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l. Introduction. This paper is a sequel to the survey paper of Hollander

and Proschan (1984) who examine univariate nonparametric classes and methods
~
in reliability. In this paper -we will examine,multivariate nonparametric

classes and methods in reliability.

Hollander and Proschan (1984) describeAfhe various univariate nonpara-
metric classes in reliability. The classes of adverse aging described include y
the IFR, IFRA, NBU, NBUE and DMRL classes. The dual classes of beneficial aging
are also covered. Several new univariate classes have been introduced since
that time. One that ;e wiil briefly mencion'is the HNBUE class, since we are
aware of several multivariate generalizations of this class.

The univariate classes in reliability are important in applications con-
cerning systems where the components can be assumed to be independent. 1In
this case the components are often assumed to experience wearout or beneficial
aging of a similar type. For example, it is often reasonable to assume that
components have inereasing failure rate (IFR). In making this IFR assumption
it is implicit that each component separately experiences wear and no inter-
actions among components can occur. However in many realistic situations, adverse
wear on one component will promulgate adverse wear on other components. From
another point of view a common environment will cause components to behave sim-
ilarly. 1In either situation, it is clear that an assumption of independence
on the components would not be valid. -Consequently multivariate concepts of
adverse or beneficial aging are required.

R
Multivariate nonparametric classes have been proposed as early as 1970,

-

For background and references as well as some discussion of univariate classes

with multivariate generalizations in mind see Block and Savits (1981). In

the present paper we shall onlv describe a few fundamental developments prior to 1981
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and focus on developments since then. The coverage will not be exhaustive but

will emphasize the topics which we feel are most important. '
Section 2 deals with multivariate nonparametric classes. In section 2.1

multivariate IFRA is discussed with emphasis on the Block and Savits (1980)

class. Multivariate NBU is covered in Section 2.2 and multivariate NBUE

classes are mentioned in Section 2.3. New developments in multivariate IFR are

considered in Section 2.4 and in Section 2.5 the topics of multivariate DMRL

and HNBUE are touched on. .
Familiarity with the univariate classes is assumed. The basic reference

for the IFR, IFRA, NBU and NBUE classes is Barlow and Proschan (198l1). See

also Block and Savits (1981). For information on the DMRL class see Hollander :

and Proschan (1984). The HNBUE class is relatively recent and the best ref-

erences are the original articles. See for exa&ple, Klejsj¥ (1982) and the

references contained there.

2. Multivariate Nonparametric Classes. Many multivariate versions of the

univariate classes were proposed using generalizations of various failure rate
functions. These multivariate classes were extensively discussed in Block and
Savits (1981). Other classes were proposed by attempting to imitate univariate
definitions in a multivariate setting. (See also Block and Savits (1981).) One

of the most important of these extensions was due to Block and Savits (1980)

who generalized the IFRA class. Thismultivartate class was proposed to parallel the
developments of the univartate case where the IFRA class possessed many important closure
properties. As in the univariate case the following multivariate class of IFRA,
designated the MIFRA class, satisfies important closure properties. First, as in
the univariate case, monotone systems with MIFRA lifetimes have MIFRA lifetimes

and independent sums of MIFRA lifetimes are MIFRA. From the multivariate point

of view, subfamilies of MIFRA are MIFRA, conjunctions of independent MIFRA are
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MIFRA, scaled MIFRA lifetimes are MIFRA, and various other properties are satisfied.
We discuss this extension first since several other classes have been defined using

similar techniques.

2.1 Multivariate IFRA, Using a characterization of the univariate IFRA class

in Block and Savits (1976) the following definition can be made.

(2.1.1) Definition.Letg-(TI,...,Tn) be a nonnegative random lifetime. The

random vector T 1is said to be MIFRA if

E*(h(T) ] <E[h*(T/a)]

for all continuous nonnegative nondecreasing functions h and all 0 <a <1.
This definition as mentioned above implies all of the properties one would desire
for a multivariate analog of the univariate IFRA class, Part of the reason for
this is that the definition is equivalent to many other properties which are
both theoretically and intuitively abpealing. The statement and proofs of
these results are given below; the form in which these are presented is influ-

enced by the paper of Marshall and Shaked (1982) who defined a similar MNBU

class,

Notes. 1) Obviously in (2.1.1) we need only consider h defined on lR:- {x]|x>0}

Hence all of the functions and sets mentioned below are assumed to be Borel

measurable in IR:.

2) We say a function g is homogeneous (subhomogeneous) on ]R:if

ag(t) = (<) g(at) for all 0<a<l, O<et.

3) A is an upper set if xc A and x <y implies Y eA.
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(2.1.2) Theorem The following conditions are all equivalent to T being MIFRA.
i) Pa{leA} <P{T e aA} for all open upper sets in ]R:, all 0 <ac<l,
11) P*{I €A} <P{Icaa} for all upper sets in R, all 0<ac<l.

a
(L.e. E"(¢(T])) iE(¢a(;r_/a)) for all nonnegative, binary, nondecreasing
¢ on R).
iii) Ea(h(z)) <E(h(T/a)) for all nonnegative, nondecreasing h on ]R:‘_,

all 0<ax<l.

iv) For all nonnegative, nondecreasing, subhomogeneous h on lR:,
h(T) is IFRA.

v) For all nonnegative, nondecreasing, homogeneous h on ]R:, h(T) is

IFRA.

Proof: 4i)=>1i): By Theorem 3.3 of Esary, Proschan and Walkup (1967) for an

upper set A and any € >0 there is an open upper set Ae such that Ac AE and

P(TLeoA } <P{TeaA}l+ec. Thus
PH(Tea) <P*(TeA } <P(Tecan } <P(TcoA}+ec.

1{) =»> {ii): Let hk' k=1,2,... be an increasing sequence of increasing step

functions such that lim hk-h. Specifically take

k>
Loy Hlene <L, 1=1,2,...,k25,
hk(_t_) - 2 2 2
k 1f h(g) >k,
k2
i.e. hk(E) ) < IA (t) where L, is the indicator function of the upper set
i=1 2 i,k i,k
A1 K = (_t_lh(g) -’--iTc' }. Thus we need only prove the result for functions of the
14
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h(&) ; al (t)i a, >0,
{=1 i A

where Al,..., A, are upper sets, since the remainder follows by the monotone

convergence theorem. We have

1
E%( y al, (r))-[ f aP{TeA,t] <[?ap {Tear, 1%
1ag LA 1=1
1 n
= ( 7 {Jaala(t/a)dF(t)} 1< ¥ JaiIA(ya)dF(E_)
1=1 Ti=1

- E([Z a, I, (T/o)1%
=1 i A

where the last inequality is due to Minkowski.

iii) => Def. Obvious.

Def. => i). From Esary, Proschan and Walkup (1967) for any open upper set A
there exist nonnegative, nondecreasing, continuous functions hk such that hk fIA.
Then apply the monotone convergence theorem.

i1ii) => iv). Let h be nonnegative, nondecreasing and subhomogeneous. Then

P{h(D) > e} =EX (I, ) (h(D)) <EQ (h(T/a)))

(t,=)

SE@p oG DY = BIKD) >0 ¢}

where the first inequality follows from 1ii) and the second by the subhomogeniety.

iv) => v): Obvious.

v) => i), Let A be an open upper set and define

sup{8 >0: %_geA} if {8 >0: %_geA} $ 0
h(t) =

0 otherwise

Then h is nonnegative, nondecreasing and homogeneous. Thus
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P*{T e A} = P”{(h(T) > 1} <P{h(T) >a} =P{T caAl}.

(2.1.3) Note. The following two alternate conditions could also have been

added to the above list of equivalent conditious (provided F(0) =1).
n

vi) PG{;I‘_eA} <P{TeaA} for each set A of the form A = 1:1A1 where
A = {x|x>x1, Eiem: and for all O<a<1.

i=1,...,k, j=1l,...,0, 0<a, 6 <=,

vii) For each k=1,2,..., for each a 135

ij’
and for each coherent life function 1t of order kn
. See Block and
t(allTl,alle,...,alnTl,aZITz,...,aknTn) is IFRA (See
Savits (1980) for a definition of coherent life function and for
some details of the proof).
In conjunction with the preceding result the following lemma makes it easy

to demonstrate that a host of different lifetimes are MIFRA.

(2.1.4) lemma. Let T be MIFRA and v ,...,wm be any continuous, subhomogeneous

1
functions of n variables. Then if Si-wi(z)_ for {=1,...,m, S= (Sl'""sm) is

MIFRA.
Proof: This follows easily by considering a nonnegative, increasing, continuous

function h of m variables and applying the MIFRA property of T and the monoto-

nicity of the wi.

(2.1.5) Corollary. Let Tyse+e»T, be coherent life functions and T be MIFRA. Then
(rl(_'g),...,rm(l)) is MIFRA,

Proof: Since coherent life functions are homogeneous this follows easily.

(2.1.6). Example. Let xl""’xn be independent IFRA lifetimes and ¢ ¢ Sic {1,2,...,n7,
1=1,...,m. Since it is not hard to show that indenendent IFRA lifetimes are

MIFRA, it follows that Ti = min Xj i=1,...,m are MIFRA. Since many different
jeSi

types of multivariate IFRA can be generated in the above way, the example shows
that any of these are MIFRA. See Esary and Marshall (1979) where various types
of multivariate IFRA of the type in this example are defined. See Block and

Savits (1982) for relationships among these various definitions.

OO T W W T o



Multivariate shock models with multivariate IFRA properties have been

treated in Marshall and Shaked (1979) and in Savits and Shaked (1981).

2.2 Multivariate NBU. As with all of the multivariate classes, the need for

each of them is evident becuase of the usefulness of the corresponding univariate
class. The only difference is that in the multivariate case, the independence of
the components is lacking. In particular the concept of NBU is fundamental in

disucssing maintenance policies in a single component system. For a multicomponent

system, where components are dependent, marginally components satisfy the univariate
NBU property under various maintenance protocols. However, a joint concept de-
scribing the interaction of all the components is necessary. Hence multivariate

NBU concepts are required.

Mose of the earliest definition of multivariate NBU (see for example Buchanan
and Singpurwalla (1977)) consisted of various generalizations of the defining
property of the univariate NBU class, For a survey of these see definitions (1)-
(5) of Section 5 of Block and Savits (198l1). For shock models which satisfy these
definitions see Marshall and Shaked, (1979), Griffith (1982), Ebrahimi and Ghosh
(1981) and Klefsjo (1982), Other definitions involving generalizations of pro-
perties of univariate NBU distributions are given by (7)~(9) of the same reference.
These are similar to definitions used by Esary and Marshall (1979) to define multi-
variate IFRA distributions, Properties (7) and (8) of the Block and Savits (1981)
reference represent a certain type of definition and bear repeating here. The

vector T is said to be multivariate NBU if:

r(Tl,...,Tn) is NBU for all t in a certain class

of life functions; (2.2.1)

There exist independent NBU xl.....xk and life functions
Ti' {=1,...,n in a certain class such that Ti
1-1 .I.-’n. 2'2.2
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El-Neweihi, Proschan and Sethuraman (1983) have considered a special case of

(2.2.2) where the T, are minimums and have related this case to some other
definitions including the special case of (2.2.1) where t is any minimum.
As shown in Theorem 2.l,definitions involving increasing functions can be

given equivalently in terms of upper (or open upper) sets. Two multivariate NBU
definitions which were given in terms of upper sets were those of El-Neweihi
(1981) and Marshall and Shaked (1982). These are respectively:

For every upper set Ac R: and for every O<ga <l
' 0"
P{T A} < P(min(¥ .]fa)e A) (2.2.3)
where T,I',T" are independent and have the same distribution.

For every upper set ACR: and for every ¢ >0, 8>0

P{T e (a+8)A} <P{T e aA} P{T e 8A}]. (2.2.4)

Relationships among these definitions are given in El-Neweihi (1981). A more
restrictive definition than either of the above has been given in Berg and
Kesten (1984):

For every upper A ,Bc ‘n R

P(TeA+B) < P(Tec A)P(TeB) (2.2.5)
T™his definition was shown to be useful in percolation theory as well as relia- '
21.itv theorv.

A geners. fremswork involving generalizations of the concept (2.2.1) called )
raning ne -cloeure >f F and of the concept (2.2.2) called C-generating from X
P where ° s the .ass of univariate NBU lifetimes in (2.2.1) and (2.2.2))
nes heer g. - v Marshal. and Shaked (1984). Many of the previous NBU defi- '
nitions are  rganized within this framework. A similar remark applies when

the .ssses F are expomentia., .FR, !FRA and NBUE. See Marshall and Shaked

a8
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2.3 Multivariate NBUE. Along with the multivariate NBU versions of Buchanan

and Singpurwalla (1977) are integrated versions of these definitions. These
authors give three versions of multivariate NBUE., The relations among these
and closure properties are discussed in Ebrahimi and Ghosh (1981). Furthermore

the latter authors relate these multivariate NBUE definitions to four defi-

nitions of multivariate NBU (i.e. definitions (1)-(4) of Section 5 of Block and
Savits (1981)).

Some other multivariate NBUE classes are mentioned by Block and Savits
(1981) and Marshall and Shaked (1984), One extension of a univariate charac-
terization of the NBUE class mentioned in Block and Savits (1978) has been

proposed by Savits (1983b).

2.4 Multivariate IFR. Perhaps the most important univariate concept in reliability

is that of increasing failure rate. One reason for this is that in a very simple
and compelling way this idea describes the wearout of a component. Many engineers,
biologists and actuaries find this description fundamental, The monotonicity of
the failure rate function is simple and intuitive and occurs in many physical
situations. This also is crucial in the multicomponent case where the components
are dependent.

Several authors have attempted to describe the action of the failure rates
increasing for n components simyltaneously. These cases were discussed in Block
and Savits (1981) and in the references contained therein.

A recent definition of multivariate IFR was given by Savits (1983a) and is
in the spirit of the classes defined by Block and Savits (1980) and Marshall and
Shaked (1982). For shock models involving multivariate IFR concepts see

Ghosh and Ebrahimi (1981).
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It is shown in Savits (1983a) that a univariate lifetime T is IFR if and
only if E[h(x,T)] is log concave in x for all functions h(x,t) which are log
concave in (x,t) and are nondecreasing in t for each fixed x > 0. This leads
to the following multivariate definition.

(2.4.1) Definition. Let T be a nonnegative random vector. Then T has an MIFR
distribution if E[h(x,T)] is log concave in x for all functions h(x,t) which ;

are log concave in (x,t) and nondecreasing in t >0 for each fixed x>0.

This class enjoys many closure properties. Among these are that all mar-
ginals are MIFR, conjunction of independent MIFR are MIFR, convolutions of MIFR
are MIFR, scaled MIFRare MIFR, nonnegative nondecreasing concave functions of
MIFR are MIFR, and weak convergence preserves MIFR. See Savits (1983a) for
details. From these results it follows that the multivariate exponential dis- A
tribution of Marshall and Olkin (1967) is. MIFR, as are all distributions with

log concave densities. Since the multivariate folded normal has a log concave
density, it also is MIFR.

The technique used in Definition 2.4.1 for the MIFR class extends to other

multivariate classes. In particular, if we replace log concave with log

subhomogeneous, we get the same multivariate IFRA class as in Definition 2.1.1;
if we replace log concave with log subadditive, we get a new multivariate NBU
class which is between that of (2.2.3) and (2.2.4). For more details see

Savits (1983a, 1983b).

2.5 Multivariate DMRL and HNBUE. Few definitions of multivariate DMRL have been

discussed in the literature, although E. El-Neweihi has privately communicated )
one to us. Since developments are premature with respect to this class we !

will not go into details.
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Multivariate extensions of the HNBUE class have been proposed by Basu and

Ebrahimi (1981) and Klefsjo (1980). The extensions of the former authors are
similar in spirit to the multivariate NBUE classes of Ghosh and Ebrahimi (1981).
The latter author's definition extend the univariate definition by replacing
the univariate exponential distribution with the bivariate Marshall and Olkin ¥

(1967} distribution and considering various multivariate versions of the defi- .

nition.

Basu and Ebrahimi (1981) show relationships among their definitions and

Klefsjo's, give some closure properties and also point out relations with )

mulcivariate NBUE classes.
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