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CONTRIBUTIONS TO SELECTION AND RANKING THEORY

WITH SPECIAL REFERENCE TO

LOGISTIC POPULATIONS 1

by

SangHyun Han

Purdue University

Abstract

Selection and ranking (more broadly multiple decision) problems arise in

many practical situations where the so-called tests of homogeneity do not provide

the answers the experimenter wants.

The logistic distribution has been applied in studies of population growth,

of mental ability, of bio-assay, of life test data and of biochemical data, but the

complete distribution of the sample means and variances of a logistic population

has not been obtained yet.

--In- this paper -we study the selection and ranking problems for logistic popu-

lations and an elimination type two-stage procedure for selecting the best popu-

lation using a restricted subset selection rule in its first stage. I r

Chapter 2 deals with the selection and rankig procedures for logistic pop-

ulations. An excellent approximation to the dis ribution of the sample means

from a logistic population is derived by using the Edgeworth series expansions. 4 . , '
) --

Using this approximation, we propose and study a single-stage procedure using t 1

the indifference zone approach, two subset selection rules based on sample means

and medians respectively for selecting the population with the largest mean from

k logistic populations when the common variance is known.

Chapter 3 considers an elimination type two-stage procedure for selecting the

population with the largest mean from k logistic populations when the common

variance is known. A table of the constants needed to implement this procedure is

provided and the efficiency of this procedure relative to the single-stage procedure

is investigated.

'This research was partially supported by the Office of Naval Research Contract N00014-84-C-0167.
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Chapter 4 deals with a single-stags restricted subset selection procedure for

selecting the population with the largest mean from k logistic populations when

the common variance is known. Some properties of this procedure such as mono-

tonicity and consistency we investigated. Tables of required sample sizes for this

procedure are provided. A new design criterion to get the needed sample size

sad the constant defining this procedure simultaneously is proposed and a table

of thee constants is given.

Chapter 5 deas with a more flexible two-stage procedure for selecting the

best population, which uses a restricted subset selection rule in its first stage

and the Bechhofer's (1954) natural decision procedure in the second stage, in

terms of a set of consistent estimators of the real population parameters, whose

distributions form a stochastically increasing family for a given sample size.

KEY WORDS: Selection and Ranking, Restricted Subset Selection Procedure, Two-

Stage Procedure, Largest Mean, Subset Selection, Logistic Populations.
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1 INTRODUCTION

It is not uncommon that we face a problem of making decisions regarding k given

populations, for example, different varieties of wheat in an agricultural experiment, or

different competing designs of engines to be used in an automobile plant, or different

drugs for a certain ailment. Suppose 01,... , Ok are the chaiacteristics or parameters of
the populations in which the experimenter is interested. The classical approach in the

preceding problems has been to test the so-called homogeneity hypothesis H. : 01 =

... = h. However the experimenter's real goal often is to identify the best population

(the variety with the largest average yield, the most reliable system and so on). Then

the test of H, is unrdlistic for this problem. Attempts were made to overcome the

shortcomings of the classical tests of homogeneity by formulating the problem in a

more meaningful and realistic way. A partial answer was provided by Mosteller (1948)

who tested homogeneity against slippage alternatives. Paulson (1949), Bahadur (1950)

and Bahadur and Robbins (1950) are among the early investigators to recognize the

shortcomings of the classical test of homogeneity hypothesis and to formulate the k-

population problem as a multiple decision problem in the framework of what have now

come to be known as selection and ranking procedures.

The two main approaches that have been used in formulating a selection and ranking

problem are familiarly known as the indifference zone approach and the subset selection

approach. The basic problem in the indifference zone approach, due to Bechhofer

(1954), is to select one of the k populations with a guarantee that the probability of

selecting the best population is at least a fixed probability P*(1/k < P0 < 1) whenever

the unknown parameters lie outside some subspace of the parameter space, the so-

called indifference zone (the complement of an indifference zone is called a preference

zone). Here some knowledge of the parameter space is assumed known a priori, for

example, the experimenter must be able to guarantee that the largest parameter is

separated from all other ranking parameters by a distance not less than 6, say. Other

contributions to this approach are Bechhofer and Sobel (1954), Bechhofer, Dunnett

and Sobel (1954), Sobel and Huyett (1957), Sobel (1967), Bechhofer, Kiefer and Sobel
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(1968), Mahamunulu (1967), Desu and Sobel (1968,1971) and Tamhane and Bechhofer

(1977,1979) among others. There are several variations and generalizations of the basic

goal discussed above. For details, reference can be made to Gupta and Panchapakesan

(1979) and Dudewicz and Koo (1982).

In the subset selection approach known as "Gupta's formulation" for selecting the

best population, the goal is to select & nonempty subset of the k populations so that

the best population is included in the selected subset with a minimum guaranteed

probability P*(1/k < PO < 1) over the whole parameter space. Here the size of the

selected subset is not determined in advance but depends on the data and hence it

is a random variable. Among decision procedures which satisfy the basic probabil-

ity requirement, one which yields the smallest expected size of the selected subset is

considered in some ways to be the most desirable. Another performance criterion for

comparing decision procedures is the expected number of the non-best populations in

the selected subset. Some recent contributions in the subset selection formulation have

been made by Gupta and Studden (1970), Gupta and Nagel (1971), Gupta and Pan-

chapakesan (1972), Gupta and Santner (1973), Santner (1973,1975), Gupta and Huang

(1975a,1975b), Gupta and Huang (1976), Bickel and Yahav (1977), Gupta and Singh

(1980), Gupta and Hsiao (1983), Lorenzen and McDonald (1981) among others.

In the basic subset selection formulation we select a nonempty subset of the k given

populations. When the parameters Oi are all very close to one another, we are likely to

select all the populations. So it is meaningful to put a restriction that the size of the

selected subset will not exceed m (1 < m < k). Even otherwise, one may want to select

a nonempty subset of a random size to a maximur of m. Such a formulation is called

a restricted subset selection formulation. The general theory was developed by Santner

(1973,1975) and the normal means selection problem was investigated by Gupta and

Santner (1973). An important feature of this formulation is that an indifference zone

(preference zone) is introduced.

Besides being a goal in itself, selecting a subset containing the best can also serve

as a first stage screening in a two-stage procedure designed to choose one population as

the best. Some important contributions in this direction have made by Alam (1970),

4

/.



Tamhane and Bechhofer (1977,1979), Miescke (1982), Gupta and Miescke (1982,1984),

Gupta and Kim (1984) and Lee and Choi (1985).

There are several other variations and generalizations of the basic subset selection

formulation, for example, the decision-theoretic approach where some Bayes and empir-

ical Bayes rules and several minimax and r-minimax rules have been studied by various

authors, selection procedures for multivariate normal and multinomial distributions,

nonparametric procedures, selection from restricted families, sequential procedures,

isotonic procedures etc. For further developments in subset selection formulation, ref-

erence can be made to Gupta and Panchapakesan (1979), Gupta and Huang (1981),

Dudewicz and Koo (1982), and Gupta and Panchapakesan (1985).

The main contributions of this paper are first, to propose and study new selection

and ranking procedures for the logistic populations and second, to propose an elim-

ination type two-stage procedure for selecting the best population using a restricted

subset selection rule in its first stage and to apply this procedure to specific problems.

Chapter 2 deals with the basic selection and ranking procedures for logistic pop-

ulations. The range of application of the logistic distribution as a probability model

to describe random phenomenon covers such areas as population growth, bioassay, life

test and physiochemical phenomena. The exact distribution of the mean of samples

from a logistic populations has not been obtained completely yet though it is needed in

the various studies about logistic distributions such as estimating, testing hypothesis

and selection and ranking problems. An excellent approximation to the distribution of

the sample means from a logistic population is derived by using the Edgeworth series

expansion and it is compared to other approximations. Using this approximation we

consider a single-stage indifference zone approach procedure P, for selecting the best

*, logistic population. We also propose two subset selection iules R, and R2 based on

sample means and medians respectively and compare them to each other by means of

their performance characteristics.

Chapter 3 considers an elimination type two-stage procedure for selecting the pop-

ulation with the largest mean from k logistic populations. We propose a two-stage

procedure P 2 which is based on an optimization problem by using a minimax criterion.
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Lower bounds for the infimnm of the probability of a correct selection over the pref-

erence zone and the supremum over the whole parameter space of the expected total

sample size needed for P 2 are derived. A table of the constants needed to implement

P2 is provided by solving the optimization problem and the efficiency of P2 relative to

the single-stage procedure VPL is investigated.

Chapter 4 deals with a single-stage restricted subset selection procedure for logis-

tic populations. We consider a restricted subset selection procedure R3 based on the

sample means for selecting the population with the largest mean from k logistic popu-

lations when the common variance is known. Formulas for the probability of a correct

selection for any given set of parameters and for the inflmum over the preference zone

of the above probability are derived and some properties of this procedure such as

monotonicity and consistency are studied. Tables of the bounds of the infimum of the

probability of a correct selection over the preference zone, tables of the required sam-

ple sizes for the rules and tables of the expected number of selected populations are

provided. A new design criterion to get the needed sample size (n) and the constant

defining the rule (h) simultaneously is proposed and a table of the constants (n, h) is

provided.

Chapter 5 deals with a more flexible two-stage procedure for selecting the best

population. We propose an elimination type two-stage procedure P2 in which a gen-

eralized restricted subset selection rule is used in the first stage and the Bechhofer's

(1954) natural decision procedure in the second stage. This rule is based on a set of

consistent estimators for the parameters, whose distributions are assumed to form a

stochastically increasing family for a given sample size. We also propose a non-linear

optimization problem using a minimax design criterion to find a set of design constants

for P2. A lower bound of the probability of a correct selection is derived and also a

formula for the infimum of the lower bound over the preference zone is derived. An

analytic expression for the expected total sample size, the conditions guaranteeing that

the supremum over the whole parameter space of the expected total sample size oc-

curs at some point where the parameters are all equal, and a general expression of the

supremum of the expected total sample size under these conditions are derived. Finally

6



we apply P to the location parameter problem of univariate normal populations by

providing the tables of the design constants to implement PY and of the values of the

relative efficiency with respect to the single-stage procedure.
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2 SELECTION AND RANKING OF THE LO-

GISTIC POPULATIONS

2.1 Introduction

The logistic distribution has been widely used by Berkson (1944,1951,1957) as a model

for analyzing experiments involving quantal response. Pearl and Reed (1920) used this

in studies connected with population growth. Plackett (1958,1959) has considered the

use of this distribution with life test data. Gupta (1962) has studied this distribution

as a model in life testing problems.

The shape of the logistic distribution is similar to the normal distribution. The

simple explicit relationship between the logistic random variate, its probability den-

sity function (pdf) and its cumulative distribution function (cdf) render much of the

analysis of the logistic distribution attractively simple and many authors, for example,

Berkson (1951) prefer it to the normal distribution.

The importance of the logistic distribution in the modeling of stochastic phenomena

has resulted in numerous other studies involving probabilistic and statistical aspects of

the distribution. For example, Gumbel (1944), Gumbel and Keeney (1950) and Talacko

(1956) show that it arises as a limiting distribution in various situations; Birnbaum and

Dudman (1963), Gupta and Shah (1965) study its order statistics. Many other authors,

for example, Antle, Klimko and Harkness (1970), Gupta and Gnanadesikan (1966) and

Tarter and Clark (1965), investigate inference questions about its parameters.

As might be expected, because of the similarity between the logistic and the normal

distributions, the sample mean and variance, the moment estimators of the logistic

population parameters, are effective tools for statistical decisions involving the logistic

distribution. Antle, Klimko and Harkness (1970) give a function of the sample mean as

a confidence interval estimate of the population mean when the population variance is

known. Schafer and Sheffield (1973) show that in terms of the mean squared error the

moment estimators of the logistic population parameters are as good as their maximum

likelihood estimators. The fact that the distribution of a sample mean has monotone

8



likelihood ratio (MLR) with respect to the population mean when the variance is known

in used by Goel (1975) to obtain a uniformly most accurate confidence interval for the

population mean and a uniformly most powerful test for one-sided hypotheses involving

the population mean. The sampling distribution of the mean is a primary requirement

for these statistical purposes. The papers by Antle, Klimko and Harkness (1970) and

Tarter and Clark (1965) used a Monte Carlo method for this distribution.

Goel (1975) obtains an expression for the distribution function of the sum of inde-

pendent and identically distributed (iid) logistic variates by using the Laplace trans-

form inverse method for convolutions of P6lya type functions, a technique developed by

Schoenberg (1953) and Hirschman and Widder (1955). He provides a table of the cdf

of the sum of iid logistic variates for the sample size n = 2(1)12, x = 0(0.01)3.99 and

n = 13(1)15, z = 1.20(0.01)3.99. He also gives a table of the quantiles for n = 2(1)15,

,i = 0.90,0.95,0.975,0.99,0.995. George and Mudholkar (1983) obtain an expression

for the distribution of a convolution of the iid logistic variables by directly inverting

the characteristic function. However, since both formulas of Goel (1975) and George

and Mudholkar (1983) contain a term (1- ex) - , k = 1,..., n, a problem of precision of

the computation at the values of x near zero arises when n is large. George and Mud-

holkar (1983) also show that a standardized Student's t distribution provides a very

good approximation for the distribution of a convolution of the iid logistic random

variables.

This chapter considers approximation problems to the distribution and quantiles

of a standardized mean of samples from a logistic population by using Edgeworth and

Cornish-Fisher series expansions respectively. Tables *of the cdf and quantiles are pro-

vided and it is shown that these are far better approximations than the Student's t

distributions as suggested in Goerge and Mudholkar (1983) and hence these approxi-

mations will be used henceforth.

In the rest of this chapter a single-stage procedure P, using an indifference zone

formulation for selecting the best among several logistic populations with unknown

means and a common known variance based on sample means is proposed and studied.

A table of the smallest sample size n needed to implement P, subject to the basic

9
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probability rquirement in provided.

Two subset selection rules R, and R 2 based on sample means and sample medians

respectively for selecting the best among several logistic populations are proposed and

tables of constants to implement the rules are provided. We also compare the two rules

with respect to their performance characteristics.

2.2 Distribution of logistic sample means

2.2.1 Logistic distribution

A random variable X has the logistic distribution with mean p and variance f 2 , some-

times denoted by L(p, o2), if the pdf of X is given by

/(z) = (g/ff)[eXp{-g(z - p)/o}][1 + eXp{-g(z - I)/O}]- (1)

and the cdf of X is defined by

F(z) = [1 + exp{-g(z - (2)

where -oo < z < oo, -co < p < oo, a > 0 and g = r/V3. This distribution is

symmetrical about the mean p.

The standard logistic distribution with mean zero and variance unity, denoted by

L(O, 1), has the pdf and cdf defined as

f(z) = g[eXp{-gX}][1 + eXp{-g}]- 2  (3)

and

F(z) = [1 + exp{-gz}]-' (4)

respectively, where -co < z < co. The standard logistic distribution has a shape

similar to the standard normal distribution. The curve of the logistic distribution

crones the density curve of the normal between 0.68 and 0.69. The inflection points

of the pdf of the standard logistic distribution are 4-0.53 (approx.).

Letting Y = (X - 1&)g/o, the random variable Y has the logistic distribution with

mean zero and variance r2/3. The pdf and cdf of the random variable Y are given by

1(i) = [exp{-y}][1 + exp{ -y}]-' (5)

10



and

F(y) = [1 + exp{-y}]-' (6)

respectively, where -o < y < oo. (5) may be written in terms of F(y) as

f(y) = F(y)(1 - F(y)). (7)

The moment generating function (mgf) of Y is given by

My(t) = r(i + t)r(l - t)

= rt/sinwt, It1 < 1. (8)

We can also express (8) as

My(t) = £(-I)J-I 2 ( 2 2i1 - l)/(2j)!]B23 (rt) 2j , (9)

j-O

where B.'s are Bernoulli numbers defined as
CO

x/(exp(z)- 1) = E Bzv/(v!). (10)
&.MO

The relationships between B,'s are given by

Bo= 1

(')I + (k B2+ k1) Bk---0, -l(11)I-I 2)-I k - I"'

and hence the first few values of B. are

Bo= 1,

BA = -1/2,

B2 - 1/6,

B4 = -1/30,

Bs- 1/42,

Bs = -1/30,

Bo -" 5/66,

B2,+ 0,m = 1,2 .... (12)

1I



The YiA central moments of Y, denoted by /,(y), can be obtained as

u,(y) E(Y')J(--1)"/2-I[2(2 -i1 - 1)]B.,r"; if 5,, =- 2j,j = 1,2,...,

0; otherwise,

by using (9).

Then the VA central moments of X, denoted by p.,(z), are given by

= E(X -
-- (u/1g)vE(Y'~)

S(-1)v/ 2 -l(Vo0.)(2(2 -l - 1)]Bm; if affi2j, j ff 1,2,...,

0; otherwise.

In terms of the central moments it.z) of X, first few of the Y cumulants of X, denoted

by K(z), v = 1,2,..., which are defined by

log1 CPx(t) = , K.(x)(it)-/(v!),

where 'px(t) is the characteristic function of the random variable X, are given by

K,(z) = (z) = p,

K2 (z) = P2() = a2,

K,(Z) f 4 () - 3(02(z)) 2 = .4,
5 48 s

Ko(Z) ; 9.(X) - 15&2(Z) 4(X) + 30(p2(X)) 3 =48 -

Ks(z) = p.(z) - 2 8 2(X)M6(Z) - 35 (4 (z))2 + 420(02(z)) 2 / 4(z)

- 630(. 2(z))' = 432ag,F 
I-

KILo(z) = po(z) - 45P2(z)ps(z) - 210p 4(z)pe(z)

+ 1260(. 2(z)) 2 p6(z) + 3150p2 (z)(/ 4 -(z))2

- 18900(p2(z)) 3 1 4(-z) + 22680(p2(z))" = 145152 a 1 ,

77

K2i+l)= 0, j=1,2,.

12



The first few relative cumulants of X, A.(z), where A,(x) is defined as

A,(z) = K,(T)(K2(Z))

are given by

A(z) = a,

A2(z) = 1,

X4(z) = 6/5,

A(x) = 48/7,

As(x) = 432/5,

A0o(=) - 145152/77,

A2i+(x) = 0, j=1,2 .... (13)

2.2.2 Edgeworth series expansions for the distribution of the mean of sam-

ples from a logistic population

Let XI, X2,..., X, be a random sample of size n from a logistic population L(/p, f2)

with mean # and variance a2 whose cdf and pdf are given in (1) and (2) respectively.

Define a standardized mean of samples of size n from L(pA, a2 ), Z say, as

|a

where =w X is the sample mean.

Let f.(z) and FR(z) denote the pdf and cdf of the standardized mean of samples

of size n from L(p, a2). Then the Edgeworth series expansions of the f.(z) and F,(z)

are given symbolically as

fA(Z) = O(Z) + O(Z) f, pi(z)n-j2 + 0(n-(+)/2)

13



and

F5 (z) = 1)(z) - O(z) Pj(z)n-j/2 + 0(n-(+'+)/2)
i-I

respectively, where O(z) and O(z) are the standard normal pdf and cdf respectively

and pj(z) and P(z) are polynomials in , which are obtained up to v = 10 in Draper

and Tierney (1973).

Using pj(z) and P(z) from TABLE II of Draper and Tierney (1973) and the relative
Cumulants of X given in (13), the Edgeworth series expansions of the f.(z) and F.(z)

correct to order n-/ 2 , Y 4, 6, 8, are given by

f.(z,,P = 4)

- O(z){1 + [(-L)(.)H4(z)]n-1 5 6

+[()(')H.(z) + (.)(.)2 Hs(z)]Jn- + o(,5-2),

F.(z,v = 4)
1 6

= O,(z) - +Z){[(t)(i)H3(z)]n-

210Z 483 6 5775

+ (1))))o() + o(,-"), (

f.(z,, = 6)
1 432

= .F(z,,, = 4) + z)[(W.)(..-)s(z)

+(210 48 6 (z5lva 3 + 0(n 7 /2 ), (16)(Tf)(t)(q)HIo(Z) + (! 121)(5 H12()- +o,-/). ()

f.(z, , = 6)

495~~~ 432 42~

+ (z, =f4)-(z)+()(-)Hu(z)

210 48 6 6775 6
+ (107()( )oH9(z) + 12! )(g)'HI (z)]-' + O(n 16)

. fj(Z.., = 8)

=f,(z, v = 6) +- O(z)[(_.L)(.-51--)Hlo(z)

+( (.)(-r)(!.)H,2(Z) + (! -)(!')?H,2(--)
+(105105)!2 !6 HUZ + 48262"t625)(64HG,)] -4+0(n9/3

14



and

P.z Y-=8)

- ' V-=6) - W 1 1452Hqz

+495 432 6 462 48
+ )( r)(jX)Hu(z) + (15-1 )(-f)2 Hu (z)

(105105 6 82265( H 411)(3!)'(-f)H3(Z) + ( 1 6 1 j 5 1~j +~)] 0(n-9/2),

where H,(z)'s are the Hermnite polynomials of degree j, which are defined by

(±y' exp(-z 2/2) = (-1)'H,(z) exp(.-z 2 /2), j 0,1 ..

The first thirty Hermit. polynomials which follow the recurrence relation

are given in TABLE Ml in Draper and Tierney (1973).

Table 1, Table 2 and Table 3 contain the value, of the cdf of the standardized

mean of samplm of size n hom alogistic population with mean p and varianceff2for

n - 3, 10, 15 and z = 0.00(0.01)3.99 using the Edgeworth series expansion correct to

order n-s given in (16). Entries in the tables were computed by using double-precision

arithmetic on a Vax-il/ 780.

2.2.3 Cornish-Fisher series expansions for the quantiles of the mean of

samples from a logistic population

The representation of a quantile of one distribution in terms of the corresponding

quantile of another is widely used as a technique for obtaining approximations for

the percentage points. One of the most popular of such quantile representations was

introduced by Cornish and Fisher (1937) and later reformulated by Fisher and Cornish

(1960) and is referred to as the Cornish-Fisher expansion.

By means of formal substitutions, Taylor expansions and identification of powers

of n, the Cornish-Fisher expansion of a quantile z of Fm(z) which is the cdf of the

15

[San



tmean of samples of size n from L(M, o), in terms of the corresponding

normal quantile Y, is of the form

z = f + f Qj(y) - j , 2 + o(n-('+I)/2),

where Q,(y)'s are polynomials of y, which are obtained up to v = 8 in Draper and

Tierney (1973).

Using Qj(y) from TABLE VII of Draper and Tierney (1973) and A (z) in (13), we

obtain the Cornish-Fisher series expansions for the quantiles z of F(z) up to order

v = 4,6,8 as follows:
1 6

z(v = 4) = y + [( )(3)(y - 3y)].- 1

+ [ ) ( _f ) (y - 10? + 15y)

8T)(,)2(9d + 72y3 - 87y)]n- 2 + 0(n-5/2),

1 432 +10y
z(v =6) = z(v = 4) + [(1)(-r)(y  - 21y" + 105y 0 - 5y)

210 48 6 s+ (210 48)()(l + 255y3 - 1035y + 855y)

" (7756
+ 21 )(3) (243y - 3537y5 + 12177y3 - 8667y)]n- 3

+ 0(n-7 2 ) (17)

and

Z(v = 8)
- z(v =6) + [(1)( 145152)( - 36y7 + 378ys - 1260y3 + 945y)

+ (!E -)(2 (-21y + 630y - 5502y3 + 15330y3 - 9765)

+ (j)(!)2(_25y9 + 700y7T _ 585O0y$ + 15900?3 _ 9945y~)121 710,510,5 ,,6,s __,,

+ (1050)(!)( !)(495y - 12510y + 92370ys

- 219810y3 + 121455y)
: ,~~2627625,,6, 1'

+ 161 ) 6)4(_11583 + 2598y 7 - 1686906y s
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+ 3539376y3 - 1743471)]n-' + 0(n-91 2 ).

Table 4 provides the quantiles of the distribution of the standardized mean of

sample. from the logistic population for sample sizes n = 3(1)10(5)30 and probability

levels a = 0.900,0.950,0.975,0.990,0.995 using the Cornish-Fisher series expansions

correct to order v = 4,6 and 8 respectively. Entries of the table were calculated by

using double-precision arithmetic on a Vax-11/780.

2.2.4 Legitimacy of using the Edgeworth and Cornish-Fisher series expan-

sions

Noting the similarity of the distribution of Z in (14), the standardized mean of sam-

ples from L(;&, o2), to the normal distribution in shape except its relatively longer

tails, George and Mudhollar (1983) compare the three approximations, that is, the

standard normal distribution, the Edgeworth series expansion correct to order n 1 and

the standardized Student's t distribution to the exact distribution of Z. In using the

standardized Student's t distribution, they use the degree of freedom f = 5n + 4 which

can be obtained by equating the coefficients of kurtosis. They show that the Student's

t distribution provides a very good approximation.

We show here that the Edgeworth and Cornish-Fisher series expansions correct to

order n', which are given in the (16) and (17) respectively, are far better approxima-

tions than even the Student's t distribution in George and Mudholkar (1983).

Table 5, Table 6 and Table 7 illustrate the quality of the four approximations. In

Table 5 the four approximations, that is, the standard normal, the Edgeworth series

expansion correct to n-1 , the standardized Student's t and the Edgeworth series expan-

sion correct to order n -3 are compared to the exact distribution given in Goel (1975).

The approximation using the Edgeworth series expansion correct to order n- 3 appears

to be superior to the other three by noting that the maximum error is about 0.0001 as

shown in the last column of Table 5. In Table 6, the exact values of the distribution

function for n - 10 tabled by Goel (1975) are compared with the values obtained from
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the approximations using Student' t and the Cornish-Fisher series expansion correct

to order n'. In Table 7, the exact quantiles for n = 2,3,...,15 tabled by Goel (1975)

are compared with the corresponding approximations obtained from the Student' t

distribution and the Cornish-Fisher series expansion correct to order n- .From these

tables, it is clear that for sample size 7 or more the Edgeworth series expansion correct

to order n' provides an excellent approximation for the standardized mean of samples

from the logistic distribution. Consequently, we will use the Edgeworth series expan-

sion correct to order n-3 as an approximation to the distribution of the standardized

mean of the samples from the logistic distribution henceforth.

2.3 A single-stage procedure P1 for selecting the population

with the largest mean from k logistic populations

Bechhofer (1954), in introducing the indifference zone formulation, considered the prob-

lea of ranking means of normal populations with a common known variance. Here we

consider a single-stage procedure using an indifference zone approach for selecting the

population with the largest mean from k logistic populations when they have a common

known variance.

2.3.1 Statement of the problem

Let wr,... , r be k independent logistic populations with unknown means jp, and a

common known variance o2.Let p] (iJ ... (Jiq be the ranked /A. We assume that it

is not known which population is associated with jA,] i = k,..., I. We further assume

that a population is characterized by its population mean and the 'best' population is

the one having the largest mean.

Our procedure will be based on the sample means. Let X., i -1,...,k, denote

the means of independent samples of size n from iV population. The sample mean

associated with population having population mean is[, will be denoted by X(.I, that

is, the expected value of X ii is #[+" Let ']--" ... 5 Xjk be ranked T. If Yj = y

for i 9 j, due to the limitations of the measuring instrument, the tied means should be
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'ranked' using a randomized procedure which assigns equal probability to each ordering.

Assuming that the goal of the experimenter is to select the best among the k

populations, we propose a single-stage procedure R as follows.

Procedure PI; Take n observations from the iA population for each i - 1,..., k.

Compute the k sample means Xi,..., Xk. Select the population associated with %[k

as the best one.

Defining the event of the experimenter's selection of the best population with P1 as

[CSIP 1], the probability of a correct selection with the procedure *P, P{CSIP1} can

be written as

P{CSIP} = Pp[the best population is selected]

= PCU(Y%) > max _ i(3 < ]

= P[(,/,,')(Xk , -X,,) < (v'/,)(Y€,. -1At,,)

+ (V/o( ,- ,,,.= 1,... , - 1]

= J_ f F,,(z + (//o')(p&,, - 1j))d,.(z), (18)

where F.(z) is the cdf of the standardized mean of samples from a logistic population.

For the fixed values of the pi and o2 the probability of a correct selection will

depend only on the sample size n. We propose to design the experiment in such a way,

that is, choose the n in such a way that under specified conditions the probability of a

correct selection with procedure P, will be equal to or greater than some preassigned

value P*.

2.3.2 Determination of the sample sizes

Now for the problem to be meaningful P lies between 1/k and 1. Since the true values

of the pi are not known, we need the probability of a correct selection to be at least

P* whatever be the values of the pi. Thus we are interested in the configuration of

the pi for which the probability in (18) is a minimum. Such a configuration will be

called a least favorable configuration (LFC). It is obvious that the LFC is given by
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S---" ----pm[k. But unfortunately the minimum value of the probability in this LFC
case is 1/k. So we cannot achieve the probability requirement whatever be the sample

size unless some modification is made in the probability requirement.

A natural modification is to insist on the minimum probability P* of selecting the

best population whenever the best is sufficiently far apart from the next best. In

other words, the experimenter specifies a positive constant 6 and requires that the

probability of selecting the best population is at least P" whenever (#jkI -/q[-i]) 6.

The specification of 6 provides a partition of the parameter space 0 where

n = -- (<, "",p) < ,i -(19)

into two parts, namely fl(6) where

f() = {Z E fI (Pk] - )> 6} (20)

and the compliment fl*(6) of f1(8). The minimization of the probability of selecting the

best population is over fl(6). For an obvious reason, flC(6) was called the indifference

zone by Bechhofer (1954). Subsequent authors have termed f0(8) the preference zone.

It is now easy to see that the LFC in f)(6) is given by

110(6) = {ie fl(b)l ll) = Aqk.-1 = At+ - 61 (21)

and the minimum sample size required is the smallest integer n for which

i PA[CSII 11 =/ f (F.(z + (-/:)))kdF(z) > .(22)

A table has been prepared to assist the experimenter in designing the experiments to

meet the above goal. Table 8 is to be used for designing experiments involving k logistic

populations to decide which has the largest population mean. The table provides the

estimates fi of the values of minimum sample size n associated with the probability

P = 0.75,0.90,0.95,0.99 for k = 2,3,4,5,10,15, and 6/a = 0.1, 0.5,1.0,2.0,4.0. These

were computed by setting the left hand side of (22) equal to P*. The minimum sample

size n can be obtained by n = ([ + 1] where [t] denotes the greatest integer which

is less than t. All computations were carried out in double-precision arithmetic on a

Vax-11/780.
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2.4 Subset selection procedures

Gupta (1956) introduced a subset selection formulation as a multiple decision problem,

where the investigation was carried out for the case of normal means. Here we consider

the subset selection rules for selecting the population with the largest mean from k

logistic populations. We propose two subset selection rules R, and RA2 based on sample

means and sample medians respectively, provide tables for implementing these rules,

consider the performance characteristics of each rule, and we compare the two rules to

each other.

2.4.1 Statement of the problem

Let ri, i 1... , k, be k independent logistic populations with unknown means p,

and a common known variance o2. Let p(I- "'"-. ik] be ranked jui and '(qi be

the population with mean /j. We assume that it is not known which population is

associated withp1iq, i = k,..., k. We further assume that a population is characterized

by its population mean and the 'best' population is the one having the largest mean,

that is, (h).

Let X,,, j = l,...,n, denote a random sample from i, i = 1,...,k, where the

observations within and between populations are all independent. Let X, and X.,

i 1,...k, k, n = 21 - 1, denote the means and medians of samples of size n from iri

respectively. The sample mean and the sample median associated with the population

having population mean/'q[ will be denoted by '(,j and X(0:, i = 1,... , k, respectively.

Let X '[ : ... :<5 Xj] and X11].1 5 ... < Xk].l be ranked Yj and Xi, respectively.

The goal is to select a small but non-empty subset S of the k populations so that

the selected subset includes with a high probability P° the 'best' population. The size

of the selected subset S is an integer-valued random variable taking on values 1,... , k.

Let us define the two subset selection rules R, and R2 based on the sample means

and sample medians, respectively, as follows;

Rule R select r iff
Xi, : ma Y -/txirl-O , i =1.,k, (23)
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and

Rule P2 : select ri iff

XQ > pa Xj-j - h2o/vn,i =1,... k, (24)

where h, and h2 are nonnegative constants.

By defining the events [CSIR], i = 1,2, as selections of any non-empty subset of

k populations which includes the best population using R, i = 1, 2, respectively, it is

required that for any; E fl

P4CSlRJ2 P-, (25)

where P- E (11k, 1) and fl is the parameter space given by (19).

The requirement of (25) will be called as the basic probability requirement or the

P/-condition.

Remark 2.1 Lorenzen and McDonald (1981) used a subset selection rule R based on

sample medians defined as

Rule R : select ir iff
Xi.X > max Xja--d ,d>2:0, iffl..k,

where Xu. is defined as above. Here we use R2 instead of R only for the purpose

of comparing R, to R2 easily. Basically the rule R2 is the same as Lorenzen and

McDonald's rule R.

2.4.2 Probability of a correct selection

* Probability of a correct selection for the means rule R,

Using (23) we can write the probability of a correct selection for the rule Ri as

follows. For 7 E f19

P[CSIRI]

= PC[C(k) X(,<k - , hk - ]
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- a(f-o(~ - p~l) :5(l-o)Xk - I'[kJ) + hi
+ (-/'/ a) (is,,, - pr,,I), Vj = 1,...., k- 1

- J i F,(z + hi + (V/u)(Aqkj - p[ ))dF(z), (26)

where F(z) is the cdf of the standardized mean of samples from a logistic distribution.

We see from (26) that the infi um over the parameter space of the probability of

acorrect selection for the rule R, takes place when pl= = =k #h and so

ir$ Pa[CSIRI] = P.(z + h.)}k-'dF,(z). (27)

That is, the LFC for the rule R, is I0 where

n ° = f ' E III #I=..-. = fI =A} (28)

and the P4[CSIR] in the LFC does not depend on this common p. Hence, if we choose

hi to satisfy

J{F,,(z + h)}k-dF,(z) =P (29)

then we have determined the smallest h, for which

inf P[CSIR] > P*. (30)

It should be noted that h1 = hi(n, k, P) depends on n as well as k and P* unlike

the normal populations problem.

Table 9 and Table 10 give the values of h, = h,(n, k, P') which satisfy (29) for n =

1(1)10, k = 2(1)10 and P- = 0.75,0.90,0.95,0.975,0.99. We use the Edgeworth series

expansions correct to order n-3 for F(z) and f,(z) , the Gauss-Hermite quadrature

algorithm with sixty nodes for the evaluation of the integrals and the modified regular

falsi algorithm for solving the non-linear equation. The entries were calculated by using

double-precision arithmetic on a Vax-11/780.

* Probability of a correct selection for the medians rule R2

Let Ze,..., Z,, be a random sample of size n, where n is an odd integer, drawn

from the ia standard logistic population. Then it is well known that the sample
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median, denoted by Zi,, (n = 21- 1), has the pdf

g.(z) = r(21) [F(Z)]- [1 - F(z)f'-'f(z)
r(1)

2

and the cdf

G,(z) = I{F(z); 1, 1, (31)

where f(z) and F(z) are the pdf and cdf of the standard logistic population given by

(3) and (4) respectively and I{y; a, b} is the incomplete beta function with parameters

a and b, which is given by

If; a,b) = r(a + b) JIP -1(1 - w)b-ldw. (32)F(a)r(b) P

Now the probability of a correct selection for the medians rule R 2 can be written

as follows. For 17E fI

P[CSIR2 ] = Pr[X(. > m ,aXl<_<k X(2). - h2f/V',, h2 _ 01

= PI[X().>X(. - h2/v , j =,...,k - 1

=Pa[Z(3vj: <~): Z 2/fy

+ (P k -PE)/f, j - ,.,k-
o k-1

= J I G,(t + h2/Vn + (Pkj - Jp, 1)/)dGR(t), (33)

where G,. is given by (31).

We see that the infimum over fl of the probability of a correct selection for the rule

R 2 takes place when p, = ... = Ak = A and so

inf Pp[CSIR2] = f {.(t + h2/ (nd),kdG.(t). (34)

Hence, if we choose h2 to satisfy

{.(t + h2 /V)-d (t) = P, (35)

then we have determined the smallest h2 for which

in P [CSIR2 ] > P*. (36)
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The values of h2//l' = h2(n,k,P*)/v i which satisfy (35) for n = 1(2)19, k =

2(1)10 and P- = 0.75,0.90,0.95,0.975,0.99 were given in TABLE I of Lorenzen and

McDonald (1981).

2.4.3 Performance characteristics

In this section some performance characteristics of the subset selection procedures R,

and 2 are studied.

Let Pp[ir(,IR,], i = 1,..., k, j = 1,2, denote the probabilities of including in the

subset the population r( , that is, the i~a ranked population, using the rule R, for the

/E1f, then for i =,...,k,

Pjz[(qI~] =ParY(,) X2:kI-hm/~~ h 0F "
= F.(t + h, + (v /'1)(.,[,j - pA,))dF (t), (37)

00[

where F.(t) is the cdf of the standardized mean of samples of size n from a logistic

distribution and

Pg[r()1R2] Pz[X(.j 2! maxl<,<Sk X(,):j - h~/n, h2 2! 01k

= II G,1(t + h2lv/ + (#[., - 1 )lo')dG,(t, (38)

where G.(t), given in (31), is the cdf of the median of samples of size n, where n is an

odd integer, from the standard logistic population.

It is easy to see that the expected sizes of the selected subset using the rule R for

/E E fl, denoted by EB[SIRi], j = 1, 2, are given as follows:

k

EA[SlR-]= E= aPj[w(R1]. (39)

Consistent with the basic probability requirement, we would like the size of the selected

subset to be small.
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The expected numbers of non-best populations selected by rule Rj for i7 E fl,

denoted by EA[S*IR,, j = 1,2, are defined as

k-I

EA[SI[Ri] E P[z(.jIR] (40)

and also we would like the value of the Ea[S*IR,] to be small.

In using the rule Ri, j = 1, 2, the ranks of the selected populations are random

variables and one may want to evaluate the expected sum of ranks of the selected

populations. Let the population with parameter £[,1 be assigned rank i, i = 1,... , k.

Then the expected sums of ranks of the selected populations by rule Ri for 1' E fl,

denoted by Ea[SRIRi], j = 1,2, are

E,[SRIRi] = iPs[(jIRi]. (41)
.in,1

For given J'A fl, the expected proportions of the selected populations by the rule

Rdenoted by Ej[PIR], j = 1,2, are given by

E4[PIRj] = Ea[SIRi]/k. (42)

Since the values of Pa[r(,IR], J = 1,2, depend on it E fl, we consider them

for the two special cases, namely the equally spaced configuration and the slippage

configuration.

First, for the equally spaced configuration, we assume that the unknown means of

the k populations are p,is+&o, . , p+(k - 1)8o which have ranks 1,..., k respectively.

Then the probabilities of including in the subset the population w(,) using the rule Ri

for this configuration, denoted by Pq[w(,,)IRi], j - 1,2, are given by

P.,[Jr(iR / ' F,(t + h, + (i - j)6Vui)dF(t) (43)

joi

and

P[i'(.IIR2 ] = L I G,(t + h2/v4 + (i - j)6)dG,,(t) (44)
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respectively.

. Next, for the slippage configuration, we assume that the unknown means of k

populations are #tj = , = 1,...k - 1, and #1k, = i + 6 for 6 > 0. Then the

probabilities of including in the selected subset the population ir() using the rule R1,

denoted by P,[r(0jRi], j = 1,2, are given by

i /_.4IF,,(t + hi)1k-F,(t + h, - b6,A)dF(t) , i = 1,..., k-i,

Pp[r(h)IRu] = r{F.Ct + hi + 6bV,)}1-dFn(t),

Pp[ir(.qR 2]
= {G,(t + h 2,/V)}k-G.(t + hl/,n - 6)dG (t), i = 1,... , k - 1,

and

PA,[r(k)R2 f J {Gn(t + h2 // + 6)}-.dGn(t).

Now we can compute the performance characteristics Er[SlR,], EaESIR,], E#[SRIRl]

and Eiz[PIRi] for two special configurations by substituting P.9 [-(,)1R,] and P.,[ir(j)j]R

for Pa(qj)Ri] in (39), (40), (41) and (42) respectively.

Table 11 and Table 12 give the values of the performance characteristics of the

means rule R, and Table 13 and Table 14 give the same values of the medians rule R2

for the equally spaced and the slippage configurations respectively for the given values

of k = 2,3,4,5,10, P- = 0.90, n = 3 and Vt'6 = 0.5,1.0,1.5,2.0,2.5,3.0, 4.0,5.0.

For instance, from Table 11 for P* = 0.90, n = 3, k = 5 and 8V/n = 1.5, the

probability of a correct selection by using the means rule R, is 0.997. The expected

size of the selected subset is 2.208 and the expected number of the non-best populations

selected is 1.211. The expected sum of the ranks in the selected subset is 9.330 and the

expected proportion of the selected population is 0.442. It should be noted that the

expected sum of ranks by itself is not a good criterion of the performance of a selection
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rule. It should be looked at together with the expected values of S and 5 to make a

more meaningful performance characteristic.

The entries in all tables were calculated by using double-precision arithmetic on a

Vax-11/780.

Note that, for both rules R, and R 2 and for the fixed values of P*, n, k and

i = 1,2,..., k - 1(k), the probability of selecting the ith ranked population in the

slippage configuration can be proved to be monotonically decreasing(increasing) with

6VG' and hence monotonically decreasing(increasing) with 6 and n separately. Also for

i = 1(k), the probability of selecting the i ranked population in the equally spaced

configuration can be proved to be monotonically decreasing(increasing) with b . A

look at the table values seems to indicate that, for both rules R, and R2 and for the

fixed values of P*, n, k and i = 2,..., k - 1, the probability of selecting thei ' ranked

population in the equally spaced configuration is also monotonically decreasing with

SV6/'. For fixed P*, i, n and bV'n, the probability of selecting the ith ranked population

is monotonically decreasing with the values of k for all i, i = 1,..., k.

2.4.4 Comparison between the means rule R, and the medians rule R2

In this section we compare the efficiency of the means ride R , to that of the medians

rule R&. Lorenzen and McDonald (1981) have studied the problem of large sample

comparisons between the two rules R, and R2. They computed the asymptotic relative

efficiency (ARE) of R, relative to R2 defined by, for e E (0,1) and 7 E fl,

ARE(RI,R 2; JA) = HImNR,CIO N&'

where Np , j = 1, 2, are the numbers of observations needed so that

inf=Pa[CSIRi P"

and

E=[SIR]

by assuming a slippage configuration, that is,

p(="=Ak-1 = O, /[k] = 6 > O.

28

~~ VV~%% 
2 b~ .v ~~*



Their value of the ARE(RI, R2;1) is 0.822. Thus, under a slippage configuration,

asymptotically the means procedure requires about 82% of the sample size required by

the medians rule to achieve the same expected number of non-best populations in the

selected subset.

Now we consider the small sample comparisons between the rules RL and R2 by

using the performance characteristics of each rule given in the previous section. In

Table 15, we compute the values of the probability of a correct selection (P(CS)), the

expected sizes of the selected subset (E(S)), the expected numbers of non-best popula-

tions in the selected subset (E(S*)), the expected sums of the ranks of the populations

selected in the subset (E(SR)) and the expected proportions of the populations selected

in the subset (E(P)) for each rule RI and R2 and the ratio of those values of the rules

when the unknown means are equally spaced for the selected values of P" = 0.90,0.95,

n = 3,5, k = 4, and 6bvf = 1.5,3.0. The same values for the slippage configurations

are given in Table 16.

For both of the configurations;

* Since P(CSIR)/P(CSIR2 ) > 0.991 for all cases, the values of P(CS)'s are not

much different for all cases.

" Since, for example, E(SIRI)/E(SIR2 ) 5 1 for all cases, the values of E(S), E(S),

E(SR) and E(P) for the rule R1 are less than or equal to the same values for

the rule R2 for all cases.

" The values of the ratio of the rules R, and R2 for all characteristics are decreasing

as the values of n are increasing.

Hence, as expected, the means rule R, is definitely better than the medians rule R2

in the sense of their performance characteristics and the performance of the rule R,

relative to the rule R2 improves as sample sizes are increasing for both configurations.
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Table 1: Approximate cdf of the standardized mean of samples from a logistic popula-

tion: Sample size n = 3.

L.," "® I ". I "°'  " I "°  I.I "°'  I-
0. 0.50W ".042 0.50S 0.5125 0.5167 0.520 0.5251 0.529 0.5334 0.5"6

0.1 0.5417 0.6459 0.550 0.55 0455M 0.562 0.566 0.57M7 0.5748 "056

0.20 0.5830 0.87 .52 0.5952 0.5992 0.603 0.6073 0.6113 0.6153 0.6193

0.30 0 62, 0.6272 0.6311 0.6351 0.630 0.6429 0.6467 0.6506 0.6544 0.6583

0.40 0.MG 0.669 0.6M 0.6734 O.67M1 0.6908 0.6845 0.6882 0.619 0.63

0.50 o.M9 0,7027 0.7063 0.7096 0.7134 0.7169 0.7203 0.7238 0.7272 0.7206

0.60 0.7340 0.7374 0.7407 0.7440 0.7473 0.7306 0.7538 0.7571 0.76 0.7634

0.70 0.7666 0.76WY 0.7128 0.'rM 0.7789 o.7819 0.7849 0.7878 0.7908 0.7937

0.8 0.7966 0.79 0.0 0.8051 0.8078 0.8106 0.8133 0.8160 0.8187 0.8223

0.90 8 0.8291 0.8316 0.8341 0.8366 0.8391 0.8415 0.8439 0.8463

1. 0.466 0.8510 08M 0.85 0.8578 0.6600 0.822 0.8644 0.8665 0M86

1.10 0.A7 0.3728 0.8746 0.8769 07 0.880 0.8628 0.8847 0.886 0.8684

1.20 0.8902 0.8021 0.893 0.8067 0.8974 0.89M2 0.9009 0.9026 0.042 0.9059

1.30 0.8015 0.9091 0.9106 0.9122 0.9137 0.9152 0.9167 0.9182 0.9196 0.9210

1.40 0.9224 0.9236 0.9251 0.926M 0.9216 0.9291 0.9304 0.9316 0.9329 0.9341

1.50 0.9353 0.9W5 0.9 0.9388 0.M9 0.9410 0.9421 9432 0.9443 0.9453

1. 0.9463 0.9474 0.9483 0.9493 0.9603 0.9612 O.9622 0.9631 0.9640 0.9649

1.70 0.957 0.9666 0.8574 0.9682 0.9691 0.9596 0.9606 0.9614 0.9622 0.9629

1.80 0.961 0.644 0.9651 0.M57 0.M9664 0.9671 0.9678 0.9684 0.9690 0.9697

l.90 o.9702 o.9709 0.9715 o.9720 0.926 0.9732 0.9737 0.9742 0.9748 .9753

2.00 0.976 09 0.976 0.9772 0.9777 0.9782 0.9706 0.9791 0.979 0.970

2.10 0.9604 0.9008 0.9812 0.9816 0.9620 0.9823 0.92 0.9M31 0.9634 0.9636

2.20 0.9641 0M9645 0.9648 0.9651 0.9654 0.9657 0.9661 0.964 0.966 0.96

2.30 0.9M 0 0.9678 0.9660 0.9683 0.9685 0.9638 0.9600 0.93 0.96

.40 0.96' 0.9000 0.9602 0.9004 0.906 0.906M 0.9910 0.9912 0.9014 0.9916

2.80 0.9918 0.9620 0.9922 0.9023 0.9025 0.9927 0.9628 0.9630 0.9931 0.90

2.60 0.99M5 0.9936 0.9637 0.963 0.9940 0.9942 0.9043 0.9944 0.994 0.9947

2.70 0.9M 0.994 0.960 0.661 0.9653 0.9864 0.9965 0.9956 0.9667 0.9968

2.80 0. 0.996 0.9961 0.9M2 0.993 0.9M3 0.9664 0.965 0.9666 0.9967

2.90 0.9M 0.99M 0.9 0.990 O.997 0.9971 0.9972 0.9073 0.99T3 0.9974

3.00 0.9975 0.9975 0.0076 0.9976 0.9977 0.9977 0.995 0.9079 0.9979 0.960

3.10 0.960 0.9M 0.981 0.961 0.902 0.9662 0.963 0.9M3 0.9984 0.9964

3.20 0.9084 8.965 0.96 0.9666 0.9666 0.9966 .966 0.9667 0.9967 0.9668

3.30 0.68 0.9986 0.9669 0.99 09 0.96 0.9660 0.996 0.900 0.99

3.40 0.969 0.9691 0.9691 0.901 0.9602 0.9962 0.9002 0.9602 0.962 0.993

3.0 0.96 0.993 0.96W 0.963 0.99M 0.9694 0.9094 0.9904 0.9994 0.9964

3.60 0.904 0.9M 0.96M 0.9M 0.90M 0.9996 0.906 0.096 0.9666 0.96M

3.70 0.96 0.906 0.9666 0.9696 0.9966 0.966 0.9996 0.996 0.9967 0.909T

3.80 0.9697 0.997 0.96 0.999 0.997 0.90w 0.9697 0.9997 0.9097 0.9997

3.90 0.999r 0.9697 0.999 0.998 0.9096 0.9966 0.96m 0.9996 0.9666 0.999
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Table 2: Approximate cdf of the standardized mean of samples from a logistic popula-

tion: Sample size n = 10.

T S W 0 
02 

.031 
.0 

.0 7 
.081 

.0

0. 0.5000 0.5040 O.61I 0.121 0.5162 0.5202 0.5243 0.5283 0.5324 0.5364
0.10 0.40 0.5444 05461 0.5525 .56 0.60 0.6 0.66 0.5725 0.5764

M0 .M04 0.M44 .56 5 0.56 0.6001 0.6040 0609 0.6118 0.6157

0.30 0.6196 0.6234 0.O73 0.6411 0.6349 .6367 0.6428 0.6463 0.600 0.6538

0.40 0.6675 0.6612 0.6649 0.6686 0.6722 0.6759 0.6796 0.6831 0.6867 0.6903

OJO 0.0038 0.8974 0.7006 0.704 0.7079 0.7113 0.7148 0.7182 0.7216 0.7250

0.60 0.72=3 0.7317 0.7350 0.7383 0.7416 0.7448 0.7460 0.7512 0.7544 0.7576

0.70 0.7607 0.7638 0.766 0.070 0.7730 0.7761 0.7791 0.7820 0.7860 0.7879

0.80 0.7908 0.7937 0.6 0.7994 0.8022 0.8050 0.8077 0.8104 0.8132 0.8158

0.90 0.8185 0.6211 02 0.8263 0.8314 0.8339 0.8364 0.838 0.8413

1.00 0.843 0.8461 0.8484 0.8506 0.8531 0.8554 0.8576 0.8598 0.8621 0.8642

1.10 0.8664 0.68608707 0.8727J' 0.8748 0.8766 0.8789 0.8608 0.8828 0.8848

1.20 0.87 0.8666 0.8904 0.8923 0.8941 0.8959 0.8977 0.899 0.9012 0.9029

1.30 09046 0.9063 0.8079 0.9096 0.9111 0.9127 0.9143 0.9158 0.9173 0.9188

1.40 01.820 0.9217 0.9232 0.9246 0.9260 0.9273 0.9287 0.9300 0.9313 0.9326

1.50 0.9339 0.9351 0.9364 0.9376 0.988 0.9400 0.9411 0.9423 0.9434 0.9445

1.60 0.9456 0.9466 0.9477 0.9487 0.9497 0.9507 0.9617 0.9627 0.9537 0.9646

1.70 0.955G 0.9564 0.9573 098 0.9690 0.9699 0.9607 0.9615 0.9623 0.9631

1.80 0.9639 0.9647 0.9654 0.9661 0.9569 0.9676 0.9663 0.960 0.969 0.9703

1.90 0.9709 0.9716 0.9722 0.9726 0.9734 0.9740 0.9745 0.9751 0.975T 0.9762

2.00 .976r 0.9773 0.978 0.9783 0.9788 0.9793 0.9797 0.9802 0.9806 0.9611

2.10 0.9615 0.9820 0.94 0.M28 0.9832 0.9636 0.9640 0.9843 0.9647 0.9651

2.20 0.9854 0.988 0.9661 0.9664 0.9868 0.9871 O.M974 0.9877 0.9880 0.9883

2.30 0.986 0.9889 0.9601 0.9694 0.9697 0.969 0.9902 0.9904 0.9906 0.9909

2.40 0.9911 0.9913 0.9015 0.9018 0.9920 0.9922 0.9924 0.9926 0.9928 0.9929

2.50 0.90M 0.903 0.9936 0.9936 0.9936 0.940 0.9941 0.9943 0.9944 0.9946

2.00 0.9947 0.949 0.9960 0.991 0.9953 0.9964 0.9965 0.9966 0.9967 0.9969

2.70 0.990 0.9661 0.9962 0.9963 0.9964 0.996 0.9966 0.9967 0.9968 0.9966

2.80 .OM 0.9970 0.99 1 0.9972 0.9973 0.9973 0.9974 0.9975 0.9976 0.9976

2.90 0.9977 0.9976 0.9976 0.9079 0.9979 0.9960 0.9961 0.9961 0.9962 0.9982

3.00 0.963 0.963 0.9m4 0.99m4 0.99m5 0.9965 0.9965 0.996 0.996 0.9987

3.10 0.9667 0.9967 0.9966 0.9966 0.9969 0.9M9 0.9969 0.9M 0.9990 0.9990

030 0.90 0.9 0.9961 0.9964 0.9994 0.9962 0.9992 0.9992 0.9994 0.9993

3.30O 0.906 0.969 0.9668 0.9994 0.94 0.9994 0.9994 0.9994 0.9994 0.995

3.40 0.96 0.9995 0.96 0.9995 0.999 0.9996 0.9996 0.9996 0.9996 0.9996
3.50 0.9666 0.9666 0.9966 0.9997 0.9697 0.9997 0.997 0.9997 0.9997 0.9997r

3.60 0.9697 0.9697 0.9997 0.9997 0.9998 0.9996 0.9996 0.9996 0.996 0.9996

3.70 0.9606 0.966 0.906 0.9966 0.9996 0.996 0.999 0.9996 0.999 0.9999

3.80 0.9669 0.966 0.9999 0.9990 0.999 0.9999 0.9999 0.9999 0.9999 0.9999

3.90 0.99 0.996 0.999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
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Table 3: Approximate cdf of the standardized mean of samples from a logistic popula-

tion: Sample size n = 15.

.Ol0 M .02 .03 1 .041 .05 j.06 .07 AdOS I 09]

0. o0 0040 0.06 0W51 0.5161 0520 015242 0.5282 052 0.36
0.10 0.34M 0.5442 0.54 0.522 0M 0.560 2 0 o. 0.5721 0.5761
0.20 o.5 0.5840 0.M 0591 0.5967 0.396 .OM o.674 0.6113 0.6152
0.30 0.6190 0.6229 0.6267 0.606 0.6343 0.6381 0.6419 0.6456 0.6494 0.631
0.40 0.656S 0.6606 0.6642 0.679 0.615 0.6751 0.6786 0.6624 0.6659 0.689
0.50 0.6931 0.6966 0.700 0.7036 0.7071 0.7106 0.7140 0.7174 0.7206 0.7241
0.60 0.7275 0.7308 0.7341 0.7374 0.7407 0.7439 0.7472 0.7504 0.7535 0.7567
0.70 0.7596 0.7630 0.7660 0.7691 0.7722 O.7752 0.7782 0.7812 0.7841 0.7870
0.80 0.78 0.7828 0.7957 0.7965 0.8013 0.8041 0.80 0.8096 0.8123 0.8150
0.90 0.8177 0.82 0.8229 0.8 0.8261 0.8306 0.8331 0.S356 0.8381 0."405
1.00 0.8429 0.8453 0.8477 0.8500 0.8523 0.8546 0.856 0.8591 0.8614 0.8636
1.10 0.8657 0.8679 0.O0 0.8721 0.8742 0.8762 0.8782 0.8802 0.8622 0.8842
1.20 0.8861 0.8880 0.8899 0.891 0.896 0.8954 0.8972 0.8960 0.9007 0.9024
1.30 0.9041 0.9068 0.9075 0.9091 0.9107 0.9123 0.9139 0.9154 0.9170 0.9185
1.40 0.9196 0.9214 0.9229 0.9243 0.9257 0.9271 0.9284 0.9296 0.9311 0.9324
1.50 0.9337 0.9349 0.9382 0.9374 0.9386 0.9396 0.9410 0.9421 0.9432 0.9444
1.60 0.9455 0.9465 0.9476 0.9486 0.9497 0.9607 0.9617 0.9627 0.9636 0.9646
1.70 0.9655 0.9664 0.9673 0.9682 0.9691 0.9699 0.9607 0.9616 0.9624 0.9632
1.80 0.9640 0.9647 0.9655 0.9662 0.9609 0.9677 0.9684 0.96091 0.9697 0.9704
1.90 0.9710 0.97. 0.9723 0.9729 0.9735 0.9T41 0.9747 0.9753 0.9758 0.9764
2.00 0.97 9 0.974 0.9779 0.9785 0.9789 0.9794 0.9799 0.9604 0.9906 0.9813
2.10 0.9617 0.9822 0.9626 0.9630 0.9634 0.9638 0.9642 0.9645 0.9649 0.9653
2.20 0.966 0.9660 0.9863 0.967 0.9670 0.9673 0.9876 0.9679 0.9682 0.9685
2.30 0.9688 0.9K1 0.9694 0.9696 0.9699 0.9901 0.9904 0.9906 0.9909 0.9911
2.40 0.9913 o.9916 0.9918 0.9920 0.9922 0.9924 0.9926 0.9928 0.9930 0.9932
2.50 0.9933 0.9935 0.9937 0.9639 0.9940 0.9942 0.9943 0.9945 0.9946 0.9948
2.0 0.990 0.991 0.962 0.9963 0.9964 0.9966 0.9967 0.9968 0.9969 0.9960
2.70 0.9961 0.9963 0.9964 0.9965 0.9966 0.9967 0.9967 0.9968 0.9969 0.9970
2.80 0.997 0.9972 0.9973 0.9073 0.9974 0.9975 .0.9976 0.9976 0.997 0.9978"
2.90 0.9M78 0.9979 0.9960 0.9M60 0.991 0.9M61 0.9962 0.9982 0.9983 0.9983

3.00 0.964 0.9984 0.996 0.9985 0.9966 0.9966 0.9967 0.9967 0.9967 0.9988
3.10 0.996 0.9966 0.99 0.9969 0.990 0.9990 0.9990 0.9990 0.9991 0.9991
3.20 0.9991 0.9992 0.9992 0.9992 0.9992 09993 0.9993 0.9993 0.9993 0.9993
3.30 0.9994 0.9994 0.9994 0.9994 0.9994 0.999 0.9996 0.9995 0.9996 0.9995
3.40 0.99M5 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.50 .97 0.9M' 0.9997 0.9997 0.9997 0.9W7 0.997 0.999W7 0.9997 0.9998
3.60 0.9998 0.9996 0.9996 0.996 0.9966 0.9996 0.9998 0.9996 0.9996 0.9998
3.70 0.9008 0.996 0.996 0.9996 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.80 0.9069 0.9699 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.90 0.9M69 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
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Table 4: Approximate quantiles of the standardized mean of samples from a logistic

population using Cornish-Fisher series expansion.

Probmbffit levgI0.960 0975 o.o04 o_
4 1.2555226 1.638115 1.9649606 2.4082844 2.7W

3 6 1.254157 1.637I43 1.9643074 2.406841 2.7143793

8 1.250232 1.6376558 1.9860174 2.4099628 2.7136346

4 1.2614732 1.6390M l.9791732 2.3896717 2.6806283

4 6 1.2611925 1.6391530 1.9789019 2.3906200 2.6823M93

8 1.2612450 1.639053 1.9791265 2.3906461 2.6821637

4 1.2652218 1.6404900 1.97S567 2.372803 2.6615626

5 6 1.265010 1.640267 1.9754178 2.3785700 2.6625206

6 1.265006 1.6403499 1.9755096 2.3786217 2.6624241

4 1.2677960 1.6411513 1.973032 2.3702115 2.6483706

6 6 1.2617.18 1.6410337 1.9730028 2.37=3740 2.6489249

6 1.2677J22 1.6410637 1.9730472 2-39 2.6486784

4 1.26900694 1.6416394 1.9712858 2.364299 2.638691

7 6 1.2696170 1.6415653 1.9712351 2.3644022 2.639082

8 1.2696226 1.6415816 1.9712591 2.3644156 2.6390031

4 1.2710960 1.6420145 1.9606209 2.3597886 2.6312636

8 6 1.2710599 1.6419645 1.969S70 2.359672 2.6314974

S1.27"10632 1.6419743 1.9699010 2.3696650 2.6314827

4 1.2722156 1.6423114 1.9686494 2.3562339 2.6254089

9 6 1.2721910 1.6422766 1.9668256 2.3562820 2.6255732

8 1.2722930 1.6422825 1.9688344 2.352870 2.625540

4 1.2731196 1.6425523 1.967980 2.3533612 2.6206704

10 6 1.2731016 1.6425269 1.967967 2.3533963 2.6207901

8 1.2731029 1.6425308 1.9679744 2.3533996 2.6207841

4 1.2758709 1.6432929 1.9653624 2.3445867 2.6061622

15 6 1.273866 1.6432853 1.9653572 2.3445990 2.6061977

6 1.2758658 1.6432861 1.9653554 2.3445997 2.6061965

4 1.2772688 1.6436731 1.9640318 2.3401155 2.5967437

20 6 1.2772666 1.6436699 1.9640296 2.3401199 2.59678

8 1.2772667 1.6436702 1.9640300 2.3401201 2.596M583

4 1.2781147 1.6439045 1.9632274 2.3374039 2.5942399

25 6 1.2781136 1.6439029 1.9632263 2.3374061 2.5942476

8 1.2781136 1.6439030 1.9632266 2.3374062 2.5942474

4 1.2786816 1.6440601 1.9626887 2.335545 2.5912155

30 6 1.2786810 1.6440591 1.9626881 2.3353858 2.5912199

8 1.2786810 1.6440592 1.9626881 2.3355859 2.5912198
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Table 5: A comparison of four approximations for cdf of standardized mean of samples

of size 3 from logistic populations.

x FP3(z) FPs(z)-#(z) Fs(z)-G 3(z) F(z)-T3(s) F(z) -G3(z)

0.05 0.5209 0.0010 0.0000 0.0001 0.0000

0.15 0.5625 0.0029 0.0000 0.0003 0.0000

0.25 0.6033 0.0046 0.0008 0.0005 0.0000

0.45 0.6809 0.0073 -0.0017 0.0007 0.0001

0.65 0.7506 0.0084 -0.0006 0.0007 0.0000

0.85 0.8106 0.0083 -0.0007 0.0007 0.0000

1.00 0.8486 0.0073 -0.0008 0.0004 0.0000

1.20 0.8903 0.0054 -0.0007 0.0002 0.0000

1.45 0.9291 0.0026 -0.0004 0.0000 0.0000

1.75 0.9598 -0.0001 0.0001 -0.0002 0.0000

2.50 0.9918 " -0.0020 0.0004 0.0002 0.0000

3.00 0.9975 -0.0012 0.0001 0.0001 0.0000

F1s(z) = cdf of the standardized mean of 3 lid logistic r.v.'s.

#(x) = cdf of the standard normal r.v.

G3(s) = Edgeworth series expansion correct to order n-

T(s) =cdf of the standardized Student's t r.v.'s with 19 d.f.

G3(z) = Edgewrth series expansion correct to order n-3
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Table 6: An illustration of the Student's t and the Edgeworth series expansion approx-

imation for n = 10.

x ____o(_) 1"o(z) - Tio(z) RIo(z) - G0(oz)
0.10 0.540416 0.000021 0.000000

0.20 0.580406 0.000040 0.000000

0.40 0.657488 0.000070 0.000000

0.60 0.728341 0.000081 0.000000

0.80 0.790815 0.000073 0.000000

1.00 0.843689 0.000051 0.000000

1.20 0.886676 0.000023 0.000000

1.50 0.933882 -0.000014 0.000000

1.70 0.955515 -0.000028 0.000000

2.50 0.993123 -0.000014 0.000000

3.00 0.998265 0.000001 0.000000

3.50 0.999620 0.000004 0.000000

Flo(z ) = cdf of the standardized mean of 10 ild logistic r.v.'s.

Tio(z) = cdf of the standardized Student's t r.v.'s with 54 d.f.

G'o(z) = Edgeworth series expansion correct to order n-3
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Table 7: Quantiles of the standardized mean of logistic variates.

m0.900 0.960 Om O.M9 0.99

1.242 1.6306 1.8757 2.4298 2.7560

2 1.2432 1.6340 1.9961 2.4500 2.7718
1.2425 1.6326 1.9934 2.4450 2.7755

1.2617 1.6381 1.9760 2.3861 2.6778

4 1.2612 1.6393 1.9790 2.2906 2.6821

1.2612 1.6392 1.9789 2.3906 2.6824

1.2664 1.6396 1.9734 2.3756 2.6697

1.2651 1.6403 1.9m55 2.3786 2.6642

1.2161 1.6403 1.9754 2 3786 2.6625

1.207 1.6411 1.9750 2.3628 2.6376
7 1.266 1.6416 1.9712 2.3644 2.6390

1.2696 1.6416 1.9712 2.3644 2.6390

1.2731 1.6423 1.9674 2.3526 2.6201

10 1.2731 1.6425 1.9680 2.3534 2.6206

1.2731 1.6425 1.9680 2.3534 2.6208

1.2745 1.6427 1.9662 2.3484 2.6131

12 1.2745 1.6426 1.9667 2.3491 2.6135

1.2745 1.6429 1.9667 2.3490 2.6136

1.2759 1.6432 1.9651 2.3443 2.6069

is 1.2m5 1.6433 1.9654 2.3446 2.6062

S 1.2759 1.6433 1.9654 2.3446 2.6062

Top dm in n& cll roMpmms Studmit'. t apwrdm~ im.

M~dIe dms In s& cvD reimnmt the azact prvenqp painS

Bowm bmm in .h cdl nprMOUG the CoeaSh-Fukh, m..f eppraximtl (n-3).
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Table 8: Values of the estimate 4 of the minimum sample size n for the single-stage

procedure.

0.S O-go o.95 0.99

4.00 0.06 0.19 0.33 0.75

2.00 0.20 0.77 1.34 2.82

2 1.00 0.81 3.22 5.40 10.94

0.50 3.1 13.07 21.63 43.42

0.10 90.86 328.42 541.09 1082.56

4.00 0.12 0.30 0.47 0.93

2.00 0.46 1.21 1.85 3.42

3 1.00 1.96 4.93 7.36 13.25

0.50 8.11 19.86 29.40 52.49

0.10 206.48 497.34 734.49 1306.66

4.00 0.16 0.37 0.55 1.06

2.00 0.65 1.49 2.17 3.78

4 1.00 2.74 5.99 8.5 14.61

0.50 11.23 24.02 34.06 57.86

0.10 282.89 601.00 850.48 1441.89

4.00 0.20 0.42 0.61 1.13

2.00 0.80 1.69 2.39 4.04

5 1.00 3.34 6.76 9.40 15.58

0.50 1&6 27.04 37.40 61.67

0.10 340.80 675.85 933.47 1536.53

4.00 0.32 0.59 0.81 1.32

2.00 1.23 2.28 3.03 4.76

10 1.00 5.12 8.96 11.80 18.29

0.50 20.50 35.66 46.86 72.38

0.10 512.42 889.88 1168.58 1802.84

4.00 0.39 0.68 0.92 1.44

2.00 1.56 2.61 3.39 5.15

15 1.00 6.14 10.17 13.12 19.77

0.50 24.41 40.39 52.01 78.17

0.10 609.06 1007.16 1296.45 1946.93
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Table 9: Values of h, for the meams rule R1 for selecting the subset containing

the largest logistic population mean: n = 1,2,3,4,5.

2 -61 1.756 2.3165 2.8349 34592
3 1.3604 2.1916 2.744 &2346 &8504
4 1.6119 2.4861 2.9627 34794 4.0715
5 1.78M 2.6063 3.1481 36389 4.2272
6 1.9185 2.7366 &32738 3.7606 4.3484
7 2.0265 2.8418 33750 3A.S 4.4482
a 2.1174 2.9299 3.4594 3.9412 4.5335
9 2.190 3.005 3.317 4.0123 4.603
10 2.2652 3.0715 3.5960 4.0748 4.6751
2 0.652 1.2612 1.6396 1.9m 2.3909
3 0.9673 1.5623 1.9253 2.2539 2.6530
4 1.1640 1.726 2.0631 2.4066 2.8006
5 1.2836 1.8388 2.1916 2.5121 2.9028

2 6 1.3734 1.9239 2.2740 2.5924 2.9810
7 1.4452 1.9921 2.3403 2.65609 3.0442
a 1.046 2.0490 2.3967 2.7113 3.0972
9 1.5557 2.08 2.4432 2.7578 3.1428
10 1.600 2.1404 2.4847 2.7985 3.1828
2 06 1.0351 1.3400 1.6111 1.9355
3 0.8131 1.2794 1.66 1.8294 2.1422
4 0.9672 1.4115 1.6953 1.9601 2.73
5 1.0S38 1.5012 1.713 2.0331 2.3377

3 6 1.1261 1.586 1.8463 2.0960 2.3964
7 1.1638 1.6228 1.8964 2.1466 2.4473
8 1.2311 1.6677 1.9418 2.1889 2.4882
9 1.2716 1.7061 1.9790 2.2251 2.5233
10 1.3068 1.7396 2.0115 2.2567 2.5541
2 0.4696 0.8968 1.1611 1.3930 1.6687
3 0.7072 1.1097 1.3583 1.5796 1.8442
4 0.8319 1.2232 1.4657 1.6822 1.9418
5 0.9152 1.3000 1.5390 1.7527 2.0091

4 6 0.9773 1.3577 1.5943 1.8069 2.0605
7 1.0268 1.4038 1.6385 1.8486 2.1017
8 1.0672 1.4420 1.6753 1.8843 2.1360
9 1.1018 1.4745 1.7067 1.9148 2.1654
10 1.1318 1.5029 1.7342 1.9414 2.1911
2 0.4213 0.8052 1.0388 1.2447 1.4884
3 0.6342 0.9935 1.2143 1.4102 1.6434
4 0.7457 1.0945 1.3097 1.5010 1.7296
5 0.8200 1.1628 1.3746 1.5631 1.7886

5 6 0.8752 1.2139 1.4234 1.6101 1.8336
7 0.9190 1.2347 1.4625 1.6477 1.8696
8 0.9651 1.2885 1.4949 1.6791 1.9000
9 0.968 1.3172 1.5226 1.7059 1.9258

- 10 1.0123 1.3423 1.5468 1.7293 1.9483
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Table 10: Values of h1 for the means rule R1 for selecting the subset containing
the largest logistic population mean: n = 6, 7, 8,9,10.

N .70 o .900 o.o1 0.90 975 0.990
2 0.s54 0.7358 0.9485 1.1355 1.3562
3 048W 0.9075 1.1082 1.2857 1.4965
4 0.6817 0.9994 1.1948 1.3680 1.5742
5 0.7494 1.0614 1.2536 1.4242 1.6276

6 6 0.7997 1.1079 1.2978 1.4666 1.6681
7 0.8394 1.1448 1.3332 1.5006 1.7006
a 0.8722 1.1754 1.3625 1.5289 1.7279
9 0.9001 1.2015 1.3875 1.5531 1.7511
10 0.9242 1.2241 1.4093 1.5742 1.7713
2 0.3573 0.6818 0.8783 1.0507 1.2539
3 0.5377 0.8406 1.0257 1.1891 1.3829
4 0.6318 0.9255 1.1066 1.2650 1.4543
5 0.694 0.9627 1.1598 1.3167 1.5034

7 6 0.7408 1.0255 1.2005 1.3557 1.5406
7 0.7775 1.0595 1.2330 1.3669 1.5703
8 0.8078 1.0877 1.2600 1.4129 1.5950
9 0.8334 1.1117 1.2830 1.4351 1.6166

10 0.8556 1.1325 1.3030 1.4544 1.6351
2 0.3346 0.6381 0.8217 0.9825 1.1718
3 0.5034 0.7866 0.9593 1.1116 1.2918
4 0.5914 0.8658 1.0338 1.1823 1.3582
5 0.6499 0.9192 1.0843 1.2303 1.4038

8 6 0.6933 0.9591 1.1222 1.2666 1.4383
7 0.7275 0.9908 1.1525 1.2957 1.4660
8 0.7558 1.0171 1.1776 1.3198 1.4890
9 0.7797 1.0394 1.1990 1.3404 1.5086
10 0.8004 1.0588 1.2176 1.3584 1.5261
2 0.3157 0.6019 0.7748 0.9261 1.1039
3 0.4750 0.7418 0.9043 1.0475 1.2166
4 0.580 0.8164 0.9744 1.1139 1.2789
5 0.6130 0.8666 1.0219 1.1590 1.3217

9 6 0.63 0.9042 1.0675 1.1931 1.3540
7 0.6861 0.9340 1.0859 1.2203 1.3800
8 0.7126 0.9586 1.1095 1.2430 1.4016
9 0.7351 0.9796 1.1296 1.2623 1.4199
10 0.7546 0.9978 1.1470 1.2791 1.4363
2 0.2997 0.5712 0.7351 0.8783 1.0465
3 0.4509 0.7039 0.8578 0.9933 1.1532
4 0.5296 0.7746 0.9242 1.0560 1.2121
5 0.5818 0.8221 0.9691 1.0988 1.2524

10 6 0.6205 0.8577 1.0028 1.1310 1.2830
7 0.6510 0.8859 1.0297 1.1568 1.3075
8 0.6762 0.9092 1.0520 1.1782 1.3279
9 0.6974 0.9291 1.0710 1.1964 1.3453
10 0.7159 0.9463 1.0875 1.2123 1.3607
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Table 11: Performance characteristics of the means rule R, under the equally
spaced configuration.

P" =0.90, .,3

0 1 1.01- 1.5 1 2.0 2.Sl 1 &Ol 4.0 1 5.0o

2 0.94 0.975 0.989 0.440 0.99 0.999 1.000 10001

'2 1 0.82 0.71 0.584 0.44 0~ 0.19 0.050 0.013
E() .772 1.9 1.s 1., 1.303 1.19 L.OU 1.013

IS(S ) 0.824 0.717 0~ 4 0.440 0 . 0 .192 .59 o. 13

I (SR) 2.720o 2Lee 2.5 62 2.431 2 .- 01 2.191 2.068 2. 3
E P) "a 0.8"z O." oms o.W11 V5." ~ 0.5o.&

1 0.764 0.511 0.284 0.088 0.022 0.004 0.000 0.000
3 2 0.8176 0.80 .&W1 O.M 0.018 0.286 0.10 .023

13 .M6 0.906 0.9W6 0.990 0.999 1.000 L.OWO .000
• (S) 2.892 2.302 1.946 1.648 1.439 1.289 1:101 1.023

[ .,(S*) 1. IM16 0.951 0.650 0.440 0.289 0.11 0.023

M(P 0.864 0.767 0.648 0.549 0.480 0.4301 0.367 0-442

1 0.661 0.27t6 0.061 0.004 0.000 0.000) 0.000 0.000
4 2 0.7rg9 0.580 0.313 0.118 0.031 .006 0.000 0.000

3 0.M0 0.847 0.7582 0.626 0.484 0.344 0.132 0.036
4 0.972 0.990 0.990 0.999 1.000 1.000 1.000 1.000

T- $ 3.3 2.693 2.112 1.747 1.6 1.=8 1.132 1.036
E.(SO) 2-3W 1.703 1.116 0.749 0.316 0.3M 0.132 0.036
B(SR) 8.88 7.93 .911 .114 6.1513 5.043 4= 4.107
E(P) O.834 0.673 0.328 0.437 0.379 0.337 0.283 0.259

1 0.347 0.103 .005 0.000 0.000 0.000 .000 0.000
2 0.702 0.318 0.065 .006 0.000 0.000 0.000 0.000

5 0.829 0.626 0.356 0.143 0.040 0.00 0.000 0.000
4 0.020 0.7 0.796 0.668 0.529 0.386 0.157 0.045

S) S o973 0.993 0.997 0.999 1.000 1.000 1.000 1.000

3.78 2.911 2.X08 1-813 1.86 1.3N4 1.157 1.048
I(S*) 2.M9 1.919 1.211 0.816 MMH 0.304 0.257 0.045
E.(SR) M3004 11.066 9.330 .106 7.234 &.868 5.629 3.179
E(P) 0.795 0.382 0.442 0.363 0.314 0.279 0.23 0.209

1 0.063 0.000 .000 0.000 0. 0. 0. 0
2 0.114 0.000 0.000 0.000 0.000 0. 0. 0.
3 0.213 MOM0 0.000 0.000 0.000 0.000 0. 0.
4 0.354 0.007 .000 0.000 0.000 0.000 0. 0.

10 5 MRS1 0.043 0.000 0.000 0.000 0.000 0.000 OQ
6 0.67r2 0.174 0.910 0.000 0.000 0.000 0.000 0.000
7 .0 0.441 0.115 0.013 OM00 0.000 0.000 0.000
a 0.89 0.737r 0.477 0.223 o.or2 0.017 0.000 0.000
9 0.9N5 0.923 0.861 0.767 0.645 0.504 0.23 0.o?8

10 o1 .989 0.907 0.999 1.000 1.000 1.000 1.000 1.000
E.($) 5.54 3.321 2.462 .o3 1.718 1.320 1.239 1.07s
P.,(S*) 4.476 2.324 1.43 1.004 0.718 0.520 0.23 0.o78
E. SR) 40.208 2.535 22.418 18.778 M6386 14.667 12.147 10.705
MpP) .SS 0.332 0.246 0.2OO 0.172 0.152 0.124 0.108
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Table 12: Performance characteristics of the means rule R1 under the slippage
config ation.

P - 0.90, n =.3

11 0.3 1.O0 1.5 1 2.0 1 2.5 1 3,0 1 4.0 1 5.
S2 11 0.824 0.717 048 0.44 0.30 0.192 0.059 10.013

.) UPI 1.192 1.73 1.436 1.303 1.192 1.068 1.013
E(SO) 0.82 4  0.717 0.534 0.440 0 .0 0.192 0.OS 0.013
E(SR) 2.667 2.M4 2.431 2.301 2.191 2.068 2.013
E(P) 0.886 0.6 0.736 0.718 0.651 0.596 0.528 0.506

I 0.856 0.784 0.681 0.552 0.413 023 0.101 0.025
3 f 0.80. 0.74 0.681 052 0.413 0.283 0.101 0.023

M90 0.91,7 0.990 0.996 0.999 0.999 1.000 LOW0

2.66 2.45 2.352 2.100 1.825 1.565 1.201 1.050
E(SO) 1.712 1.546 1.32 1.104 0.826 0.566 0.201 0.050
.(SR) 5.418 5.283 5.013 4.644 4.235 3847 3.302 3.076
E(P) 0.887 1 0.848 0.764 0.700 0.608 0.52 0.400 0.350

1 0.860 0.813 0.726 0.610 0.475 0.339 0.132 0.036
4 2 i 0.8 0.813 0.726 0.610 0.475 0.339 0.132 0.036

3 0.S6 0.813 0.726 0.610 0.475 0.338 0.132 0.036
*4 30.961 0.978 0.99 0.996 0.999 1.000 1.000 1.000

3.5 3.416 3.169 2.826 2.423 2.018 1.395 1.107
• (S*) 266 2.438 2.179 1.830 1.423 1.018 0.,M9 0.107

B(SR) 9.014 8.77 87.320 7.645 6.844 6.034 4.789 4.213

E(P) 0.88 O.854 0.792 0.707 0.606 0.504 0.349 0.277
1 o.875 0.829 0.754 0.647 0.517 0.380 0.1, 0.045
2 0.75 0.829 0.754 0.647 0.517 0.38 0.1, 0.048

5 0.875 0.829 0.754 0.647 0.517 0.380 0.156 0.046
4 0.875 0.829 0.754 0.647 0.517 0.380 0.156 0.045
5 0.961 0.978 0.991 0.996 0.999 1.000 1.000 1.000

4.463 4.296 4.006 3.585 3.067 2.519 1.624 1.178
SO) &M 337 &M 288 2.068 1.520 0.24 0.178

F.(SR) M3.10 M3183 12.492 11.453 1016 8&797 &M56 5.446
E_(P) 0.891 0.359 0.801 0.7n1 0.613 0.504 0.325 0.236

1 0.M88 0.862 0.613 0.734 0.624 0.492 0.236 0.078
2 0.388 0.362 0.813 0.734 0.624 0.492 0.236 0.0T8
3 O.888 0.862 0.813 0.734 0.624 0.492 0.2W6 0.078
4 0.888 0.862 0.813 0.734 0.624 0.492 0.236 0.078

10 3 0.868 0.862 0.813 0.1,34 0.624 0.492 0.236 0.078
6 0O88 0.862 0.813 0.734 0.624 0.492 0.236 0.01,8
7, 0888 0.862 0.813 0.7,34 0.624 0.492 0.236 0.078

8 0.886 0.362 0.813 0.734 0.624 0.492 0.236 0.01,8
9 0A8 0.802 0.813 0.7J34 0.624 0.492 0.236 0.07r8

10 0.962 0.979 0.99 0.907 0.999 1.000 1.000 1.000
1.S 8.943 &.735 8.308 7,.602 6.613 5.428 3.1221I.702
E(S" 7.M0 7,.756 7,.317, &SW0 5.614 4.429 2.121 0.7,02
E(SR) 49.41,6 48.372 46.496 42.992 38.059 32.14 20.603 M3509
•EP) 0.894 0.81,4 0.831 0.760 0.661 0.54 0.312 0.11,0

441

10

},6



Table 13: Performance characteristics of the medians rule R2 under the equally
spaced confguration.

P"- =0.90 ,%=3kI i $ j
2 10.9261 0.5 0.3 17 1. . .6 .0

2 9 0.904 07 0.90 1.000 1.0 1.000 1.000S 1.910 1.846 1.731 1.571 1.301 1.2 1.0 1.000

(S*) 0.926 0.852 0.734 0572 0.32 0.2 0.0U 0.000
E(SR) 2.9 2M0 2.728 a270 2 .3 2.232 2.o6 2.00

(P) 0. 0.923 0.806 0.785 0.66 0.616 0.527 0.504
1 0.935 0.780 0.462 0.15 0.029 0.003 0.000 0.000
2 3 0.95 0.961 0.901 0.810 0.673 0.490 0.181 0.030
3 ft0.905 0.996 0.999 1.000 1.000 1.000 1.000 1.000

Z S) 2.905 2.729 2.362 1.965 1.701 1.5 1.182 1.039
3(S O) 1.910 1.731 1.3A 0.965 0.701 0.S0 0.181 0.039

1(SR) -5.870 5.67 s.2 4.775 4.374 4.002 3 &078
ELPI... 0.966 0.910 0.787 0.655 0.567 0.501 0.394 0.34

1 0.921 0.586 0.114 0.006 0.000 0.000 0.000 0.000
2 0.966 0.874 0.626 0.279 0.068 0.010 0.000 0.000
3I 0988 0.976 0.947 0A02 0.795 0.52 0.3 0.080
3 0.907 0.976 1.000 1.000 1.000 1.000 1.000 1.000

&872 Tm &435 2.066 2.175 1.86 1.662 .30M 1.060
3(S*) 2.874 2.436 1.6 1.175 0.863 0.662 0.3 0.060
Z(SR) 9.8 9.258 8.206 7.6 6.521 5.M 4.906 4.240

P 0.968 0.859 0.672 0.44 0.466 0.415 0.326 0.270

I o.869 0.300 0.006 0.00 0.000 0.000 0.000 0.000
2 0.949 0.094 0.188 0.011 0.000 0.000 0.000 0.000

5 3 0.979 0.918 0.724 0.383 0.113 0.019 0.000 0.000
14 0.903 O.9 0.967 0.929 0.858 0.742 0.403 0.125

0 .ai 1.000 1.000 1.000 1.000 1.000 1.000 1.000
F() 3.810 2.896 1.884 1.322 0.971 0.762 0.403 0.125

E(SR) 1 M. 13.379 11.420 9.86 &r1 8.028 6.611 5.501
3(P) 0.962 0.779 0.77 0.464 0.394 0.352 0.281 0.225

1 0.286 0.000 0.000 0. 0. 0. 0. 0.
2 0.510 0.000 0.000 0.000 0. 0. 0. 0.
3 0.711 0.001 0.000 0.000 0.000 0. 0. 0.
4 0.849 0.026 0.000 0.000 0.000 0.000 0. 0.

10 5 0.928 0.226 0.000 0.000 0.000 0.000 0.000 0.
6 0.968 0.621 0.060 0.000 0.000 0.000 0.000 0.000
7 0.967 0.888 0.472 0.068 0.002 0.000 0.000 0.000
a 0.905 0.977 0.899 0.673 0.324 0.067 0.002 0.000
9 0.996 0.996 0.991 0.960 0.95 0.906 0.683 0.333

10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
.) 232 4.735 3.413 2.721 2.281 1.992 1.684 1.333

3(e) 7.32 3.735 2.413 1.721 1.281 0.992 0.664 0.333
Z(SR) 51.129 37.969 29.720 24.682 21.19 18.644 16.157 12.999
EP) 0.230.4730.341 0.22 0.22 019901 0.133
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Table 14: Performance characteristics of the medians rule R2 under the slippage
configuration.

P" , 0.90. -- 3

I I 1 1.6 .0 10.30 01 .3 1 0 1 4 L 31 0.1-0

2 0.992 0.997 0.96 0.996 1.000 1.000 1.000 1.000
1.90 1.9W 18869 1.816 1.716 1.594 1.331 1.136

E(SO) MOS6S 0.939 0.89 0417 ~ 0.717 0.394 O I 0.138
B(SR) 2.953 2.=2 2M.87 2.816 2.716 2.594 2.331 2.136

{P) 0.980 0.968 0.944 0.906 0.858 0.797 0.66 0.68
1 0.986 0.976 0.96 0.920 0.862 0.779 0.540 0.284

3 2 0.996 0.976 0.95 0.920 0.862 0.779 0.50 0.284
3 0.906 0.968 0.999 1.000 1.000 1.000 1.000 1.000

ES) 2.968 2.949 2.910 2.83 2.725 2.57 2.080 1.567
E(S-) 1.972 1.961 1.911 1.80 1.725 1.557 1.060 0.567t(Si) .4 6 . 21 S. 4 . 759 s .rr 3.3 3 4.20 &eo 3 1

BP) 0.969 0.963 0.970 0.946 0.908 0.852 0.693 0.522
1 I 0.891 0.985 0.974 0.952 0.914 0.853 0.654 0.390
2 0.991 0.965 0.974 0.962 0.914 0.853 0.653 0.390
3 fi0.961 0.965 0.974 0.962 0.914 0.853 0.663 0.390
4 0.997 0.969 1.000 1.000 1.000 1.000 1.000 1.000& M ) Q6 1 3 &.921 &U 3.42 &.SWI 2.90 .169

E.(S*) 2.973 2.966 2.922 2.856 2.742 2.560 1.960 1.169
E(SR) 9.G96 9.906 9.U41 9.712 9.484 9.120 7.918 6.338
IP) 0.993 0.969 0.900 0.964 0.935 0.890 0.740 0.542

S 0.993 0.990 0.962 0.967 0.939 O.893 0.723 0.468
2 0.993 0.990 0.962 0.967 0.930 0.893 0.723 0.468

G13 0.993 0.990 0.962 0.967 0.939 0.893 0.723 0.468
4 0.903 0.990 0.962 0.967 0.939 0.893 0.723 0.468
5 .M 0.9 99 1.000 1.000 1.000 1.000 1.000 1.000

IS) 4.971 4.968 4.928 4.868 4.757 4.571 3.892 2.873
E(S) 3.974 3.969 3.928 3.166 3.757 3.571 2.892 1.873
E(SR) 14.923 14.83 14.819 14.609 14.3 13.927 12.229 9.682
EP) 0.994 0.902 0.966 0.974 0.961 0.914 0.778 0.575

1 0.997 0.996 0.994 0.989 0.978 0.969 0.868 0.676
2 0.907 0.996 0.994 0.989 0.978 0.969 0.868 0.676
3 0.997 0.996 0.994 0.9 0.978 0.969 0.868 0.676
4 0.997 0.996 0.994 0.989 0.978 0.969 0.868 0.676

10 5 0.997 0.996 0.994 0.969 0.978 0.959 0.868 0.676
6 0.997 0.996 0.994 0.969 0.978 0.959 0.868 0.676
7 0.997 0.996 0.994 0.989 0.978 0.959 0.868 0.676
8 0.997 0.996 0.994 0.989 0.978 0.969 0.868 0.676
9 0.997 0.996 0.994 0.969 0.978 0.959 0.868 0.676

10 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
,(S) 9.971 9.963 9.942 9.897 9.804 9.627 8.809 7.088

-(S*) 8.972 8.963 8.943 8.897 8.804 8.627 7.809 6088
E(SR) 54.851 54.812 54.711 S4.485 54.021 53.136 49.045 40.440
E(P) 0.997 0.996 0.994 0.99o 0.980 0.93 0.881 0.709
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Table 15: Comparison of the rule R1 to R2 : Equally spaced configuration.

Pm0.90, r=3, k=4

_v_= .& c = M3.0

PwLCh.. i, A, R/I, A A, RUIA

P(CS) 0.996 1.000 0.906 1.000 1.000 1.000

S(S) 2.112 2.688 0.792 1.3o 1.662 0.12

R(V) 11.116 1.as o.6M 0.30 0.662 0.29

B($) .917 .208 0.843 5.043 5.975 0.844

S(P) o.28 0.672 0.736 0.337 0.45 .812

Per0.90, %=S, k=4

&, =1.5 Svj.= 3.0

P, C r. Al A, Ri/A, A, A, R,/A,

P(CS) 0.997 1.000 0.907 1.000 1.000 1.000

B(S) 2.114 3.M7 0.627 .352 2.000 0.676

3(S) 1.117 2.M37 0.471 0.352 1.000 0.352

R(SR) .920 9.258 .747 5.049 6.907 0.731

3(P) o.528 0.643 0.626 0.336 o.500 0.676

_P*=0.9, n=3, k=4

;, = M1.5 5v, w 3.0

Pa~Chm. it, A, R1,/A, R, A, 11,/A,

P(CS) 0.990 1.000 0.990 1.000 .Oo 1.000

H(5) 2.406 3.276 .734 1.40 1.951 0.767

B(T) .406 2.276 0.616 0.496 0.961 0.522

Z(SR) 7.552 9.129 0.827 5.474 &784 0.807

S(P) 0.601 0.819 0.734 0.374 0.488 0.766

P*=0.96, rS, k=4

M r1.= ___= 0

PrfLCha. A A, 1/R2 Ri A, 11,/A

P(CS) 0.999 1.000 0.999 1.000 1.000 1.000

S(5) 2.400 3.836 0.626 1.494 2.396 0.624

B(,T) 1.401 2".83 0.494 0.494 1.396 0.354

R(SR) 7.40 9.821 0.766 5.467 7.778 0.703

3(P) 0.600 0.969 0.626 0.373 0.599 0.623
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Table 16: Comparison of the rule Ri to R2: Slippage configuration.

P*m0.90, s=3, k=4

1.5 6/, 3.0

PLrchw. at R2  R1 R3 R1  R3 R1/R 2

P(CS) o.991 1.000 0.99 1.000 1.000 1.000

H(S) &169 3.921 O.80 2.018 3.WO o

E(s) 2.19 2.922 0.746 10S 2.60 0.396

E(SR) .320 9.841 0.8M &034 9.120 0.662

H(P) 0.792 0.960 0.80S 0.504 0.890 0.566

P*=0.90, n=5, k=4

/-- m 1.5 SV/I- , &0

PLChar. R R, R A/R 2  R R2  RI/R 2

P(CS) .9M 1.000 0.991 1.000 1.000 1.000

B(S) &167 &909 0.792 2.025 &917 0.517

B(T") 2.176 2.992 0.727 1.025 2.917 o.351

E(SR) .317 9.963 0.833 6.048 9.834 0.615

B(P) 0.792 0.996 0.794 0.506 0.979 1 0.517

P--0.95, sm3, k=4

1.5 3.0

PuLChar. it, R2  IR 1 /R 2  RI R2 _____

P(cs) 0.996 1.000 0.996 1.000 1.000 1.000

E(S) &496 &961 0.578 2.435 &W2 0.632

B(s') 2.961 0.839 1.435 2.82 o.501

B(SR) .966 9.9 09 .869 9.703 0.689

B(P) 0.874 0.996 0.878 o.6o 0.963 0.632

SP=m0.9, n =5, k=n4

E#u1.5 &In-= &0

PwLChw. R1  R2  RI/R2  R1  R2 RR2R2
P(CS) 0.997 1.000 0.99T 1.000 1.000 1.000

B(S) &489 3.999 0.827 2.429 3.987 0.609

B(sT) 2.492 2.999 0.831 1.429 2.967 0.478

E(SR) 5g.1 9.996 0.897 6.858 9.974 0.688

E(P) 0.872 1.000 0.872 0.607 0.997 0.609
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3 AN ELIMINATION TYPE TWO-STAGE PRO-

CEDURE FOR SELECTING THE POPULA-

TION WITH THE LARGEST MEAN FROM

k LOGISTIC POPULATIONS

3.1 Introduction

It is unrealistic to assume that we always have k populations with a common known

variance. When the variances are unknown, it is not possible to predetermine the sam-

ple size for a single-stage procedure since the standard errors of the sample means are

unknown. (See, for example, Dudewicz (1971)). Bechhofer, Dunnett and Sobel (1954)

have considered a two-stage non-elimination type procedure in which the observations

in the first stage are only used to obtain an estimate of the common unknown vari-

ance. Gupta and Kim (1984) considered an elimination type two-stage procedure for

the case of common unknown variance and they showed that their procedure performs

much better than the non-elimination type procedure of Bechhofer, Dunnett and Sobel

(1954).

For selecting the population having the largest mean from normal populations with

equal known variance a2, Cohen (1959), Alam (1970) and Tamhane and Bechhofer

(1977, 1979) have all studied two-stage elimination type procedures, in which they

used Gupta's (1956, 1965) subset selection procedure in the first stage to screen out

non-contending populations and Bechhofer's (1954) indifference zone approach to all

populations retained in the second stage.

Tamhane and Bechhofer (1977) studied in depth a two-stage elimination type pro-

cedure (12) for selecting the largest normal mean when the common variance is known.

In order to determine a set of constants necessary to implement P', they proposed a

criterion of minimizing the maximum over the entire parameter space of the expected

total sample size required by P' subject to the procedure's guaranteeing a specified

probability of a correct selection. As a consequence, P2 based on this unrestricted
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minimax design criterion possesses the highly desirable property that the expected to-

tal sample size required by P2 is always less than or equal to the total sample size

required by the best competing single-stage procedure of Bechhofer (1954), regardless

of the true configuration of the population means. Due to the difficulties of determin-

ing the LFC of the population means for k > 3, and of evaluating the probability of

a correct selection associated with P when the population means are in that configu-

ration, they adopted a lower bound to the probability of a correct selection of P2 and

obtained a set of constants which provides a conservative solution to the problem.

In this chapter we consider an elimination type two-stage procedure for selecting

the logistic population with the largest population mean when the populations have a

common known variance.

We propose a two-stage elimination type procedure P2 and a non-linear optimiza-

tion problem by using a minimax criterion to find a set of constants needed to imple-

ment P2. We derive lower bounds on the probability of a correct selection and the

infimum over the preference zone of the lower bounds. We determine the supremum

of the expected total sample size needed for P2 over the whole parameter space. We
provide tables of constants to implement P2 and of the efficiency of P2 relative to the

single-stage procedure P1 considered in the previous chapter for the two special cases

of the equally spaced and slippage configurations.

3.2 Preliminaries

Let ri, i - 1,..., k, denote k logistic populations with unknown means pi and a com-

mon known variance a.2 and let

fl (p, -= #,.,k); -oo <#j, < oo, i = k,..,)

be the parameter space. Denote the ranked values of the p, by

5:] .. " 5 Itk]

and let

iP[q -pf .
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We assume that the experimenter has no prior knowledge concerning the pairing of the

ri with the /p[s, i k 1,..., kj = 1,...,. Let w(., denote the population associated

with jE1.

The goal of the experimenter is to select the 'best' population which is defined as

the population with the largest mean. This event is referred to as a correct selection

(CS). The experimenter restricts consideration to procedures (P) which guarantee the

basic probability requirement

Pa[CSIP] > P, VO E fl(6), (45)

where 6 > 0 and 1/k < P" < 1 are specified prior to the start of experimentation and

fl(6) = {U E fnl (p[kJ - >k-ij) 2 6}

which is defined as the preference zone for a correct selection.

Here we propose an elimination type two-stage procedure P 2=*P2(n, n2, h) which

depends on non-negative integers nj, n2 and a real constant h > 0 which are determined

prior to the start of experimentation. The constants (ni, n2 , h) depend on k, 6 and P

and they are chosen so that P2 guarantees the basic probability requirement (45) and

possess a certain minimax property.

Procedure P2;

Stage I: Take n, independent observations

x1 ), i=1,...,nj,

from each ri, i = 1,..., k, and compute the k sample means

XW i;=1 ..k
1 j--1

Let - max<,<, . Determine the subset I of {1,..., k) where

I= {iIjX '1 ) > TI

and let rz denote the associated subset of { r,... ,r
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1. If js consists of one population, stop sampling and assert that the population

associated with V[" is best.

2. If wr consists of more than one population, proceed to the second stage.

Stage 2: Take n2 additional independent observations .. j _- 1...,n2 , from

each population in ir, and compute the cumulative sample means

n + j

I + n2(nX<' + n 2 X~

for i E I, where

r62 jinl

Assert that the population associated with maxiEj i is the best.

Remark 3.1 If h = 0 the two-stage procedure P2 reduces to the single-stage procedure

Pz which was considered in Section 2.3 with single-stage sample size n = ni per popu-

lation. Also the rule determining I in the first stage is of the type of the subset selection

procedure considered in Section 2.4.

There is an infinite number of combinations of (ni, n2 , h) for given k, 6 and Ps,

which will exactly guarantee the basic probability requirement given by (45), and

different design criteria lead to different choices. We will consider one of these criteria.

Let S' denote the cardinality of the set I in stage one and let

0; ifS=1(46){ S'; if S'>1.

Then the total sample size required by P2, TSS say, is

TSS = kn1 + Sn 2 .

Let E,[TSSP 2 ] denote the expected total sample size for P2 under/7.

49

%.% , -_ % Z '. ,-Z....* ,,*. ,, . ;, ,,, ; ,,, r '%..,: _, ,, . , ,



We adopt the following unrestricted minimax criterion to make a choice of (n1 , n 2, h)

as well as to have the totalsample size TSS small. For given k and specified 6 and

P, choose (n,n 2,h) to

minimize sup Eg[TSSI'P2]
ea

subject to ii Pu[CSIP 2] > P*, (47)

where (ni, n 2) are non-negative integers and h > 0.

For any population whose sample mean has the MLR property, Bhandari and

Chaudhuri (1987) proved that the least favorable configuration (LFC) of the two-

stage population means problem is a slippage configuration. However, the problem of

evaluating the exact probability of a correct selection in the LFC associated with 'P2

is complicated and still remains to be solved. Here we will consider lower bounds for

Pg[CS IP21 and construct conservative two-stage procedures.

3.3 Lower bounds for the probability of a correct selection

for P2

In this section we derive lower bounds for P[CSI'P2]. These lower bounds will prove

to be particularly useful since we will prove that they achieve their infimum over A(6)

at 1(b) which has components

A = "' P=rk-1l =PikI - 6, 6 >_ 0.

This result will permit us to construct a conservative two-stage procedure which guar-

antees the basic probability requirement (45).

The next theorem gives one of these lower bounds for Pz[CSIP2].

Theorem 3.1 For any P E fl we have

PI[CSP 2]

-> ri-F,(z + 6.Vi/l + h)dF., (.)

k-I

+ J I F.,+.(z + 6kjVn F+n2/a )dF., +,(z) - 1, (48)
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where F.(z) is the cdf of the standardized sample means of size n from L(, a 2).

Proof

For any17 E fl we have

since P(AflB) >_ P(A)+ P(B)- 1 for any two events A and B. Then a straightforward

computation leads to the conclusion of this theorem. 0

Corollary 3.1 For all j 6 fl(S) to have

P,[CSlP2  ] > (50)

FF z+ V'nO +k M ih) }k-ldF,(z)

+P F,.C+,¢,,n/ )}-x .+.() -a ( O)

Proof
The proof follows immediately on noting that the right hand side of (48) is non-

decreasing in each 6t for i 1,...,k- 1. 0

Remark 3.2 Since the right hand side of (51) is strictly increasing in each of n1 ,
ni + n2 and h and tends to one as ni or, n3 and h tend to oo, we see that the basic
probability requirement (45) can be guaranteed if one (or more) of these constants is

chosen sufficiently large.

Remark 3.3 If we let h --+ oo on the right hand side of (48) we obtain
b-I

F 'I F,+,,(+ + + n/,/a )dF,,+.2(x)
im1
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which is an expression for P;[CSIPli] where P, uses a common single-stage sample size

n = n + n2 per population. Thus P1 is a special case of P2 based on a conservative

lower bound and hence EU[TSSIP 2] < Ln for all JZ E fl.

Remark 3.4 The distribution of the mean of samples from logistic population has the

monotone likelihood ratio (MLR) property with respect to the location parameter (God

(1975)) and hence the distributions of the %i1) and V2) are stochastically increasing

(SI) families in pi, i = k.

Remark 3.5 The cumulative sample means

n, + n2 ni + n2

are strictly increasing in each X(, j=1,2, i=1,...,k.

We can now find another lower bound to the Pa[CSIP] given in the following

theorem by noting the facts mentioned in Remark 3.4 and Remark 3.5. This lower

bound can be shown to be uniformly superior to the one given in Theorem 3.1. It is

also straightforward to determine the LFC of the population means relative to this new

lower bound.

Theorem 3.2 For any ' E fl we have

i Pr[CSIP2]

>_ I{F.,(z + 6vb-i/c + h)}"-dF.,(z)
-f_'*IF.,.,.,(x + 8,n +2a)}-'dF.1+1-( W, (52)

where F.(x) is the cdf of the standardized sample mean of size n from L(poa2 ).

Proof

Let F(.Ip,) and G(.I/,) denote the cdf's of the V*) and Xi respectively and let

H(., .1p) denote the joint cdf of the Vil ) and Yi. Then F(.I i,), G(.lui) and H(., .Ipi)
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ae non-increasing in pi, i = 1,..., k, from Remark 3.4 and Remark 3.5. Without loss

of generality we may assume that i, : ... pI,. Then for all ' E fl(6),

P17[C SI 21
= ,Pe' > max1 ,<& - hou/Vln, X(k) = IMaXieI X(j)]

= ft  f J"[H(z + h nl, ylp ,)dH(x,Y 10k)

> J[0 L H(x + hal/-/-1, Y Il~k - e)dH(zT, Yf I/k)
00-0 =1

i,. [H { ('),,_, ,+ hoa./l,-5', (k) ,k -,6],

where the expectation is with respect to the joint distribution of V, and (k). Hence

;en { a[CSIP2]> inf Ep M(H ,,Y- + h47/a' ,X(k)lAk - }1
, ea( [

and it is enough to show that for all f E. f(),

E+,,[H h'/V ,X(k)I/k - 6
> +.[ ) , hu/v'ii k-6)lEu[Gk- (X'k)Ak -6)1.

By Remark 3.5, for a0l a, b and p,

P-,{,, < a , X 7b b}
S< a < e -.*U-(b -. .

. ,,[.,,{ )_, )_. (I +, 'U))1 ,}
> E5.[p{ ; <aIX(} I

•~ ~ ~ j nI (j ni +n2 Ub,,, ()X.)}U)

A { _ a}P,{X) < b}

and hence

E .,t[t-'{ , + hI,/A", X(k)Ijk - 6}]
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> Ejh,[Fk X({(X + h'/.,i'l I, - 61
•G -  {X ,(k) 57]

Bo E *Fk1XX + he/Vrn-jl -- 6]

by the Chebyshev inequality (Hardy, Littlewood and P6lya (1934)), since

F(()+ ho/lpk -6}

and

G{%(k) 114k -6)}

are non-decreasing in 0

Remark 3.6 If we let

a= J {F,,(z+8V/Anj +h)}'-dF.,(x)

and

b = Jf_ {F +,+.2(T + 6"Vn/¢j2/-7 )} -dF.,.(T)

then (51) states that
inf Pg[CSlP2 J:a+b-1

IEO(6)

and (52) states that

inf Pp[CSIP] >-ab.

By noting that a + b - 1 < ab for all a, b E (0,1), the lower bound (52) is uniformly

superior to the lower bound (51), an4 hence we will use the lower bound (52) henceforth.

3.4 Expected total sample size for P2

In order to solve the optimization problem (47) we first find an analytical expression for

the Ea[TSSIP2] and then determine the supaEn Er[TTSSIP2 ] and the sets of l -values

at which this supremumn occurs.
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I

Theorem 3.3 For any J7 E nf we have

EX[TSSIP 21 = kn + n2  IIIHF,(+pv/ --7/c +h)

k

- fI F,(z + /j/-,'/u - h)}dF.4(), (53)

where F.(z) is the cdf of the standardized sample means of size n from L(IA, a2 ).

Proof

For any /A E fI we have

E1 [TSS[*P2] = kni + n2EO[SIP2],

where S is defined as in (46). Now

EA[SIP21= Ea[S'IP2  - P'= 1(1P21

k

-,[(' (,' ha/Nfnj, Vj9il 54
i=2

and hence Theorem 3.3 follows immediately. D3

The following theorem summarizes the result concerning the supremum of the

Ea[TSSIP2] for * E f1.

Theorem 3.4 For any i' E fl, fized k and (nj,n2 , h) we have

sup Ell[TSSIP 2 ]

=kni+n2] O[{F(+h)kl{-F.1 (x-h)}k-I~dF.1 (:) (55)

which occurs when P[, = "'" =lpj, where F,(z) is the cdf of the standardized sample

means of size n from L(p, 2 ).

Proof

Noting Remark 3.4 and Remark 3.5 we can use the results of Gupta (1965) which

show that EAi 3 'IP2] achieves its supremum for jI E fl when q = u..= k. By the

similar argument Pa[S' = I1]2 achieves its infimum when jiE, = .- .= . Hence the

result follows immediately from Theorem 3.3. 0
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3.5 Optimization problem yielding conservative solutions

In this section we consider the optimization problem (47) which one must solve in

order to determine the constants (n1, n2, h) which are necessary to implement P2.As

we noted earlier, the problem of evaluating the exact probability of a correct selec-

tion in the LFC associated with P2 is very complicated. Thus we replace the exact

inf;eo(s)PI[CS*P2 ] by the conservative lower bound given by the right hand side of

(52), and consider the following optimization problem.

For the given k, 6 and P" choose the constants (n, n2, h) to

minimize knI + n2  [{F, (- + h)}k- - {F, (z - h)}k-]dF,)

subject to fF(x+ bV"I/o" + h)}k-ldF,, (z)

• {F,,,+,,(-+ bV,'i+2I/a )}k-dF.,+.,(.) _ P, (56)

where n, and n2 are non-negative integers and h > 0.

Let us denote by (fi, fi2, h) the solution to the optimization problem (56). Then

we can use the approximate design constants

n, = [i + 1], n2 =[ + 11, h=h,

where [z] denotes the greatest integer which is less than z, to implement P2 .

Table 17, Table 18, Table 19 and Table 20 contain the constants (fi, fk, h) necessary

to approximate (n1, n2, h) and the values of the expected total sample size (ETSS) for

k = 2,3,4,5,10,15, P" = 0.75,0.90,0.95,0.99 and b/ = 0.1,0.5,1.0,2.0,4.0. All

computations were carried out in double-precision arithmetic on a Vax-11/780. The

SUMT (Sequential Unconstrained Minimization Techniques: Fiacco and McCormick

(1968)) algorithm is used to solve the non-linear optimization problem. A source

program in Fortran for the SUMT algorithm is given by Kuester and Mize (1973).
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3.6 The performance of the two-stage procedure relative to

the single-stage procedure

As a measure of efficiency of the two-stage procedure P2 relative to that of the single-

stage procedure 'P when both guarantee the same basic probability requirement (45),

we consider the ratio termed relative efficiency (RE) Ea[TSSITP2]/kfi. where h. is

the estimate of the minimum sample size n. needed in the single-stage procedure P1.

Clearly RE depends on /7, 6 and P*. Values of the RE less than unity favor P2 over

*P1 .

Now the RE is given by

i-l -o j.i
Is

k
- I F,,(t + 6ix,/;/o - h)}dFt 1 (t)]. (57)

i

where n. is the solution of

J_ {Fn.(t + ( '2, /a)}k-dFn.(t) = P'. (58)

We consider the relative efficiency for two special cases, namely, the equally spaced

and the slippage configurations. First, for the equally spaced configuration, we assume

that the unknown means of the k populations are p, p + #,..., p + (k - 1)6 which have

ranks 1, 2,..., k, respectively. Let RE. denote the relative efficiency with respect to

the above configuration. Then, since 6ii = p[.1 - p l = (i - j)6,

RE" - [kf + h E 17 ,, ([t + F2, 2(i T)e+ + h)
00

k

- i F,1,,(t + Vfi(s -j)S/o' - A)}dFa,(t)]. (59)
jai

Next, for the slippage configuration, we assume that the unknown means of the k

populations are #[.I= p, k = ,.,- 1, and #[k] = 1A +6b, 6 >0. Then the relative
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efficiency with respect to the above configuration, REp,, is given by

REsp =

1 + 2{(k - 1)J (F4,(t + F) - -

(F% (t - / + h) - F&, (t - V /a- h))dF&, (t)

+ J (F,(t + V'i/0 + h) - F,(t + Vf/,/ -. _,))k-ldFp(t)}]. (60)

Table 21 and Table 22 give the values of the RE., and REp, for given values of

P" = 0.75,0.90,0.95,0.99, k = 2,3,4,5,10,15 and 6/o = 0.1,0.5,1.0,2.0,4.0.

For any values of P*, k and 8, RE. :5 1 and RE, < and hence the two-stage

procedure is more efficient than the single-stage procedure in terms of the expected

total sample sizes. Furthermore, the effectiveness of P2 appears to be increasing in k

since the values of RE., and RE,? are decreasing in k.
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Table 17: Constants to implement the two-stage procedure P2 for selecting the largest

logistic population: P* = 0.75.

* P= 0.75 ____

0.10 0.4548U402 O.43Me4.02 0.5530.4.0 0.181720.03

0.50 0.2620.4.01 0.8929&4-00 0.7323&4.0 0.702648*4-0

2 1.00 0.3121e4.00 0.4983&4.00 0.7097.4.01 0.162056.4.0

2.00 0.9656@01 0.1070e4.00 0.6696.4.01 0.405153&.-00

14.00 I0.28349-1 0.2232e01 0.6127e4.01 0.10300.4.00

0610 0.1018.4.03 0.1044e403 0.3688&4.01 0.615938.e-03

0.50 0.477.4.01 0.3340.4.01 0.4516.4.01 0.243344.402

3 1.00 0.8971*.0 0.1050.4.01 0.7309.4.01 0.584085e4.01

2.00 0.2876&4.00 0.2774.4.00 0.6606.e.01 0.139489.4.0

4.00 0.8039.01 0.3886e01 0.6112.4.0 0.348738.4.00

0.10 0.1392e4.03 0.1515.4.03 0.2751.4.01 0.112241.4.04

0.50 0.5900.4.01 0.5554.4.0 0.2947.4.01 0.447121.4.02

4 1.00 0.1711.4+01 0.1037.4.01 0.4159.401 0.109639.4.02

2.00 0.3255*4-0 0.370.4.00 0.5857e4.0 0.2608901

.4.00 0.8061.01 0.82201 0.5737.4+01 0.652252.4.00

0.10 0.1631.403 0.2013.4.03 0.2278.e.01 0.166485.e.04

0.50 0.6766e4.0 0.7657.4.01 0.2341.e.01 0.666234.&.02

5 1.00 0.1826.4.01 0.1630.4.01 0.2746.4.01 0.165961.4.02

2.00 0.38644.00 0.4182.4.00 0.4050.e.01 0.39944.4.0

.4.00 0.9599.-Cl 0.lO5l4.00 0.4087.4.01 0.998538.4.00

0.10 0.23574+03 0.4304e4.03 0.1494.4.01 0.451824.4.04

0.50 0.9687.4.0 0.1738e+02 0.146Me 10M 0.181456.4+03

10 1.00 0.2504.4.01 0.4455.4.01 0.1396.4.01 0.458878.4.02

2.00 0.6367.4.0 0.1178e4.01 0.1361.4.01 0.117515.e.02

4.00 0.1582.4.00 0.2758.4.00 0.1470.4+01 0.295260.4.01

0.10 0.2714.4.03 0.5855.4.03 0.1369e4-0 0.744887.4.04

0.50 0.1100.4.02 0.2372.4.02 0.1352.4-02 0.299197e4.03

15 1.00 0.2858.4.01 0.6119.4.01 0.1308.4.01 0.757369.4.02

2.00 0.7466.4.0 0.1668a401 0.1255.4.01 0.195906.4.02

4.00 0.1906.4.00 0.4032.4.00 0.1313.4.01 0.501004.4.0
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Table 18: Constants to implement the two-stage procedure P2 for selecting the largest

logistic population: F' = 0.90.

* r '= 0.9

0.10 0.1668&4.03 0.1728e+03 0.2446e401 0.650194.4.03

0.50 0.7013.4.0 0.6404.401 0.2591e401 0.259726o+02

2 1.00 0.1932.4.0 0.1311e+01 0.3369.401 0.643201.40

*2.00 0.4011.400 0.3724e400 0.5331.401 0.154420.401

4.00 0.1044.400 0.8907..01 0.5026e401 0.386564.400

*0.10 0.2745e4.03 0.2513e403 0.2017.401 0.146152.404

0.50 0.1126e402 0.9634.401 0.2071.401 0.585665.402

3 1.00 0.2971.40 0.2135.401 0.2332.401 0.146860.402

2.00 0.6894.40 0.5189.400 0.5004.401 0.362197.401
4.00 062693e4.00 0.1310&400 0.4955.401 0.9000490+00

0.10 0.3296.4.0 0.338.0 0.1713e401 0.229940&404

5, .5 0.1340.402 0.1300.402 0.1728.401 0.9229$2e402

4 1.00 0.3489.401 0.348.401 0.1796.401 0.232917.402

2.00 0.8374e400 0.70068&.00 0.2643.401 0.592662.40

4.00 0.2090&400 0.1704.400 0.2831.401 0.147462.401

0.10 0.3664in.403 0.4034.403 0.1556.401 0.315013.+4

0.50 0.1 4M8.02 0.1596e402 0.1553.401 0.126542.+03

5 1.00 0.3663.401 0.3858.401 0.1559.401 0.320185.402

2.00 0.9610.400 0.9217.400 0.1867.401 0.829964.401

4.00 &.2403@400 0.2184.400 0.2071.401 0.206230e402

0.10 0.4549.403 0.6465a403 0.1367e401 0.750100.404

0.50 0.1444202 0.2588.402 0.1357.401 0.301614.403

10 1.00 0.4784.401 0.6497.401 0.1328.401 0.765662.402

2.00 0.1328.401 0.1644.401 0.1257.401 0.201395.402

4.00 0.3335.400 0.4262e400 0.1362.401 0.528481.01

0.10 0.4834.403 0.7911.403 0.1366.401 0.119540.405

0.50 0.1999.402 0.377.402 0.1358.401 0.480822.403

15 1.00 0.5180.401 0.8022.01 0.1335.401 0.122187.403

2.00 0.1433.401 0.2074.401 0.1280.401 0.322460.402

4.00 0.3751.400 0.5593.400 0.1328.401 0.86274.401
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Table 19: Constants to implement the two-stage procedure ?2 for selecting the largest

logistic population: JP 0.95.

0.10 0.3008.4.03 0.2827.03 0.1781.4.01 0.104953.404

0.50 0.122704.02 0.1090.402 0.18100+01 0.4212470+02

2 1.00 0.3215*-01 0.25040+01 0.19580+01 0.106222.02

2.00 0.7631.400 0.5883&400 0.356.4+01 0.268233.+01

4.00 0.1899%+00 0.1457e400 0.3785*401 0.667847.400

0.10 0.4362.0.03 0.3657.403 0.1574.401 0.2114190+04

0.50 0.1768.402 0.1436.402 0.1589.+01 0.8492140402

3 1.00 0.4579.4+01 0.3388.401 0.16540+01 0.2148010402

*2.00 0.1223.+01' 0.6962.+00 0.2269.+01 0.553339.401

4.00 0.2858.400 0.1853.400 0.3237.401 0.139794.4+01

0.10 0.4991.03 0.4519.403 0.1452.401 0.3183840+04

0.50 0.2023.402 0.1787.402 0.1453.401 0.127964.".0

4 1.00 0.5232.401 0.4325.401 0.1 464.4!01 0.324315.402

2.00 0.1420.0M 0.9417.400 0.1675.401 0.846044.401l

14.00 0.393.400 0.2423.400 0.2163e+01 0.218343.401

0.10 0.5381.03 0.5259.403 0.1392.401 0.426098.404

0.50 0.21824+02 0.20866.402 0.1388.401 0.171314.403

5 1.00 0.549.401 0.5112e401 0.1379.401 0.434710.40

2.00 0.1546.401 0.1282.01M 0.1430.401 0.114045.402

4.00 0.3809.400 0.3002.400 0.1752.401 0.299628.401

0.10 0.6279.403 0.7682.403 0.1349.401 0.973702.404

0.50 0.2544.402 0.3010.402 0.1342.401 0.391770.+03

10 1.00 0.6592.401 0.7667.401 0.1321.401 0.996400.402

2.00 0.1827.401 0.1923.401 0.1269.401 0.263641.402

4.00 0.487.400 0.5216.400 0.1344.01M 0.724963.401

0.10 0.6674.403 0.9126.40 0.1377.401 0.153152.050

0.50 0.2703.402 0.3659.402 0.1370.401 0.616396.403

15 1.00 0.7002.401 0.9178.401 0.1354.01M 0.156917.03

2.00 0.1942.401 0.2339.40M 0.1310.401 0.416523.402

L 4.00 0.3293.400 0.6784.400 0.1300.401 0.115109.402
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Table 20: Constants to implement the two-stage procedure ?2 for selecting the largest

logistic population: P* = 0.99.

__________ P* = 0.99____

k1ia It A I ETSS

0.10 0.68=e.403 0.50714.0 0.1295e4.01 0.202774.4.04

0.50 0.2784&4.02 0.2014.e.02 0.1300.4.01 0.815644a4.02

2 1.00 0.7189e4.01 0.4896.4.0 0.1309e4.01 0.207286.402

2.00 0.196.M0 0.1107.4.0 0.1414.4.0 0.54668e.01

4.00 0.5013.4.00 0.2771.400 0.2143.4.0 0.148773.4.0

0.10 0.8588.4.03 0.5804.4.03 0.1248.4.0 0.366047.4.04

0.50 0.3475e4.02 0.2299e4.02 0.1249.4.01 0.147249.&.03

3 1.00 0.8964.4.0 0.5614.4-01 0.12544.01 0.374304.4.02

2.0 0.2442.4-01 0.1300&4.01 0.1314.4.01 0.968866.401

4.00 0.6518&4.00 0.3209.4.00 0.2062.4.0 0.278376.4.01

0.10 0.9268e4-03 0.6663.4.03 0.1254.4.0 0.526865.404

0.50 0.3750&4.02 0.2646.4.02 0.1253.&+M 0.211992.4.03

4 1.00 0.9668e4.0 0.6601.4.01 0.1250e4.01 0.539214.4.02

2.00 0.2647.4.0 0.1542.4.0 0.1266.4.01 0.142783.4.02

4.001 0.7350&4.00 0.4650.4.00 0.1230&4.0 0.404965.4.0

0.10 0.9639.4.03 0.7432&4.03 0.1271.e.01 0.687580.4.04

0.50 0.3903e4.02 0.295.4.02 0.1266.e.01 0.276700.e.03

5 1.00 0.1008e4.02 0.7283e4.01 0.1258*4.0 0.704196.4.02

2.00 0.2770&1.01 0.1751.4.01 0.1252.4.0 0.186821.4.02

4.00 0.7665.4.00 0.4714.4.0 0.1451.4.0 0.532902.4.01

0.10 0.1049.4.04 0.9W71e403 0.1343.4.01 0.149675.4.05

0.50 0.4246.4.02 0.3976.4.02 0.1340.4.0 0.602284.4.03

10 1.00 0.1099.4.02 0.9679.4.01 0.1327.4.01 0.153541.4.03

2.00 0.3045.4.01 0.2443.4.0 0.1296.4.01 0.409579.4.02

4.00 0.8789.4.0 0.678 7.400 0.1394.4.01 0.119728.4.02

0.10 0.1088e4.04 0.1147.4.04 0.1400.4.0 0.231194.4.05

0.50 0.4406.e.02 0.4683.4.02 0.1396.4.01 0.931205.4.03

15 1.00 0.1140e1.02 0.1143.4.02 0.1384.4.0 0.237593.4.03

2.00 0.3166.4.01 0.2855.4.0 0.1356.4.01 0.635515.4.02

4.00 0.9277.4.00 0.8022.4.00 0.1455.4.01 0.187967.4.02
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Table 21: Relative efficiency of the two-stage procedure 'P2 : Equally spaced configura-

tion.

EqAflHY Spaced Configuraimc

L 0.1 0.5 1.0 2.0 4.0

2 0.999 1.000 1.000 1.000 1.000

3 0.973 0.991 1.000 0.999 0.999

0.750 4 0.836 0.857 0.941 0.993 0.991

a 0.720 0.732 0.776 0.858 0.861

10 0.551 0.56 0.572 0.581 0.582

is 0.503 0.507 0.520 0.530 0.536

2 0.922 0.935 0.975 0.998 0.998

3 0.782 0.792 0.824 0.981 0.961

0.900 4 0.689 0.66 0.713 0.762 0.776

5 0.642 0.648 0.663 0.677 0.687

10 0.554 0.559 0.573 0.612 0.603

1 0.518 0.523 0.535 0.570 0.569

2 0.820 0.826 0.847 0.966 0.974

3 0.716 0.721 0.736 0.796 0.852

0.960 4 0.664 0.669 0.683 0.721 0.718

5 0.634 0.639 0.653 0.690 0.678

10 0.564 0.560 0.582 0.620 0.623

15 0.533 0.537 0.550 0.586 0.585

2 0.716 0.719 0.729 0.758 0.782

3 0.690 0.696 0.706 0.737 0.741

0.990 4 0.666 0.670 0.682 0.715 0.713

5 0.646 0.650 0.663 0.698 0.68?

10 0.591 0.596 0.609 0.646 0.668

15 0.565 0.570 0.582 0.619 0.845
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Table 22: Relative efficiency of the two-stage procedure P2: Slippage configuration.

SUiPPW~ Comhgurm1

0.I ] 0.5 1.0 2.0 4.0

2 0.999 1.000 1.000 1.000 1.000

3 0.982 0.996 1.000 0.999 0.999

0.750 4 0.907 0.930 0.966 0.999 0.998

& 0.811 0.829 0.896 0.960 0.981

10 0.516 0.520 0.531 0.540 0.557

15 0.457 0.461 0.474 0.485 0.496

2 0.922 0.935 0.975 0.996 0.996

3 0.796 0.809 0.852 0.994 0.993

0.900 4 O.696 0.706 0.730 0.854 0.877

5 0.636 0.642 0.658 0.711 0.745

10 0.527 032 0.546 0.590 0.583

15 0.494 0.499 0.513 0.551 0.551

2 0.820 0.826 0.847 0.965 0.974

3 0.709 0.715 0.734 0.818 0.906

0.960 4 0.651 0.656 0.671 0.722 0.754

5 0.616 0.621 0.636 0.678 0.685

10 0.545 0.550 0.64 0.606 0.612

15 0.817 0.522 0.535 0.574 0.575

2 0.716 0.719 0.729 0.758 0.782

3 0.678 0.683 0.696 0.729 0.741

0.990 4 0.654 0.659 0.67n 0.707 0.706

5 0.634 0.640 0.653 0.690 0.682

10 0.583 0.588 0.602 0.641 0.664

15 0.559 0.54 0.577 0.615 0.643

64



4 A SINGLE-STAGE RESTRICTED SUBSET SE-

LECTION PROCEDURE FOR SELECTING THE

POPULATION WITH THE LARGEST MEAN

FROM k LOGISTIC POPULATIONS

4.1 Introduction

In the subset selection formulation, if the data make the choice of the best population

difficult (we would expect this to happen if the pi are all very close to one another),

we are likely to select all the populations. In this case it is meaningful to put on an

additional restriction that the size of the selected subset will not exceed m (1 < m < k).

When we use an elimination type two-stage selection procedure to select the best

population and we have only limited resources to use for the secondary exploration,

we also need more flexible procedures which allow us to specify an upper bound m

on the number of populations included in the selected subset. Any selection problem

with such a restriction on the size of the subset is naturally called a restricted subset

selection problem.

Gupta and Santner (1973) studied the restricted subset selection procedure for the

normal means problem in terms of the sample means. They provided the tables of

the required sample sizes and of the expected number of selected populations. Sant-

ner (1975) defined a general restricted subset selection procedure in terms of a set

of consistent estimators for the parameters whose distributions form a stochastically

increasing family for any given sample size. He proved that the infimum of the prob-

ability of a correct selection occurred at a point in the preference zone for which the

parameters were as close together as possible. He also studied some properties of the

rule and conditions which guaranteed that the supremum of the expected number of

populations selected over the whole parameter space occurred at some point where the

k populations were all the same.

In this chapter we consider a restricted subset selection procedure R3, based on
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the sample means, for selecting the population with the largest mean from k logistic

populations when the common variance is known.

Expressions for the probability of a correct selection for any configuration of the

logistic means and for the infimum of the probability of a correct selection over the

preference zone are derived and some properties of this procedure such as monotonicity

and consistency are studied.

The restricted subset selection procedures are consistent with respect to the pref-

erence zone. However the infimum of the probability of a correct selection over the

preference zone can not become arbitrarily close to the probability level P* as the

constant h, which defines the procedure, becomes infinitely large for the given values

of k, m, 8 and n. This is unlike the 'usual' subset selection procedures. A table of the

bounds of the infimum of the probability of a correct selection over the preference zone

is provided for given values of k, m, 6 and n.

A table of the required sample sizes for the restricted subset selection procedure, the
sample sizes for the corresponding fixed subset size procedure of Desu and Sobel (1968)

and the ratio of the above two sample sizes is given for selected values of P*, k, m and

6. The expected number of the selected populations for the two special configurations,

namely the equally spaced and the slippage configurations, are considered.

Instead of designing the rule by choosing the required sample sizes for arbitrarily

given values of h, we can make choice of the rule by controlling the supremum of the

expected size of the populations selected over the whole parameter space as well as

the probability level P° simultaneously. Using this new design criterion a table of the

design constants (n, h) for the restricted subset selection rule R3 is provided.

4.2 Formulation of the problem

Let Ir,, i = 1,..., k, be k logistic populations with unknown means p, and a common

known variance a , which are denoted by L(p,, 2 ). Also let
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be the ordered means and i(O the population with mean 1[,1, the best population being

r(k). We assume that there is no a priori knowledge concerning the pairing of {r(.,}

and {7fi}. Let 6 > 0 and

0= {j= (A,-, k);-oo < pi < oo,i = k}

f()= fj E 01u (IA[k] - I'(k-1I) >6

A= { e fl(6)l u1A = t(k-1 = Akl- 6}.

Each wi yields iid observations X 7 , j = 1,..., n, i = 1,..., k, which are also inde-

pendent between populations. We propose the following rule R3 based on the meansJ

of samples of size n from the k populations. As usual, let Y, be the sample mean from

1i, i k, and let

denote the ordered sample means.

Rule R3 : Select ri iff

Xi, > ma X{",, ,r+lkXj] - h3 ,/,Iv , h3 > 0. (61)

Goal of the experimenter: Given P*, 6 and the rule R3 which selects a subset of

the populations not exceeding m in size, find the common sample size n necessary to

achieve

*p. Pa[CSIR3I : P V# E fl(S). (62)

The evert [CSIR 3] occurs if and only if the selected subset contains 7r(k).

Remark 4.1 Even though the emphasis in this chapter is on the case, 1 < m < k,

where the strict inequality 6 > 0 insures that the indifference zone does not vanish, it

should be noted that the general theory formally reduces to give the results of Section 2.3

and Section 2.4 for the choices of m = 1 and m = k respectively by allowing the weaker

condition 6 > 0.

Remark 4.2 If h3 - oo, R3 is the fixed size subset rule which is considered in Desu

and Sobel (1968).
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4.3 Probability of a correct selection

We introduce the following notation. For every I -1,..., k and for every i = k -
M,..., k- 1, let 

IS M

denote the collection of all subsets of size i from

,,() = Ill,...,lk) - Ill

and
Y(t)- =UY) -SIMt.

Theorem 4.1 For any ,r E fl, toe have

Pa[CSlR3]
k-i ('79~ f F~+~k-jr)~c

i - r j 1 - , (k) 
-0

" 1"1 {F,(t + h3 + (;'lk] - P ,tP,)1/" )

-F.(t + (p[k - p[q)v/4:/o7 )}dF.(t), (63)

where F,(t) is the cdf of the standardized mean of a sample of size n from L(pi, a 2).

Proof

Let X(,) denote the sample mean from the population i(). Then,

Pa[CSIR3]

= Pa[X(k) _r.nx{IXk-,+l], t ,k - hza/V''}

= Pr() )> - h3a/v" for I < k and

Y(k) 'e at least (k - m) X(l)'s with 134 k}.

Now, for every i= k - m,..., k -1 andj=1,...,(:l), let

A' = tT(,) : X(,) V I E S. (k) and X(k) < (y) V I E7()]
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Then

Pit[CSIR3]

=Pa[Xy(k) T Q - h30'/Vn V I < k and Ujk~ m, Uj= 1~Aj

- PA[Y(k) :X(o- h3o'/Vr VlI< kandA]

For fixed i and j,

PA(XTk 2! T% - h3 o'/',/ V I < k and Ail

-Pa(X(k) 2! Xy) V I E Sj(k) and XTk) 5 T(I) Xk) + h3di'/V 1E3()

-JH fi F.(t+(Pfkj-qq)v/u)

fI {F.(t + h3 + (AI&j - uq)vG/ic)

EY(k)

-F(t + (pj&[q- I[)V"Ia )}dF,.(t). D3

Remark 4.3 An application of the dominated convergence theorem shows that

Pa[CSIR] --. 1 as (j&'kj - /rk-1I) -- oo. (64)

Next we determine the infimum over fl(b) of the probability of a correct selection

in the following theorem.

Theorem 4.2 For any j E fl(6), we have

i Pa[CSIR3] = ifIEno(6) Pg[CSIR 3 ]

- ~ (k -1) {Fn(t-+-6V/A0 )00

•{F.(t + h3 + 6V'i/o ) - F.(t + 6v/n/o! )}k--'dF,(t)

- _lF(t~h 3 +6VI /¢ )}k.-1
{'F.(t + h3+ V/' )}-

• F.(t h+ 6vGla )k - m, m}dF.(t), (65)

where I {y; a, b} ( fw-I(1 -w)bl-dw denote the incomplete beta function with

parameters a and b.
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Proof

We use the following lemma due to Alam and Rizvi (1966) and also due to Ma-

hamunulu (1966).

Lemma 4.1 Let X = (X,,... ,X1,) have k > 1 independent components such that for

every i, X has cdf H(zj ~U). Suppose that {H(zlO)} form a stochastically increasing

family. If *(X) is a monotone function of X when all other components of X are held

fixed, then E{IP(X)] is monotone in O, in the same direction.

Now, let
*(X I; if X(k) _ max{x[k-m+lJ,+ (k] - h3'7/V/''1(X)=

O; otherwise.

We claim '1(X) is non-increasing in 7(. fori 1,..., k - 1. Let

X'I < )ro,

and

Then

m,& XZ,-.+,I, (kj - h30I'/n} < max{X'Ck-.+l, X(kI- haIVn

where the primes denote the order statistics from X'. So if %F(X) = 0 then %F(X') - 0.

Hence

PI[CSIR3I = Eg(*(X))

is non-increasing in each of pijl,...,jAk]j when all other means are fixed. So

inf Pg[CSIR 3] = inf P,7[CSIR 3]
iaen(E) iieno(s)

and hence substituting the vector of means (ptI,..., , [x, p~j + 6) gives the result. 0
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4.4 Properties of R 3

We consider next the properties of the restricted subset selection rule R 3 based on the

sample means. To facilitate this study we let

Pa(iIR) = Pa{rule R selects r(.)} (66)

and recall the following definitions.

Definition 4.1 R is a monotone procedure means that for all j E fl and i <

Pz(ijR) _ Pj(jlR).

Definition 4.2 R is an unbiased procedure means that for all J' E fl and j < k,

P11[R does, not select w(.,)] 2: PjIR does not select r(k)].

Of course, R is monotone implies that R is unbiased. Other optimal properties are

Definition 4.3 R is consistent with respect to f' means that

Rtim nflP[CSIRI = 1.

Definition 4.4 R is strongly monotone in w(0j means that

Pit(iR) i f n prq when all other components of j' are fixed

11 J.in p. when all other components of g are fixed (j 0 i).

Theorem 4.3 For every i = 1,... k, R 3 is strongly monotone in i(0"

Proof

We have already shown this result for i = k. Since for i < k we have

Pa(iIR3) = Eg [Y(X)l,

where

1X= 1; if T() -maxfX[k-+IVXYk] - h3alV/{ 0; if otherwise,

the same argument applies to give the desired conclusion. 3
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Corollary 4.1 All rules of the form (61) are monotone and unbiased.

Proof

The proof follows from the definition of monotonicity and the property of being

strongly monotone in w(O for all i. 13

Theorem 4.4 R 3 is consistent with respect to A(6).

Proof

We must show that

. ) lrmn F {F(t + 6V/)}i

•{F,(t + h3 + 6v4nl/) - FI(t + 6b/o kl-idF.(t) = 1. (67)

We note that each integrand is bounded with respect to the measure Fn and so the

dominated convergence theorem applies. For every i < (k - 1) we have

lr , {FR(t + bvr/o,)}'{F.(t + h3 + 6V /o,) - F.(t + b-n/a)}k-,-, = o

and for i = k -1

bin {F (t + 6Vn/)}k-l = 1.

Hence the result follows. 0

This theorem says that no matter what probability level is required for a correct

selection it can be met by choosing a sufficiently large sample, for any given k, m and

6.

% Theorem 4.5 For every n and rule R3 ,

Jim in Pa[CSIR3] =1.
6-.oo ileo(s)

For every n, m < k and 6 > 0,

lira inf [P(CSIR 3]

- (k-rn) (k l-) 1 1 - F, (t - vrff])}

.{F,(t)}k_-_- {1 - Fn(t)}"'-dF.(t)

= L_ I{Fn(t + 6V-/o); k - m,m}dFn(t). (68)
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Proof

Both results follow from the dominated convergence theorem. The second result

follows the same theorem and

lim inf Pa[CSIR3]
h3-. AeO( )

., i( 1) F +F.(t +6"/)}'

• - F(t + 6v4"f/a)}-l-'dFn(t)

- f~k -m) (k~ J{ i-,( &'/hn-11, - ykkrnIldydFn(t)

(k - )k -) 1 dF(t) {1 _,,_.,(k_.- m _,, , o n ,,, _.o,
.{F,(w) }-"-1 dF,(w),

letting w - F;1(1 - y) and changing the order of integration. 3

Remark 4.4 The first part states that by taking 6 sufficiently large we can attain any

Pb probability requirement for the rule J?,3 based on any number of observations. The

second result says that given a fized 6 > 0 and a common sample size n, we cannot

achieve all P* values. We can only attain

P * (k - M)('1) 1- ' - Fn(t - bv/ii/c7)}

F,(t)} - ' {1 - Fn(t)}m'-dFn(t)

= I_ {F,(t + 6vri /a); k - m, m}dFn(t) < 1. (69)

Remark 4.5 Using the monotonicity of infaEo(t)Pa[CSR3I we can obtain the follow-

ing bounds. For m < k and 6 > 0,

I'{ F.(t + 6b/o )}-dF.(t)

< inf Pa[CSIR3]- O2G(6)

L* I { F,, ( t + 6f/Wo); k - m, m}dF,(t). (70)
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Table 23 contains the above lower and upper bounds of the infimum of the proba-

bility of a correct selection over f(b) for k = 3,5, 10, m = 2,4,5 < k, /b/ = 0.5, 1.0,2.0
and n -- 5,15. All computations were carried out in double-precision arithmetic on a

Vax-11/780.

For the purpose of implementing the procedure R3 and comparing R3 to the fixed
size subset rule, we have prepared Table 24 and Table 25. For P" = 0.90, k =f 5, 10,

m = 2,3,4,5 < k, /1a = 0.5,1.0,2.0 and h3 = 0.4,0.7, 1.3,1.6, the tables give the

values of the minimum sample size (n(h3)) which satisfies

{F,,(t+,+,', - t+h3 +6 ;k -m, m}dF,(t)> P,

the values of the minimum sample size (n(oo)) for the fixed size subset rule, which

satisfies

* J* IfF.(t + 6i/,/c/); k - m, m}dFn(t) > P"

and the ratio (n(h3)/n(oo)) of the sample size for the restricted subset selection rule

R 3 to the sample size for the fixed size subset rule when both rules attain the same

probability requirements. For large h3 values this ratio is close to one, indicating that

in many cases a slight additional cost will allow the use of a restricted subset selection

procedure which meets the same probability requirement.

The expected number of selected populations depends, of course, on the underlying

p .Some exact comparisons for the equally spaced and slippage configurations will be

considered in the next section.

4.5 Expected number of selected populations

As usual, we define

1; ifT j 2! ma{ X,,-,,+1j, t,, -h,,/V/-
0; otherwise.

This gives S, the number of populations selected, as

kS= 2Y.
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Then the expected number of populations selected by R3 is given by

EA[SIR3] = EP(IR3),

where Pz(iIR 3 ) is defined by (66).

Theorem 4.6 For any 7 E 11, we have

&k-i(;)

E,[SIR3] =, F F,(t + (p[.1 -,)'/)
i Pak-In mi IES'p(s)

I f' {F.(t + h3 + (p,[, - fi

-F.(t + (pf'1 - /[t) Vq'i/_1)}dF.(t), (71)

where F,.(t) is the cdf of the standardized mean of samples of size n from L(p,, a2).

Proof

From the above discussion, we see that it suffices to calculate Pg(iIR 3 ) for i = 1,.., k.

Using arguments similar to those in the proof of Theorem 4.1, we get

k-i (";')
Pjz(iIR3) E E PlyX() 2: (I)VlES(

pink-m j=-

and X(.1 :5 X~) :5 7(. + h3a/v~~V 1E3'(

k-i (h;1)
=- ,~ (~ ) ~J ~~f oI F(t + ('[,I-/[. q)VI/o)

Pink-rn j-1 leSi'(s)

*f {F,.(t + h3 +(ii- AJv/)

-F.(t + (/t.1 - p/)I/a)}dF-(t). C

Since Eit[SIR3 ] is increasing in h3 the experimenter may seek to use rules with

small h3 . On the other hand, for fixed 6 and P*, the smaller h3 is, the larger n must

be to achieve the required probability condition (62). Hence, the experimenter must

decide what trade off between n, h3 and 6 he is willing to accept. To investigate the

interdependence in more detail, we have tabulated in Table 26 and Table 27 the values

of
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* E(S)- EA[SIR 3J,

* E(SR) = iS(iIR3); the expected sum of ranks of the selected populations

and

" E(S)/m; the expected proportion of selected populations

under

1. Equally spaced means =(a, a + 6,..., a + (k - 1)b) and

2. Slippage means - (a, a, a, a +

for

(k,m) = (4,2), (5,3), n = 2,3,4,5,10,15, h3 = 0.4,0.7 and b/a = 0.1,0.5,1.0,2.0. All

computations were carried out in double-precision arithmetic on a Vax-11/780.

4.6 Supremum of the expected number of selected popula-

tions and a new design criterion for R3

Santner (1975) considered a general restricted subset selection procedure in terms of

consistent estimators for te population parameters whose distributions form a stochas-

tically increasing family for each given sample size. In particular he gave conditions

which guarantee that the supremum of the expected number of populations selected

over the whole parameter space occurs at some point where the k population parame-

ters are all the same.

We can consider the means rule R3 as a special case of a location parameter problem

using Santner's general procedure. By noting that the distribution of the mean of

samples from a logistic population has the MLR property with respect to the location

parameter and hence forms a SI family, we can see that

Theorem 4.7 For every , E fl, we have

sup Ea[SIR3]

0 k {F,(+ h3 )}-l F ;t) k-m, m}dF,(t). (72)

6F(t+ h3 )
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In Section 4.4 we determined the needed sample size n for the rule R 3 for the arbitrarily

chosen values of h3, k, m and 8 because we could not determine the values of n and

h3 at the same time by controlling the basic probability requirement only. Since we

desire to select smaller S, it is reasonable to make a choice of (n, h3) by controlling the

sup;,gEiZ[SIR3] as well as infia(s)P;[CSIR3j].

Using Theorem 4.2 and Theorem 4.7, we can choose a new set of design constants

(n, h3 ) to implement R3 by solving the following equations simultaneously,

F C {F.(t + h3 + bl,//)} - 1

.it F(t + + V a) ;k - m, m}dF,,(t) = P" (73)
F,(t +h3 + 6Vn/oj

" ' I. ,h)-,Ir F,(=1 m,m}dF+(t)=1+e (74)k {F,(t + , u  F,,(t+ h3);-=

for the given values of P*,k, m, 6 and small e > 0.

Table 28 and Table 29 contain the estimates (fh, h3 ) for the constants (n, h3),

which satisfy (73) and (74) simultaneously for given values of P" = 0.90,0.975, k =

3,4,5,10,15, m = 2,3,4,5, b/o = 0.5, 1.0,2.0 and e = 0.01. All computations were car-

ried out in single-precision arithmetic on a CDC-6500. The IMSL subroutine ZSCNT

was used to solve the above system of non-linear equations and the f-norm in the tables

indicates the accuracy of the computation, which is defined in the ZSCNT.
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Table 23: Bounds on the infimum of the probability of a correct selection over the

preference zone for rule R3.

0.50 5 0.671 0.905

15 0.866 v.974

3 2 1.00 5 0.902 0.965

15 0.994 1.000

2.00 5 0.996 1.000

15 1.000 1.000

0.50 5 0.536 0.765

15 0.774 0.921

2 1.00 5 0.840 0.963

15 0.968 0.999
2.00 5 0.996 1.000

5 15 1.000 1.000

0.50 5 0.536 0.962

15 0.774 0.993

4 1.00 5 0.840 0.996

15 0.968 1.000

2.00 5 0.996 1.000

15 1.000 1.000

0.50 5 0.379 0.574

15 0.654 0.820

2 1.00 5 0.743 0.885

15 0.977 0.996

2.00 5 0.992 0.999

15 1.000 1.000

0.50 5 0.379 0.789

15 0.654 0.938

10 4 1.00 5 0.743 0.966

15 0.977 0.999

2.00 5 0.992 1.000

15 1.000 1.000

0.50 5 0.379 0.854

15 0.654 0.964

5 1.00 5 0.743 0.960

15 0.977 1.000

2.00 5 0.992 1.000

15 1.000 1.000
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Table 24: The minimum sample sizes needed for rule R 3 and the corresponding fixed

size subset rule: P= 0.90, k = 5.

P, M 0.90, k 5 _

" 10./0 , H 4 1 n(-) I n(h 3)/n(II)]
0.50 22 13 1.692

0.40 1.00 6 4 1.500

2.00 2 1 2.000

0.50 19 13 1.462

0.TO 1.00 5 4 1.250

2 2.00 2 1 2.000

0.50 18 13 1.385

1.30 1.00 5 4 1.250

2.00 2 1 2.000

0.50 18 13 1.36

1.60 1.00 5 4 1.250

2.00 2 1 2.000

0.50 20 6 3.333

0.40 1.00 5 2 2.500

2.00 2 1 2.000

0.50 16 6 2.667

0.70 1.00 4 2 2.000

3 2.00 1 1 1.000

0.60 11 6 1.833

1.30 1.00 3 2 1.500

2.00 1 1 1.000

0.50 10 6 1.667

1.60 1.00 3 2 1.500

2.00 1 1 1.000

0.50 20 2 10.000

0.40 1.00 5 1 5.000

2.00 2 1 2.000

0.50 15 2 7.50

0.70 1.00 4 1 4.000

4 2.00 1 1 1.000

0.50 5 2 4.000

1.30 1.00 2 1 2.000

2.00 1 1 1.000

0.50 6 2 3.000

1.60 1.00 2 1 2.000

2.00 1 1 1.000
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Table 25: The minimum sample sizes needed for rule R3 and the corresponding
fixed size subset rule P. = 0.90, k= 10.

0. 0 30 23 1.304
0.40 1.00 S 6 1.333

2.00 2 2 1.000&30 
30

7 1.00 7 6 1.167
2 ______ 2.00221.0.0 1.00 7 6 1.167

2.00 2 2 1.000

1.60 1.00 7 6 1.167
2.00 2 2 1.000
0.50 27 23 1.174

0.40 1.00 7 6 1.167
2.00 2 2 1.000

0.60 28 16 1.750
0.40 1.00 7 4 1.750

2.00 2 1 2.000
0.0 24 16 1.500

0.70 1.00 6 4 1.500
3 2.00 2 1 2.000

0.60 20 16 1.250
1.30 1.00 5 4 1.250

2.00 2 1 2.000
0.0 27 16 1.250

1.60 1.00 5 4 1.250
2.00 2 1 2.000
0.50 27 11 2.45

0.40 1.00 7 3 2.333
2.00 2 1 2.000
0.0 22 11 2.000

0.70 1.00 6 3 2.000
4 2.00 2 1 2.000

.0 16 11 1.455

1.30 1.00 4 3 1.333
2.00 2 1 2.000
0.50 15 11 1.364

0.40 1.00 4 3 1.333
2.00 2 1 1.000
0.30 27 8 3.375

0.40 1.00 7 2 3.500
2.00 2 1 2.000
0.50 22 8 2.750

1.30 1.00 6 2 2.000
5 2.00 2 1 2.000

0.014 
a8 1.7 3-r

1 30 1.00 4 2 2.000

2.00 1 1 1.000
0.0 12 81.50

1. 0 1 .0 3 2 8 1.50

2.00 1 1 1Ioo
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Table 26: Performance characteristics of ruie R3 : k = 4, m = 2.

k =4, m =2

I &l,) I EUN) I ZlOll I EOS) I b(SM) I {s)[M
0.100 1.366 3.125 0.683 1.371 3.337 0.68s

0.400 0.100 1.269 2.045 0.635 1.344 2.882 0.67
1.000 1.147 1.426 0.573 1.259 2.221 0.630

2 2.000 1.030 1.073 0.515 1.072 1.285 0.536
0.100 1.572 3.622 0.786 1.578 3.850 0.789

0.700 0.500 1.442 2.401 0.721 1.543 3.367 0.772
1.000 1.256 1.626 0.628 1.424 2.630 0.712
2.000 1.057 1.122 0.528 1.130 1.439 0.565
0.100 1.361 3.054 0.681 1.368 3.310 0.684

0.400 0.500 1.238 1.848 0.619 1.329 2.741 0.664
1.000 1.109 1.296 0.555 1.213 1.953 0.607

3 2.000 1.012 1.028 0.506 1.031 1.116 0.516
0.100 1.566 3.5 0.783 17 5 3.822 0.788

0.700 0.500 1.396 2.162 0.68 1.523 3.213 0,761
1.000 1.194 1.448 0.597 1.356 2.311 0.678
2.000 1.024 1.050 0.512 1.059 1.191 0.529
0.100 1.357 2.995 0.679 1.366 3.289 0.683

0.400 0.500 1.213 1.714 0.606 1.315 2.620 0.657
1.000 1.084 1.217 0.542 1.175 1.749 0.587

4 2.000 1.005 1.011 0.502 1.013 1.047 0.507
0.100 1.562 3.481 0.781 7.574 3.801 0.787

0.700 0.500 1.39 1.996 0.679 1.503 3.079 0.752
1.000 1.151 1.337 0.575 1.296 2.058 0.648
2.000 1.010 1.021 0.505 1.026 1.083 0.513
0.100 1.354 2.944 0.677 1.365 3.271 0.683

0.400 0.500 1.193 1.616 0.596 1.301 2.512 0.651
1.000 1.065 1.163 0.533 1.142 1.590 0.571

5 2.000 1.002 1.004 0.501 .. Oe 1.019 0.503
0.100 1.558 3.425 0.779 1.572 3.782 0.786

0.700 0.500 1.328. 1.872 0.664 1.484 2.959 0.742
1.000 1.119 1.259 0.559 1.245 1.856 0.623
2.000 1.004 1.009 0.502 1.011 1.035 0.506
0.100 1.341 2.749 0.670 1.361 3.202 0.681

0.400 0.500 1.128 1.357 0.564 1.239 2.097 0.620
1.000 1.019 1.045 0.510 1.049 1.181 0.524

10 2.000 1.000 1.000 0.500 1.000 1.000 0.500
0.100 1.541 3.210 0.770 1.568 3.709 0.784

0.700 0.500 1.225 1.531 0.613 1.394 2.482 0.697
1.000 1.037 1.078 0.519 1.090 1.293 0.545
2.000 1.000 1.000 0.500 1.000 1.000 0.500
0.100 1.330 2.605 0.665 1.359 3.148 0.679

0.400 0.500 1.091 1.237 0.546 1.187 1.808 0.594
1.000 1.006 1.013 0.503 1.016 1.055 0.508

15 2.000 1.000 1.000 0.500 1.000 1.000 0.500
0.100 1.525 3.048 0.763 1.564 3.652 0.782

0.700 0.500 1.163 1.365 0.581 1.315 2.132 0.658
1.000 1.012 1.025 0.506 1.031 1.098 0.516
2.000 1.000 1.000 0.500 1.000 1.000 0.500
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Table 27: Performance characteristics of rule R3: k = 5, m - 3.

k=5, m =3

sIs I jas) I El)m I EIS) I z(SR I- vsI/y
0.100 1.503 3.992 0.501 1.506 4.423 0.503

0.400 0.500 1.314 2.189 0.438 1.473 3.8W 0.491
1.000 1.153 1.440 0.384 1.357 2.885 0.452

2 2.000 1.030 1.074 0.343 1.096 1.449 0.366
.10 18 . 0.627 1.8 M .55-1 0.628

0.700 C.00 1.564 2.757 0.521 1.828 4.875 0.609
1.000 1.275 1.672 0.425 1.637 3.721 0.546
2.000 1.067 1.122 0.352 1.188 1.728 0.396
0.100 1.493 3.859 0.498 1.504 4.386 0.501

0.400 0.500 1.267 1.929 0.422 1.452 3.632 0.484
1.000 1.112 1.301 0.371 1.293 2.483 0.431

3 - 2.000 1.012 1.028 0.337 1.042 1.183 0.347
0.1 1.T ZT5 0.622 1.878 5.506 0.626

0.700 0.500 1.480 2.387 0.493 1.794 4.638 0.598
1.000 1.202 1.466 0.401 1.331 3.194 0.510
2.000 1.024 1.050 0.341 1.084 1.314 0.361
0.100 1.485 3.750 0.495 1.502 4.358 0.501

0.400 0.00 1.233 1.766 0.411 1.433 3.461 0.478
1.000 1.085 1.219 0.362 1.240 2.172 0.413

4 - 2.000 1.005 1.011 0.335 1.018 1.075 0.339
0.100~ 1.855 4.7,84 068 1.974 5.C4 74 0-.25-

0.700 0.500 1.420 2.149 0.473 1.762 4.432 0.587
1.000 1.154 1.344 0.385 1.439 2.774 0.480
2.000 1.010 1.021 0.337 1.036 1.135 0.345
0.100 1.478 3.6586 0.493 1.500 4.335 0.500

0.400 0.500 1.208 1.651 0.403 1.414 3.307 0.471
1.000 1.065 1.164 0.355 1.196 1.927 0.399

5 - 2.000 1.002 1.004 0.334 1.007 1.030 0.336
MO 1.843 4.669 0.614 1.872 .44f 0.024

0.700 0.500 1.373 1.983 0.458 1.732 4.244 0.577
1.000 1.120 1.262 0.373 1.362 2.434 0.454
2.000 1.004 1.009 0.335 1.016 1.057 0.339
0.100 1.450 3.302 0.483 1.495 4.246 0.498

0.400 0.500 1.132 1.365 0.377 1.329 2.700 0.443
1.000 1.019 1.045 0.340 1.066 1.287 0.355

10 2.000 1.000 1.000 0.333 1.000 1.000 0.333
0.100 1.796 4.231 0.599 1.864 5.345 0.621

0.700 0.500 1.238 1.560 0.413 1.590 3.477 0.530
1.000 1.037 1.078 0.346 1.129 1.487 0.376
2.000 1.000 1.000 0.333 1.000 1.001 0.333
0.100 1.425 3.050 0.475 1.491 4.176 0.497

0.400 0.500 1.092 1.239 0.364 1.258 2.263 0.419
1.000 1.006 1.013 0.335 1.021 1.088 0.340

15 2.000 1.000 1.000 0.333 1.000 1.000 0.333
0.1 1.755 3.911 0.585 1.858 5.266 0.619

O.700 0.500 1.167 1.374 0.389 1.469 2.899 0.490
1.000 1.012 1.025 0.337 1.044 1.161 0.348

____ 2.000 1.000 1.000 0.333 1.000 1.000 0.333
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Table 28: Estimates of constants for rule R3: P* = 0.90, Sup(S) =1.01.

him ~~* P 09, SUP(S) = nl.l I-o

.50 .196.4.0 .1179..0l .8693.-i5

3 2 1.00 .4683e4.01 .1166.-Ol .4648e-22

_____ 2.00 .1186.4.01 .1112.-Ol .8925*-iS

.50 .2383e4.02 W97e7-02 .2049e-i7

2 1.00 .5946.4.01 .9648a.02 .2318o-18

4 2.00 .1476.4.01 .9384o-02 .1203e-13

.50 .2383*.02 .9667.02 .8419e-20

3 1.00 .5946.4.01l .9598e-02 .3176e-19

2.00 .1476e+01 .9334e.02 .3359e-i5

.50 .2686o4-02 .8613e-02 .9771.18S

2 1.00 .6715.4.01 .8580e-02 .2066e-13

_____ 2.00 .1660.4.01 .8439a.02 .1658e-17
.30 .26..2 .8563e-02 .4192e-16

5 3 1.0 .6715.4.01 .8528e-02 .3007e-17

2.00 .1680.4.0 .8386e-02 .5923e-i8

.50 .2686.4.02 .8562e-02 .4433e-16

4 1.00 .65.4.01 .8528.02 .2910e-17

2.00 .1680e+01 .8386e-02 .5918e-I8

.50 .3550.4.02 .6535e-02 .14960-i5

2 1.00 .8922.4.01 .6569o-02 .4289e-13

____ 2.00 .2273.4.01 .6673e-02 .2864e-14

.50 .3550.4.02 .6488e-02 .2623e-15

3 1.00 .8922.401 .6521.-02 .2750.-16

10 2.00 .2273.4.01 .6623e-02 .7496o-14

.50 .3550.4.02 .6488e-02 .2639a-i5

4 1.00 .8922e4-01 .6521.-02 .2893e-16

____ 2.00 .2273.4.01 .6622e-02 .7455.-14

.50 .3550.4.02 .6488&02 .2659e-15

5 1.00 .8922.4.01 .6521.-02 .2891.416

____ 2.00 .2273.4.01 .6622e-02 .7448e-14

.50 .4024.e.02 .5803.02 .2848e-15

2 1.00 .1014.4.02 .5861e-02 .1097e-16

______ 2.00 .2602.4.01 .606202 .4032e-i5

.50 .4024o4.02 .5758@-02 .3480.-14

3 1.00 .1014.4.02 .5816.02 .2559e-15

15 2.00 .2602.+01 .60130-02 .88330.16

.50 .4024e4.02 .5758e-02 .1364e-13

4 1.00 .1014e4.02 .5816e-02 .2682e-15

_____ 2.00 *2602.4.0 .612o-02 .8"7e-16

.SO .4024e4.02 .5758.02 .1381.413

5 1.00 .104.4.2 .5816e-02 .2684.-IS

2.00 .2602.4.01 .6012.02 .8877e-16
_________________8______



Table 29: Estimates of constants for rule R 3: P* = 0.975, Sup(S) - 1.01.

PS 0.75, 5up5) : 1.01 _

__I___/ I " As, j-=-,,,
.3894.+02 .1182-01 .1243e-17

3 1.00 .9794.4-01 .1175.-01 .60S6e-19

2.00 .2504e4-01 .1150e-01 .2001e-21

.SO .4399&402 .9728e-02 .3196e-21

2 1.00 .1106.e.02 .9691.02 .1435.-21

4 2.00 .2841.-+01 .9650*-02 .2667e-16

.50 .4399.4.02 .9677.02 .1720e-i?

3 1.00 .110$.402 .9640.02 .1724e-I?

2.00 .2841.4.01 .9499a-02 .3596e-18

.50 .4759.4.02 .86180-02 .7053-46

2 1.00 .1199.4.02 .8600.02 .1076e-15

2.00 .3062.4-01 .8525e-02 .3329e-16
.50 .475904-02 .8567e.02 .2190e-18

5 3 1.00 .1199.4.02 .8549e02 .1444.-17

2.00 .3082.4-01 .8473o.02 .2198e.-17
.60 .4759e--02 .8567.02 .3819e-22

4 1.00 .1199.&02 .8548e-02 .7657a-23

2.00 .3062e+01 .8473o-02 .3403e-23

.50 .5771.4-02 .6530.02 .9662e-16

2 1.00 .1456&+02 .652M-02 .1125e-15

2.00 .3766.401 .66230-02 .140.-15

.50 .S72e402 .64&302 .2547.-17

.3 1.00 .1457e+02 .6504o-02 .1364e17

10 2.00 .3766.01 .6574e-02 .1772e-16

.50 .572.,.02 .6483e-02 .2457e-22

4 1.00 .1457e02 .6504e.02 .1253e-22

2.00 .3766e+01 .6574e-02 .3067".22
.50 .572.02 .6483e.02 .6563e-27

5 1.00 .1457.402 .6504e-02 .2524e.-27

2.00 .3766e+01 .6574e02 .4089.-26
.50 .6320e4.02 .5795002 .3436e-14

2 1.00 .1596.402 .5833&-02 .3331e-14
2.00 .4139e+01 .5966e02 .3695e-14

.50 .6321.+02 .5751.02 .8806e-17

3 1.00 .1596&+02 .5788.-02 .1271e-17

15 2.00 .4139e401 .5919e.02 .8236e-17

.50 .6321--02 .5751e-02 .1326e-21

4 1.00 .15964-02 .5788e-02 .7942e-22

2.00 .4139e+01 .5918e-02 .1707e-21

.30 .6321e402 .5751e-02 .2524e-27

5 1.00 .1596e402 .5788e-02 .9214e-27

2.00 .4139.401 .5918e.02 .5364e-26
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5 AN ELIMINATION TYPE TWO-STAGE PRO-

CEDURE USING RESTRICTED SUBSET SE-

LECTION RULE IN ITS FIRST STAGE FOR

SELECTING THE BEST POPULATION

5.1 Introduction

Tamhane and Bechhofer (1977, 1979) studied a two-stage elimination type procedure

for selecting the largest normal mean and we considered in Chapter 3 an elimination

type two-stage procedure P2 for selecting the largest among several logistic populations.

It is well known that the above two-stage procedures are quite efficient relative to the

corresponding single-stage procedures in terms of the required sample sizes. However,

sometimes we may have only limited resources to use in the second stage. In those

cases we need more flexible procedures which allow us to specify an upper bound m on

the number of populations included in the selected subset in the first stage. Gupta and

Santner (1973) studied the selection problem with such a restriction, which is called

a restricted subset selection procedure, for selecting the largest normal mean and we

considered restricted subset selection procedures for selecting the largest logistic mean

in Chapter 4 in the framework of single-stage procedures.

Here we propose an elimination type two-stage procedure P2 for selecting a popula-

tion with the 'largest' real parameter, in which a generalized restricted subset selection

procedure (Santner (1973, 1975)) is used in the first stage in terms of a set of consis-

tent estimators for the population parameters whose distributions form a stochastically

increasing family for a given sample size. We also propose an optimization problem

using a minimax criterion to find a set of constants needed to implement P2.

We derive a lower bound of the probability of a correct selection and a formula for

the infimurn of the lower bound over the preference zone.

We derive an analytical expression for the expected total sample size and study

conditions guaranteeing that the supremum over the whole parameter space of the
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expected total sample size occurs at some point where all of the parameters are equal.

We also derive a general expression for the supremum over the whole parameter space

of the expected total sample size under these conditions.

A non-linear optimization problem which one must solve in order to determine the

constants needed to implement 2'P for location and scale parameter problems and a

relative efficiency of P2 with respect to the corresponding single-stage procedure are

defined.

We apply 'P to the location parameter problem of univariate normal populations.

Here we provide tables of constants to implement P2 and of the relative efficiency for

each case of the equally spaced and slippage configurations.

5.2 Preliminaries

Let ri, i = 1, ... , k, be k populations which are characterized by unknown scalars

Ai E A, where A is a known interval on the real line. Let Ai] _<.- A[k] be the

ordered Ai's,

fl={=(Al,,.-,A)IAiEA Vi}

the space of all possible underlying configurations of Ai's and 7r(.) the (unknown) pop-

ulation with parameter A(,. It is assumed that there is no a priori knowledge of the

correct pairing of the elements in {7ri} and {r(0 }. The goal is to define a two-stage

procedure P2 to select the 'best' population where for sake of definiteness 7r(k) is taken

to be the best population. In some cases r(i) might be the best population. Of course,

if t (2 < t _5 k) populations all have Ai - A[k], the selection of any of these tied

populations accomplishes the goal.

Each r yields iid observations X,1 , j 1 ,..., n, which are also independent be-

tween populations. Xii has cdf F with parameter Ai. Furthermore it is assumed that

there exists a sequence of Borel measurable functions {Tn} so that T, is defined on n

dimensional sample space and

T.(Xi,., Xi) -Tin + Ai as n oo.
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The assumptions concerning Ti. are that its cdf G (yIAi) with support E is absolutely

continuous with respect to Lebesgue measure with pdf g.(ljA) and {CG(ylA)IA E A}

forms a stochastica ly increasing family for each n.

A preference zone will be defined in 1 by means of a function

p: A-- ,

where R ia a real line, such that

1. p(.) is continuous and non-decreasing on A

2. p(A)<A VAEA

3. p: A' -t A, where A'= {A AIp(A) E A}.

Define

fl(p) = IA E 01 Al'k-i] < p(A~kl)1

and

no0,) = {X E l A111 = AEkij = p(Atkl)}

Let h,,(.) be a sequence of functions such that for each n

h,,(-) : E. R.

where UAEA C En, satisfying

1. For each n and z, h,(x) > x,

2. For each n, h,(r) is continuous and strictly increasing in z.

Typical examples of h,(.) are given by

h,(z) = z + d (d > 0)

for the location-type procedures and

hn(X) = C (Cn> 1)
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for the scale-type procedures.

The goal of the experimenter is to select a best population. The experimenter

I, restricts consideration to procedures (P) which guarantee the probability requirement

PX[CSI] 1 P" V X E fl(p) (75)

where p(-) and P° are specified prior to experimentation. The event [CS] occurs if and

only if the experimenter selects a best population.

Here we propose an elimination type two-stage procedure P' for selecting a best

population using a restricted subset selection rule in its first stage and an indifference

zone approach in its second stage.

Procedure P;

Stage 1: Take ni independent observations

x -1,...,n,

from each wi, i = 1,...,k, and compute the k estimates

T.(X, ( ,) X( - T(1), i =1,... k.

Determine the subset I of {1,..., k} where
-. { -iI,,2 > m I.' 1) h-(7j 1) 1,in,( > "- itk-m+1],,". j '[kl,J}

and
T,(M < ... < ,,X

<** _ (kini

' denotes the ordered T('). Denote by ir1 the associated subset of {fr,... T,}.

-W 1. If rri consists of one population, stop sampling and assert that the population

associated with T,1l is best.

2. If irw consists of more than one population, proceed to the second stage.

Stage 2: Take n 2 additional independent observations X ) , jn .,n, from

each population in rz, and compute the cumulative estimates

T( , for E
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where n = n, + n2 . Assert that the population associated with maxtEI Tin is best using

randomization to break ties if necessary.

There is an infinite number of combinations of (nI, n2, h,,) for given k, m, P* and

p(.) guaranteeing the required probability condition (75), and different design criteria

lead to different choices.

Let S' denote the cardinality of the set I in the first stage of procedure V2 and let

= 0 ifSI= 1(76)
S'; if S'>1.

Then the total sample size required by 'P2, TSS say, is

TSS = knI + Sn2 .

Let EX[TSSI[P] denote the expected total sample size for P2 under A. To make a

choice of (n1 , n2, h,) as well as to have the total sample size TSS small, we adopt the

following minimax design criterion.

For given k, m, p(.) and P" choose (nI,n 2 ,h,,) to

minimize sup Ex[TSSIP2]
)~EO

subject to inf PX[CSI'P2] > P*, (77)

where (nI, n2) are non-negative integers and h,, is a real function defined as before.

5.3 A lower bound on the probability of a correct selection

The so called LFC of the population parameters for general two-stage procedures has

not been determincd yet. Moreover, even if the LFC of the population parameters were

known, the problem of evaluating the probability of a correct selection associated with

P2' when the population parameters are in that configuration would still remain.

However it is possible to determine a set of constants (n1 , n2 , h,,,) (although not

the best set) to implement P2 if a lower bound to the probability of a correct selection

can be found and the LFC of the population parameters can be determined for that
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lower bound. Such a set of constants provides a conservative solution to the problem

since it overprotects the experimenter with respect to the probability requirement (75),

this overprotection being purchased at the expense of an increase in EX[TSSIT']. In

this section we consider the problem of a lower bound on the probability of a correct

selection and the infimum of the lower bound.

First we derive a lower bound for PX[CSIP2] in Theorem 5.1. This lower bound is

particularly useful since it achieves its infimum over fl(p) at W°(p). This result permits

us to construct a conservative two-stage procedure which guarantees the probability

requirement (75).

Lemma 5.1 For any A E fl, we have

__rx{7j> ma mij() I h-'(T(T)L'T > "' j - ([k-.,,,, ,, ' [k],,n,

k-I(h)

= >2>1U f (y)
P k v- -00 ,SC n(k)

I {GI)(hC-(Y)) - Gj)(y)}dG)(y) (78)

jeF(k)

and
k-i

Px[T(k). T(j). < k] = ] i G(2)(y)dG()(y), (79)
j=1

where n n" + 2,

denote the collection of subsets of size i from

u(l) k 1 .. , } - fl},

and

G (y) = G.(yIAI).

Proof

The proof of Lemma 5.1 is in Santner (1973). 0
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Theorem 5.1 For any 9 E fl, woe have

k-I~j (y)1

PSICIP21 2 -0 iE.P(k)n

+ k-1+fn fiGf(y)dGk) (y) - 1. (80)

Pro of

Px[SIP] =P[T((?,,1 2! max{jTSk2m+i,., h-( 1 )},k'j

T(k)n 2! MaXcT(,).J

> Pl[Ir4" >max{T.(1 1 ~n, h;1 ('~)}

+PX[T(h),, 2! T~~ j < k] - 1, (81)

and hence the result comes from Lemma 5.1. 03

Next the inlimum of the lower bound will be considered in Theorem 5.2. Lemma 4.1

due to Mahamunulu (1967) and Alam and Rizvi (1966) will be needed again.

Lemma 5.2 For anyA XE fl(p), we have

inf Pg[rr() > maxfT.7i5,nn, h;-'(7jr() = nf T, (A, nz),
ZEn(p) Mln kn EA

wohere

1pi(A,ni) = '~ jnyj()}-

.I{ (hn (y~')3 k - M, m}dGn, (YIA)

and

in1 PX[T(k)fl Tm,,, j < k] = inif T 2 (A, n),
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where

%P2(A, n) = [f{G(yp(A))}k-dG(yjA).

Proof

The first part of this lemma was proved in Santner (1975). To prove the second

part, it suffices to show that for all X E fl(p),

PX[T(k)S T 9 , j < k] inf %k2(\, n).-- -- AeA l

Define(

efi ne 1; if T(k). T )., < k
Thn -- 0; otherwise.

Then

PX[T(h). T , j < k] (

By Lemma 4.1, it suffices to show that i/(T) is non-increasing in T(l), for all I < k. Let

us define T' such that

T'), > T(I), and T'(j),, T(j), V j 9 1, j < k.

Then it suffices to show that i(T) = 0 implies i/(T') = 0. Suppose that i(T) - 0.

However,

q(T)= 0

if and only if

T(k). < T(j), for some j < k

and this implies that

T(k), < T( == T(k), <T ,),n

or

T()n<T(j)., 7 1 = T(k) <T()n, i #.
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Hence, both cases imply i7(T') = 0. So we get

PX[T(k),. >_ TO9)., j < A;]

= T 2(Atk], n)
-- AEA'

which completes the proof. 03

From Theorem 5.1 and Lemma 5.2, we can get the following result about the

nlifmum of the lower bound.

Theorem 5.2 For any X E 0k(p), we have

.inf PX[CSIPnj in TI(A,ni) + inf,%k2(A,n) -1, (82)
lea(p) AeA' AA

where %,f (A, nj) and '112(A, n) are defined in Lemma 5.2.

Remark 5.1 For the special cases of location and scale parameter problems, the infi-

mum of the lower bound is independent of A.

(1). Location parameter case; In this case,

G_,,() = G(X - Ax), -00 < , A < 0,%

the usual choice of hR(.) is
h.,(z) = x + d,,, d, > 0, ,

and the preference zone is given by

p(A)=A-6, 6>0,

that is,

11(p) = 0l(s) = {XAIAkI - Ack...i 2!6}

Then @,(A, nj) and 9 2(A,n) are given by

'If(A,ni) ='Pb(,d,,,n) = j_{G.,(y+d.1 +b)}k-

" _(Y+") .k - in,m}dGn,(Y) (83)"'t (d,,1- +6)
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and

ik(A, n) = P2(6,n) = G,(y + 6)}ldG,.(y), (84)

where G.(.) is the cdf of Ti. when Ai = 0.

(2). Scale parameter case; For this case,

G,(x) = G.( A), x > 0, A > 0,

the ,uual choice of h,,(.) is

h.(x) = c , c :1,

and the preference zone is given by

p(A) = A16, 6 > 1,

that is,

fl(P) = il(6) = {XIAk ,_ > [k,_j}

Then %I (A, ni) and * 2(,,n) are given by

1(A,n1) = 'P1(6,c, ,, ni) =

and

whee G,~() ' 2(A, n) = *L2(6, n) = :G(6y) }k-1dGfl(y),

where G,,(.) is the cdf of T, when Ai = 1.

5.4 Expected total sample size for P

In order to solve the non-linear optimization problem (77 we w

expression for the EX[TSSIP:] and then dr;erune ,

total sample size TSS can be written as

where S is defined in (76) The reult , i.

is summarized in the following tri^,r,-,!

* .t~
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Theorem 5.3 For any A e fl, woe have

EX[TSSIP, kn + n2D E[ E E1 'L G (y)
ifl Pik-M YvIn ,ESV(S)

rfi Gh'h-(y))dG(y)]. (87)

Proof

EX[TSSIPAJ = Ex((kn + n2S)l*P2]

= knj1 + n2EX[Sl1'']

= kn + n:{Ex[S'IP2i -P S=1 1j}. (88)

Now for anyX eA n,

EX[S'1112] =~ (h1F I ~~(y)

fl {G -(h,(y)) - G (y)}dGQ4(y) (89)
iE3p(i)

from Theorem (5.1) in Sautner (1975). Hence it suffices to show that

= 1jJ = .J f G!4(h;1(y))dG(41(y). (0

Now

=xS I'P2] =PI[ezactly one population is selectedIPA]

= PX[r(, is the only one selected].

However,

[iry) is the only one selected)

iff
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Hece the result in (90) holds. 0

Next we will consider the maximum value of EX[TSSrJ over f. Conditions which

guarantee that the supremum of EX[TSS'PJ in f) occurs at some point

X = (A ..... ,Ak)

for which Atli = At( are given in Theorem 5.4 and a general expression of the supremum
of EX[TSS'P2] in n1 under these conditions is given in Corollary 5.1.

The following regularity conditions will be assumed in some of the theorems that

follow.

(i). n, = E, for all A E A.

(ii). For any [AI, A2] C A there exists e(g) possibly depending on A, and A2 such

that

IOBG( lA)/OAI _< e(y) VA E [AI, A2],

where

{f** e()dG.(h,(Y)IAI){f* e(Y)dG.(IA')} <c V A'>A2. (91)

Santner (1975) proved the following lemma in which conditions are given which guar-

antee that the supremum of Ex[S'IjPy] in fl occurs at some point

I M (A,,,...,,, ,,)

for which A111 = Arki where S' is the cardinality of the set I in the first stage of P.

Lemma 5.3 If regularity condition. (91) are eatisfied and for all A1,AA in n with

Al :5 A2

OG ,h(BA1  )91 g (vIA2)
_ j(y iL),, (h,, (()A)d'S(Y) > 0 a.e. in, E.,, (92)

OA, dy

then Ex[S'Ir2J is non-decreasing in A111 on

A(AI 21) ( A E AlA S A121)

for anyfe ( .. ,A121 , [I,).
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We will consider conditions which guarantee that the inimum of PXIS' = 11P1

occurs at some pomt
I - (As,...,,)

for which Al = Apj in the following lemna.

Lemma 5.4 If regWart conditions (91) are .atisfid and for all A,, A2 in fi with

A, S_ A2

G ,(I (v)IA ) , (vIA2)
8A,
-Gm( lVAj),(h-.(Y)IA 2)dh (v) <0 a.e. in E, (93)

then PI[S'= lI1'4] is non-inceasing in -ki on

A(AX2).= {A E AIA _ Al21}

for any fixed (A, .... ,

Proof

Fix A12), ... , Ajhj for the following argument. Then

PXS' = 1V] M T,(I) + T2(s),

where

and

T2(x) ME I SQh()d~(
Aem

Now T2(1) can be rewritten as
kI

T(X) - G J (fhI()) fl G(')(h-'(y))dG(.1(y)

- ~ J $)(&,'(v11 fl') (h'())()"
Gm2 )(' IIV
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Next itorating 721(A) by parts we obtain that

7T1(X) c aosn.tt with reapet to AD]
k

- ,. Ga €)(v 1 G (€))dG(€,())

- coutmnt with reaped to A,

dh-'V- G .,) x h,()uh,() () y.

Hence combining terms it follows that

P[- 1IpN

- wutant with reaped to D
k k

and finally
,ut[$' - ii1,

But (93) given, for every ; -2.. k,
41

-V (Jfh ~ (~ 1 )

and h9e (94) is oe-pasitive and this completes the proof. 0
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Remark 5.2 We am @&Wy shw tWd (91) and (99) are eqalent bi ainsg the tras-

formation t = 4-1(v) in (93). Hence the ctditiow

sad
dlPl >_ oN:

dS' - zl o

ov sk aequivalent.

From Lemma 5.3, Lemma 5.4 and Remark 5.2 we can Set the following theorem in

which conditiom gurnteng that the supremum of Ex[TSSII'] in fI occur, at uome

pont

icr which 4O) = Agi an given.

Theorem 5.4 Suppoe diat te repUsrity cmdiw (91) .m atified .d for .ll

A, s fl ith A,

BA
-I (A* ,V,,,,=,,, ,,,,i _ o i.C. in E,.. (95)

Mme Ej[TSSIPJ isu.deas in A01 o

A(Apj) = (A ez AIA :5 4jl)

fr Agg fed(,...,a).

Proof

By noting that

Ex[TSSIP] - ki, + n,{2E[S'IP ] - PI M il1,]

the miult of the theorem i clear from Lemma 5.3, Lemma 5.4 and Remark 5.2. 0
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Remark 5.3 Cosditiem (95) redwce to the requiememt of MLAR in a the cstie or

"mk pmeter p~aw.

A genmml xpranion of the supranum of the EX[TSSIn~ in fl under the condi-

tics (95) im given in the folowing corollay.

CoroliaryS.1I For ev fad Apl A , i

for Apjj in A[AMuj] dme

sup ExTSSIPaJ = sup'y(A, Ri),
A4A

-ki+ kms jf"Ga(hs()l.)) 1"-'j:y k-mm

P,,rwVaIII if the hypothe... of Theorem 5.4 Iwldfor Al da~,tm '(I n1 ) is Ron-

decrewng in A .. d hem= ifthevit 4grw dement Ao eA, then

sup EziTSSIVO = -fon)

Proof

This corollary wiln be ptoe by using the follwing three lemm. and Remar 5.2.

03

Map EWJS'1 M sup7 0(, ni),
lea MEA
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wen

k~A IG. k. yjA1)L~ .(
- k& {Gp 4 (hl(y)IA)-lJ; k - m, mIdG, (yjA). (97)

Furthermore if (95) holds for A1 = A2 then 71 (A,n1 ) is non-decreasing in A and hence

if thre is a greut d ement Ao E A, then

sup h[s'IP ] = '(Ao,n).

140

Proof

Santner (1975) proved this lemma by using the following lemma due to Gupta and

Panchapakman (1972) which gives sufficient conditions for the monotone behavior of

the -h (A, n1 ) and hence the proof will be omitted. 3

Lemma 5.6 Let {F(-IA)IA E A) be a family of absolutely continuous distributions on

the red line with continuous density f(.IA) and I(z, A) a bounded rea valued func-

ti posessing first partial derivatives , and Ox with eopet to z and A respectively

ad satisfying regularity conaditions (919). Then E49[,(x, A)] is non-decreasing, (non-

increasing) in A provided for allA EA

AX A s -A OF(sIA) 80(z, A) > (:S)0 for a.e. x. (98)
8A A O8:

The egularity conditions for Lemma 5.6 axe given as follows.

(i). For alA A, is Lebesgue integrable on R.

(ii). For every [At, A 1 C A and As C A there exists h(y) depending only on A,, i =

1,2,3 such that

k(SA3 8(x, A) - F(zlA) 80(Z, A3) <- h(x) V E [At, A,] (99)

and h(z) is Lebesgue integable on

Lemma 5.7 If for ever y fooed Ap1 :5 ... :5AA)

O, M Is' = 1] < 0
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for Api in A[A121], then

infj*gPX[S' = 1IPrj = if 'f(A, n1),
AGA

•r(A,ni) = kJ G, ,(-(y)iA)}k-'dxj (ylA). (100)

Purthermore, if the h .pothese of heorem 5-4 hold for A, = A2, then "(,,nL) is

non-mncreamag in A and hence if there ia a greatest element AO E A, then

infxl 0PX[S'= 1IP2] =2A~I)

Proof

It ufficu to prove for al q < k and fixed

that

PX(,){s'= 11V}

is non-increasing in A on A[Aj,+I] where

X(q) =(A...,9,IA,+,],... I t]).

Lot
, (p].... NO)

and note from (90) that PX()fS 11} is invariant under permutations of the ele-

men in '. So

dA 8qjX)
- q,{s'= 1IN}[
"q L P ] I)"

But from the proof of Lemma 5.4,

ap ,s 1 0.
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Hemre the i murm over (I of the PX[S' 1j1 ] occurs at some point where all the A,(['s

ae equal. Since

j'(A, nO) E[(, ))

far

Lemma 5.6 can be applied and the sufficient condition (98) that '2(A, nv) be non-

increaing reduces to
OG,,(h-'(y)l,,,) .,(G, ad,(l).._c, ¢h-,'(y)L

--h(I ,0A D , .,,.(,-,-vdh l < 0 V A, a.e. y.
IOA OAA) -"Id

The final part of the result is obvious. E

Remark 5.4 For the cases of location or scale parameter problems the supremum of

the E1 [TSSPl" in (is independent of X provded the conditions in ,eor 5.4 and

Corollary 5.1. Under the same framework of Remark 5.1, oe have

(1). For the location parameter case:

sup Et[T S S IJ

-fG. (y - ,,)}"]dG .,(y), (101)

where G.(-) is the cdf of the Ti. when A =0.

(1). For the scale parameter cese:

SUP Ex[TSSP'J

-kni + kr 2jfG.2(c,s)}k1I G(') ; k -m,m}

-{G' (w/c ) '-s]dOt p),(102)

where G.(-) i the cdf of the T. when A, = 1.
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5.5 An optimi ation problem and the performance of P

In this section we first consider the optimization problem (77), which one must solve

in order to determine (ni,n2 ,h.) which is necessary to implement P2 and then we

consider the performance of P' relative to the corresponding single-stage procedure in

terms of the total number of sample sizes needed.

As we noted in Section 5.3, the LFC of the parameter vector A in fl(p) has not been
determined in the general case and hence we replace the exact inf.Xo Px[CSlr] by the

conservative lower bound on that probability given by the right hand side of (82). For

the special case of location parameter problems under some appropriate conditions the

optimization problem (77) can be written as follows.

For given k, m, 6 and P" choose integers nL and n 2 and a real d > 0 to

minimize kni + kn 2 f[{G,., (y + d -,)}k1I '(1) k - m, m}

,,,- .)}o]dG(y)

subject to Jw{fG% (V + d. + 6 )}k-IL

k - m, m}dG,, 1(y)

- f {G(,. +,.)+(y + 6)}k-dG(,+, 4 )(/) - 1 PO, (103)

where G,(-) is the cdf of the Ti, when A, = 0.

For the case of scale parameter problems under some appropriate conditions the

optimization problem (77) can be written as follows. For given k, m, 6 and P" choose

integers n, and n 2 and a real c. > 1 to

minimize &n1 + In 2 J' 0 [{G.(c,,))k-1I{ GIY ;k -m, m

-{G. (y/c,, ).-l]dG,., (y)

subject tofG. C.6Yl-

-If ) k - m, m)dG, (y)" 1 , (o, 1),

+ .r fG(, +%a) (8Y)}-1dG(,.,+,)(I)- 1 _ P*, (104)

where G.(.) is the cdf of the Ti, when A, = 1.
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As a measure of the efficiency of IW relative to that of the corresponding single-stage

procedure when both guarantee the same probability requirement (75), we consider the

ratio, termed relative efficiency(RE),

EX[TSSIP]

where n. is the sample size needed in the single-stage procedure.

5.6 Applications

In this section we apply the results of previous sections to a problem of selecting the
population with the largest mean from k univariate normal populations.

Suppose that
, ,- N(pi, o,2)) i 1.. k,

where the common variance a 2 is known and the experimenter is interested in selecting

the population having largest pi. We take

nj-

Then GR(VlIA,) =-' 4~ - I,,) ).

0"

where m is the c of a N(0,1) random variable. Since this is a location parameter
problem, we take

p(S) =,a- 6, 6> 0

and

h.(Z) z +l

so that

f(p) = { ,l,.] - ,lk-] > 6}.
Noting that the distribution of the mean of a sample from a normal population has

MLR with respect to the location parameter, and using Theorem 5.2 and Remark 5.1
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it can be seem that

AI PO4CSIPJ

{, + h + 6V~/a/))kl1

k - m, mjdI(y)

+ J{f(s, + 6V/~j 'ui/)}kld(y) - 1, (105)

and using Corollary 5.1 and Remark 5.4,

sup E1 [TSSjPJ

- ba + kn2 f[{ (si + k - m, m)

- h)}~l~d4(v).(106)

Hence the conservative non-linear optimization problem can be reduced to finding
integers ni n and a real number h > 0 to

minimize kn1L + kn2 fw [{,O(y + h)}k-I{j ; - m, m}

-{Dy- h)}k 1']dt(y) (107)

Subject to f 4(y + h + 6/W/ul

+ f' O 4(y + 6VnW _i2/0)}k-d(y) I P', (108)

for the given values of k, m, 6 and P-.

Table 30, Table 31, Table 32 and Table 33 contain the real valued solutions 04 fi2,

of the above optimization problem, which are necessary to approximate the con-

stants (ni,n2,h) needed to implement 'P2 for PO = 0.75,0.90,0.95,0.99, k = 3,4,5,

m = 2,3,4 < k and 61a = 0.1,0.5, 1.0,2.0,4.0. All computations were carried out in

double-precision arithmetic on a Vax-11/780. The source program in Fortran for the

SUMT algorithm given by Kuerter and Mize (1973) was used to solve the non-linear
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optimization problem and Gauss-Hermite quadrature with twenty nodes was used to

compute the integrals.

Using above constants, we can define an elimination type two-stage procedure ?P

as follows;

Stage 1: Take ni independent observations

'3, ) , j = 1,...,ni,

from each i,, i = 1,..., k, and compute the k sample means

Determine the subset I of {1,..., k} where

M = {ilj..n I [kin, { i, , - Io/ T},

where
< ... < Xf"

(iint[,n

denotes the ordered . Denote by x-, the associated subset of {ir, ... irk).

1. If rl consists of one population, stop sampling and assert that the population

associated with Yv,,, is best.

2. If 2' consists of more than one populations, proceed to the second stage.

Stage 2: Take n2 additional independent observations X!2) , j = 1,..., n 2, from

each population in -rl, and compute the cumulative sample means

1 ) +n ¥X(2)) Vi ElI
n, ., j l

where n = nL + n2. Assert that the population associated with maxiel Yin is best using

randomization to break the ties if necessary.
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The relative efficiency RE of the two-stage procedure P- relative to the correspond-

ing single-stage procedure is given by

Ik k-I(h)
RE = W,-[kA1+1F E E II (p+ f/I6A(/O)

i pin Mk-rn &-M jest(I)

M II + h + - +

0 9(y - i + Vf'6jljjo))d(y)], (109)

where (A1, A2, A) is the real valued solution of the non-linear optimization problem (107)

and (108),
6ij = P[,1 - PE11,

Sr(i) and 3T(i) are defined as in Lemma 5.1 and f. is the real solution to

Of course, RE depends on Sand P as well as/r

Table 34 and Table 35 contain the values of the relative efficiency for the two special

cases, namely the equally spaced and slippage configurations, for P = 0.75,0.90,0.95,0.99,

k = 3,4,5, m = 2,3,4 < k and S/or = 0.1,0.5, 1.0,2.0,4.0. All computations were car-

ried out in double-precision arithmetic on a Vax-11/780 and Gauss-Hermite quadrature

with twenty nodes was used to compute the integrals.

From Table 34 and Table 35, we see that for both configurations the values of RE

are less than or equal to one except for some smaller values of k, m and P*. Hence the

two-stage procedure is more efficient than the single-stage procedure in terms of the

expected total sample sizes. Furthermore, the effectiveness of the two-stage procedure

appears to be increasing as each of k, m and P" increases for fixed values of the others.
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Table 30: Constants to implement the two-stage procedure 7'~ for selecting the largest

normal population: P- = 0.75.

____~P a 0.75 __

k m / , 2LS

0 0.8J596.4.0 0.2811+0 0.4364.4.0 0.314200@4.0
3 2 1.00 0.2180+01 0.7019.&.00 0.407.4.0 0.735274.4.0

2.00 0.53120+00 0.17564+00 0.496.+01 0.196380.+01
4.00 0.134.00 0.43..01 0.4966.4.0 0.49076.4.0

0.10 0.24454+05 0.213.4.3 0.1830+01 0.136729.4+04
0.30 0.9654P+01 0.T900.4.01 &0.474e+01 0.58640+02

2 1.00 0.4490@+01 0619730+01 0.490+01 0.136041+02
2.00 0.62190+00 0.4940+00 064969@+01 0.3476080+01

4 4.00 0.15550+00 0.1234.4+00 0.5001+01 0.86007.4.00
0.10 0.2000+08 0.1266*+03 0.3474.4.0 0.119640*+04
0.50 0.4118&4.0 0.5116.4.0 0.4964.4.01 0.47826.4.02

3 1.00 0.229&+01 0.12810+01 0649670+01 0.1195570+02
2.00 0.50120+0 0.3000+00 &006+01 0.29610.4.0

4.00 0.12660+00 0.7167.01 0.4990.4.01 0.747229&+W0

0.10 0.277+03 0.35540+03 06.13480+01 0.1962500+04
0.80 0.1007.4+02 0.1240402 0.496.40 0.796946.4.0

2 1.00 0.2745.4.01 0.30401 0.46660+01 0.1662360+02
2.00 0.6661+00 077520+00 0.502+01 0.466001+0
CO00 0.1715.400 0.190&+00 0.50000+01 0.1245230+01
0.10 0.2260+03 0.2159.4.08 0.2970+01 0.1777960+04
0.50 0.90380+01 0.8646+01 0.49650+01 0.711354&+0W

S 3 1.00 0.2560+01 0.2640+01 0.496001 0.1776390+02
2.00 0.56500+00 0.5400.4.00 0.50020+01 06444596@+M1

4.00 061413.e.00 0.1350.4.0 0.501.401 0.111149s4.01

0.10 0.10N40+08 0.1885@+03 0.30670+01 0.1660960+04
0.50 0.78270+01 0.72220+01 0.307iz;-o1 0.676307+02

4 1.00 M19600+01 0.17800+0 0.4067.4.01 0.160+02

2.00 0.49060+00 0.44440+00 0.49690+01 0.4230560+01

4.00 0.12250+00 0.11130+00, 0.4960+01 ,0.1057640+01

109



Tale 31: Ccmstantu to implemt the two-stage procedure V2 for selecting the largest

nomapopuation: P- 0.90.

0.10 M'95.44 =.217=06 01011.0 0.11560..0
0M.56+M M~+ 0.18.48 0b01 0164.9.0 0*231.48

3 2 1.0 0.36.4 0.10726+01T 06490+401 6.15717864.02

2.85 0.331.40 0.4655.400 0.6490* 0.I2nS.+01

4.61 0.244.40 .123m6+00 0.4366..1 O.1U2U4.80

0OM 0.I404..0 0.U58.4.O 0.106.441 0AW42840
0.I6 0.114+0 0.1531.. 061 20+0640 0.875256.44

2 LOD L.44YOPM0 0.2346.90 GA6 01 o.04002
2.63 &.1117.401 oGAg61+00 0.4507.441 0.814113.441

4M 4.3 L276600w 0.261+00 M0.06.401 0.11354.4

.10 0.3455.4.6 0.290P.4.0 0.26556+0 0.2664.4.04
ON8 0.136.4+00 0430864= 0.20566+01 0.016544.0

3 LOD 0.346.4.0 Gausv.o 0.410s6+o1 o.2Mlg'.+o
2.00 0.85656+61 0.7157.40 0.086M 0.57146+Oi
4.61 0.3156.4 0.194.06 0.56.4.01 0.144456401

0.10 0.488&048 0.4140+ 0.1416.+01 UUUV6+04
GAG0 U0.165.. 0.1789042 &.4ft 0l 0.1 3726.445

2 LOS 0.465..0 0.446@01 0.511401 0.23410.4.8
2.60 0.1226.4+01 &.11149.0 0.866.4.0 0.111604.0
4.61 0*646+61 0.2w97+00 0.5611+10.265606+01

*0.10 0.3511+08 0641299.+ 66.0 1 0.31M 24176+04

*0.10 0.150*+61 0.114%80 .4356.40 0.125261+06
G 3 1.00 0.8357+0 0.0651+01 0.40046+01 0.313456+0

2.61 0.848s6.00 0.106+1 0.06*M 4.01+O 0.783664.4.
4.00 0.2411.400 0-MSlb+0 OOI+ 0.6.0 061 1.4.01

0.10 0.%3445+03 '0.40=06+03 0.16576+01 0.318107*+04
0.1 0.13656+00 0.1M6@&+02 0.16536+0 0.125241605

4 1.00 0.3126+01 0.336.4.0 0.1656+01 0.=31000+02
2.61 0.8660440 &0086.00 0.1154*M0 067327566+01

4.61 .1666+00 0.2466.4.00 ,0.00"5+01 016660
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T"M 32: Cooutants to implunmt the two.*tage procedure P2 for selecting the largit

oulpopuia ~. Pm 0.95.

S 6216O 0.564.0 0.23670.446 0A130.*0 04207658s444

6.8 0.4U046.01 0.1366.401 0.66M6110.0.01

UO 2 166 .54 08 0.21P.408 0.172640 @.206.4

am oearn... 0ai.s+o e.amema 0.1376.4.0
2 .IA m..o 0.4640.4.01to+O 0.14.441+ 0.650.4.0

0.86 0.46.4.03 0.1716.4.0 0.488.4.01 0.131665.40

4 4.05 0.22.40 0.2670.440 0.4366.4.0 042099=0.401
6.10 GA66.4.06 0.474.44 0.1755.4.0 0.14757.4.04

0.56 0.1900+020 0.1640= 0.1755.4.0 8.125610.4+01
S 140 0.6661.40 0.4570.4.0 0.1753&+M0 0.1474.?010

LOD5 4423840 01 &14401 .1 7564.01 &r786666.41

4.66 O0.6.40 0.2773.400 064IS8840M 0.166666.401

0.10 0.671.4.0 0.81406 0.1444.4+01 O 0.0404
0.50 0.266.4.0 =.40o4.= 0.4561.4.01 0617577201=

2 1.06 0.666.4.0 0836401 0,41609001 0.436431.4+01
IM 0.666.&40 0.1330@.0M 0.6665.4.0 0.10565.4.0
4.08 1.454.4.00 0.367.400 0.4665.4.01 0.274644.4+01

0.10 *J.*.01 0.5406.4.0 0.16600+01 0.416641.04
0.80 0.225.010.21540 0.1660.4.01- 0.16666.4.0

5 3 1.00 0.5181.+01 0.53@2..M 0.466684+01 0.4166674.0
2.00 0.1267.4.01 0.1335.&+0 0.5000.4.0 0.104724.4.0

. 40 6.324.00 0.3131.400 0.46610s.01 0.2616401
0610 0.4664.401 0.5333.4.0 0.1666.4.01 0.422066.404
0.80 ".10&+030 0.2144.4.0 0.1661.4.01 0.166635.4.0

4 1.00 .46154.0 J0.83640 0.1650+01 0.422 06740

LU 0.1244.4.0 06132594.0 0.1461.4.0 0.105524.010

L L 4.00 0.2662.4.0 0.42.4.00 0.4364.401 0.26664.4.0
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Table 33: Constants to implement the two-stage procedure P3 for selecting the largest

normal population: P* = 0.99.

& -5. asAs 3k

0.10 e.VI0402 063286.40 &0248+01 0-1049MO00

3 2 1.00 0.0066.4.0 0.57200+=0 0.1260+401 0.36656.4.4

2.00 0.21090 0.1247.01 0.4668.401 0961140+01

I4.00 0.573.400 0=3174+0 0.64*01 O.30.O.01

010 &1090.04 OA701443 061388.0M 0.S24636.4.04

0.10 0L4004.4 G0..4.43 06103601 0.2106 3.S

2 1.00 IL.104 0.0056.4.0 0.0006.401 OJ300.+00

2.00 0.21.4.0 0.110..01 0.100.4.0 G.122570.+0

4 4.00 00*0.0 0.366.4.0 0.4666.4.0 U=4200

0&10 01186.44 &70+II 0 0.1500.4.01 0.3517a72ad0

0.S0 0)643 0. 2M043 0.15730+.01 0.036003

3 1.00 OJU.4.01 0670"0.40 0.1571.4.0 0.517572.44

2.00 0621414+01 0.1775.00 0.1570401 0.12030M0.3

4.00 0.4*40 I0.071400 0.06601 0.33475.01

0610 0610%0+404 0.7530.4.00 0.1136.4.0 0.5660d4.0

0.10 0.4363.4.43 0.2810&.42 0.1007.40 0.275422*v-=

2 1.00 0.1005&402 0.7224.4+01 0.100.4.0 0.66661.4.4

2.00 0.2720.4.0 0.1407.4.01 04000 0.1713f.443

14.00 0.6500.00 0.4017.+00 .4660.40 0.4303470.4n

0.10 A0.65 00 0.1004.403 0.1614.401 0.663B0+404

0.50 0.3"*.403 0.3310.4 0.18198.0 0.23 .4W00

S 3 1.00 0.114.401 0.8060.90 0.406.M 0.666002&".W

2.00 0.2130.40 0.2016.4+01 064907.0.01 0.16725.4.0

4.00 0.1340 0.103640 10.4.0 .OPM (413141.4.0

0.10 0.M14.4.00 0.7041.400 0.11001 0.IM6140i

0.80 0.3636.4.3 0.3144.4.43 0.1521.401 0.273006.4+43

4 1.00 0.100.401 0.78590401 0-1620"M.0 0.66015.402

2.00 0.2210.01 0.1964.+01 0.1522.4.01 0.170004.02W

4M0 0.5527.4.00 0.4600.00 0.1520.4.01 0.425006.4.0
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Table 34: Meative efficiency o( the two-stage procedure V3' for selecting the largest

normal populatio Equally spaced cniuain

061 0.5 1.0 2.0 4.0

3 2 1.236 1.2714 ISM25 1.2715 1.2725

4 2 1.0675 1.233 1.2263 1.263 1.2271

06760 3 LVWM 1.0471.00100 1.05M0 1.0502

2 0.674 1.1614 1.16716 1.16717 1.16716

S 3 0.5443 1.0646 1.034 1.03463 1.0345

4 OwSMOS 04541860.36 0.5MUM 0.99710

3 2 0.160 0.3371 1.0m0 L.OOM 1.0906
4 2 0.8361 0.66 1.0174 1.01144 1.0170

000 3 0674M6 0.74604 8.904 0.0310 0.93739

2 0.1066 0.9"m0 0.90416 0.96416 0.36415

S 3 L.71675 3 7 0.80710 05 OMNI66 0.89020

4 0.640M 0634664 &64006 0.64008 0.84M6

3 2 0.8366 O0074 0.99008 0.3604 0.9940

4 2 0.1734 0.364 0.6656 .3606 soo606

0.100 3 0.671 0.07M7 0.67673 0.6130 0.09209

2 0.6363I 0.622M 0.324 0.362 0.9=21

& 3 0.0616 0.6613 0.5461 0.6464 0.846

4 &461714 0.6157 0.6186 0.6159? 0.79319

3 2 0.73M6 07314 0.73514 0.36 0.39330

4 2 0.73253 0.74271 0.1366 0.3600 0.3332

0.360 3 M.63426 0.63616 0.633 0.6156M 0.61903

2 0.73M6 0.01M5 0.8725 0. 13 0.875W7

5 3 06060 M.61254 0.77991 0.7166 0.77936
4 0.Sm71 0.003 0.6061 0.46 SOON6

113



T"bI ft Rdaivo Acirnc o d h two*etag proCedr P2 for m4wtin5 ths lArgis

4 2 1.2m. i'ins 1.3,1 IMU w m
4 3 A IaW 1Mm. JAME 1.3W1.3

Im 8 AU 10M 14010 140=1 I1.665
a Lan JAM L1UU IAU IJUM

a i aes OAN49 IAUW LUW3 IGIPI
4 0~ *AWNS LIAM 0.U' JM"

- "Bo -K aOaHa a a

S 3 OMW MI UM Iu 1.315 .811

a 2OMUM 0.8MA Li WON MIM LB

am jLiM 0.114 0L1M G.Taft a.

&"ae &"on &arn earn earn
4 &7465MI al m. &74M &7M am

4 3 LAM. 61130N LOSS LO.1 MIN2

&ft "W 0. VVIUP UM6 0.W4
4 0.16 &@MM5 OMU LOW57 *AIM

4 GAN LOWSS 0.133 ease ean Ar

114



References

(1] AL"M, K. (1970). A two-sample procedure Sr selecting the population with the

laruuat mom aom k normal populations. Ann. Indt. Statite Math. 22, 127-136.

[2) AL"Au, K. and Rizvi, M. H. (1966). Selection from multivoariate normal popula-

tions. Ann. lust Statit. Math 15, 3074316.

[31 AsTLz, C. E., KLIMKo, L. a&d LHmmmu, W. (1970). Confience intervals for

the parameters of the logistic distribution. Biemvi~s 57, 397-402.

[4) BANADVX, ft. &t (1950). On the problem in the theory of k populations. Ann.
MSth Sst. 21, 3235

[5) BAzADvR, ft. IL. and RoDDUfs, H. (1950). The problem of grester mean. Asn.
Math Statut 21, 409-"8. Corretions, 22 (1951), 310.

[6] BXCuEOM, Rt. E. (1954). A uglmpemultiple decision procedure for rank-

ing mesan o( normal population. with known variancess. Ans. Math. Statist. 25,

16-39.

(T1 Bwcxuorz, Rt. E. and SoonL, M. (19U4). A sn eap multiple-ecuiom

procedure fmr ranking varances of normal populaions. Ann. Maeg. Statist. 25,

273-289.

[8) Dzcuiorn, Rt. E.,DWurfrr, C. W. and SOUIL, M. (1954). A two-sample

multiple-decision procedure for ranking means of normal populations with a comn-

mai unknown variance. Biensrike 41, 170-176.

[91 Bzcuzoirza, R. E., 1(13731, J. and Somu, M. (1968). Sepential Idestiaetios

end RashIi Procedures. The University of Chicago Pros., Chicao.

(10) Buxsox, J. (1944). Application of the Logistic Function to Bio-assay. J. A mer.

Statist. Assoc. 39, 357-365.

fill Duaxso, J. (1951). Why I prefir logits to probits. Bioeritcs 7, 327-339.

115

A W 4 J * .~



[12) BERKSON, J. (1957). Tables for the maximum likelihood estimate of the logistic

function. Biometrics 13, 28-34.

[13] BIcKEL, P. J. and YAKAV, J. A. (1977). On selecting a subset of good popu-

latiom. Statisdical Decision Theory and Related Topics-If (Eds. S. S. Gupta and

D. S. Moor), Academic, New York, pp. 37-55.

[14) BMNBAUM, A. and DUDMAN, J. (1963). Logistic Order Statistics. Ann. Math.

Statist. 34, 658-663.

[15] BIANDARI, S. K. and CHAUDHUDJ, A. R.. (1987). On two conjectures about

two-stage selection problem. (to appear in Sankyi Ser. B ).

[16] COHEN, D. S. (1959). A Two-Sample Decision Procedure for Ranking Means

of Normal Populations with a Common Known Variance. M.S. Thesis, Dept. of

Operations Research, Cornell Univ., Ithaca, New York.

[17] Comwn, E. A. and Fusrxt, R. A. (1937). Moments and cumulants in the

specffction of distributions. Rev. de l'lvut. Int. de Stat. 5, 307-320.

[18) Dzsu, M. M. and SOBEL, M. (1968). A fixed subset-size approach to a selection

problem. Biometrika 55, 401410. Corrections and amendments: 63 (1976), 685.

[191 Dau, M. M. and SOBEL, M. (1971). Nonparametric procedures for selecting

fixed-se subsets. Statistical Decision Theory and Related Topics (Eds. S. S.

Gupta and J. Yackel),Academic, New York, pp.255-273.

[20) DanERn, N. R.. and TImRNEY, D. E. (1973). Exact Formulas for Additional

Terms in Some Important Series Expansions. C mm. Statist. 1, 495-524.

[21] DUDZWICZ, E. J. (1971). Non-existence of a single-sample selection procedure

whose P(CS) in independent of the variance. S. Afr. Staist. J. 5, 37-39.

[22] DuDZWlCZ, E. J. and Koo, J. 0. (1982). The Complete Categorized Guide to

Statistical Selection cad Raking Procedsum. Series in Mathematical and Man-

qament Sciences, Vol. 6, American Sciences Press, Inc., Columbus, Ohio.

116



[231 FIA , A. V. and MCCORMICK, G. P. (1968). Nonlinear Sequential Uncon-

trsined Minimixatieu Techniques. John Wiley & Sons, Inc., New York.

[241 FIsSER, R. A. ad Cornish, E. A. (1960). The percentile points of distributions

having known cumulants. Techuoinetrica 2, 209-225. Errata: 2, 523.

[25] GoL, P. K. (1975). On the Distribution of Standardized Mean of Samples from

the Logistic Population. Sankhyd Set. B 2, 165-172.

[261 GzoRGz, E. 0. and MUDHOLKAR, G. S. (1983). On the Convolution of Logistic

Random Variables. Metrika 30, 1-13.

[27] GUMBEL, E. J. (1944). Ranges and midranges. Ann. Math. Statist. 15, 414-422.

[28] GumBzL, E. J. and Keeney, R. D. (1950). The extremal quotient. Ann. Math.

Statist. 21, 523-538.

[291 GUPTA, S. S. (1956). On a decision rule for a problem in ranking means. Ph.D.

Thesis (Mimeo Ser. No. 150). inst. of Statist., Univ. of North Carolina, Chapel

HilL

[30] GUPTA, S. S. (1962), Life Tat Sampling Plans for Normal and Lognormal Dis-

tributiom. Teehwo trics 4, 151-175.

[311 GUPTA, S. S. (1965). On some multiple decision (selection and ranking) rules.

Twcometrics 7, 225-245.

[32] GUPTA, S. S. and HSLAO, P. (1983). Empirical Bayes rules for selecting good

populations. J. of Statistical Planning and Inference 8, 87-101.

[33] GUPTA, S. S. and GNANADESIKAN, M. (1966). Estimation of the parameters

of the logistic distribution. Biometrika 53, 565-570.

[34] GUPTA, S. S. and HUANG, D. Y. (1975a). On subset selection procedures for

Poison populations and some applications to the multinomial selection problems.

AppiW Statistics (Ed. R. P. Gupta), North-Holland, Amsterdam, pp. 97-109.

117



[351 GUPTA, S. S. and HUANG, D. Y. (1975b). On some parametric and nonparamet-

ric sequential subset selection procedures. Statistical Inference and Related To pics,

Vol 2 (Ed. M. L. Puri), Academic, New York, pp. 101-128.

[36] GUPTA, S. S. and HUANG, D. Y. (1976). Subset selection procedures for the

entropy function associated with the binomial populations. Sankhayi Set. A 38,

153-173.

[37] GUPTA, S. S. and HUANIG, D. Y. (1981). Multiple Decision Theory: Recent

Developments. Lecture Notes in Statistics, Vol. 6, Springer-Verlag, New York

[38] GUPTA, S. S. and Kim, W. C. (1984). A two-stage elimination type procedure for

selecting the largest of several normal means with a common unknown variance.

Desig of Ekperivnenta: Ranking and Selection (Edo. T. J. Santner and A. C.

Tambane), Marcel Dekker, New York, pp.77-93.

[391 GUPTA, S. S. and MInsCK, K. J. (1962). On the least favorable configurations

in certain two-stag seletion procedures. Statistics and Probability: Essays in

Honor of C. R. Roo (Eds. G Caflianpur, P. R. Krishnaiah and J. K. Ghosh),

North-Holland, pp. 295-30.

[401 GUPTA, S. S. and MIZscKE, K. J. (1984). On two-stage Bayes selection proce-

dures. Sankhyd Ser. B 46, 123-134.

[41] GUPTA, S. S. and NAGEL, K. (1971). On some contributions to multiple decision

theory. Statistical Decision Theory and Related Topics (Eds. S. S. Gupta and J.

Yackel), Academics, New York, pp. 79-102.

[421 GUPTA, S. S. and PAIIcHAPAxzsAII, S. (1972). On a class of subset selection

procedures. Ann. Math. Statist. 43, 814-322.

143] GUPTA, S. S. and PAJxcIAPAKEsAN, S. (1979). Multiple Decision Procedures:

Theory and Methodology of Selecting and Ranking Population.. John Wiley&

Sam, Inc., New York.

118



[44] GuPTA, S. S. and PANCHAPAKESAN, S. (1985). Subset Selection Procedures:

Review and Assessment. Amer. J. of Math. and Management Sciences. 5, 235-

311.

[45] GUPTA, S. S. and SANTNER, T. J. (1973). On selection and ranking proce-

dures - a restricted subset selection rule. Proceedings of the 39th Session of the

International Statistical Institute Vol. 45, Book 1, pp. 409-417.

[46] GuPTA, S. S. and SHAN, B. K. (1965). Exact Moments and Percentage Points

of the Order Statistics and the Distribution of the Range from the Logistic Dis-

tribution. Ann. Math. Statist. 36, 907-920.

[47] GuPTA, S. S. and SINa, A. K. (1980). On rules based on sample medians for

selection of the largest location parameter. Commun. Statist.- Theor. Meth. A9,

1277-1298.

[48] GUPTA, S. S. and STUDDEN, W. J. (1970). On some selection and ranking

procedures with applications to multivariate populations. Essays in Probability

and Statistics (Eds. R. C. Bose et &l.), Univ. of North Carolina Press, Chapel

Hill, pp. 327-338.

[491 HARDY, G. H., LITTLEWOOD, J. E. and P6LYA, G. (1934). Inequalities. Cam-

bridge Univ. Press, Caztbridge.

[50] HIRsCiMAN, I. I. and WIDDER, D. V. (1955). The Convolution Transform.

Princeton, N.J.

[51] KUESTER, J. L. and MizE, J. H. (1973). Optimization Techniques with Fortran,

McGraw-Hill, Inc.

[52] LEE, S. H. and Cxoi, K. L. (1985). An Elimination Type Two-Stage Selection

Procedure for Gamma Populations. J. of the KSQC 13, 29-36.

[53] LORENZEN, T. J. and MCDONALD, G. C. (1981). Selecting logistic populations

using the sample medians. Commun. Statist.- Theor. Meth. A10, 101-124.

119



[54] MABAMUNULU, D. M. (1966). On a Generalized Goal in Fixed Sample Ranking

and Selection Problems. Ph.D. Thesis (Tech. Report No. 72). Dept. of Statist.,

Univ. of Minnesota, Minneapolis, Minnesota.

(55] MAHAMUNULU, D. M. (1967). Some fixed-sample ranking and selection prob-

lems. Ann. Math. Statist. 38, 1079-1091.

[56] MIEScKE, K. J. (1982). Recent results on multi-stage selection procedures. Tech-

nical Report No. 82-25, Dept. of Statist. Purdue Univ., West Lafayette, Indiana.

[57] MOSTELLER, F. (1948). A k-sample slippage test for an extreme population.

Ann. Math. Statist. 19, 58-65.

[58] PAULSON, E. (1949). A multiple decision procedure for certain problems in anal-

ysis of variance. Ann. Math. Statist. 20, 95-98.

[59] PEARL, R. and REED, L. J. (1920). On the rate of growth of the population

of the United States since 1790 and its mathematical representation. Proc. Nat.

Acad. Sc/. 6, 275-288.

[60] PLACKETT, R. L. (1958). Linear estimation from censored data. Ann. Math.

Statist. 29, 131-142.

[61] PLACKETT, R. L. (1959). The analysis of life test data. Technometrics 1, 9-19.

[62] SANTNER, T. J. (1973). A Restricted Subset Selection Approach to Ranking and

Selection Problems. Ph.D. Thesis (Mimeo. Ser. No. 318). Dept. of Statist., Purdue

Univ., West Lafayette, Indiana.

[63] SANTNER, T. J. (1975). A restricted subset selection approach to ranking and

selection problems. Ann. Statist. 3, 334-349.

[64] SCHAFER, R. E. and SHEFFIELD, T. S. (1973). Inferences on the Parameters of

the Logistic Distribution. Biometrics 29, 449-455.

120



[65] SCHOENBERG, I. J. (1953). On P6lya frequency functions and their Laplace

transformations. J. d'Annal. Math. 1, 331-374.

[66] SOBEL, M. (1967). Nonparametric procedures for selecting the t populations with

the largest a-quantiles. Ann. Math. Statist. 38, 1804-1816.

[67] SOBEL, M. and HuYETT, M. J. (1957). Selecting the best one of several binomial

populations. Bell System Tech. J. 36, 537-576.

[68] TALACKO, J. (1956). Perk's distributions and their role in the theory of Wiener's

stochastic variates. Trabajos de Estadistrica 7, 159-174.

[69] TAMHANE, A. C. and BECHHOFER, R. E. (1977). A two-stage minimax pro-

cedure with screening for selecting the largest normal mean. Commun. Statist.-

Theor. Meth. A6, 1003-1033.

[70] TAMHANE, A. C. and BECHNOFER, R. E. (1979). A two-stage minimax proce-

dure with screening for selecting the largest normal mean (I): an improved PCS

lower bound and associated tables. Commun. Statist.- Theor. Meth. A8, 337-358.

[71] TARTER, M. E. and CLARK, V. A. (1965). Properties of the Median and Other

Order Statistics of Logistic Variates. Ann. Math. Statist. 36, 1779-1786.

I-

12



Ia. REPORT SECURITY CLASSIFICATION 6

2a. SECURITY CLASSIFICATION AUTHORITY AITY OF REPORT
Unclassi fied

2b. DECLASSIFICATION / DOWNGRADING SCHEDUL-

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

Technical Report #87-38

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
nirt(If applicable)Purdue U'niversi tyI

Bc. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

Departirient of Statistics
West Lafayette, IN 47907

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Office of N~aval Research _'_NQ014-64-C-0167

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM . JPROJECT I TASK IWORK UNIT
Arlington, VA 22217-50C0 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

Contributions to Selection and Ranking Theory with Special Reference to Logistic FcpLiations

12. PERSONAL AUTHOR(S)
SanqHyun Han

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year Month, Day) 15. PAGE COUNT
% Technical FROM TO August 26 , 198/ 122

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Selection and Ranking, Restricted Subset Selection

Procedure, Two-Stage Procedure, Largest Mean, Subset
.:4 Selection, Logistic Populations

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Selection and ranking (more broadly multiple decision) problems arise in many practical
situations where the so-called tests of homogeneity do not provide the answers the
experimenter wants.

The logistic distribution has been applied in studies of population growth, of mental
ability, of bio-assay, of life test data and of biochemical data, but the complete
distribution of the sample means and variances of a logistic population has not been
obtained yet.

In this paper we study the selection and ranking problems for logistic populations and an
elimination type two-stage procedure for selecting the best population using a restricted
subset selection rule in its first stage.

Chapter a deals with the slect ion and rankin rocedures for logistic populations. An
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

, UNCLASSIFIEDAJNLIMITEO 0 SAME AS RPT. 0 OTIC USERS
22a. NAM OF RESPONSIBLE INDIVID9UAL (Inc Aa 2 C

Professor Shanti S. Gupta 494-6 AreaCoe 22c. OFFICE SYMBOL

DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECUkITY CLASSIFICATION OF 'HIS PAGE
All other editions are obsolete. UNCLASS IF IED

I,-



'I

I

I
I~.

j


