)() = 217" [ h(u(tx))dx .
0

This implies that u(t) is a solution of the equation

0
(5.6) u, = ddu + r[un,.),xj chH[u](Hs)ds] in 0

with the boundary condition (5.2). This is a retarded PDE with nonlocal effects
in the spatial terms.

In summary, if g satisfied (5.3), then the flow on the attractor for the
shadow system (5.1), (5.2) is equivalent to discussing the flow on the attractor
for (5.6), (5.2) making use of (54). Of course, we must make certrin that (5.6),
(5.2) defines a semigroup in somc appropriate space.

To obtain a solution of (5.6), one must specify a function ¢:(-2,0] — X%
and then attempt to use (5.6) to extend ¢ to a function u(t,y) defined on
(-2,=)  with u(tg) = ¢(t) for t € 0. There are several natural spaces for

the ¢ ’s; for example, for any 0 < ¥ < )}, the space

CY = (¢ € C((-=0).XY;9(8)e?® — limit as 8 — -=)
with the sup norm !~|C7 , or the space

Ly.p((-w,O),X“) x X<

L.,'p((-'”,O),X“) = {cp:(—",O) — X%:;¢ measurable and

0
J_ 7 empae < =)
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with the norm
0 1/p
(g7 = [ [uof? + [ P8 (&) Pde |

With either of these spaces, one can follow the usual procedures to obtain
the local existence and uniqueness of solutions of the initial value problem for
(5.6), (5.2).

Let us restrict our discussion to C7 . If A; € X% x R is a compact
attractor for (5.1), (5.2), then (5.6), (5.2) has a compact attractor A; C C? and
(u(t),&(t)) € Ay if and only if §(t) is given by (5.4) and T(t)u € A, where
T(Hu(®) = u(t+8) , -2 < 8 €0 .

It is clear that properties of the solutions of equations of the form (5.6)
need to be investigated in more detail. In this paper, we are content with a
few remarks.

If we let Q= (0,n) and let u, be the equilibrium point of (5.6), then

the eigenvalues of the linear variational equation about u, are

A = o - n%d, n 31

5.7

a + B(l+x)?

x 6

with corresponding eigenfunctions e " cos nx , 6 € (-»0], x € [0,n] where

o = fu(uo,zo) , B = fv(uo,ﬁo) » &g = h(uo) . Now suppose that
(5.8) 0<ac<l, B<O0, a+ B<0.

These inequalities are the wusual ones corresponding to the Turing
conditions for the destablization of equilibria in the original pair of reaction

diffusion equations (see, for example, Nishiura [1982]).
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If (5.7) is satisfied, then Rex, < 0. If we consider d as a parameter,
then each X <0 if n is large. If we decrease d , then there is a
bifurcation at d = « and another equilibrium will arise which is spatially
nonhomogeneous. This seems to be typical of the Turing mechanism. The
nonlocal spatial effects make the eigenfunction corresponding to the dominant
eigenvalue spatially dependent.

Another interesting equation is obtained by taking a limiting situation in

(54). If X — = _ then the equation (5.6) should have the dvnamics given by

the simpler equation
(5.9) u, = dou + i‘[u,|n|‘1 J' h(u(t,x))dx]
Q

with the ©boundary condition (5.2). Equations of this type have been
encountered by Chafee [1981], Levin and Segal [1982], [1985], where they also

observed that stable patterns could be generated by nonlocal spatial effects.
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