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Progress Report: Summalry of work done under AFOSR sponsorship during 82-85

Preamble

This report, documenting the progress made under AFOSR sponsorship (AFOSR-82-0299),
is a summary of the three yearly progress reports submitted to AFOSR, and also includes material
described verbally to the Program Manager, Dr. James McMichael, during our periodical meetings.
The research falls within the general area of 'urbulence, Turbulence Control and Drag Reduction'.
The progress made during the three year period 1982-85 can be classified under the following four
categories:

(1) Fundamental studies on turbulence dynamics
(2) Flow control studies
(3) Viscous drag reduction
(4) Miscellaneous.

Each of these areas will now be described briefly in the following sections; each section also
contains some general qualitative remarks.

1. Fundamental studies on turbulence dynamics

The emphasis in this part work has been the examination of whether, and if so how, the
modern notions of dynamical systems, chaos and nonlinear systems can enhance our understanding
of turbulent flows in a way that we can use this improved understanding to predict better quantities
of direct interest in practical circumstances, such as mixing and drag. The strides made so far may
not be remarkable in an absolute sense, but we have definitely made some non-trivial progress.
When this work was begun, it was not fashionable within the fluid mechanics community (in fact,
some workers looked upon it rather unkindly), but many more groups are now engaged in similar
work. We think that turbulence is not chaos, and is more complex than the complex behavior
associated with simple maps (for instance), but that many tools employed for analyzing chaos can
be used profitably to gain a better understanding of turbulence. Furthermore, in spite of the protests
of some, we also believe that the canonical routes to chaos have some relevance to the manner in~which transition to turbulence occurs at least in some special circumstances.

Some idea of the work done can be had by the list of publications (including reports and
theses) that arose from it. We list them below, and discuss them briefly. Most publications are

.enclosed, but not the theses and the interim reports (partly because they have already been mailed to
AFOSR at different times, and partly because they duplicate some of the published material).

The significance of this work is that it brings together the recent mathematical concepts from
nonlinear dynamics and some classical concerns in fluid mechanics. It is believed that this cross
fertilization will have significant impact on our understanding of turbulence in the next ten years (or
so). The publications are: /

a. K.R. Sreenivasan & P.J. Strykowski (1984) 'On anologies between turbulence ini
unconfined flows and chaotic dynamical systems In Turbulent and chaotic phenomena in
fluids', pp. 191-196, North-Holland (ed. T.Tatsumi)

It was in this paper that the dimension of the attractor was first calculated from experimental
signals (more or less concurrently with others in the physics community who did similar
calculations in the Taylor-Couette flow). We indicated that the Ruelle-Takens scenario may hold
during transition to turbulence in coiled pipes. We have not pursued this flow much because of the
difficulty in obtaining purely periodic phenomena, but have pursued this line of enquiry in other
flows (see below).

1 b. K.R. Sreenivasan (1985) 'Transition and turbulence in fluid flows, and low-dimensional
chaQs"; In 'Frontiers of fluid mechanics', pp.41-67, Springer-Verlag (ed. S.H. Davis & J.L.
Lumley) ,.-

We showed that the points of view now developing from the understanding of chaotic
dynamical systems can be useful for interpreting the phenomena associated with transition to
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turbulence in wakes behind cylinders. This manuscript created some interest, and there are claims
that the windows of chaos and order observed in this paper were due to the aeroelastic coupling
between the flow and the cylinder. It is quite clear that aeroelastic coupling is a sufficient condition
for producing these windows of order and chaos, but that is not a necessary condition. Our present
view, based on a number of unpublished measurements including those on cylinder vibrations, is
that small three dimensionalities (invariably present) in the wake of a rigid cylinder will be enough
to produce the results obtained in this manuscript. Further work is in progress.

c. K.R. Sreenivasan (1986) 'Chaos in open flow systems' In 'Dimensions and
entropies', pp 222-230, Springer-Verlag (ed. G. Mayer-Kress)

In this paper, we discussed the general difficulties associated with measurement of
dimensions and Lyapunov exponents in open flows, and presented trends with Reynolds number.
Flows examined were wakes, jets, mixing layers and flow through coiled pipes.

d. K.R. Sreenivasan & C. Meneveau (1986) 'The fractal facets of turbulence J. Fluid
Mech. 173, 357-386.

In this paper, we showed that there are various facets of turbulent flows that are fractal-like,
and measured by experiment the fractal dimensions of turbulent/non-turbulent interfaces,
iso-velocity surfaces, iso-dissipation surfaces, etc. Part of our contribution in this paper (and in
reference (c) above) is believed to be the rendering of some mathematical properties of strange sets
amenable to measurement, and the interpretation of these measured measurements in contexts of
fluid flows. In particular, we examined the following questions: (a) Is the turbulentlnon-turbulent
interface a self-similar fractal, and (if so) what is its fractal dimension? Does this quantity differ
from one class of flows to another? Arc constant-property surfaces (such as the iso-velocity and
iso-concentration surfaces) in fully developed flows fractals? What are their fractal dimensions? (c)
Do dissipative structures in fully developed turbulence form a fractal set? What is the fractal
dimension of this set? Answers to these questions shed some light also on some long standing
questions in turbulence - for example, the growth of material lines in a turbulent environment. The
overwhelming conclusion turned out to be that several facets of turbulence can be described by
fractals, and that their fractal dimension can be measured. Currently, we are trying the explain our
findings in terms of the dynamics of turbulence, and examine the implications of these findings to
turbulent mixing.

e. K.R. Sreenivasan & R. Ramshankar (1986) 'Transition intermittency in open flows, and
intermittency routes to chaos', Physica 23M, 241-258.

The intermittent transition to turbulence in open flows (mainly pipe flows) was examined in
this paper in the context of intermittency routes to chaos. Preliminary conclusions were that some
quantitative connections could be discerned, but that they were incomplete. In a similar manner,
connections with phase transition and other critical phenomena were also found to be imperfect.
Some measurements which we hope will be useful in developing alternative models describing the
essentials of the phenomena were described.

f. K.R. Sreenivasan, P.J. Strykowski & D.J. Olinger (1987) 'Hopf bifurcation. Landau
equation, and vortex shedding behind circular cylinders", In 'Forum on unsteady flow
separation' of the ASME Transactions, pp. 1-13 (ed. K.N. Ghia).

In this paper, we have shown by measurement that the bifurcation accompanying the vortex
shedding behind circular cylinders is of the Hopf type, and that the Landau equation (with
constants possibly depending on the spatial position) describes the post-critical behavior quite
accurately. We determine typical Landau constants. Finally, we have examined the sense in which
absolute instability is relevant to the vortex shedding problem.

2. Flow control research

This has been a central issue of our research, but a number of things resulting from it have
remained unpublished to-date, although they are at various stages of publication now. The bulk of
the work can be found in two Ph.D.theses, whose titles and abstracts are given below.

i'I
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a) P.J. Strykowski (1986): 'The Control of Absolutely and Convectively Unstable Shear Flows'

The control of the absolutely unstable wake flow and the convectively unstable boundary
layer is investigated. The control (i.e., suppression) of disturbances in the wake and the boundary
layer is achieved through different means, because the flows are governed by different types of
instabilities. For instance, vortex shedding behind circular cylinders can be suppressed (over a
limited range of Reynolds number) by the proper placement of a second smaller cylinder in the
near-wake of the main shedding cylinder. The control is new and quite dramatic, and is a
consequence of the wake being absolutely unstable. Control in the boundary layer is achieved by
acting on the disturbances directly because the flow is dominated by the convective instablity. In the
boundary layer, control is successfully applied to Tollmien-Schlichting waves and narrow
band-passed random waves using the wave superposition principle. The control is achieved by
using a novel technique, namely suction and blowing, by which disturbances are produced and
subsequently controlled.

A publication that has resulted from this work is:

P.J. Strykowski & K.R. Sreenivasan (1985) 'The control of transitional flows' AIAA
Paper -85-0559, Presented at the AIAA conference on Shear Flow Control, Boulder.

Two other papers are expected to be prepared on the basis of this thesis.

b)S.Raghu (1987): 'Control of Combustion and Acoustically Coupled Fluid Dynamic Instabilities'

The purpose of the present research is to demonstrate experimentally a set of methods for the
active control of combustion and acoustically coupled fluid dynamic instabilities. These methods
are based on the theoretical understanding of the interaction of mass, momentum or energy sources
with a disturbance in the system. The disturbance could be linear or nonlinear and either vortical,
acoustic or in the entropy mode. It has been shown that periodic addition of mass, momentum or
energy can result in either the amplification or the decay of the energy in a periodic disturbance
depending on the phase in which this addition occurs. Successful control has been achieved in
several cases of fluid dynamic and combustion instability ranging from laboratory scale
experiments to an operational, large combustion tunnel.

The method of heat addition was used to succesfully control oscillations in a Rijke tube, a
whistler nozzle, resonance in a pipe set up by loud speaker, and a turbulent pipe flow with
superposed acoustic resonance. It was found that more control heat is necessary to suppress
oscillations in a large background of turbulent noise. Drag forces generated by fine screens was
used to suppress the oscillations in a whistler nozzle. A feedback mechanism was designed to
oscillate the screens in the proper phase to achieve the desired control action. The resonance in a
pipe set up by a loud speaker was suppressed by periodic mass addition using a feedback control
system. Finally, a combination of screens and heating coils was used to control oscillations in a
large combustion tunnel. The methods of control explored in this work are independent of the
source of instability, and hence have a broad range of applications in real systems.

One publication that has resulted from this work is:

K.R. Sreenivasan, B.T. Chu & S. Raghu (1987) 'The control of pressure oscillations in
combustion and fluid dynamic systems', AIAA Paper-85-0540, Presented at the AIAA meeting
on Shear Flow Control, Boulder.

Three more publications that will follow are:

B.T. Chu, K.R. Sreenivasan & S. Raghu (1987)'On the control of combustion instability',
to appear in Progress in Aerospace Sciences.
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S. Raghu & K.R. Sreenivasan (1987) 'Control of acoustically coupled combustion and fluid
dynamic instabilities', AIAA Paper -87-2690 to be presented in the l1th Aeroacoustic
Conference in Sunnyvale, CA, Oct. 19-2 1.

S. Raghu, R.P. Bradley & W.M. Roquemore (1987) 'Control of combustion oscillations',
to be presented at the NATO Advanced Study Institute in a Conference on Instrumentation
for Combustion and Flow, September 14-25, 1987, Portugal.

3. Viscous Draw Reduction

Again, the bulk of this work has remained unpublished, but a majority of the work has been
summarized in the following Ph.D. thesis.

a) T. B. Lynn (1987): 'Manipulation of the Structure of a Turbulent Boundary Layer'

The manipulation of a turbulent boundary layer for the purpose of net drag reduction is an
attractive topic for research, because even modest success will result in large energy savings. The
focus of this work is passive manipulation, one of the simplest manipulation techniques. The most
promising manipulator to-date is the so-called BLADE device, consisting of two thin ribbons or
foils suspended in the outer portion of the boundary layer. BLADE devices were devised and
researched first at the Illinois Institute of Technology (IT) and NASA Langely. When we began
this research, there was significant controversy over the magnitude of net drag reduction possible
(20% reported by the lIT group) and the maximum skin friction reduction obtainable (50% reported
by the lIT group).

Accurate local skin-friction have been made using sublayer fences in a perturbed boundary
layer. By comparing our direct measurements with those obtained by indirect methods, we have
determined that the degree of drag reduction depends on the method used to calculate the combined
devise drag and skin friction drag.

Using auto and two-point correlation measurements as well as space-time correlations, we
investigated the effects of BLADE devices on the turbulent structures in the boundary layer,
comparing them with wire devices which are known not to produce a net reduction in drag. The
sustained effects of the BLADE devices were, in all length scale measurements, stronger and longer
lasting than those of the wire devices. The space-time correlation revealed that the most significant
effect of the BLADE device was on the large structure (the dominant structure in the outer region of
the boundary layer). In contrast, the wire manipulator had no effect on the large structures. The
BLADE's alteration of the large structure was evident in the marked difference in the development
of the wakes downstream of the two devices.

We have also investigated inner layer devices consisting of sublayer wires. The results from
both the inner and outer layer manipulations suggest the effective alteration of a turbulent boundary
layer depends on the scaling of the device. The dominant turbulent structure in the region of interest
dictates the proper scaling of the device.

b) In addition, a Master's degree work by Mr. Mark Lee partly on the effect of a rotating
cylinder immersed in the turbulent boundary layer should be mentioned. This work showed the
importance for drag reduction of lifting objects immersed in the turbulent boundary layer. This is a
matter of ongoing research, and will be reported elsewhere.

c) Some of our work on the so-called BLADE manipulators was summarized also in an
invited talk (with R. Narasimha) at the AIAA Conference on Shear Flow Control, Boulder.
The talk was prepared in the form of the following report:

R. Narasimha & K.R. Sreenivasan (1987); 'Flat plate drag reduction by turbulence
manipulation', Report Number 86FM4, Department of Aerospace Engineering, Indian Institute of
Science, Bangalore.



4. Miscellaneous items

In the course of work we did several years ago, it became evident that the zero normal
velocity boundary condition, imposed in the interior of a turbulent flow, will have a srong effect on
the flow evolution. To test these ideas, we set up several experiments in grid turbulence, but have
pursued them only sporadically, the reason being that our resources were limited, and we had to
make a choice on priorities.

For the same reason, we have also not written up on our pipe flow work, related to the
effects of initial conditions on the evolution of the flow.

However, two pieces of research in this category have been written up. These are enclosed,
and a brief description is included below.

a) K.R. Sreenivasan (1983): 'Some studies in non-simple pipe flows', Invited paper in
Trans. Inst. Engineers Australia, vol. ME8, pp.200-208.

A variety of phenomena occurs in pipe flows, especially if we stray away from straight
circular pipes of uniform crosssection. This paper illustrates a few of the complexities arising from
the relatively simple changes in geometry, namely, the sudden expansion and the coiling of the
circular pipe. In particular, the phenomena examined are relaminarization, large amplitude
self-excited oscillations in sudden expansions, transition to turbulene, and retransition from the
relaminarized state to a turbulent one.

b) K.R. Sreenivasan (1984): 'On the scaling of the turbulence energy dissipation rate'
Phys. Fluids, 21, 1048-1051.

From an examination of all data to-date on the dissipation of turbulent energy in grid
turbulence, it was concluded that, for square-mesh configuration, the ratio of the time scale
characteristic of dissipation rate to that characteristic of energy-containing eddies is a constant
independent of Reynolds number, for microscale Reynolds numbers in excess of about 50.
Insufficient data available for other grid configurations suggest a possibility that the ratio could
assume different numerical values for different configurations. The persistent effect of initial
conditions on the time scale ratio is further illustrated by reference to the jet-grid data of Gad-el-Hak
and Corrsin.

Concluding remarks

A part of progress achieved during this period has been of qualitative nature, that is, of the
type that has helped us to pose the right questions for further inquiry. In fact, some of the work
now being done by us, which seems to hold more promise, has had its roots in the exploratory
work done under AFOSR sponsorship during the period under consideration. In this sense, the
significance of the work to be described below lies beyond the specifics. We are happy to
acknowledge this indebtedness to AFOSR.

It may not be out of place to note that, as a secondary outcome of the AFOSR support, three
Ph.D.'s and two M.S.'s were produced at Yale. One of the Ph.D.'s (Paul Strykowski) has
accepted a professorial position at Brown, the second (Ted Lynn) a post-doctoral position at
DFVLR in Berlin, while the third is a post-doctoral fellow at Yale. One of the two Master's degree
recepients (Mark Lee) is currently employed at the Wright Patterson Air Force Base, while the
second (David Kyle) has taken a break from studies to pursue a different career.

L;
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ON ANALOGIES BETWEEN TURBULENCE IN OPEN FLOWS

AND CHAOTIC DYNAMICAL SYSTEMS

K.R. Sreenivasan and P.J. Strykowski

Mason Laboratory, Yale University, New Haven, CT 06520

We briefly study turbulence in open flow systems in the
context of concepts developed in studies of chaotic dy-
namical systems. Although several flows have been ex-
amined, particular attention will be focussed on the
question of transition to turbulence in coiled pipes;
some degree of correspondence with the Ruelle-Takens-
Newhouse route to chaos is indicated. Using the
Grassberger-Procaccia algorithm, the dimension of the
attractor for velocity signals during and immediately
after transition to turbulence has been computed. Our
results, such as they are, indicate that the dimension
is relatively low. Brief comments will be made on the
difficulties of computing the dimension, as well as on
the relevance of strange-attractor theory to fully-
developed turbulence.

INTRODUCTION

Recent studies of the dynamics of nonlinear systems with finite (and small) num-
ber of degrees of freedom have produced profound results with probable implica-
tions to the very notion of chaos - for example, in kinetic theory of gases in
the context of the Boltzmann equation - but the interest of fluid dynamicists in
these studies stems primarily from the notion of genericity, that is, the expec-
tation that the qualitative properties of the Navier-Stokes equations are shared
also by these simpler systems. A related important (and, to our knowledge, as
yet untested) expectation is that turbulence, at least not too far away from
transition, behaves like a strange-attractor. Without going into details, we may
restate the above supposition to mean that turbulence has a manageably small num-
ber of 'dynamically significant' degrees of freedom, despite the overwhelming
complexity it displays, or that one may be able to extract a finite-dimensional
projection out of an infinite-dimensional phase space.

As we know today, three dist-inct 'scenarios' of chaos have been indentified; more
will no doubt be discovered. In the first scenario, chaos sets in abruptly fol-
lowing very few (most probably, three) Hopf bifurcations [1,2]. In the second,
the onset of chaos occurs via an infinite cascade of period doubling [3.4,5] with

certain well-defined universal characteristics. The third, less-studied, route
envisages chaos through gradual merging of decreasingly intermittent chaotic
regions [6]. Obviously, these scenarios of chaos have at least qualitative re-

semblence to transition to turbulence in one or 
the ocher of the fluid flows; con-

siderable work [7-10] in the last few years has shown that the correspondence is
more than superficial in highly constrained 'closed flow systems', that is, fluid I
flows which are totally confined within a closed boundary (for example, the nar-
row-gap Taylor-Couette flow, or convection in a finite box of small dimension).
Although it appears certain that many aspects of transition, even in confined

• • •
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(a) Re 5940

2

(b) Re =6360

(c) Re = 6570

(d) Re - 6625

(e) Re 6S90

time frequency, Hz

Figure 1. Time traces (duration 15 ms) and power spectral densities of the fluctu-
ating velocity u on the pipe centerline of a coiled pipe; pipe diameter - 3.18 M,
coil radius - 42 me. Same gain for all cases. Note that the spectral ordinates do
not all have the am scale. In general, open systems are characterized by the
presence of sizeable noise in the initial conditions, which is why we have chosen
to plot the power on a linear scale. Some averaging has been performed on the
power spectra. I
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Fractal. dimension D, an adaptation of the Hausdorff dimension. (The fractal di-
mension may be viewed as a measure of the information necessary to specify the
location of a fractal set. For classical cases with self-similarity, it coin-
cides with the usual notion of dimension.) Calculating D using box-counting al-
gorithms is not practical if D > 2 (see 1131), as is surely the case for turbu-
lence (see below). Another dimension v, related to the fractal dimension
D(-< D),as well as the information-theoretic entropy, has been proposed [14].
if y is the n-dimensional vector in time domain,one computes first the quantity
C(r) given by

N

C(r) = lim 12 H~r -,V -v }, (1)
N i 1

where v = v(iT'), T' being the sampling interval, and H is the Heaviside step
function. For r not too large, it can be shown that C(r) r

'
. Grassberger &

Procaccia [ 14] have shown that v - D for several chaotic attractors commonly dis-
cussed in the literature on dynamical systems, and have argued that, where it is
smaller than D, v is in fact the more appropriate quantity to consider. We shall
not discuss this further but only note that D is a quantity related to geometry,
while v has a probablistic content in it. In our computations of v, we used real-
time data of the axial velocity component to construct a multidimensional vector
using the delay coordinates (u , u.,, ... u ,.) with increasing values of
d, and evaluated v as indicatei aboN; t is ah£'i t- al multiple of T'. Initial-
ly, v increases with d but settles down eventually. It is this asymptotic value

L0

10082

-1 -t 0 1 2 +

1092 r

Figure 2. The quantity 102 C(r) vs 102 r, r in arbitrary units. Re w6625.
Differ.nt curves correspond to different d. From left to right, d 1, .
15, 20, 25, 30, 20, 50 and 70.

W
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of v that is of interest to us. If v is relatively small, the concept of strange
attractors may be very useful in turbulence; otherwise, it is hard to assess its
significance.

As a check on our computational procedure, we may note that V was found to be 1
for a sine wave and 0.63 for a Cantor set, as expected. Since a purely random
signal, such as the output of s white-noise generator, has a space-filling attrac-
tor, v d for all d.

Figure 2 shows several curves of log C(r) vs log r, computed with increasing val-
ues of d, from the velocity data for Re - 6625 just after the onset of the broad-
band spectral behavior. Typically, these curves have a linear region; the level-
ling off of the curves for large r is the result of the finiteness of the attrac-4
tor, while deviation from linearity towards the very low end of the curves arises
from resolution problems. The slope of the linear region increases with d ini-
tially but appears to settle down to a constant beyond a certain d. This can be
seen more directly from figure 3. The asymptotic vtlue of v is around 6.

6 Figure 3: The slope v of the
straight regions of curves in
figure 2, vs the dimension of
the phase space, d. The asymp-

V 4 totic value is around 6.

2

0
0 20 40 60 80

d

The data presented in figures 2 and 3 are typical of our computations,which extend
to Reynolds numbers on either side of 6625. However, they are not sufficiently
systematic at this point to be included here as conclusive results. This is so
chiefly because we have not yet made the various sensitivity tests on V. First,
before the signal is digitized, some low-pass filtering is necessary; we have not
investigated the effect of varying this cut-off on v. We have also not investi-
gated very thoroughly the effect of varying T on Iv. Typically, however, this lat-
ter effect is not significant over a fairly wide range of T. With those reserv-
ations noted, we may mention that, for Re < 6625, the value of V is less than 6,
while being a rather strongly increasing function of Re at higher Re; in fact, at P
the highest Reynolds number of our computations, we have not yet seen vi settle
down even for d as large as 100. (Our initial results presented at the meeting in
Xyoto were necessarily at lower Reynolds numbers than 6625.)

DISCUSSION AND CONCLUSIONS

The results of the previous two sections represent only a small part of a largely
unyielding investigation. In relation to transition and the scenarios of chaos,
our experience is that none of the above-mentioned route. to chaos occurs during
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transition to turbulence in open systems like lets or wakes. While it is of course
possible that more than one of the above scenarios operate simultaneously, it looks
certain that turbulence, unless constrained severely, does not behave like a simple
dynamical system. On the other hand, we would like to make a specific mention of
the fact that our initial experience with coiled pipes was disappointing too; it
was only after some modifications of the flow were made, primarily in the form of
a smoother inlet to the upstream straight section, that we could observe the evol-
ution discussed earlier. Can we then make the sweeping generalization that, by
making 'appropriate' changes to the flow, perhaps by way of restricting initial
conditions to a suitable (but unknown) 'basin of attraction', we can nudge trans-
ition to follow some well-defined scenario of chaos?

What specifically has our work shown in relation to fully developed, or, at least,
'nascent' turbulence? While much work needs to be done, it suggests that, at least
at Reynolds numbers not too far above the transition value, the attractor for tur-
bulent signals is relatively low-dimensional. It may thus justify attempts at
extracting for the Navier-Stokes equations a finite-dimensional projection out of
the seemingly infinite-dimensional phase space. We should, however, note that the

dynamical systems approach will at best represent a small part of the total pict-
ure in turbulence unless the spatial chaos and order, as well as the relation
between these latter characteristics and temporal behavior, are discussed.
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Transition and Turbulence in Fluid Flows and
Low-Dimensional Chaos

K.R. Sreenivasan

Department of Mechanical Engineering, Yale University
New Haven, CT 06520, USA

Recent studies of the dynamics of low-dimensional nonlinear systems with chaotic

solutions have produced very interesting and profound results with several implica-

tions in many disciplines dealing with nonlinear equations. However, the interest of

fluid dynamicists in these studies stems primarily from the expectation that they
will help us understand better the onset as well as dynamics of turbulence in fluid

flows. At this time, much of this expectation remains untested, especially in 'open'

or unconfined fluid flows. This work is aimed at filling some of this gap.

Measurements made in the wake of a circular cylinder, chiefly in the Reynolds

number range of about 30-104, have been analyzed to show aspects of sgmilarity with

low-dimensional chaotic dynamical systems. In particular, it is shown that the ini-

tial stages of transition to turbulence are characterized by narrow windows.of chaos

interspersed between regions of order. The route to the first appearance of chaos

is much like that envisaged by Ruelle & Takens; with further increase in Reynolds

number, chaos disappears and a return to three-frequency quasiperiodicity occurs.

This is followed in turn by the reappearance of chaos, a return to four-frequency

quasiperiodicity, reappearance of chaos yet again, and so on. We have observed sev-

eral alternations between order and chaos below a Reynolds number of about 200, and

suspect that many more exist even in the higher Reynolds number region. Each window

of chaos is associated with a near-discontinuity in the vortex shedding frequency

and the rotation number, as well as a dip in the amplitude of the vortex shedding

mode. It is further shown that the dimension of the attractor constructed using time

delays from the measured velocity signals is truly representative of the number of

degrees of freedom in the ordered states interspersed between windows of chaos; it is

fractional within the windows of chaos, and is higher than those in the neighbouring

regions of order. Our measurements suggest that the dimension is no more than about

20 even at a moderately high Reynolds number of 104, and that it probably settles

down at about that value.

1. Introduction

a. General remarks

The principal parameter of incompressible viscous flows, in situations free of

body forces, is the Reynolds number, Re. Observations show that for given (fixed or

time-independent) boundary conditions (and external forces if applicable), the fow

41



is unique and steady for Re < Recr, where Recr is a certain critical value of Re; Re , only a

this is the steady laminar motion. As Re increases, the fluid motion may first be- in e posit

come periodic, quasiperiodic, and 'eventually' chaotic. (Chaos is defined better in consi eratiol

section 3 and in the appendix, but we shall also loosely use the word to designate A inte-

a state in which the details of motion are not reproducible.) This chaotic state is number f del

not necessarily turbulence as generally understood - and we shall discuss this short- small ev n ii

ly - but it is believed that one attains the turbulent state if the Reynolds number Ass in

is taken to a sufficiently high value. The goal of the stability theory is to under- gion is i de

stand how the evolution from the laminar to the turbulent state occurs, while tur- doe not dep.

bulence theories aim at unearthing and predicting the mysteries of the (fully) tur- (1 3). The r

bulent state itself. so e sense o

It is generally believed that the key to both these problems lies in the Navier- e ouse, Ru,

Stokes (NS) equations, and that no additional hypotheses of fundamental nature are a f Hopf b

required for describing either the onset of turbulence or its dynamics. Much effort The war.

has thus been spent on mastering the NS equations. However, the difficulties, both on d amical

analytical and computational (at high enough Reynolds numbers), remain intimidating. Ruell & Tak.

In the recent past, claims have been made that autonomous dynamical systems consid ing,

with small number of degrees of freedom, typified by Conside as

a certai or.db.

t f(h; Ei)
'  (1.1) ties of is

do not de n

where the bi characterize the state of the system (the so-called 'state variables'), neric. T e

i is a small integer, and e, are the so-called control parameters (analogous to Re ic system,

in the NS equations), help us towards attaining both the goals mentioned above. It sys ems is n,

is to a discussion of aspects of these claims, via an example of fluid flow behind spe ific fan

circular cylinders, that this paper is devoted. ment on lam

ven if

b. Remarks on degrees of freedom, genericity, and spatial chaos that tores

Several questions arise immediately. One natural question concerns the rele- let us onsiL

vance to fluid flows of low-dimensional dynamical systems. To give some meaning to example above

the concept of degrees of freedom in fluid flows, let us approxirmte the velocity derivat es o

vector u, appearing in the NS equations as ulent bo ndar

uj - Z aj(k;t)ei 
'  

(j - 1,2,3), (1.2) dur n rsti

k smo thness cc

where the wave number vector k is an element of a discrete (finite or infinite) set. kee in mind

The NS ecuations can then be written formally as cial when c

aai(k;t) mpoan to-
at F(ai,; Re), i - 1,2,....N (large). (1.3) i nally

The number of the coefficients ai which, for given boundary conditions for the fluid order! in t

flow, are capable of variation in time can now be called the degrees of freedom of lence i ran

the fluid flow governed by the NS equations (to within the approximation implied in tor is a ran

(1.2) and (1.3)). Since the laminar flow is uniquely specified by the boundary on the o er

(and external force) conditions, this number is zero. If Re increases just past fluid ul
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te o Re; Recr, only a few degrees of freedom are excited, and hence it appears that, at least

,firs be- in the positive nelgibourhood of Recr (to be called transcritical region henceforth),

id bett r in consideration of these few degrees of freedom is adequate.

designa An interesting hypothesis (which we shall examine in this paper) is that the

ic state s number of degrees of freedom (not necessarily in the sense described above) remains

this shor small even in (certain type of) high Reynolds number turbulence.

ids number Assuming that the number of degrees of freedom excited in the transcritical re-

is to und gion is indeed small, we must ask whether the behavior in this transcritical region

whil tur- does not depend on the broad nature of the right hand side of equations (1.1) and

ull tur- (1.3). The most often cited justification for the belief that this dependence is in

some sense of secondary importance comes from the work of Ruelle & Takens [11 and

the Navier- Newhouse, Ruelle & Takens (21 which indicates that chaos sets in abruptly following

Lature are a few Hopf bifurcations, and that this behavior is 'generic' or 'typical'.

Much e fort The words 'generic' and 'genericity' find their frequent use in the literature

ties, b th on dynamical systems, and so, it is perhaps useful to discuss the concept briefly.

timidati . Ruelle & Takens ma.e this concept quite specific for the vector fields they were

systems considering, but we shall be ccntent with a rather loose qualitative description.

Consider as an ex"'oe, a class of functions possessing continuous derivatives up to

a certain order, and satisfying differential equations of the type (1.1). Proper-

(1.1) ties of this class of functions which are the rule and not the exception, and which

do not depend on the precise nature of the right hand side of (1.1), are called ge-
aria les'), neric. The conclusions of Ruelle & Takens strictly hold for an idealized mathemat-

ous Re ical system, and whether the concept of genericity is powerful enough to embrace fluid

above. It systems is not clear. One should attempt to answer this question by looking at the

ow beh d specific form of F in (1.3) and/or by observing the actual bifurcations in experi-

ments on laminar-turbulent transition.

Even if the concept of genericity does hold for fluid flows, it is not obvious

that interesting nongeneric phenomena do not occur. To make this notion specific,
the r e- let us consider the following rather far-fetched example. Suppose we link (as in our

,eani to example above) genericity to the existence of velocity fields possessing continuous

eloci y derivatives of a certain order. Those generic properties may be irrelevant to a turb-

ulent boundary layer since one cannot exclude the possibility that at some moment

(1.2) during bursting near the wall (a key event sustaining turbulence production) this

smoothness condition is destroyed in spite of viscosity. It is therefore sensible to

nite) set keep in mind that nongeneric behavior is neither uninteresting nor unlikely, espe-

cially when conditions such as configurational symmetry, vicinity to wall, play an

important role in the evolution of the flow.

Finally, one must mention the predominant role played by spatial chaos (and

r t fluid order!) in turbulent flows of fluids. An important characteristic of fluid turbu-

:es of lence is random vorticity, whose presence necessarily implies that the velocity vec-

lmpl d in tor is a random function of position. Autonomous dynamical systems of the type (1.1).

inda on the other hand, do not contain any space information. While temporal chaos in

It pa fluid turbulence may in some sense be symptomatic of spatial chaos, it is clear that
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autonomous dynamical systems have little to say directly about the latter, at least azing

at the current state of development. f t!

and tur

C. 'Closed' and 'open' flow systems look f

Notwithstanding these remarks, it is necessary to note that several beautiful E

experiments now exist in the Taylor-Couette flow (e.g., Refs. 3, 4 and 5) and the 2. E
convection box (e.g., Refs. 5 and 7) which have lent support to the notion that the I
behavior of fluid flows in the transcritical region could be similar to that of low-

dimensional dynamical systems. This in itself is undoubtedly remarkable, but it should Al

be remembered that these two flows are special in the following sense. In all 'closed disc

flow' systems - of which the convection box and the Taylor-Couette flow are two pop-c ar t

ular examples - the boundary is fixed so that only certain class of eigenfunctions th vot
can be selected by the system; this does not hold for another class of flows we may

call 'open flow systems' - for example, boundary layers, wakes, jets - in which the

flow boundaries are continuously changing with position. Thus, while in closed flow a
systems each value of the control parameter (for example, the rotation speed of the

exper
inner cylinder in the Taylor-Couette problem) characterizes a given state of the flow

globally, this is not true of open systems. Consider as an example the near field of Table
a circular jet. For a given set of experimental conditions, the flow can be laminar

at one location, transitional at another and turbulent at yet another (downstream)

location. This usually sets up a strong coupling between different phenomena in dif-

ferent spatial positions in a way that is peculiar to the particular flow in question.

Secondly, the nature and influence of external disturbances (or the 'noise', or the

'background or freestream turbulence') is more delicate and difficult to ascertain

d Iin open flows: the noise, which is partly a remnant of complex flow manipulation de-

vices and partly of the 'long range' pressure perturbations, is not 'structureless' 0.24

or 'white', no matter how well controlled. Finally, it is well known that closed flow 0.24

systems can be driven to different states by means of different start-up processes; 0.36

for example, different number of Taylor vortices can be observed in a Taylor-Couette 4.0

0.3
apparatus depending on different start-up accelerations [8]. This type of path-sen-

sitivity in a temporal sense does not apply to open systems, where the overriding

factor is the path-sensitivity in a spatial sense (i.e., the 'upstream influence').

d. Scope of the paper

On balance, all these considerations suggested to us that it is desirable to

look at some open flows to determine the extent to which dynamical systems can assist ant

us in our goals of understanding transition and turbulence in fluid flows. This is t a

the motivation for the work described in this paper, which is to be viewed more as a r

progress report than as a complete account; obviously much more remains to be done. ho

Our approach is to select well-known flows and follow the bifurcations as closely as

possible. (We reported come of our earlier work in pipe flows in [9] and wake work

in (101.) Surprisingly, while much work has been done in these flows in the past, an nale

whe

44U



Fw1UW WW -,II .rW VIt "IF. ,V ,M -01 W1.C - W w sW

at ast amazing amount of new information can still be acquired that will facilitate clari-

fying the relation between low-dimensional chaotic systems and fluid flow transition

and turbulence. Part of the reason for this is undoubtedly that the details one

looks for are often dictated by contemporary concerns.

beautiful

md the 2. Experiments

that the a. Experimental conditions

it of ow-

it should Although we have conducted experiments in wakes, jets and pipe flows, we choose

ill 'closed to discuss here only our wind tunnel experiments in two-dimensional wakes behind cir-

! t POP- cular cylinders. The Reynolds number range covered is from about 30 (slightly below

inct ns the vortex shedding value) to about 104. Two wind tunnels - one of the blower type

is we av and one of the suction type - were used. Nylon threads, stainless steel wires and

ihich e aluminium tubes, stretched tightly across the width of the wind tunnels, were used

aosed wake generators. The aspect ratio varied between about 70 and 2000. The basic
!d of the experimental conditions are summarized in Table I.

I the fl

* field Table I. The flow configuration and experimental conditions

lam nar

istr am)

is i dif- u wake generator

Ln qu stion. x
',or he d

icertai
d -() x/d oy/d aspect ratio wind tunnel characteristics

Lation d - as)

:ureless' 0.24 5 1 2000

:losed flo 0.24 50 1 2000 suction type; turbulence

-ocesses; 0.36 5 1 1330 feestlW0 f interest

r-Couette 4.0 5 1 170

0.36 II 1 70 blower type; turbulence
ith-sen- level varied from 0.682

riding 
at speeds 1 m/s to• "I:riing0.06% at sneeds 10 ff/s

.uence

ble o All velocity signals were obtained with a hot-wire operated on a DISA 55MO1 con-

can sist sant temperature anemometer. The speed of the tunnel was monitored with a Pitot

This s tube connected to a calibrated MKS Baratron with adequate resolution ( and an aver-

more a ager). The hot-wire and the Pitot tube were mounted on a specially designed slim

be done holder.

Some of the data to be presented in this and later sections is in the form of

4 e work pziwer spectral density of the streawise velocity component, u. Nearly all the Sig-
S tanals were digitized at sufficiently high fiequency (60 kHz or more) to ensure that.

whenever the signal was periodic, at least 30 digitized points were contained in one

45



TWUV ENCR K r Ws3MEAT W .- w 'f x W VWq WM L TWVVW W w.W7 . .,'.u .-.-.- Ull WI Pq~ R A. P~ ~iiW 34'

ru

i

period of the basic frequency (so that it was a good representation of the analog devoid of any disc

signal). Further, the entire length of the signal (which contained at Least 100 cy- ow frequency comp -6

cles of the basic frequency) was Fourier transformed at once using the Cooley-Tukey t e flow completel

FFT algorithm. The overriding criterion was that the spectral resolution should be er ling the same w.

as good as possible (here, between 0.5 Hz and 2 Hz compared with shedding frequen- conent
n ise Alwnce

cies of the order of 2000 Hz or more) and that one must not miss any low frequency noise\ Allowance

modulations. spectrat. data to f,

3. Resukts from
b. The background turbulence

We have worked with varying levels of background turbulence, and found that the

occurrence of different stages of transition reported here is in itself not terribly

sensitive to the turbulence level as long as it is not too high; larger turbulence Figure 2 show

levels blur the distinction between different stages and alter the details somewhat sity of u at Rey:

erratically. One should, however, strive to eliminate all strong discrete frenuency 0 i e) o

components in the background turbulence structure. ing. Notice that

Figure la shows a typical power spectral density of u in the freestream at Re t e peak of the sp,

60. (The ordinate is the logarithm to base 10 of the power.) The 'noise' (though qu ncy behind the

tha the noise lev,

the ight of f wh

" ' I I i i 
-! I

-4

7 Ir

. a 100 100 300 400 SM WO O 0

!a somewhat

P -the sp trum (figu

I ~can be i entified r.
basic var ex shedd

~zzi'±~At an Re -66
ingly atro discr(

2 and 3. On mighi
30 I000 2000 5400 SO O 7 OOo 9000 T sequ Ce t

Frequency (Hz) in the Ru I- ket

FIGURE 1: Normalized powe- (or frequency) spectrum of (a) noise of the instruments- digres on

tion and digitizer, plup freestream disturbances, Re = 60; (b) instrumentation and troduct n to the I
digitizer noise only with no flow. I
46
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he an log devoid of any discrete peaks) does not appear to be 'white' but has a much larger

low frequency component. Figure lb shows the power spectral density measured witheast I cy-

Doley-T y the flow completely shut off, but the hot-wire and other electronic instruments op-

a should b erating the same way as before. It is :lear that the anomalously high low frequency

u~r ee-
'  

content is not representative of the Iow' itself, but of electronic and computer
; requen-

frequency noise. Allowance should thus be made J ,r this :act in the interpretation of the

spectral data to follow.

3. Results from Spectral Measurements

ind th the
a. Route to chaos: the first appearanceso trribly

:urbu ence Figure 2 shows the logarithm (to base 10) of the normalized power spectral den-

.s so ewhat sity of u at a Reynolds number (based on the freestream velocity and the diameter

a fr uency of the cylinder) of about 36, which is approximately the onset value for vortex shed-

ding. Notice that the instrumentation and other noise level is around 10
-
8, while

:eam at Re the peak ' the s~ectr,= (marked .-), :-rresponding to the basic vortex shedding fre-

(tho h quency behind the cylinder, is at round l0
-
o
'
s, about 74 orders of magnitude higher

than the noise level! The sharpness of the peak (as well as of the other peaks to

the right of f1 which are the harmonics of f1 ) is excellent.

p FIGURY 2: Normalized frequency spectrum of

i~ ~u at Re - 36. Note that the power P is I0
.,oi plotted on a logarithmic scale (to base 10).

The peak at f k 590 Hz corresponds to the-" I Ivortex shedding, and the subsequent strongpeaks above the noise level are simply hat-

a low Mo UM Q M= ?W "M monics of f

Frenuency (tz)

At a somewhat higher Reynolds number of 54, there appear a number of peaks in

the spectrum (figure 3a); as shown in the expanded version (figure 3b) all the peaks

can be identified precisely in terms of the interaction of the two frequencies - the

basic vortex shedding frequency f1 and another incommensurate frequency f2 "

At an Re - 66 the spectrum (figure 4) shows broadened peaks with no overwhelm-

ingly strong discrete components - quite a different situation from that of figures

2 and 3. One might say, in the language of dynamical systems, that chaos has set in!

The sequence of events leading to chaos are so far literally like that envisaged
in the Ruelle-Takens-Newhouse (RTN) picture of transition to chaos, and so, a brief

nstru nta- digression roughZly describing this picture is quite useful. (The appendix is an in-
ation d troduction to the basic terminology.) With increasing Re, the steady laminar motion
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FIGURE 3: (a) Normalized frequency spectrum of u at Re - 54. In (b), tihe frequency ' •

range 0-2200 Hz is expanded. All significant peaks in (b) are simple combinations of CY.:

the vortex shedding frequency f1 (corresponding to the most dominating peak), and an- hps

other incommensurate frequency f2 " After satisfying ourselves that there are no sub-

harmonics of f (and that 119.02 Hz is unrelated to the line frequency or spurious

oscillations of the cylinder) we have picked f2 by hypothesizing that the peaks near-

est f1 must be f1 1 f2 " The value of f2 thus obtained accounts for every other sig-

nificant peak as shown in (b) - actually to 4 or 5 decimal places for reasons we do igure

not understand! At least part of the reason for the relatively low noise level (com- 54 an 66,

pared with figure 2) is the increased signal level. sional lat

in the igL

e ji ti
loses stability and becomes periodic with frequency f1 (say); the power spectral den- a ruc

sity will have (as in figure 2) a peak at fI (and its harmonics), and the phase dia-

gram will show a limit cycle behavior. Loss of stablility of this new state yields

a quasiperiodic motion with two independent frequencies, f1 and (say) f2 " The spec- A out tw

tral density will now show f1, f2 and various combinations mf1 ± nf2 (as in figures g ma in
3a, b), and the phase portrait will be a two-torus. Further increase in Reynolds bu were
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number yields a quasiperiodic motion with three frequencies (three-torus). New-

house, Reulle & Takens [2] argue that even a weak nonlinear coupling (of a certain

variety!) among the three frequencies is likely to result in chaos or a strange at-

tractor (see appendix), one of whose symptoms is an increased broadband content (see

figure 4). This contrasts the classical picture of Landau, according to which turbu-

lence is the asymptotic state of increasingly higher order quasiperiodicities.

Phase diagrams provide complementary information on the sequence of events lead-

ing to chaos. To construct phase diagrams, it would seem that one would require the

measurement of N inderendent variables (in general, a hopeless task!), but embedding

theorems like those of Takens [Il1 justify the use of a single measured variable.

From the measured local velocity u(t) - for example - one constructs a d-dimensional

diagram from the vectors fu(ti), u(ti + T) .... u(t + (d-l)t)}, i - 1 . ..... T

being a time delay whose precise value in a certain wide range seems to be immaterial.

According to the embedding theorems, the phase diagrams constructed in the above man-

ner will have essentially the same properties as the one with N independent variables,

as long as d > 2N + I (although exceptions to this now commonly assumed philosophy

are not hard to concoct). In practice, d is increased by one at a time until the

properties of interest become independent of d.

. tm., FIGURE 4: The first appearance of chaos

the fre ncy[ ~i'[ at Re - 66. The broadband nature implies
Lhe r cy-, ' chos;onset of chaos does not rule out

tio oi Note: f Is the vortex shedding frequon the

ombinat of .&t most another frequency can 9r- the existence of spectral peaks. (Note:

peak), and n- has e discerned tn the s~ectru-m. This does not signify some high order
!ea ano s- quasiperiodicity as dimension and entrop",

are are no so -t calculations of section 4 show.)

or sp Frequency (Hz)

the pe ks near-

ery ot oer sig-

reason we do figures 5, 6 and 7 show respectively the plot of u(ti+ T) ve u(ti) at Re - 36,

ise lev (com- 54 and 66, and can be considered as projections of the phase diagrams on a two-dimen-

sional plane. The limit cycle behavior at Re - 36 is evident, the scatter visible

in the figure being partly due to experimental noise (see figure 2) and partly due

tothe jitter in the signal. Further, a Poincare section reveals no discernible

er spectral den- structure. The situation is thus basically periodic.

the phase is-

v stat lelds

f2 " e spec- About two years ago (October 1982) when we first started constructing phase dia-

(as in f ures grams in this manner, we were unaware of any )Lterature on embedding theorems.

e in Reyn do but were guided solely by elementary ad-hoe considerations.
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)lot m the FIGURE 7: The phase diagram for Re -
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At Re = 54, although the projection of the phase diagram is complicated in ap-

pearance*(figure 6a), a Poincare section (figure 6b) yields a limit cycle, reinfor-

cing the fact that only two degrees of freedom are present. On the other hand, not

only is the projection of the phase diagram at Re - 66 complex (figure 7), but also

its Poincarg sections (not shown), no matter how defined. This, as well as the frac-

tional dimension of the attractor (see section 4a) show that the signal is indeed

chaotic.
(As equally valuable measures of chaos, one could evaluate the Lyapunov exponent

(characterising the exponential divergence of nearby trajectories) or the Kolmogorov

entropy (which, for typical systems, equals the sum of positive Lyapunov exponents).

Limitations of various kinds have prevented us from measuring the Lyapunov exponent

- such measureents for a Taylor-Couette flow have been made by Brandstlter et al.

[5] - but we do discuss some entropy measurements in section 4d.)

This progression towards chaos - underlying the possible presence of a strange

attractor - proceeds much like that proposed by Newhouse, Ruelle & Takens [2]. It

is thus extraordinary that the 'generic' behavior indicated by Ruelle & Takens for an

idealized mathematical system should have a nontrivial bearing on a rather complex

fluid dynamical system!

It should be noted that few would feel comfortable in designating as turbulent

the signal we have recognized as chaotic. Clearly, to the extent that a turbulent

flow must possess spatial randomness, we cannot say much of value as to whether the

flow at Re - 66 is turbulent or not without a global survey of the flow field at this

Reynolds number. Further, if one defines turbulence as a high Reynolds number phe-

nomenon (as is often done!), it is tautologically true that the signal does not re-

present turbulence. Further, a look at the signal (figure 8) would prevent someone

with an everyday familiarity with high Reynolds number turbulence from accepting it

Note that the trajectory resides most often in the upper right quadrant, but only

als. (b rarely strays away into the lower left quadrant. This behavior in the phase plane
(t +f) can be related to the finite skewness of the signal.
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as turbulent. Nevertheless, we would like to suggest that the signal shown in fig- (b) its el

ure 8 is indeed random (for example, in terms of algorithmic complexity required to 1 i can I

specify it [12])with a well-defined probability density (see figure 9; for a compar- c clusion

ison with similar data at 'large'Reynolds numbers in the far wake, see Thomas (131). in the acc%

What this means is that even atlow enough Reynolds numbers, the interaction of only

a few degrees of freedom leads to randomness! It is also pertinent to point out

that at least in some respects the signal of figure 8 resembles a narrow band pass -'

filtered turbulent signal at high Reynolds numbers. (Perhaps the word 'preturbu-

lence' also used commonly in dynamical systems literature, is sufficiently useful to P

designate the signal such as the one shown in figure 8, and its dynamics.) -1o

-it
b. Chaos and its aftermaths '

No qualitative change occurs between Re - 66 and about 71. Soon thereafter the

system becomes reordered. For example, the spectral density at Re - 76 shows (essen-

tially) nothing but discrete peaks again (figure 10a). These peaks, shown in detail

in figure lOb, can all be identified with great precision as arising from the inter- where 0]

action of three irrational frequencies. (That there are definitely three independent t is h

frequencies can also be seen from Poincarg sections (not shown here) and the dimen- &

@ion of the attractor discussed in section 4b). After a small increase in Reynolds -43. In

number to about 81, one can see the onset of the broadband spectral content (figure hi er Ry

11), and we may consider chaos to have set in againl cre ing
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+ in tail The system reorders itself around an Re of about 90. and we have discussed else-

a the i er- where [10] that this reordered state is quasiperiodic with four frequencies. (That

e indepe ent this is the case will be demonstrated also by dimension measurements in section 4d.)

the dime Chaos sets in again at an Re - 140, followed by yet another reordering around an Re

in Reynold 143. In fact, this sequence of return to chaos and reordering continues for much

ent (figure higher Reynolds numbers although it becomes progressively more difficult with in-

creasing Re to distinguish experimentally between the two states.
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Two related points of importance emerge. First, there exist quasiperiodic

motions with three or four independent frequencies; just like Landau's quasiperio i-

cities, the Ruelle-Takens picture of transition is also not the whole story. Second,

transition to turbulence (at least in the temporal sense) is characterized by regions -GA r~o
vortex*

of chaos interspersed between regions of relative order. Each of these deserves at -

least a brief discussion.

c. Note on quasiperiodicities with more than two frequencies

We have shown that the route to the lowest Reynolds number chaos occurs in our

experiments precisely as postulated in the RTN picture of transition. On the other F URE 12:

hand, our experiments also show that quasiperiodicities with three (and possibly

four) frequencies do exist. This type of disagreement with the RTN scheme has been amp e, Loren:

noted earlier in the Taylor-Couette flow [14] and the convection problem (15]. It occ rence ol

is thus pertinent to inquire whether there are (in some sense) exceptional conditions of Ma sumoto

to be satisfied for the RTN scheme to hold. Greborgi et al. [16], who address this noise,\and n,

question in a specific numerical experiment, suggest that the three frequency quasi- termini tic

periodicity is indeed quite likely to occur in practice, and that the special pertur- cally co sid

bation required to destroy this state (as in the RTN scheme) is unlikely. Haken [17] of the lo is:

discusses this issue at some length and concludes that if the frequencies possess a experimen s

certain kind of irrationality with respect to each other (or, more precisely, the In pe

so-called Kolmogorov - Arnold - Moser condition holds), bifurcation from a two-torus ord r is tie,

toa three-torus is possible. Both these discussions are strictly relevant to systems cia ed with

with no externally imposed noise (or fluctuations), a condition that does not strict- sit ation an

ly obtain in experiments (especially open systems). Our own experience is that the supe ficial:

precise nature of even small amounts of noise (some of which is controllable in our Reyno ds num

wind tunnels and some of which is not!) has an influence on the evolution of the ough

system (for a brief discussion of this influence, see subsection 3e). It is not bers, is

hard to visualize that in our experiments the detailed conditions of intrinsic noise indefin tely

itself could have altered from before to after the first occurrence of chaos. Clear- now be i ter

ly, this is an area for further work, both experimentally and theoretically. years ago th,

the fluct t:,

d. Windows of order and chaos that the s a!

Figure 12 summarizes the changes occurring in the low end of the Reynolds num- en tr si,

bet range we have considered. The shaded regions indicate windows of chaos, and the qu te sharp,

question marks indicate the uncertainty and difficulty in quantifying what we believe ti g lift fo .

are reordered states. vi the tran

At least two questions arise: What is the mechanism that permits the reordering beh vior is

of a chaotic state? What determines the length and location of the windows of chaos?

Our understanding of these matters is rather limited, but even within these limits,

some comments seem called for. Let us consider the first question now, and relegate nside

the second one to the next subsection. The observed alternation between chaos and number (figu

order has been known to occur in several low-dimensional dynamical systems; for ex- eral mo e or

and pa
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eme h been ample, Lorenz equations (18], and spherical pendulum [19]. In these systems, the

i [!5]. It occurrence of reordering is independent of - -ei'mc7 noise. The numerical experiments

nal co dito jns of Matsumoto & Ysuda [20J show that chaotic orbits could be unstable to external

address this noise, and noise addition to deterministic chaos (i.e., chaos characteristic of de-

quency q asi- terministic dynamical systems) yields an ordered state in some cases. They specifi-

pecial pe tur- cally consider the so-called Belousov-Zhabotinskii (BZ) reaction and some variants

V. Haken 171 of the logistic model. Roux et al. [211 find windows of chaos and order in their

es possess experiments on the BZ reaction.

isely, the In experiments on open systems, it is hard to ascertain whether the return to

m a two orus order is tied intimately to external noise or the increased degrees of freedom asso-

'ant systems ciated with the appearance of chaos itself. In any case, the analogy between this

,es n t strict- situation and increased eddy viscosity in turbulent flows appears to be more than

is t at the superficial: addition of high frequency modes results in a lowering of an effective

.lable n our Reynolds number and increased stability of the flow.

ton of he Though we have not made detailed spectral measurements at higher Reynolds num-

It is n t bers, it is our contention that the succession of order and chaos in a wake continues

Itrinsic ise indefinitely even at very high Reynolds numbers (with the caution that order must

chaos. C ar- now be interpreted to mean spectral sharpening). Roshko [22] pointed out several

ally. years ago that order reappears in the Reynolds number range of 106. More recently,

the fluctuating lift force measurements of Schewe [23] on a circular cylinder showed

that the spectral density of the lift coefficient was broad at Re - 3.7x10
6 

(upper

cyno ds num- end of transition) and became increasingly narrow until, at Re - 7.IxlO, it was

naos, and the quite sharp, rather like a narrow-band-pass filtered signal. Although the fluctua-

nat w believe ting lift force can at best be related to the squared fluctuating velocity filtered

via the transfer function corresponding to the response of the circular cylinder, its

the reor ring behavior is nevertheless indicative of the flow itself in the vicinity of the cylinder.

ndows of c aos?

these limi , e. The vortex shedding frequency and windows of chaos

, and relegate Consider now the variation of the vortex shedding frequency fl with Reynolds

en ch s and number (figure 13). The frequency does not vary monotonically with Re but shows sev-

t'ms; r ex- eral more or less distinct breaks. Such breaks have been noted before [24,25,26],

and perhaps most convincingly demonstrated in a beautiful experiment by Friehe (27].
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vorte shed- Friehe varied the Reynolds number continuously at a small rate and obtained on an

,otice Scon- x-y plotter the frequency.Re variation directly. Although the appearance of the

icidence 'th
astrated r. r breaks has been disputed [281, our own data, presented here and elsewhere [I0], sup-

port the conclusion that discontinuities do indeed appear.

Our interest here is in pointing out that the occurrence of these breaks coin-

cides with the windows of chaos. To establish the connection better, we may consider

in figure 14 the details of the break marked A in figure 13. Just upstream of the

break, the spectral density is quite ordered (four-frequency quasiperiodicity) while

it is broadband until the end of the break region coinciding with the upper end of

the window of chaos; to the extent we can ascertain, the frequency spectrum shows a

reordering immediately after the break.

The data shown by crosses in figures 13 and 14 were all obtained from one ex-

perimental run. In a repeat of the experiment the following day (for example) we

found the same general features, except that chaos set in at different Reynolds num-

bers; the windows of chaos were also of different widths. The filled circle in fig-

ure 14 was obtained in a second series of experiments. It is seen that this point

falls below the first set of data at the same Re, but it falls on the backward extra-

polation of the line corresponding to the reordered state (Re > 143) in the first

set. It is hard to tell the differences between conditions in the two experiments

without extensive documentation, but there are reasons to believe chat the second

experiment was conducted in a somewhat loisier environment. We thus speculate that

the location as well as the widths of the windows of chaos are to some extent deter-

mined by noise characteristics - in a way that is not well understood at present.

It is interesting to note from figure 14 that the ratio f2/f1 (the so-called

rotation number), where f2 is the second largest independent frequency, changes its

value abruptly across the narrow windows of chaos. Figure 15 is a plot of the rota-

tion number with Re. It is seen that the number changes abruptly across all the win-

dows of chaos, but only slowly within regions of 
order.

Air,

n anothe FIGURE 15: The variation of the
0 * I * I * rotation number with Reynolds

40 1 230 ! number.
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f. The amplitude of the vortex shedding mode and chaos

Since reordering is associated with the reemergence of stronger spectral peaks,

it is natural to expect that there must be some relation between the amplitudes of the exists,

various modes and the occurrence of order and chaos. Figure 16 shows the amplitude of ic of

the vortex shedding mode (or the f1 frequency) as a function of velocity. (The ampli- i teres

tude A1 is expressed as a fraction of the freestream velocity U, but is given here to To

an arbitrary scale.) It is clear that 0 indicating order coincides with a local peak

in A1 , C indicating the onset of chaos coincides with a local minimum, and, finally,

RO indicating reordering coincides with the reappearance of a peak. Except for the ta
tractofirst time that reordering occurs, every successive reordering is associated with a

general lowering of the amplitude of the vortex shedding mode. The onl

0.15 0order 
t

Ro
this mi

c P In0.10 0 0
C ractor

Al c ntrib

0.05 g metr
FIGURE 16: The amplitude of the vortex shed-
ding mode as a function of Re. 0 is order, ty c
C chaos and RO is reordering; within a window oth rs.
of chaos, 0 and RO may in general indicate

0 different states of order.
50 too 150 200

4. Results from the Dimension of the Attractor

If the

a. The dimension o be

It is clearly worth inquiring whether there is any property of the attractor fine(

that successfully describes in some way the many subtle changes that occur in the L

frequency spectra and the related properties discussed in section 3. It appears an le:

that there indeed is such a quantity, namely the dimension of the attractor. Loose- sio i

ly speaking the dimension of the attractor is related to the number of degrees of

freedom - and hence its importance. The concept of the dimension is highlighted in

studies of dynamical systems, and we may briefly digress here to discuss its meaning

before presenting results from our measurements. It should be pointed out that, a- 0

part from our own earlier measurements of the dimension for turbulence attractors o

[9,10], such measurements have been made by others in the Taylor-Couette flow (5]

and in the convection cell [29]. ce re
Let us consider an attractor (constructed as already discussed in section 3)from

a measured temporal signal u(t) that is embedded in a (large) d-dimensional phase
space. Let N(C) be the number of d-dimensional cubes of linear dimension C required

to cover the attractor to an accuracy E. Obviously, making c smaller renders N larger,

but if the limiting quantity
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D- Zim log N(C) (4.1)
C I g (-!)

ztral eaks, C

litudes the exists, it will be called the dimension of the attractor. An important characteris-

amplitud of tic of a strange attractor is that D is small even though d is large. We should be

(The ampl interested in knowing whether transitional and turbulent signals have this property.

given here to To see what the dimension means, let us write (4.1) as

a local p-D. (.2* ad, n ly.

id, fina ly, that is, if one specifies D and the accuracy £ to which we need to determine the at-
apt for he

tractor, we automatically know the number of cubes required to cover the attractor.
ated with a

The only missing information will now be the position of the cubes in the phase space.

Thus, D can be considered as a measure of how much more information is required in

order to specify the attractor completely; the larger the value of D, the larger is

this missing information.

In general, the dimension D, as defined in (4.1), is fractional for strange at-

tractors, and it has been called the fractal dimension by Mandelbrot [30] who has

contributed a lot to our understanding of the quantity. As defined in (4.1), D is a a
geometric property of the attractor, and does not take into account the fact that a

vis orde typical trajectory may visit some region of the phase space more frequently than

thin a w ndow others. Several measures, taking this probability into account, have been defined

I indic te - and are believed to be closely related to the dynamical properties of the attrac-

tor. The most well-known among them are:

Ca) the pointwlse dimension

(b) the Grassberger-Proccacia dimension.

If the attractor is uniform, that is, every region in the phase space is as likely

to be visited by the trajectory as every other, then the above two measures equal D

attract defined by (4.1). Otherwise, they are generally smaller than D.

:ur In the Let S (x) be a sphere of radius c centered about a point x on the attractor,

r : appears and let w be the probability measure on the attractor. Then, the pointwise dimen-

:tor. Loose sion is defined (31] as

0 iegrees o iim log [S (x)

d: Cx) log F (4.3)
:hlig ted in dplog - S oxl j

itsmeaning or c[S (x)J - dp (4.4)

ut trot, a- C

ittrac rs Grassberger & Procaccia [321 have defined another measure ' which is related to

flow the dimension of the attractor, as well as the entropy (see section 4d). The pro-

cedure for computing v is as follows:

sectionas)fromCiOban iasflo:(i) Obtain the correlation sum C(C) from:3~nal hase

an r quired C~)*tim 12 ~ IkI 45, nC(C) - N 2 H[E- 1i - l (4.5)

enders larger,

, iSj
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where H is the Heaviside step function and ui - is difference in the two vector

positions u and u on the phase space. Basically, what C does is to consider a win-

dow of size , and start a clock that ticks each time the difference lu1 - uj lies

within the box of size E. Thus, one essentially has

Zim1C(C) i 2 (number of pairs of points (i,j) with - u,

(ii) Obtain ', from the relation [32]

C(c) - ,- as --c .)

In practice, not all components of u are known for constructing the phase space,

but perhaps only one component, say um . As we discussed in section 3, one constructs

a d-dimensional 'phase space' using delay coordinates

{U:It ), Um(t i+T) U ..... U(+(d-l)T)}, i = 1 ... ,k,
1 ~FIGURE 7

where, again, T is some interval which is neither too small nor too large and k is numbers. Not
36), abo t

large (in principle, infinity!). Since one does not a piori know v, one constructs frequenci s

several 'phase spaces' of increasingly large value of d and evaluates V for each of to higher

them; v will first increase with d and eventually asymptote to a constant indepen-

dent of d. This asymptotic value of v is of interest to us as a measure of the di-

mension of the strange attractor. 54, the dim

We have computed both d and v as described above, using the streamwise velo- (fip
city fluctuations u up to an Re of 10, and the delay coordinates. Our confidence Re 91 whet *
in the numerical values of these measures of dimension is very good when they ae 4. Thus, tc q
less than about 5 or 6, but becomes increasingly shaky at higher values. However, the attractc

we do believe that they are reasonable, judging from their repeatability and the sev- w gett!

eral precautions we have taken (such as taking the proper limit as c-o and using, in firs appea-

a couple of cases, double precision arithmetic in our computations). It would be about .4 f ]
interesting and useful to evaluate the dimension at high Reynolds numbers, but such a retu to

calculations are likely to be of uncertain value (unless perhaps some carefully Se- ly, the dim

lected combination of experimental and computational conditions obtains): with in- discusse e p

creasing Re, the newly excited degrees of freedom can be expected to be of smaller tion.

and smaller scales, and to properly accomodate them in the dimension calculations F
requires that one must in practice look at increasingly smaller values of c (see e-
quation 4.6). Such efforts will very soon be frustrated by instrumentation noise Fure

104. ' 5th
and digitizer resolution problems.

iI n aiwa

sion ttle
b. Data for Re < 100 I it

It is convenient to consider first the data for Re < 100 (figure 17). Concentra- numbers it
ting on the data in the ordered statesonly, we may conclude the following. At Re - of freed ,
36, where there is only one independent degree of freedom (corresponding to the peri- *rally i r
odic vortex shedding) - see figures 2 and 5 - the dimension of the attractor turns ly; fur er

out to be about 1. When only two frequencies are present (figures 3 and 6) at Re - Landau i LI
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FIGURE 17: Variation ot the dimension of the attractor with respect to Reynolds

and k is numbers. Note that the dimension is about I when there is only vortex shedding (Re
36). about 2 when there are only 2 frequencies (Re - 54), about 3 when there are 3

construct frequencies (Re - 76), abuut . when there are 4 frequencies. The dimension jumps

or each of to higher nuninteger values in the windows of chaos.

indepen-

of th di- 54, the dimension is about 2. At Re - 76 where there are three dominant frequencies

4is velo- (figure 10), the dimension is three to within experimental uncertainty. Lastly, at

:on idence Re = 91 where there are four frequencies present, the calculated V is very close to

the are 4. Thus, to within computational uncertainties, it is seen that the dimension of

Howner, the attractor is a reasonable representation of the number of degrees of freedom.

and th sev- Now getting back to measurements in the windows of chaos, it is clear that the

id using \in first appearance of chaos at Re - 66 is characterized by a jump in the dimension (to

would be , about 4.4 from 2 characteristic of the two-frequency quasiperiodicity), followed by

i, but such a return to a value of 3 in the region of three-frequency quasiperiodicity. Similar-

efully se- ly, the dimension of the attractor in the second chaotic window is about 4.8. As we

with in- discussed earlier, the dimension of the attractor in the chaotic windows is a frac-

)f smal r tion.

1culati s c. Higher Reynolds number data
(se e-

Figure 18 shows the results of the dimension calculations up to an Re of about

10'. Both V and dp increase to about 20 or so at an Re of 104, although the increase

is not always monotonic. In fact, our calculations seem to suggest that the dimen-

sion settles down to about a value of 20!

If it is true that the dimension of the attractor retains, even at high Reynolds

C ra- numbers, its meaning as an indicator of the number of dynamically significant degrees

g. t Re - of freedom, common wisdom tells us that the dimension of the attractor should gen-

to e pert- erally increase with Re. In contrast, the dimension does not increase continuous-

_ t s 
/.'ctor t ns ly; further, its value is far lower than Re
/

, wh..h Is the classical estimate (see
6) at R Landau & Lifshitz [33])for the number of degrees of freedom in a turbulent fPoW. It
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may be that the constancy of the dimension at higher Re is simply an artifact of re- One rtic

solution and computational problems, but if the result is genuine instead, it should chaos inte sper

provide an incentive for a suitable reformulation of 'turbulence problem'. frequence q asi

bly even hi er
d. The Kolmogorov entropy present fr wc

The Kolmogorov entropy has the property that it is positive for a chaotic sig- dyn ics flLi

nal, zero for ordered signals and infinite for a random signal with a space filling tio should b-

attractor. As already mentioned, there are conjectures that the entropy equals the work a the firl

sum of positive Lyapunov exponents, and hence, unlike the dimension D, is a dynamic phase pace) w:

measure of unpredictability of the motion. resolu on, esi

Suppose the d-dimensional phase space housing the attractor is partitioned into perhaps isclo.
d

boxes of size c . Let p(il, i2 .  , id) be the joint probability of finding u at We 
v
e sl

time t - r in box i, u at time t - 2T in box 12 . .....  u at time t - dT in box id.  ulated pr viou! r
The Kolmogorov entropy is then defined [34] as sion of t at

Lim Lim tim 1 sities. ovi,
- -o tO d- dT p(i I ... id)£n pi 1 ... id). (4.7) ly) high eyno

d ar not too mar

Crassberger & Procaccia [35] have defined a quantity K 2 which is close to K and fur- cul tions base-

ther has the property that K2 > 0 is a sufficient condition for chaos. Without going tor, as computt

into too many details, we follow [35] and note that it can be computed by first ob- numb rs corre-

taining C(c) as in Eq.(4.5) in section 4a for various d, and forming the ratio suffi iently I

C (jadvant e. (I
1 d

K2 d(E) (4.8) what pr jectio
2,d CLJ+1 ) *is not c ear h

where C indicates C for dimension d. In the Limit, discussi , we

Lim ization g oup
d- K2 d(E) - K2. or ortho nal

E-o

Table 2 gives K2 for Re - 66 and 81 wit~in the first two windows of chaos. thus t

For comparison, the table also lists K2 for the Hinon map from [35). lence from chi
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Tabe 2: The Kolm ogrov entr py

S ignalI

u at Re - 66 0.22

u at Re - 81 0.24

The Henon map 9..25 0.02

5. Discussion of Results

W:C a.e sh'.,r rsar .0,. r' - : rnsition to turbulence behind c-ircular

c:linders are in s 1cro, : -':tb. the behavior of low-dimensional dynamical

systems. "e .tp:s:.:e t: e:.s disussed above in the near-wake region hold

als: at around x i 5j, jIth:,c~ less i:nspi:ucuslv.

tifact re- One parti&ularly ip:r:an" eat..re : this work is the discovery of windows of

,haos intersperseo between regiens i: r:er: these latter regions are three and four-

7'. -,,as per:- 2diies :-e Ie'.lds number range up to about 10 'possi-

bly even higher), Ngt all bser.'atL-s we have made can be understood within the

present framework of chaos and dynamical systems, but we find it amazing that the

ch tic sig- dynamics of fluid motion which we believe are particularly governed by the NS equa-

ipa e filling tions should be at all represented by extremely simple systems. One aspect of this

)y e uals the work is the fine resolution (in Reynolds number, frequency domain, as well as in the

is dynamic phase space) with which measurements have been made. It seems to us that even finer

resolution, especially within the windows of chaos and regions bordering them, will

titio d into perhaps disclose even more interesting aspects.

inding at We have shown that, during early stages of transition, a strong connection (spec-

dT in b I ulated previously, but never shown to be true conclusively) exists between the dimen-

sion of the attractor and the degrees of freedom as inferred from power spectral den-

sities. Provided this interpretation is true also in windows of chaos and (moderate-

(4.7)ly) high Reynolds number turbulence, our results suggest that the degrees of freedom

are not too many even up to Reynolds number of the order of 104. Our numerical cal-

7o K0and fur- culations based on Schewe's data lead us to expect that the dimension of the attrac-

With\ut toing tor, as computed according to (4.4) and (4.5), is not high even at higher Reynolds

y fir t ub- numbers corresponding to the fully turbulent state (Re * 106). If the attractor is

ie ratio sufficiently low-dimensional, a clever projection of it can perhaps be used to our

advantage. (If the attractor dimension is even as high as 20, however, no matter

•.8) what projection one devises, it will perhaps look uniformly dark!) At this stage it

discussion, we may point out that it lends credence to concepts embodied in renormal-

ization group theory,slaving principle, or, closer to home, large eddy simulation I

or orthogonal decomposition techniques.
We thus believe that there is much that we can learn about transition and turbu-

of chao f

lence from chaos theories. In the immediate future, these theories provide a strong
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motivation for looking into newer aspects of fluid flow phenomena; discoveries of o which the

close correspondence between fluid flows and low-dimensional chaotic dynamical sys- sta ing near

tems will undoubtedly prove useful in the sense that the rich variety of results from attra tor is

dynamical systems can be brought to bear on fluid flow transition and, perhaps, even tor att acts

turbulence. In the long run, the hope is that they will help us in coming to grips If e a

with the eternal problem of turbulence, namely, the enormous amount of 'information' tion is cr ti

that seems to be available to us! Perhaps we can then model, even at high Reynolds tory (fig e

numbers, at least local behaviors by low-dimensional dynamical systems. v n the ph

Do we then conclude that the key to the understanding of transition and turbu- f equencies r

lence lies totally in low-dimensional dynamical systems? We think that such state- to us covered

ments are optimistic at best and misguided at the worst. Apart from the fact that

the spatial structure of turbulent flows, which is their single most important char- bi

actertistic, lies outside the scope of dynamical systems theories - at least as they

stand today - there is a lot that they do not or, perhaps, cannot, tell: for example,

they do not tell us anything about the origin and physical structure of the various

bifurcations that can occur, or how the drag coefficient varies with Reynolds number.

To answer these and similar questions of practical interest, we suspect that we have

to revert to the NS equations!

One final coment should be made. It would be useful to make a concurrent flow

visualization study and relate the various findings reported here to the spatial char- 1

acteristics of the flow. It is unfortunate that we cannot use much the extensive

flow visualization observations made by )thers : r example, Gerrard 1361) because

the details from one experiment to an ther ,, % t precisely match.
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Appendix

Let bl, b2 .... b be the state variables of the system (l.1). In an n-dimen-

sional space spanned by bi, b2. .. bn, each point determines the state of the sys-

tem completely at a given time, t. As t evolves, we obtain a continuous sequence of

points which forim the trajectory of the system. As t-. the bi' need not go to in-

finity, but may terminate (in two dimensions) either at a node or a focus or on a

limit cycle or, in higher dimensions, on to a more complicated object. This object
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ies o on which the trajectory terminates is called an attractor if all other trajectories

cal sys starting near the said trajectory converge to the same object as t
-

. (That is, the

suits fr attractor is the limit set of a representative point in phase space. Thus, an attrac-

.aps, even tor attracts all nearby trajectories.)

to grips If the system is stable and steady the attractor is a point - a node if the mo-

ormatio tion is critically damped (figure Al) or a focus if the motion is damped but oscilla-

Reyno ds tory (figure A2). If the system executes a periodic motion, a limit cycle is obser-

ved in the phase plane (figure A3). Quasiperiodic motion with two incommensurate

d tur u- frequencies results in a two-torus (see figure A4), with the entire surface of the

h stat torus covered by the trajectory eventually. A projection of the torus on to a plane

.ct that

ant char bi t2

;t as they

,r example

.vario

Ids n ber. t atatr

it we have FIGURE A]: Stable node. (point

.rent low bi

atial char- bI b2

:ensive

becaus

/ FIGURE A2: Stable focus. (point
attractor)

the man- b2

Chu Rick

(, Ha ry COS.t
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Final y,
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indeb FIGURE A3: Limit cycle.
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may have different shapes depending on the orientation of the plane, but it is clear 16 G.oub,J.

that a section of the torus, say, by the plane A in figure A4 (the Poincar4 section) %6Gbri

will yield a limit cycle. To obtain such a section in practice, one has to intercept 17. Ha ,

the trajectory each time it crosses the plane (or 'sample' the system at the frequency 18. Spar w , (I%.

fl1 and at fixed phase), and plot b I and b2 (say) corresponding to these periodically 1. miles, J.
sampled data. The phase portrait corresponding to the quasiperiodic motion with three 20. Hats 0oto,--

The attractor has been called a 'strange attractor' if (roughly speaking) it is Le,

complex surface repeatedly folded onto itself in such a manner that a line normal Not .

to the surface intersects it in a Cantor set. That is, ifone successively magnifies 22. Roshko, A.

regions of this intersection which appear, at so e level ofrsltot ee'r-23. chewe, G."

tion'. One cannot test this property ol the strange attractor directly if it is con- 25. Be er, E.

strutted from experimental data (because )It n,,sv and the finite resolution of the 26. Tri ton, I ,

instrumentation), and so, one uses sever,ii ol its ,tiler properties Ltu determine Its 27. Frie e, C.

occurrence. For example, any two neighboring trajectories on the strange attractor 28. Gast r, M.

will diverge exponentially apart for small t (the so-called sensitivity to initial 29. Ma ~aison,
zonditions, measured by positive Lyapunov exponents or the Kolmogorov entroDy): the (1

spectral density of the temporal signal used to construct the attractor will have 31. Fa er,' J.

broadband components orders of magnitude above the instrumentation and other noise 32. Gra bergE %J,
levels. 33. Lan u. L.
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Chaos in Open Flow Systems

K.HR. Sreerijvasan

Center for Applied Mechanics, Mason Laboratory. Yale University.
Nek Haven, CT 06520, USA

We discuss briefly some aspects of 'open tlow systems' in the context
of deterministic chaos. This note is mostly a statement of the diffi-
culties in characterizing such flows, especially at high Reynolds num-
bers, by dynamical systems. Brief comments will be made on the frac-
tal geometry of turbulence.

1. Introduction

One of the most fascinating phenomena in fluid mechanics is the trans-
ition from a steady laminar state to a turbulent state. Our concern
here is a brief discussion (in the context of deterministic chaos) of
this transition process (or processes), and of aspects of the fully
turbulent state itself. We shall concentrate entirely on 'open flow
systems', or 'unconstrained' flows, e.g., wakes, jets, boundary layers,
channel and pipe flows, etc.

It is not obvious in what sense one can think of open flow systems
as genuine dynamical systems. We recall from [1) that such flows
could behave in generically different ways from the 'closed flow sys-
tems'. In all closed flow systems the boundary is fixed so that only
certain class of eigenfunctions can be selected by the system; this
does not hold for open flow systems in which the flow boundaries are
continuously changing with position. Thus, while in closed flow sys-
tems each value of the control parameter (for example, the rotation
speed of the inner cylinder in the Taylor-Couette problem) character-
izes a given state of the flow globally, this is not true of open sys-
tems. Consider as an example the near field of a circular jet. For a
given set of experimental conditions, the flow can be laminar at one
location, transitional at another and turbulent at yet another (down-
stream) location. This usually sets up a strong coupling between dif-
ferent phenomena in different spatial positions in a way that is pecu-
liar to the particular flow in question. Secondly, the nature and in-
fluence of external disturbances (or the 'noise', or the 'background
or freestream turbulence') is more delicate and difficult to ascertain
in open flows: the 'noise', which is partly a remnant of complex flow
manipulation devices upstream and partly of the 'long range' pressure
perturbations, is not 'structureless' or 'white', no matter how well
controlled. Finally, it is well-known that closed flow systems can be
driven to different states by means of different start-up processes;
for example, different number of Taylor vortices can be observed in a
Taylor-Couette apparatus depending on different start-up accelerations
[2). This type of path-sensitivity in a temporal sense does not apply
to open systems, where the overriding factor is the path-sensitivity
in a spatial sense (i.e., the 'upstream influence').

These remarks notwithstanding, it has been shown in Refs. 1 and 3
that it is worthwhile examining transition in open flow systems from
the point of view of low-dimensional chaos. The usual way of esta-
blishing this connection is via the analysis of the time history of a
single dynamical variable such as a velocity component obtained at a
fixed (Eulerian) point in the flow [4). We should stress that this
procedure is inadequate especially for the open flow systems. Two re-
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marks ought to suffice. First, since the dynamical instabilities in
open flows are most often convective in nature, analysis of temporal
Eulerian quantities does not carry with it much information on the
evolution of the system. Deissler & Kaneko [51 have pointed out that i
a flow which gives every appearance of being chaotic may nonetheless
have no positive Lyapunov zxponents in the Eulerian frame of reference.Perhaps a more releva t .,ethod of characterizing the evolution of theflow in terms of a dynamical system would be to use the Lagrangian
information obtained, say, by measuring the velocity of a fluid parti-
cle as it moves about in the flow. To say the least, accurate mea-
surements of this type are hard to make.

The second point to be made is that most open flow systems pos-
sess strong spatial inhomogeneities in a direction normal to the flow.
(Indeed, these inhomogeneities are responsible for processes that
maintain the flows against viscous dissipation.) For this reason, it
is a priori unclear to what extent the temporal information obtained
at one selected point fixed in the flow can represent the global dy-
namics. One might think that a simultaneous measurement (at a given
time or as time sequences) of a dynamic quantity such as velocity,
made at many spatial points in the flow, might solve this problem.
This is not so: one does not even know how to construct a dynamical
system from such empirical data.

It therefore appears worth enquiring explicitly whether, in open
flow systems, attractors constructed from Eulerian point measurements,
using the usual time delay techniques, are chaotic; that is, whether
they are characterized by low dimensions, and possess (at least!) one
positive Lyapunov exponent. This is done in section 2. In section
3, we examine the variation with the flow Reynolds number of the di-
mension of the attractor, and comment briefly on the dimension at
large Reynolds numbers. In section 4, brief remarks will be made on
two aspects of turbulence that can be ascribed fractal dimensions.

2. Chaotic attractors for open flows: low Reynolds numbers

Chaotic attractors are characterized by at least one positive
Lyapunov exponent and by relatively low dimensions that do not con-

tinously increase with the embedding dimension. We have made point
measurements of velocity signals in several different flows and con-
structed attractors using Lhe time delay technique; we have obtained
the correlation dimension v according to the Grassberger-Procaccia
algorithm [61, and the largest Lyapunov exponent according to the al-
gorithm given in Wolf et al. (71. (Spurred by a talk that Harry
Swinney gave in Kyoto in 1983, we wrote versions of a program to cal-
culate the largest Lyapunov exponent, but have now switched over to
the method of Ref. 7.) Since both these procedures are now well-
known, we shall not describe them here.

In Table 1, we list some basic information for four flows. A
crucial factor in obtaining the correlation dimension is the choice
of the optimum time delay t. We simply varied T over a wide range,
and used a t in the range where its precise value is not critical.
We show in Fig. 1 the correlation dimension as a function of T.
Clearly, too large a i will result in the increase of v.

Figure 2 shows the convergence with the number of iterates of the
largest Lyapunov exponent for the wake, calculated using an embedding
dimension of 6; other embedding dimensions yield essentially the same
asymptotic value, even though the initial behaviors could be quite
different. It should be remarked that the dimension and the Lyapunov
exponents usually converge (for the calculations typified by Table 1)
relatively fast; total signal durations of the order of 2000t 0 , where

is the zero-crossing time scale of the auto-correlation function,

was found to be usually sufficient.
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Table 1: Typical data for low Reynolds number open flow systems

Flow Re=U d/v Correlation Largest
0 dimension,v Lyapunov

exponent. 
I

wake behind circular cylinder' 67 2.6 .j5 bits/orbit

axisymmetric jet (unexcited)Z 1000 6.3 0.?5 bits/orbit

axisymmetric jet (excited)' 1000 3.2

curved pipe' 6625 6.0 0._0 bits/orbit

Id = diameter of the cylinder, U = upstream flow speed; data were
obtained 10 diameters downsream, 1 diameter off-axis.

'd = diameter of the nozzle, U = nozzle exit velocity; data were ob-
tained in the potential core 2 diameters downstream of nozzle
exit.

'no Lyapunov exponent was computed because we lost the data sets

immediately after computing the dimension.

'd= pipe diamter, U = section average velocity; the data correspond

to the centerline of the pipe.

2.0

280 100 200
-evolu ton ime (arb. un is)

Fig. 1 The variation of the correlation dimension as a function of
the time delay i used to construct the attractor.

Fig. 2 Variation of the largest Lyapunov exponent with the evolution

time.

From many such calculations, we conclude that if one constructs
attractors using a single Eulerian dynamical quantity via time delay
techniques, such attractors do possess (at low Reynolds numbers)
characteristics of chaotic dynamics. Perhaps, Eulerian quantities dc
preserve some information on the dynamical evolution, in some loose
sense akin to Poincarg sections!

vie shall remark that these calculations do not unequivocally esta-
blish that tubulence is chaotic (in the sense of extreme sensitivity
to initial conditions). Our findings could perhaps be interpreted
equally well in terms of 'external noise amplification' in the syste:..
Much more work is needed before one can determine the extent to whi¢,a
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position A

"_ppositiOn a 

6730B.

f~Jj\ sow~

flow as tha e h i orm the nserfaca 0.2So frm the o ntsde surfoceiFig. 3a Measurement stations for Fig. 3b Streamwise velocitythe curved pipe. Flow at the mea- fluctuations at several Reynolds
surement stations is fully devel- numbers at position A (the right
oped. Configuration details can be set of signals, measured 0.25
found in [3). radius from the outer wall) and

this last mentioned factor competes with the intrinsic sensitivity to
initial conditions as the mechanism for the generation of turbulence.
We should also reiterate the variation with spatial position of the
characteristics of the dEulerian attractors'. For the curved pipe,
Fig. 3 shows samples of streamise velocity history at two spatial

locations (but at the same streamwise section in the so-called fully
developed region). Clearly, attractors constructed from signals at
these two different locations can be expected to have different dimen-sions and spectra of Lyapunov xponents. For an Re of 6625, the dataare as shown in Table 2. At the least, these data suggest that the
interpretation of the dimension as an Indicator of the dynamically
significant degrees of freedom of flow needs some qualification.

Table 2: The spatial variation of the characteristics of the 'Eulerian
attractors' at two different spatial positions in the same
flow at the same streamwise location at the same Re. Data
are for curved pipe; details as in Fig. 3.

position A position B

v 11, bits/orbit v Xl, bits/orbit

6.0 0.4 2 .7 01

3. Dimension calculations at higher Reynolds numbers

If we persist with dimension calculations at higher Reynolds nlum-
bers - using the same technique, in spite of its shortcomings - they
become uncertain because:

(a) The number of data points required for convergence, and the
number of steps involved in dimension calculations go up;

(b) One cannot in general find a proper range of time de.lays over
which the results are sensibly independent;

(c) There is no guarantee that the dimension calculations asymp-
tote to constant values as the embedding dimension increases.
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Fig. 4a The variation of the correlation dimension v with the embed-
ding dimension d. Re - 500, approximately 5 diameters down-

stream of the cylinder. A space-fillilng attractor is
expected to have the behavior shown by the dashed line.

Fig. 4b The variation of the correlation dimension v with the embed-
ding dimension d. Re ff 2000, approximately 5 diameters
behind the cylinder. v - d line holds for a space-filling

attractor. The A's indicate the values of v computed for
the random noise from a commercial random noise generator.
Notice that the asymptotic value of v is definitely below
the noise data, although only by a small margin. The near-

ness of the noise data to the flow data shows why we cannot
place too much emphasis on high dimension computations.

0.7 0 • IFHZ 7.

R 0*

Fig. 5 The variation of the dimension with Reynolds number. Data

are for the wake of a circular cylinder.

Figures 4a and b illustrate this last point; Fig. 4b is the upper
limit on the Reynolds number at which some credibility (already rathe

low!) can be ascribed to the dimension calculations. If we believe
the numbers obtained from such calculations, we nay deduce that a
power law relation like Re

l ' 
is not unlikely (Fig. 5).

It is worth mentioning that Constatin at al. [81 have placed th

upper bound on the dimension of Navier-Stokes attractors to be

of order R'
/ ' 

(and higher if self-similarity in the Kolmogorov range

does not obtain!), where the Reynolds number R =u'L/v, u' being a
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root-mean-square velocity fluctuation,and L is an integral state of
turbulence. The precise relation between R and the Reynolds numbers
Re used in Table I depends on the flow, but it is clear that if the
present finding of a 3/4 - power law is true, it is of undoubted sig-
nificance in spite of our earlier reservations on the meaning of the
dimension obtained in this way.

Fully turbulent flows are characterized by temporal and spatial
chaos. Temporal dynamics is thus merely a part of the whole story;
this in itself is hard to come to grips with, even if the dimension
were to increase 'only' according to a 3/4 power of the Reynolds num-

bers. Is there then any connection between real turbulent flows and
finite-(and low-) dimensional dynamical models which one hopes one can
construct? (That, presumably, is the practical motivation for studies
of this type.) The answer would have been an unequivocal 'no' were
it not for the fact that some (perhaps strong?) spatial coherence ap-
pears to exist at least In some c:lasses of fully turbulent flows. One

might, in some way that remains unclear, be able to decompose the
motion into two components, one of which consists of this coherent
element and the other its complement. One can then think of a low-
dimensional attractor characterizing the coherent motion, the attrac-
tor being made fuzzy by the small scale motion whose effect is to re-
duce the correlation. Unfortunately, it is not clear whether this

loosely worded picture is consistent with facts.

Elementary tests of this hypothesis can be made if one is able
to separate the incoherent motion from the coherent part. This might
be possible, for example, by some kind of ensemble averaging methods
such as used in [9]. The simplest (by no means the most correct) way
is to filter out linearly in the frequency domain the coherent motion
from the rest. To avoid many conceptual difficulties associated with
filtering as the technique for separating the coherent and incoherent
motions we choose a (relatively) high Reynolds number flow where the
coherent part is clearly contained within a narrow band of frequen-
cies; we then enquire whether the motion associated with this narrow
band is low dimensional.

Figure 6a shows the streamwise velocity fluctuation in the wake

of a circular cylinder, measured about 2 diameters behind the
cylinder and a diameter off-axis; the flow Reynolds number of 10,000
is considered moderately high. Computing the dimension of the attrac-

-A

0 1 2 3 4 5 0 1 2 3 4 5
time (orb. units) tit (arb. units)

vigs 6a,b: The total (unfiltered) and the coherent part respectively
of the streamwise velocity fluctuation in the wake of a
cylinder; Re - 10,000. Both the ordinate and abscissa
are arbitrary but the same in the two figures. 2
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tor constructed from this signal is doome to be meaningless in view
of the remarks maae earlier. (If the Re'

I
' dependence is valid, the

extrapolated estimate for v is of the order of 30!) We do know from
power spectral measurements that this signal has a peak at a frequency
f of about 550 Hz; this peak,corresponding to a Strouhal number fd/U0.21, characterizes the coherent part of the motion. If we band- o

pass filter this signal between, say, 530 and 600 Hz, the resulting
signature is given in Fig. 6b. Calculations show that tne corres-
ponding attractor has a dimension of about 3.5!

It is appropriate to end this discussion with the statement that

the coherent part, as we defined It here, contains a significant

fraction of energy.

4. The fractal geometry of turbulence: a brief note

We have indicated that measurements of attractor dimensions are
beset with increasing uncertainties at increasingly high Reynolds num-
bers. But there are other fractal dimensions whose measurement be-
comes increasingly definitive as Reynolds number increases. It is to

a mention of two of these aspects that this section is devoted; more
details should be forthcoming in [101. The results of this section
are essentially spurred by Mandelbrot's remarks on several occasions
that many facets of turbulence are fractal.

4a. The fractal dimension of the turbulent/non-turbulent interface 6

Observations suggest that in high Reynolds number free shear
flows (i.e., open flow systems with no constraining boundary) a sharp
front or interface demarcates the turbulent and non-turbulent regions.
Although a completely accepted view of the detailed nature of this
interface does not seem to exist, a visual or spectral study suggests
that contortions over a wide range of scales occur. This leads one

to the natural expectation that the interface is a fractal surface.

By illuminating a thin section of a flow, and by digitizing the
resulting picture, one can evaluate the fractal dimension of the
curve that separates the turbulent from the non-turbulent regions; a
threshold set on the intensity of illumination separates the two re-
gions. The fractal dimension of the surface bounding turbulent re-
gions is then one more than that of the curve.

Several methods can be adopted to measure the fractal dimension
[li]. We shall describe only one rather briefly. Assign to each
point in the digitized image of the flow a number 1 when the point
lies within the turbulent region, and a number 0 when it lies within

the non-turbulent region. Let the boundary shown in Fig. 7 represen

non-turbulent

Fig. 7 The boundary between the turbulent and non-turbulent region,.
If a circle of radius c drawn around a given point in the
digitized image crosses the boundary, the point is conside:-
ed to be within a distance c from the boundary.
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the boundary between the Il's and the O's. Count the number Nb(E) of
the digitized points which are within a distance c from Lhe Doundary.
If this boundary is a fractal of dimension D, then it is easily shown
from the basic definition of D that

N (E) 2-D 1

Measurements to be described in 1101 show that (1) holds for
scales ranging from the Kolmogorov scale to a fraction of the inte-
gral length scale (but excluding scales of the order of the integral
scale and higher). The measured value of the fractal dimension for
the interface varies between 2.3 and 2.4; there is no id4entifiable
variation from one type of flow to another.

4b. The fractal dimension of the velocity and scalar- dissipation

fild

Another aspect of turbulence that is a candidate for fractal be-
havior is its dissipative (or internal or small) structure . It ous etn
well-known for some time that the small structure of turbulence is
intermittent. The essence of scale-similarity arguments in this con-
text is the follo wing. Within a given field of (fully developed)
turbulence, consider a cube with sides of length L , where L is an

integral scale of turbulence. If we divide this cube into arbitrarily
large number (n>lI) of smaller cubes of length L = Lo n-L/1, the
density of dissipation rate in each of these smaler cubes is distri-
buted according to a probabilistic law. Further subdivision of these
cubes into second-order ones of length L Lth / leaves the proba-
bility distribution unaltered. This nother
of motion until one reaches sizes directly affected by viscosity.Clearly, this case cries out for fractal description.

Using methods discussed in (111, we have obtained the results
shown in Table 3.

One concludes from here that the dissipation field is not space-
filling (less space-filling in the high Reynolds number regime) and
that (c) is less space-filling than (b) - a result consistent with
observations in oceanography. Note that the result (b) is only at
slight variance with Mandelbrots (11] original estimate of 2.6.

Table 3: Summary of the fractal dimensions of the dissipation fields

Field Fractal dimension

(a) Kinetic en r y dissipation 29 .
(low Reynolds number)*

b Kinetic energy dissipation 2. 7
(nigh Reynolds number)

c) Passive scalar (e.g., 2 .6
temperature) dissipation
(high Reynolds number)

*iThe boundary between the low and high Reynolds numter regimes
is not well-defined. A convenient boundary occurs at a microscale
Reynolds number of about 150.

(b) inetc en rgy issiatio22.

(nighReynlas nmber



7.JI 7,7--yy" yy3W V-- -- - 3W _V qy--.i T-

Theoretical explanations of these fracral dimensions, as well as
of the connections that might exist among them, would be of fundamen-
tal interest.
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The fractal facets of turbulence

By K. R. SREENIVASAN AND C. MENEVEAU
Ce*nti-r blr Ap\;di Ntl- hani Nit riik-r~ Nem~ Ha~ .-r 1' tt52fl I s

25Mr hnii

iiiauit to puot themn on firit-i urriund 1). i-i- irtinl ti ticttial ita~iirtinetst iii tiirbuilt-n
livar t1 tws. This. w irk i in at torn it at tillifiv thIis wapfri ~Inarticuliar. tvi exarii t-

the toilti)%i Ing qitstlttll' (I) Is tht tirhujiit nim-turbulent interlace a -elf-iinilar
trat-tal. andi (it s) %,.hatl is it, fracital iiinitn~iii' I)is this lluantit ' differ trim )nc

t-iass~dof ~is to) ano t her' fi Art ,on ritant ltrtqert * surfaces (such as the is,,-% Iel it '\
andi is4t-t~oitent rat ii ii surfat-ti in filly ut velttpeul flows tractals / WVhat are thlt-ir
frattal di ninsit ts I (r) D) ii-ipat ive struct ures in ful liv dIevelo~ped t urbulence fhi r
a frat-tal set I What is t he trait al ilintn~iin tit' this set 'Answers to these iiet it ns
akndi tthers to) beh less full il Iist-iista here) art Interesting hecause t hey bringl t he
tht ry ot trattals citistr to) appi tat itin ti) turhoulence and sheti new light toin st II(t
classical probtlems in t urbulentce - totr txam pie. the growth oif material lintes in at
turhu ltnt environment. ThIt( ither fe-at irt idthis work is that it tries to quantt uty the

see-mingly tt cmplicatted get tietrnt aspects, itt turbulent flows. a feature that has not
received its proper share itt attent iton. The tiverwhelming (tonclusion tf this wtrk is
that several aspetts t4 turbulence can be tdestribedi roughly by' frattals. and that their
fractal dijmensio~ns can be measured. l-tiwevtr. It is not clear how4 (Or whether). given
the dimensio~ns for several of its factts. ine can stolve (up to a useful accuraty) the
invtrse prohlem tof reconstructing the oiriginal set (that is. the turbulent flow itself)

1. Introduction
Starting with Richardson (19221. it has been thought that fully developetd

turbulence consists of a hierarchy of eddies, or scales of various orders. The
4 mechanism responsible for this situation is assumed to be that eddies of a given order
* (or size) arise as a result of the loss of stability of larger eddies of the preceding order.

these in turn are assumed to lose their stability and generate eddies of a smaller torder
tt which they transmit their energy. This recurring scheme is expected to terminate
at scales small enough to be stable - that is. scales whose characteristic Re *ynolds
number is unity. It is well known that this lower bound on the scale -size is of the
torder tof the Kolmogorov scale. This theory oif cascade, verbalized in a memorable
rhyme by Richardson (1922). and cultivated by Kolmogorov (1941. 1962). (bukhov
(1941. 1962). Onsager (1945) and Weizs~cker (1948). has made remarkable strides in
advancing our understanding of turbulent flows.

It is this description of turbulent flows - namely that they are 'objects' consisting
tOf a hierarchy of scales - that leads to the expectation that the theory tof fractals
(Mandelbrot '1982. to which reference must be made for an enjoyable .and original
atccount ot fractals) must be applicable to turbulence. In the most basic sense. fractals
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are object s t hat dIisplay self t'-tin iIa ri ty o)ver a %%ide ran We of sca les W~e 'hall re t u rn
in §5 to the fact that firaitals are. nj. used to dfescribe ni .re general t lass )ftiiji

than those displayingy strict *-If'..umilarit% Mandeibri t I 9S2) fr examp~le hit,
R ~remarked that 'turbulence inivi Ive'. manY trai-tal facet s and claimedi that it pri pe-r

investigation of' the Weometric asia-its of turbulence - A hwh has been igo rid all

aloi u in the vast literatutre wi tu rbulentce -- m ust tie.e-.sarilvm i . trart al
co nce.pts from Euclidean veoiet rt are ti 'talk iadcijuatc fit has Ao, led t hf- "ia\

01* hismo~n investigations (landlblrt I 974. 197.5 but :n hi- o %tird' ili-ibrit
11% 1~~9S2). the % invodve suglge~tiin %% th tc',\ hard re'ult' a it, \ t 11t14tit it t hi

pape-r is to remedY this .ituatiom 1b. resirtitig to) it-ijal tyiasiinctits intturbulett

Analogous to the Eucloeat cimnt-in -it' cla.ssical 'or irdinar\ i ,hiect-, iah

isacraneponlent i =lwNIv If .caatrsit efsmirobjii %w

is made 4 NV part.;. each of "hich s o)btained froan the %iihole h , a rdtj ton ifratp

t iWe hope that this inadequate ex\planat ion here. to he am plified in later secti.n
A ill not hinder the readahilit vit this pape-r ) )f' course, a complete dlesript ion )I*
tractal sesdmnsaseictit oi t her quantities such as lac-unarit ' % Mamndl ri-t
1 9S2) - hich. loosely speakinw. is at measure of' h im far the fractal object is fromt
being (lust -like -o4r the entire spet-trum of scaling functions (Halsey-i oal 19861 ( ofl\
inc if which is the fractal dimensi in (Even ireapoitly'ncmayo use scalingj

fuinctions iof the type.* introduieid b),y Feigenbaum 198:1. these scaling functions
contain All the geo~metric information about the object in quest ion. but t hey' are
itowhere differentiable and are awkward to handle - even assuming that theY ian be~
constructed somehow.) ()ur primarY effort in this paper \%ill he confined tii the
idetermination of the fractal dimensions t if they exist) of the turbulent /non -t urbulent
interface (§2). iso-velocity surfaces (§3). and regions of active dissipation 1§4). in) §5.
\,. briefly discuss several other avenues. studied to date in less detail than the issue's
of the preeeding three sections. In each section. we la 'y sufficient foundation fbir the
specific issues to) be discused there. Section 6i will put these vario~us measurements
in the overall context of w4hat additional insight one may acquire about turbulent
flo%4 S.

2. Fractal dimension of the turbulent non-turbulent interface
2.1. Background

Observations (Corrsin & Kistler 1954) suggest that in high-Re '%nolds-number un-
hounded turbulent shear flows a sharp front or interface demarcates the turbulent and
non-turbulent regions (see figure 1). The free edge of a boundary laYer shows much
the same behaviour. Townsend (195) suggested that large eddies of turbulence
contort the interface. but a visual or spectral study of the interface suggests that
cointortions over a range of scales occur. In the framework of scale similarity alluded
to above, this leads to the natural expectation that the interface is a fractal surface
The aim in this section is to determine the fractal dimension (if one exists) of the
tu rbulent/non -t urbu lent interface in several classical shear flows.

It is generally understood that t urbulent/non -turbulent interface means the
surface separating the vortical and non-vortical regions o~f the flow:' the vortex-

* stretching mechanism inherent in three-dimensional motion can be thought of as

:'.~~~~~o %r.~ 1.i. .* -. "~hi*-*J . */* pu
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p
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,it[;a' uwr mIcs f .\ hi ati s h ograph , f a th a e ,Ba [isr, e ac ht th rhteati m, , hed -

P'ri,vig (.rf)und. first appeared in ('orrs in & Kis.tler 1 195'4). And has, .,rce been repro)duc'ed Finaml

tirnes The remarkahl -Aharp houndar - h.t~aeen the turbutJei~t regioni in the Aake and the ,utside r
air has led too the no)tion of 'a coIntigulous intert'ave %hose prop erties %ere expl,)red h.% ( '(rr. ln &
Kistler. and se%-eral others later

be'ing responsible fo~r maintaining a sharp separation between the t%%,) regions. That1"

stuCh a surface c'an be defined was dhnmonst rated by v orrsin & Kistler ( 1954). N4 ho also
studied its properties in some detail. It is by no means obv'ious that the interface,
ob|served in flow -visualization pictures such as figure t and the vortic.al/non-vortical
interface are the same. We shall return to this point later but. until required. %%(- shall

not be spec'ific about which interface we are discussing.. ,1

The presc~ription for determining the fractal dimension of the interface (surface) '
is to cover it with area elements of decreasing size. and note how the area changes .
wkith the resolution e of these square elements. For a surface that is highly contorted -
with squiggles of ever-increasing fineness. the measured area estimates will increase:
indefinitely with increasing resolution. If the surface has no regularity associated with
it. one cannot in general specify the manner in which the area will increase with
inc~reased resolution. However. if some order prevails in the sense that the surface ,
,,bserves scale similarity - that is. the surface looks the same (at least statis1tically .
at all levels of resolution, or. equivalently, it is a self-similar fractal - the area increase ,

will follow a power law; in general, power laws are symptomatic of self-similar o)r
fractal behaviour. For a true fractal surface of dimension D, (the suffix 3 indicating
that the interface is embedded in a three-dimensional physical space) the area will "I

indefinitely increase according to the relation

N~ D,

Orne can rewrite (2.1) as i

D " log N {2 2 /

I =log (1 /0')'

iaTt

Ki~ter ad svera oters ate

lii~ng espnsile or mintinig ashap searaionbeteenthe wo egins.Tha
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F L

Ln F

Fi,, 'R'2 A schemati of an ohject F with a fractal interface, and its intersections %, th a plane
aid a linie The intersection with the plane leads to an object whose border has a dimension I,.

,ne 1P- than 1), the dimension of F embedded in the three-dimensional space. The dimension of*

the line intersection leads to a ('antor set whose fractal dimension D) is 2 less than 1,

This is the standard relation used in fractal-dimension calculations. The meaning of
t he dimension becomes clearer if we ,.pply this above procedure to classical surfaces.
sa y a square of unit area. Let us cover the square with 16 area elements each of which
is of length . Then D3 will be log 16/log I = 2. which is the dimension of the area

t' surface in Euclidian geometry. It is trivial to convince oneself that covering the
square with increasingly finer area elements will always give D3 = 2 for the square.
From this simple example and other similar ones, one concludes that for classical
surfaces the dimension calculated from (2.2) has the usual meaning associated with
the dimension. For fractals, the dimension as calculated from (2.2) will in general
not be an integer - and hence the name fractal - but it retains the meaning as the
vxponent specifying the rate at which the number N of area elements increases with
i. As already noted, a characteristic of a fractal surface is that its fractal dimension

ill be larger than its Euclidian dimension of 2. What this implies is that a fractal
-urface covers something between an area and a volume, a fact for which the large
,hvvree of convolutedness of the surface is responsible.

Vhat use is the fractal dimension of a fractal surface since its surface area is
undefined I From (2.1) it is seen that. given the accuracy (or the resolution) to which
the atva needs to be specified. the dimension D, will provide the number of the area
elements of prescribed resolution required to cover the fractal surface. This goes some
%av in describing the fractal surface. A complete specification of the fractal surface
n,, doubt requires additional information, such as the location and the orientation
,,f these little area elements. but the dimension is the basic quantity related to the

%i-. % V% %%"$-. .. . .
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conrvolutedness ot' the surface. A measure of' the convolutt-dness of' a suirface is it

impo rtance. f*r exam ple. in the co ntexts of cornbust in.

2.2. I)f,~~i~ ruiui . on iith 1oirer-dimten.~ional xu/b,qctrp

Tli tiiti eili the ractal dimnrsion id'a surface by' thed(irect pro-edlure tIe-itrihed a hove
is ifictulIt, andt s o we adoIpt~t alternative procedures b~asedl on sectionirs with Ii we!'-
iii sii inal sub Ispa-e., tMantle) bri t IIN~2 ). To explain this, it is con ven lent to reter

too hsfire 2. Let F he an i ibjeit e.-_. at turbulent jet) in three-dimensional spoace %%ith
at t-ait al interface oft di mensioin Do. Let P' he it plane initersec ting, the -b ject rIn
ittaloui ,v %kith tllr experience ii E utlitva lcizrii ctrv. we ia- expect that rh.- t'ratt;il
imnsioni P., itt' the boundarY ' it the resulting object P" q F and the dirnivnwi n 1),

;1P- ril1ateil by
),= D,1 12 3

imiilarly an intersection of the tibic-t F wkith at line iint-nit orveso -t'i istilalei
points atkin ti) the C antott ilisiotin umin - %%hose imensioin 1), -in be rnt-asur-il
.\'ail . ini atali i1.v with classical iihjec(ts,. %v t-xfti-t that

I)i= 1, +2. t2.4) :

Alt hough there ar- txcept io ns to this rule ( Mandel brot HN92. p). t15 . it is kni%%n ti)
hiold it' the sect io ns taken are indepjendent of' the f'ractal itself. Equiv~alent l. t hi
oientat io n itthe intersect i n plane- or line will be i rre-levarnt if the t'ractal is isiit Ct qi.
Mo re dliscussit n and a brief* circumistant ial just ificat ion of this point will appear in.

§§2.3 and 2.4.
It is approtpriate to mention here- that the interface cannott be a t rue fractal betau se

thi' s-ale similarity at all scales. leadling to tine fixed value o f D13-. does, not strict l

iobtairn. (Clearly. it %%ill be t runi-ated tin the low4 end by the Kolrnogorov sc-ale. that
is. ift' n measures thi' area of' thi- interface' with resolutions better than thi'
Kolrnogorov scale. it behaves like a classical surface of' finite area (because surface -

iconvolutitins oin eve-(n finer scales do) not exst). Onl the upper end. it c-an be expetedi
to be boiundied by si-ales coimparable with tir smaller than the large si-ale t' Cth' et
Thus. the interfa-e ian be expec-tedl to be fractal-like only in an intermediiatie ranve
if' s-alest. This is not a highly restrictive situation because. in all praitical
tirc-umstan-es. there are inevitable si-ale cnutoffs. and any meaningful applicatiiin of'
thi' fractal conicept to real circumstances will have to live with this fact. At large flo"-
Reynvrolds numbers. the range of scales iiver whic-h similarity can be e'xpectedl to hoild
is large: and. naturally, it is easier to identif%- the fractal-like behaviour. As will hi'
idescribed more fully at appropriate places, instrumentation constraints restric-ted iour
e'xperiments to moderate Reynolds numbers (the integral to Kolmogorov, scale ratioi
no mo~re than a few hundred,. Even so. the results are sufficiently c-tnvinc-ing tio
justify their publication: besides m-iking the important cotnnei-tion between taitals
and fluid flows, they shed new light tin some (-lassical proble'ms of turbulence.

2.3. Dimen.-ion by interst-ction erith a plane

The practical wa% of obtaining twti-dimensiomnal setions or slic-es would be to se-iild
ti'( flow with some pas-sive markers (e.g. smolke). illuminate a se-tiomn iifthe flow% li,
a thin sheet of light. and photograph the sec-tion for later analysis. inmelY measuring

+ Ir is wttrth ptinnttnng 4M that. \%hile the litrie scale. is- Ae iahefl% hmtntfar~ v-tniitionrsandi

the -imrall -it-ate hY the v-rsi-iiit 'v iii hi fluid, the e-quatitins it rnottin thi-u,-ehi-- itit itt ,-4-t iw.- itt-i
-tal#-u a hih is what rendersi the scituiz ex i~etatis pilaib~le~

Ai
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Fi(;rR 3 A smoke photvrapih ,t I t irilvl nt hmindar\ laver le\\'th mL 4)n a it lat I l"
mnomentum thiknes Rvvnoi -shr a. Tr{uti .!i the hi.n, of the inter,' - r- h ht
is of the )rder of the Kojnosorov thi,,kn-reis

the dimension of the 1)1 tr ble ft in the, tIrbulent and non-turbulent rei,,

Although the intersectinz phane niu.-t in principle be mathematicall v thin. it ma in

practice be of finite thickness w ithta violating this principle, provided the thicknes-
is smaller than or comparable with the Kolmogrov lengthscale q. The rationale for
this assertion is that the fozzingy due to the finite thickness of the plane is negliihle
because the Kolmogorov thickness represents the smallest scale of motion relevant
to turbulence dynamics.

We have alreadv alluded to the fact that smoke pictures (or pictures obtaine(d b
any other means of flow visualization) (it) not mark vorticity regions (\%hi(h they
should. to be truthful to the interface) for the following two reasons. both related
to the diffusivity of the passive marker. If we remember that smoke is cotmposed of"
aerosols ( = oil fog) whose diffusivitv is small c.ompared with the molecular vis(coity.
the relatively large value of the effective Schmidt number will create a disparitV
between the smallest dynamical scale (i.e. q) and the smallest scale visible in the fl,-.
This is not too worrisome as long as the latter is smaller than the former. The sevond.
and more important. point is that to mark the interface satisfactorily,. one has to put

smoke exactly where vorticity is being generated. which is strictly impossible.
Obviously. if one puts smoke very far upstream of the observation point, the pattern
one sees is in general a remnant of the integrated memory that a given streakline
experiences, and not necessarily a reflection of the local dynamics and geometry.
Because turbulence diffuses smoke rather rapidly, there is some hope. however, that
it will roughly mark the interface if carefully injected in the fully turbulent region
reasonably close to the region of visualization. but not so close that it does not have
time to diffuse.

Even if one grants the plausibility of this last statement. even roughly marking the
interface by smoke is admittedly a trial-and-error procedure in practice. The issue
is worth exploring in detail - which we have not done - but there are reasons of
prece('ence which are somewhat reassuring. For example. the statistics of the
interface obtained by marking it with hydrogen bubbles (Kim. Kline & Reynolds
1971) and by heat (Sunyach & Mathieu 1969) agree favourably with those obtained
by momentum and other means: we ourselves have recorded elsewhere (Sreenivasan.
Antonia & Britz 1979) some simultaneously obtained traces of two components oft
fluctuating velocity. ReYnolds shear stress and the temperature fluctuation in a

go r
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Fi(O-rR 4 A section of an axisymmetric jet made visible by laser-induced fluorescence from
Dimotak s et al. (1981). Scales down to the Kolmogorov limit have been resolved in this picture

slightly heated jet, which confirm that passive scalars are useful for marking the
interface. The final point must no doubt be that. although our procedure is belieed
to mark the interface roughly it is the smoke/no-smoke interface that we are strictly
studying.

Another concern is that a streamwise section is somehow preferential, thus biasing
the results. To test this. one ought to take plane sections of the interface at several
orientations and demonstrate the invariance of the results. For the anisotropic flows
of the sort studied here, it is possible that the scale-invariance concept must be
thought through more thoroughly, and that one may come up with more than one
fractal dimension depending on which planar section one is measuring. Our work in
this direction is continuing, but our argument is that the present results are
representative.

Figure 3 shows a section of a boundary layer made visible by injecting smoke. This
figure appears to suggest that there is no contiguous interface, and that there are
islands of non-turbulent regions surrounded by turbulent ones. just as there are
isolated pockets of turbulence sticking out. The reason that photographs like figure 1
do not show this feature is that thev- have been obtained by optical means which
integrate along the path of light. Obviously. this will smooth out the inter or 'holes'.
and what one sees as a contiguous interface is the horizon of a large number of images

% IL ZON'Y
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FHI;c'E .5. A s chematic of a part of a digitized image. The dark dots represent the points aith
intensity abovre threshold (turbulent regions, by definition here), the light ,nt' reprenting
non-turbulent regions. We want to measure the fractal dimension of the border bt Wl ' the two
regzions . The little circles of radius e drawn around a dark and a light dot in the upper rigzht ,',rner

I

are two examples of boundary points within the distance e.

superposed on each other. Dimotakis. Lye & Papantoniou ( 1981 ) pointed out t his tact
first, and produced several fascinating pictures of a turbulent jet. one of whic.h is
reproduced heeas fiue4 .oaayi as attempted by us o)n the pictlures

obtained by these authors.) Plane sections by themselves cannot deny~ the existence
of out-of-plane connections of what appear as islands or holes, and we should
emphasize that to prove the non-contiguity of the interface one has to produce at
the very least simultaneous pairs of pictures in perpendicular planes. In the absence
of such work, the point is made here for the sole purpose of indicating that, if the
interface is indeed non-contiguous. 'the fractal dimension tone obtains will not lose
its meaning but will have to be interpreted as a measure of both its roughness" and
* fragmentation ". and not merely of the former, as would be the case for a contiguous
interface.

We may now discuss several ways in which the fractal dimension D. of the border
c'an be measured. The length of the border. in analogy with the ('oastline of an island
cluster, increases with increasing resolution according to the relation

"-L - K -° ,, (2.5)

"* where is the lengthscale relating to the fineness of resolution, and K is a constant
%,,, related to the lacunarity of the fractal set. This direct method has so far eluded us

chiefly because of the algorithmic complexity in faithfully following the highly
contorted. multivalued and disconnected interface (see figures 3 and 4). and alter-
natives seem called for. We have adopted a simple alternative spelt out in Mandeibrot
(1982) and Grebogi el ai. (1985). but summarized here with the anticipation that they"
may be unfamiliar to a number of the Journal's readers.

(.'onsidering both regions (turbulent and non-turbulent) that are within a distance
e. from the border, one can form a strip of width 2e about the border, which will have
an area of 24., where L is the length of the border. This area clearly goes like 6 D'-,.

from (2.5). One measures this area for varying e., and obtains D2 from the slope of
a log-log plot. The implementation of this idea involves the following procedure. One

0.
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Fi(;I-Ri 6 The logarithm (to base 10) of the numrbnr of boundary points N. (see figure 5) as a function
,,f the distance f from the boundary. The flow is a heavily tripped boundary layer, thickness about
III -n. V, = 2.5 m s'. The Kolmogorov and the integral scales are shown for reference. The inset
.howing the slope gives D2 = 2- mean slope = 1.37: D3 is thus expected to be 2.37

digitizes the image of the flow obtained as described previously, and obtains an
assignment of light intensity at each of the digitized points. One then sets a judicious
threshold for the light intensity which demarcates the turbulent (above-threshold)
from the non-turbulent (below-threshold) regions. (Naturally, one has to ascertain
that the precise value of the threshold is not important for the results to follow, and
evidence to this end will be presented at the appropriate place.) One then obtains
a digitized image, schematically shown in figure 5. where each dark dot is a digitized
image point in the turbulent region and each light dot in the non-turbulent. It is the
dimension of the border between the two regions that we want to measure. The
conceptual equivalent of the data processing on the computer is the following. Draw
around each of these digitized points (dark as well as light) circles of radius F.
Whenever a circle drawn around a point crosses the border, obtained by interpolation
between the neighbouring light and dark dots. the point is counted as a border point %
within a distance c from the border. Count the number of all border points Nb(W) within %
the distance e from the border. Repeat the process for varying e. and determine the
variation of .\b(e) with respect to e. From the earlier discussion in the paragraph.
we have

Nb(W OC CZD (2.6)

For future reference, we may note that the quantity 2-D, (or in general d-Dd.
where Dd is the fractal dimension of the object's interface in the embedding space
of dimension d) is called the codimension. In most well-behaved (i.e. integrable or
non-chaotic) systems, a small amount of uncertainty e in the initial state will translate
to a comparable final-state uncertainty. For fractal objects, the final-state
uncertainty is large and proportional to cD.. where D. is the codimension (Grebogi
0t a/. 1985). The codimension appears again in §4.

Figure 6 sho', s a plot of log Nb() . log F obtained from the digitized image of the
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FIGURE 7. The effect of threshold setting on the codimension. The threshold (in the notation ,f
the text) varies by a factor of 1.5 with no perceptible change in the slope. In the units describel
in the text. the thresholds are (from top to bottom) 3000. 354X) and 400W.

type shown in figure 3: the inset shows the slope of the curve. Clearly. there is a region

of constant slope as expected for a fractal interface. Several comments must be made
before interpreting the result. First, the low end of the constant-slope region is
comparable with the Kolmogorov scalet. The high cutoff seems to occur around V.
where t is the transverse integral scale of turbulence in the boundary layer. (This
integral scale was obtained from two-point correlation measurements with the fixed
probe at y/ = 0.4 and the other probe moving outwards.) The obvious conclusion
that the scale similarity extends only up to l on the high end is not correct because.
as we shall soon show. the high cutoff occurs prematurely because of the limitations
of the image processing procedure. To obtain reliable statistics on the high end. one
has to include many large scales in the digitized image, which is usually hard
(especially if the fine resolution requirements are to be satisfied also) because of the
finite capacity of the image digitizer. We have not been able to do that. which means
that the apparent termination of scale similarity at le is artificial. This shortcoming
is overcome in the line-intersection method of §2.4.

The second comment relates to the effect of the threshold setting on the slope in
figure 6. At least within the threshold range of 3000-4000 for the light intensity (the

units being such that 12000 indicates the brightest spot in the picture and 0 the
darkest), the power of c in (2.7) is essentially constant (figure 7): the threshold of
figure 7 is about + 15% of that used in the boundary-layer work. The third relevant

t There is some concern that to detect similarity on scales of the order of 1. the resolution of
the digitized image must be substantially smaller (at least by a factor 2). Figure 6 shows that this
factor is about 1.5 for present measurements. We may remark that estimating I to an accuracy
better than a factor 2 is beset with many uncertainties: among other things. it depends on the prectse
location in the flow. the assumptions made in obtaining the energy dissipation. the probe size. etc.
The number quoted in figure 6 is thus a representative value.

a,
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FiOUtRF S Calibration experiments for the imaging method. The continuous line (mean slope
c'odimension = 0.) is for a quadric Koch island. and the dashed line (codimension 1)U is for a
sqluare, Their respective dimensions are in good agreement with the theory.
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FIGuRE 9. The logarithm (to base 10) of the number of boundary points Nb (see figure 5) as a function
of the distance e from the boundary. The flow is a round water jet seeded with polystyrene spheres.
-Jet exit Reynolds number is abou t 2500. diameter D =5 mm: zIxD =30. The inset shows that the
slope of the line is 0.67±15%G.
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comment concerns the "calibration' experiments on some well-known fractals (e.g.
a quadric Koch island. Mandelbrot 1982. p. 50) and regular objects (such as a black
square). As shown in figure S. it is clear that the codimension (mean slope of the
curves) is o.5 for the Koch island (i.e. D. = 1.5. the theoretical value), and I or the
.square (1., = 1).

Putting all this together. we conclude from figure 6 that scale similarity extends
from q up to a fraction of I (the precise value to be determined shortlv(. and that
we have D., = 2 -slope = 1.38 (for the border). leading to the conclusion that
1):, = 2.:,8 (for the interface surface).

Figure 9 shows similar data for an axisymmetric jet of water flowing vertically
down into a large tank of still water. The jet was setled with polystyrene niucro-
spheres: both seeding and gravity effects were considered negligible. A part of the jet
in the developed region (in the vicinity of /ID = 30) was intersected 1 a thin sheet
of light. photographed and digitized as before. Again. scale similarity extends all the
way from I to a fraction of /: for reasons already mentioned, we think little of the
fact that the high cutoff occurs at V (instead of V in the boundary layer) or that
the slope is slightly different from the boundary-layer case. This latter is well within
the scatter of the data (about which more will be said in §2.4).

In determining the dimension. we have chosen to digitize certain regions of" the
cross-section that are neither too close to wall (or jet axis) nor too far away from it.
Both for the jet and the boundary layer, the digitized image spans (approximately)
0.6 < y < 0.1, where y is the intermittency factor representing the fraction of time
the flow is turbulent at a given point in the flow. We empirically found the region
just mentioned to be optimum given the image-processor constraints.

2.4. Dimen.sion by line intersection

As discussed earlier, the dimension of the set resulting from line intersection of the
interface (yielding simply a 'truncated' Cantor set of dimension less than 1) is
expected to be two less than that of the interface, D 3. In practice, we have interpreted
that this statement holds true for the one-dimensional cut obtained by intersecting
a moving interface with a small (i.e. q or smaller) stationary hot-wire probe. This
assumes the validity of Taylor's frozen-flow hypothesis, which we know is not strictly
true. but much can be learnt in spite of this shortcoming.

As is standard in the turbulence literature, we formed the intermittency function
from the measured velocity signal by setting a convenient threshold and a hold time.
The reasonableness of the threshold as well as the hold time was ascertained by a
comparison of the resulting intermittency function with the original signal. The set
of intersection points between a horizontal line and the intermittency function results
in a 'truncated' Cantor set whose dimension D, we want to measure. To obtain Dp.
the so-called box-counting algorithm, which is merely the application of (2.2) for line
elements, has been employed. It makes direct use of the definition of fractal dimension
by counting the number , of the line segments of length c required to cover the set
for several values of c.

Figure 10 shows a typical set of data for V, vs. E for the boundary-layer flow. It
is seen that there is a sizeable region of constant slope, giving in this instance
D, = 0.4: we infer that D. = 1.4 and D, = 2.4. It should be noted that D, inferred
from one-dimensional cuts is approximately one less than D, inferred from inter-
sections with planes. thus providing some circumstantial justification for the method
of sections with lower-dimensional subspaces discussed in §2.2. Note also that the
region of self-similarity does not extend all the way down to q as in the two-
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art. Part t the reason is clearl * y the problem related to Taylor's hYpothesis and theI
-nize of the hot-wire, which is several q long (approximately I q in this case) bo.ith of
D hit-b will bias the results at smalil scales. A more basic problem is related to the
inaeppropriateness of using the streamwise velocity for constructing the intermitteni, t

finct ion. ( )ne should ideally use a vorticity probe (which gives a much clearer on-off
signaln. or a passive scalar that is uninfluenced by the long-range effects of the
turbulent pressure field. Ho.ever, the outer cutoff does not occur until t or beyond.

Combining this result with the inner cut-off of the previous subsection, wve mightI
iz iclude that scale similarity extends between I and tV. (The outer cutoff is thus
aipproximately the streamwise integral scale. which is of the order of the boundary-

Iaver thickness.)
It is now helpful to examine the sensitivity of the dimension results with respect

to position in the intermittent region where the one-dimensional slice was obtained.

inthuen proeossurpisinglyHer we annot coutfdes th dimensionsi for b e 11nd

The inset in figure 10 shows the data as a function of the probe height in the
intermittent region of the boundars r layer. Because the interfae is rarely found deep

in the How. notth surprmisinly ineg caot hchsut the deson or y < 0.5ay

(c-orresponding to a y of almost unity). In fact, calculations become uncertain tor
y < 0.7 8 (or. roughly., y > 0.6). saY, and hence we have not presented any results-
there. The variability of D, is about 10o0 in the region 0.75 < < 1.0 where the
measurements are trustworthy: further, it is approximately in this region that the
two-dimensional slices were taken. Clearly, then, this latter method may he expected
to represent an average of values obtained from one-dimensional slicing: it is
somewhat reassuring tha tis is indeed the case. We conclude that one-dimensional
cuts offer a reasonably valuable tool. The main contribution of this method has be en%
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two-dilrnens.Inal onp-,tirnensional
Flow -.1hinv -iinL

B,,undarv Iaver 2.3s 2 441t
.\xismmetric jet 2 33 2:2t
Plane wake - 2 37-
Mixing layer 2,4u0-

+ Typical average over a range of the outer How
"ngle value at -ome typical location in the outer re i.,n

TABI.E I Surnnaryv ofthe fractal dimensions of the turhulent inor-turtilent interfac, In

several classical turbulent flows

to show that scale similarity extends all the way up to about the integral Sales od
motion. Recalling that the larger eddies, which are highly dependent on the boundary
conditions for the flow. are a few integral scales long. we infer that the scale similaritN
does not include the biggest scales in the flow. Our conclusions about the interface
are summarized in table 1.

W From here. the interface dimension of about 2.3-2.4 is seen to be ,ssentiallv
independent of the type of flow. What this means is that one cannot convenientlv
assign a distinct fractal dimension to each of the different classes of flows. We reiterate
that this is not surprising because scale similarity does not encompass the largest
scales, which are the ones that depend strongly on the geometric aspects of the flow.

To the extent that in both methods we have examined the interface approximately
in the region 0.6 < y < 0.1. we are not completely justified in talking about the
dimension of the interface as a whole, although we expect that what is true of the
part is true of the whole. We have already commented on the constraints in the plane-
intersection method. One runs into two problems in the line-intersection method.
Outside the region we have covered, the infrequent appearance of the interface there
would demand the inclusion of data for long intervals of time in order to obtain
reliable statistics, and this violates Taylor's frozen-flow hypothesis. This is relatively
easy to overcome, at least in principle, by resorting (for example) to intersection by
a suitable laser beam of a fluorescing flow. Although this should be attempted soon,
we have not done it immediately because waiting for enormously long times results
in a randomization of results that will obscure the fractal nature: this point is best
deferred to §3 where it is more fully discussed.

Finally, it may be worth remarking that Maxworthy (1986) finds D, = 1.37 for the
interface of the flattened bubbles of air injected into a viscous fluid contained in a
Hele-Shaw experiment.

2.5. Fractal dimension of clouds: a brief comparative study
Lovejoy (1982) obtained the fractal dimension of clouds using the so-called area-
perimeter rule (Mandelbrot 1982. p. 112). For classical objects. the perimeter P and
the area A are related through P x At. For an object with a fractal boundary of
dimension D, , the relation is modified to P x A(l)Dp. Thus. if one has different sizes
of statistically similar fractal objects, this area-perimeter rule (both P and .4
evaluated to the same resolution) can be used to determine D,p. Lovejoy used
digitized images of satellite and rain-pattern pictures of clouds with sizes varying
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between 1 km and INN) km. and obtained the fractal dimension of about 1.34. It is
the coincidence of this number with that obtained b" us for 1). in laboratorv turbulent
flows that calls for specific omnment. Recall that we took a slice of the flow to (obtain
D., whereas Lovejoy was looking at the boundary of the projection of a c-loud onto,,
a horizontal plane. The key question then is the difference between the two
techniques. We know of no rigorous analysis of this point. However. a proj ection 'an
be thought of as superposition of a large number of sections. each section being
separateid from the other by distances of the order q.

Going back to figures 3 and 4. %%e ma' qualitatively percei ve the effect o)f

superposition of several sections. ()nc effiC't is )bv'i( usl v to rcduce the interi r
fragmentation (leading to) a reduced fractal di mension). but the ,ither t et is t4)
increase the boundary roughness (leading to an increase in fractal dinwensimi It is
the net effect in whi(h we are interested. If the fractal dimension is small (that is.
neither the interior fragmentation nor the boundarv convolutedness is very large)
L., an(i D cannot be very different. While taking sections of clouds is ni t v ithin
our capability. superimposing section, )f boundary-laYer or jet flws can easilv be
(lone by increasing the thickness of the light sheet. This has been done. and the result
is that increasing the relative size of the light-sheet thickness 1from bvtweevn I and
2q to about 5q) increases the dimension L), (from 1.37 to 1.43). suggesting that
D2P > D,. In doing this experiment we could not unfortunately hold the Reynolds
number constant, but if we believe that the primary effect of increasing the Revnolds
number is to increase the range of scale similarity (but not alter the dimension). this
increase in D., is conclusive enough. If this reasoning holds for clouds, we may
conclude that D., < 1.34. It is interesting that Carter et al. (1986). using an entirely
different procedure from Lovejoy's. arrive at a number of 1.16 for D.

We have become aware from a preprint by Lovejoy & ,chertzer (196) that smaller
dimensions than 1.34 have in fact been obtained for clouds by setting the threshold
to higher values. The result that the more intense regions of a fractal are distributed
on sets with lower fractal dimensions is described in §§3 and 4.3. and is apparently
quite general (Halsey et al. 1986).

3. Dimension of iso-velocity surfaces in boundary layers
Here, we seek the fractal dimension of surfaces separating regions of velocity above

and below a certain chosen level, say ul in figure 11. One can similarly (and more
satisfactorily) address the issue of iso-concentration surfaces. We have used the
line-intersection method described in §2.4. As before, we get Cantor discontinua
whose dimension can be obtained by the box-counting method. The hope is that
adding 2 to the numbers obtained will yield the fractal dimension of iso-velocity
surfaces: again, one should keep in mind the various aspects discussed in §2. Figure
12 shows results from a box-counting algorithm implemented on a signal obtained
in a boundary layer at a height of 0.356. The different curves are for different segments
of the same (long) signal. To within the variability of about 1206, the line drawn
through these various curves represents a mean behaviour. Such results can be
obtained for several velocity levels of the same signal (the uncertainty is largest for
levels near the mean velocity) and for signals obtained at several heights in the
boundary layer, all of which are consolidated in figure 13. The dimension is highest

for the iso-surface for the local mean velocity, and drops off on both sides. Further.
the peak value of the dimension goes up slowly towards 3 as the distance from the
wall increases (see inset).

e r e e or
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segmnents. one can find a constant-slope region in the -scale region far larger than the integral -scale
the dimension 1), is very nearly I. however.
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dimension of an isii-velocitv surface must be a weighted average between those if
the same iso-surface in the turbulent and non-turbulent regions; the dimcnsion will
now peak at around the mean velocity in the non-turbulent region because the
distribution of the Cantor-set elements is much denser there than anywhere else
(with or without noise): according to the measurements of Kovasznav. Kibens &
Blackwelder (1970). the mean velocity in the non-turbulent region is approximately
the same as the overall mean velocity (at least to the accuracy appropriate in this 1
context). It is also logical that the dimension must get smallest near the wall because
the strong viscous effects will inhibit excessive contortions of an iso-velocity" surface.
While all these interpretations are consistent with the data of figure 13. note that the
data of figure 13 (to not apply to iso-surfaces in the non-turbulent regions onlv. and
hence cannot answer questions related, for example, to the dimension of an
iso-velocitv surface with u, = 0.91', residing entirely in the non-turbulent region.

In figures 12 and 13. we have used many segments of signal that are of the order
of 54) transverse integral tim, tles long, and ensemble averaged over them. This
should be quite acceptable b, ,se all iso-surfaces are only a few integral scales in
streamwise extent and smali in the transverse direction. We should point out.
however, that if one uses few: ionger chunks of the signal for the calculations (the
total length remaining the same), the straight-line regions become more and more
ambiguous, until they disappear altogether for signal lengths beyond. say. 50)
integral scales long (figure 14). The distribution then takes the shape characteristic
of a random process (figure 15). What this implies is that the iso-surfaces are
fractal-like when viewed on timescales of the order of 50 integral timescales. but
behave more akin to random processes when viewed on timescales an order o f
magnitude larger.

An operationally helpful comment on the long-time randomization of the self-
similar behaviour observed over short times is the following. If two separate segments
of data show fractal characteristics but with slightly different fractal dimensions, it
is easy to see that the sum of the two segments of data will in general not -;how the
fractal behaviour. (The sum of two processes, each of which is hyperbolically

- - - "% %C . . ./.,'. ., .. ,, .... ~ ~ - 4 W..,.W9 %w9r -
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distributed. %%ill also he h 'vperhtolicall 'v distributed onlY if the scaling exponent is the
same 1for both.) The o)bserved randomization is a rosugh consequence of the central-
limit t hes srm ir the c sIlest is i t' if large nuimbher i)f slightl 'v different and nearlyv
insdepensdent events. If' "c, argue that frasta Is are intermediate between complete
in Icr anil ti tal "easi. i may% interpiret osur findings ats revealing short -time order

,r irslsr o)ver small sxtciit andI Is inie dso rder in turbulence - a concept that
has.- suppo(rt in at %arictt i)f irvuiiiitanccss in turbulent flows.

4. Fractal dimensions of dissipative structures of turbulence
Aiiiihsr aspsect )f turbuilence that is it andlidate tor trastal udescriptionr is, its

idissipativse (sir internal ir smiall) trucituriv It is knssw i Batchelojr & Townsend 19A49)
that t hs 'mall st rustunre tf t urbulsense is intermittent. ansi that scele-similarityv

argunments (e.g. ( urvish & Yavl i 1 96i7 are ver 'y helpful in describing it. The essence
of scale-similarity, arguments in this iisntext is the following. Within a given fielui isf
(fully * veeoe) turbulence. conisidsr at rube with sidies i if length L, where L, is an
integral scale idf t urbulences. If we slivide this cube into a number (n >~ 1) of smallser
cubes uif length L, = L, n -i. the ilensity of' dissipation rate in each of these smaller
Cubes is distributed aics iding to at certain probability law. Further subdivision i)f

these cubes into secsid -s irer cu bes of length L, L, ii leaves the proba bilit ' I
list risut is i unaltsred. Thissiniilarity extends to all scales of motion tunt il one- reaches

size., sirectlv' affestedi by, v iscosit v. T he simplest (distribution is the binary sine
accosrding to which a giv:en bigh-sirder lbox either contains dissipat ion or doses no)t
It is this simple picture that we shall pursue. The goal in this section is to examinev
the appropriateness of tractal dlescription for the dlissipative structutre o)f hot h
tturbule-nt energy and ifa passive(-sc-alar fieldl. Except for the material in the tbllosti inv

subsection, which is an updlate of some earliei work, the rest of the material in this '
4.1. An updatr of Mandolhrots-- scork

Lst 2e be the fractal dlimension sf the dissipative field. (W~e shall avoidi using the
subscript :3 in this instance because there is no ambiguity.) When we have resolved
the smallest scales q. and determined the number N of boxes of size I required to
cover the entire dissipation regions. / c-an be calculated according to its detinition

-9= log (L.1 q) or N = (L. 0 1.< 4.

Since each ube has a volume of the order (L,/I)3 . the total volume occupied by theI
cubes of active dissipation is (L,11):1 3 Since all dlissipation is contained in these
cubes, the level of dissipation in them is ( /q times the global average value.

Assuming local isotropy, this means that (du/dx)l in the sdissipating cubes is
(41/q)3

- ' times the global mean. Consequently. the kurtosis (or the flatness factor)
4sfsu/dx. defined as

K v' = .7 ) (4.2)
wi'l be given by IL0/q) 2

(
3
-'

1 times the volume occupied by the dissipating cubes.
(Note that this assumes the identity of the set supporting ditssipation and ',hat

1:1~r s m is 73
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FIGURE 16. The variation ofthe kurtosis of(du/dI) as a function of the microscale Revnold, number
With minor modifications, this diagram is the same as figure 2 of Van Atta & Antonia 19 4).
Batchelor & Townsend (1947. 1949). grid turbulence. E. Friehe. Van Atta & (,ibson (1971). cir,'ular
,'ylinder. 0. Gibson. Stegen & Williams (1970). atmosphere: 0. Wvngaard & Tennekes 1070).
mixing layer and atmosphere .M( onnell (1976). atmosphere. L. Park (1976). atmosphere. 1.
Williams & Paulson (1977). atmosphere. V, Champagne (197t. atmosphere. 0. Kuo & ('Crrsn
(1971). lrid turbulence and circular jet: *. Pond & Stewart (1965. atmosphere

" !I I II I--

10,

100 1
10, 0, 103 10' 106

R,

FIiRE 17 The kurtosis of the temperature derivative (dT/dt). *. M(Connell (1976). atmosphere
<. Antonia Pt al. (1980). atmosphere: D. Antonia & Danh (1977). atmosphere: 0. Sreenivasan.
Antonia & Danh (1977). boundary layer. A. Gibson et al. (1970). atmosphere. > Park (1976).
atmosphere. C1. McConnell (1976): jet; V. Antonia & Van Atta (1975): 1. Antonia & Danh (1977).
jet: 7. Gibson & Masiello (1972). jet: V. Gibson et al. (197(0), jet.

supporting (du/dt). We are strictly calculating the fractal dimension of the latter.)
From (2.4), we have

K _ (L:/q)3 -  x RA - . (4.3)

where R, = u'A/. A being the Taylor microscale a:id u' the root-mean-square
streamwise velocity. If we invoke Tavlor's frozen-field hypothesis, the flatness factor
of (du/dx) is the same as that of (du/dt): Antonia. Phan-Thien & ('hambers (19SO)
have shown that this is true to within about 7 0. A plot of log K. where now K is
the kurtosis of (du/dt). rs. log R, will yield the co-dimension 13-2).

Mandelbrot used this argument and, from an examination of the kurtosis data from
Kuo & ('orrsin (1971). estimated Le to :,e 2.6. More data have become available since

* .... ~ .-... ,.' .... a.. .' .. 'v , -. . ..... ,~.',...-',. ,, .,.,, +, ",%- ,'.€+., .,,P" , . . .- . ' . A . € - . ."a . . .. * • , j u . . a ~ ,, a " . " x . . 4 " s ' 
'

. .
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V1,1 RE~ I'% '[lie htvierflatne.4' t.T Y) * Yp ei I!- 1) 0. -;rpenivasan. Antonia & IDanh

iiIn i.Illted1 hmirndar ' la 'er. V. A\ntonia & Van .\tta (1978). jet. A. Anitonia & Van Atta ( 1975i.

id -rat 'rv Immiidar *%t'vr C. Anrtonia & Van Atta i 197S). atmospheric boundarY layer ovr arid

M P-ark I L976 atnios;,herw lioundArv% laver tover "Ater.

henr. arid are phit ted in figure I 45. With small rnod ificat ions and additions. this figure
*i, v~svntially a re'prodluct ion from 'Van Atta & Antonia (1980) who irst compiled

them. ( iven the rliffiiulties in obtaining the data. they' may be considered to collapse

"n at line wkith a slope of 0.4. YielIding a J/ of 2.73. a revision from Mandeibrot's earlier
itrnate. TEhis means that the fractional volume (L 0 /q)( 1 -

3
) occupied 1)y the

ilissipatiiin ield is given b(L/V 2 .For RA < 150, the slope in figure 16 is decidely'
.rnallcr 154.I). which yields a 9 of 2.9. This indicates either that the dissipation

r-e1iinsat owReynolds, numbers, are less spotty or that local isotropy does not obtain.
Bthare, likel.

4.2. Frartal dimen-sion of the temperature 'dissipat ion 'field

Precisely the same arguments show that the kurtosis F,~ for the temperature
derivati've (dT/dt) is related to the Reynolds number as

where 9/* is the dimension of the temperature dissipation field. From figure 17. where
all the available data have been collected, we conclude that Q* = 2.6. (Byl drawing
at line- with a slope of 0.52 on figure 16. it is easy to see that the difference between
the scalar and momentum dissipation fields is indeed statistically significant. The

temperature dissipation field (and by inference, those (if all passive scalars) is less

space filling (xc (L,11V 0 4 ). or is more intermittent. This result has been known to

oceanographers for some time.
similar arguments suggest that the so-called hyperfiatness (i.e. the normalized

sixth moment) of (dT/dt) must behave like R3(-.Fgue1 sostatti i ut

consistent with the experimental data for RA, > 100).

'r e W. ZIP 0" 'S'% % '
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• ~~~FIoua'a 19 Lo)g \V r.s. hlot P.fr the dissipat|on field in ird turbulence h\" a hn . Interceplt u-inz a
threshold rof,5li. The inset shows the dependence of the resulting dimension ,on tht- thre-hhlhl u- ,t

_' to identify the iso-dissipation surface

~~4.3. Dimensions of i.so-dissipatio .surfaces by the h'n-i ntersertioo metho,

It is obvious that the volume occupied by the dissipative structures depends on the
threshold employed to identify the dissipation regions. There is no explicit mention
(f any threshold in the above method, which is both its strength and weakness -
weakness because one does not really understand the inherent experimental definition
of dissipation regions: the probes and the differentiation operations somehow set a
threshold of their own. To permit sharper questions about the dependence on the
threshold or. equivalently, about the dimensions of iso-dissipation surfaces, it is
useful to resort to the line-intersection method. The method here is in principle free
of some of the ambiguities raised in earlier sections because of the expected statistical
isotropy of the dissipation regions. even in inhomogeneous shear flows. The procedure
is exactly the same as in §2.4. except that we replace u by (du/dt)'. Figure 19 gives
a typical result in grid turbulence for the threshold setting equal to 5 times the global
mean value of dissipation. The slopes in the appropriate regions of similar curves
obtained for various thresholds are shown in the inset. The fairly strong dependence
of on the threshold means that the dissipation regions identified by higher threshold
settings are less space filling (obviously!). and the surfaces bounding them are less
convoluted. (Similar data for clouds have now been obtained by Lovejov & Schertzer
1986.) It must be mentioned that the range of scales over which self-similarity can
be observed shrinks as we approach lower thresholds, thus making the dimension
measurements more uncertain for iso-surfaces containing most of the dissipation (i.e.
low threshold): this accounts for the larger scatter there. We observe however that
the mean trend is to intercept the 2-axis at a value of near 2.7. which compares very
well with the value obtained in §4.1.
We saw earlier that the volume occupied by the dissipation structures is small.! I

I.,
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equal to ( L,/q "' '. Fractal sets that oc(-upy a small fraction of the embedding vOiuniW
are (alled thin fractals (to he contrasted with fat fractals in §5.5). Mathematicall%.
thin fractals are definedi as sets possessing zero volume: in practice. this 'olumv
is ,,sitive but small because )f the finite inner cutoff scale. e are justified in t hinking
,)f the di .- ipative set as a thin fractal because its volume/area ratio is vanishinwly

1mall at utficientIv high Reynolds numbers. Needless to say, the turbulent n n-
turbul nt int.rt'ci. , is a thin fractal also.

5. Miscellaneous aspects

In this section. we shall briefly discuss several aspects of turbulence that ma%
usefully be associated with fractals.

5.1. Fractal dimension of interfaces in the deteloping region
If we consider as an example the flow past a circular cylinder. the interfac'e hett-1
the vortical and non-vortical regions in the immediate vicinity of the cylinder i

expected to be a classical surface (because of the more or less regular vortex sheddinv).
and the dimension will then be 2. This expectation will hold even at high Revnoh[,
numbers except that it will be confined more and more near the 'origin' of the fl
Far downstream. we have shown the dimension of the interface to be about 2.4. wh.ich
means that in the developing regions the dimension goes up from 2 to about 24. \Wt,
have not made extensive measurements in this region. but scattered measurements
(by imaging methods in jets and line cuts in wakes) confirm this suggestion.
-Naturally. the range of scale similarity is shorter.

5.2. Eolittion of material lines in grid turbulence

"o motivate the discussion here. it is convenient to refer to a 'classical' fractal, like
a Koch curve (Mandelbrot 1982. p. 42). Iterations of the type shown in figure 20 on
the sides of an initially equilateral triangle will produce smaller and smaller scales
the results of three iterations are shown. The fractal dimension of the boundary of
the asymptotic object - the so-called Koch curve - can easily be deduced from its
definition to be log4/log3. The relevant point here is that the length of this Koch
curve increases exponentially with the number of iterations.

Suppose now that we place a patch of ink in a field of turbulence. The effect of
turbulence dynamics, which is to distort the ink patch in a manner visualized
schematically by ('orrsin (1959), can be thought of as being equivalent to a
repetitively occurring iteration scheme (according to some complex algorithm). pro-
ducing smaller and smaller scales at each iteration. If this is so. the perimeter of the
ink blob should increase exponentially. Mundane experimental difficulties have so far
prevented us from demonstrating this expectation. However. we have examined a
somewhat similar question of the growth of material lines in a turbulence field behind
a grid. We generated lines of fine hydrogen bubbles in the developed region behind
a grid placed in a water channel, and measured their length as they propagate
downstream. Their true lengths have been measured by obtaining two orthogonal
projections simultaneously (placing a mirror at 450); the procedure is explained in
the Appendix. Corrsin & Karweit (1969) had earlier measured the increase in length
of hydrogen-bubble lines, but their method was indirect and used an equation
((orrsin & Phillips 1961) relating the length to the n&mber of cuts experienced by
sampling planes making all angles with the axis of a statistically axisvmmetric line

dI
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0 I 2 3

Ist iteraion 2nd iterauon 3rd iteration

Fi(o-'RE 21) The iteration sc'heme fo~r a triadic Koch ,s!%nd {Mandelbrot 1982) to he performed ,on

an equilateral triangle (the Ao-,'alled mntator): mn each iteration the sides of the triangie- are

restructurre2d acording tot he iaheme shon in the upper right The objects resulting from the first
three iterations are s hown

i ~ (figure 21). C'learly. except initially and in the last stages. the growth is indeed

exponential. The initial behaviour is not expected to be exponential (Batchelor
1959). and the final levelling off is most likely due to the inadequate resolution of
length measurement.

5.3. Velocity signals
Figure 22 shows the temperature signal taken on the centreline of a slightly heated
axisymmetric jet (Sreenivasan et al. 1979). The most striking feature of this signal
is the sharp ramp-like structures upon which the small structure is superimposed.
Admittedly. this signal is carefully chosen to emphasize the point. but it is not
statistically untypical. The temperature and velocity (especially normal component)
signals in the boundary layer (even in the non-intermittent parts, see figure I1) show
similar behaviour, although not as dramatic. The conclusion is that the fluctuations
do not randomly jump about from one level to another, but gradually build up to
a level from which they suddenly depart rather sharply. This behaviour is consistent
with a power-law behaviour, which is symptomatic of self-similarity (and thus
fractals). Following Lovejoy & Mandelbrot (1985). if we artificially construct a sum
of randomly placed rectangular pulses whose width w obeys an inverse cumulative
distribution Pr(w > W) oc W -1, and their height is ±w ' . the sign being randomly
chosen, we can construct signals that show qualitative semblance to those shown in
figure 22: here a is a characteristic exponent.

One useful comment relates to the expectation (Carter et al. 1986) that the
turbulent signals themselves are fractals. This is obviously not a simple concept

% I( . " "-,
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FiuVRE 22. A temperature oscillogram in an axisv' mmetric heated jet, obtained in the region .'
max imum production of turhulent energ~y Intermittency factor = 0.93. The sharp jumps associated
w&ith AB (for instance) have been a suhject of much stud,

because any dimension calculations depend strongly on the scales chosen for plotting
the velocity signal. For example. if the signal is expanded to scales comparable with
Kolmogorov scal-s, the signal looks very smooth leading to a dimension close to
unity. The expectation is that the signals are self-affine fractals. by which we mean
that there are more complex scaling behaviours (invariance under transformations
of the type .S(x, x, X,) x, r,.r 2 . r, x,). where all the r are different). aind
our work in this dlirection is c'ontinuing.

5.4. Highpr-order dinmpn.ions

For the fractal description to he complete. one should be able at least to distinguish
between two different fractals which maY have the same dimension. Higher-order
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dimensions are defined for this purpose (Hentschel &Procaccia 1983. Mandelhrot
1986). and are given by

bq = lim I Pi ~ (5. 1

,(q - I log f

-w~here p, is the probabilit y of finding points of the set in the ith box of length f . For
high values of q, bq inldicates the scaling behaviour of the more concentrated'
regions ' for low q. the character of the more sparse -regions is quantified. We have
calculated these dimensions for several values of q. and these do (lispla ,v (as will be
reported elsewhere) global characteristics similar to miany itrange sets- discussed, fo~r
example. bY HalseY ot al. (1si

5 .5 Po frartal. , to trb~u/i- lic

At this stage, it is interestig ti make ome tentative co nnec-tiolns bet a cen t urbulence
and %%hat have been called fat fractals. In the literature, there is no apparent

I- agreement 'En the precise meaning &ffat fractals (contrast Timberger & Farmier 19s5
%%ith ( rebogi P(i-t 1I9K.) . and thi., has to s ome extent ilampened sour loan pursuit in
this dlirect ion At a basic level. hi iaever, the meaning f) at fat -fractal sewt is that it
iicU pies a finite vo lume~ ithe box couiEsnt ing algoritrinm applied tEE this set yields theitp i rziensi En of the em bedding spEace), but its boundar v is a thbin fractal.. A po ssi ble

example Ed a fit fractal is the 4-t Eof all points in figure :1 where the smoke
Concent rat io n is atbo~ve at prescri bed t hresihEld. if the t hresho ld pro~perly sets apart
the turbulent and nuon -turbulent reglions. the -ikin' Ef the set is the interface w hose
dlimensioin %4e have already measured in § 2 Us4ing a suitable integral Elf the measured

* iliterrmittencyv factors in *-veral statndard turbulent flows, we have (obtained rough
estimates fhr the volume (say \it hin the regioln V < 04.99 U, )ocupied1 by the
turbulent z mne 'The fract ion of vo lumne is about 10 5 for circular jets (with o~r wit hout
cofloA ). about 41 i ho plane wakes behind circular c 'ylinders, and about 0.75 fo~r the
two -dimensional boun, -)r ' lay' ers in constant pressure. The somewhat larger value
in the last c-ase is consistenit with the decreased intermittency near the wall

The same argument c-an be extended to the set of points in space where a velocity
lEomplinent (see §31 is greater than a prescribed threshold u, The 'skin' oEf Such a

) fat fractal is the u, iso- velovit v surface

6. Concluding remarks
We have shown that there are several facets of turbulent flows possessing fractal-

like behaviour. We have measured fractal dimensions for some of them. The fractal
dimension is only one measure olf the properties of a fractal set. albeit the most
impolrtant orne, and higher-order dimensions (mentioned in §5.4) will help in
specifying the fractal more completely.-

It is necessary to remark that the present work falls far short of proving that
' turbulence is fractal* without need for qualifications and reservations. As discussed
in various sections. the qualifications arise partly because of the limitations of the
techniques emploved these can (and should) undoubtedy be bettered in the next
generation of experiments. But it seems to us (on the basis of the present measurements
that turbulence (except perhaps for the dissipation field) genuinely loses its fractal-
like behaviour when viewed on very long timescales. Thus, turbulence is perhaps
a collection of a number of fractals each of which is slightly different We t hink that
this view can be reconciled roughly with the view of turbulence now in vogue as an
ensemble of semi-organized motions.

% N.5 5 M 4A. . j~i~~~Jj ' --
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While there is not mfuc'h question that this work is interesting, its usetulness ill
better coming to grips with the hard issues of the 'turbulence p~roblem' is less certain
In this context, we might interpret the 'turbulence problem 'to mean the fOllimwiniz
gijven the various fractal dlimensions of several of its facets. how mav one rec'onstruc't
the t urbulent fi iw that genevratedl hen I We know of not serious enquiry of t his 4)1-1
heillif iiine in the context of turbulence, although some beginnings seemn to hav-( e - %icr
mib'l in at broadler setting (Barnsle o, otit. 1 9S6). Unless this issue is add(ressei I. it%
is rioit clear hi iw fraitals will ad vance oiur undlerstanding iif turbu lence ii vnami( I ni

fat. iimt rarv aru men ts have i- often been advaniced A case in p~oint is the (i eseri pt i
of the dissip~ation fielil., Its tradlitional (iesiription via either viirtex lines. tubfs .,I

lo bs. it is saidI is ph *ysicall ' more appealing than its newv description ats at thin tractal

it d1iiinsion 2.7. Ac tuallv . this, point tt viewA is niot quite correct bei-aiiM' a iktjtic
towi i esiri ptiiun via vourtex eleenrts that is in ioniplete Consonantce k it h ncie~jri'
mets has, ne~ver been attaineil (K o & 'i rrsi n 1972). A.t an v rate. trait ak mia%
ilesiribe the (_Yeonivtr ,v it turbulence (keep in mindi all our ilisclaiincr, at iifi'r-iii

lace'). but veoiimntrv andI d1vnianiis ilii nit have a one-to-on., iiirr.sFiiiidcnic
It is appfropriate tii iiontrast the rnevaurcmnent dlifficulties in obltaiiii tratil

mernn~'ii ns inl phviial spaie with t hi se in p)hase space. Even aticeiI~t
If),. Re-ynols ritiiersl iiss attractors with fractal dlinensions (Sreirva~an
l ~ti. but their (il-einiration becomnes ixtremci,.\ lv ifficult atnd uncertain a, to
Riviioll number increases. Iii contrast, the ileterniination of fractal ifinii'iii iri11i

ph\so al s pace beii nies tmoire detini i ye at hiv~rer ReYnolds numbers.
AS a firial remnark. \4e note that numerical wiirk of the sort initiated ii ht, ti

f 19142. iliciatedI tio ijuestiiins oil the (Ivnaroic viilutiion it %iirtex (llieiit" II illP
wayHI in e-stablishing possible iiinnctiions between fractals andi tiiriuliimi

I )illr thanks roust extend( to IDaviol Ariinstvin \Aho, as a suroinicr stilent . laiil Owi
Il'Unlwmi k for part if the work ri'piirte(l in §2.1I : toi William van Altena tor Alow rim-
Ste uise, if his ilivit izer. tii Paul IDiniitakis for his perm-ission to rc'irpiii fi~iv

4 arid f'(ir his peneftrating vinlents on an earlier draft . to Retwi Mamdetvivtv Cool

"( it-int it ior illh nianuscrilit ,and( for p)rov iling the necessary'v impewtus in1 th li ar.I\
ftv , t hi i i ork mou re thaitn t hree years ago b)y refusing tii bclivc K RS, iuevat i \ c

.(1I.it it) iri' oft tht tti me : tii nmbe r it* colleagues (espec iallIy o W. Van dir Waitir

Cekiu ( ri'Iiigi. Rick -Jensten. ando BI TI ( 'hu) \%hoscinouragemenctt \Ae rr'ii'viciI at
arri iii t i mis. ti iM~ark Lee ando Paul St rykow'ski for iarcfii Iv readfn rigt hi

iririisir~itani iimnrentng n i ti 'VilLynn for iheerfully% Jititt trig upt \with liiitir
rupi i in ti his own boundary laver wo4rk to .Jim McMichael \%hii ctiiiiiravvi'l it.,
liirsu it iinilir an AFO( SR granit. 'Ihe last stages of' this work wcrc snipI iitcd h\~ t hi
Nat unial SciIiet Fi ufl(lat ion

Appendix: Growth of material lines in grid turbulence
.A 'fiiall w4ater rhaunnul %its ust-' andI lines iit h~ ulrngeu liublui' wire piiucl ;iiit

X, .11 = s 1 liuhind a turbuleriiu'.gencrating gridI (solidlity =) 42. me14sh ~iZ4 3t 111r1

I )iuiitri-ari. at mirrior was Jilaui'il at an angle tot 45' with thi' hiizoital liiitti-i
that a valivra ;ilacii iliru'ctlv, iicr the tliwv ciuhll sinuniltaneiui1sl% taki JutI iiii o

IAl w rnilii4hular) Jirup'-tiois iof the samne hydrogen biubble lilii- B~ il\isii/ii
liii b tiiuc, a(I oirywiu imlel trigonomeitric re-latins, it is then i'as~t tii ilit4i.11iini tli
nia) IviLth ,iI thi' lint(' in thr'u (1FIVIrruinsir,

."Irjpuii o.i h~'Fa~i' two pro'ujectionrs A0, andi 0, (.i'i' igiii' 23:lo it li ii' '-pili .iii
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d.i-tizi thern in o-quall 'v .pacoid .. unn f ~idth dx. From figure 2:3. the toillw~ riv

relat lofs i-an he iterreil

dsinfl = I. ~inx,
'rh u.- tan/f = 12 ,/ia.

Finall%. i.N xprv'sn vjlo, - a,.. a I'vniii n of (ix ani bot h angles. A( Wjqe

c.,al ris (art-tail (ens 2, sj 22./cos 2.2))

Bi rfi-asuriflg t he angles ii and 2, in each ii~lumn of the ilisiretizcd Firiipeitiiir1 and
*liding all t hi ii imputed d1,, we get the reai length ( up to an accura.o) iXt -,I' the,
lnt- in t hri imlenlsIins.

lhi. %%as repeated for lines at svoeral distanies from the grid ,resolution Fir. )Ivirn,
d and ta.,t diffusion of the hvdrogvi* hu hhle lines proiwent('( us from anal .ing ilata at

large .li.tanies.
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TIRANSITION INTERMITUEN(A IN OPEN FIOS,AN r%,e

* NE lIUN( O TK 0CHAOS

K.R SRl-+\I\ASA\'and R. R.AMSHA.NKAR
-1." 1, Ippl'd h, i~vh 11, 1 , Ilitl ll /d,.1 e 'J

[I, llI r ticw ira ~ i i~m o IirlitlI 11- :It 0P, 1 t"\k I ilain I'l,, 11, , 1 11, - 11, 1 , W , 11 11 -1

I -1; 11 I , 1 .1, r,' r ll IJ T\ ,I iF1 t I ,I I .1 11 I I Il 11It tlI II J ( 1\ C 0 11 1- 1 II' j 1 1 t,, I tll 11 .1t IIlk I

1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -11 .1 11LItr tIIIpat

1. IntrOduction 2). and channel (i.e.. plane hoicuille ) flov N. to

\A hich also \Ae ',Iall make at brief reference here~ %S

I Ilhl, paper 1,a pair of- inl oerall eLtort related llquall\ \Aell kno\wn no\% I, that mans loilii-

thIC (11 hanld, and triNsition and tujrbuilce Inl thle lar to thle Intermiittenit trans'ition to turbulence lus.t

,iedipen itlik. N\N.tern onI the other. O pen0

* ~ ~ h 1 ~ kdinition10 po'.'.e'.' a preferred direction.

Andothere:Ik 11 .1 l\ of mNi,i acroNN' Its. boundarie'.
-\1 tL,1 Illx ink nC citrL unt'.tanccs this elemientar\

ICI-f Illur ot pCe floiliix render'. the najtLre Of 110T\N
IIIx1ahIlt\ koti\CLtIe. ais opposied to being ab- iii4iTT

'.'4Lnte. %kic ix.11I thle La&,c oh'.erxed inl cdosed I~o\A *

4 \'teill)\ I hii'. caln Ila\ e pro found iinsequence'. onl I :o%%

h 'rigcin f turbuleceI.- in open Ilhm '.v stem'.. %

%A 11k ni~ix, ii n T turn render our ta'.k quite ditlicu. ___.

* ~It ha, heen k ni ,in for uTwr at hundred \ ears TTi.iTsai

n .'% 11that trauitioTn to tujrblceC Inl pipeC 110',

4LUr' iriterinitteitl I or eaimple. the %elocit\N 'on ? . w a o

TlixJUretl on the Lcenterlime at a fi\Ced a\il local- Itim

'I 1 ill tile pipeC IS t\pia l a'.111 AN t~ N 0 1Ifi g. I., It IN. Iig I the xTIircan isc wr i *i.jhnhiii . iiiici a, a fun,

thix intermnititint tri.tiuin to0 tujrbujlence that i,,. w i lo f tiTTe ,n tile Lcolierlifc )f a pipc ttiv th T1 C dxCIHiTlg

I' kImcr her \ko il in.ra cilR oio d t1 -I tndad i ,,, h \tirl: ,peratecd ,il -j wniT'afT TCtci Tliki[c
iii.'vi the .iwia. x aIui' pparrithv irnd''imi\ hoiv iliiT all

ihki the if L r tw ti Ii f time that [lie flok~io. iIn thle ex'cnit~itl %tead'. laidTna1. 11C 'd it ll J tiIhIilCiii .ie I i'i J

itiurhuletut '.tate it rea'.es, until eilentuah\ thie fl-ik gise axial p"'Own,~IT a vehiwii' ie~h.wTwd 'imitarmiidlii it ai%

1, L'i , i11till 1,1 u Ix turbuIln ti)n ob'.erxe' qualita- arwitliertia li P''' iown %%thi w" i n iiCTe adli-itaiti'T.\ %
liteI\xiiiilir ntentiten\ i th ad.aned .tae'. het-cen hle i'.vi xlifvs. boltih t ti 11 Lde dIICTCIT.C 11, t\ACC~I

,t ti uiiu ti II to trbuiCle c in buuunldair\ laxer'. (fig And til, ,ihsI'i irc drua~l T arhit.i, ,a.cI'%

IN I't I I I I .1Ilk] I'll IL sc PulhInllg I )I\ i'.io il
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-. 4.n 12-teIAli 3 a d tl (IC 1 1 ntl etu~% Z~ h)m,\ra t n

-41 x ,k~m: TO he (t.. iml vnpc

dIsICFM1tCed 1rg ktc \01d isin ~le\ h alorerIP equi RJ\ k lInah hein toperi0111. kind Ofh1\ FC''\AMi

IP p 1 .1 ad [\PC III eAdh ditleringe fromi the clss %Fen though t as id\ 1Cmntiond 'Ipen

*,c 'iirIII terms oA loik the eigen\amesC A thle tbii% s ire ilerent in sesecral nk'n-tri\l %k ~j\s from %-

-FI 'uct rihti\. decT.rihing. thle retnrn nmap ]in- the highl\ contIned t1o%%N seC lso0 [')I). It looks

CAii ,d airidnk a1 ci' ed t raile~ti 'r\ ,,rn thle 1.ih1t reaisonahle to ask \o luthler there are Ill\ c:I nnec-

rl ITc I pC I i i1rterrniit n\ Ot,- Ur, \k hen the linear tii ii' hetm cn the internmtne.\ rotes ii,, chios~w
~rir~t\'Ithe: linit ,\(.1c is IIt h% nccn iu nnentiTIined ihtl\ e and tile internmeno.' routes to,

- 'I thle F li'qnet iiiari\ Ie\icthe Unit circle it tujrbulecel In openl A"ii v.s 'ehall see, thle 4

I, I pc III \Owhn the crk 'sinu (,Lkenrs at I. 'Ind pro~kcss i n,. oh d in the Litter are moire comrplev it

I %pC 11 II J~ ienti Itmiiple\ C1'nlugateC I,,en tlie i their partial chiricterizition that tisl paper %4 .4.4

11HI* ~ ii1.11, II,]\ e''thle 1.111t orce I hit these is de\o1ted
irteiritteit i,)te' ii' dhios ire. rele\ .iIto t0

1 ,,% phciinmunia p)%erned h\ piril diftereniil

eq atm i' li" ee derninsritd.fore~iipe. ~ 2. TIhe ph% %ical phenomienon.
- Firce ci tl jfl aundl Ih0Im Ai a 7 [Iin thle

______________________________________It 1i useful to recait ulate hrieth\ thle ph\ si Al

nichinismi reponsible fu)r the temporal Intermit-
tenoc\ iibscr~ ed in fig. I I idenee fromi our 

1
i " i

A (Ak it least in pipes \lhiisc length is oif thle

')rdcr of i fok hundred diimeters a tN \%ll as that
if others (IlctE\ \ gninsk i and ( himnpiene. ?- .4 '

S101 . suggests1 that 'disturbaiCes. %khose, deC ci- *IIi iped statecoirepi inds ito the W rhlent11C rcgiiins Inl j -

the Inieritten arise locall\ (in radiil.
aziuthal as, \4,cll a mal dirctons ,i in thle en1-
franme regli n of thle pipe M here the IIIT% i i laminair

' 'oop yr~ 71( 2 m SS ao'nd Ntead\. and Is not full\ desC\li ipd 1ecc 11g. 4
i11

It Once created in the hidar\ Iis en regi ' thle .. ,*

1111'disiturbanc quiekis spreads, k)%cr tile entire Itiss-
W I11 1) 1'~r b 1 tL ilt seO 1 Aino thle Pipe, Mld nhi'ses like inl Independent%

.4. Li. , ' Iiii ii, ' illl [iii t .iiIl? ett \kitluinI tile pipe. lamin11ar regiins ire presecnt

IT TO -I' tiT 11,1 l,+ .1! h',th upstream and dosm usream (,I this, cnltt

'e. hi,,f 1 . i i.\ IiLi 1Iii',' u!iis h\s the nnie 'sltw' I ihe\ lbase % %4 .

.*%.
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- 1< .rrr~ Is! r " h11 To.r'1 ,r .111J ltttirtlit Ot t1C strcamitv,c &Is,anc Nonn: it1,1i Arll rtrC,i'urc-

41 11 V "" \;Mrik Art,14 l id ( .rrr1,11;tn j(' miTt \irc i,ic it ill,, Cx? i piptc of diricroit ictictis. the '

l i i - k l 1 R ir i ' 1 , jj r .r -c ,kr r j c l ~.c n , m i i c a l l I I C i r r d c r o o d ~ 1l i t r A n i t h c
'I' I hw I lirtir irc R, 'mn rij !r ( Irttt T ic ,l.Ir, IL lllit arc frrt i l , 4t~nnk i anr-d

t 1L 1'1 til- I'lk li il 't i cA I* ~

% NsoUrce. Fio)xkexer. sinlce AA Is relatixelv large corn-
fin the t-umit n' e Ir speed I A earix. Nlugs (or pared to A_ (Ithis is belielied Ito be oif ,mall Conse-A

s i I rtx 1\k %\Iit dita1 if1 II' .I.: I Inl (the fof- quelie.l

I L~ ne C k, n ILCen1 r.t In t )Ih cslU !Is. If thle sIUU, Sex eral point,, must he made explicit. Both Ii
,ITL cnr d it Noni nic freq ucilc\. An t' igs, .5 and 6 (and Ili the others to follow%) _ ) I s

111 lr C III 'ta ile slug rCsidCN Ill thle Pipe at the 1,111C reallt, /. 1), ili here 1. is thle pipe length. That Is.
T 11C' the le'line- edle Of Asn i.0could AcAt~kf utp nictasurenients wecre aCtualix made at the exit of
A iih tli fi raiih- nc dre of the preineIHL onle. resuLlt- pipeN of different lengths. Although ltte hax e re-%
ii- in ticireer a ia A t.0IseCk nent red uctl0 Iioi their ta ined thle notation AI) aboix in conformi tx x i th -

p1A-AsL i-C I re.tte1. \till iA\1ial distance. I heseC M0x prex oius practice. it is not clear to us that mea-
11 1 i , ill Id t henlPI p0' ideC a plasIihMe met.han nim suremients made at different axial locations of the

1,it the strcatixxise dependce~. at a11x gixen am long pipe xxl II hoxx the hehaxiors of figN, 5r
Rxit 'Ids1(1 1inmer. All all mecasured temporal quanl- aInd 6 A look at fig showks that the mnean length

I It il," I ftc, txxo iii t important parattieters inl the of slugs I s greater than thle pipe length.

Owe itrinmili/etf, ai al dfistance A P. xxhre P IN is, unlike]% to reide Iin a pipe at ant, gixen Instant

C .11iple. depends till bhotf if thesec paramecters. as smnall. Fihe reason for the ob'erx ed reduction in
* i 'x i ii it s . hrakcristic, l alue ofl this the c~haraCteristiC frequencli with pipe length (fig.

IIClI eti.I sa, 01e peak fuIC x aries iix erselx 6) IMust thetn be attributed largel\ to the reduction
1 rif 1I 1 it 1r. itid eemN it)r be Independent oft of thle fo rtmation frequcII\ of slugs wNith Pipe * -

t ie R;. itidsl nitiher AMt rictlxI .I i n tutp tinl length. fisl, makes, sensec if wAe remember that
thI th ib. .aIle qtjtI( %k. here A,_. ts a longer pipes mecan longer slugs x hlich take longer

1tiii i .iti the poss j)ibleh that tlie ft pass the enitire pipe. Wec conclude that detailedOPOR
I.i t11C Phit paitl )rigntts front tIn aInd cairefl1 mtNauretnentsN at several stations InM

* 0 0 0 0 0 0 0 0 S 0'
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A ' doin' fluctuations in the background: as men-
A tioned elsewhere [91, the background 'noise' in 0

SA Y O most open flowA systems is usuall\ dominated b\
large-scale pressure fluctuations which are far from .. -" r

06 A being structureless.) From this fixed point, the
,_motion escapes to an attractor representing the .",t"

0 turbulent state. and gets reinjected near the fixed .
point at apparently random intervals. Two rele-vant questions can be asked: 1) ('an one quantita-

tively capture by a low-dimensional map the
on , 2 ,essential dynamics of this intermittent motion from

the fixed point? 2) What are the characteristics of'-+" o the chaotic attractor'? Answers to these questions•

are attempted below.
1 7 1 %pil- dajt on ti. intcrnlittenc\ fator [ J> . fLunC

-

ithn of4 Rc Rcj Rc,, A: I. D 5( 1 O I: I.I)= 435" "(prc',cnt) Other %ni1ho+l
', 
a, Ti fig 

N m 
)
" +° mh 3. The route to chaos %

extremely long pipes (say, length to diameter ratio
l)o) is overdue. Fig. 8 shows a close-up of the vicinity of the .. .-.r,,.-..
As one varies the flow Reynolds number, the velocity signal near the leading edge of a typical

appearance of the intermittent state is quite abrupt. slu,:,. Corresponding to the laminar as well as this A%
The internittencv factor y. defined as the fraction interface regions, we have constructed by discreti-
of time the flow is turbulent, appears to vary zation a return map of u,,, vs u,, (fig. 9). A close % -
approximately linearly with the Reynolds number, look in the vicinity of the fixed point shows that
B + a backward extrapolation to zero of the iea- the map is much like that from which fig. 3 was
sured intermittenc factor, one can define a unique constructed. Secondly, the slope of the return map
salue of the onset Reynolds number Re,,. Fig. 7 near the fixed point is close to but greater than
shows that -y is a unique linear function of Re - unity. This shows that the fixed point is unstable
Re, in a certain non-trivial neighborhood of Re,,: once the onset of intermittency occurs, the laminar -

,I1) or 1./I) is thus an in,:onsequential parameter and interface regions are thus merely a reflection ,
for this quantity, of the duration spent in the narrow channel in the

A reasonable goal now is to describe in phase vicinity of the fixed point. There is some hope.
space the main features of these processes. Return- then, that the dynamics of the leading edge inter- . I
ing nowk to fig. 1, it appears plausible to think that face can be described (approximately) by a one
the steady laminar state is essentially zero-dimen- dimensional map of some kind, for example that 9 _
,,tonal that is, a proper orthogonal decomposi- used in fig. 3 (for small x,,). This observation ,.. ,
tion of the temporal signal contains no time lends some emphasis to our original question of
dependent function. (Unfortunately. estimates of possible connections to the generic intermittency
statistical properties such as the entropy and di- routes to chaos. We must right away note a simple - % .
mension from the velocity signal obtained entirely fact: Pipe flows strictly belong to neither type of
in the laminar state, for example just before the intermittency mentioned in section 1, an obvious %- ,
onset of intermittencv, is dominated by the high- reason being that, unlike in the Pomeau
dimensional, low-amplitude noise overriding the Manneville formulation, intermittent transition in %
laminar motion. The noise here does not arise open flows (see especially fig. 2) occurs from a
nircy from instrumientation or other 'purely ran- steady state and not from a limit cycle. (For a hL Y"

% + %, .%#,, , % .' ,.
% % %

%%

%i j.F~, I %
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li% N \ ch~ne-up of th. %.loc t signal near the leading edge u
Fig. 9 The return map of u, %s u, for the interface region

• ~''..px p
sho, n in fig. . obtained bN the discretization of the signal. %

brief reexamination of this point see section 6.) The origin is the fixed point representing the laminar state. .A e-'--'-This mav be interpreted to mean that Poincar %.. ,,.,,

sections of the Pomeau-Manneville intermitten- Fig. 10 shows a plot of the average length L, of .his myenrptdo enhtPn
cies have a direct hearing on pipe flow transition, the laminar regions as a function of Re - Re, . -. '
but it will unfold that this is not the entire story. The data for several experimental conditions all " 0

As we shall show soon, this is related to the tend to show that L,- (Re- Reu) . This behav-non-uifor in hichIt ''.. -- a

non-uniform manner in which the motion in phase ior is common to both Type 11 and Type IIi I-
space gets reinjected to the vicinity of the unstable intermittencies. The measured inverse cumulative
fixed point. (We take the view that to label reinjec- distributions for the length of the laminar inter-
tion b\ "relaminarization' - as is often done - is to vals (fig. 11) follows the expression
miss the point altogether. While in the Eulerian
frame of reference one sees an alternation between P( I > I0) - [e/exp(4elo - 1)]t/2 (1)
laminar and turbulent states, this does not imply
relaminarization of fluid that was once turbulent. to0=0 - -.- - -

As must be clear from section 2. in the Lagrangian K___. t.

frame of reference, there is no relaminarization of 9

fluid entrained by a slug: one is talking merely L _ F,

about :he slug/no-slug situation.) - .;,%
All three types of intermittencies mentioned in low - .".-_"-

section 1 make definite predictions for certain
statistical quantities of the intermittent signals, .-
iagainst which the outcomes of experiments can be-' _ -A.

'*, tested. Apart from the nature of the return maps
*'. themselves, the important predictions concern the Ii . ,

partcula calclat thei mea duato as2 aI fucIprobability distribution for the duration of the
laminar regions: from this distribution one can in Re-Re
particular calculate their mean duration as a func- R e

tion of the departure from the critical value of the Fig 10. The mean length of the laminar regions in the mea-
here. At any rate, it sured velocit, signals, plotted as a function of the distance

from the critical Rexnolds number. Lines correspond to the
is useful to measure these quantities in the hope 1 power predicted for Type II and Type III intermittencies.
that the, will help us build alternative models. . 1. ,lI) = 435, Re,,= 4480. Other sYnbols as in ,ig. 5.
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InI spite of, these Concurrences. onle cannot iden-
tifv thle pipe flowV with Type III intermnittenc% for

Itw o reasons. Firstly, the hallmark of Type Ill
- - intermittencv is the subcritical period-doubling 171,

-with thle primiarv effct of nonlinearity hein ga e-

dramnatic enhancement of the suhharrnonic corn-
ponent just before thle flip to the chaotic state
occurs. -Fhe systemn. instead of subsequentli ol

J lowing the period doubling route to chaos. sonme-
how decides to go the intermittencv route. As
already mentioned, the nonturbulent state is not a

r:limit cycle. Secondl%, and more importantl\. in____
arriving at expression (I1). the assumption has been

I Ih HICUJ11(11d11\C dlirrlhution of thc lanunar inter\al, made that whenever reinjection occurs from the -

1Rc -';. v. 0I WC~ ~4~ Notc that. C\cept for A 11all %
1w hc,.oior o I' cr~ carl c~pflcftlahchaotic attractor to the vicinity' of the limit cycle.

the distance from the fixed point of a Poincare
x\ hich is a result known to hold for Type Ill map wvhere this reinctn ocus is uniformyintemitcnc. Hee. he araetere soul be distributed [ 12]. We have measured (see Appendix)
identified as being proportional to (Re - the distribution of the reinjection distance from
Re,,)Reo The inset, which is an expanded the unstable fixed point (in this case). and ob-
log linear plot shows that the fit is very good even tamned the result that it is approximately an in- ~

twrstetail region. verse power law (fig. 12) over a certain range. The
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log linear plot of the cuLulatixe di.,ribution with our experience with most open tlo ssstenms 'I".%_e
shmJosn in tile inset is a less scattered comparison [14]: for all Reynolds numbers except those ker S S
because of the averaging involved in the integrat- close to the onset of turbulence, low-dimensional '
ing process. attractors do not seem to exist. (The number of N

Ili, nonlinearity associated with the reinjection data points used in these calculation, is not as ,
prohahilit, adds an additional 'dimension' to tile large as is usuall\ believed to he necessar\ for %

problem, and should be explicitly incorporated in calculating dimensions of the order 18 reliabl\.
an\ model of the problem. Using this empirically but far fewer ( 3000). We have however calcu-
determined reinjection probability, it is easily lated the dimension from several independent
showin 'hat Tpe II internlittencv also leads pre- patches of the composite signal each of Ahich is

ciselk to the expression (1) for the cumulative about 3000 points long, and performed ensemble . 1
distribution of laminar lengths. This result, to- averaging over these segments. We have found on,
gether \5ith ligs. 9 and 10. might be taken to other occasions to be described elsewhere that _
indicate a clo,'er connection with Type 11. It is also this procedure gives stable numbers. In an\ case.
worth recalling that the one-dimensional map from the issue here is not whether the dimension is 18.1
which fig. 3 was constructed was obtained after or 18.2, but whether it is 2. 6 or 18. The safest .

some simplification from Type 11. Perhaps the conclusion to draw from here is that the dimen-
connection is even closer if we realize that a sion is not small, of the order of 5. say.)
suitably obtained Poincar. section of Type II in- We conclude that pipe flow transition exhibits • •
termittencv is qualitatively similar to the measured partial similarities with known intermittencv routes
velocity signals here (figs. I and 2). to chaos - especially with Type II - but it does not

Before closing this section, we note that. inde- strictly belong to any of them, at least because of . - - .,
pendent of the agreement between measurement the preferential nonlinearity in the reinjection A-
in fig. 10 and the intermittency models, the almost mechanism. Although the dynamics appears low-
exponential variation of the data (fig. 11) is point- dimensional on the interface region, it is clearly
ing to some simple mechanism of slug generation not so elsewhere. For this reason, it is helpful to . ."
(e.g., a Poisson process). examine the problem from another point of view. ".- . '

4. The chaotic state 5. Analogy with phase transitions

From traces of the type shown in fig. 1, we have As we already mentioned in section 2, the change
constructed a composite velocity signal by string- of state from a laminar to a turbulent one occurs ,
ing together all the turbulent patches: that is. by in pipe flows essentially dkcontinuously at an
removing the laminar as well as the parts corre- onset Reynolds number Red, and at any instant at
sponding to the interface between the two states. a spatial location it is easy to say to which of the %
For this composite signal, we have calculated the two states the fluid flow belongs. Above this onset
correlation dimension using the Grassberger- Reynolds number the laminar and turbulent phases
Procaccia 1131 algorithm. Calculations show the can be thought of as coexisting, with the fraction %
scaling exponent of the correlation function is of time the flow is turbulent increasing monotoni-
about 1. To the extent that one can trust calcu- cally with the Reynolds number: in the intermit-

lations resulting in such large numbers and their tent regime all the mean flow properties (such as ,
interpretation, the dimension of the attractor is the pressure drop in the pipe) change continuously
about 18. This relatively high dimension does not from the laminar values to the fully turbulent ,."-
conic as a surprise to us, because it is consistent values. Following the lead of Dhawan and ",* "
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at / While many details are not clear and the anal-
ogy has not vet been pushed to its logical conclu- S
sion. one can identify an order parameter with the %
(normalized) difference speed AIL' between U,. the

+ .. leading edge speed, and L,,.. the trailing edge

speed. of the slug or the spot. Fig. 14 shows that
in all flows in which AU has been measured to-date. S
the relationship .,

N.,

Vo ,o ' o AL=a(Re-Re, (2)

4 hc cas red ti re-imean ,quare of the ,treanml,c holds quite well in a nontrivial neighbourhood of Z-%,. Z

,.coot compared %%ith the luni of y tic, the turbulent iiIluC Re. where Re Is a 'critical' Reynolds number
;f,,r that Rc,,nold, n1u11bcr) and (l yt) (lines, the lamlinar akin Ito the critical temperature in the gas -liquid . . -...

lc 12R: 0. 424. -/ = :. 451. 0 72: M .4119 ().lb5 7. phase transition. It is surprising that this should % .
.liraio p rp,. , cmpcll, lmiar'.lu,,I" h w i,, be so, considering that the four flows studied in ¢,- .1.,,.,,.. .. -"

bce-i phltd 'At ,pect that this agree ntt Ad lI not hold f,, ig. 14 are quite different in detail: they, range. on .0, ,,,

koc.. *f the cii,'al Rcneoid, numoher i, larae one extreme, from spots which grow in all direc-
tions to slugs on the other extreme which are •

, ."0 , - . !
constrained in all but the axial direction.* We also % %

Narasimha [15] in boundary lavers, we show in fig. lind it very interesting that the 'critical exponent'
13 that, at any given Reynolds number during the must take on the classical value of 0.5. %, %
intermittent transition, one can express to a good For the boundary layer. Re, = 200 according to , WZ

approximation some measured time average flow fig. 14. This suggests that attempts to create sus-
properties (such as the dynamic head on the pipe tained spots below Re, must necessarily fail be- -.. .
axis) as a linear combination of the laminar and cause, interpreted literally, fig. 14 suggests that the.. .
fully turbulent properties appropriate to that trailing edge should then travel faster than the
Renolds number. Noting that the intermittency leading edge. If this does occur we would have on . . "
factor itself appears to vary linearly with Re - Re,, our hand a case of relaminarization but, in reality, € - .
(see fig. 6). it is clear that flow properties in the spot-like structures below Re, will break up and .

vicinity of Re() can be expressed as linear corn- decay. To our knowledge, detailed tests relating to
bination of the laminar and turbulent ones, with y this issue have not been made. In the literature on
replaced by (1 - Re/Re(,). spots, we have found no documentation of spots ,

The above description tempts us to explore _
possible connections with phase transitions. Since "For all cases but that involving boundary layer spots. a

all phase transitions can be described in similar linear fit between WU and (Re - Re) is not unthinkable, but
terms, the crucial step is to identify an order the fit (2) is a bit better when Re - Re, is not too large. Also,

we believe that the departure from (2) in fig. 14d, for example,

parameter, which is such that it takes on different is largely due to the fact that the flows were generally set up in "

values in coexisting phases, and jumps discontinu- pipes which were not long enough for the fully developed
ously in the course of the phase transition; the parabolic state to emerge. This means that the leading edge

speed of the slug, which is essentially equal to the largest speed
magnitude of the jump is zero at the critical point, anywhere in the flow field, cannot be as high as it would be if

As an example, the order parameter in the one had a parabolic distribution of velocity ahead of the slug.

gas liquid phase transition is the difference be- Data from Alavyoon et al. [311 in plane Poiscuille flow became ,
available too late for inclusion here, but they follow the ,, , '

tween the actual density and the density at the equation AU2 
= 0.727 x 10 4 (Re - 800): the fit appears as

critical point, unambiguous as for the boundary layer data of fig. 14(a).
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Fig. 14. The dilberence hetween the propagation speeds of the leading and trailing edges of the slug as a function of the lowA%'t
Rex nolds numher. (a) Spots in a two-dimensional boundarv laver: Re is based on the freestreamn speed L, and the displacement
thickness. The normalizing speed for L'iL,.x. Cantwell et al. 1241: -. Wvgnanski [181: 0. Zilbermnan (see Wvgnanski [11).
Since Resnolds numher (no matter how defined) increases with streaniwise distance in houndarN lavers those used here are the
Rex nolds numbers at which spots were created. -3.65 x 10 "(Re - 2(M). (hI Spots on an axisymmietric body. When the spots % %
grow to sufficient sizes. thev wrap around the body. Data from Rao [25]. --- ,. 5.6 x 1(1' (Re - 25(M) Reynolds numbers are hased
on the boundlarv laver thickness. (c) Transitional structure in a rectangular ilpe, aspect ratio 4.11: Rexnolds numbers are based on the
hYdraulic radius. D~ata fromt Sherlin [26].1.. 5.)) X If) 4(Re - 1240): (d) Slugs in circular pipes. D)ata from one experimental run.
present. -. 2.56 Y 1 (Re - 23501). Similar data have been obtained bv Lindgren [27]. Pantulu [281. C'oles 129] and Wsgnanski & 1.~

Champagne [101].

generated below Re, the lowest such Reynolds ate slugs below a Reynolds number of about 2400
number being around 210 due to Elder [16]. Al- are known to be unsuccessful.
though Elder did not make specific claims that We draw attention to two minor matters. First. - * -

4spot generation attempts below Re,. were unsuc- the constant a in each of the four flows is of the%
cessful. the absence of any documentation con- same order of magnitude when proper account is

trary to our conclusion must be deemed to be taken of the differences in the definitions of the
significant. Similarly for pipes attempts to gener- Reynolds number and different normalizing speeds
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used in ..I Second. the rate of spread of thc
sparise extent of the spots (the '"idth in n- S1
,taut pressUre boundary layers is onl\ a "eakl\ %
incrCasinM function of the Ret nolds nuilnber (t

OeS up b\ about 2()' in a Re,nolds nulLmbe'r

,ilerin, h,, a factor of about 3 ill the experimients
Of Sluhacr and Klebanofl 1171, and b\ about

lialf i, much in a similar Rc\ nolds number range -.

in \1 LaiI,, ki. I [ e\periI ilts.) NotC n o0Lh data

C ,1t in t hc Re, inold, Ulhner depCndenCe,. Of til
',r,. ' th ,I the sp, t heigit normal to the plane.. . , .

\\C ,hould remark on the likelihood that the 1 I 1 \ ','ci, ,,inaIn mc.,uired ,n tie pMpc Ic'llr111C I,,, I-Cr lo-

e\press i (2 lt l\ max inl\ Inotlhing more thall a ,,nilsns dilcrni from thiic ,f titc I I nhrtunjtcl' tiC 1
charaitcristi. ,hared b\ propagation front,, In (-]i- d ,rcIt1c, MIC 1l d inU,.entahlc in doa,"

cre ciren llnstlL cs., %%here a poAcr-lav. usuall]\ -

dc,,crihe the relation hotmeen tie propagation the alternation between the two states occurs regu- _ L I
-sCrie til relat (fig 15n bttx ditenuio tf lie proagaiol rspecd of the front nd the distance from the a (lg. 1): tie disribution of the anlinar

critical \aluie of the control parameter. Some ex- itervals in this case obviousl peaks sharpl-
aiples are the speed of propagation of the turbu- around some walue. This last fact series all

lence front produced b. an oscillating grid in a reninder of the conplexit, of the process involved.
tank of still vater 1321. the speed withl whichl the Further, even restricting to what one might call
upper (lower) surface vortex propagates into the the generic features of this transition process, it
lower (upper) vortex in a short aspect ratio (= 1.25) should be clear from section 4 that the dynamicsTaolr (uet)vrtex ap ushout sng rtito 1.2t5x does not entirely reside on a low-dimensional at-Tavilor C'ollette apparatus housing only two vortex •

rolls 119. 201. the propagation speed of solidifica- tractor.

tion fronts in dendritic growths [211 the speed of Nevertheless, several common features exist be- %  J
tile so-called 'directed lattice animals' in percola- tween pipe .low transition and purely mathemati-%.
tion theory [221. etc. Even this is an interesting cal models like one-dimensional maps: further
enough conclusion, work is needed to be completely certain of this, as

well as about possible analogies to physical

processes like phase transitions. In any case, a
6. Discussion and conclusions more realistic model than the existing ones need to

be invented to duplicate the observed facts in
The behaviors described so far are not strictly detail. We think that a suitable modification of the

applicable for large Re - Re,,. For example, as the R6ssler equations [23] may serve this end to some
intermittency factor approaches unity, increas- extent. 0
inglv larger departures occur between expression One of our contentions has been that transition
(I) and the measured probability distribution of in the examples studied here occurs intermittently
laminar regions: similarly'(2) is violated for large between a steady state and a chaotic one. In Li.-1
values of Re - Re,. This in itself is no serious particular, the laminar regions do not correspond
detraction, since all 'universality theories' aim to to any periodic states, as is especially clear from t t
explain only the region immediately after the onset fig. 2. It may, however, be of interest to recall that ',.V Q," ,"'-

of intermittency. We want to emphasize one fur- in the experiments of Schubauer and Klebanof,-
ther point. For certain combinations of experi- [17] the first-born spots are generally accompanied
mental conditions which are poorly understood, by an undulating (not steady) laminar state, but
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nI-I L1. 'AC Mu1(st remark that the Ntmlndin,- of

thle concIlusion\1 of thiN piper IN oI\ prelun imars *
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tle prc~cnce of miuiuum'd nonse for Initiating trait-

Njito ifit I I, therefore not clear to %khat estcnt the

atoqtl>IC Ieve if itbingthe problemss tor ~a

the attention of a wAider audience than that
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Wec are indebted to D~r. G. Mever-Kress for

refusing to believe the earlier interpretation givenl Sharper than the transition fromt the lamninar to

b.N One Of uIS (K RS). Our thanks are due alsoi toi turbulent (ine.) It thus seems reasonable to associ-

Professors B.-T. Chu. i.F. de ha Mora and RNV. ate reinjection with sharp velocity gradients. Hence --

Jensen for helpful comments. and 1)r. J. a numerical differentiation was performed on the

MicMichael and AFOSR for the financial support. time trace. after substituting the turbulent state b\ -

Some preliminarv work was done by Julia Usher a constant, sa~v .500 on the ordinate of fig. I 6a.

during the sumnmer of 1983. This modified signal u. when differentiated, looks
as in fig. 1 6b. The reinjection point is then iden-
tified as the distance fromt the reference lamninar

Appendi\state where the largest velocitv gradient occurs.

(Ohrpauil e12 tos ,edmc the same
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An instability associated with a sudden expansion in a pipe flow
K. R. Sreenivasan' ) and P. J. Strykowski
Mason Laboratory, Yale University, New Haven, Connecticut 06520

(Received 21 June 1983; accepted 27 July 19831

An instability characteristic of a fully developed laminar flow encountering a sudden expansion in
a circular pipe is briefly described.

Consider a sudden expansion in a circular pipe shown in oscillations quite intact. In fact, we found that fairly low
Fig. 1. A hot wire located on the centerline some distance levels of turbulence created at the expansion would disrupt
downstream of the sudden expansion will register, beyond a the oscillations totally. This immediately suggested to us
threshold value of the Reynolds number, oscillations of the that the disappearance at R, = 1700 ofthese oscillations had
type shown in Fig. 2. The regularity of these oscillations is so to do with the upstream disturbances whose residue at the
remarkable, and their general repeatability so good, that a expansion remained sufficiently strong for destroying the

brief exploration of the phenomenon seemed worthwhile, oscillations mentioned earlier. We then built a new pipe of
This letter is a short report of a preliminary effort. the same nominal dimensions but with more carefully de-

In our initial setup, oscillations which would appear at signed inlet conditions having a significantly lower distur-
a threshold Reynolds number R, (based on the upstream bance level. For this setup, the oscillations at a certain axial
section average velocity (U) and the upstream pipe diameter location appeared at around R, = 1500 as before, but per-
dt) of about 1500 would disappear completely when R, ex- sisted in varying forms up to at least twice that value.
ceeded a value of about 1700. Also a 0.24 mm diam needle
inserted along a diameter through a hole slightly upstream of
the expansion would destroy the oscillations everywhere in
the pipe; removing the wire and resealing the hole with
scotch tape (for example) would restore them exactly. On the
other hand, a slightly thinner wire (0.17 mm diam) would not
at all affect the occurrence of the oscillations.

It is soon realized that the 0.24 mm needle was of suffi-
ciently large diameter (Reynolds number based on the maxi-
mum velocity in the upstream pipe and the wire diameter
-48) to shed Kirmin-Binard vortices which could indeed
be observed. These vortices were probably of sufficiently
large magnitude to prevent the oscillations (for reasons to be
explained below) from occurring. The 0.17 mm wire shed no
vortices-the wire Reynolds number of 35 being lower than
the critical value of about 40 (Ref. I )--and would leave the

fiow d FIG. 2. Oscillations seen by a hot wire iocated on the pipeaxis at x/d 2 = l.
Corresponding experimental conditions are R, = (U )d1 /v = 1500,
d, = 0.635 cm. d, = 1.27 cm, and L,= 425 di. The uppermost trace is the

Li X unfiltered signal, the midtrace is low-pass filtered below 10 Hz, the Iower-
most trace being high-pass filtered above 10 Hz. Most of the fluctuations
seen in the iast trace are below about 500 Hz. Time scale: from left to right of

FIG. 1. The experimental| configuration. figure, 4.8 sec.
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4 altering its '.eh. I d ist ribuior just enough, so that the reaI-

tachment point would moe dow nstream to its original posi-
- tion, this self-perpetuating act repeats itself

Inserting a small wire slightly upstream of the expan-
,ion [see Fig 5ici, where the head of the needle can be seen],
which in the air experiments had the effect of destroying the

___ ' .....- €oscillations. always resulted in a premature breakdovn and
rt'OL0 1' tl l o}t'thot ltb '

. 
.MI ,tl, , i ell d 4 )isilurbaalice

hc .,WSC ''I 1 li , tll Ctlie iill, 'I an, otlicr aitiiciall, creat-

.d di,,turbance. Aould haiten the breakdow.n by bypassing
(the notmal oscillat r\ grw, th stage, and anchor so well the

. .rcittachmnt poiit at around i. d .- 4 that. upstream of

this point, the flow would simpI. he a laminar "jet" of fluid
c,ming from the upstream pipe Here, a hot wire located

Ihe5 Fiilng "tsahz re~ rslt~isr R h a the F..! .* .I Along the pipe axis would continuousl record ery nearlyth c lon.:ornng dye streak .-. .r% dio , rr rcam ,, the rilrle,!nldl,*tf !i In'c" "

arrow hile i . thi, Ireakdown cc r s u ps rean .I'h, nAr 1, 1 n the peak %elocitr 2 " in the upstream parabolic distribu-
,.en :hat a needle placed ust apt ream ,It tfe c \ p.s,, inh,ir, s Ic nr t., tion. A hereas dow nltream f ,fthis point. it would simply re-
lon point cord continuously the lower s clocity corresponding approx-

mi atel, to id, 'd~i:( L'"
Now, we may note a tcwv , agrancies, of this flow Under

lation along the pipe. Thus, if one concentrated at a fixed nominall. identical circ.umstances, the .elocity trace would

observation station along the pipe axis isuch as the mark in sometimes de,tiate in shape from that shown in Fig. 2. For
Fig. 51, one would alternately see an unruffled dye streak or a example. the time spent in any cycle in each of the two states
situation in which the broken-up dye streak filled the entire discussed abo e could be unequal i.e., the duty cycle of the
cross section. An unruffled dye streak at the observation signal of Fig 2 would be different from 0.51; or, the velocity
station implies a velocity there that is characteristic of the would not be constant in the upper and lower states but very
jet-like oncoming flow from the upstream smaller pipe gradually isee. for example, the lowest trace in Fig. 3). Some-
whereas, once the reattachment occurred, the flow would fill times, the small-scale oscillations superposed on the upper
up the entire pipe thus reducing the average velocity. This is state isee the lowest trace of Fig. 3) would not be easily dis-
essentially what makes a hot wire record las in Fig 2) two cerned. We found that small levels of turbulence or some
different levels of velocity with periodic alternation between asymmetric constraints imposed at the expansion would des-
them. In fact, we noticed that the upper level of velocity in troy the phenomenon or alter it to varying degrees. The ex-
the oscillations of Fig. 2 corresponded roughly to the center- traordinary sensitivity of the phenomenon to these various
line velocity in the smaller upstream pipe, while the lower details, and the narrow range of Re. olds number within
one corresponded approximately to the average velocity that w nich it seems to occur unless special care is taken. may well
would result if the flow coming out of the smaller pipe filled explain why it has not been noticed before. However, we
the entire downstream pipe uniformly. Further, it may be believe that it is not an uncommon phenomenon altogether;
seen (cf. the uppermost trace of Fig. 2) that the upper velocity for example, something similar could be occurring down-
level is essentially laminar-like, while the lower one is some- stream of a sharp orifice in enclosed flow measuring devices.
what turbulent-looking, reflecting the fact that the lower lev- Finally, we might mention the practical relevance of the
el in the velocity oscillation of Fig. 2 represents a turbulent sudden expansion configuration in the context of ram jets
situation downstream of reattachment. and dump combustors.

Why does the reattachment point oscillate back and
forth so regularly? The answer probably lies in the complex
interaction between the velocity field downstream of the ex-
pansion and the oscillatory pressure field firiher down- ACKNOWLEDGMENTS
stream. Presumably, the velocity distribution downstream We would like to thank Professor B. T. Chu and Profes-
of the expansion would be nearly parabolic in the core, but sor M. V. Morkovin for their many useful comments. If all
would be surrounded by a region of reverse flow. The result- their many critical questions have not been answered here, it
ing complex velocity distribution has several inflection is because this study was a byproduct of another investiga-
points, and is obviously prone to instabilities which are quite tion on turbulence control.
possibly excited in phase by the downsiream pressure field, We also acknowledge the financial support of the Air
thus providing the mechanism for the regularity of the oscil- Force Office of Scientific Research.
lations. These instabilities grow and eventually lead to the
breakdown of the flow at some point downstream. When this
occurs, the turbulence that develops and the consequently Prcsent address DFVLR. Institute for Theoretical Fluid Mechanics.

increased pressure drop would shift the reattachment point tlunscnttrase I0. 3400 Gottingen, West Germany

upstream. One may surmise that this upstream shift of the L S G Kosasznay, Proc R Soc London Ser A 198, 174 (I4QI

reattachment point would restore the stability of the flow bh i 0 Reynolds. Phil Trans R Soc 174, 935 118831,
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,a)

(b)

S (C)

FIG 4 Artificially triggered oscillations at x/d. = 4.5. In (a) the oscilla-

tionseentually decay, while in (b). they build up to a self-sustained state. In
c, the) grow initially to a saturation amplitude and then decay abruptly

before growing again The cycle repeats indefinitely Time scale from left to
right of figure, 50 sec

FIG 3 Development and growth of the oscillations along the pipe axis
downstream of expansion From top to bottom, the oscillogr.ams c.orrc-
spond to x/d, = 5 8. 7. 8. 9. 10. and 22. respectively Signals low -pass fil-
tered to 10 Hz Unfiltered signals at x/d, of 5 8 and 7 are no different from To better determine the nature of these oscillations, we
the filtered ones: at other x/d.. however, the signals do develop an increas- set up a simple flow visualization experiment in water. To
ingly higher frequency content Time scale: from left to right offigure. 45ec eliminate the possibility that the dye-introducing device

placed upstream of the expansion would produce enough
disturbances to destroy the flow oscillations, we introduced
the dye at the inlet to the smaller pipe itself upstream of the
contraction (as in the original experiments of Reynolds').

Figure 3 is a record of the development and growth of The contraction (area ratio z 150) would damp out the dis-
the oscillations along the pipe axis. It is immediately clear turbances produced by the dye-injecting needle to sufficient-
that they are not the result of oscillations in mass flux (for. if ly small magnitude so as not to be disruptive to the process
they were, they should be seen with nearly the same ampli- that resulted in the oscillations in the first place.
tude everywhere axially), but must be characteristic of an The dye streak downstream of the expansion would re-
instability of the oncoming flow. For x/d, < 4, no natural main straight and smooth for x/d, of the order of about 5,

oscillations are seen; they can however be excited artificially apparently unaffected by the expansion. Thereafter, it would
by giving, for example, an impulsive but smnii motion to the develop rapidly growing oscillations [see Fig. 5(a) and corn-
hot-wire probe. This is sufficient to trigger oscillations (aris- pare with Fig. 3], and would abruptly break down at some
ing probably from probe-flow interactions) which may ei- point depending on the Reynolds number; when this break-
ther decay with time [Fig. 4(a)], or grow into self-sustained down occurred, the dye filled the entire pipe crosssection
state [Fig. 4(b)] depending probably on the initial amplitude downstream, suggesting that the breakdown and the reat-
of the impulse and the precise location of the probe in the tachment of the oncoming flow occur essentially simulta-
flow. In certain cases, the oscillations grow to a saturation neously. Just as abruptly, however, the reattachment
amplitude, decay abruptly to smaller amplitude, and build "point" would move back, ,,tly to return to its original loca-
up again [Fig. 4(c)]. tion, resulting in an essentially periodic back and forth oscil-
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Some Studies of Non-Simple Pipe Flows
K R SREENIVASAN

2.AR' .\ variety o phenooena occrs '.5', ,sTecla'., f we stray,' away from straight circ-lar i es a:
u:oo :r. sssection. This paper 1. srA-tes a few -:2e :2nexities arising from two relatively si:mpe rares

.n geon;t., namely, the sa dden e.x;> : .aa .e z. .. a cpri..ar pipe.

of parameter space, where the chief governing para-

Pipe :laws, far from being well-,undersleo, * an 77e
"

t nerers are the Reynolds number Re, the axial dietance
are very complex and highly intere. h he conditions upstream cf the expansion. Here,

anexpected behaviours. Consider as an xamo'e I... .nol;s numbers, unless specified otherwise, will

speed, constant temperature, adiabatic flew in i n n, -e nased on the diameter D of the cowvis:ream section
round pipe. rhe f low ni". be Xind t, -ilk average velocity there. The arigin tor the
7ooks assert that, in a region .,:: i a, s ,.i istance will be at the expansion itiel:.
trom the entrance, the staAil pressr '. results in this section refer to a diameter ratio

with the axial distance. Measurement, f 2. Exceptions will be noted.
nand, show that for air flow in a lon., ,traii t id
tnin tube (say, 6 mm diameter, 4000 d' w:, t ra ,,.,. . te Oscillatory Flow Regime
manometers located at equal intervals ,e
length do not show equal readings; the, incruase witrn 2.1a The Phenomenon: A hot wire located on the centre-
increasing downstream distance. (For t e sgeci:j, ex- T-ne of the pipe some distance downstream of the ex-
ample chosen, and for a turbulent flow at a Revnolds pansion will register, in a certain range of Re and
number of the order of 10,000, the manometer reading for sufficiently smooth upstream conditions, oscilla-
over the last 100 diameters may be nearly twice as hipn tions of the type shown in figure 2, with amplitudes
.is that, say, buLwc'ii 300 .nd -00 1 111IL, . ) I l nkUr , I tpically compi;railc to the averaige vela-ity Itl the
the wil Il shear stress is not simply proorp 1 io1.1 t, 1 downstream section. These osci lations are rema rk.ilh.e
pressure drop. for their regularity and general repeatability kprovi-

This seemingly puzzling observation is not hard to ded some care is taken, see below).

understand, however. Without going into details (which
can be worked out rather simply), we may note that, d
when the pipe is long and the axial pressure drop is flow D
substantial, the absolute pressure at the pipe entrance -.
will have to be significantly higher than at the exit.
In the present example, the pressure difference oetween
the entrance and the exit will be of the order of one Ll x
atmosphere. This gives rise to a substantial change in L1
air density. With density a decreasing function of the
axial distance, the flow will have to accelerate con- Figure 1 Schematic experimental configuration
tinuously, thus accounting for the observed behaviours.
Thus, the classical notion of a linear pressure drop
in a long pipe is exact (for gases) only in the limit
af negligible pressure drop!
This is but one example of unsuspected behaviour. In
the remainder of this paper, we shall discuss some
intriguing phenomena arising from two simple changes
in 1)il~v xvoinctry, nzarmv, y, thle Htlidvol i-X , . i til 11d tl1,

coiling ot a :ircular pipe. We lsial I lii dwel It ,11 I
on the complexities associated with flow of non-Newton-
ian fluids.
2 SUDDENLY EXPANDING PIPES

Consider a sudden expansion in a circular pipe shown in
figure 1. Different phenomena occur in different ranges

K R Sreenivasan is with the Mason Laboratory, Figure 2 Oscillations seen by a hot-wire located on
Yale University, New Haven, Ct. 06520, U.S.A. the pipe axis at x/D - 11. Re - 750, d - 0.635 cm, Ll-

This paper was originally presented as one of 425 d. The uppermost trace is the unfiltered signal.nine keynote addresses at the Eighth the mid-trace is low-pass filtered below 10 Hz, the
Australasian Fluid Mechanics Conference held lowermost trace being high-pass filtered above 10 Hz. ,'
at the University of Newcastle, NSW 2308, Most of the fluctuations seen in the last trace are
28 November - 2 December 1983. (Paper M1227 below 500 Hz. Time scale: from left to right of figure,
received 8 November 1983). 5 sec.

DISCUSSION ON THIS PAPER WILL BE ACCEPT- D

FOR PUBUCATION UNTIL 14 MARCH 1984 heIsn,titno of Earneen Awtmiul

e- yl el jt le I_ I?



These oscillations have several interesting properties. 2.1b In search of an explanation: How do these osci-
First, they appear when Re reaches a value of the order Ilations arise and what physical phenomenon do they
of 750, with the upper Reynolds number limit depending represent? A partial answer can be seen from figure 3
strongly on the degree of smoothness of the flow up- which records the development and growth of oscillations
stream of the expansion. If the entrance conditions to along the pipe axis. It is immediatel! clear that they
the upstream pipe are sufficiently smooth - say, in a do not represent oscillations in mass flux Ifor, if
qualitative way, smooth enough for the lamintr-1urbulent they Aid, oscillations should have been seen witL
transition there to be delayed until an upst eam pipe nearly equal intensity at all x;D) but, ratner, 7ay
Reynolds number of the order of 7500 is reached - the representative of the instability developing downstrcim
oscillatory phenomenon seen in figure 2 persists until - ' - ''=fl.
an Re of around 1500. For less smooth conditions, the For further clarification, we set up a simple flow
Reynolds number window shrinks, and the oscillations visualization experiment in water. An initial problem
may diaappear altogether for certain conditions. In fact, was that any dye-introducing device placed upstream of
if small levels of disturbance are artificially created the expansion would produce enough disturbance toj .ust upstream of the expansion, or if the tube is 0 ostupsredhamd ofat the expansion,orif the ubes destroy the flow oscillations. However, a dye streak
squeezed hard asyunmetrically at the expansion, the osci- introduced at the inlet to the upstream pipe itself
llations are disturbed rather strongly. They can even (much as in the original experiments of Reynolds,1 83)
be controlled at will: for the conditions of figure 2, served our purpose quite well. The larpe area ratio o
inserting a 0.24 mm diameter needle along a diameter the contraction (-150) damped t .distaranes
through a hole carefully drilled just upstream of the producod by the dye-injecting needle to sulficenti7
expansion destroys the oscillations completely; remov- small values so as not to be disruptive to the process
ing the needle and resealing the hole restores them that resulted in the oscillations in the first place.
exactly. (The Reynolds number based on the maximum
velocity in the upstream section and the needle diameter 'e may su=r.arize our flow visualization results as
is approximately 50. The vortex shedding behind this follows. The dye streak downstream of the expansion
needle, which we did indeed observe, perhaps creates would remain straight and smooth for x,/D of the order
enough asymmetry in the flow to prevent the oscillat- of 5, apparently unaffected by the expansion. There-
ions from being formed. A slightly thinner needle, sa, after, depending on the precise value of the Renols
of 0.17 mm diameter, does not affect the oscillations, numer (aselong as t ece a alue of
presumably because,its Reynolds number of 35 being low- aut s a it eeop ra ring vacue atabout 7501 it would develop rapidly growing oscillat-
er than the critical value of about 40 (Kova.znay 19 9), ions (see figure ua and compare it with figure 3), and
no vortex shedding appears.) Some further observations
on this flow can be found in Sreenivasan & Strykowsky would abruptl break dow at some point; hen his

(183).break-do- - occurred, the dye fild trh entire
(1983a). pipe crosssection downstream, suggesting that the

break-down and reattachment of the oncoming flow occur
essentially simultaneously. Just as abruptly, however,

I w ~ (a)

8 . . . -

9A N Figure 4 Flow visualization results for Re
(a), the break-down of the oncoming dye-stre .
downstream of the mark indicated by the arr-'...
in (b), this break-down occurs upstram c,

In (c), it is seen that the needle .
10 the expansion anchors the break-_.- :..

the reattachmcn wu>id m.
along the pipe, r
position lat,.r.
essent1al -. er,:;1
at a ;x~d .1ser.

22'sucY, as t:ie ? . -

see a . "

Figure 3 Development and Krowtr) , '.. ,

pipe axis downstream of the expaisi_' 1, .. ,, -

pass filtered to 10 Hz. tnfilterecs.;-a. ,
5.8 and 7 are no different fr, m 'e . r

other x/ ), si is l c -, e ,,, ; . .
frequency contert. :,me I ,- .e --

f IKure, se,.

, . " .-
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centre-line velocity in the smaller pipe, while the wire on the pipe axis would continuously record very
lower level approximately to the average velocity that nearly the peak velocity in the upstream pipe - whereas
would result if the flow coming out of the smaller pipe downstream of this point, it would simply record con-
filled the entire downstream pipe uniformly. Further, tinuously the lower velocity corresponding approximately
it may be seen that (cf. the uppermost trace of figure to that after reattachment. This is essentially why no
2) the upper velocity level is essentially laminar- oscillations were seen by the hot-wire.
like, while the lower one is turbulent-looking, ref-
lecting the fact that the lower level in the oscillat- 2.2 The Puff Region
ions of figure 2 represents a turbulent situation
downstream of reattachment. Further downstream of the expansion, the smoothness or

otherwise of the flow in the upstream pipe becomes ir-
Why does the reattachment point move back and forth so relevant, and the Reynolds number and the downstream
regularly? The answer lies probably in the complex distance become the only relevant parameters. The down-
interaction between the stability of the velocity stream evolution of the flow for a fixed Reynolds num-
field downstream of the expansion and the oscillatory ber of 2200 is shown in figure 5. The flow is fully
pressure field further downstream. At this point, our turbulent at x/D of 24, where the uppermost trace was
knowledge of the process is meagre, but a possible obtained. With increasing distance, the signal is seen
(necessarily speculative) explanation follows, to build up in isolated regions while, at the same time,

the general level of turbulence slowly diminishes else-
The velocity distribution downstream of the expansion where (see the middle two traces). Eventually, one has
would be nearly parabolic in the core, but surrounded by (as in the lowest trace of figure 5) nearly perfect
a region of reverse flow. The resulting complex velo- laminar regions interspersed with characteristic
city distribution has several inflexion points, and is signatures of structures known as puffs (Wygnanski &
obviously prone to instabilities which are quite possib- Champagne, 1973). Figure 6 presents the complementary
ly excited in phase by the downstream pressure field, information, namely, the flow evolution with increasing
thus providing the mechanism for the regularity of the Reynolds number at a fixed x/D of 144. Below an Re of
oscillations. These instabilities grow and eventually
lead to the break-down of the flow at some point down- Re
stream. When this occurs, the turbulence that develops 3000and the consequently increased pressure drop would shift
the reattachment point upstream. One may surmise that
this upstream shift of the reattachment point would
restore the stability of the flow by altering the velo-
city distribution just enough, so that the reattachment
point would now move downstream to its original posi- 2600

tion. This self-perpetuating act repeats itsef iffaefi-nitely.

Inserting a small needle slightly upstream of the ex-
pansion (see figure 4c where the head of the needle can 2200
be seen), which in the case of air experiments had the
effect of destroying the oscillations, always resulted
in a premature break-down and reattachment of the flow
at around x/D of 4. Disturbances due to the needle up-
stream, or any other artificially created disturbance, 1800
would hasten the break-down by bypassing the normal
oscillatory growth stage, and anchor the so well the
reattachment point at around x/D -4 that, upstream of
this point, the flow would simply be a laminar 'jet'
of fluid coming from the upstream pipe - here, a hot- Figure 6 Oscillograms on pipe center-line. x/D = 144

-. x/D -24

6000 2o
48

4000- FULLY TURBULENT
REGIME

~ 72

2000 SuFs
Incipient

puffs? RELAM INARIZING
144 REGIME

0 100 200 300
xIO

Figure 5 Oscillograms along the centre-line downstream Figure 7 Boundaries between the turbulent, puff and
of the expansion. Re - 2200. relaminarizing regimes downstream of a sudden expansion.
OISC1USION ON THS API WILL BE ACCEID
FOR PUJCATIOM UNTIL 14 ARCH 19M V Innauit offEgaww AausbW



about 2000, the flow is entirely laminar; considering laminar layer developing (in some asymptotic sense)
that the expansion renders the flow downstream of it from the expansion itself, and the average velocity in
turbulent irrespective of whether the oncoming flow is the pipe. It is these layers that grow and eventually
turbulent or not, the above observation simply means merge to form the asymptotic shape of the velocity
that the flow is completely relaminarized for Re S2000 profile (Narasimha & Sreenivasan, 1979), the process
(see section 2.3). With increasing Reynolds numbers, being much like that in the entrance region of a strai-
puffs begin to appear more and more frequently, until ght pipe (Goldstein, 1938).
eventually (for all practical purposes, beyond an Re of
2700) a fully turbulent flow results from the inter- For the fluctuations too, we may write:
action and conglomeration of puffs.

u' - u 0 (t); v'- £vI  o(c'), (2)
By obtaining similar traces at different 

x/D, one can

construct a map marking boundaries between the turbu- the expectation being that in the asymptotic state the
lent, puff and relaminarizing regimes (see figure 7). fluctuations are zero. We may now write the Reynolds
Similar maps have been constructed before for other shear stress T as
cases by Wygnanski & Champagne (1973) and Champagne &
Helland (1978). The map is self-explanatory in the T= - c (N) - c ((Z)), (3)
region x/D Z 100. In the region marked 'incipient

puffs?: one cannot see a distinct puff-like structure, where cT is the correlation coefficient , the tilde
but can recognise something similar (see the second denote root-mean-square values, and the last step in
trace from above in figure 5) which will evolve into (3) follows from (2). Measurements show that during re-
puffs further downstream. Turbulence level downstream laminarization of this type, not only do the fluctuat-
of the expansion seems always to decrease for a certain ions decay with distance but also become decorrelated
initial distance; whether it continues to decay or not (see, for example, Badrinarayanan, 1968); that is, c
depends on the Reynolds number. Crosses in the figure tends to zero as x/D - or c - 0. It is thus reasonable
indicate the x/D positions where the minimum in the to take c_ - o(1), so that, from (3), we may write
mean-square level of turbulence occurs for a given Re. T - o(cO), (4)
The line joining the crosses thus demarcates the region
of decaying turbulence to its left from that of in- or, that T is higher order in smallness than 0

2

. Using
creasing and stable levels of turbulence to its right. (1),(2) and (4) in the Reynolds averaged continuity and

momentum equations, we obtain, to 0(1):
a. It is known that puffs once formed may either merge

with each other or split to form more than one (Wygnan- d
2
Uo 1 du dp

ski et al., 1975), depending on the Reynolds number. An r + - (a) - 0
equilibrium puff is one that does neither, and sustains r3 r r dx 0
itself indefinitely; it occurs around an Re of 2200. In
structure, an equilibrium puff consists probably of whose solution, as expected, is the classical parabolic
several toroidal vortices (Rubin et al., 1980), and its distribution. To order c, we get:
occurrence follows a Poisson distribution rather well.
Recently, Bandyopadhyay & Hussain (1983) seem to have 1- a ) 2 (a 3l
identified the regeneration mechanism that allows the n - - 2 . 5
equilibrium puff to survive indefinitely in spite of ting

the continually occurring turbulent energy dissipation. w 
,

It appears that when the laminar flow from upstream of n(aul/an) - C exp(-2X&) 0(n), we can write (5) as:

a puff enters it - figures 5 and 6 show that the puffs
are relatively slow moving and have sharp upstream in- + 0, (6)

terface - rather well-organized vorticity is generated 1

(much as in an axisymmetric jet) which breaks up into with *(0) = 0 and drl = 0. Our interest is in the

small-scale turbulence subsequently. In the incipient first odd eigenfunttion and the corresponding eigen-

stage, one surmises that this same process of regene- value for (6).
ration must gradually start to occur after being 1.0 I
initiated via statistical fluctuations.

2.3 Relaminarizing Regime Ulmnx

For Re S 2000, the measured mean velocity profiles
acquire increasingly laminar-like shape with increasing <U

downstream distance. One expects that for large x/D,
the theoretical Poiseuille flow will be established
asymptotically. At any station downstream Of the e-
pansion where the measured velocity distribution u(x,r) 0.1
- r being the radial distance from the centre-line -
has not quite reached its asymptotic shape, one canp rite:

u(x,r) - u (r) * Eu (x~r) + 0(0),

v(x,r? - ev1 (xr) + 0(eC),
p(x,r) - P0 (X) + IpI(xr) + 0(e

2
), (1)

where u0 (r) and p (X) are the asymptotic velocity and

pressure distributions, and u Iv and p are the depart- Q01 l-
ures of the axial and normal vellcity clmponents, res- 04
pectively, and of the pressure, from the asymptotic 0 40 80 120
distributions. (Note: v E 0,) We have retained only x/D
C-order terms, wkich iQlies that (1) can be expected
to hold only sufficiently far from the pipe expansion
where departures from the asymptotic state sre small. Figure 8 Exponential approach to the asymptotic
The parameter c is the inverse of the characteristic state. *,x,A: sudden expansion data from Sibulkin
Reynolds number based on the thickness of the inner (1962); D/d - 4.5. 0, gradual expansion, Laufer (1962).
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There are some nice consequences of this analysis. Consider a long straight section of a smooth pipe follow-

First, a characteristic value of u., say u1  which ed by a coiled section; following the coil is another

is the centre-line value of u , should decay exponent- long straight section (see figure 11). Several phenomena

ially with x, Figure 8 shows 1his to be true to a good we want to discuss are related to the question of tran-

approximation. Interestingly, the exponential decay sitional Reynolds numbers in this set-up, and we shall

which, by virtue of having retained only two terms in mention this first.

(1), could a priori have been expected to hold only for
large x/D, holds true quite close to the expansion, esp- Since we made no special attempt to keep the flow in

ecially for low Reynolds numbers. Second, the rate at upstream straight section unusually disturbance-free,

which u decays is inversely proportional to the the onset of transition occurred there at a Reynolds

Reynoldsmnumber. (That is, if u '\
. 

exp (-mx/a), the number of about 2300. Typically, this manifests itself

product mRe should be a constanimfdependent of Re.) in the form of puffs, and transition proceeds with in-

Figure 9 shows that this is true not only for the sudden creasing Reynolds numbers much as in figure 6. As deter-

expansion case but also for gradual expansions and mined from intermictency measurements, transition

bifurcating pipes. Finally, figure 10 shows that the ex- ro turbulence is complete around an Re of 3200. This

perimentally determined distribution of u /u agrees holds up to the entrance to the coil. Once inside the

quite closely with the approximate eigenf 
1
n max coil, the nature of transition depends, even at a fixed

Again, the theory holds for x/D as low as 8. axial distance and for a given radius ratio (that is,

the ratio of the radius of the pipe to the radius of

3 FLOW IN HELICALLY COILED PIPES curvature of the coil), strongly on the precise locat-

ion in the pipe. It is not easy to determine, or even

Flow in curved pipes - which encompasses the topic under define convincingly, the onset of transition to turbu-

discussion- has been a subject of numerous investigat- lence (although a preliminary attempt has been made by

ions, but it appears that even some of the gross pheno- Sreenivasan & Strykowsky. 1983b), but two limiting

mena have not been understood. Our intention here is not situations can be defined relatively unambiguously: the

to discuss curved pipe flows exhaustively - a recent upper Reynolds number limit for the existence of a ste-

survey by Berger et al.(1983) does this very well - ady laminar flow ('steady laminar limit') and the lower

but to point out a few interesting results. Reynolds number limit at which the flow is turbulent

everywhere in a given crossection of the curved pipe

('turbulent limit'). Notice that in the special case

_0 of the straight pipe the steady laminar limit coincides

40 , with the onset of transition to turbulence; of course,

nRe the turbulent limit retains its meaning throughout

m * LoS I of the completion of Lransition to turbulence.20 - -2 0Figure 12 shows both steady laminar and turbulent limits

for the set-up shown in figure 11. (The data correspondtoia pipe which was 173 diameters long upstream of the

coil, had 20 1/2 turns in the coil and was 937 diameters

long in the downstream straight section. The diameter

0 1002000 2a was 0.635 cm, and the radius ratio a/R was 0.058.
The fluid was air. All transitional Reynolds number

Re data were determied with a hot-wire.) One effect of

the coil is to increase both the steady laminar and

Figure 9 The product mRe in relaminarizing pipe flows, turbulent limits up to the end of about three turns or

Sudden expansion: 0, Sibulkin, A, present. gradual

expansion, Laufer. V, branching pipe, LynnSreeniva-
s a n ( 1 9 8 2 ) . , "1 t '.

1.0

0 
2 .

Figure 11 Schematic of the experimental set-up.

...........1.. 0 6 0001 FULLY TURBULtNT
Ulmax I

-1. - 1-4(r/o9.3(rki)4 1.0I00 STEADY LAMINAS

1.0 2000 0
0 0L5 W. 0 VO 2,00 ,c

0 S IS 20

Figure 10 A comparison with theory of the departure of Nurf f turns wft heis

the measured distribution from the asymptotic parabolic

profile. Sibulkin: 0, x/D - 8; 6,17;O,35. Present: 0, Figure 12 The steady laminar and turbulent Reynolds

x/D - 17.5. number limits for the set-up shown in figure II.
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so; thereafter, some asymptotic state seems to have
been reached. In this asymptotic state, the flow re- 0 iMi4,AV1~~~
mains laminar and steady for Reynolds numbers up to
about 4800, and does not become fully turbulent until
an Re of 7900 or so is reached; clearly, the gap bet- 

0  o
ween the two curves is larger inside the coil than that _

at the entrance to the coil. Perhaps surprizing is the -
behaviour downstream of the coil: while the turbulent
limit drops as expected, the steady laminar limit does "1C'
not, but stays approximately at the same elevated level _7- . . S _ _

as in the coiled section. In other words, the onset of ... 00 - k
turbulence has been permanently raised to an Re of -

4800 in contrast to about 2300 in the upstream section! 0J

Why does the flow remain steady and laminar for higher
Reynolds numbers in the coiled section than it usually
does in the upstream straight section? Can the asymp- Figure 13 Typical oscillograms of hot-wire traces
totic values of the two limiting Reynolds numbers be during relaminarization. Re - 3450. a/R - 0.058. The
increased indefinitely? What makes the flow remain numbers marked in the middle of the figure correspond
steady and laminar for Reynolds numbers as high as it to the number of turns into the coil.
does in the downstream straight section? Can that too
be increased indefinitely? These are some of the obvi-
ous questions that come to our mind. In what follows,
we shall. attempt at least partial answers to these 3000 fTURBULENT{ /'
questions drawing largely from our continuing study of
this flow. on o;2 a= 0.63 C M

3.1 Stabilization Effects and Relaminarization De t  1,& 20 =31 3 ,

Within the coil. the flow near the inside wall sees a
convex curvature whose effect has long been known to be 2000
stabilizing. However, the concave curvature associated -. " UNSTEADYI
with the outside wall is known to be destabilizing, and 76 LLAMINAR
so, the explanation for the net stabilization effect
observed in the present circumstances is a bit subtle.
The clue lies in the behaviour of the mean velocity

distribution. Essentially because of the centrifugal "
forces, the peak of the velocity in the plane of the 1000
helix moves to the outside; typically for a radius ratio
of about 0.058, the peak occurs at a distance from the L AM J
outer wall of a tenth of the pipe diameter. Over the
bulk of the profile from the inside to the peak, the
sense of the mean flow vorticity is the same as the
'angular velocitylin the pipe, so that, by Rayleigh's I
criterion - for a statement of the criterion most
appropriate in the present context, see Coles (1965) - 0 005 0.10 G15
the flow is stable. There is however a small region aIR
near the outside wall where the mean vorticity and the
'angular velocity' vectors are oppositely aligned. But
this region is quite thin for fairly large curvatures, Figure 14 Asymptotic values of the limiting Dean
and the governing instability there is of the boundary numbers in the coiled section, measured at the end of
layer type. This 'boundary layer' too will be stable 20 turns for all'radius ratios.
unless the Reynolds number based on its thickness is
above the appropriate critical value; then and only ing the dynamic similarity in curved pipes is the so-
then will the onset of instability and possible tran- called Dean number (White, 1929),
sition to turbulence occur. This explanation, in spirit 05
due essentially to Lighthill (1970), cannot be complete Do - Re(a/R) (7)
because of the three-dimensionality of the velocity
field but appears very reasonable. the data obtained were plotted (see figure 14) as the

I imlI iolip 0-111o .1poah r . t i1li i,,- rad il.M r".tO i.. /R . Lt

One consequence of 0hee stabilksaLio eIlLecL is th3t. is bvt LIuLt iteL I Lwit&ili Liul11 sumburb (wheuu meanLng
in a certain Reynolds number range (for the conditions is the same as that of the asymptotic limiting Reynolds
of figure 12, 2300 S Re 1 4800), a turbulent flow enter- numbers of figure 12) increase with increasing tightness
ing the coil can be expected to become laminar at some of the coil until an &/R of 0.04. Thereafter, we note
point in the coil. That does indeed happen, as can be that steady laminar flow cannot be found for Dean num-
seen from the oscillograms of figure 13. The flow.which bers above about 1100, however large the radius ratio.
begins its inurney in a fully turbulent state at the (This constancy in the steady laminar limit for the
inlet to tae coil, has become completely laminar by Dean number actually implies a decrease in the corres-
about two turns in the coil. In fact, near the inside ponding Reynolds number for increasingly larger a/R;
surface, the flow has lost most of its turbulent see equation (7).) On the other hand, the turbulent
characteristics only half a turn into the coil! limit appears to increase monotonically (in terms of

both the Dean and Reynolds numbers) with the radiusratio.

3.2 Radius Ratio and Other Effects ri

If we replot the data of figure 14 in terms of Reynolds
We set up several coiled pipe flows in order to deter- numbers instead of Dean numbers (Srecnivasan & Stry-
mine the effect of radius ratio on the asymptotic values kowski, 1983b), it can be seen that the lower curve of
of the steady laminar &d turbulent limits discussed figure 14 shows a peak for a/I of 0.039 and Re of 3400.
with respect to figure 12. Since the parameter govern- This simply means that the most stable conditions
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On the scaling of the turbulence energy dissipation rate
K. R. Sreenivasan

W Mason Laboratory. Yake University. New Haven, Connecticut 06520

(Received 29 November 1983; accepted 23 February 1984)

From an examination of all data to date on the dissipation of turbulent energy in grid turbulence,
it is concluded that, for square-mesh configuration, the ratio of the time scale characteristic of
dissipation rate to that characteristic of energy-containing eddies is a constant independent of
Reynolds number, for microscale Reynolds numbers in excess of about 50. Insufficient data
available for other grid configurations suggest a possibility that the ratio could assume different
numerical values for different configurations. This persistent effect of initial conditions on the
time scale ratio is further illustrated by reference to the jet-grid data of Gad-eI-Hak and Corrsin.

It has long been believed, essentially on dimensional cept where the effects of viscosity are directly felt, such as
igrounds, that the time scale of the energy dissipation rate e in near a smooth wall). Probably the only direct attempt to test
fully turbulent flows is of the same order of malgnitude as the this notion against experiments has been that due to Batche-
characteristic time scale of the energy containing eddies (ex- lot,' who plotted the quantity cLf/u' (where Lf is the longi-
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, ,That cLf/u' could depend on RA for small R, is not
3.0 surprising, considering that the constancy of eLi/u' is only

an asymptotic expectation. In particular, at very low Reyn-
(it/u + olds numbers where the inertia forces are weak, such as in

+ the final period of decay, it is easily shown that
2.0- eLf/u = (1'/2 1 (l5/RA), (1)

if we recall the relation c = 15vu2/t 2 and the result' that
L,/2 =(ir/2)' 1

2 . Typical experimental data from Bennett

1.o v 0 and Corrsin, " shown in Fig. 1, deviate from Eq. (1) because
the measured values of L/A are higher than (ir/2)' /2 and

I i I I increase weakly as the Reynolds number decreases.
5 10 50 100 500 It is pertinent here to make reference to Rotta's 4 work.

R Rotta assumed that the spectral energy transfer occurs ac-

FIG. I. The quantity EL//u' for biplane square-mesh grids. All data except cording to Heisenberg's theory,"5 and further that the so-
+ are for the initial period of delay, and are explained in Table 1. + indi- called Loitsianskii invariant (see, for example, Ref. 1, p. 92)

cate typical data" in the final period of decay. - corresponds to Eq. (. exists and is numerically equal to 4. With these assumptions
he calculated that cLf/u'--O.76 as RA--oo. (The corre-
sponding value from Fig. I is around 1.) He also smoothly
interpolated between this high Reynolds number solution

tudinal integral scale, and u is the root-mean-square longitu- and the low Reynolds number solution given by Eq. (1). The
dinal velocity fluctuation) against the distance from the grid. interpolated curve shows a behavior qualitatively not unlike
He concluded that, in the so-called initial period of decay, that of the data in Fig. I. However, because of the various
the data are not generally inconsistent with the above expec- dubious assumptions involved in the calculations, and also
tation. (Here, u'/e can be regarded as the time scale of dissi- because of the numerical disparity in the high Reynolds
pation, and L/u as that characteristic of large eddies. While number limit mentioned earlier, it was thought unnecessary
this latter quantity is not directly related to the time scale of to reproduce Rotta's interpolation curve.
the energy-containing eddies, the difference is not sufficient- While the situation appears quite satisfactory with re-
ly significant to mask a real trend if it exists.) However, the spect to square-mesh grids, it is not so clear for other types of
relatively large scatter in the data collected by Batchelor grids. For example, the quantity cLf/u 3 for the flow behind
permits one to speculate a weak Reynolds number depen- an array of parallel rods '.. plotted in Fig. 2, shows a con-
dence at least in the relatively narrow range covered siderable scatter and, more importantly, is higher on the
(14.4<R, <41, where RA is the microscale Reynolds number average (assuming that the average is meaningful) than the
based on u, the Taylor microscale A, and kinematic viscosity corresponding square-mesh value. (It may be argued that the
v). For example, Saffman 2 has pointed out that a logarithmic turbulence behind an array of parallel rods may not have
or - I power dependence of eL,/u' on RA is not necessarily attained homogeneity and isotropy to the same degree of
inconsistent with the data. The point at issue is important, approximation as in the case of square-mesh grids. We may,
and is indeed one of the few key elements of a "semirational
turbulence theory," and so, it seems desirable to examine the
question in the light of much more recent data that have
become available, extending over a wide Reynolds number
range and a variety of conditions. This is the main purpose of
this letter. We confine ourselves to data in grid turbulence
(although we have examined shear flows also) (see Table 1). 3,0
With one exception (which will be noted), only those experi-
ments in which L, was either explicitly supplied by the auth- /u3 +
ors,'- '2 or could be evaluated by us via their measured corre- 0 e+/u
lation function of spectral density, have been considered.

For consistency, we define e = - j U(du 2 /dx), with 2.0 +

Uo as the mean velocity in the test-section, even when, occa-
sionally, one or both of the remaining two fluctuation com-
ponents were measured; du2/dx was evaluated from the best
power fit possible for the u2 data in the initial period of de- 1.010 50 10

cay. (On those occasions where the authors gave a ready Rk
number for c, we have always cross-checked it with the origi-
nal data.)

Figure I shows all the data for biplane, square-mesh FIG. 2. eLf/u' for grids of parallel rods and a slats grid. Parallel rods: ,.
grids. It is clear that eLf/u' is sensibly independent of R, for M = 2.54 cm- a = 0.37. x/M = 60 (Ref. 16); + , M = 10.2 cm, a = 0.37,

30x/M,,70 (Ref. 17); 0,M=2.54 cm, a=0.31; 0, M=2.54 cm;

RA Z 50 although, for lower RA, there seems to be a recogniz- a = 0.37. The last twoareatx/M = 50from Ref. I. 0, slats grid. M = 1.9

able trend. cm, a = 0.21, x/M = 47 from Ref. 16.
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3.0 I I I I I I square intensities in different directions, were found to be
rather typical.) Also plotted in Fig. 2 is a point for a slats grid

e(looking like an open Venetian blind) from Ref. 16. In Fig. 2,
EA /ua\the length scale L, for Gad-el-Hak and Corrsin's" measure-

2.0 -. ments was obtained from the authors' tables, while for the
.- Stewart and Townsend data" it was computed by the area

L9 under transverse correlation curves and the assumption
that Lf = 2L.. (The vertical bar corresponds to the extremes

1.0 I I I I I I I I on Lf depending upon which of the transverse correlation
8 4 0 4 8 functions was used for integration.) Harris " did not measure

COUNTER-INJECTION CO-INJECTION Lf, and this is the exception mentioned earlier. For the typi-
(PERCENT) (PERCENT) cal data of Harris we have used, Lf/M was taken from Ref.

FIG. 3..Lf/u'forjet-gridsofRef. 17.0at zero injection rateisanaverageof 17 with the hope that the essentially similar configuration,
10 data points (99<R, • 130). Both 0 and Oat injection rates of 7.32% are grid solidity, and experimental conditions justify this step.
averages of six points each. R, IlOfor and 150 for(. The data of Figs. I and 2 allow us to speculate that

eL1 /u 3 may take on different values for different grid config-
urations. (Unfortunately, the perforated disc data of neither
Ref. 5 nor Ref. 19 could be included because Lf is not avail-

however, note that in the region of measurement in Ref. 17, able.) Investigators who compare theories of isotropic turbu-
simple measures of homogeneity, such as the uniformity of lence with grid turbulence data often implicitly assume that
meand eoiy istributionhin the "crergio " of the wind the turbulence sufficiently far behind a grid attains a charac-
tunnel and of isotropy such as the ratios of the root-mean- tein pnd tofhec fguaonftegr.Itosntter independent of the configuration of the grid. It does not

quite appear justified, presumably because the scales of tur-
bulence strongly affected by grid geometry contain a signifi-

TABLE I. Guide to the biplane grid data of Fig. I. cant fraction of energy. This dependence on initial condi-
tions can be seen more directly by examining the data of

Source Grid type x/M Symbol Gad-el-Hak and Corrsin," who used an array of parallel

Corrsin' Biplane, round rods rods, in combination with several jets of fluid (coflowing as
M = 1.27 cm, 2.54 cm 34-230 well as counterflowing) evenly distributed along each rod, to
a. = 0.44 produce nearly homogeneous and isotropic turbulence. Fig-

Batchelor and Townsend' Biplane, round rods A' ure 3 shows that eL 1/u' in the downstream region correlates
a = 0.34. M = 0.635, 20-180 reasonably well with the injection rate of the jets. It is worth
1.27 and 2.54cm noting that for large injection rates, eL1/u' seems to ap-

Baines and Peterson' Biplane, square rods - proach a value appropriate to square-mesh grid. This seems
M = 3.38 cm, a = 0.44' 27-64 quite reasonable physically because the grid is essentially a

Mills et al' Biplane, round rods 0 parallel-rod type for small jet speeds, but becomes more
M = 2.54 cm, a = 0.44 17-65 square-mesh type at high jet speeds.

Kistler and Vrebalovich* Biplane, square rods, 0 If it is true that the effects of grid geometry do persist, it
M =17.15cm, a = 0.34 4 is legitimate to ask why there does not seem to be any notice-

Comte-Bellot and Biplane, square rods 3 able difference (see Fig. I and Table I) between square-mesh
Corrsin' M = 2.54 and 5.08 cm 42-385

a = 0.34 grids of round rods and square-mesh grids of square rods.

Lin and Lin" 55One would also like to know, for instance, whether there are
noticeable differences in eLf/u' between single plane grids ofYeh and Van Atta" Biplane, round rods 23-4S x

M = 4 cm,7 = 0.36 square rods and single plane grids of round rods. We suspect
Sreenivasan et al."~ Biplane, round rods 0 that the asymptotic character of two grid flows will not be

(only typical data M = 2.54 cm, a = 0.44 12-102 "noticeably" different if the grid configurations are "suffi-
presented) ciently" close, and that, even in square-mesh grids, if one

changes the grid solidity a by a large amount, the flow char-
'The symbol A actually represents the mean of several sets of data whose acteristics will change significantly. We note (with some sur-

range is indicated in Fig. I by a vertical bar in each case. At RA = 14.4 prise) that a large body of literature on turbulence behind
there are 9 sets ofdata, 1SatR. = 20. 3 ,9at R = 28.4. and 3atR. = 41.

'Baines and Peterson's data cover seven biplane grids. Three grids have square-mesh grids is confined to grids of solidity not very
solidity of 0.61, 0.75, and 0.89, and are likely to have produced unstable different from 0.4 (see Table I).
flow downstream.' In two other cases (M = 30.5 cm and 20.3 cm), mea-
surementa did not proceed beyond x/M ofabout 12.5. In the seventh case,
which alone could be considered here. fL,/u' ranges from 1.29 to 1.86;
unfortunately, the corresponding Reynolds numbers are unknown, pre-
venting us from plotting the data in Fig. I. ACKNOWLEDGMENT
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