It has been demonstrated that a material of initial composition Li2Al10 will, in a wet environment, support continuous direct current in the presence of Pt electrodes at intermediate temperatures. This has been attributed to the conduction of hydroxide ions derived from the formation of LiOH. The observed behavior in this system is discussed with reference to the calculated Li-Al-O-H phase diagram.
Phase Behavior in the Li-Al-O-H System at Intermediate Temperatures

by

Steven Crouch-Baker and Robert A. Huggins

Extended Abstract for a Paper to Be Presented at the 6th International Meeting on Solid State Ionics Garmisch-Partenkirchen, September 1987

Stanford University
Department of Materials Science and Engineering
Stanford, CA 94305-2205

July 30, 1987

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited.
PHASE BEHAVIOR IN THE Li - Al - O - H SYSTEM AT INTERMEDIATE TEMPERATURES

S. Crouch-Baker and R. A. Huggins
Department of Materials Science and Engineering,
Stanford University, Stanford, CA 94305, USA.

The electrolysis of steam appears to be an attractive method for the production of hydrogen. While some effort has been devoted to the development of steam electrolysis technology operating at about 1000°C, it has been pointed out that there would be considerable thermodynamic and practical advantages in operating at intermediate temperatures (1). Recently, the results of some preliminary experiments on an hydroxid ion-conducting electrolyte which may be useful in this area have been described (2,3). It has been demonstrated that a material of initial composition Li₅AlO₄ will, in a wet environment with Pt electrodes, support continuous direct current at intermediate temperatures. This conductivity has been attributed to the presence of hydroxide ions derived from the formation of LiOH.

It has become apparent that isothermal phase diagrams, in most cases either binary or ternary, are an important tool for understanding the behavior of each of the various components of an electrochemical cell (4). In particular, it has been demonstrated how, the case of electrolytes, the appropriate ternary phase diagram may be used to predict decomposition voltages and products. The behavior of the ternary electrolyte LiAlCl₄, for example, has been discussed in some detail with reference to the Li-Al-Cl phase diagram (5).

In this work, the Li-Al-O-H quaternary phase diagram is constructed and used to rationalize the electrochemical and phase behavior found when using a material with an initial composition Li₅AlO₄ as an electrolyte in various environments.

Acknowledgement
This work was supported, in part, by the Office of Naval Research.

References
END
DATE
FILMED
DEC.
1987