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rogress Report: Summ f work done under AFOSR nsorship during 82-

reambl

This report, documenting the progress made under AFOSR sponsorship (AFOSR-82-0299),
is a summary of the three yearly progress reports submitted to AFOSR, and also includes material
described verbally to the Program Manager, Dr. James McMichael, during our periodical meetings.
The research falls within the general area of "Turbulence, Turbulence Control and Drag Reduction'.
The progress made during the three year period 1982-85 can be classified under the following four
categories:

(1) Fundamental studies on turbulence dynamics

(2) Flow control studies

(3) Viscous drag reduction

(4) Miscellaneous.

Each of these areas will now be described briefly in the following sections; each section also
contains some general qualitative remarks.

ndamental i n_turbulen mi

The emphasis in this part work has been the examination of whether, and if so how, the
modern notions of dynamical systems, chaos and nonlinear systems can enhance our understanding
of turbulent flows in a way that we can use this improved understanding to predict better quantities
of direct interest in practical circumstances, such as mixing and drag. The strides made so far may
not be remarkable in an absolute sense, but we have definitely made some non-trivial progress.
When this work was begun, it was not fashionable within the fluid mechanics community (in fact,
some workers looked upon it rather unkindly), but many more groups are now engaged in similar
work. We think that turbulence is not chaos, and is more complex than the complex behavior
associated with simple maps (for instance), but that many tools employed for analyzing chaos can
be used profitably to gain a better understanding of turbulence. Furthermore, in spite of the protests
of some, we also believe that the canonical routes to chaos have some relevance to the manner in
which transition to turbulence occurs at least in some special circumstances.

Some idea of the work done can be had by the list of publications (including reports and
theses) that arose from it. We list them below, and discuss them briefly. Most publications are
enclosed, but not the theses and the interim reports (partly because they have already been mailed to
AFOSR at different times, and partly because they duplicate some of the published material).

The significance of this work is that it brings together the recent mathematical concepts from
nonlinear dynamics and some classical concerns in fluid mechanics. It is believed that this cross
fertilization will have significant impact on our understanding of turbulence in the next ten years (or
$0). The publications are: / ,-

a. K.R. Sreenivasan & P.J. Strykowski (1984) °
unconfined flows and chaotic dynamical systems”; In "Turbulent and chaotic phenomena in
fluids', pp. 191-196, North-Holland (ed. T.Tatsumi)

It was in this paper that the dimension of the attractor was first calculated from experimental
signals (more or less concurrently with others in the physics community who did similar
calculations in the Taylor-Couette flow). We indicated that the Ruelle-Takens scenario may hold
during transition to turbulence in coiled pipes. We have not pursued this flow much because of the
difficulty in obtaining purely periodic phenomena, but have pursued this line of enquiry in other
flows (see below). _

e
" b. K.R. Sreenivasan (1985) Transition and turbulence in fluid flows, and low-dimensional
chaog’s In 'Front)'ers of fluid mechanics', pp.41-67, Springer-Verlag (ed. S.H. Davis & J.L.
Lumley) col e
We showed that the points of view now developing from the understanding of chaotic
dynamical systems can be useful for interpreting the phenomena associated with transition to
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turbulence in wakes behind cylinders. This manuscript created some interest, and there are claims
that the windows of chaos and order observed in this paper were due to the aeroelastic coupling
between the flow and the cylinder. It is quite clear that aeroelastic coupling is a sufficient condition
for producing these windows of order and chaos, but that is not a necessary condition. Our present
view, based on a number of unpublished measurements including those on cylinder vibrations, is
that small three dimensionalities (invariably present) in the wake of a rigid cylinder will be enough
to produce the results obtained in this manuscript. Further work is in progress.

c¢. K.R. Sreenivasan (1986) 'Chaos in open flow svstems In 'Dimensions and
entropies’, pp 222-230, Springer-Verlag (ed. G. Mayer-Kress)

In this paper, we discussed the general difficulties associated with measurement of
dimensions and Lyapunov exponents in open flows, and presented trends with Reynolds number.
Flows examined were wakes, jets, mixing layers and flow through coiled pipes.

\
d. K.R. Sreenivasan & C. Meneveau (1986) 'The fractal facets of turbulence’ J. Fluid
Mech. 173, 357-386.

In this paper, we showed that there are various facets of turbulent flows that are fractal-like,
and measured by experiment the fractal dimensions of turbulent/non-turbulent interfaces,
iso-velocity surfaces, iso-dissipation surfaces, etc. Part of our contribution in this paper (and in
reference (c) above) is believed to be the rendering of some mathematical properties of strange sets
amenable to measurement, and the interpretation of these measured measurements in contexts of
fluid flows. In particular, we examined the following questions: (a) Is the turbulent/non-turbulent
interface a self-similar fractal, and (if so) what is its fractal dimension? Does this quantity differ
from one class of flows to another? Arc constant-property surfaces (such as the iso-velocity and
iso-concentration surfaces) in fully developed flows fractals? What are their fractal dimensions? (c)
Do dissipative structures in fully developed turbulence form a fractal set? What is the fractal
dimension of this set? Answers to these questions shed some light also on some long standing
questions in turbulence — for example, the growth of material lines in a turbulent environment. The
overwhelming conclusion turned out to be that several facets of turbulence can be described by
fractals, and that their fractal dimension can be measured. Currently, we are trying the explain our
findings in terms of the dynamics of turbulence, and examine the implications of these findings to
turbulent mixing.

v
e. K.R. Sreenivasan & R. Ramshankar (1986) "Transition intermittency in open flows, and
intermittency routes to chaos', Physica 23D, 241-258.

The intermittent transition to turbulence in open flows (mainly pipe flows) was examined in
this paper in the context of intermittency routes to chaos. Preliminary conclusions were that some
quantitative connections could be discerned, but that they were incomplete. In a similar manner,
connections with phase transition and other critical phenomena were also found to be imperfect.
Some measurements which we hope will be useful in developing alternative models describing the
essentials of the phenomena were described.

1Y

f. K.R. Sreenivasan, P.J. Strykowski & D.J. Ohnger (1987) 'Hopf bifurcation, Landau

gqggngn, and vortex shedding behind circular cylinders’, In 'Forum on unsteady flow
separation' of the ASME Transactions, pp. 1-13 (ed. K.N. Ghia).

In this paper, we have shown by measurement that the bifurcation accompanying the vortex
shedding behind circular cylinders is of the Hopf type, and that the Landau equation (with
constants possibly depending on the spatial position) describes the post-critical behavior quite
accurately. We determine typical Landau constants. Finally, we have examined the sense in which
absolute instability is relevant to the vortex shedding problem.

z, EI!!\V gﬂ"“:!!l |g§g;||gh

This has been a central issue of our research, but a number of things resulting from it have
remained unpublished to-date, although they are at various stages of publication now. The bulk of
the work can be found in two Ph.D.theses, whose titles and abstracts are given below.
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ntrol of Absolutely an nvectively Un le Shear Flows'

The control of the absolutely unstable wake flow and the convectively unstable boundary
layer is investigated. The control (1.e., suppression) of disturbances in the wake and the boundary
layer is achieved through different means, because the flows are governed by different types of
instabilities. For instance, vortex shedding behind circular cylinders can be suppressed (over a
limited range of Reynolds number) by the proper placement of a second smaller cylinder in the
near-wake of the main shedding cylinder. The control is new and quite dramatic, and is a
consequence of the wake being absolutely unstable. Control in the boundary layer is achieved by
acting on the diswrbances directly because the flow is dominated by the convective instablity. In the
boundary layer, control is successfully applied to Tollmien-Schlichting waves and narrow
band-passed random waves using the wave superposition principle. The control is achieved by
using a novel technique, namely suction and blowing, by which disturbances are produced and
subsequently controlled.

A publication that has resulted from this work is:

P.J. Strykowski & K.R. Sreenivasan (1985) 'The contro] of transitional flows' ATAA
Paper -85-0559, Presented at the AIAA conference on Shear Flow Control, Boulder.

Two other papers are expected to be prepared on the basis of this thesis.

b)S.Ragh

The purpose of the present research is to demonstrate experimentally a set of methods for the
active control of combustion and acoustically coupled fluid dynamic instabilities. These methods
are based on the theoretical understanding of the interaction of mass, momentum or energy sources
with a disturbance in the system. The disturbance could be linear or nonlinear and either vortical,
acoustic or in the entropy mode. It has been shown that periodic addition of mass, momentum or
energy can result in either the amplification or the decay of the energy in a periodic disturbance
depending on the phase in which this addition occurs. Successful control has been achieved in
several cases of fluid dynamic and combustion instability ranging from laboratory scale
experiments to an operational, large combustion tunnel.

The method of heat addition was used to succesfully control oscillations in a Rijke tube, a
whistler nozzle, resonance in a pipe set up by loud speaker, and a turbulent pipe flow with
superposed acoustic resonance. It was found that more control heat is necessary to suppress
oscillations in a large background of turbulent noise. Drag forces generated by fine screens was
used to suppress the oscillations in a whistler nozzle. A feedback mechanism was designed to
oscillate the screens in the proper phase to achieve the desired control action. The resonance in a
pipe set up by a loud speaker was suppressed by periodic mass addition using a feedback control
system. Finally, a combination of screens and heating coils was used to control oscillations in a
large combustion tunnel. The methods of control explored in this work are independent of the
source of instability, and hence have a broad range of applications in real systems.

One publication that has resulted from this work is:

KR Srceniv?lsan, BT Chu & S. Raghu (1987) 'Th

T Lof ilati .
i n , ATAA Paper-85-0540, Presented at the AIAA meeting
on Shear Flow Control, Boulder.

Three more publications that will follow are:

B.T. Chu, K.R. Sreenivasan & S. Raghu (1987) ‘On the control of combustion instability',

to appear in Progress in Aerospace Sciences.
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S. Raghu & K.R. Sreenivasan (1987) 'Control of acoustically coupled combustion and fluid

dynamic instabilities’, AIAA Paper -87-2690 to be presented in the 11th Aeroacoustic
Conference in Sunnyvale, CA, Oct. 19-21.

S. Raghu, R.P. Bradley & W.M. Roquemore (1987) ‘Control of combustion il
to be presented at the NATO Advanced Study Institute in a Conference on Instrumentation
for Combustion and Flow, September 14-25, 1987, Portugal.

Vi s Drag i

Again, the bulk of this work has remained unpublished, but a majority of the work has been
summarized in the following Ph.D. thesis.

a) T, B, Lynn (1987): 'Manipulation of the Structure of a Turbulent Boundary Layer'

The manipulation of a turbulent boundary layer for the purpose of net drag reduction is an
attractive topic for research, because even modest success will result in large energy savings. The
focus of this work is passive manipulation, one of the simplest manipulation techniques. The most
promising manipulator to-date is the so-called BLADE device, consisting of two thin ribbons or
foils suspended in the outer portion of the boundary layer. BLADE devices were devised and
researched first at the Illinois Institute of Technology (IIT) and NASA Langely. When we began
this research, there was significant controversy over the magnitude of net drag reduction possible
(20% reported by the IIT group) and the maximum skin friction reduction obtainable (50% reported
by the IIT group).

Accurate local skin-friction have been made using sublayer fences in a perturbed boundary
layer. By comparing our direct measurements with those obtained by indirect methods, we have
determined that the degree of drag reduction depends on the method used to calculate the combined
devise drag and skin friction drag.

Using auto and two-point correlation measurements as well as space-time correlations, we
investigated the effects of BLADE devices on the turbulent structures in the boundary layer,
comparing them with wire devices which are known not to produce a net reduction in drag. The
sustained effects of the BLADE devices were, in all length scale measurements, stronger and longer
lasting than those of the wire devices. The space-time correlation revealed that the most significant
effect of the BLADE device was on the large structure (the dominant structure in the outer region of
the boundary layer). In contrast, the wire manipulator had no effect on the large structures. The
BLADE's alteration of the large structure was evident in the marked difference in the development
of the wakes downstream of the two devices.

We have also investigated inner layer devices consisting of sublayer wires. The results from
both the inner and outer layer manipulations suggest the effective alteration of a turbulent boundary
layer depends on the scaling of the device. The dominant turbulent structure in the region of interest
dictates the proper scaling of the device.

b) In addition, a Master's degree work by Mr. Mark Lee partly on the effect of a rotating
cylinder immersed in the turbulent boundary layer should be mentioned. This work showed the
importance for drag reduction of lifting objects immersed in the turbulent boundary layer. This is a
matter of ongoing research, and will be reported elsewhere.

¢) Some of our work on the so-called BLADE manipulators was summarized also in an
invited talk (with R. Narasimha) at the AIAA Conference on Shear Flow Control, Boulder.
The talk was prepared in the form of the following report:

" R. Narasimha & K.R. Sreenivasan (1987); !

Flat plate drag reduction by turbulence
manipulation’, Report Number 86FM4, Department of Aerospace Engineering, Indian Institute of
Science, Bangalore.
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In the course of work we did several years ago, it became evident that the zero normal
velocity boundary condition, imposed in the interior of a turbulent flow, will have a srong effect on
the flow evolution. To test these ideas, we set up several experiments in grid turbulence, but have
pursued them only sporadically, the reason being that our resources were limited, and we had to
make a choice on priorities.

For the same reason, we have also not written up on our pipe flow work, related to the
effects of initial conditions on the evolution of the flow.

However, two pieces of research in this category have been written up. These are enclosed,
and a brief description is included below.

a) K.R. Sreenivasan (1983): '‘Some studies in non-simple pipe flows', Invited paper in
Trans. Inst. Engineers Australia, vol. MES, pp.200-208.

A variety of phenomena occurs in pipe flows, especially if we stray away from straight
circular pipes of uniform crosssection. This paper illustrates a few of the complexities arising from
the relatively simple changes in geometry, namely, the sudden expansion and the coiling of the
circular pipe. In particular, the phenomena examined are relaminarization, large amplitude
self-excited oscillations in sudden expansions, transition to turbulene, and retransition from the
relaminarized state to a turbulent one.

b) K.R. Sreenivasan (1984): ‘On_the scaling of the turbulence energy dissipation rate’,
Phys. Fluids, 27, 1048-1051.

From an examination of all data to-date on the dissipation of turbulent energy in grid
turbulence, it was concluded that, for square-mesh configuration, the ratio of the time scale
characteristic of dissipation rate to that characteristic of energy-containing eddies is a constant
independent of Reynolds number, for microscale Reynolds numbers in excess of about 50.
Insufficient data available for other grid configurations suggest a possibility that the ratio could
assume different numerical values for different configurations. The persistent effect of initial
cogd(i:tions on the time scale ratio is further illustrated by reference to the jet-grid data of Gad-el-Hak
and Corrsin.

Concluding remarks

A part of progress achieved during this period has been of qualitative nature, that is, of the
type that has helped us to pose the right questions for further inquiry. In fact, some of the work
now being done by us, which seems to hold more promise, has had its roots in the exploratory
work done under AFOSR sponsorship during the period under consideration. In this sense, the
significance of the work to be described below lies beyond the specifics. We are happy to
acknowledge this indebtedness to AFOSR.

It may not be out of place to note that, as a secondary outcome of the AFOSR support, three
Ph.D.'s and two M.S.'s were produced at Yale. One of the Ph.D.'s (Paul Strykowski) has
accepted a professorial position at Brown, the second (Ted Lynn) a post-doctoral position at
DFVLR in Berlin, while the third is a post-doctoral fellow at Yale. One of the two Master's degree
recepients (Mark Lee) is currently employed at the Wright Patterson Air Force Base, while the
second (David Kyle) has taken a break from studies to pursue a different career.
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TURBULENCE AND CHAOTIC PHENOMENA IN FLUIDS

T. Tatsumi (editor)

Elsevier Science Publishers B.V. (North-Holland) 191
© [UTAM, 1984

ON ANALOGIES BETWEEN TURBULENCE IN OPEN FLOWS
AND CHAOTIC DYNAMICAL SYSTEMS

K.R. Sreenivasan and P.J. Strykowski

Mason Laboratory, Yale University, New Haven, CT 06520

We briefly study turbulence in open flow systems in the
context of concepts developed in studies of chaotic dy-
namical systems. Although several flows have been ex-
amined, particular attention will be focussed on the
question of transition to turbulence in coiled pipes;
some degree of correspondence with the Ruelle-Takens-
Newhouse route to chaos is indicated. Using the
Grassberger-Procaccia algorithm, the dimension of the
attractor for velocity signals during and immediately
after transition to turbulence has been computed. Our
results, such as they are, indicate that the dimension
is relatively low. Brief comments will be made on the
difficulties of computing the dimension, as well as on
the relevance of strange-attractor theory to fully-
developed turbulence.

INTRODUCTION

Recent studies of the dynamics of nonlinear systems with finite (and small) num-
ber of degrees of freedom have produced profound results with probable implica-
tions to the very notion of chaos — for example, in kinetic theory of gases in
the context of the Boltzmann equation — but the interest of fluid dynamicists in
thegse studies stems primarily from the notion of genericity, that is, the expec-
tation that the qualitative properties of the Navier-Stokes equations are shared
also by these simpler systems. A related important (and, to our knowledge, as
yet untested) expectation is that turbulence, at least not too far away from
transition, behaves like a strange-attractor. Without going into details, we may
restate the above supposition to mean that turbulence has a manageably small num-
ber of 'dynamically significant' degrees of freedom, despite the overwhelming
complexity it displays, or that one may be able to extract a finite-dimensional
projection out of an infinite-dimensional phase space.

As we know today, three distinct 'scenarios' of chaos have been indentified; more
will no doubt be discovered. 1In the first scenario, chaos sets in abruptly fol-
lowing very few (most probably, three) Hopf bifurcations [1,2]. In the second,
the onset of chaos occurs via an infinite cascade of period doubling [3,4,5] with
certain well-defined universal characteristics. The third, less-studied, route
envisages chaos through gradual merging of decreasingly intermittent chaotic
regions [6]. Obviously, these scenarios of chaos have at least qualitative re-
semblence to trangition to turbulence in one or the other of the fluid flows; con-
siderable work [ 7-10] in the last few years has shown that the correspondence is
more than superficial in highly constrained 'closed flow systems', that is, fluid
flows which are totally confined within a closed boundary (for example, the nar-
row-gap Taylor-Couette flow, or convection in a finite box of small dimension).
Although it appears certain that many aspects of transition, even in confined
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Figure 1. Time traces (duration 15 ms) and power spectral densities of the fluctu-
ating velocity u on the pipe centerline of a coiled pipe; pipe diameter = 3.18 mm,
coil radius = 42 mm. Same gain for all cases. Note that the spectral ordinates do
not all have the same scale. In general, open systems are characterized by the

presence of sizeable noise in the initial conditions, which is why we have chosen

to plot the power on a linear scale.

power spectra.
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194 K.R. Sreenivasan, P.J. Strykowski

fractal dimension D, an adaptation of the Hausdorff Jdimension. (The fraccal di-
mension mav be viewed as a measure of the information necessary to specify the
location of a fractal set. For classical cases with self-similarity, it coin-
cides with the usual notion of dimension.) Calculating D using box-counting al-~
gorithms is not practical if D > 2 (see [13]), as is surely the case for turbu-
lence (see below). Another dimension v, related to the fractal dimension

D(. £ D), as well as the information-theoretic entropy, has been proposed [14].
If v is the n-dimensional vector in time domain,one computes first the quantity
C(r) given by

N
lim 1 y
c(r) = = Z: Hir = [v,=-v. )}, (1
’ N2 gyl iNI -3 )

where v, = y(it'), 7' being the sampling interval, and H i{s the Heaviside step
function. For r not too large, it can be shown that C(r) - rY. Grassberger &
Procaccia [ 14} have shown that v = D for several chaotic attractors commonly dis-
cussed in the literature on dynamical systems, and have argued that, where it is
smaller than D, v is in fact the more appropriate quantity to consider. We shall
not discuss this further but only note that D is a quantity related to geometry,
while v has a probablistic content in it. In our computations of v, we used real-
time data of the axial velocity component to construct a multidimensional vector
using the delay coordinates (u., u v «... U, 4 +v.) with increasing values of
d, and evaluated v as indicated abotz; T is af ggEééIal multiple of T'. Initial-
ly, v increases with d but settles down eventually. It is this asymptotic value
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Figure z. The quantity log2 C(r) vs log2 r, v in arbitrary units. Re = 6625.
Differ.nt curves correspond to different’d. From left to right, d = 1, 5 *°
15, 20, 25, 30, 20, 50 and 70.
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of v that is of interest to us. If v is relatively small, the concept of strange
attractors may be very useful in turbulence; otherwise, it is hard to assess its
significance.

As a check on our computational procedure, we may note that v was found to be 1
for a sine wave and 0.63 for a Cantor set, as expected. Since a purely random
signal, such as the output of a white-noise generator, has a space-filling attrac~
tor, v =d for all d.

Figure 2 shows several curves of log C(r) vs log r, computed with increasing val~-
ues of d, from the velocity data for Re = 6625 just after the onset of the broad-
band spectral behavior. Typically, these curves have a linear region; the level-
ling off of the curves for large r is the result of the finiteness of the attrac- 4
tor, while deviation from linearity towards the very low end of the curves arises : N
from resolution problems. The slope of the linear region increases with d ini-
tially but appears to settle down to a constant beyond a certain d. This can be
seen more directly from figure 3. The asymptotic velue of v 1s around 6.

<

L
¥

| oo et )

6 Figure 3: The slope v of the
straight regions of curves in

= figure 2, vs the dimension of
the phase space, d. The asymp~
A totic value is around 6.
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The data presented in figures 2 and 3 are typical of our computations,which extend
to Reynolds numbers on either side of 6625. However, they are not sufficiently
systematic at this point to be included here as conclusive results. This is so
chiefly because we have not yet made the various sensitivity tescts on v. First,
before the signal is digitized, some low-pass filtering 1is necessary; we have not
investigated the effect of varying this cut-off on v, We have also not investi-
gated very thoroughly the effect of varying T om v. Typically, however, this lat-
ter effect 1is not significant over a fairly wide range of 7. With these reserv-
ations noted, we may mention that, for Re < 6625, the value of v is less than 6,
while being a rather strongly iacreasing function of Re at higher Re; in fact, at
the highest Reynolds number of our computations, we have not yet seen v settle
down even for d as large as 100. (Our initial results presented at the meeting in
Kyoto were necessarily at lower Reynolds numbers than 6625.)

DISCUSSION AND CONCLUSIONS

The results of the previous two sections represent only a small part of a largely
unyielding investigation. In relation to transition and the scenarios of chaos,
our experience is that none of the above-mentioned routes to chaos occurs during




[ 2R AR Pab ol ol Na) V.4 6

- ‘\ ‘- ~ W W
R‘* PRI A N A AN I AYIC A O AT Lo AR AN

AN o MU NV RV URT RV KU VN WUV WUV W T W WG W WA W A WX T TR RN ME DRI S I RN N,

196 K.R. Sreenivasan, P.J. Strykowski

transition to turbulence in open systems like ‘ets or wakes. While it is of course
possible that more than one of the above scenar.os operzte simultaneously, it looks
certain that turbulence, unless constrained severely, does not behave like a simple
dynamical system. On the other hand, we would like to make a specific mention of
the fact that our initial experience with coiled pipes was disappointing too; it
was only after some modifications of the flow were made, primarily in the form of

a smoother inlet to the upstream straight section, that we could observe the evol-
ution discussed earlier. Can we then make the sweeping generallization that, by
making 'appropriate’ changes to the flow, perhaps by way of restricting initial
conditions to a suitable (but unknown) 'basin of attraction', we can nudge trans-
ition to follow some well-defined scenario of chaos?

What specifically has our work shown in relation to fully developed, or, at least,
'nascent' turbulence? While much work needs to be done, it suggests that, at least
at Reynolds numbers not too far above the transition value, the attractor for tur-
bulent signals is relatively low-dimensional. It may thus juscify attempts at
extracting fer the Navier-Stokes equations a finite-dimensional projection out of
the seemingly infinite-dimensional phase space. We should, however, note that the
dynamical systems approach will at best represent a small part of the total pict-
ure in turbulence unless the spatial chaos and order, as well as the relation
between these latter characteristics and temporal behavior, are discussed.
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Transition and Turbulence in Fluid Flows and
Low-Dimensional Chaos

K.R. Sreenivasan

Department of Mechanical Engineering, Yale University
New Haven, CT 06520, USA

Recent studies of the dynamics of low-dimensional nonlinear systems with chaotic
solutions have produced very interesting and profound results with several implica-
tions in many disciplines dealing with nonlinear equations. However, the interest of
fluid dynamicists in these studies stems primarily from the expectation that they
will help us understand better the onset as well as dynamics of turbulence in fluid
flows. At this time, much of this expectation remains untested, especially in 'open'
or unconfined fluid flows. This work is aimed at filling some of this gap.
Measurements made in the wake of a circular cylinder, chiefly in the Reynolds
number range of about 30-10°, have been analyzed to show aspects of similarity with
low-dimensional chaotic dynamical systems. In particular, {t is shown that the int-
tial stages of transition to turbulence are characterized by narrow windows .of chaos
interspersed between regions of order. The route to the first appearance of chaos
is much like that envisaged by Ruelle & Takens; with further increase in Reynolds
number, chaos disappears and a return to three-frequency quasiperiodicity occurs.
This is followed in turn by the reappearance of chaos, a return to four-frequency
quasiperiodicity, reappearance of chaos yet again, and 80 on. We have observed sev-
eral alternations between order and chaos below a Reynolds number of about 200, and
suspect that many more exist even in the higher Reynolds number region. Each window
of chaos 18 associated with a near-discontinuity in the vortex shedding frequency
and the rotation number, as well as a dip in the amplitude of the vortex shedding
mode, It is further shown that the dimension of the attractor constructed using time
delays from the measured velocity signals is truly representative of the number of
degrees of freedom in the ordered states interspersed between windows of chaos; it is
fractional within the windows of chaos, and is higher than those in the neighbouring
regions of order. Our measurements suggest that the dimenaion is no more than about
20 even st a moderately high Reynolds number of 10, and that it probably settles
down at about that value.

1. Introduction
a. General remarks

The principal parameter of incompressible viscous flows, in situations free of
body forces, is the Reynolds number, Re. Observations show that for given (fixed or
time-independent) boundary conditions (and external forces if applicable), the flow
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is unique and steady for Re < Rect, where Recr is a certain critical value of Re;
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this is the steady laminar motion. As Re increases, the fluid motion may first be-

come periodic, quasiperiodic, and 'eventually' chaotic. (Chaos is defined better in

section 3 and in the appendix, but we shall also loosely use the word to designate

v v T T ww

a state in which the details of motion are not reproducible.) This chaotic state is f de

not necessarily turbulence as generally understood — and we shall discuss this short-

ly — but it is believed that one attains the turbulent state if the Reynolds number

I (AT X

is taken to a sufficiently high value. The goal of the stability theory is to under-

2ol

stand how the evolution from the laminar to the turbulent state occurs, while tur-

vy Y VYR

bulence theories aim at unearthing and predicting the mysteries of the (fully) tur- . The

bulent state itself.

It is generally believed that the key to both these problems lies in the Navier- Newhouse, Ru
Hopf b

The wor:«

Ve

Stokes (NS) equations, and that no additional hypotheses of fundamental nature are af

required for describing either the onset of turbulence or its dynamics. Much effort

has thus been spent on mastering the NS equations. However, the difficulties, both

AR R

analytical and computational (at high enough Reynolds numbers), remain intimidating.
In the recent past, claims have been made that autonomous dynamical systems
with small number of degrees of freedom, typified by

db

i L
dc * E(bi' 61), (1.1)

UMV QDY 1.8

where the b1 characterize the state of the system (the so-called 'state variables'),

i is a small integer, and €, are the so-called control parameters (analogous to Re ie

i
in the NS equations), help us towards attaining both the goals mentioned above. It
is to a discussion of aspects of these claims, via an example of fluid flow behind

circular cylinders, that this paper is devoted.

b. Remarks on degrees of freedom, genericity, and spatial chaos
Several questions arise immediately. One natural question concerns the rele-
vance to fluid flows of low-dimensional dynamical systems. To give some meaning to

the concept of degrees of freedom in fluid flows, let us approximate the velocity

(and external force) conditions, this number is zero. If Re increases just past
42
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[+]
vector uj appearing in the NS equations as kox
uj - :E: aj(g;:)e S~ (3 =1,2,%, (1.2) rsti
k
where the wave number vector k 13 an element of a discrete (finite or infinite) set.
The NS equations can then be written formally as c
da, (k;t)
3 " F(ai; Re), 1 = 1,2,....N (large). (1.3)
The number of the coefficients a which, for given boundary conditions for the fluid
flow, are capable of variation in time can now be called the degrees of freedom of ran i
the fluid flow governed by the NS equations (to within the approximation implied in 1
(1.2) and (1.3)). Since the laminar flow is uniquely specified by the boundary er
ul
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Recr. only a few degrees of freedom are excited, and hence it appears that, at least

in the positive neighbourhood of Recr (to be called transcritical region henceforth),
consideration of these few degrees of freedom is adequate.

An interesting hypothesis (which we shall examine in this paper) is that the
number of degrees of freedom (not necessarily in the sense described above) remains
small even in (certain type of) high Reynolds number turbulence.

Assuming that the number of degrees of freedom excited in the transcritical re-
gion is indeed small, we must ask whether the behavior in this transcritical region
does not depend on the broad nature of the right hand side of equations (1.1) and
(1.3). The most often cited justification for the belief that this dependence is in
some sense of secondary importance comes from the work of Ruelle & Takens [l] and
Newhouse, Ruelle & Takens [2] which indicates that chaos sets in abruptly following
a few Hopf bifurcations, and that this behavior is 'generic' or 'typical'.

The words 'generic’ and 'gemericity' find their frequent use in the literature
on dynamical systems, and so, it is perhaps useful to discuss the concept briefly.
Ruelle & Takens maxe this concept quite specific for the vector fields they were
considering, but we shall be content with a rather loose qualitative descriptien.
Consider as an erzwmle, a class of functions possessing continuous derivatives up to
a certain order, and satisfying differential equations of the type (1.1). Proper-
ties of this class of functions which are the rule and not the exception, and which
do not depend on the precise nature of the right hand side of (1.1), are called ge-
neric. The conclusions of Ruelle & Takens strictly hold for ar idealized mathemat-
ical system, and whether the concept of genericity is powerful enough to embrace fluid
systems is not clear. One should attempt to answer this question by looking at the
specific form of F in (1.3) and/or by observing the actual bifurcations in experi-
ments on laminar-turbulent transition.

Even if the concept of genericity does hold for fluid flows, it is not obvious
that interesting nongeneric phenomena do not occur. To make this notion specific,
let us consider the following rather far-fetched example. Suppose we link (as in our
example above) genericity to the existence of velocity fields possessing continuous
derivatives of a certain order. Those generic properties may be irrelevant to a turb-
ulent boundary layer since one cannot exclude the possibility that at some moment
during bursting near the wall (a key event sustaining turbulence production) this
smoothness condition is destroyed in spite of viscosity. It is therefore sensible to
keep in mind that nongeneric behavior is neither uninteresting nor unlikely, espe-
cially when conditions such as configurational symmetry, vicinity to wall, play an
important role in the evolution of the flow.

Finally, one must mention the predominant role played by spatial chaos (and
order!) in turbulent flows of fluids. An important characteristic of fluid turbu-

lence is random vorticity, whose presence necessarily implies that the velocity vec-

tor is a random function of position. Autonomous dynamical systems of the type (1.1),

on the other hand, do not contain any space information., While temporal chaos in

fluid turbulence may in some sense be symptomatic of spatial chaos, it is clear that
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autonomous dynamical systems have little to say directly about the latter, at least
at the current state of development.

c. 'Closed' and 'open' flow systems

Notwithstanding these remarks, it is necessary to note that several beautiful
experiments now exist in the Taylor~Couette flow (e.g., Refs. 3, 4 and 5) and the
convection box (e.g., Refs. 5 and 7) which have lent support to the notion that the
behavior of flufd flows in the transcritical region could be similar to that of low-
dimensional dynamical systems, This in itself is undoubtedly remarkable, but it should
be remembered that these two flows are special in the following sense. In all 'closed

flow' systems — of which the convection box and the Taylor-Couette flow are two pop-

Al .53 L AR % O LA ARG 4

ular examples — the boundary is fixed so that only certain class of eigenfunctions

.

can be selected by the system; this does not hold for another class of flows we may
call 'open flow systems' — for example, boundary layers, wakes, jets — in which the
flow boundaries are continuously changing with position. Thus, while in closed flow
systems each value of the control parameter (for example, the rotation speed of the
inner c¢cylinder in the Taylor-Couette problem) characterizes a given state of the flow
globally, this is not true of open systems. Consider as an example the near field of

a circular jet. For a given set of experimental conditions, the flow can be laminar

» 2 80 T 5 Y PRI R

at one location, tramsitional at another and turbulent at yet another (downstream)

Srs,

location. This usually sets up a strong coupling between different phenomena in dif-
ferent spatial positions in a way that is peculiar to the particular flow in question.
Secondly, the nature and influence of external disturbances (or the 'noise', or the
'background or freestream turbulence') is more delicate and difficult to ascertain

in open flows: the noise, which is partly a remnant of complex flow manipulation de-
vices and partly of the 'long range' pressure perturbations, is not 'structureless'
or 'white', no matter how well controlled. Finally, it is well known that closed flow
systems can be driven to different states by means of different start-up processes;
for example, different number of Taylor vortices can be observed in a Taylor-Couette
apparatus depending on different start-up accelerations [8]. This type of path-sen-
sitivity in a temporal sense does not apply to open systems, where the overriding

factor is the path-sensitivity in a spatial sense (i.e., the 'upstream influence').

d. Scope of the paper

On balance, all these considerations suggested to us that it is desirable to
look at some open flows to determine the extent to which dynamical systems can assist
us in our goals of understanding transition and turbulence in fluid flows. This is
the motivation for the work described in this paper, which is to be viewed more as a
progress report than as a complete account; obviously much more remains to be done.
Our approach 1is to select well-known flows and follow the bifurcations as closely as
possidble. (We reported some of our earlier work in pipe flows in [9] and wake work
in {10].) Surprisingly, while much work has been done in these flows in the past, an
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amazing amount of new information can scill be acquired that will facilitate clari-

fying the relation between low-dimensional chaotic systems and fluid flow transition
and turbulence.

looks for are often dictated by contemporary concerns.

2.

to discuss here only our wind tunnel experiments in two-dimensional wakes behind cir-
cular cylinders.
the vortex shedding value) to about 10".
and one of the suction type — were used.
aluminium tubes, stretched tightly across the width of the wind tunnels, were used
as wake generators.

experimental conditions are summarized in Table 1.

Table 1.

Experiments

Part of the reason for this {s undoubtedly that the details ome

Although we have conducted experiments in wakes, jets and pipe flows, we choose

The Reynolds number range covered is from about 30 (slightly below

The aspect ratio varied between about 70 and 2000.

The flow configuration and experimental conditions

b4

d

(um)
0.24
0.24
0.36
4.0

0.36

L Y

2000
2000
1330
170
70

stant temperature anemometer.
tube connected to a calibrated MKS Baratron with adequate resolution ( and an aver-
ager).
holder.

pover gspectral density of the streamwise velocity component, u,
nals were digitized at sufficiently high fiequency (60 kHz or more) to ensure that,

whenever the signal was periodic, at least 30 digitized points were contained in one

All velocity signals were obtained with a hot-wire operated on a

The hot-wire and the Pitot tube were mounted on a specially designed slim

Some of the data to be presented in this and later sections is in the form of

. Experimental conditions

Two wind tunnels — one of the blower type

Nylon threads, stainless steel wires and

v

_wake generator
.

-
— <}

aspect ratio wind tunnel characterfstics

suction type; turbulence
level = 0.2X at speeds

blower type; turbulence
level varied from 0.68%

0.06% at sneeds

DISA 55MO1 con-
The speed of the tunnel was monitored with a Pitot

- o

Nearly all the sig-
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period of the basic frequency (so that it was a good representation of the analog
signal). Further, the entire length of the signal (which contained at least 100 cy-
cles of the basic frequency) was Fourier transformed at once using the Cooley-Tukey
FFT algorithm. The overriding criterion was that the spectral resolution should be
as good as possible (here, between 0.5 Hz and 2 Hz compared with shedding frequen-
cies of the order of 2000 Hz or more) and that one must not miss any low frequency

modulations.

b. The background turbulence
We have worked with varying levels of background turbulence, and found that the
occurrence of different stages of transition reported here is in itself not terribly
sensitive to the turbulence level as long as it is not too high; larger turbulence
levels blur the distinction between different stages and alter the details somewhat
erratically. One should, however, strive to eliminate all strong discrete freauency
components in the background turbulence structure.

Figure la shows a typical power spectral density of u in the freestream at Re =
60. (The ordinate is the logarithm to base 10 of the power.) The 'noise' (though
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FIGURE 1: Normalized powe- (or frequency) spectrum of (a) noise of the instrumenta-

tion and digitizer, plue freestream disturbances, Re = 60; (b) instrumentation and
digitizer noise only with no flow.
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devoid of any discrete peaks) does not appear to be 'white' but has a much larger
low frequency component. Figure lb shows the power spectral density measured with
the flow completely shut off, but the hot-wire and other electronic instruments op-
erating the same way as before. It is :lear that the anomalously high low frequency
content is not representative of the f{iow itself, but of electronic and computer
noise. Allowance should thus be made or this fact in the interpretation of the

spectral data to follow.
3. Results from Spectral Measurements

a, Route to chaos: rhe first appearance

Figure 2 shows the logarithm (to base 10) of the normalized power spectral den- i
sity of u at a Reynolds number (based on the freestream velocity and the diameter
of the cylinder) of about 36, which is approximately the onset value for vortex shed-
ding. Notice that the instrumentation and other noise level i{s around 10", while
the pear 2I the spectrum (Zarked EL;, correspending to the basic vortex shedding fre-

quency behind the cylinder, is at round 107°"%, about 7% orders of magnitude higher

« e

than the noise level! The sharpness of the peak (as well as of the other peaks to

the right of fl which are the harmonics of fl) is excellent.

14

i : FIGURE 2: Normalized frequency spectrum of
u at Re ~ 36. Note that the power P is

' b 4L plotted on a logarithmic scale (to base 10).
Iy i The peak at f = 590 Hz corresponds to the

. - ; I vortex shedding, and the subsequent strong

I | ‘ i [ peaks above the noise level are simply har-
0 e 10 3000 oo 3o om0 Toos S8 oo monicsoffl.

! i &
|

-3

!

Freauency (Hz)

At a somewhat higher Reynolds number of 54, there appear a number of peaks in
the spectrum (figure 3a); as shown in the expanded version (figure 3b) all the peaks
can be identified precisely in terms of the interaction of the two frequencies — the
basic vortex shedding frequency fl and another incommensurate frequency fz.

At an Re = 66 the spectrum (figure 4) shows broadened peaks with no overwhelm-
ingly strong discrete components — quite a different situation from that of figures
2 and 3. One might say, in the language of dynamical systems, that chaos has set in!

The sequence of events leading to chaos are so far literally like that envisaged
in the Ruelle-Takens-Newhouse (RTN) picture of transition to chaos, and so, a brief
digression roughly describing this picture is quite useful. (The appendix is an in-

troduction to the basic terminology.) With increasing Re, the steady laminar motion

47

.;.q{ N ’ Y 3 . N 0
b s TR T A2 3 4 A R A S LA O Ao AN MR IR



[RRRS VOIFIN -F (L FUSV Y NN

IS L I s g SPI AT v % 7

i OO VY SNV O AN

[P

! T . nufber yiel«
|| XsSda, (a)
0 '; ’ 4 house, Reul
: ‘ i ! : varie\y!) ar
- | § . +
H : | ‘7 [ tractod (se
. N i | I fi re\
NI — wore &
§ ' ! lence is
" lL' !
}“' |
P -8 N J-%L L i,
1 i ‘m
| | i :
-0 1
-1 Ffom the me
- ddagram frc
belng a tin

-16

2000 4000 600C 8000 Acdording t

ner\will h¢
’l..“ L1l ( b)

0 1,118 me L ] as

t]

- (RO et
\/ i l x‘ 1, .

Ao

2 11,44

7))

-6

r'(_
T"q

~10g 00 %00 1200 1600 2000
Frequency (Hz) P

FIGURE 3: (a) Normalized frequency spectrum of u at Re = 54. 1In (b), the frequency
range 0-2200 Hz is expanded. All significant peaks in (b) are simple combinations of

the vortex shedding frequency fl (corresponding to the most dominating peak), and an-

other incommensurate frequency fz. After satisfying ourselves that there are no sub-
harmonics of fl (and that 119.02 Hz is unrelated to the line frequency or spurious
oscillations of the cylinder) we have picked f2 by hypothesizing that the peaks near-
est fl must be f1 b3 fz. The value of f2 thus obtained accounts for every other sig-
nificant peak as shown in (b) — actually to 4 or 5 decimal places for reasons we do
not understand! At least part of the reason for the relatively low noise level (com-

pared with figure 2) {s the increased signal level.

loses stability and becomes periodic with frequency f1 (say); the power spectral den-
sity will have (as in figure 2) a peak at fl (and {ts harmonics), and the phase dia-
gram will show a limit cycle behavior. Loss of stablility of this new state yields
a quasiperiodic motion with two independent frequencies, f1 and (say) f2~ The spec-
tral density will now show fl' fz and various combinations mf1 ¢ nf2 (as in figures

3a, b), and the phase porirait will be a two-torus. Further increase in Reynolds
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number yields a quasiperiodic motion with three frequencies (three-torus). New-
house, Reulle & Takens [2) argue that even a weak nonlinear coupling (of a certain
variety!) among the three frequencies is likely to result in chaos or a strange at-
tractor (see appendix), one of whose symptoms is an increased broadband content (see

figure 4). This contrasts the classical picture of Landau, according to which turbu-

W
3
\
2
%

lence is the asymptotic state of increasingly higher order quasiperiodicities.

Phase diagrams provide complementary information on the sequence of events lead-
ing to chaos. To construct phase diagrams, it would seem that one would require the
measurement of N inderendent variables (in general, a hopeless task!), but embedding
theorems like those of Takens [11] justify the use of a single measured variable.

From the measured local velocity u(t) — for example — one constructs a d-dimensional

diagram from the vectors {U(ti), ule, # 1), ... u(ey + W@k, i =1, ..., 1

being a time delay whose precise value in a certain wide range seems to be immaterjal.

According to the embedding theorems, the phase diagrams constructed in the above man-

ner will have essentially the same properties as the one with N independent variables,

as long as d > 2N + 1 (although exceptions to this now commonly assumed philosophy

are not hard to concoct). In practice, d is increased by one at a time until the ;

*
properties of interest become independent of d.

2 M ’ } FIGURE 4: The first appearance of chaos
at Re = 66. The broadband nature implies
chaos; onset of chaos does not rule out

-\
Note: fl is the vortex shedding frequen

cy. At most another frequency can per- thg existence og s?ectral pe@ks. (Note:
“lhaps be discerned in the ssectrus. This does not signify some high order
‘ ; guasiperiodicity as dizension and entropy
o oo rys ey preeey noo  Calculations of section 4 show.)

Frequency (Hz)

Figures 5, 6 and 7 show respectively the plot of u(t1+ T) vs u(ci) at Re = 36,
54 and 66, and can be considered as projections of the phase dlagrams on s two~dimen-
sional plane. The limit cycle behavior at Re = 36 is evident, the scatter visible
in the figure being partly due to experimental noise (see figure 2) and partly due
tothe jitter in the signal. Further, a Poincaré section reveals no discernible
structure. The situation is thus basically periodic.

* About two years ago (October 1982) when we first started constructing phase dia-
grams in this manner, we were unaware of any Jiterature on embedding theorens,
but were guided solely by elementary ad-hoe considerations.
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At Re = 34, although the projection of the phase diagram is complicated in ap~
pearance®(figure 6a), a Poincaré section (figure 6b) yields a limit cycle, reinfor-
cing the fact that only two degrees of freedom are present. On the other hand, not
only is the projection of the phase diagram at Re = 66 complex (figure 7), but also
its Poincaré sections (not shown), no matter how defined. This, as well as the frac-
tional dimension of the attractor (see section 4a) show that the signal is indeed
chaotic.

(As equally valuable measures of chaos, one could evaluate the Lyapunov exponent

(characterising the exponential divergence of nearby trajectories) or the Kolmogorov

entropy {(which, for typical systems, equals the sum of positive Lyapunov exponents).
Limitations of various kinds have prevented us from measuring the Lyapunov exponent
— such measurements for a Taylor-Couette flow have been made by Brandstiter et al.
{S) — but we do discuss some entropy measurements in section 4d.) ‘Y
This progression towards chaos — underlying the possible presence of a strange
attractor — proceeds much like that proposed by Newhouse, Ruelle & Takens [2]. It '
is thus extraordinary that the 'generic' behavior indicated by Ruelle & Takens for an IR -
idealized mathematical system should have a nontrivial bearing on a rather complex
tluid dynamical system!
It should be noted that few would feel comfortable in designating as turbulent
the sigrnal we have recognized as chaotic. Clearly, to the extent that a turbulent

flow must possess spatial randomness, we cannot say much of value as to whether the

flow at Re = 66 18 turbulent or not without a global survey of the flow field at this

Reynolds number. Further, if one defines turbulence as a high Reynolds number phe-
nomenon (as is often done!), it is tautologically true that the signal does not re-
present turbulence. Further, a look at the signal (figure 8) would prevent someone
with an everyday familiarity with high Reynolds number turbulence from accepting it

v =

Note that the trajectory resides most often in the upper right quadrant, but only *
rarely strays away into the lower left quadrant. This behavior in the phase plane
can be related to the finite skewness of the signal.
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as turbulent. Nevertheless, we would like to suggest that the signal shown in fig-
ure B is indeed random (for example, in terms of algorithmic complexity required to
specify it [12])with a well-defined probability density (see figure 9; for a compar-
ison with similar data at 'large' Reynolds numbers in the far wake, see Thomas [13]).
What this means is that even atlow enough Reynolds numbers, the interaction of only
a  few degrees of freedom leads to randomness! It is also pertinent to point out
that at least in some respects the signal of figure 8 resembles a narrow band pass
filtered turbulent signal at high Reynolds numbers. (Perhaps the word 'preturbu-
lence' also used commonly in dynamical systems literature, is sufficiently useful to

designate the signal such as the one shown in figure 8, and its dynamics.)

b. Chaos and its aftermaths

No qualitative change occurs between Re = 66 and about 71. Soon thereafter the
system becomes reordered. For example, the spectral density at Re = 76 shows (essen-
tially) nothing but discrete peaks again (figure 10a). These peaks, shown in detail
in figure 10b, can all be identified with great precision as arising from the inter-
action of three irrational frequencies. (That there are definitely three independent
frequencies can also be seen from Poincaré sections (not shown here) and the dimen-
sion of the attractor discussed in section 4b). After a small increase in Reynolds
number to about 81, one can see the onset of the broadband spectral content (figure

11), and we may consider chaos to have set in again!
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in the accuracy of this statement comes also from dimension calculations (section 4).
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The system reorders itself around an Re of about 90, and we have discussed else-

where [10] that this reordered state is quasiperiodic with four frequencies. (That
this is che case will be demonstrated also by dimension measurements in section 4d.) ;
Chaos sets in again at an Re = 140, followed by yet another reordering around an Re
= 143. In fact, this sequence of return to chaos and reordering continues for much
higher Reynolds numbers although it becomes progressively more difficult with in- )

creasing Re to distinguish experimentally between the two states.
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Two related points of importance emerge. First, there .o exist quasiperiodic
motions with three or four independent Ifrequenvies; just like Landau's quasiperiodi-
cities, the Ruelle-Takens picture of transition is also not the whole story. Second,
transition to turbulence (at least in the temporal sense) is characterized by regions
of chaos interspersed between regions of relative order. Each of these deserves at

least a brief discussion.

c. Note on quasiperiodicities with more than two frequencies

We have shown that the route to the lowest Reynolds number chaos occurs in our
experiments precisely as postulated in the RTN picture of transition. On the other
hand, our experiments also show that quasiperiodicities with three (and possibly
four) frequencies do exist. This type of disagreement with the RIN scheme has been
noted earlier in the Taylor-Couette flow [l4] and the convection problem [15]. It
is thus pertinent to inquire whether there are (in some sense) exceptional conditions
to be satisfied for the RTN scheme to hold. Greborgi et al. [16], who address this
question in a specific numerical experiment, suggest that the three frequency quasi-
periodicity is indeed quite likely to occur in practice, and that the special pertur-
bation required to destroy this state (as in the RTN scheme) is unlikely. Haken [17])
discusses this issue at some length and concludes that if the frequencies possess a
certain kind of irrationality with respect to each other (or, more precisely, the
so-called Kolmogorov - Arnold - Moser condition holds), bifurcation from a two-torus
toa three-~torus is possible. Both these discussions are strictly relevant to systems
with no externally imposed noise (or fluctuations), a condition that does not strict-
ly obtain in experiments (especially open systems). Our own experience is that the
precise nature of even small amounts of noise (some of which is controllable in our
wind tunnels and some of which is not!) has an influence on the evolution of the
system (for a brief discussion of this influence, see subsection 3e). It is not
hard to visualize that in our experiments the detailed conditions of intrinsic noise
itself could have altered from before to after the first occurrence of chaos. Clear-

ly, this is an area for further work, both experimentally and theoretically.

d. Windows of order and chaos

Figure 12 summarizes the changes occurring in the low end of the Reynolds num-
ber range we have considered. The shaded regions indicate windows of chaos, and the
question marks indicate the uncertainty and difficulty in quantifying what we believe
are reordered states.

At least two questions arise: What is the mechanism that permits the reordering
of a chaotic state? What determines the length and location of the windows of chaos?
Our understanding of these matters is rather limited, but even within these limits,
some comments seem called for, Let us consider the first question now, and relegate
the second one to the next subsection. The observed alternation between chaos and

order hasg been known to occur in several low-dimensional dynamical systems; for ex-
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FIGURE 12: Window of chaos and order

ample, Lorenz equations {18], and spherical pendulum [19}/. In these systems, the
occurrence of reordering is independent of zxzermal noise. The numerical experiments
of Matsumoto & Ysuda (20] show that chaotic orbits could be unstable to external
noise, and noise addition to deterministic chaos (i.e., chaos characteristic of de-
terministic dynamical systems) yields an ordered state in some cases. They specifi-
cally consider the so-called Belousov-Zhabotinskii (BZ) reaction and some variants
of the logistic model. Roux et al. [21] find windows of chaos and order in their
experiments on the BZ reaction.

In experiments on open systems, it is hard to ascertain whether the return to
order is tied intimacely to external noise or the increased degrees of freedom asso-
ciated with the appearance of chaos itself. 1In any case, the analogy between this
situation and increased eddy viscosity in turbulent flows appears to be more than
superficial: addition of high frequency modes results in a lowering of an effective
Reynolds number and increased stability of the flow.

Though we have not made detailed spectral measurements at higher Reynolds num-
bers, it is our contention that the succession of order and chaos in a wake continues '
indefinitely even at very high Reynolds numbers (with the caution that order must .
now be interpreted to mean spectral sharpening). Roshko [22] pointed out several
years ago that order reappears in the Reynolds number range of 10°®. More recently,
the fluctuating lift force measurements of Schewe {23) on a clrcular cylinder showed
that the spectral density of the lift coefficient was broad at Re = 3.7x10° (upper
end of transition) and became increasingly narrow until, at Re = 7.1x10%, it was
quite sharp, rather like a narrow-band-pass filtered signal. Although the fluctua-
ting lift force can at best be related to the squared fluctuating velocity filtered
via the transfer function corresponding to the response of the circular cylinder, its

behavior is nevertheless indicative of the flow itself in the vicinity of the cylinder. '

e. The vortex shedding frequency and windows of chaos
Consider now the variation of the vortex shedding frequency E1 with Reynolds
number (figure 13). The frequency does not vary monotonically with Re but shows sev-
eral more or less distinct breaks. Such breaks have been noted before [24,25,26],

and perhaps most convincingly demonstrated in a beautiful experiment by Friehe [27].
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vorte Friehe varied the Reynolds number continuously at a small rate and obtained on an

logéce o con- x-y plotter the frequency-Re variation directly. Although the appearance of the
\cidence
i1strated n

breaks has been disputed {28}, our own data, presented here and elsewhere [10], sup-
port the conclusion that discontinuities do indeed appear.

Our interest here is in pointing out that the occurrence of these breaks coin-
cides with the windows of chaos. To establish the connection better, we may consider
in figure 14 the details of the break marked A in figure 13. Just upstream of the
break, the spectral density is quite ordered (four-frequency quasiperiodicity) while

it 1s broadband until the end of the break region coinciding with the upper end of

the window of chacs; to the extent we can ascertain, the frequency spectrum shows a ‘,
reordering immediately after the break.

The data shown by crosses in figures 13 and 14 were all obtained from one ex- o8
perimental run. In a repeat of the experiment the following day (for example) we %
found the same general features, except that chaos set in at different Reynolds num- {?
bers; the windows of chaos were also of different widths. The filled circle in fig- p

ure 14 was ohtained in a second series of experiments. It is seen that this point
falls below the first set of data at the same Re, but it falls on the backward extra-

polation of the line corresponding to the reordered state (Re > 143) in the first 14

.

set. It is hard to tell the differences between conditions in the two experiments

without extensive documentation, but there are reasons to believe that the second

g

experiment was conducted in a somewhat nuisier environment. We thus speculate that

4 gy

the location as well as the widths of the windows of chaos are to some extent deter-

mined by noise characteristics — in a way that is not well understood at present.

It is interesting to note from rigure 14 that the ratio lefl (the so-called
rotation number), where fz is the second largest independent frequency, changes its ¢

value abruptly across the narrow windows of chaos. Figure 15 is a plot of the rota-

tion number with Re. It is seen that the number changes abruptly across all the win-

dows of chaos, but only slowly within regions of order. :'

IS

e

0.2 T T T T v \ ?!

- 7
—— Y ;
. | \

- e ew e Em LB . —

-— = W @ ® e e

0.08 b —
150
‘, VA reglons of chaos ;
< :
n anothe FIGURE 15: The variation of the !
0.02 A i 4 4 " rotation number with Reynolds o
“© i e 120 b number.

57

A ]

- .m—m . = =

T T 2 B T T S AN



- - -

= g s

-

«®-%aVe a AL AL AN

f. The amplitude of the vortex shedding mode and chaos

Stnce reordering is associated with the reemergence of stronger spectral peaks,
it is natural to expect that there must be some relation between the amplitudes of the
various modes and the occurrence of order and chaos. Figure 16 shows the amplitude of
the vortex shedding mode (or the fl frequency) as a function of velocity. (The ampli-
tude Al is expressed as a fraction of the freestream velocity U, but is given here to
an arbitrary scale.) It is clear that O indicating order coincides with a local peak
in Al' C indicating the onset of chaos coincides with a local minimum, and, finally,
RO indicating reordering coincides with the reappearance of a peak. Except for the

first time that reordering occurs, every successive reordering is associated with a
general lowering of the amplitude of the vortex shedding mode.

0.15

0.10

Ay

FIGURE 16: The amplitude of the vortex shed-
ding mode as a function of Re. O is order,

C chaos and RO is reordering; within a window
of chaos, O and RO may in general indicate
difterent states of order.
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4. Results from the Dimension of the Attractor

a. The dimension

It 1s clearly worth inquiring whether there is any property of the attractor
that successfully describes in some way the many subtle changes that occur in the
frequency spectra and the related properties discussed in section 3. It appears
that there indeed 1is such a quantity, namely the dimension of the attractor. Loose-
ly speaking, the dimension of the attractor is related to the number of degrees of
freedom — and hence its importance. The concept of the dimension {3 highlighted in
studies of dynamical systems, and we may briefly digress here to discuss its meaning
before presenting results from our measurements. It should be pointed out that, a-
part from our own earlier measurements of the dimension for turbulence attractors
[9,10], such measurements have been made by others in the Taylor-Couette flow [5)
and in the convection cell [29].

Let us consider an attractor (constructed as already discussed in section 3)from

a measured temporal signal u(t) that is embedded in a (large) d-dimensional phase

space. Let N(e) be the number of d-dimensional cubes of linear dimension € required

to cover ‘he attractor to an accuracy €. Obviously, making € smaller renders N larger,
but 1f the limiting quantity
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exists, it will be called the dimension of the attractor. An Iimportant characteris-
tic of a strange atzractor is that D is small even though d is large. We should be
interested in knowing whether transitional and turbulent signals have this property.
To see what the dimension means, let us write (4.1) as
NGey - T (4.2)
that is, if one specifies D and the accuracy € to which we need to determine the at-
tractor, we automatically know the number of cubes required to cover the attractor.
The only missing information will now be the position of the cubes in the phase space.

Thus, D can be considered as a measure of how much more information is required in
order to specify the attractor completely; the larger the value of D, the larger is
this missing information.

In general, the dimension D, as defined in (4.1), {s fractional for strange at-
tractors, and it has been called the fractal dimension by Mandelbrot [30) who has ‘
contributed a lot to our understanding of the quantity. As defined in (4.1), D is a

geometric property of the attractor, and does not take into account the fact that a

. - —

typical trajectory may visit some region of the phase space more frequently than
others. Several measures, taking this probability into account, have been defined
~ and are believed to be closely related to the dynamical properties of the attrac-

tor. The most well-known among them are:

(a) the pointwise dimension

(b) the Grassberger-Proccacia dimension.

If the attractor is uniform, that is, every region in the phase space is as likely
to be visited by the trajectory as every other, then the above two measures equal D
defined by (4.1). Otherwise, they are generally smaller than D.
Let SE(x) be a sphere of radius € centered about a point x on the attractor, '
and let u be the probability measure on the attractor. Then, the pointwise dimen-
sion is defined [J1]
iim 198 u[Sc(x)l
€*0 log €

or Wis 0] - o

dp(x) (4.3)

(4.4)
Grassberger & Procaccia {32] have Jdefined another measure v which is related to
the dimension of the attractor, as well as the entropy (see section 4d). The pro- ‘

cedure for computing v is as follows:

(i) Obtain the correlation gum C(¢) from:

N
|3 1
C(e) = N*“: N? 2 Hle- Iui - uj|] (4.5)
t=3=1
1%]
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» where H is the Heaviside step function and u, - uj is difference in the two vector
;. positions Yy and Ej on the phase space. Basically, what C does is to consider a win~ i
? dow of size €, and start a clock that ticks each time the difference [u v

~1i

.

- Ej] lies
within the box of size €. Thus, one essentially has

iim 1

S
H
é ClE) = o w2 (number of patrs of points (i,j) with ;91 BRI e} T4
Det v
é’ (11) Obtain v from the relation {32} Vg I
-y 2 N~
p Cle) ~ ¢ as w0 (4.6) I SO D,
3 ! 1 ~
In practice, not all components of u are known for constructing the phase space, [ S Y.
t but perhaps only one component, say ug As we discussed in section }, one constructs [ X -
a d-dimensional 'phase space' using delay coordinates { N
(“m“i" up (e +), ooy, um(ti+(d—1)T)), i=1, ...,k e :"
where, again, T is some interval which is neither too small nor too large and k is \Not >
large (in principle, infinity!). Since one does not a priori know Vv, one constructs ’:
several 'phase spaces' of increasingly large value of d and evaluates v for each of
them; v will first increase with d and eventually asymptote to a constant indepen- o
dent of d. This asymptotic value of v is of interest to us as a measure of the di- :;
mension of the strange attractor. 54, W
We have computed both dp and v as described above, using the streamwise velo- 4 {;:
city fluctuations u up to an Re of 10“, and the delay coordina