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FINAL REPORT - STRUCTURE FROM MOTION
AFOSR Contract AFOSR-85-0382

a. Objectives.

" Our principal objective continues to be the development of a robust computational approach

for estimating the spatial organization of a scene using time varying properties of image
: sequences. Under this contract, we have been investigating improved methods for interpret-
ing optical flow from image sequences. Emphasis is placed both on what spatial properties

should be computed and on appropriate computational architectures for accomplishing this
task.

Two research questions have been investigated over the last year.

L g S o e

Interpreting optical flow at object boundaries.

How can the analysis of optical flow be used to detect object boundaries? How can the
three-dimensional structure of object boundaries be determined based on optical flow?
How can motion and non-motion information be integrated into more reliable detection
and interpretation processes? The principal objective here is to work towards the
development of motion-based segmentation techniques for image understanding.
Motion-based segmentation has the potential not only for locating object boundaries,

but also for reducing problems due to occlusion and for providing three-dimensional
information useful for object identification and analysis.

T X
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Robust methods for determining object motion.

How can the motion of object relative to the camera be determined in a robust
manner? The principal objective over the last year has been to develop techniques for
detecting moving objects. This is a difficult task when the camera is also moving and
the goal is to detect objects moving with respect to the environment, not the camera.

Work has also proceeded on new methods for estimating the parameters of object
motion.

b. Status of research effort.
Interpreting optical flow at object boundaries.

Significant results have been achieved on the problems associated with motion-based
segmentation. Discontinuities in optical flow are necessarily due to surface boundaries
or discontinuities in depth in the scene. Thus, detected edges in flow necessarily
correspond to important properties of scene geometry, where as edges in properties such
as luminance can be due to a wide variety of scene properties. Our approach is based
on understanding the three-dimensional scene structure leading to an edge in optical 1
flow. As a result, we can simultaneously detect edges and determine important three-
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dimensional properties of the associated scene surfaces.

Two significant accomplishments have been achieved on this problem during the last
{ year. We have developed a method for combining motion-based edge analysis with
more traditional edge decection techniques. This integrated approach is likely to lead
to improved reliability. A summary is included in Appendix I. The interpretation of
the structure of motion boundaries has been investigated in human vision. The specific
technique developed under a previous AFOSR contract has been found to be used in
human vision, representing the discovery of a new perceptual depth cue. Such
discoveries in perceptual psychology are both rare and significant. Appendix II includes
a reprint giving more information.

Work is continuing integration of motion and static information and on exploiting these
results in a variety of image understanding tasks.

Robust methods for determining object motion.

Oune important function of a vision system is to recognize the presence of moving
objects in a scene. If the camera is stationary and illumination constant, this can be
done by simple techniques which compare successive image frames, looking for
significant differences. If the camera is moving, the problem is considerably more com-
plex. For the purposes of this discussion, moving objects are taken to be any objects
moving with respect to the stationary portions of the scene, which we refer to as the
environment. For a moving camera, both moving objects and stationary portions of the
scene may be changing position with respect to the camera and thus generating visual
motion in the imagery. A moving camera leads to difficulties because of the need to
determine objects moving with respect to the environment, rather than the much easier
problem of finding objects moving with respect to the camera.

Detection using visual information alone is quite difficult, particularly when the camera
is also moving. The availability of additional information about camera motion and/or
scene structure greatly simplifies the problem. We develop detection algorithms for the
cases in which 1) camera motion is known, 2) only camera rotation is known, 3) only
camera translation is known, 4) objects move in contact with a smooth surface, and 5)
an object is being actively tracked, but the camera motion associated with the tracking
is not known precisely. Appendix III contains a copy of a paper currently under review
which describes these results in more detail.

Current optical flow based techniques for estimating parameters of object motion are
almost always based on using only local spatial derivatives of optical flow. We have
been investigating an alternate approach to solving these problems -- the use of tem-
poral derivatives of flow. The new approach has two advantages. The use of temporal
information allows the incorporation of information acquired over a longer time inter-
va., not just a single frame pair. Once temporal derivative based methods are better
understood, it will be possible to construct motion analysis algorithms that use both
spatial and temporal variation as input. Appendix IV contains the introduction to a
paper on this topic that is currently in preparation.
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¢. Publications.

W.B. Thompson, “Comments on ‘Expert’ Vision Systems: Some Issues,” Computer Vision,
Graphics, and Image Processing, April 1986.

JK. Kearney and W.B. Thompson, “Inexact Vision,” invited paper, Proceedings Workshop on
Motion: Representation and Analysis, May 1986.

J.K. Kearney and W.B. Thompson, “Bounding Constraint Propagation for Optical Flow Esti-
mation,” in Motion Understanding: Robot and Human Vision, W.N. Martin and JK.
Aggarwal, eds., Kluwer Press Academic Publishers, 1986 (with J.K. Kearney).

A. Yonas, L.G. Craton, and W.B. Thompson, “Relative Motion -- Kinetic Information for the
Order of Depth at an Edge,” Perception & Psychophysics, January 1987.

J.K. Kearney and W.B. Thompson, “An error analysis of gradient-based methods for optical
flow estimation,” IEEE Trans. Pattern Analysis and Machine Intelligence, March 1987.

d. Scientific Collaborators.

Research Assistants:
Lincoln Craton
Ian Horswill
Steven Savitt
Rand Whillock

Collaborating Faculty:
Herbert Pick
Ting-Chuen Pong
Albert Yonas
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Appendix I — Combining motion and non-motion edge cues.

Motion based segmentation uses a combination of traditional segmentation techniques
and motion information to yield an improved segmentation of moving objects in a scene. In
addition, motion based segmentation provides a 3 dimensional information of the surfaces on
either side of the edges found. Motion based segmentation overcomes many of the difficulties
of both traditional segmentation techniques and motion techniques while retaining the
benefits of both. Motion based segmentation can be implemented efficiently.

Many vision tasks deal with regions as basic image components. Segmentation, which is
the process of breaking an image up into regions, is a very important step in these region
based tasks. A common method of doing segmentation is to separate the regions by finding
the boundaries between the different regions in the image.

There are however basic problems with the way that segmentation is usually done.
Segmentation is traditionally based on finding discontinuities certain features of the image
such as brightness, color, or texture and then interpreting the strongest discontinuities as
edges or boundaries. A major source of problems with this approach is that there are many
different causes for discontinuities in an image. Discontinuities can be caused by illumination
changes, depth changes, surface markings, or shadows. Of these different causes, only the
depth changes give information about the actual structure of objects in the scene. Discon-
tinuities caused by other factors cause false edges which do not correspond to object boun-
daries. Another disadvantage of traditional techniques is that they do not give any 3 dimen-
sional information about objects in the scene.

Looking at the motion in a sequence of images is also a way of getting information
about object boundaries in a scene. A major advantage of using motion information is that
all motion boundaries correspond to depth discontinuities which correspond to object boun-
daries. There are no false edges found. Motion information can also provide 3 dimensional
structural information around the boundaries. Using motion information it is possible to
determine which side of a boundary is being occluded and which side is occluding.

There are however some problems with using motion information for segmentation.
One problem stems from the fact that it is necessary to match points across successive
frames to get the motion information. This matching is difficult and any errors in matching
causes poise in the motion information which in turn leads to inaccuracies in the edges found
between regions. Another problem in using motion information is due to the discreteness of
most motion information. Motion information is not usually calculated for every point in the
image, but rather for a sampling of points with distinguishing features that will be easy to
match. This discrete sampling leads to some inaccuracy in the exact location of the motion
information. Which in turn leads to inaccuracies in the position with which edges are
located. For example, if motion information is only calculated for one in every ten pixels,
the position of any edge is only accurate to within ten pixels. It would be possible to calcu-
late motion information using a larger sample of pixels, this however would greatly increase
the computation necessary and would make the matching process more difficult and inaccu-
rate. A decrease in accuracy would result because there would be more possible matches for
each sample point and the features between the points would be less distinct.
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Motion based segmentation compliments traditional segmentation techniques with
motion information. Motion based segmentation is implemented by first running a tradi-
tional V2G based edge detector to find edges. Motion information is calculated by matching
sample points over successive frames. The motion information is then used to filter out the
static edges. Edges that have the same motion on both sides are eliminated as false edges,
leaving only edges that correspond to actual object boundaries. The final step is to use the
motion information to assign a 3 dimensional interpretation at the boundaries. By looking
at the motion information around the boarder of an object, and the sign of the V2G func-

tion, it is possible to determine which side of the edge corresponds to the occluding surface
causing the boundary.

The benefits of motion based segmentation are a combination of the benefits from both
the traditional segmentation and the motion information. A major benefit is the reduction
in false edges. The edges resulting from motion based segmentation correspond only to
object boundaries. Another benefit is the positional accuracy of the edges. Since the actual
edges are found with the traditional segmenter and the motion information is only used to
filter the edges, the position of the edges can be found accurately. Improved accuracy can
also be gained through the use of multiple frames. The more frames that points are tracked
over the better the motion information. The better the motion information the better the
segmentation results. Another and very important advantage of motion based segmentation
is the 3 dimensional structural information provided at the boundaries. This structural
information can greatly aid classification tasks by associating edges with particular regions.
This allows a classifier to work on only those edges that belong to a particular region. Elim-
inating false edges and edges that belong to other objects in the scene can greatly improve
the accuracy of classifiers and other tasks that operate on regions.

Another advantage of the motion based segmentation approach is efficiency. The
motion calculation can be done quickly since it only needs to be operate on a sample of
points from the scene. The determination of the occluding and occluded surfaces is

extremely efficient since it involves only a sign check of the V2G function at the points on
either side of the boundary.
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Relative motion: Kinetic information for
the order of depth at an edge

ALBERT YONAS, LINCOLN G. CRATON, and WILLIAM B. THOMPSON
University of Minnesota, Minneapolis, Minnesota

A new source of kinetic information for depth at an edge was investigated with adult subjects.
The relationship between the motion of optical texture, indicating a surface, and the motion of
a contour, indicating an edge, determines whetber the surface is perceived as occluding or oc-

cluded. Subjecta

viewed computer-generated random-dot displays in which this relative-motion

information provided the only information for depth order and a second type of display in which
order in depth was specified both by relative-motion information and by the accretion and dele-
tion of texture. Reliable depth effects were obtained in both conditions. These results indicate
that adults are sensitive to the relative motion of texture and contour as information for depth

at an edge.

Some depth cues (e.g., binocular disparity) provide the
visual system with metric information for spatial layout,
specifying the amount of depth scparating two objects,
whereas other cues (e.g., static interposition) provide only
ordinal information. The latter type of cue indicates that
a surface is either in front of or behind another, without
providing information about the amount of separation in
depth. Depth cues may also be classified as static or ki-
oetic. Until receatly, most theories of spatial perception
have emphasized static depth cues and have paid little at-
teation to the information carried by motion. Gibson
(1950) challenged this approach whea he pointed out that
optical motions resulting from motion of the observer
and/or objects provide a rich source of information for
detecting the spatial layout of the covironment. The pur-
pose of this paper is to describe a potential source of ki-
netic information for the order of surfaces in depth and
to demonstrate that humans are sensitive to this infor-
mation.

Michotte, Thines, und Crabbe (1964) described a type
of display in which purely kinetic information generated
the perception of order in depth of two surfaces. Michotte
et al. projected a series of forms on & screen, the first
of which was a complete circular disk against a dark back-
ground. As the sequence coatinued, more and more of
the circle was *‘blacked out,’* until it eventually disap-
peared (see Figure 1). This sequence was also prescated
in the reverse order. In both cases, the rectilinear por-
tion of the edge of the disk underwent lateral motion while
the curved portion appeared immobile. Subjects who

This work was supported by NICHD Grant HD- 16924 and by Air
Force Office of Scientific Research Contract AFOSR-86-0007. The
suthors wish 10 thank Herbert Pick for the suggestion that we use s sub-
joctive contour displey, Kim Pearson and Chi Ping Sze for program-
and Herbert Pick for comments

manuscript. Correspoadeace requests
to Albert Youss, lastinse of Child Development, Univeruty of Min-
oesots, S| East River Road, Mianeapolis, MN 5545$.

OD DD

Figure 1. Schematic drawing of successive fragnes from the screen-
ing effect display created by Michotie, Thines, and Crabbe (1964).

viewed these displays reported secing an unchanging cir-
cular disk being covered and uncovered by a second sur-
face. Michotte et al. (1964) referred to this and similar
phenomena as the screening effect. They maintained that
Gestalt laws of perceptual organization accounted for the
effect by completing and giving phenomenal permanence
to the transforming disk.

Both Gibson’s (1966, 1979) notion of an ecological op-
tics and Marr’s (1982) notion of a computational level for
understanding vision argue for an analysis of the struc-
ture of the real world and the patterns of proximal stimu-
Iation that result from this structure that would make per-
ception of spatial layout possible. Gibson (1966) described
the stimulus information in Michotte’s displays of the
screening cffect as the progressive ‘‘wiping out’’ or ‘‘un-
wiping®* of optical texture that, he maintained, occurs
whenever one surface is covered or uncovered by a sec-
ond surface. Gibson and his students (Gibson, Kaplan,
Reynolds, & Wheeler, 1969) provided a second descrip-
tion of the change in the structure of the optic array that
occurs when a surface is covered and uncovered by
another:

Whea the edge of one surface conceals or reveals a second
... the adjaceat units of optical texture on one side of a
possible division in the optic array are prescrved while ad-
jacent units of optical texture on the other side of the divi-
sion are progressively added to the array (uncovering) or
are progressively subtracted from the array (covering). The
decrementing of texture corresponds to a surface being coo-
cealed while the incremeating of texture corresponds to a
surface being revealed. That side of the dividing line on

Copyright 1987 Psychonomic Society, Inc.
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34  YONAS, CRATON, AND THOMPSON

which there is deletion or accretion always correspoads to

the surface that is behind; that side on which there is neither,

always corresponds to the surface that is in front. (p. 114)
(It should be noted that the above analysis is not in fact
correct for the rotation in depth of smooth surfaces. In
such situations, the visible surface of the object is occlud-
ing itself. The side of the object boundary on which dele-
tion or accretion is occurring is actually in front of the
surface on the other side of the boundary.)

Kaplan (1969) tested two versions of the accretion/de-
letion hypothesis by presenting adult subjects with an ani-
mated film of random texture undergoing progressive
accretion and deletion. When these displays are station-
ary, the viewer perceives a single textured surface. When
the texture in these displays undergoes lateral motion, a
vertical *‘subjective contour’ is perceived at the vertical
margin where texture elements are accreted and deleted.
Kaplan presented subjects with three types of accretion/de-
letion displays. In the first type, texture was accreted or
deleted on one side of a stationary vertical subjective con-
tour while texture on the other side of the contour was
preserved. This condition tested Gibson's hypothesis that
whenever there is accretion/deletion of units of optical
texture on one side of the contour and preservation of op-
tical texture on the other side, a depth edge is perceived
such that the region undergoing accretion/deletion is seen
as a surface that is occluded. The second type of display
used by Kaplan tested his own hypothesis that it is the
region that undergoes the greater amount of accretion/de-
letion per interval of time that is perceived as a surface
that is occluded. In this condition, texture was accreted
or deleted simultaneously on both sides of the subjective
contour, at varying relative rates. In a third type of dis-
play used by Kaplan, texture was simultancously accreted
or deleted at varying relative rates on both sides of a later-
ally moving subjective contour. This last condition was
critical in that it allowed Kaplan to keep the rate of accre-
tion/deletion constant while varying the velocity and direc-
tion of motion of the two surfaces defined by the contour
in the display. Kaplan found support for the more general
hypothesis that given a difference in the rate of accre-
tion/deletion on the two sides of the subjective contour,
adults will perceive depth at an edge.

However, both Kaplan's displays and those used in
more receat studies of kinetic occlusion with adults (An-
dersen & Braunstein, 1983) and infants (Granrud et al.,
1984) contain another potential source of information for
the covering and uncovering of one surface by another.
Thompson, Muich, and Berzins (1985) have observed that
the order of surfaces in depth is specified by the relation-
ship between the optical motion of a contour and the op-
tical motion of the texture elements on ether side of the
<ontour. The principle underlying this account s that, for
translational motion, the image of an occluding edge
moves with the image of the occluding surface to which
it belongs. Figure 2 illustrates the effect for sumple trans-
lational motion. Shown in the figure arc the optical mo-

tion of texture clements corresponding to two surfaces and
the optical motion of a contour corresponding to a depth
edge. In Figure 2a, the left surface is in front and occlud-
ing the surface to the right. In Figure 2b, the left surface
is now behind and being occluded by the surface to the
right. The two cases can be distinguished because in
Figure 2a the contour moves to the left, whereas in
Figure 2b the contour moves to the right.

Although the preceding analysis indicates that relative
motion of contour and surface texture is physically de-
termined by the order of surfaces in depth, it is not known
whether this information is picked up by the human visual
system. In the present study, therefore, we attempted to
answer the question: does the relative motion of texture
and contour determine the perception of depth at an edge?
We investigated this question by presenting subjects with
kinetic random-dot displays in which texture on both sides
of a centrally located vertical contour was separated from
the contour by blank space. This *‘gap’” allowed for lateral
motion of texture and contour without providing the sub-
ject with accretion/deletion information for depth at an
edge. We hypothesized that when a contour and texture
on one side of the contour moved together, subjects would
perceive a continuous surface that was closer in depth than
the surface defined by texture on the other side of the con-
tour, whose motion was not tied to the motion of the con-
tour. The size of the gap between texture and contour was
varied to explore whether the detection of relative motion
information for depth order was influenced by the spatial
separation of the motions. A mechanism that detected
relative-motion information might, we thought, function
locally and involve processes with relatively small recep-
tive fields. If this were the case, the perception of depth
order would become ambiguous as the width of the gap
between texture and contour was increased. If the mechan-
ism were more global and integrated information over a
large area, the size of the gap should have no effect on
the perception of the order of surfaces in depth.

We also investigated whether or not visual mechanisms
that detect information for the order of surfaces in depth
were able to utilize different sorts of coatour information
equally effectively. Stimulus displays thus included both
objective-contour conditions, in which an ordinary verti-
cal line served as a contour, and subjective-contour con-
ditions. Subjective contours are edges perceived in static
displays in the absence of luminance differences (Kanizsa,
1955, 1979; Schumann, 1904). As previously mentioned,
subjective contours also occur in conjunction with the
depth effect produced by Kaplan's (1969) accretion/de-
letion displays. We hypothesized that both objective-
contour and subjective-contour conditions would produce
reliable depth effects.

METHOD

Subjects
Sixteen unpaid students at the University of Minnesota, 15 un-
dergraduates and | graduate student, served as subjects.
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Figure 2. Motion of texture, indicated by arrows, and contours, indicated by change in po-
sition of vertical kine from T, to T, specifies in (2) that the surface (o the left of the line ec-
cludes the surface to the right. In (b), the left surface is occloded by the right surface.

Apparstus

A TERAK microcomputer was used to geaerate random-dot dis-
plays cootaining kinetic information for the order of surfaces in
depth. Displays were presested oo a CRT and observed through
as | 1-cm-high and 21-cm-wide aperture (viewing distance, .91 m;
visual angle, 6.9° vertically and 13° horizootally) attached to the
face of the CRT. An eyepaich worn over onc eye eliminated binocu-
mwmm.Amnboxmmwmw"m."
“‘equal,’* and *‘right,”* respectively, was locsted directly in froot
of the subject. A 7v2-W aightlight provided dim overall illumina-
tion for the experimental room, sufficient for the dark-adapted sub-
jects (0 see the response buttons.

Eight display conditions were presented. In each of these coodi-
tions, a vertical contour was displayed in the center of the screea.
Randomly distributed texture elements to the left and nght of the
contour formed two texture fields. The texture fields contained ap-
proximately 2 dots per square ceotimeter. All the texture elements
in a texture field moved in syachronous horizootal motoo across
the screen at 2 cm/sec. Texture on the left and rigit traveled sumul-
tancously in opposite directions for a distance of | cm and thes
reversed direction. Thus, the two texture fields alernately ap-
proached and receded from ooe another. This pattern was repeated
coatisuously. On each trial, the lateral motion of the verucal coe-
tour in the ceater of the screca was identical to that of ooe of the
two texture fields. The eigit display conditions were s follows:

VRS N s gadag

Display Condition 1. Displays in the accretion/deletion (subjec-
tive contour) condition (see Figure 3a) were a modified version of
those used by Kaplan (1969). Lateral movements of a subjective
contour were accompanied by the appearance and disappearance
of individual texture elements, resulting in the progressive accre-
tion and deletion of texture clemeats on the left side of the display.
In addition, the lateral motion of the texture field on the right side
of the display was identical to the motion of the contour, whereas
the motion of the texture field on the left side was oot tied to that
of the contour. Thus, in this condition, information for depth was
provided by both the accretion and deletion of texture clements and
the relative motion of texture and the costour.

Display Condition 2. Displays in the accretion/deletion (objective-
contour) condition were identical to those ia the accretion/deletion
(subjective-contour) condition, except that the ceatral contour was
s vertical line rather than a subjective contour. Again, the relative
motion of both texture and contour and the sccretion and deletion
of wexture elemeats provided information for depth.

Display Conditions 3, 4, and 5. 1n the relative-motion (objective-
contour) coadition, the relative motion of wexture fields and the coo-
tour provided the oaly information for depth (see Figure 3b). Be-
cause of the presence of a textureless ‘‘gap’’ between texture fields

and coatour, this type of display eliminsed accretion/deletion in-
formation while preserving relative-motioa information. Texture
on one side (in Figure 3b, the right side) of the display moved with
the ceatral contour, 30 that the gap width betweea this texture field
and contour remained constant. The width of the gap between coa-
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56  YONAS, CRATON, AND THOMPSON

tour and the texture field not tied 10 the motioa of the cootour (in
Figure 3b, the texture oa the left) changed as the two sides of the
display approached and receded from one another. The width of
the coastant gap was varied 10 produce gaps of three sizes (1, 3.5,
and S cm, respectively). For the small-gap, medium-gap, and large-
gap conditions, the width of the gap oot linked to the contour by
relative motioa ranged from O to 2 cm, from 2.5 10 4.5 cm, and
from 4 t0 6 cm, respectively. Thus, the average width of the vary-
ing gap was approximately equal to the width of the uavarying gap.

Display Condition 6. Displays in the relative-motion (subjective-
contour) condition also contained only relative-motion information
(see Figure 3c). In the Figure 3c display, a static vertical subjec-
tive cootour results from the presence of horizontal lines that be-
gin oa either side of the display and end st the same vertical mid-
line. Lateral movements of the subjective contour were created in
this condition by lengtheaing the horizootal lines on ooc side while
the borizontal lines on the other side were simultanecusly short-
ened by the same amount. As with the relative-motion (objective-
contour) coadition, a small gap (1 cm) between texture and con-
tour allowed for movement of the contour without the accretion/de-
letion of texture elements. Although the changing lengths of the
horizontal lines themselves might be interpreted as accretion/dele-
tion, the accretion (lengthening) of one set of lines was always
baianced by an identical deletion (shorteaing) of the lines on the
other side of the display. Thus, the accretion/deletion information
available in these displays did oot specify any depth ordering of
surfaces (Gibsoa et al., 1969; Kaplan, 1969).

Display Conditions 7 and 8. Two types of displays that lacked
both relative-motion information and accretion/deletion informs-
tion served as control conditions. In the first control condition, a
single vertical line moved alternately left and right (1 cm in each
direction) across a dark homogeneous background. The second coo-
trol condition was identical to the small-gap relative-motion
(objective-contour) condition described above, except that there was
po vertical line to serve as & contour. [n this case, two laterally
moving texture fields alternately approached and receded from each
other. The amount of separation between the two texture fields in
this condition ranged from 1 to 3 cm.

Procedure

Before being tested, the subjects were given the following in-
structions: *‘Look at the display and decide which of the following
is troe: (1) the lef side looks like it is in froaot; (2) the right side
loohlikeitiainfroﬂ;ﬂ)bahsidaupparwbehumedh-
tance sway.'’

mmbpasmmwdwmdmcummby
ing oune of the three buttons, labeled *‘left,”” *‘equal,”” and * n;h"
on the small box directly in front of them. Each subject received
three practice trials in which two sheets of paper were held in front
of the CRT by the experimenter and mnoved laterally so that they
approsched and receded from each other in s manner analogous
to the computer-generated displays described sbove. The relative
depth of the sheets of paper was vaned so that the onc oa the left
was closer w0 the subject on ooe trial, the one on the right was closer
to the subject 0n another trial, and the sheets were equadistant from
the subject on a third trial. The practice trials were presented in
random order. and the subjects were asked to indicate which but-
ton represented the appropriate response. All subjects performed
quickly and without error on the practice trials.

During test tnials, the subjects observed displays moaocularly from
a distance of 3 R (.91 m). The subjects viewed eight blocks of trais,
correspounding to the eight conditions described above. with 20 tnals
in each block. The order of presentation for blocks was completely
counterbalanced for the group as a whole. A new random distnbu-
tion of texture clements was generated for each block of tnals.

. : * :o.- - .. . i ®e '.‘_. b .' o. toe
(a)

L] . L4 .. L} ] < -
.O.o. o.. .O ..;:—;... '.
(b)

L) .‘ * e 4, o 1 - -
.o. . : . :. . ® o
. . L] .: .0 . :‘_’...o 'Y

(c)

Figure 3. (a) Schematic drawing of accretion/dejetion displays. [n
the subjective-contour condition, a subjective contour is perceived
at the margin where accretion and deletion of texture occurs. In the
objective-contour condition, a vertical line is located at the margin.
) Redativemotion (subjective-contonr) display. “Gap” betweea ver-
tical line and texture eliminstes sccretion/deletion iaformation.
(¢) Relative-motion (subjectivecontour) display. End-stopped
borizontal lines geperats 8 vertical subjective contour. Interposition
displayed in these drawings was not present is computer generated
displays.
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Within a given block, the same random sequence of predicted depth
orderings (right in front, left in front, neither in front) was presented
10 each subject. All displays continued without interruption until
the subject recorded & response. Afer each response, there was
& brief pause and then the next display was initisted. Total testing
time was approximately 25 min.

RESULTS AND DISCUSSION

The mean percentage of depth judgments consistent with
predicted depth order and opposite predicted depth order
and the mean percentage of ‘‘no depth’’ responses are
presented in Table 1. Two mixed-model repeated mea-
sures analyses of variance (ANOVAs) were conducted.
To determine whether the experimental conditions yielded
the perception of depth at an edge, a one-way ANOVA
was carried out oa the mean number of *‘no depth’’ re-
sponses for each of the eight conditions. This analysis re-
vealed a significant main effect for condition {F(7,105)
= 28.07, p < .01). Post hoc comparisons based on
Tukey's honestly significant difference method indicated
that all six experimental conditions yielded significantly
fewer responses of ‘‘no depth’’ than either control con-
dition (p < .05). To establish whether there were differ-
ences between the six experimental conditions in deter-
mining the perceived order of surfaces in depth, a second
one-way ANOVA was carried out on the mean number
of responses consistent with predicted depth order. This
analysis yielded a significant main effect for condition
[F(5,75) = 10.30, p < .05). Tukey post hoc compari-
sons revealed several significant differences (p < .05),
as shown in Table 2.

As the data in Table 1 show, the modified version of
Kaplan's (1969) accretion/deletion (subjective-contour)
displays used in this study were effective in producing
the perception of depth at an edge. In addition, the reli-
able depth effect obtained in the accretion/deletion
(objectivecontour) condition indicates that visual
processes sensitive to the depth information in these accre-
tion/deletion displays are not disrupted when an ordinary
vertical line serves as a cootour.

Table 1
Mean Percentage of Depth Order Judgments
as 8 Function of Display Condition

Predicted Oppotite Predicted
Depth Order No Depth  Depth Order
Condition Mean SD Mean SD Mean SD
Accreuon/deletion
Subjectuve contour 98 § 28 06 OS5 06 16
Objective contour 981 73 0 19 73
Relanve moton
Subjective contour
Small gap 95.6 92 31 66 13 12
Objective contour
Small gap $72 t67 00 158 28 47
Medum gap 788 197 165 167 47 70
Large gap 62.5 337 244 2715 131 181
Cootrols
Coatour only 67.5 30.7
Texture only 535 314
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The main purpose of the present study was w0 deter-
mine whether adults were sensitive to depth informatioa
specified by the relationship between the optical motion
of a contour and the optical motion of texture elements
on both sides of the contour. The depth effect obtained
in each of the relative-motion conditions (see Table 1) in-
dicates that when depth information from the accretion
and deletion of texture is eliminated, adults perceive depth
at an edge on the basis of relative-motion information
alone. In addition, as the data in Table 2 show, the two
relative-motion conditions with small gaps (the subjective-
contour condition and the objective-contour/smail-gap
condition) did not differ significantly from either of the
two accretion/deletion conditions in determining the per-
ceived order of depth.

It is possible, however, that subjects’ judgments in the
relative-motion conditions were based upon a response
bias produced by the practice trials and/or the accre-
tion/deletion displays. Prior exposure to these may have
created a set, or response criterion, for interpreting the
relative-motion displays. To rule out this possibility, a
follow-up experiment was conducted in which 7 naive
adult subjects viewed only a single continuous display of
the small-gap relative-motion (objective-contour) condi-
tion. The procedure employed was similar to that used
in the main study, except that the practice trials were
climinated and the subjects were simply asked to describe
the display. Initiaily, no mention of depth was made.
Three of the 7 subjects spontaneously reported seeing one
surface moving over another, with the predicted depth
order. When prompted with the question *‘Is there any
depth suggested in the display?’” the remaining 4 subjects
all reported the predicted depth effect. This was the case
even though no mention was made of what form the ap-
parent depth might take. Thus, the depth effect obtained
from relative-motion information in the absence of other
cues seems quite robust; to our knowledge, sensitivity to
this depth cue has not been previously demonstrated.

A second finding of the study may be informative about
the mechanism used by the visual system in perceiving
depth from relative-motion information. As the data in
Table 2 show, both of the small-gap relative-motion
(subjective-contour and objective-contour) conditions
yielded significantly more responses conmsistent with
predicted depth order than did the large-gap relative-
mation (objective-contour) condition. In addition, as Ta-
ble 1 indicates, the large-gap condition showed signifi-
cantly more responses of ‘‘no depth’’ than did either of
the accretion/deletion conditions. These results indicate
that the depth effect obtained in the relative-motion con-
ditions diminishes as the width of the gap between tex-
ture and contour is increased. One interpretation of this
finding is that the detection of relative-motion informa-
ton for depth depends on processes that are relatively lo-
cal, namely, computations that compare the motion of tex-
ture elements that are relatively near the contour with the

motion of the contour. However, it should be noted that
cven the large-gap relative-motion conditioa produced a
perception of depth relative to control conditions (see Ta-
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K DETECTING MOVING OBJECTS
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ADSTRACT

X X

The detection of moving objects is important in many tasks. This paper examines
i moving object detection based primarily on visual motion. We conclude that in real-
istic situations, detection using visual information alone is quite difficult, particularly
when the camera is also moving. The availability of additional information about
! camera motion and/or scene structure greatly simplifies the problem. We develop
Y detection algorithms for the cases in which 1) camera motion is known, 2) only cam-
era rotation is kaown, 3) only camera translation is known, 4) objects move in con-
tact with a smooth surface, and 5) an object is being actively tracked, but the cam-
era motion associated with the tracking is not known precisely. Examples of several
of these techniques are presented.

'« ¥ s 8 a 8

¢ 1. Introduction.

L One important function of a vision system is to recognize the presence of moving
" objects in a scene. If the camera is stationary and illumination constant, this can be done
. by simple techniques which compare successive image frames, looking for significant

differences. If the camera is moving, the problem is considerably more complex. For the pur-
poses of this discussion, moving objects are taken to be any objects moving with respect to
the stationary portions of the scene, which we refer to as the enuironment. For a moving
camera, both moving objects and stationary portions of the scene may be changing position
with respect to the camera and thus generating visual motion io the imagery. A moving
camera leads to difficulties because of the need to determine objects moving with respect to
the environment, rather than the much easier problem of finding objects moving with respect
) to the camera. In this paper, we deal with the problem of detecting moving objects from a
moving camera based on optical flow

3o & 5 H

The visual detection of moving objects is a surprisingly difficult task. A simple example
illustrates just how serious the problem can be. Consider the optical flow field shown in

This work was supported by Aur Force Offce of Scientific Research contract AFOSR-85-0382
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Detecting Moving Objects

figure 1, which appears to show a small, square region in the center of the image moving to
the right and surrounded by an apparently stationary background. Such a flow field can
arise from several equally plausible situations: 1) The camera is stationary with respect to
the environment, and the central region corresponds to an object moving to the right. 2)
The camera is moving to the left with respect to the environment, most of the environment
is sufficiently distant so that the generated optical flow is effectively zero, while the central
region corresponds to a surface near to the camera but stationary with respect to the
environment. 3) The camera and object are moving with respect to both the environment
and each other, though the environment is sufficiently distant so that there is no perceived
optical flow. It is not possible to tell whether or not this seemingly simple pattern
corresponds to a moving object!

Figure 1 provides one example of why a general and reliable solution to the problem of
moving object detection based only on visual motion is not feasible. Robust solutions require
that additional information about camera motion and/or scene structure be available. In
this paper, we examine a variety of types of information that might be available. Each
information source places constraints on the optical flow fields that can be generated by a
camera moving through an otherwise static environment. Violations of these constraints are
thus necessarily due to moving objects.

Figure 2 summarizes potential sources of information and the associated constraints on
optical flow. The next section lists general properties needed by reliable detection algo-
rithms. Following this is a derivation of each of the flow constraints. We conclude with
experimental demonstration of several of the techniques and general observations about the
nature of these methods.

. L] r_'_---.-1 ® L]
. . | = —p | ® .
[} 1
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Figure 1: Is The Central Region a Moving Object?
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Detecting Moving Objects

Knowing:

Yields a constraint on:

full parameters of motion

flow values

parameters of rotation

variability of flow direction

i parameters of translation

direction in difference field

surfaces are smooth

local variability of direction or magnitude of flow

object is being tracked

global variability of direction of flow

Figure 2: Constraints on Flow.

B 2. Assumptions.

We start with the presumption that motion detection algorithms should be designed
with the following properties in mind:

The field of view may be relatively narrow.

Motion detection should not depend on the use of wide angle imaging systems. Such systems
may not be available in a particular situation, and if used may increase the difficulty or
recognizing small moving objects. As a result, detection algorithms should not depend on

subtle properties of perspective.

K The image of moving objects may be small with respect to the field of view.

This is clearly desirable for reliability. Moving objects may be far away and subtended by
relatively small visual angles. We need methods capable of identifying single image points,

or at least small collections of points, as corresponding to moving objects. Detection algo-

rithms thus cannot depend on variations in flow over a potentially moving object.
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Detecting Moving Objects

Only monocular imagery is avaslable.

This is equivalent to the situation where objects of interest can be far away relative to the
camera base-line in a stereo viewing situation.

Estimated optical flow fields will be nossy.

No method is capable of estimating optical flow with arbitrary accuracy. Motion detection
based on optical flow must be tolerant of noisy input.

p Only ‘‘instantaneous’’ optical flow is used.

‘ A restriction to instantaneous flow eliminates the use of temporal derivatives of flow and/or
multiple views at distinct time intervals. Temporal differentiation will increase noise in the
estimated flow values. Use of multiple views increase computational complexity. (In fact,
experience with There are reasons to believe that multi-frame analysis techniques may in
fact improve reliability [1], though they are not examined in this work.)

3. Constraints on Optical Flow.

. The basic mathematics governing the optical flow generated by a moving camera is well
known. We take our notation from [2], using a coordinate system fixed to the camera (e.g.
the world can be thought of as moving by a stationary camera). Optical flow values are a
' function of image location, the relative motion between the camera and the surface point
corresponding to the image location, and the distance from the camera to the corresponding
surface point. Let p =(z,y) refer to an image location, where z and y have been normalized
by the focal length of the camera. Let P =(X,Y,Z) be the coordinates of the surface point
projecting onto (z,y), specified in a coordinate system with origin at the camera and Z axis
along the optical axis of the camera. Specify the motion of the point at (X,Y,Z) with
respect to the camera in terms of a translational velocity T =(U, V, W)T and a rotational
velocity w =(A,B, C)T. The optical flow, B =(u,v), at p is purely a function of z, y, T, w,
‘ and Z:

e

- u=u+y, , v=y+v (1)
, where u is the z component of flow, v is the y component of flow, and

U +zW -V +yW
; u, = Azy—B(z’+1)+Cy , v, = A(y*+1)—Bzy-Cz (3)

. Let the parameters specifying camera motion with respect to the environment be T, and w,
‘ and the corresponding parameters specifying relative motion between the camera and a
X scene point P be Tp and wp.

3.1. Known translation and rotation.

The parameters of camera motion constrain possible optical flow values that can occur due to
s camera motion with respect to the environment.
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B Detecting Moving Objects

If complete information about instantaneous camera motion is available, then T, and
w, are known. If the camera is translating but not rotating with respect to the background,
' w, = 0 and all low vectors due to the moving image of the background will radiate away

A from a focus of ezpansion (FOE). From equation (1), it is easy to see that the image plane
0 location of the FOE is at:

" U vV

'.l: Troe = TV- v Yee = W : (4)
. The location of the FOE depends only on the direction of translation, not on the speed, so
M methods for motion detection which depend on the location of the FOE do not actually
' require the complete parameters of translational motion. The FOE may not lie within the
T visible portion of the image (and in fact may be a focus of contraction) A FOE at oo

corresponds to pure lateral motion, which generates a parallel optical flow pattern. At every
image point p, knowing the FOE fully specifies the direction of optical flow associated with

E{ any surface point stationary with respect to the environment. At p:

»

W a V=W a Y

" 0,“ = tan™! _UTW;} ' eﬁw = tan~} u—, (5)
N

1

where 8, is the direction from p towards the FOE and 04,0 is the direction of optical flow
at p. (Note that the first equation is still well defined even if W =0, corresponding to a
focus of expansion at 0o in image coordinates.) Any flow values with a different direction
correspond to moving objects [3]. E.g., moving objects exist whenever "9/.. -—0,,“," >¢, for
. some appropriate €. (It is possible that moving objects coincidentally generate flow values
- compatible with this constraint.) This approach requires the estimation of only the direction

L of flow, not either the magnitude or spatial variation of flow.
5 . . .
f Camera rotation introduces considerable complexity. Knowledge of camera motion no
g longer constrains the direction of background flow. Nevertheless, at a given point p, flow is
o constrainted to a one-dimensional family of possible vector values. The family is given by
_ (1) — (3) where Z ranges over all positive values. The analysis can be simplified because of
o, the linear nature of (1). u, and v, depend only on the parameters of rotation and not on any
b shape property of the environment. Because the values of u, and v, at a particular point p
» do not depend on Z, they can be predicted knowing only w. These values can be subtracted
; from the observed optical flow field, leaving a translational flow field:
Y F, =(ul'vt)= F-F, , Fr=(“rvvr) (6)
& where u, and v, are defined in equation (3). This field behaves just as if no rotation was
occurring, and thus moving objects can be located using the FOE technique described above.
For the remainder of this paper, when rotation is present, we will take the term FOE to
b refer to the focus of expansion of this translational field.
;.' In principle, even if camera motion is not known T, and w, may be estimated from the
% imagery [2], subject to a positive, multiplicative scale factor for T,. Two serious problems
' exist, however. Narrow angles of view make estimation of camera motion difficult, as
! significantly different parameters of motion and surface shape can yield nearly identical opti-
cal flow patters [4]. In addition, techniques such as [2] uses a global minimization approach
" which will not perform well if moving objects make up a substantial portion of the field of
; view. A clustering approach (e.g. '5]) can be made tolerant of the moving objects, great
! .5-




Detecting Moving Objects

difficulty can be expected dealing with a five dimensional cluster space.

! 3.2. Known rotation.
x The parameters of camera rotation constrain the local variability of optical flow direction that
: can occur due to camera motion with respect to the environment.
Non-visual information about camera motion often comes from inertial sources. Such
sources are much more accurate ia determining rotation than translation. Rotation involves
a continuous acceleration which is easily measured. The determination of translation
, requires the integration of accelerations, along with a starting boundary value. Errors in
estimated translation values rapidly accumulate. A simple technique allows the detection of
moving objects when only camera rotation is known.

, In the previous sections, knowledge of camera rotation made it possible to compute the
b translational flow field, F,. Knowledge of translation was then used to locate the FOE and

thus constraint the direction of flow vectors associated with the environment. If only rota-
b tion is known, then it is still possible to determine the translational flow field, but not the

FOE. Visual methods could be applied to the translational flow field to estimate the location
. of the FOE, but these methods suffer from a number of practical limitations when applied to
noisy data. An alternate approach can be used which does not require the prior determina-
tion of the FOE. The translational flow field extends radially from the focus of expansion.
At any point significantly away from the FOE, the direction of flow (but not necessarily the

! magnitude of flow) will vary slowly. Directional variability can be evaluated based on equa-
tion (5):
§0pe _ W(V —yW) §6pc _ W(U —1W) )
bz (VyW)? +(U=aW)?' by (VyW)? +(U—=W)?
: The gradient of the direction of the translational flow field can thus be obtained as
[6JOC] [60]00) = l (8)
y/oc —y) (Ifu —1)2

where (z/,,,y,.) is the image plane location of the FOE. We can see from the above equa-
tion that over any local area away from the FOE, variations in the direction of the transla-
tional flow field will be small. Flow arising due to moving objects is of course not subject to
\ this restriction. The gradient of flow field direction can thus be used to detect the boun-

daries of moving objects. At these boundaries, flow direction will vary discontinuously’.

3.3. Known translation.

The parameters of camera translation constrain the direction of vectors in the ‘‘difference
p .
field” that can occur due to camera motion with respect to the environment.

A

Under some circumstances, the trajectory of the camera platform may be known, but

I Marr [8) claims “'if direction of [visual 7. ti=n s ever discontinuous at more than one point — slong a line, for

¥ example, — then an object boundary is pre<ent " Note that this 1s only necessanly true f no camera rotation is
A occurring (or equivalently, if camera rctat: n has been normahized by using the translational fiow Seld)
.6-
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Detecting Moving Objects

the camera is undergoing unknown rotations.? Because rotation is not known, it is not possi-
ble directly normalize for the effects of rotation by computing the translational flow field.
Instead, a local differencing technique can be used to eliminate the eflects of rotation [7,8].
Large, local changes in flow can occur only due to significant depth discontinuities or due to
the presence of surfaces moving with respect to one another. To select flow boundaries actu-
ally corresponding to moving objects, a technique similar to the FOE approach can be used.
Let DF be a difference field associated with an optical flow field F:

DF(z,y) = F(z,y) - F(z—bz,y—by) ©)
= ((wlz.9)—w (262, y—89) + (u,(z,9)=u, (=82, y—by)) ,

(vi(z, 9)=v,(z=b2, y—8y)) + (v,(z,¥)~v,(z=bz,y—by)))

For small 6z and 6y, the magnitude of DF can only be large if either there is a significant
change in depth over the interval (6z,68y) or if the interval spans the boundary of a moving
object. If (z,y) and (z—6z,y—dy) both correspond to locations in the environment, §z and
0y are both small, and Z changes significantly over the interval, then:

DF(z,y) ~ ((w(z.¥) = w(z—bz,y=8y) , (u(z,y) ~ v (z =z, y—6y)) (11)

Z(z.y)

The Z values in the above equation are scalars. As a result, if the interval over which the
difference is taken does not span the boundary of a moving object, the value of DF is a vec-
tor parallel to the corresponding value of F,, that is it is a vector pointing towards or away
from the FOE. If the magnitude of DF is large and the direction is not compatible with the
FOE, then the a moving object must be present.

[8] suggests using this eflect to actually locate the FOE. For a variety of reasons, this
may be quite difficult in practice. If camera translation is known, however, the DF field may
be used to detect moving objects even in the presence of rotation. Large magnitude elements
of DF are examined. The directions of such elements are then checked for compatibility
with the FOE. Incompatible elements correspond to the edges of moving regions. Note that
a constraint on scene structure as well as information about camera motion is required. In

particular, the method is only eflective if there are significant depth discontinuities over
visual portions of the environment.

3.4. Motion over smooth surfaces.
Object motion over smooth surfaces constrains the local variability of flow.

Knowledge of the shape of environmental surfaces can be used to simplify the motion
detection problem. Scene structure may be known precisely (e.g. the range to visible surface

points) or in terms of general properities (e.g. significant depth discontinuities can be
expected). Information about scene structure can come from visual sources (e.g stereo [9,10)).

% We can expect these situations to be rare If the direction of translation were known over some interval of
time, 1t would be an easy matter to determine the rotation by examining the rate of change of direction
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Detecting Moving Objects

or from pre-existing models of the environment. If both the optical flow, (u,v), and the
depth, Z, are known for a collection of surface points in the environment, then (1) — (3) can
be used to create a system of equations which can be solved for the parameters of motion T
and w. If the collection of points includes some values associated with the environment and
others associated with one or more objects moving with respect to the environment, the sys-
tem of equations used to solve for T and w will be inconsistent. Checking the system for
consistency can therefore be used as a test for the presence of a moving object (e.g. a test for
non-rigid motion in the field of view.)

If moving objects must remain in contact with environmental surfaces (e.g. vehicular
motion), a less complex technique depending only on knowing the image plane locations
corresponding to discontinuities in range is possible. If no objects are moving within the field
of view, equations (1) — (3) can be simplified into the following form:

J:(p)
fou(p) = £,(p) + 71 (13)
where at an image point p, flow(p) is the optical flow (a two-dimensional vector), f, is the
component of the flow due to the rotation of the scene with respect to the sensor, f, is
dependent on the translational motion of the sensor and the viewing angle relative to the
direction of translation, and r is the distance between the sensor and the surface visible at p
(i.e. the value of Z in equation corresponding to the image location p). For fixed p, flow
varies inversely with distance. Both f, and f, vary slowly (and continuously) with p.
Discontinuities in flow thus correspond to discontinuities in r. This relationship holds only
for relative motion between the camera and a single, rigid structure. When multi?le movin%
objects are present, equation (13) must be modified so that there is a separate f!*) and IS
specifying the relative motion between the sensor and each rigid object. Discontinuities in
flow can now arise either due to a discontinuity in range or due to the boundaries of a mov-
ing object. If independent information is available on the location of range discontinuities,
and other discontinuities in flow must be due to moving objects.

The motion detection problem becomes particularly simple if the environment is planar.
In this case, depth discontinuities are not possible and any discontinuity in flow (either direc-
tion or magnitude) corresponds to the boundary of a moving object. Note that it is not
sufficient to know simply that the environment is a “smooth” surface. From some viewing
positions, even smooth surfaces may exhibit range discontinuities.

3.5. Tracking regions of interest.

Tracking an object constrains the global variability of the direction of flow in the surrounding
area.

A vision system which can actively control camera direction is capable of tracking
regions of interest over time, keeping some particular object centered within the field of
view. Tracking regions of interest is desirable for many reasons other than the detection of
moving objects (e.g. {11]), though the analysis of imagery arising from a tracking camera has
not received much study by the computer vision community. If there are significant varia-
tions in depth over the visible portion of the background and if moving objects are relatively
small with respect to the field of view, then moving object detection based on tracking can
be accomplished without any actual knowledge of camera motion. (For motion detection,
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Detecting Moving Objects

the tracking can easily be simulated if the camera is not actively controllable.)

If an object is being tracked, then its optical flow is zero. Flow based methods for
determining whether or not a tracked object is moving must depend wholly on the patterns
of flow in the background. Object tracking helps in moving object detection because it
minimizes many of the difficulties due to rotation. When dealing with instantaneous flow
fields, we can decompose the problem by considering all translational motion to be due to
movement of the camera platform and all rotational motion due to pan and tilt of the cam-
era to accomplish the tracking. (We will disregard any effects due to spin around the line of
sight.) Consider the effect of tracking a point that is in fact part of the environment. The
translational component of motion induces an optical flow pattern field extends radially from
the focus of expansion, with magnitudes dependent on the range to the corresponding surface
points. Over a local area away from the focus of expansion, the direction of translational
flow will be approximately constant. The rotational component of motion induces a flow
pattern which over a local area is approximately constant in both direction and magnitude.
The magnitude and direction are exactly opposite the translational flow of the tracked point.
From equation (02) and (03), it is easy to see that at the tracked point (z,y) =(0,0)

U Vv
y, =—B, , =A (18)
Since the optical flow is zero at the tracked point, we have
__g. —B =0, or u =-—u, (16)
—% +A =0, or vy =-v, | (17)

The effect on the combined fields is that in the neighborhood of the tracked point, the direc-
tion of flow will be approximately constant (modulo 180°), with a magnitude dependent on
the difference between the range to the corresponding surface point and the range to the
tracked point. Now, consider tracking a point that is moving with respect to the environ-
ment. If environmental surface points are visible in the neighborhood of the tracked point,
and if there is a variation in range to these environmental points, then there will be a varia-
tion in direction of flow over the neighborhood.

4. Examples.

A set of experiments on moving object detection based on the techniques discussed in
the previous sections have been preformed on real images. Experimental results are
presented in this section for the cases in which 1) the camera rotation is known, 2) objects
move in a smooth environment, and 3) a potentially moving object is being actively tracked.

Figure 3 a) and b) show a pair of images of an indoor scene. In this example, the cam-
era rotates and translates with respect to the environment while the toy vehicle on the table
moves to the right between image frame 1 and 2. The rotational velocity of the camera with
respect to the environment was measured. The optical flow field shown in figure 4 was
obtained by the token matching technique described in [12]. The translational flow field
shown in figure 5 was obtained by subtracting the rotational flow component computed from
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the known rotational velocity from the observed optical flow field (figure 4). The gradient of
flow direction in the translational flow field was used to detect the boundaries of moving
objects. Figure 6 shows the detected boundary of a moving object overlaid onto the first
frame of figure 3.

The pair of images in figure 7 are used to illustrate the technique for detecting objects
moving in a smooth environment. In this example, the camera moves with respect to an
environment consisting of nuts and bolts lying on a planar surface. The optical flow field
shown in figure 8 was obtained in the same manner as in figure 4. Locations corresponding
to large variations in optical flow values is considered to be the boundary of a moving object.

Figure 9 shows the locations of large variations in optical flow values, corresponding to the
boundary of a moving object.

In figure 10, the circular object in the center of the image is being tracked by the cam-
era while the camera is translating to the right with respect to the environment. Figure 11
shows the estimated optical flow. Figure 12 shows a histogram of the directions of the opti-
cal flow. Note that there are two distinct peaks in the histogram. The highest peak
corresponds to the optical flow vectors associated with the background and the second peak
corresponds to the optical flow vectors associated with the box and the table in the fore-
ground. The variation in flow direction over the image was computed to be approximately
26 °, indicating that the tracked object was in fact moving.

As 3 comparison, a similar experiment in which the tracked object is stationary with
respect to the environment while the camera is moving was also preformed. A pair of images
similar to that of figure 10 were obtained. The resulting estimated optical flow field is shown
in Figure 13. Its corresponding histogram is shown in figure 14. Note that only one distinct
peak is observed in this histogram. The global variation in flow direction in this case was

computed to be approximately 14° which is significantly smaller than that of tke previous
example.

5. Discussion.

The methods described above can be grouped into three classes. Point-based techniques
(known motion, known translation) compare individual optical flow vectors against some
standard to determine incompatibilities with the motion of the camera relative to the
environment. In all cases described here, the compatibility measure is based on a directional
constraint associated with the focus of expansion of the translational flow field. Point-based
methods have the advantages of computational simplicity and the ability to detect very
small moving objects. They will be most eflective when parameters of motion are known pre-
cisely and the magnitude of the translational flow field at the point in question is sufficiently
large to allow an accurate estimate of direction. Edge-based techniques (known rotation,
smooth surface) roughly correspond to traditional edge detection. Edge-based motion detec-
tion is characterized by the differential flow properties examined and by the filtering tech-
nique used to separate edges due to range discontinuities from those due to moving objects.
The approach is effective when surfaces are smooth and techniques exist for accurately locat-
ing those range discontinuities that do exist. Edge-based methods have the advantage of
specifying the outline of moving objects that are detected. They are likely to be of limited
use when moving objects are quite small. Region-based techniques (tracked object) examine
optical low values over a region, searching for distributions incompatible with rigid motion.
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:: As with edge-based approaches, the viewed region must inciude portions of both object and

environment. As long as the region includes portions of both object and environment, this is
an effective test for moving objects that does not require any information about camera

I motion. The region-based method based on tracking potentially moving objects does not

v require any information about camera motion, but does require that there be significant

" variations in range over the visible portions of the environment.

One region-based technique not discussed above is based on an explicit check for rigi
‘ dity. Several structure-from-motion algorithms provide an estimate of rigidity [13,14,15).
Such checks can presumably be used to recognize non-rigid motion due to the presence of a
moving object. Numerical structure-from-motion algorithms have proven to be unsatisfac-
tory in practice due to severe problems with ill-conditioning. It is not yet clear whether or
not the test for rigidity can be performed in a sufficiently noise tolerant manner to provide
for reliable moving object detection.

PolLhruly

-

o

<

" No method for detecting moving objects will be effective if it depends on knowing pre-

: cise values of optical flow. Techniques for estimating optical flow are intrinsically noisy (e.g.
see {16]). Additional difficulties arise due to the idealized nature of equations (1) - (3). Real

) cameras are not point projection systems. Substantial effort is required to accurately deter-

2

Y mine the values of z and y in (2) and (3). Geometric distortions in the optical and sensing
systems affect measured locations on the image plane. Variabilities in eflective focal length
to to focus can be substantial. Reliable techniques will be based on searching for large mag-
nitude effects in the flow field [17). All of the methods described above compare flow vectors
to some predetermined standard, or look for significant differences across flow boundaries.
As a result, all deal with relatively large magnitude eflects, though reliability is dependent
on scene structure, the nature of camera motion, and position in the visual field relative to
the direction of translation.

-z

LL LS

Many of the techniques described above are based on comparing flow values at different
points within the field of view. All of these methods require that measurable optical flow
exist for points both in the environment and on moving objects. (Some require only that the
translational flow be measurable.) Such methods share three important limitations: 1) they
are ineflfectual near the FOE, 2) the camera must be moving, and 3) portions of the visible
environment must be sufficiently close to generate recognizably non-zero translational flow
values. Near the FOE, flow due to the environment will be close to zero, regardless of range.
If the camera is not moving, all environmental flow values will be zero. The same is true if
all points in the environment are very distant relative to the speed of translation. These
limitations do not apply just to the methods listed above, as illustrated by figure 1, they are
general problems associated with any vision-based motion detection scheme that does not
have accurate information about camera translation and/or range to visible surface points.
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(b) Frame 2.

Figure 3: Image sequence of an indoor scene.
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Figure 5: Translational flow field determined from the optical flow field of figure 4.

-15-

YR AN RN



P a8 a0 ¥o8 oF Sop ak Ral el oAl ol ke

Detecting Moving Objects

Figure 86: Boundary of a moving object overlaid onto the first image of figure 3.
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(b) Frame 2.
Figure 7: Image sequence of nuts and bolts images.
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Figure 9: Boundary of a moving object overlaid onto the first image of figure 7.
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(b) Frame 2.

Figure 10: Image sequence of an indoor scene.
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e a an

r Figure 12: Histogram of the flow directions of the optical low vectors in figure 10.
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Figure 13: Optical flow field obtained from tracking an object
which is stationary with respect to the environment.

flow direction

Figure 14: Histogram of the flow directions of the optical flow vectors in figure 13.
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Appendix IV — Acceleration-based structure from motion (Introduction).

The structure from motion problem is inherently ill-conditioned. As a result, present
methods for solving the problem are unstable in the presence of noise.

Solution methods may be considered to have three parts: the information which they
require to be measured from the scene; the constraints which are placed on the possible
interpretation of the data; and the actual algorithm which derives an interpretation from the
data and constraints.

Current research has focused on improving algorithms or on adding constraints in order
to reduce semsitivity to noise. Much work has actually been devoted to decreasing the
amount of information gathered from the scene. When more information is used, it is nor-
mally only an increase in the number of points examined in the scene. Unfortunately, this
requires adding the constraint that the new points are on the same object as the old points.
This is a form of spatial continuity assumption and is difficult to enforce. It requires either a
perfect segmentation of the scene or a search through the set of possible groupings of points
to objects, the combinatorics of which are problematic.

We wish to find new types of information to exploit. In particular, we wish to find types
of information which can be exploited without adding new constraint to the world or at least
by adding very little constraint.

In this paper we will explore the use of derivatives of motion, particularly acceleration,
in solving the structure from motion problem. We will show that the problem can be solved
from a single point given sufficient (3) derivatives of motion. In practice, we will not be able
to accurately estimate high-order derivatives of motion so we will also develop a method
which uses only velocity and acceleration but which integrates information from many
points. Acceleration constrains the possible interpretations of a point to a one-dimensional
family, thus allowing the use of a clustering algorithm. Clustering algorithms do not require
a priori1 knowledge of the grouping of image points to objects, thus removing the difficulty of
integrating information from multiple points. Finally, acceleration removes the ambiguity
between translation and rotation of an object, thus allowing the object motion to be
expressed in the most natural coordinate system.
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