e

AD-A185 763 70RT DOCUMENTATION PAGE

|
!
1
1
1
|
|
]
L]
{
|
1
i
1
]
]
1
]
]
1
]
1
i
|
]
]
]
1
|
1
i
{
|
]
1
{
1
{
]
{
]
{
|
{
|
{
|
{
|
1
|
{
|
{
1
{
|
]
]
{
]
i
1
]
s o |

1b. RESTRICTIVE MARKINGS

M——
3. DISTRIBUTION / AVAILABILITY OF REPORT
unlimited

ING ORGANIZATION REPORT NUMBER(S)

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION

of California

6D OFFICE SYMBOL
The Regents of the Un:lvers:ltyl (F applicable)

78. NAME OF MONITORING ORGANIZATION
SPAWAR

6¢. ADDRESS (City, State, and ZiP Code)

Berkeley, California 94720

7b. ADDRESS (City, State, and 2IP Code)
Space and Naval Warfare Systems Command
Washington, DC 20363-5100

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION

DARPA

8b. OFFICE SYMBOL
0f applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZIP Code)
1400 Wilson Blvd.

Arlington, VA 22209

10. SOURCE OF FUNDING NUMBERS

PROGRAM :E)OJECT WORK UNIT

TASK
ELEMENT NO. NO.

ACCESSION NO.

11. TITLE (Include Security Classification)

An Empirical Investigation of Load Indices for Load Balancing Applications

*
12. PERSONAL AUTHOR(S) Donenico Ferrari and Songnian Zhou
* /
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT onth, Day) ['S. PAGE COUNT
technical FROM T0 % Jgufy, ‘I'Q'ﬁ'r a f4
e ————— e
‘ 16. SUPPLEMENTARY NOTATION
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by biock number)
FIELD GROUP SUB-GROUP

Enclosed in paper.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

DTIC

ELECTE
NOV 0 9 1987

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT

| | @ unclassiFEDUNLIMITED [SAME As RPT.
|

22a. NAME OF RESPONSIBLE INDIVIDUAL

[J OTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
unclassified

22b. TELEPHONE (Include Area Code) '22:. OFFICE SYMBOL

DD FORM 1473, 82 MAR

83 APR edition may be used until exhausted
tions are obsolete.

Allother ed

SECURITY CLASSIFICATION OF TH!S PAGE

e

Productivity Engineering in the UNIX} Environment

An Empirical Investigation of Load Indices for Load Balancing
Applications

Technical Report

S. L. Graham
Principal Investigator

(415) 642-2059

“The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the US. Government.”

Accesion For R
August 7, 1984 - August 8, 1087 NTIS CRA&I v
DTIC TAB 0

Unannounced 0 !
dustification

Contract No. N00039-84-C-0089

TIPS S PP e e

Arpa Order No. 4871

By .
Dist: ibution/

Availability Codes

{UNIX is a trademark of AT&T Bell Laboratories pist | Vendlor

- |

gy 10 20 117

e T—————
|

An Empirical Investigation of Load Indices
for Load Balancing Applicationst

Domenico Ferrari and Songnian Zhou

Computer Systems Research Group
Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

\ s
\ . Abstract Sfuds/ei

f Hhe a whhaes W
\ e

94‘1“3 paper/rne{:mpirically evaluatesthe quality of several ’Lad indices in the con-
text of dynamic logd._balancing. We have implemented a load balancer for Sun/UNIXf
environments. In our experimental setup, six Sun-2 worksiations were driven by job
scripts, and job response times were measured while loads were/ being balanced and vari-
ous load indices used to make job placement decisions. W the effects on perfor-
mance of the choice of load index, the averaging interval, the load information exchange
period, and the characteristics of the workload. Measurements show that the performance
benefits of load balancing are indeed strongly dependent upon the load index. Load
indices based on resource queue lengths are found to perform better than those based on
resource utilization, and the use of an exponential smoothing method yields further
improvement over that of instantaneous queue lengths.

o
Bt

t This work was partially sponsored by the Defense Advanced Research Projects Agency (DoD), Arpa
Order No. 4871, monitored by Space and Naval Warfare Systems Command under Contract No.
N00039-84-C-0089, and by the National Science Foundation under grant DMC-8503575. The views
and conclusions contained in this document are those of the authors and should not be interpreted as
representing official policies, either expressed or implied, of the Defense Research Projects Agency or
of the US Government.

{ UNIX is a trademark of AT&T Bell Laboratories.

*'—-—--—--"mm

1. INTRODUCTION

In a loosely-coupled distributed system, the potential for resource sharing and its
possible rewards are substantial. Two frequently cited advantages of resource sharing are
the larger number of accessible resources, in terms of both type and quantity, and the
higher reliability that may result from the multiplicity of available resources. In order to
share these resources effectively, some measure of the loads being imposed on the resources
has to be made available to the clients. The information about resource loads is part of
the system's state, and is among the most rapidly changing aspects of it. Since the loads
are likely to be changing all the time, load information tends to become stale rapidly. To
quantify the concept of load, we use a load indez, which preferably is a non-negative vari-
able taking on a zero value if the resource is idle, and increasing positives values as the
load increases. This paper is concerned with the quality of the possibie load indices for
hosts in a particular but important application of load indices, that of load balancing in
distributed systems.

A job arriving at a host will very likely demand services from a number of resources
(e.g., CPU and disks). Hence, it is important to define not only the l-ad on a single
resource in a host, but also that of the host viewed as a collection of resources. Since the
resource consumption patterns of the jobs are likely to be different, it may not be mean-
ingful to talk about “‘the load"” of the host. For example, the CPU may be heavily cong-
ested, while the disks are not. In this case, to an incoming CPU-bound job the host’s load
is very high, whereas to an incoming I/O-bound job the host’s load is low because it will
not experience much queueing at the disks. This observation is formalized in [Ferrarigs),
where a job type-dependent load index based on the resource queue lengths is proposed
and experimentally evaluated.

Load information is important since it can serve as the basis of the efforts to improve
the system's performance by redistributing the loads. It is frequently observed that, in a
distributed system, the loads of the hosts are not evenly distributed all the time. Livny
and Melman pointed out that, for a queueing system consisting of multiple homogeneous
service centers with Poisson arrivals of identical rates, the probability of some hosts being
idle while some others have more than one Job can be very significant; hence, redistribut-
ing the workload among the resources has the potential of improving performance
[Livny82].

In order to evaluate the quality of a load index for load balancing, we specify a
number of criteria, or desirable properties. These criteria, in turn, are dependent on the
objective of load balancing, i.e., the per formance indez that is to be optimized by balanc-
ing the loads. In this research, we are mostly concerned with interactive computing
environments, where the job response time and its predictability are very important meas-
ures of system performance. Therefore, we use the mean Jjob response time as our perfor-
mance index, supplemented by the standard deviation of the response times. A good load
index should:

1) be able to reflect our qualitative estimates of the current load on a host;

2) be usable to predict the load in the near future, since the response time of a job will
be aflected more by the future load than by the present load,;

19 preceding page was not film

N
i = 37 8;Xq;
Je=1
where /V is the total number of resources for which there is queueing in the host. This
index was evaluated with measurement experiments under a production time-sharing
workload [Zhou87b).

The index introduced in [Ferrari88] is responsc time oriented, and job dependent.
Instead of a unique value at a particular moment in time, the load of a host differs for
different jobs because of their varying resource demands, which are assumed to be known
upon job arrival. This assumption enables us to predict the response time of a job more
accurately, hence to make better load balancing decision. However, while we have found
some simple relationships between the arguments of a job and the job's resource demands
[Zhou87c], the assumption that the demands of a job are known in advance may be too
strong in many cases. In this study, we investigate versions of the same load index in
which the coefficients of the resource queue lengths are job independent, and only reflect
the relative importance of the resources (with respect to a “basket” of Jobs). For exam-
ple, we can use unity as the coefficients to reduce the linear combination to the sum of the
resource queue lengths, that is, in queueing modeling terms, “the number of jobs (or
processes) in the system.”

Our extensive measurements of production time-sharing workload show that the sys-
tem load is changing quite rapidly [Zhou87b]. On top of a low-frequency main component,
there are a number of high-frequency load components that may be regarded as “noise”
rather than useful information. Using the instantaneous resource queue lengths may give
excessive importance to such noise and lead to bad job transfer decisions. We used a
smoothing algorithm to compute the time-averaged queue length and compared load
balancing performance using smoothed queue lengths to that of the same scheme using
instantaneous queue lengths.

3. SYSTEM AND WORKLOAD

In this section, we describe the experimental environment in which the measurements
were taken, and the workloads used to drive the system.

System

We implemented a dynamic load balancer for Sun/UNIX environments. The struc-
ture of the system is shown in F igure 1. The UNIX user interface program, csh, is
modified so tha: the commands typed in by the user are intercepted, and some of them
are transferred to some remote host for execution when the local host is heavily loadedj.
At startup time, the C-shell reads in a configuration file that specifies a list of job types

t To distinguish our modified C shell from the standard one [Joy80], we call it C-shell. The R-shell,
to be described below, shares the same software with the C-shell, but its only function is to receive re-
mote jobs and execute them.

% Our system is based on a modified C shell implemented at Berkeley by Harry Rubin and Venkat
Rangan for the Berkeley UNIX 4.3 BSD system running on VAX machines [Joy83, McKusick85).

pwong
Text Box
preceding page was not film

il preceding page was not film

home C-shell, and are terminated when the home C-shell exits. This scheme has the
potential problem of R-shell proliferation. However, the code segments of all C-shells and
R-shells on each host are shared, so that, when an R-shell is not active, almost no
resources are consumed. Since files are retrieved from file servers, as the workstations are
diskless, only the command line needs to be shipped, and the cost of file access is essep-
tially the same from all hosts.

Load balancing algorithms have a strong influence on performance. We implemented
and studied a number of algorithms using different methods for load information exchange
and job placement [Zhou87a]. For this study of load indices, however, we just selected
one of the best realizable algorithms, that is, the one we called GLOBAL. For every time
period P, the LIM on each host extracts load information from the local kernel to com-
pute the local host’s load index. If the new value of the load index is significantly differ~nt
from the previous one, the new value is sent to the master LIM, which collects load infor-
mation from every host and broadcasts the entire load vector in each period P. When a
job whose name is on the eligibility list is submitted to a host, the local LIM is contacted
for job placement. If the local load is high, the host perceived by the local LIM to have
the least load is selected, and the job is sent there.

The implementation described above provides a transparent, low-cost, and general-
purpose load balancer whose installation requires no changes to the kernelt or to the
application programs. Since the emphasis of this paper is on the measurement experi-
ments we performed on the system, we will not describe the design and implementation
issues in more detail. The interested reader js referred to [Zhou87a).

Workload

Workload characterization and selection are crucial to a measurement study.
Although artificial workloads considerably increase the repeatability of experiments, they
ought to represent natural workloads reasonably well, so as to strengthen our confidence
in the results. We traced a production VAX-11/780 machine running under the Berkeley
UNIX 4.3BSD system [Joy83, McKusick85) for an extended period of several months, and
analyzed the types and frequencies of the commands executed by the system. On the
basis of such an analysis, we selected 30 frequently executed commands, listed in Table 1,
and used them to construct Job scripts, i.e., sequences of commands.

To obtain various levels, or intensities, of a host's load, we ran a variable number of
jobs in the background. The artificial workloads were not intended to represent the typi-
cal workloads of personal workstations, but rather those of small (i.e., not very powerful)
time-sharing systems. Workstations were used because of their being available in our dis-
tributed systems laboratory. We simulated user think times by the “aleep” command.
The scripts are classified into three levels: light (L), moderate (M), and heavy (H), with a
number of distinct scripts constructed for each level, so that hosts subjected to the same
level of workload always use different scripts. The ranges of CPU utilization and mean
load index values of the three levels of scripts are shown in Table 2. Each script runs for
about 30 minutes on a Sun-2 workstation. Job and system performance statistics, such as

t For our experiments, to obtain accurate values of resource queue lengths and to perform the
smoothing operations efficiently, some code had to be added to the kernel. No functional changes
were made, however.

pwong
Text Box
preceding page was not film

-8- preceding page was not film

interval (CI) of the values of the performance indices over these replications.

4. DESIGN AND RESULTS OF THE EXPERIMENTS

Experimental Factors

1)

2)

3)

1)

Four factors were identified to be of interest in the study of load indices:

Load index. We used as load indices the following quantities: the instantaneous
CPU queue length; exponentially averaged CPU queue length; the sum of averaged
CPU, file and paging/swapping 1/O, snd memory queue lengthst; and the average
CPU utilization over a recent period. Inside the kernel, we kept variables for the
queue length of each resource type. The length of each queue was sampled every 10
ms by the clock interrupt routine, and used to compute the one-second average
queue length, ¢;. Exponential smoothing was used to compute the average queue
length over the last T seconds:

Qi = Q;(1—e™D 4 g;e”T, i 21
Qo=0

Averaging interval T. For exponentially smoothed values of a resource queue
length, and for the average CPU utilization, the interval T over which the average is
computed conceivably affects the quality of the index, and hence the system's perfor-
mance.

Workload. There may be interactions between the load index chosen and the work-
load the system is subjected to. Using the three suites of host workloads described in
the previous section, we were able to construct several combinations of system work-
load for the six workstations in our system. The canonical workload consisted of two
heavy, two moderate, and two light scripts (2H, 2M, 2L). We also studied the indices
under » more balanced workload, with all six workstations driven by moderate
scripts (6M).

Exchange interval P. The GLOBAL algorithm employs periodic updates of load
informsation. If P is too short, the overbead may be too high, but, if P is too long,
then job placements are based on stale information, and performance may
deteriorate, and system instability may result.

Measurement Results

We shall first study the indices and the averaging interval T by fixing the workload

at its canonical level, and the exchange interval at 10 seconds. We will then use the more
balanced workload 6M to examine the interactions between load indices and workload.
Finally, we will study the effect of load exchange interval P on performance.

t For dmplicity, we treated the disk queues ae s single aggregate queue for 1/O operations. For the
memory queus, we identified a number of places inside the kernel where processes queue up for vari-
ouws types of memory resources (e.g., buffer space, page table), and treated all these as a single
memory queus.

pwong
Text Box
preceding page was not film

-10- preceding page was not film

Comparing the queue-length-based indices with each other, we notice that the
exponentially smoothed indices can perform best, but, if the averaging period T is too
long (e.g., 2 20 s), performance may even become worse. Earlier in this paper, we have
" pointed out that, by averaging the queue lengths, the adverse effect of the high-frequency
“moise” in the load can be reduced. This is reflected by improved performance. However,
since the system load is changing all the time, averaging over too long a period will
emphasize too much the past loads, which have little correlation with the future ones.
The optimum averaging interval is clearly dependent upon the dynamics of the workload:
the faster the load changes, the shorter the interval should be. In a measurement study of
production workloads on a VAX-11/780 running Berkeley UNIX 4.2BSD [Zhou87b], we
found that the average net change in CPU queue length in 30 seconds was 2.31, when the
average CPU queue length itself was 4.12. This suggests that T should be substantially
shorter than 30 seconds.

The performance diflerence between the cases in which indices based on CPU queue
alone are used, and those in which indices consider 1/O and memory contention also, is
not significant, suggesting that the CPU is the predominant resource in our hosts. We
found that the I/O and memory queue lengths were generally much shorter than that of
CPU; that is, the former are much less contended for. It should be pointed out that our
systems support general computing in a research environment; with other types of work-
load, e.g., database-oriented one, the contention profile of the various resource types may
be substantially different. However, to achieve near-optimal performance, we do not have
to consider all the resources in the system, but rather only those with significant conten-
tion. We also studied more general forms of linear combinations of queue lengths by using
coefficients other than wnity, but no significant changes in performance were observed.
This, again, is probably due to the dominating influence of the CPU queue.

The load average shown in Table 3 is an index provided by a UNIX command; it is
the exponentially smoothed number of processes ready to runm, or running, or waiting for
some high-priority event (e.g., disk 1/O completion). A number of load balancers con-
structed in the past in the UNIX environment have used the load average as their load
index (e.g., [Bershad85]). This research shows that significant further improvement can be
obtained by using indices that more accurately reflect the current queueing at the
resources.

The performances produced by the indices under the more balanced workload 6M is
shown in Table 4. Since the workload is now more balanced and moderate, the amount of
improvement in response time is not as much as that under the canonical workload; how-
ever, the relative rankings of the indices are quite similar. This suggests that the above
analyses of the qualities of the indices and the appropriate values for T remain valid
under » more balanced, moderate workload. It is worth noting that, in this case, due to
the smaller improvement, using a poor load index (e.g., load average or 60 s CPU utilizsa-
tion) may yield little or no performance improvement.

Finally, we study the influence of the load exchange period P. Figure 2 shows the
mean job response time 2 a function of P, and with the other three factors fixed. The
brackets around the data points show their 00% confidence intervals. When the exchange
period P is very short, the load information used in job placements is geverally up to
date, but this positive influence is outweighed by high message overhead. Conversely, if P
is too long, the information may get stale, the quality of job placements deteriorates, and

pwong
Text Box
preceding page was not film

-12- preceding page was not film

§5.0

™ NoLB

4509

85.0 4---eeees

—®— ofw=e owupoves®W bpel
3
(-]

25.0
30 80 100 200 400 600

Load Exchange Period (s)

Figure 2. Mean process response time under various load exchange periods P
(Canonical workload, load index 4 s CPU+1/0+Men gl).

criteria reasonably well: the queue length is an accurate measure of a resource’s load, and
smoothing over a short interval into the past gives predictive capabilities to the value of
the index, as well as stability against the noise in the load waveform. Queue-length-based
load indices also appear to be more adaptable to a heterogeneous environment, but more
studies are needed to substantiate this conjecture.

Our results support indices compatible with the one proposed in [Ferrari86), as they
can be seen as degenerate forms of that index. However, the comparisons performed in
this study are far from being complete. We decided to use the same load balancing algo-
rithm for all the indices, 50 that the qualities of the load indices may be directly compar-
able. On the other hand, the algorithm limited the varieties of load indices that could be
studied. We demonstrated, using a particular set of workloads and in a particular com-
puting environment, that linear combinations of resource queue lengths may be good load
indices. No proof, however, is offered that they are the best.

pwong
Text Box
preceding page was not film

-14- preceding page was not film

Systems, pp. 54-60, May 1986.
[Livay82]
M. Livay and M. Melmaa, “Load Balancing in Homogeneous Broadcast Distributed Sys-
tems,” Proc. ACM Computer Network Performance Symposium, pp. 47-85, April 1982,
[MuKusick85]
K. McKusick, M. Karels, and S. Lefler, ‘“Performance Improvements aad Fuactional
Enbancements in 4.3 BSD,” Proc. Summer USENIX Conference, June 1985, Portlaad, OR,
pp. 519-531.
[Wang85} ,
Y. Wang sad R Morris, “Load Balancing in Distributed Systems,” [EEE Trans. Comp.
Vol.C-34, No.3, pp- 204-217, March 1985.

[Zhouse]

S. Zhou, “A Trace-Driven Simulation Study of Dynamic Losd Balancing,” Tech. Rept No.
- UCB/CSD 87/305, September 1986, also submitted for publication.

{ZhousTa}
S. Zhou and D. Ferrari, “An Experimental Study of Load Balancing Performance,” Tech.
Rept No. UCB/CSD 87/336 January 1987, also submitted for publication.

[Zbou87b)
S. Zhou, “An Experimental Assessment of Resource Queue Length as Load Indices,” Proc.
Winter USENIX Conference, Washington, D.C., pp. 73-82, January 21-24, 1087,

[Zhou87¢]
S. Zhou, “Predicting Job Resource Demands: a Case Study in Berkeley UNIX,” in prepara-
tion.

pwong
Text Box
preceding page was not film

