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CONTRIBUTIONS TO SELECTION AND RANKING THEORY
WITH SPECIAL REFERENCE TO
LOGISTIC POPULATIONS !
by
SangHyun Han

Purdue University

4 | \ Abstract

Selection and ranking (more broadly multiple decision) problems arise in
many practical situations where the so-called tests of homogeneity do not provide
iy the answers the experimenter wants.

The logistic distribution has been applied in studies of population growth,
of mental ability, of bio-assay, of life test data and of biochemical data, but the

complete distribution of the sample means and variances of a logistic population
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N has not been obta.ixﬁleld Yyet.
I sphed ¥
“7 ~Imthis paper -we study the selection and ranking problems for logistic popu-
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lations and an elimination type two-stage procedure for selecting the best popu-

4

lation using a restricted subset selection rule in its first stage. ¢ oert <

]
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Chapter 2 deals with the selection and ranking procedures for logistic pop-
ulations. An excellent approximation to the disébution of the sample means

“+ |
LI N /L

N}
from a logistic population is derived by using the Edgeworth series expansions. m« ..
i

-

Using this approximation, we propose and study a single-stage procedure using < fat."

™, S '-__-—:‘-r

o ~ the indifference zone approach, two subset selection rules based on sample means

and medians respectively for selecting the population with the largest mean from
k logistic populations when the common variance is known.
' Chapter 3 considers an elimination type two-stage procedure for selecting the
population with the largest mean from k logistic populations when the common
variance is known. A table of the constants needed to implement this procedure is
provided and the efficiency of this procedure relative to the single-stage procedure

is investigated.

!This research was partially supported by the Office of Naval Research Contract N00014-84-C-0167.
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N ' Chapter 4 deals with a single-stage restricted subeet selection procedure for
| selecting the population with the largest mean from k logistic populations when
‘§ the common variance is known. Some properties of this procedure such as mono-
tonicity and consistency are investigated. Tables of required sample sizes for this
- procedure are provided. A new design criterion to get the needed sample size
: and the constant defining this procedure simultaneously is proposed and a table
; . of these constants is given.

] Chapter 5 deals with a more flexible two-stage procedure for selecting the

best population, which uses a restricted subset selection rule in its first stage

N and the Bechhofer's (1954) natural decision procedure in the second stage, in

j: terms of a set of consistent estimators of the real population parameters, whose

o

b distributions form a stochastically increasing family for a given sample size.

\ KEY WORDS: Selection and Ranking, Restricted Subset Selection Procedure, Two-

,‘ Stage Procedure, Largest Mean, Subset Selection, Logistic Populations.
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1 INTRODUCTION

It is not uncommon that we face a problem of making decisions regarding k given
populations, for example, different varieties of wheat in an agricultural experiment, or
different competing designs of engines to be used in an automobile plant, or different
drugs for a certain ailment. Suppose 8,,...,0; are the characteristics or parameters of
the populations in which the experimenter is interested. The classical approach in the
preceding problems has been to test the so-called homogeneity hypothesis H, : §; =

.. = O4. However the experimenter’s real goal often is to identify the best population
(the variety with the largest average yield, the most reliable system and so on). Then
the test of H, is unrealistic for this problem. Attempts were made to overcome the
shortcomings of the classical tests of homogeneity by formulating the problem in a
more meaningful and realistic way. A partial answer was provided by Mosteller (1948)
who tested homogeneity against slippage alternatives. Paulson (1949), Bahadur (1950)
and Bahadur and Robbins (1950) are among the early investigators to recognize the
shortcomings of the classical test of homogeneity hypothesis and to formulate the k-
population problem as a multiple decision problem in the framework of what have now
come to be known as selection and ranking procedures.

The two main approaches that have been used in formulating a selection and ranking
problem are familiarly known as the indifference zone approach and the subset selection
approach. The basic problem in the indifference zone approach, due to Bechhofer
(1954), is to select one of the k populations with a guarantee that the probability of
selecting the best population is at least a fixed probability P*(1/k < P* < 1) whenever
the unknown parameters lie outside some subspace of the parameter space, the so-
called indifference zone (the complement of an indifference zone is called a preference
zone). Here some knowledge of the parameter space is assumed known a priori, for
example, the experimenter must be able to guarantee that the largest parameter is
separated from all other ranking parameters by a distance not less than §, say. Other
contributions to this approach are Bechhofer and Sobel (1954), Bechhofer, Dunnett
and Sobel (1954), Sobel and Huyett (1957), Sobel (1967), Bechhofer, Kiefer and Sobel
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(1968), Mahamunulu (1967), Desu and Sobel (1968,1971) and Tamhane and Bechhofer
(1977,1979) among others. There are several variations and generalizations of the basic
goal discussed above. For details, reference can be made to Gupta and Panchapakesan
(1979) and Dudewicz and Koo (1982).

In the subset selection approach known as “Gupta’s formulation” for selecting the
best population, the goal is to select a nonempty subset of the k populations so that
the best population is included in the selected subset with a minimum guaranteed
probability P*(1/k < P* < 1) over the whole parameter space. Here the size of the
selected subset is not determined in advance but depends on the data and hence it
is a random variable. Among decision procedures which satisfy the basic probabil-
ity requirement, one which yields the smallest expected size of the selected subeet is
considered in some ways to be the most desirable. Another performance criterion for
comparing decision procedures is the expected number of the non-best populations in
the selected subset. Some recent contributions in the subset selection formulation have
been made by Gupta and Studden (1970), Gupta and Nagel (1971), Gupta and Pan-
chapakesan (1972), Gupta and Santner (1973), Santner (1973,1975), Gupta and Huang
(1975a,1975b), Gupta and Huang (1976), Bickel and Yahav (1977), Gupta and Singh
(1980), Gupta and Hsiao (1983), Lorenzen and McDonald (1981) among others.

In the basic subset selection formulation we select a nonempty subset of the k given
populations. When the parameters §; are all very close to one another, we are likely to
select all the populations. So it is meaningful to put a restriction that the size of the
selected subeet will not exceed m (1 < m < k). Even otherwise, one may want to select
a nonempty subset of a random size to a maximura of m. Such a formulation is called
a restricted subset selection formulation. The general theory was developed by Santner
(1973,1975) and the normal means selection problem was investigated by Gupta and
Santner (1973). An important feature of this formulation is that an indifference zone
(preference zone) is introduced.

Besides being a goal in itself, selecting a subset containing the best can also serve
as a first stage screening in a two-stage procedure designed to choose one population as
the best. Some important contributions in this direction have made by Alam (1970),
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Tamhane and Bechhofer (1977,1979),'Miescke (1982), Gupta and Miescke (1982,1984),
Gupta and Kim (1984) and Lee and Choi (1985).

There are several other variations and generalizations of the basic subset selection
formulation, for example, the decision-theoretic approach where some Bayes and empir-
ical Bayes rules and several minimax and I'-minimax rules have been studied by various
authors, selection procedures for multivariate normal and multinomial distributions,
nonparametric procedures, selection from restricted families, sequential procedures,
isotonic procedures etc. For further developments in subset selection formulation, ref-
erence can be made to Gupta and Panchapakesan (1979), Gupta and Huang (1981),
Dudewicz and Koo (1982), and Gupta and Panchapakesan (1985).

The main contributions of this paper are first, to propose and study new selection
and ranking procedures for the logistic populations and second, to propose an elim-
ination type two-stage procedure for selecting the best population using a restricted
subset selection rule in its first stage and to apply this procedure to specific problems.

Chapter 2 deals with the basic selection and ranking procedures for logistic pop-
ulations. The range of application of the logistic distribution as a probability model
to describe random phenomenon covers such areas as population growth, bioassay, life
test and physiochemical phenomena. The exact distribution of the mean of samples
from a logistic populations has not been obtained completely yet though it is needed in
the various studies about logistic distributions such as estimating, testing hypothesis
and selection and ranking problems. An excellent approximation to the distribution of
the sample means from a logistic population is derived by using the Edgeworth series
expansion and it is compared to other approximations. Using this approximation we
consider a single-stage indifference zone approach procedure P, for selecting the best
logistic population. We also propose two subset selection rules R; and R; based on
sample means and medians respectively and compare them to each other by means of
their performance characteristics.

Chapter 3 considers an elimination type two-stage procedure for selecting the pop-
ulation with the largest mean from k logistic populations. We propose a two-stage

procedure P; which is based on an optimization problem by using a minimax criterion.
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Lower bounds for the infimum of the probability of a correct selection over the pref-

erence zone and the supremum over the whole parameter space of the expected total

sample size needed for P; are derived. A table of the constants needed to implement

, P, is provided by solving the optimization problem and the efficiency of P; relative to
i the single-stage procedure P, is investigated.

Chapter 4 deals with a single-stage restricted subset selection procedure for logis-

tic populations. We consider a restricted subset selection procedure R3; based on the

sample means for selecting the population with the largest mean from & logistic popu-

N

lations when the common variance is known. Formulas for the probability of a correct
selection for any given set of parameters and for the infimum over the preference zone
of the above probability are derived and some properties of this procedure such as
monotonicity and consistency are studied. Tables of the bounds of the infimum of the
probability of a correct selection over the preference zone, tables of the required sam-

- o -

ple sizes for the rules and tables of the expected number of selected populations are
' provided. A new design criterion to get the needed sample size (n) and the constant
defining the rule (k) simultaneously is proposed and a table of the constants (n,k) is
provided.

Chapter 5 deals with a more flexible two-stage procedure for selecting the best
population. We propose an elimination type two-stage procedure P; in which a gen-
eralized restricted subset selection rule is used in the first stage and the Bechhofer’s
(1954) natural decision procedure in the second stage. This rule is based on a set of
consistent estimators for the parameters, whose distributions are assumed to form a
stochastically increasing family for a given sample size. We also propose a non-linear
optimization problem using a minimax design criterion to find a set of design constants
for P}. A lower bound of the probability of a correct selection is derived and also a

formula for the infimum of the lower bound over the preference zone is derived. An

- - -

analytic expression for the expected total sample size, the conditions guaranteeing that

the supremum over the whole parameter space of the expected total sample size oc-
] curs at some point where the parameters are all equal, and a general expression of the
supremum of the expected total sample size under these conditions are derived. Finally

P L




we apply P; to the location parameter problem of univariate normal populations by
providing the tables of the design constants to implement P} and of the values of the
relative efficiency with respect to the single-stage procedure.

i
)
¥
L
§
]
i
b
1y
4
¥
s L]
¥ -
¢
L]
¢
+
i
#

. T TN - [ AL - » - - ) « L] '
,"l."’n'l.‘t'ln'*.;‘i‘. l’a .l,b“.n'l‘u Yy .I..’ .J O !0"% LX) .0.‘, V D,""O " LN L) -t"’ X3 .| 5. .0.0 ST, .o i‘,a.t_. ‘o i WL \ ._.'0' 5 -'t".'l':h'.l



< L S L L L R L Ry R A N R R R R R BN R R R N A RN AR TN, g N NS

2 SELECTION AND RANKING OF THE LO-
GISTIC POPULATIONS

2.1 Introduction

. The logistic distribution has been widely used by Berkson (1944,1951,1957) as a model
for analyzing experiments involving quantal response. Pearl and Reed (1920) used this
in studies connected with population growth. Plackett (1958,1959) has considered the
use of this distribution with life test data. Gupta (1962) has studied this distribution
as a model in life testing problems.

The shape of the logistic distribution is similar to the normal distribution. The
simple explicit relationship between the logistic random variate, its probability den-
sity function (pdf) and its cumulative distribution function (cdf) render much of the
analysis of the logistic distribution attractively simple and many authors, for example,

Ry T

Y Berkson (1951) prefer it to the normal distribution.

g The importance of the logistic distribution in the modeling of stochastic phenomena

4 has resulted in numerous other studies involving probabilistic and statistical aspects of

' the distribution. For example, Gumbel (1944), Gumbel and Keeney (1950) and Talacko

. (1956) show that it arises as a limiting distribution in various situations; Birnbaum and

. Dudman (1963), Gupta and Shah (1965) study its order statistics. Many other authors,

for example, Antle, Klimko and Harkness (1970), Gupta and Gnanadesikan (1966) and

E Tarter and Clark (1965), investigate inference questions about its parameters.

- As might be expected, because of the similarity between the logistic and the normal

» distributions, the sample mean and variance, the moment estimators of the logistic

> population parameters, are effective tools for statistical decisions involving the logistic .

8 distribution. Antle, Klimko and Harkness (1970) give a function of the sample mean as '
a confidence interval estimate of the population mean when the population variance is ‘

- --

known. Schafer and Sheffield (1973) show that in terms of the mean squared error the
moment estimators of the logistic population parameters are as good as their maximum
likelihood estimators. The fact that the distribution of a sample mean has monotone
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likelihood ratio (MLR) with respect to the population mean when the variance is known
is used by Goel (1975) to obtain a uniformly most accurate confidence interval for the
population mean and a uniformly most powerful test for one-sided hypotheses involving
the population mean. The sampling distribution of the mean is a primary requirement
for these statistical purposes. The papers by Antle, Klimko and Harkness (1970) and
Tarter and Clark (1965) used a Monte Carlo method for this distribution.

Goel (1975) obtains an expression for the distribution function of the sum of inde-
pendent and identically distributed (iid) logistic variates by using the Laplace trans-
form inverse method for convolutions of Pélya type functions, a technique developed by
Schoenberg (1953) and Hirschman and Widder (1955). He provides a table of the cdf
of the sum of iid logistic variates for the sample size n = 2(1)12, z = 0(0.01)3.99 and
n = 13(1)15, z = 1.20(0.01)3.99. He also gives a table of the quantiles for n = 2(1)15,
a = 0.90,0.95,0.975,0.99,0.995. George and Mudholkar (1983) obtain an expression
for the distribution of a convolution of the iid logistic variables by directly inverting
the characteristic function. However, since both formulas of Goel (1975) and George
and Mudholkar (1983) contain a term (1—e*)~*,k = 1,...,n, a problem of precision of
the computation at the values of z near zero arises when n is large. George and Mud-
holkar (1983) also show that a standardized Student’s ¢ distribution provides a very
good approximation for the distribution of a convolution of the iid logistic random
variables. |

This chapter considers approximation problems to the distribution and quantiles
of a standardized mean of samples from a logistic population by using Edgeworth and
Cornish-Fisher series expansions respectively. Tables ‘of the cdf and quantiles are pro-
vided and it is shown that these are far better approximations than the Student’s ¢
distributions as suggested in Goerge and Mudholkar (1983) and hence these approxi-
mations will be used henceforth.

In the rest of this chapter a single-stage procedure P, using an indifference zone
formulation for selecting the best among several logistic populations with unknown
means and a common known variance based on sample means is proposed and studied.
A table of the smallest sample size n needed to implement P, subject to the basic




probability requirement is provided.

Two subeet selection rules R, and R; based on sample means and sample medians

’ respectively for selecting the best among several logistic populations are proposed and

: " tables of constants to implement the rules are provided. We also compare the two rules
‘ with respect to their performance characteristics.

X 2.2 Distribution of logistic sample means
ﬁ‘
: 2.2.1 Logistic distribution

A random variable X has the logistic distribution with mean x and variance o2, some-
times denoted by L(y,0?), if the pdf of X is given by

f(z) = (9/0)[exp{~g(z - p)/o}][1 + exp{~g(z — p)/o}]"* (1)
and the cdf of X is defined by
%' F(z) = [1 + exp{~g(z ~ w)/o}]™, (@)
: where —co < z < 00, ~00 < s < 00, ¢ > 0 and g = #/v/3. This distribution is
E} symmetrical about the mean 4. '
' The standard logistic distribution with mean zero and variance unity, denoted by
R L(0,1), has the pdf and cdf defined as
R f(z) = glexp{—gz}](1 + exp{~gz}]~* (3)
3 and
5 F(z) = [1 + exp{—gz}]"* )
0 respectively, where ~c0 < z < 0o. The standard logistic distribution has a shape
: ' similar to the standard normal distribution. The curve of the logistic distribution .
K crosses the density curve of the normal between 0.68 and 0.69. The inflection points
‘ of the pdf of the standard logistic distribution are +0.53 (approx.). "

Letting Y = (X — u)g/o, the random variable Y has the logistic distribution with
mean zero and variance /3. The pdf and cdf of the random variable Y are given by

f(y) = [exp{—y}}[1 + exp{-y}]* ()

10
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and

A

F(y) =1 +exp{-y}]”’ (6)
. respectively, where —~co < y < o0. (5) may be written in terms of F(y) as

B .- fv) = Fy)(1 - F(y)). (7)
g The moment generating function (mgf) of Y is given by

J:i My(t) = TQ+8)[Q1-1¢)

; = =xt/sinxt, |t|{ < 1. (8)

We can also express (8) as

i () = =170 1)/ CBatrt, )
where B,’s are Bernoulli numbers defined as
3 z/(exp(z) — 1) = g:o B2* /(). (10)

The relationshipe between B,’s are given by

b By =1

. k k k

: . 1+(1)Bx+(2)32+ cee +(k_1)Bk-1=0, k=1,..., (11)
) and hence the first few values of B, are

:: BO = 1’

.:? B, = -1/2,

' B, = 1/6,

‘ B, = -1/30,

K Bs = 1/42,

y Bs = —-1/30,

"

,:' Blo = 5/66,
3

: Bimy1 = O,m=1,2,.... (12)
’ 11
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The v** central moments of Y, denoted by s, (y), can be obtained as

m(y) = E(Y)
_ ) (A2 - 1)Bor; ifv =25, =1,2,...,
0; otherwise,
by using (9).
Then the »* central moments of X, denoted by p,(z), are given by

iz) = E(X-p)

= (of/g)*E(Y")
) (- (Vo) [2(2-t - 1))B,; ifv =25, =1,2,...,
- 0; otherwise,

In terms of the central moments u,(z) of X, first few of the ¥* cumulants of X, denoted
by K.(z), v =1,2,..., which are defined by

logpx(t) = 3_ K. (=)(it)"/ (),
vel
where @x(t) is the characteristic function of the random variable X, are given by

Ki(z) = m(z)=an,

Kalz) = ala) =0

Kdz) = pala) = 3(m(2)) = o',

Ke(z) = pa(z) - pa(a)a(z) + 0(pa(2))* = o,

Ka(z) = a(z) — 2pa(ee() — 35(ua(z) + £20(0a(2)ulz)

- 630(ua(2))* = 22,
Kio(z) = po(z) — 45pa(z)pa(z) — 210p4(z)ue(z)
+ 1260(pa(2))’ pe(z) + 3150u3(z)(p4(2))?

145152
= 18900(sa(2))’pa(z) + 22680(pa(2))° = ——0",
K35+1(z) = 0, ] = 1,2,... .
12
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The first few relative cumulants of X, A, (z), where )\, (z) is defined as

M(2) = K.(z)(Ka(2))™",

are given by
M(z) = plo,
A3(3) = 1,
M(z) = 6/5,
de(z) = 48/7,

de(z) = 432/5,
Mo(z) = 145152/77,

Mja(z) = 0, j=1,2,.... (13)

2.2.2 Edgeworth series expansions for the distribution of the mean of sam-
ples from a logistic population

Let X;, X3,...,X, be a random sample of size n from a logistic population L(u,c?)
with mean 4 and variance o2 whose cdf and pdf are given in (1) and (2) respectively.
Define a standardized mean of samples of size n from L(u,0?), Z say, as

Z = V_i—;g(x.- - p)
Vn

o

(x- B)s (14)

where X = 1%, X; is the sample mean.

Let fu(2) and F,(z) denote the pdf and cdf of the standardized mean of samples
of size n from L(u,0?). Then the Edgeworth series expansions of the f.(z) and F,(z)
are given symbolically as

falz) = 8(2) + ¢(z>ilp,-(z)n-"’= +O(n=(+11)

13
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and .
Fu(2) = ®(2) — ¢(z) 3_ Pj(2)n~3/* 4+ O(n~041)/%)

respectively, where ¢(z) and ®(z) are the standard normal pdf and cdf respectively
and p;(z) and P;(z) are polynomials in 2z, which are obtained up to » = 10 in Draper
and Tierney (1973).

Using p;(z) and P;(z) from TABLE II of Draper and Tierney (1973) and the relative
cumulants of X given in (13), the Edgeworth series expansions of the f,(z) and F,(z)
correct to order n=*/2, v = 4,6,8, are given by

In(z,v=4)
= KL+ (P Hul)™
+IGGDEL) + (GG  Bl2)n™} +0(—"),

Fy(z,v=4)
= 8(s) — $HI(H)F) sl
+H (G (DE) + NGV Erle)n~) + O(m~),

fa(z,v = 6)

= fulzv =9 + NG Hal2)

+ GNP Hiolz) + CoRIE Hule)n~ + O™,

Fy(z,v = 6)

= Fa(ow = 4) - 6D En ()

+ GNP He(2) + TN Hus(a)ln + O(a™),

- fa(z,v =8)
1 .,145152

= fala,v = 6) + $(a){( ) (g Hrol2)

A+ EEDG () + ) Hual)
+ (PGP Hue) + ()3 Huelaln™ + O(n~)

(15)

(16)

14
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Fy(z,v=8)
1, 145152

= Fu('v” = 6) -«:)[(-lﬁ)( T )H’(z)

+(HPERRHu() + (HDC Hu()

+ (@D Hil) + )@ Hus(a)n~ + 0(a~),

where H;(z)’s are the Hermite polynomials of degree j, which are defined by

(Y exp(=2"/2) = (~1V Hy(a) exp(=a"/2), j=0,1,....
The first thirty Hermite polynomials which follow the recurrence relation
H,‘(Z) = 33,'.1(3) - (j - I)Hi‘ﬂ(z)’ 1=23,...,

are given in TABLE III in Draper and Tierney (1973).

Table 1, Table 2 and Table 3 contain the values of the cdf of the standardized
mean of samples of size n from a logistic population with mean x and variance o2 for
n = 3,10,15 and z = 0.00(0.01)3.99 using the Edgeworth series expansion correct to
order n~3 given in (16). Entries in the tables were computed by using double-precision
arithmetic on a Vax-11/780.

2.2.8 Cornish-Fisher series expansions for the quantiles of the mean of
samples from a logistic population

The representation of a quantile of one distribution in terms of the corresponding
quantile of another is widely used as a technique for obtaining approximations for
the percentage points. One of the most popular of such quantile representations was
introduced by Cornish and Fisher (1937) and later reformulated by Fisher and Cornish
(1960) and is referred to as the Cornish-Fisher expansion.

By means of formal substitutions, Taylor expansions and identification of powers
of n, the Cornish-Fisher expansion of a qua.ixtile z of Fn(z) which is the cdf of the

15




L

.l a A w e .

W

n

- X
SONOH

L S R I N S A S PR TR IO R UK

standardized mean of samples of size n from L(y,0?), in terms of the corresponding
normal quaatile y, is of the form
2=y + 3 Qi1 + O(n-(+02)
=1

where Q;(y)’s are polynomials of y, which are obtained up to » = 8 in Draper and
Tierney (1973).

Using Q;(y) from TABLE VII of Draper and Tierney (1973) and A;(z) in (13), we
obtain the Cornish-Fisher series expansions for the quantiles z of F,(z) up to order
v =4,6,8 as follows:

i(v=4) = v+[( )( )(y® - 3y)n~?
*l(a)(—)(” - 10y° + 15y)
+( 3G )’(-9v‘+72v - 8Ty)In"% + O(n~*/?),

2(v=6) = z(v=4)+ [( )(-—)(y - 21y® + 105y° ~ 105y)

(2“,’)(‘8)(-)(-1sy + 255" — 1035y + 858y)

5775, 6 _
+ (5 )(5)°(243y" — 35374° + 121775° - 866Ty)[n

+0(n~"/ 2) )

z(v =8)
= 5(v =) + () “or o) (s® — 3657 + 378" — 1260y° + 945y)

(‘;92?)(@-)(9)(—21:;' +630y” — 5502y° + 15330y° — 9765y)

+(12, )(—)’(—25v +700y” — 5850y° + 15900y — 9945y)
+ (103:’5 )(-)’( -7-)(495;, — 12510y" + 92370y®

— 219810y° + 121455y)

(”ﬁ?” )(6)4(-11583,,’ +250848y” — 1686006y°
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+ 3539376y> — 1743471y)|n~* + O(n~%/?).

Table 4 provides the quantiles of the distribution of the standardized mean of
samples from the logistic population for sample sizes n = 3(1)10(5)30 and probability
levels « = 0.900, 0.950, 0.975,0.990,0.995 using the Cornish-Fisher series expansions
correct to order v = 4,6 and 8 respectively. Entries of the table were calculated by
using double-precision arithmetic on a Vax-11/780.

2.2.4 Legitimacy of using the Edgeworth and Cornish-Fisher series expan-
sions

Noting the similarity of the distribution of Z in (14), the standardized mean of sam-
ples from L(p,0?), to the normal distribution in shape except its relatively longer
tails, George and Mudholkar (1983) compare the three approximations, that is, the
standard normal distribution, the Edgeworth series expansion correct to order n~! and
the standardized Student’s ¢ distribution to the exact distribution of Z. In using the
standardized Student’s ¢t distribution, they use the degree of freedom ¢ = 5n + 4 which
can be obtained by equating the coefficients of kurtosis. They show that the Student’s
t distribution provides a very good approximation.

We show here that the Edgeworth and Cornish-Fisher series expansions correct to
order n~3, which are given in the (16) and (17) respectively, are far better approxima-
tions than even the Student’s ¢ distribution in George and Mudholkar (1983).

Table 5, Table 6 and Table 7 illustrate the quality of the four approximations. In
Table 5 the four approximations, that is, the standard normal, the Edgeworth series
expansion correct to n~!, the standardized Student’s t and the Edgeworth series expan-
sion correct to order n=3 are compared to the exact distribution given in Goel (1975).
The approximation using the Edgeworth series expansion correct to order n~3 appears
to be superior to the other three by noting that the maximum error is about 0.0001 as
shown in the last column of Table 5. In Table 6, the exact values of the distribution
function for n = 10 tabled by Goel (1975) are compared with the values obtained from
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the approximations using Student’ t and the Cornish-Fisher series expansion correct
to order n~3, In Table 7, the exact quantiles for n = 2,3,...,15 tabled by Goel (1975)
are compared with the corresponding approximations obtained from the Student’ ¢
distribution and the Cornish-Fisher series expansion correct to order n~3. From these
tables, it is clear that for sample size 7 or more the Edgeworth series expansion correct
to order n~3 provides an excellent approximation for the standardized mean of samples
from the logistic distribution. Consequently, we will use the Edgeworth series expan-
sion correct to order n~3 as an approximation to the distribution of the standardized
mean of the samples from the logistic distribution henceforth.

2.3 A single-stage procedure P, for selecting the population
with the largest mean from k logistic populations

Bechhofer (1954), in introducing the indifference zone formulation, considered the prob-
lem of ranking of normal populations with a common known variance. Here we
consider a single-stage procedure using an indifference zone approach for selecting the
population with the largest mean from k logistic populations when they have a common
known variance.

2.3.1 Statement of the problem

Let xy,-:-,7, be k independent logistic populations with unknown means y; and a
common known variance 0. Let ppy) < -« < ppy) be the ranked p;. We assume that it
is not known which population is associated with u(, ¢ =1,..., k. We further assume
that a population is characterized by its population mean and the ‘best’ population is
the one having the largest mean. -

Our procedure will be based on the sample means. Let X;, i =1,...,k, denote
the means of independent samples of size n from i** population. The sample mean
associated with population having population mean ujy will be denoted by X(;, that
is, the expected value of X(;) is uq. Let Xy < -+ < Xj be ranked Xi. I X; = X
for i # j, due to the limitations of the measuring instrument, the tied means should be

18

SN ; L Rt e SR T e LI Rty IR T ST NP T T W T Y : ~
NN IR AR N R ATIR N R i o AN S X )



ot QL E Vg a0 hn 15 0 0 0 0 e ™ Y e a1, 27 $a0 0aV Gab-§a0 §24-¢ab Lol (@ W8 8 e Rl Pk 4 ‘aSa- @i Al ate “Ata Ata 8% 8 %a'ata atat AR "ah "at, ey <

‘ranked’ using a randomized procedure which assigns equal probability to each ordering.

Assuming that the goal of the experimenter is to select the best among the k
populations, we propose a single-stage procedure P. as follows.

Procedure P); Take n observations from the i** population for each i = 1,..., k.
Compute the k sample means X,...,X,. Select the population associated with Xjy
as the best one.

Defining the event of the experimenter’s selection of the best population with P, as
[CS|Py], the probability of a correct selection with the procedure Py, P{CS|P;} can
be written as

P{CS|P:} Pj(the best population is selected]

= Pg{X) 2 maxigic X(5)

PaXw 2 X(pi=1,....k-1]

5 Pal(vn[a)Xn = pa) < (VR/o) Xy — pp)
+ (Va/o)up — ma)i=1,...,k-1]

k-1
/.: Hl Fa(z + (Vn/o) (b — Bia))dFa(2), (18)

"
I

where F,(z) is the cdf of the standardized mean of samples from a logistic population.

For the fixed values of the u; and o? the probability of a correct selection will
depend only on the sample size n. We propose to design the experiment in such a way, |
that is, choose the n in such a way that under specified conditions the probability of a
correct selection with procedure P, will be equal to or greater than some preassigned
value P°.

2.3.2 Determination of the sample sizes

Now for the problem to be meaningful P* lies between 1/k and 1. Since the true values
of the u; are not known, we need the probability of a correct selection to be at least
P* whatever be the values of the y,. Thus we are interested in the configuration of
the u; for which the probability in (18) is a minimum. Such a configuration will be
called a least favorable configuration (LFC). It is obvious that the LFC is given by
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B} = --- = pp). But unfortunately the minimum value of the probability in this LFC
case is 1/k. So we cannot achieve the probability requirement whatever be the sample
size unless some modification is made in the probability requirement.

A natural modification is to insist on the minimum probability P* of selecting the
best population whenever the best is sufficiently far apart from the next best. In
other words, the experimenter specifies a positive constant § and requires that the
probability of selecting the best population is at least P* whenever (up) — ppi-1)) 2 6.
The specification of § provides a partition of the parameter space  where

n={i‘.=(“l)'"7l‘k);"°°<l‘l’<m’i=1s-“ak} (19)
into two parts, namely Q(§) where
a(6) = {i € Q| (g = bp-y) 2 5} (20)

and the compliment Q%(6) of §)(§). The minimization of the probability of selecting the

best population is over §}(§). For an obvious reason, 2°(§) was called the indifference

zone by Bechhofer (1954). Subsequent authors have termed (§) the preference zone.
It is now easy to see that the LFC in (§) is given by

09(8) = {it € Q)| gy = psyy = iy - 6} (21)
and the minimum sample size required is the smallest integer n for which
: = k-1 > .

Jiaf, BCSIP) = [~ (Falz + (Va/a)6)"dFu(z) 2 P (22)

A table has been prepared to assist the experimenter in designing the experiments to
meet the above goal. Table 8 is to be used for designing experiments involving k logistic
populations to decide which has the largest population mean. The table provides the
estimates 7i of the values of minimum sample size n associated with the probability
P* =0.75,0.90,0.95,0.99 for k = 2,3,4,5,10,15, and §/¢ = 0.1,0.5,1.0,2.0, 4.0. These
were computed by setting the left hand side of (22) equal to P*. The minimum sample
size n can be obtained by n = [/ + 1] where [t] denotes the greatest integer which

is less than t. All computations were carried out in double-precision arithmetic on a
Vax-11/780.
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2.4 Subset selection procedures

Gupta (1956) introduced a subset selection formulation as a multiple decision problem,
where the investigation was carried out for the case of normal means. Here we consider
the subset selection rules for selecting the population with the largest mean from &
logistic populations. We propose two subset selection rules R; and R; based on sample
. means and sample medians respectively, provide tables for implementing these rules,

consider the performance characteristics of each rule, and we compare the two rules to
K each other.

o B T iy

' 2.4.1 Statement of the problem

) Let x;, i=1,...,k, be k independent logistic populations with unknown means y;
and a common known variance 0. Let pp; < --- < ppy be ranked u; and x(;) be
the population with mean yj3. We assume that it is not known which population is
associated with pgg, ¢ =1,...,k. We further assume that a population is characterized
by its population mean and the ‘best’ population is the one having the largest mean,
; that is, 7). ‘

Let X;;, 7 = 1,...,n, denote a random sample from =;, ¢ = 1,...,k, where the
observations within and between populations are all independent. Let X; and Xy,
i=1,...,k n =2l -1, denote the means and medians of samples of size n from «;

, respectively. The sample mean and the sample median associated with the population
baving population mean g will be denoted by X5 and Xt =1,...,k, respectively.
Let x[u < -+ < Xy and Xpgpu < -+ < Xpupa be ranked X: and X;y respectively.

The goal is to select a small but non-empty subset S of the k populations so that
the selected subset includes with a high probability P* the ‘best’ population. The size
of the selected subset S is an integer-valued random variable taking on values 1,..., k.

Let us define the two subset selection rules R; and R; based on the sample means

and sample medians, respectively, as follows;

- - we . - -

Rule Ry : select x; iff

X:> max X, - hio/vm, i =1,...,k, (23)
1SSk

;
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" Rule Ry : select x; iff
xi:lZl%xid-hzal\/;’i=lv""k’ (24)

where A, and h; are nonnegative constants.
: By defining the events [CS|R;],¢ = 1,2, as selections of any non-empty subset of
, k populations which includes the best population using R;,¢ = 1,2, respectively, it is
! required that for any 7 €
P;[CSIR) 2 P, (25)

where P* € (1/k,1) and Q is the parameter space given by (19).

The requirement of (25) will be called as the basic probability requirement or the
P*-condition.

Remark 2.1 Lorenzen and McDonald (1981) used a subset selection rule R based on
sample medians defined as

Rule R : select x; iff
Xuz%x,u—d, d>0,i=1,...,k,

e g - - o

where Xy is defined as above. Here we use R; instead of R only for the purpose
, of comparing R, to R; easily. Basically the rule R; is the same as Lorenzen and
McDonald’s rule R.

2.4.2 Probability of a correct selection

: o Probability of a correct selection for the means rule R,
Using (23) we can write the probability of a correct selection for the rule R; as
follows. For i € Q,

; P4(CS|R)]
: = PiXp 2 maxigjar X; = ho/V by 2 0]
= Pg[X(),) 2 X(,') —ho/yn Vi=1,...,k-1]

22
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Pil(vn)o) (X5 — ma) < (Vo)X — ppg) + I
+ (Vn/o)(ppy — wa)Vi=1,...,k=1]

-1
/-: Hl Fa(z + by + (V[ o)y ~ #))dFa(2), (26)

where F,(z) is the cdf of the standardized mean of samples from a logistic distribution.
We see from (26) that the infimum over the parameter space of the probability of
a correct selection for the rule R, takes place when gy = --- = y; and so

1 - k-1
ing {CS\R) = [ Rz + m)P-aR). @7)
That is, the LFC for the rule R, is Q° where
VC={Fem="=m=u} (28)

and the Pz[CS|R,] in the LFC does not depend on this common u. Hence, if we choose
’h to satisfy
[ ARz + m)P-1aFu(z) = P (29)

then we have determined the smallest hl for which
i P CS R - 30
u’a ﬁ[ I 1] _.: ] ( )

It should be noted that h; = h;(n, k, P*) depends on n as well as k and P* unlike
the normal populations problem.

Table 9 and Table 10 give the values of Ay = h,(n, k, P*) which satisfy (29) for n =
1(1)10, k = 2(1)10 and P* = 0.75,0.90, 0.95,0.975,0.99. We use the Edgeworth series
expansions correct to order n~3 for F,(z) and fa(z) , the Gauss-Hermite quadrature
algorithm with sixty nodes for the evaluation of the integrals and the modified regular
falsi algorithm for solving the non-linear equation. The entries were calculated by using
double-precision arithmetic on a Vax-11/780. |

o Probability of a correct selection for the medians rule R,

Let Z;1,...,2; be a random sample of size n, where n is an odd integer, drawn

from the i** standard logistic population. Then it is well known that the sample

-
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median, denoted by Z.,, (n = 2/ — 1), has the pdf

on(2) = %‘2—[1?(:)1'-*[1 — F)£(2)
and the cdf
Ga(2) = I{F(2); 1,1}, (31)

where f(z) and F(z) are the pdf and cdf of the standard logistic population given by
(3) and (4) respectively and I{y; a,b} is the incomplete beta function with parameters
a and b, which is given by
Hyia,b} = Il:((:);(g 0
Now the probability of a correct selection for the medians rule R; can be written
as follows. For 7 € Q2

w*(1 - w)tldw. (32)

P;[CS|R;] = PJ[X(b);[ 2 maxigi<k X(j)a — hao/ vn ,ha 2 0]
= Pg{X(l,)dZX(,')g—hgﬂ/\/ﬁ,Vj=1,...,’:—1]
= PzlZ(ju < Zy - ha/ v

+ (upy — B/ Vi=1,... .k~ 1]
k-1

/.: H; Ga(t + ha/v/n + (ppy — pi3)/0)dGa(t), (33)

where G, is given by (31).
We see that the infimum over Q of the probability of a correct selection for the rule
R, takes place when 4y = --- = 4 = p and so

o0
inf Po{CS|Rs] = [ 4Gt + haf WY1 dG(). (34)
e -0
Hence, if we choose A to satisfy
[ Galt+ halVmYraGa(H) = P, (3)
then we have determined the smallest A3 for which
inf Pz[CS|Ry] 2 P*. 36
;:ﬁ 2(CS|Ra] 2 (36)
24
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The values of h3/\/n = hy(n,k, P*)/\/n which satisfy (35) for n = 1(2)19, k =
2(1)10 and P* = 0.75,0.90,0.95,0.975,0.99 were given in TABLE I of Lorenzen and
McDonald (1981).

2.4.3 Performance characteristics

In this section some performance characteristics of the subset selection procedures R,
and R; are studied.

Let Pa{x(y|R;], i=1,...,k, j = 1,2, denote the probabilities of including in the
subset the population (;), that is, the i** ranked population, using the rule R; for the
BE€N, thenfori=1,...,k,

Pﬁ["’(MRl] = PH[X(-) 2 maXgj<k X,’ - ’110'/\/'T yhi 2 0]

k
= ’—eo I:! F,.(t +h + (\/77/6)(#[.‘] - Pb]))an(t)v (37)
i

where F,(t) is the cdf of the standardized mean of samples of size n from a logistic
distribution and

PalxylR;) = Pa[X(ya > maxicick X(j)t — hao//m ,hy 2 0]
o k

[ TLGa(t+ ha/v/a + (g - mi)[0)dGalt),  (39)
-0 jui

Johi .

where G,(t), given in (31), is the cdf of the median of samples of size n, where n is an
odd integer, from the standard logistic population.

It is easy to see that the expected sizes of the selected subset using the rule R; for
i € Q, denoted by Ez[S|R;], 7 = 1,2, are given as follows:

k
E3[S|R;] = 3 Palx ()| R;)- (39)

=1
Consistent with the basic probability requirement, we would like the size of the selected
subset to be small.
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The expected numbers of non-best populations selected by rule R; for 7 € Q,
denoted by Ez[S*|R;], j = 1,2, are defined as

k-1
Eg[S*|R;] = Z; Pa{x(»|R;] (40)

and also we would like the value of the Ez[S*|R;] to be small.

In using the rule R;, j = 1,2, the ranks of the selected populations are random
variables and one may want to evaluate the expected sum of ranks of the selected
populations. Let the population with parameter u(; be assigned rank i, i =1,...,k.
Then the expected sums of ranks of the selected populations by rule R; for 7 € R,
denoted by Ez[SR|R;), j = 1,2, are

k
E3z[SRIR;]| = Y i Pslx ()| Rs]. (41)

s=1

For given i € (2, the expected proportions of the selected populations by the rule
R;, denoted by Eﬂ[PIRJ], j = 1,2, are given by

E3[P|R;] = E3[S|R;]/k. (42)

Since the values of Pz{x(|R;], ;j = 1,2, depend on i € 2, we consider them
for the two special cases, namely the equally spaced configuration and the slippage
configuration.

First, for the equally spaced configuration, we assume that the unknown means of
the k populations are u, u+60,- - -, p+(k—1)6c which have ranks 1,.. ., k respectively.
Then the probabilities of including in the subset the population x(; using the rule R;
for this configuration, denoted by Pu[x(y|R;], = 1,2, are given by

PuirolRil = [ T Fat-+ b+ G = )5VARD) )
i
and
Pulrolfil = [ T Gult-+ hal v+ (= )8)dGa() (40

26
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respectively.

. Next, for the slippage configuration, we assume that the unknown means of k
populations are pp;) = p, j=1,...,k—1, and py = p + o for § > 0. Then the
probabilities of including in the selected subset the population x(; using the rule R;,
denoted by P,y[x(|Rj], j = 1,2, are given by

Pl (| Ra]
= /_ R+ )P Rt + by = SRR i = 1, k- 1,

PolrlRal = [~ {Falt+ b+ SvmPdFu(),

Pop[x(| Ra]
= f_: {Ga(t + ha//R)Y2Ga(t + ha [V = 8)dGo(t),i = 1,...,k—1,

and

Polrg\Ral = [ {Ga(t+ ha/v/Ai + 6)}"1dGa(t).

Now we can compute the performance characteristics Ez[S|R;], Ez[S°*|R;), Ea[SR|R;)
and Ez[P|R;] for two special configurations by substituting Peq[x(;|R;] and P,,[x(y|R;]
for Pz{x|R;] in (39), (40), (41) and (42) respectively.

Table 11 and Table 12 give the values of the performance characteristics of the
means rule R, and Table 13 and Table 14 give the same values of the medians rule R;
for the equally spaced and the slippage configurations respectively for the given values
of k=2,3,4,5,10, P* = 0.90, n = 3 and /né = 0.5,1.0,1.5,2.0,2.5,3.0,4.0, 5.0.

For instance, from Table 11 for P* = 0.90, n = 3, k¥ = 5 and §/n = 1.5, the
probability of a correct selection by using the means rule R, is 0.997. The expected
size of the selected subset is 2.208 and the expected number of the non-best populations
selected is 1.211. The expected sum of the ranks in the selected subset is 9.330 and the
expected proportion of the selected population is 0.442. It should be noted that the
expected sum of ranks by itself is not a good criterion of the performance of a selection
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rule. It should be looked at together with the expected values of S and S* to make a
more meaningful performance characteristic.

The entries in all tables were calculated by using double-precision arithmetic on a
Vax-11/780.

Note that, for both rules R, and R; and for the fixed values of P*, n, k and
i = 1,2,...,k — 1(k), the probability of selecting the i** ranked population in the
slippage configuration can be proved to be monotonically decreasing(increasing) with
§4/n and hence monotonically decreasing(increasing) with § and n separately. Also for
i = 1(k), the probability of selecting the i** ranked population in the equally spaced
configuration can be proved to be monotonically decreasing(increasing) with §/n. A
look at the table values seems to indicate that, for both rules R; and R; and for the
fixed values of P*, n, k and i = 2,...,k — 1, the probability of selecting the i*» ranked
population in the equally spaced configuration is also monotonically decreasing with
§y/n. For fixed P*, i, n and §,/n, the probability of selecting the i** ranked population
is monotonically decreasing with the values of k for all 1, i =1,...,k.

2.4.4 Comparison between the means rule R, and the medians rule R;

In this section we compare the efficiency of the means rie R, to that of the medians
rule R;. Lorenzen and McDonald (1981) have studied the problem of large sample
comparisons between the two rules Ry and R;. They computed the asymptotic relative
efficiency (ARE) of R, relative to R; defined by, for ¢ € (0,1) and 7 € Q,
o _1: NR,
ARE(RI’ Rﬂ)m = lclllg NRq ’
where Npg;, j = 1,2, are the numbers of observations needed so that
inf P;(CS|R;] = P*

and
Ez[S*|R;] =

by assuming a slippage configuration, that is,
By == pp-1) =0, pp =6>0.
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Their value of the ARE(R,, Ry; i) is 0.822. Thus, under a slippage configuration,
asymptotically the means procedure requires about 82% of the sample size required by
the medians rule to achieve the same expected number of non-best populations in the
selected subset. v

Now we consider the small sample comparisons between the rules R, and R; by
using the performance characteristics of each rule given in the previous section. In
Table 15, we compute the values of the probability of a correct selection (P(CS)), the
expected sizes of the selected subset (E(S)), the expected numbers of non-best popula-
tions in the selected subset (E(S*)), the expected sums of the ranks of the populations
selected in the subset (E(SR)) and the expected proportions of the populations selected
in the subset (E(P)) for each rule Ry and R; and the ratio of those values of the rules
when the unknown means are equally spaced for the selected values of P* = 0.90,0.95,
n =3,5 k=4, and §\/n = 1.5,3.0. The same values for the slippage configurations
are given in Table 16.

For both of the configurations;

e Since P(CS|R:)/P(CS|R;) 2 0.991 for all cases, the values of P(C'S)’s are not
much different for all cases.

¢ Since, for example, E(S|R,)/E(S|R;) < 1 for all cases, the values of E(S), E(S*),
E(SR) and E(P) for the rule R, are less than or equal to the same values for
the rule R; for all cases.

e The values of the ratio of the rules R, and R; for all characteristics are decreasing

as the values of n are increasing.

Hence, as expected, the means rule R, is definitely better than the medians rule R,
in the sense of their performance characteristics and the performance of the rule R,

relative to the rule R; improves as sample sizes are increasing for both configurations.
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! Table 1: Approximate cdf of the standardized mean of samples from a logistic popula-
) tion: Sample size n = 3.
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i ~ Table 2: Approximate cdf of the standardized mean of samples from a logistic popula-
tion: Sample size n = 10.

P53V

w Xl

- -
-

.-

31

-

. - -

L LS S AT LR I L A S A TR S TR T P I Y "\""V"-;T_‘—\"i"ﬁ"“{.“‘ T"-‘T:"(i*.'.-‘-'.;-'—'-_":" o
! ) '\ -“‘.\‘nl "'- -‘\';l“ W, W " (A5 L8 . f V8, HN] *‘N’ GRS '.\. \ 'y

N >

e
A .'

"‘-i‘"‘*’i;




UL ST g L e g s b At N N O N N P PO TS AT VL VO VR PR YR g

PR FF PP~y

Table 3: Approximate cdf of the standardized mean of samples from a logistic popula-
8 tion: Sample size n = 15.
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Table 4: Approximate quantiles of the standardized mean of samples from a logistic
population using Cornish-Fisher series expansion.

Probability level

0.900
1.2888226
1.2548871
1.2580232

1.6381188
1.6371763
1.6376858

0.978

1.9849808
1.9643074
1.9650174

0.990

2.4082844
2.4008841
3.4000828

0.998
2.7000442
2.7143793
2.7136348

126147332
1.2611928
1.2612450

1.6398502
1.6391330
1.6393083

1.9791732
1.9789019
1.9791268

2.3899717
2.3908200
3.3908461

2.6805283
2.68223083
2.6821637

1.2682218

1.2650096

1.6404900
1.6402878
1.6403490

1.9755867
1.9734178
1.9785008

2.3782893
2.3785700
3.37863217

2.681562¢
2.6625208
3.6624241

1.2677980
1.2677118
1.2677222

1.6411513
1.6410337
1.6410837

1.9730832
1.9730028
1.9730472

2.3702115
32.3703740
2.3703069

2.6483708
2.6489249
2.6488784

1.2600004
1.2606170
1.269622¢

1.6416394
1.6415653
1.6415818

1.9712888
1.9712381
1.9712891

2.3642999
2.3644022
2.3644156

2.6386791
3.6390282
2.6390031

1.2710880
1.2710899
1.2710832

1.6420148
1.6419648
1.6419743

1.9660209
1.9698870
1.9699010

2.3597886
2.3598872
2.3598650

2.6312638
2.6314974
3.6314827

1.27T22156
1.2721910
1.2721930

1.6423114
1.6432768
1.6422828

1.9688404
1.9688256
1.9688344

2.3562339
2.3562820
2.3562870

2.6254089
2.63587332
2.6255640

10

1.2731196
1.273101¢
1.2731029

1.6425523
1.6425200
1.6425308

1.9679660
1.9679687
1.9679744

2.3833612
2.3533963
2.3533096

2.6206704
2.6207901
2.6207841

18

1.2788709
1.2788656
1.2758658

1.6432929
1.6432853
1.6432861

1.9653624
1.9683572
1.9653584

2.3445887
2.3445990
2.3445987

2.6061622
2.6061977
2.6061965

1.2772688
1.277206668
1.2772687

1.6436731
1.6436699
1.6436702

1.9640318
1.9640296
1.9640300

2.3401185
2.3401199
2.3401201

2.5987437
2.5987387
2.5987583

1.2781147
1.2781136
1.2781136

1.6439048
1.6439029
1.6439030

1.9832274
1.9632263
1.9632268

2.3374039
2.3374061
2.3374062

2.5942399
3.5942476
2.5942474

o o sl & Al o Al O Al & 2l 0 A]0 O a2l & Al O A0 O A0 O S0 O >

1.2786816
1.2786810
1.2786810

1.6440601
1.6440691
1.6440592

1.9636887
1.9626881
1.9626881

2.3355848
2.3355858
2.3355859

2.5912155
2.5912199
2.5912198

- - v
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Table 5: A comparison of four approximations for cdf of standardized mean of samples

of size 3 from logistic populations.

F3(z) - 8(2) | F3(2) ~ Gs(2) | F3(2) — Ts(2) | F3(z) — Gi(=)
0.0010 0.0000 0.0001 0.0000
0.0029 0.0000 0.0003 0.0000
0.0046 0.0008 0.0005 0.0000
0.0073 -0.0017 0.0007 0.0001
0.0084 -0.0006 0.0007 0.0000
0.0083 -0.0007 0.0007 0.0000
0.0073 -0.0008 0.0004 0.0000
0.0054 -0.0007 0.0002 0.0000
0.0026 -0.0004 0.0000 0.0000
-0.0001 0.0001 -0.0002 0.0000

© -0.0020 0.0004 0.0002 0.0000
-0.0012 0.0001 0.0001 0.0000

F3(z) = cdf of the standardized mean of 3 iid logistic r.v.’s.
#(z) = cdf of the standard normal r.v.

Gs(z) = Edgeworth series expansion correct to order n~!
Ts(z) = cdf of the standardized Student’s ¢ r.v.’s with 19 d.f.
G(z) = Edgeworth series expansion correct to order n~3
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Table 6: An illustration of the Student’s ¢t and the Edgeworth series expansion approx- R
imation for n = 10. ':‘
x Fo(2) Fio(z) - Tio(z) | Fro(z) — Gio(2) o
0.10 | 0.540416 0.000021 0.000000 N
-
020 | 0.580406 0.000040 0.000000 :
040 || 0.657488 0.000070 0.000000 r
0.60 | 0.728341 0.000081 0.000000 o
0.80 |  0.790815 0.000073 0.000000 .E
1.00 |  0.843689 0.000051 0.000000 w
1.20 | 0.886676 0.000023 0.000000 :
150 | 0.933882 -0.000014 0.000000 3
170 || 0.955515 -0.000028 0.000000 W
250 |  0.003123 -0.000014 0.000000 3
3.00 ]| 0.9982685 0.000001 0.000000 3
3.50 |  0.999620 0.000004 0.000000 -
F2y(z) = cdf of the standardized mean of 10 iid logistic r.v.’s. o
Tio(z) = cdf of the standardized Student’s ¢ r.v.’s with 54 d.f. Q
G/o(z) = Edgeworth series expansion correct to order n=3 -
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R Table 7: Quantiles of the standardized mean of logistic variates.
§
;:: Sample sise § Probability(a)
n 0.900 0.950 0.975 0.990 0.996
9y 1.6308
ol 2 1.2432 1.6340 1.9961 2.4500 27118
o 1.2428 1.6326 1.9834 2.4450 2.7785
KX 12617 1.6381 1.9760 2.3861 2.6778
- 4 J 13612 1.6393 1.9790 2.2906 2.6821
1.2612 1.6392 1.9789 2.3905 2.6824
; ‘f 1.2654 1.6398 1.9734 2.3756 2.6597
oy 5 1.2651 1.6403 1.9788 3.3788 2.6842
¥ 1.2651 1.6403 1.9754 2.3786 2.6625
vng 1.2697 1.8411 1.9750 2.3628 2.6376
- 7 1.2696 1.6416 1.9m2 2.3644 2.6390
Y 1.2698 1.6416 1.9M2 2.3644 2.6390
I 12731 1.6423 1.9674 2.3526 2.6201
P 10 J 13731 1.6435 1.9680 2.3834 2.6208
; 1.2731 1.6425 1.9680 2.3534 2.6208
. 1.2745 1.6427 1.9662 2.3484 2.6131
» 12 1.2748 1.6426 1.9667 2.3401 2.6135
i 12745 1.6429 1.9667 2.3490 2.6135
« 1.2759 1.6432 1.9651 2.3443 2.6069
s: 13 1.2758 1.6433 1.9654 2.3446 2.6062
Y 1.3759 1.6433 1.9654 2.3446 3.60632
Top element in each cell represents Student's ¢ approximation.
X Middle element in each cell represents the exact percentage point.
" Bottom slemant in each cell represents the Cornish-Fisher series approximation (n=3).
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Table 8: Values of the estimate #i of the minimum sample size n for the single-stage
1]
procedure. y
.- k sl | P* y
0.78 0.90 0.95 0.99 -
't
.!
3
L)
2.00 0.65 1.49 217 3.78 J
4 | 100 2.74 5.99 8.5t 14.61
050 133 | 24m 3408 | 57.88
0.10 282.89 | 601.00 | 85048 | 14418
4.00 020 0.4 0.61 113 ]
2.00 0.80 1.69 2.39 4.04 .
5 | 100 334 676 9.40 15.58 )
050 13.56 27.04 70| ere7
0.10 34080 | 675.85 | w3347 | 153653 :
4.00 0.32 0.59 0.81 1.32 )
3.00 138 2.28 3.03 476 ‘
19 | 100 512 8.96 1180 | 1829 y
0.80 20.50 3s.68 46.88 72.38
0.10 51242 | 8s9.88 | 116858 | 1802.84 '
4.00 0.39 0.68 0.92 1.44 p
2.00 1.56 .61 3.39 5.15 !
15 | 100 8.14 1017 13.12 19.77 ‘
050 | 2441 40.39 52.01 78.17 A
0.10 609.06 | 100716 | 1296.45 | 1946.93
b.
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Table 9: Values of h; for the means rule R, for selecting the subset containing
the largest logistic population mean: n =1,2,3,4, 5.

2 132612 | 1.
3 | osers | 135623 | 19283 | 22830 | 2.6530
4 § 1160 | 17265 | 2085 | 2.4066 | 2.8008
5 § 1259 | 13388 | 21916 | 25121 | 2.9028
2 | & } 13734 | 19230 | 22740 | 25924 | 2.9810
7 f L4452 | 19921 | 23403 | 26560 | 3.0442
s | 1508 | 20400 | 2.307 | 2.7113 | 3.0072
9 J 15857 | 20078 | 2.4433 | 27578 | 3148
10 | 16002 | 21404 | 2.4847 | 2.7088 | 3.1828
2§ 05306 | 1.0351 | 1.3400 | 1.6111 | 1.9355
3 | oma | 12794 | 15696 | 1.8294 | 21432
4 | 09572 | 14115 | 16053 | 19501 | 2.2573
5 | 1os3s | 1302 | 17m3 | 2.08m | 2.3377
s | s 1261 | 15688 | 1.8463 | 2.0060 | 3.3984
7 f 1183 | 1.6228 | 1.8084 | 2.1466 | 2.4473
8 | 123m | 16677 | 19018 | 21889 | 2.4882
9 | 1ane | 17081 | 19790 | 23251 | 2.5238
10 § 13068 | 17308 | 2.0115 | 2.2867 | 25541
3 | 04696 | 0.8988 | 1.1611 | 1.3800 | 1.6687
3 [ oroma | 11097 | 13583 | 15795 | 1.8442
4 § o839 | 12232 | 14687 | 1.6822 | 1.9a8
s § o952 | 13000 | 15390 | 17537 | 2.0081
¢ | ¢ || o973 | 13577 | 1.5043 | 1.8059 | 2.0608
7 || 10265 | 14038 | 16385 | 18486 | 21017
8 [l 1062 | 14420 | 16753 | 1.8843 | 2.1360
9 || 1108 | 14745 | 17067 | 1.9148 | 2.1654
10 | 1a:8 | 15029 | 17342 | 1.9414 | 21911
3 | 04213 | 0.8062 | 1.0388 | 1.2447 | 1.4884
3 § o632 | 09935 | 12143 | 1.4102 | 1.8434
4 § o747 | 1.045 | 13097 | 15010 | 1.7296
5 [ os00 | 11628 | 13746 | 15631 | 1.7886
5 | 6 || osvsa | 12139 | 14234 | 16001 | 1.8336
7 | oo90 | 13547 | 14625 | 16477 | 1.8695
8 | osss1 | 12885 | 14949 | 1.6791 | 1.9000
9 § oocess | 1.3172 | 15226 | 17059 | 1.9258
10 || 10123 | 1.3423 | 15468 | 17293 | 19483
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Table 10: Values of h; for the means rule R, for selecting the subset containing
the largest logistic population mean: n = 6,7, 8,9, 10.

J'Ivl"’.‘

o

J— :E"-'-f‘

n k

.950 0.975 0.990
—_z—m
3 0.5800 0.9075 1.1082 1.2887 1.4965
4 0.6817 0.9994 1.1948 1.3680 1.5742
s 0.7494 1.0614 1.2536 1.4242 1.6276
é [ 0.7997 1.1079 1.2978 1.4668 1.6881
7 0.8394 1.1448 1.3332 1.5006 1.7006
8 0.8722 1.1754 1.3625 1.5289 1.7279
9 0.9001 1.2015 1.3878 1.5531 1.7511
10 0.9242 1.2241 1.4093 1.5742 1.7113
32 0.3573 0.6818 0.8783 1.0507 1.2539
3 0.5377 0.8406 1.0257 1.1891 1.3829
4 0.6318 0.9255 1.1056 1.2650 1.4543
8 0.6944 0.9837 1.1598 1.3167 1.5034
7 6 0.7408 1.0255 1.2008 1.3587 1.5408
7 0.77T8 1.0595 1.2330 1.3869 1.5703
8 0.8078 1.0877 1.2600 1.4129 1.5950
9 0.8334 1.1117 1.2830 1.4351 1.6166
10 0.8586 1.1325 1.3030 | 1.4544 1.6351
32 0.3348 0.6381 0.8217 | 0.9825 1.1718
3 0.5034 0.7866 0.9593 11116 1.2918
4 0.5914 0.8858 1.0338 1.1823 1.3582
s 0.6499 0.9192 1.0843 1.2303 1.4038
8 ] 0.6933 0.9591 1.1222 .2666 1.4383
7 0.7273 0.9908 1.1528 2057 1.4660
8 0.7558 1.0171 1.1776 1.3198 1.4890
9 0.7797 1.0394 1.1990 1.3404 1.5086
10 0.8004 1.0588 1.2176 .| 1.3584 1.5261
2 0.3157 0.6019 0.7748 0.9261 1.1039
3 0.4750 0.7418 0.9043 1.0478 1.2168
4 0.5580 0.8164 0.9744 1.1139 1.2789
5 0.6130 0.8668 1.0219 1.1590 1.3217
9 6 0.6539 0.9042 1.0875 1.1931 1.3540
7 0.6861 0.9340 1.0859 1.2203 1.3800
8 0.7126 0.9586 1.1095 1.2430 1.4016
9 0.7351 0.9796 1.1296 1.2623 1.4199
10 0.7546 0.9978 1.1470 1.2791 1.4363
2 0.2997 0.5712 0.7351 0.8783 1.0465
3 0.4509 0.7039 0.8578 0.9933 1.1533
4 0.5296 0.7746 0.9242 1.0560 1.2121
5 0.5818 0.8221 0.9691 1.0988 1.2524
10 6 0.6208 0.8577 1.0028 1.1310 1.2830
7 0.6510 0.8859 1.0297 1.1568 1.3078
8 0.6762 0.9092 1.0820 1.1783 1.3279
9 0.6974 0.9291 1.0710 1.1964 1.3453
10 0.7159 0.9463 1.0875 1.2123 1.3607
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Table 11: Performance characteristics of the means rule R; under the equally
spaced configuration.
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Table 12: Performance characteristics of the means rule R; under the slippage
configuration.

Lo e om o

PP =090, n=3

o om o

41

R R



' v g 4 ni e Ak ST At au o ef. si Rty o AV S 2V a7 a%a BV, Ade 2%a 1o E. 8g gV RN AL 2. pla AV, 0. A1, 4% al. a%l sbaa¥. %, At atl 0t atl et aV. a¥. aV. at. eV eV R0 Y,
W
o .
‘I
\
o;‘
)
D
i3
L)
" Table 13: Performance characteristics of the medians rule R; under the equally
3 spaced configuration.
¢ P =090, n=3
. 5T 7] /n
K, 0. 1.0 i3 3.0 33 3.0 4.0 8.0 )
1 2 n| 0926 | 0852 | 0.734 | 0572 | 0.392 | 0.233 | 0.065 | 0.000
p 0985 | 0904 | 0907 | 0900 | 1.000 | 1.000 | 1.000 | 1.000
} ES)Y | 1910 | 1.846 | 1791 | 1571 | 1391 | 1.233 | 1.065 | 1.000
N E(S*) § o926 | 0852 ] 0734 | o572 | 0302 | 0232 | 0085 | o0.000
E(SR) | 2.808 | 2.830 | 2728 | 2570 | 2.301 | 2232 | 2.085 | 3.009
e(P) f| o965 | 0923 | 0888 | o785 | oevs | 0.616 | 0527 | o504
3 [ 0935 | 0.780 | 0.463 | 0.155 | 0.029 | 0.003 | 0.000 | 0.000
Y s | o9rs | 0961 { 0901 | o810 0673 | o490 | 0181 | o.0%0
) | 0996 | 0.998 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
\ S || 2906 | 2.729 | 2.363 | 1.965 | 1.701 | 1.503 | 1.181 | 1.039
o ES®) || 1910 173 | 1363 | ooes | o701 | osas | o1s | oo
E(SR) || ‘5870 | 8617 | 5261 | 4778 | 4374 | 4002 | 3362 | 3078
(P o.ses 0910 | 0787 | o.655 | o567 | 0.501 | 0.394 | 0.346
; ]
|
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Table 14: Performance characteristics of the medians rule R; under the slippage

configuration.

k

:” -
E(S*)
E(SR)

(P

3’ -
E(S*)
E(SR)

puy S P

iH
|

P = = 0.90, u-3

x-u-u-u-u-u-:u-u 5.0
0968 | 0939 [ 0.880 | 0817 [ 0.717 | 0594 | 0.331 | 0.136

0902 | 0997 | 0969 | 0999 | 1.000 | 1.000 | 1.000 | 1.000

I 1.960 | 1936 | 1.889 | 1.816 | 1.716 | 1.594 | 1.331 | 1.136

] o9as | 0939 ] 0890 | 0817 | 07| o394 | 0391 | 0138
2963 | 2932 | 2887 | 2.816| 2716 | 2.594 | 2.3%1 | 2136

) 0.980 | 0968 | 0944 | 0908 | 0838 0797 | 0.668 | 0.568
ﬂl 0988 | 0976 | 0.955 | 0920 [ 0.862 | 0.779 | 0.540 | 0.264
3 0988 | 0976 | 0985 | 0920] 0862 | 0779 | 0540 | 0.284
{ 0.906 | 0.998 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |

| 2968 [ 2.949 [ 2.910 | 2.839 | 2.725 | 2.557 | 2.080 | 1.567
1972 | 1961 | 1911 | 1.8¢0] 1.725 | 1.557 | 1.080 [ 0.567

s5946 | 5921 | 8.884 | 5759 | 5587 | 5.336 | 4620 3sm

0989 | 0983 ) 0970 ] 0.946] 0.908 | 0.852 | 0.683 | 0.522

0.991 | 0985 [ 0974 | 0.952 | 0.914 | 0.853 [ 0.654 | 0.390

4 ‘ 0991 | 0985 | 0974 | 0952 | 0914 | 0853 | 0.653 | 0.390
E 0981 | 0985 | 0974 | 0952 | 094 | 0853 | 0.653| 0.390
| 0997 | 0999 | 1.000| 1.000 | 1.000 | 1.000 | 1.000 | 1.000

: 3971 | 3985 | 3921 | 3.856 | 3.742 | 3.560 | 2.960 | 2.169
l 2973 | 2986 | 2922 | 2.8%56 1.960 | 1.169
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4. Table 15: Comparison of the rule R; to R;: Equally spaced configuration.

P°=m090, n=m3 k=4
/Am1S8 §/n= 3.0

PalChar. | Ri Ry Ri/R, R R, Ri/R,
1.000 | 1.000
1662 | 0812
0.662 | 0.529
5.975 | o844
0.415 | o083

P(CS) || o996 | 1.000 | o.90e
4 E(S) 2112 | 2688 | o792
E(s*) { 1116 [ 1688 | oea
E(SR) || 917 | 8208 | oses
0.672 0.786
P'=090, n=5 k=4
0 s/m=15 & /A=m30
PerfChar. || R, Ry Ry /R, Ry Ry Ry /Ry
P(cS) || 0907 | 1000 | o997 | 1.000 | 1.000 | 1.000
E(S) 2114 [ 33n | oear | 1352 | 2.000 | o.676
- Es*) Hinr]asn| o4n |oa3s3 | 1000 | o282
: E(SR) | 6920 | 9258 | o7er | 5009 | 6907 | omm
0.843

P°=09, n=3, k=4

GEEEd

PP=095 n=8, k=4
) S/A=1$ §/n =30

PeatfChar. | Ry Ry Ri/Ra Ry Ry Ry/Ry
) P(CS) 0.999 | 1.000 0999 | 1.000 | 1.000 | 1.000
. E(S) 2.400 | 3.836 0.628 1.494 | 2.3%6 0.624
E(5°) 1.401 | 2.836 | 0494 | 0.494 | 1.306 | 0.354
, E(SR) 7.540 | 9.821 0768 | 5467 | 7778 | o0.703
' E(P) 0.600 | 0.959 0.626 0.373 | 0.599 0.623
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Table 16: Comparison of the rule Ry to Rj: Slippage configuration.

PP=090, n=3 k=4

§/na=1s §/n = 3.0
PuatChar. | R, R, Ri/Ry Ry R, Ri/Ry
P(CS) 0961 | 1.000 0.991 1.000 | 1.000 1.000
E(S) 3.1690 | 3.921 0.808 2.018 | 3.560 0.567
E(S®) 2.179 | 2.922 0.746 1.018 | 2.560 0.398
E(SR) 8.320 | 9.841 0.845 6.034 | 9.120 0.662
0.980 0.808 0.890 0.568

0.995

0.878

P=090, n=5, k=4
§/n=m1S §/n =30
Perf Char. Ry R, Ry/R, Ry Ry Ri/R;
P(cS) [ o091 | 1.000 [ o09em | 1.000 | 1.000 | 1.000
E(S) 3167 [ 3990 [ o793 | 2.025 | 317 | os7
B(s*) |} 2176 | 2992 | o727 | 1025 | 2917 | o03m
E(SR) || 8317 | 9983 | o0.833 | eo4s | 9.834 | o.618
0.998 0.794 0.979 0.517
P°=0988, n=3, k=4
s/R=135 §/n= 3.0
Perf.Char. Ry Ry Ry /Ry Ry Ry Ri/R,
P(CS) 0.906 | 1.000 0.988 1.000 | 1.000 1.000
E(S) 3496 | 3981 | 0878 | 2435 | 3852 | o.m
E(S°®) 2.500 | 2.981 0.838 1.438 2.852 0.501
E(SR) 8,985 | 9.962 0.902 6.869 | 9.703 0.689

P*=095 n=5 k=4
S/n=m18 _6v/n= 30
Per{.Char. R Ra Ry /Ry Ry Ry R\ /R;
P(CS) 0997 | 1.000 [ 0997 | 1.000 | 1.000 { 1.000
E(S) 2489 | 3999 | 0827 | 2420 | 3987 | o0.600
E(S") 2.492 | 2999 | o0.831 1.429 | 2.987 | o0.478
E(SR) a9m | 99me | 0897 | 6888 | 9974 | o.688
E(P) 0572 | 1.000 | o872 | 0.607 | 0997 | 0.600
45
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g 3 AN ELIMINATION TYPE TWO-STAGE PRO-
CEDURE FOR SELECTING THE POPULA-

, TION WITH THE LARGEST MEAN FROM
k LOGISTIC POPULATIONS

3.1 Introduction

It is unrealistic to assume that we always have k populations with a common known

. variance. When the variances are unknown, it is not possible to predetermine the sam-

K ple size for a single-stage procedure since the standard errors of the sample means are

unknown. (See, for example, Dudewicz (1971)). Bechhofer, Dunnett and Sobel (1954)

v have considered a two-stage non-elimination type procedure in which the observations

in the first stage are only used to obtain an estimate of the common unknown vari-

, ance. Gupta and Kim (1984) considered an elimination type two-stage procedure for

the case of common unknown variance and they showed that their procedure performs

much better than the non-elimination type procedure of Bechhofer, Dunnett and Sobel
(1954).

For selecting the population having the largest mean from normal populations with

equal known variance o2, Cohen (1959), Alam (1970) and Tamhane and Bechhofer

P L)
§ P

. (1977, 1979) have all studied two-stage elimination type procedures, in which they
" used Gupta’s (1956, 1965) subset selection procedure in the first stage to screen out
. non-contending populations and Bechhofer’s (1954) indifference zone approach to all
: populations retained in the second stage.

N Tamhane and Bechhofer (1977) studied in depth a two-stage elimination type pro-
:'. cedure (P; ) for selecting the largest normal mean when the common variance is known.
_ In order to determine a set of constants necessary to implement P;, they proposed a
: criterion of minimizing the maximum over the entire parameter space of the expected
- total sample size required by Pj; subject to the procedure’s guaranteeing a specified
. probability of a correct selection. As a consequence, P; based on this unrestricted
o
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s; minimax design criterion possesses the highly desirable property that the expected to-
. tal sample size required by P is always less than or equal to the total sample size
'.;;3: required by the best competing single-stage procedure of Bechhofer (1954), regardless
'2 of the true configuration of the population means. Due to the difficulties of determin-
¥, ing the LFC of the population means for k > 3, and of evaluating the probability of
&8 a correct selection associated with P, when the population means are in that configu-
\ ration, they adopted a lower bound to the probability of a correct selection of P; and
E‘ obtained a set of constants which provides a conservative solution to the problem.

. In this chapter we consider an elimination type two-stage procedure for selecting
t the logistic population with the largest population mean when the populations have a
; ., common known variance.

& We propose a two-stage elimination type procedure P, and a non-linear optimiza-
‘. tion problem by using a minimax criterion to find a set of constants needed to imple-
3-' ment P,. We derive lower bounds on the probability of a correct selection and the
"r’ infimum over the preference zone of the lower bounds. We determine the supremum
of the expected total sample size needed for P, over the whole parameter space. We
- provide tables of constants to implement P; and of the efficiency of P, relative to the
:, ~ single-stage procedure P, considered in the previous chapter for the two special cases
y : " of the equally spaced and slippage configurations.

‘. 3.2 Preliminaries

3 Let x5, i =1,...,k, denote k logistic populations with unknown means y; and a com-

mon known variance o2, and let
= {ﬁ= (I‘l""v“k);-oo <Hi < °°1i = l’yk}
be the parameter space. Denote the ranked values of the u; by

pp) S 00 S B

4
'.f
[+ and let

bij = pra — B}
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We assume that the experimenter has no prior knowledge concerning the pairing of the
x; with the pp;, i=1,...,k j=1,...,k Let ;) denote the population associated
with ;).

The goal of the experimenter is to select the ‘best’ population which is defined as
' the population with the largest mean. This event is referred to as a correct selection
(CS). The experimenter restricts consideration to procedures (P) which guarantee the
basic probability requirement

P(CS|P) 2 P*, V i€ Q(9), (45)
where § > 0 and 1/k < P* < 1 are specified prior to the start of experimentation and

2(6) = {ii € Q) (pw) — Bu-1) 2 6}

which is defined as the preference zone for a correct selection.
Here we propose an elimination type two-stage procedure P;=P;(n,,ns,h) which
a depends on non-negative integers ny, nz and a real constant A > 0 which are determined
prior to the start of experimentation. The constants (n,,n3, A) depend on &, § and P*
and they are chosen so that P; guarantees the basic probability requirement (45) and
possess a certain minimax property.

Procedure P;;
# Stage 1: Take n, independent observations ‘
. Xo()l)9 i=1...,m,

from each x;, i = 1,...,k, and compute the k sample means

Let X&) = maX;g <k Xj-l). Determine the subset I of {1,...,k} where
I= (X" > X§) - ho/ymil,

and let x; denote the associated subset of {7y,...,7}.

48




) 1. If x7 consists of one population, stop sampling and assert that the population
associated with X( [k is best.

2. If x; consists of more than one population, proceed to the second stage.

Stage 2: Take n; additional independent observations X,(;), J =1,...,n3, from
each population in x;, and compute the cumulative sample means

Extp+ £
(n;X(I) +n X(z))

4 X =

n1+n

n1+n

for 1 € I, where

X0 L5 x

na jml
Assert that the population associated with max;ey X; is the best.

Remark 8.1 Ifh = 0 the two-stage procedure P; reduces to the single-stage procedure
P: which was considered in Section 2.3 with single-stage sample size n = n, per popu-
lation. Also the rule determining I in the first stage is of the type of the subset selection
procedure considered in Section 2.4.

There is an infinite number of combinations of (ni,n3,h) for given k, § and P*,
which will exactly guarantee the basic probability requirement given by (45), and
different design criteria lead to different choices. We will consider one of these criteria.

Let S’ denote the cardinality of the set I in stage one and let

0; ifS'=1
s = ; ifS (46)
S fS'>1.

Then the total sample size required by P,, T'SS say, is
TSS = kny + Snj,.

Let Ez[TSS|P;] denote the expected total sample size for P; under j.
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We adopt the following unrestricted minimax criterion to make a choice of (n,,n3, )
as well as to have the total sample size TSS small. For given k and specified § and
P, choose (ny,na,h) to

minimize s“ug Ez[TSS|P5)
subject to “ig{‘) P;[CS|P;) 2 P, (47)
where (n,,n;) are non-negative integers and A& > 0.

For any population whose sample mean has the MLR property, Bhandari and
Chaudhuri (1987) proved that the least favorable configuration (LFC) of the two-
stage population means problem is a slippage configuration. However, the problem of
evaluating the exact probability of a correct selection in the LFC associated with P,

is complicated and still remains to be solved. Here we will consider lower bounds for

P;[CS|P,] and construct conservative two-stage procedures.

3.3 Lower bounds for the probability of a correct selection
for P, |

In this section we derive lower bounds for P;[CS|P,]. These lower bounds will prove
to be particularly useful since we will prove that they achieve their infimum over £2(§)
at u(6) which has components

p=pp == ppe = pp -6 620

This result will permit us to construct a conservative two-stage procedure which guar-
antees the basic probability requirement (45).
The next theorem gives one of these lower bounds for P;[C'S|Pa].

Theorem 3.1 For any i € Q) we have
P4[CS|Pi]
-1
> [T I Fulz +8uv/mi/e +h)dFu(a)
=0 iml

k-1
[ Pt T i1,
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where F(z) is the cdf of the standardized sample means of size n from L(u,0?).

Proof
For any i € Q we have

P,z[C S I'Pz]
Po(R() 2 X3 - ho/ AT i # b, Ry 2 maxer Xo]

2 PilXG) 2 X - hof vz Xy 2 Xa, Vi # K]
> PR 2 XD - ha/y/mr, Vi# k]

+PaXy 2 X9, Vi # k] -1, (49)

since P(ANB) > P(A)+ P(B)-1 for any two events A and B. Then a straightforward
computation leads to the conclusion of this theorem. O

Corollary 3.1 For all ii € Q(5) we have

[ AFu(z+6yilo + B} -"dFy(2)
+ /_:{FM'FM(’-' + 6/ + nzld )}k"lanl_'_M(z) -1. (51)

Proof
The proof follows immediately on noting that the right hand side of (48) is non-
decreasing in each §; fori=1,...,k-1. O

Remark 3.2 Since the right hand side of (51) is stﬁ'ctly increasing in each of n,,
ny + ny3 and h and tends to one as ny or, n; and h tend to oo, we see that the basic
probability requirement (45) can be guaranteed if one (or more) of these constants is
chosen sufficiently large.

Remark 3.3 If we let A — oo on the right hand side of ({8) we obtain

k-1

F [T Fastna(2 + 6/ F 13/ 0 AP, 4, ()
=% im]
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which is an ezpression for Pz[CS|Py] where P, uses a common single-stage sample size
n = n; + ny per population. Thus P, is a special case of P, based on a conservative
lower bound and hence Ez[TSS|P;] < kn for all i € Q.

Remark 3.4 The distribution of the mean of samples from logistic population has the
monotone likelihood ratio (MLR) property with respect to the location parameter (Goel
(1975)) and hence the distributions of the Xf-l) and X?) are stochastically increasing
(SI) families in p;, i =1,...,k.

Remark 3.5 The cumulative sample means

o n (1) n3 (3)
X:= n '1'7"2XS + 711'*'1'12)2f

are strictly increasing in each X?), i=12 1=1,...,k.

We can now find another lower bound to the Pz[CS|P;] given in the following
theorem by noting the facts mentioned in Remark 3.4 and Remark 3.5. This lower
bound can be shown to be uniformly superior to the one given in Theorem 3.1. It is
also straightforward to determine the LFC of the population means relative to this new

lower bound.

Theorem 3.2 For any i € Q we have

inf P;[CS|P,]
2EN(5)
2 [T {Fue+bvmle + 1) dFn ()
[ {Futm(z + VAT 0 ) dF oy 4(2), (52)

where Fn(z) is the cdf of the standardized sample mean of size n from L(u,0?).

Proof
Let F(.|u:) and G(.|p;) denote the cdf’s of the X?) and X, respectively and let
H(.,.|n;) denote the joint cdf of the X?) and X;. Then F(.|u;), G(.|u;) and H(.,.|p:)
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" are non-increasing in gi, i = 1,...,k, from Remark 3.4 and Remark 3.5. Without loss

of generality we may assume that p; < -+ < pr. Then for all Z € Q(6),

| P;[CS|Ps)
‘- = P y[X‘(B > maxigjcr Xog) — ho//am, Xy = maxjer X (5]
; B > P;;[XE,‘)>X8))—ha/\/ﬁT,X(k)ZY(J-), Vi=1,...,k—=1]
oo k=1
= [ [ TLHG + ho /v ylu)dE i)

v

"I 1'[ H(z + ha/y/m, i - §)dH (=, ylm)
3 = E,..[H"-*{XE,.,+ha/n2'm|m—s}1,
where the expectation is with respect to the joint distribution of Y&; and 7(,,). Hence

Jnt PACSIPI 2 inf BB (X0 + ho/ /s, Koo lus = 8)]

and it is enough to show that for all & € Q(9),

: Eu [ + ho/ vz, Xnlus = 61]
3 > B, [P (X + ho/y/lus — OB IGH Kewylux - 8))

By Remark 3.5, for all a, b and g,

: PAX) <a, X <8}

‘ P“{X((:) < “’7?) < mrm(b— ng+mxf
E,[PAX{ < o X} < 2m - - m‘*(??)lff
- > EJ[PAX() < alfﬁi }

., XEJ) T m+m

XE,, < a}P {Ym < b}

—(2)
XE (J)

i

and hence

Eu[H*{XG) + ho//ar, Xl ue = 6}]

53

)
. "Bl - - - L] " - - L) - - - - . 3 - - ., T -.‘
‘J Al .u.. "»* Wy .’ ""-"\"‘-J.‘\\‘».‘-f"g{\- Ry




0 ‘2 Pl tn s 8lc diafin Al Bl 2V LaAl N, oat, avta' LA AlsAtn’ a ok ool _ta¥ _“af. " ¥, Cab 'A% el cal gl et 'ab al “ab ' al &0

LA XY X

e g

> Eul[F*(XG) + ho/y/mtlm - 6}
G* " { Xy lsx — 6]

: 2 Eu[F*'{XG) + ho/y/mtlu — 6}]

" B [G* " {X e — 6}]

y by the Chebyshev inequality (Hardy, Littlewood and Pélya (1934)), since

F{XG) + ho/y/mzlu - 6}

' and
9 G{Xwlux — 8}

: are non-decreasing in X). O
Remark 3.6 If we let

a= [ {Fu(z+8ymfe +B)}1dF(2)

and

b= /_‘:{F,.,.,,,.,(z +8v/m1 F 1a/0 )} dFn4na(2)
then (51) states that

. S ap
Jinf, PalCSIP] 2 a 41

and (52) states that

d i > ab.
' Jinf, PACSIPi] 2 ab

By noting that a + b~ 1 < ab for all a,b € (0,1), the lower bound (52) is uniformly
superior to the lower bound (51), and hence we will use the lower bound (52) henceforth.

3.4 Expected total sample size for P

In order to solve the optimization problem (47) we first find an analytical expression for
the E3(TSS|P;] and then determine the supzeq Ez[TSS|P;] and the sets of u;-values

at which this supremum occurs.
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Theorem 3.3 For any g € Q we have

EsflTSS|P;] = kny+ny E ]" {1‘[ Fa(z + 6i5/File +h)

-0 ’.1

- 11 Fo(z + 6ij/fifo — h)}dF,, (z), - (53)

where Fo(z) is the cdf of the standardized sample means of size n from L(u,0?).

Proof
For any i € Q we have

E,z[TSSI'Pz] = kn; + ngE;x[Sl'Pz],
where S is defined as in (46). Now
Es[S|Py] = EalS'|Py] — PalS' = 1|Py]
: 1) 1) . 4
= ZPﬂmo 2 X(j) —ho/Var, Vj#i]

-}:Pn[X{" 2 X+ ho/ VAT, Vi # il (54)

and hence Theorem 3.3 follows lmmedla.tely m]
The following theorem summarizes the result concerning the supremum of the
Ez[TSS|P,) for ii € Q.

Theorem 3.4 For any ji € Q, fized k and (n,,n3,h) we have
sup Ez[TSS|P,]
den

= kny+ng /_ :[{F,.,(z + R = (Fo (2 — h)}*YdFa(z)  (55)

which occurs when pp) = .-+ = pyy, where Fy(z) is the cdf of the standardized sample
means of size n from L(p,0?).

Proof

Noting Remark 3.4 and Remark 3.5 we can use the results of Gupta (1965) which
show that E;.5'|P;] achieves its supremum for & € 2 when up) = -+ = pyy. By the
similar argument P;[S’ = 1|P;] achieves its infimum when ;) = - -+ = pp). Hence the

result follows immediately from Theorem 3.3. O
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3.5 Optimization problem yielding conservative solutions

In this section we consider the optimization problem (47) which one must solve in
order to determine the constants (n,,n3, ) which are necessary to implement P,. As
we noted earlier, the problem of evaluating the exact probability of a correct selec-
tion in the LFC associated with P, is very complicated. Thus we replace the exact
infzea(s)Pa[C S|Ps) by the conservative lower bound given by the right hand side of
(52), and consider the following optimization problem.

For the given k, § and P* choose the constants (n,;,ns,h) to

minimize  kny +ng /_"' [{Fau (2 + B) Y = {Foy (2 = h)}*-Y)dFs, (2)
subject to /_" {Fo(z + 63/Filo +h)}*1dFy (z)
[ Ptz + VAT )0 )Pt dFaam(2) 2 P, (56)

where n, and n; are non-negative integers and A > 0.
Let us denote by (,#3, h) the solution to the optimization problem (56). Then

we can use the approximate design constants
ny =[ﬁ1+1], n2=[ﬁ3+1], h=il,

where [z] denotes the greatest integer which is less than z, to implement Ps.

Table 17, Table 18, Table 19 and Table 20 contain the constants (fi;, i3, ﬂ) necessary
to approximate (n,,n3,h) and the values of the expected total sample size (ETSS) for
k = 2,3,4,5,10,15, P* = 0.75,0.90,0.95,0.99 and é/c = 0.1,0.5,1.0,2.0,4.0. All
computations were carried out in double-precision arithmetic on a Vax-11/780. The
SUMT (Sequential Unconstrained Minimization Techniques: Fiacco and McCormick
(1968)) algorithm is used to solve the non-linear optimization problem. A source
program in Fortran for the SUMT algorithm is given by Kuester and Mize (1973).
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3.6 The performance of the two-stage procedure relative to

the single-stage procedure

As a measure of efficiency of the two-stage procedure P; relative to that of the single-
stage procedure P, when both guarantee the same basic probability requirement (45),
we consider the ratio termed relative efficiency (RE) Ez[TSS|P;)/kfi, where #, is
the estimate of the minimum sample size n, needed in the single-stage procedure P;.
Clearly RE depends on f, 6 and P*. Values of the RE less than unity favor P, over
Pr.

Now the RE is given by

1 k k - .
RE = —{kin+is) /°° {T] Fa(t + 8i5/r/0 + h)
L t=1""

- f[ Fa(t+ 5.','\/7"1_1/0 — h)}dF;, (2))- (57)
5

where i, is the solution of

/_: {Fr.(t + (Vis/o)8) "2 dFn,(t) = P". (58)

We consider the relative efficiency for two special cases, namely, the equally spaced
and the slippage configurations. First, for the equally spaced configuration, we assume
that the unknown means of the k populations are g, p+36,..., p+(k—1)é which have
ranks 1, 2,...,k, respectively. Let RE,, denote the relative efficiency with respect to
the above configuration. Then, since §; = pj — pp;) = (3 = 7)4,

REeq = knl‘u;'[kﬁl +ﬁ2§_:,_/°° {f[ Fﬁx(t'*' \/7‘1_1(3 —j)6/0+ il)

=0 =i
Jes

b -~
— I Fau(t +fui = )60 — B)}dFa (1)) (59)
i
Next, for the slippage configuration, we assume that the unknown means of the &
populations are pj;) = p, j=1,...,k—1,and ppy=p +46, 6§ 20. Then the relative
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) .
f efficiency with respect to the above configuration, RE,,, is given by
"
5: RE,, =
g 1 . . 00 - ok
} gk +fa{(k =1) [~ (Fau(t+B) = P (e~ B)*?
\‘ ) ~
(Fay(t = Vs8]0 + B) = Fay(t = farb /o — R))dFa, (2)
: + [ (Fu(t+inblo + B) = Fa(t+ iub/o - B)YdFu ()] (60)
“
o Table 21 and Table 22 give the values of the RE,, and RE,, for given values of
P* =0.75,0.90,0.95,0.99, k = 2,3,4,5,10,15 and §/¢ = 0.1,0.5,1.0,2.0, 4.0.

For any values of P*, k and §, RE,; <1 and RE,, <1 and hence the two-stage
' procedure is more efficient than the single-stage procedure in terms of the expected
K total sample sizes. Furthermore, the effectiveness of P; appears to be increasing in k
L since the values of RE,, and RE,, are decreasing in k.
i
§
"
k
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Table 17: Constants to implement the two-stage procedure P; for selecting the largest :
) logistic population: P* = 0.75.
P* =075

k | §/o A M A ETSS
0.4548¢+02 | 0.4539e4-02 | 0.5530e4-01 | 0.181720e+03
0.2620+01 | 0.8929¢+00 | 0.7323e401 | 0.7026480+01
0.3121e4+00 | 0.4983e4-00 | 0.7087e+01 | 0.162056e+01
2.00 || 0.9556e-01 | 0.1070¢+00 | 0.6698¢+01 | 0.405153¢+00
4.00 || 0.28340-01 | 0.2232e-01 | 0.6127e+01 | 0.101300e+-00
0.10 || 0.1018¢+03 | 0.1044e+03 | 0.3688¢4-01 | 0.615938¢6+-03
0.50 { 0.47780+01 | 0.33400+01 | 0.4516e+01 | 0.243344¢+02
3 | 1.00 || 0.89716+00 | 0.1050e+01 | 0.7308e+01 | 0.584085e+01
2.00 [| 0.18760+00 | 0.27740+00 | 0.6606e+01 | 0.139489¢+01
4.00 | 0.80390-01 | 0.3586e-01 | 0.6112¢401 | 0.3487380+00
0.10 [ 0.1392e+03 | 0.1515¢403 | 0.3751e+01 | 0.112241+04
0.50 [ 0.5900e+01 | 0.55540+01 | 0.2947e+01 | 0.447121e+02
4 | 1.00 || 0.1711e+01 | 0.1037e+01 | 0.4159¢4-01 | 0.109639¢+02
2.00 § 0.3255¢+00 | 0.3270e+00 | 0.585704+-01 | 0.260899e+01
4.00 || 0.80610-01 | 0.8252e-01 | 0.5737e+01 | 0.652252¢+00
0.10 || 0.1631e+03 | 0.2013¢403 | 0.2278¢+01 | 0.166485¢+04
0.50 | 0.6766e+01 | 0.7657e+01 | 0.230164-01 | 0.666234e+02
5 | 1.00 || 0.15260+01 | 0.1630e+01 | 0.2746e401 | 0.185961e+02
2.00 [| 0.3864e+00 | 0.4182¢4-00 | 0.4050e+01 | 0.3994140+01
4.00 | 0.95980-01 | 0.1051e400 | 0.4087e+01 | 0.998538e+00
0.10 | 0.2357¢+03 | 0.4304e4+03 | 0.1494e+01 | 0.4518240+04
0.50 § 0.9587e+01 | 0.1738e+02 | 0.1468¢4-01 | 0.1814560+03
10 | 1.00 § 0.2504e+01 | 0.4455¢+01 | 0.1398e+01 | 0.4588780+02
2.00 [| 0.6367¢+00 | 0.1178¢+01 | 0.1361e4+01 | 0.117515e+02
4.00 || 0.1582¢+00 | 0.2758¢+00 | 0.14700+01 | 0.295260¢+01
0.10 {| 0.2714e+03 | 0.5855¢+03 | 0.1369e+01 | 0.744887e+04
0.50 || 0.1100e+02 | 0.2372¢+02 | 0.1352e+-01 | 0.299197¢+03
15 | 1.00 || 0.2858¢+01 | 0.6119e+01 | 0.1308e+01 | 0.757360e+02
2.00 § 0.7466e+00 | 0.16680+01 | 0.1255¢+01 | 0.195906e+02
4.00 {| 0.1908e+00 | 0.4032e+00 | 0.1313¢4+01 | 0.501004¢+01
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Table 18: Constants to implement the two-stage procedure P, for selecting the largest

logistic population: P* = 0.90.

P*'=0.90

k| 50 Ay ) A ETSS
0.1728e+03 | 0.2446¢+01 | 0.650194¢+03
0.50 [| 0.70136401 | 0.8404¢401 | 0.2591e+01 | 0.259726e+02
2 | 1.00 § 0.1932¢401 | 0.1311e+01 | 0.3369¢+01 | 0.643201¢4-01
2.00 § 0.40110400 | 0.3724e+00 | 0.5331e+01 | 0.154620e+01
4.00 f| 0.10440400 | 0.8907¢-01 | 0.5026e+01 | 0.336564¢+00
0.10 [ 0.2745¢+03 | 0.2513¢+03 | 0.2017e+01 | 0.1461520+04
0.50 | 0.1126e403 | 0.9634e+01 | 0.20710+01 | 0.585665¢+02
3 | 1.00 | 0.2971e401 | 0.21350+01 | 0.2332¢+01 | 0.146860e+02
2.00 | 0.68040+00 | 0.5189e+00 | 0.5004e+01 | 0.362197e+01
4.00 §| 0.1693¢4+00 | 0.13100+00 | 0.4955¢+01 | 0.900049¢+00
0.10 § 0.32980+03 | 0.3318¢+03 | 0.1713e+01 | 0.229940e+04
0.50 || 0.1340e+02 | 0.1300e+02 | 0.1728e+01 | 0.922982e+02
4 | 1.00 ] 0.34890401 | 0.30480+01 | 0.1796e+-01 | 0.232917¢+02
3.00 § 0.8374e400 | 0.7008e+00 | 0.2643¢4-01 | 0.592662¢+01
4.00 | 0.208004-00 | 0.1704e+00 | 0.2831e+01 | 0.147462¢+01
0.10 | 0.36640+03 | 0.4034e4+-03 | 0.1556e+01 | 0.3150136+04
0.50 § 0.14886+02 | 0.1596e+02 | 0.1553e+01 | 0.126542¢+03
5 | 1.00 | 0.3863¢+01 | 0.38580+01 | 0.1559e+01 | 0.320185¢+-02
2.00 | 0.96100+00 | 0.92176+00 | 0.1867¢+01 | 0.829964¢+-01
400 J| 0.240304+00 | 0.2184¢+00 | 0.2071e4+01 | 0.208230e+01
0.10 § 0.4549¢4-03 | 0.6465¢4-03 | 0.1367e+01 | 0.750100e+04
0.50 | 0.18446402 | 0.2588¢+032 | 0.1357e+01 | 0.301614¢+-03
10 | 1.00 | 0.478404-01 | 0.8497¢+01 | 0.1328¢+01 | 0.785662¢4-02
2.00 | 013280401 | 0.1644¢4+01 | 0.1257e+01 | 0.301395e+02
4.00 | 033380400 | 0.4262¢4-00 | 0.1362¢401 | 0.528481e+01
0.10 J| 0.4934¢403 | 0.79116403 | 0.1368¢+01 | 0.119540e+05
0.50 | 0.1990e+02 | 0.3177¢+02 | 0.1358¢+01 | 0.480822¢+03
15 | 1.00 [| 0.5180e+01 | 0.8022¢+01 | 0.1335¢+01 | 0.132187¢+03
3.00 § 0.14330+01 | 0.2074e+01 | 0.1280e+01 | 0.332460e+02
400 {| 0.37516+00 | 0.5593e+00 | 0.1328¢+01 | 0.865274e+01
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Table 19: Constants to implement the two-stage procedure P; for selecting the largest
s logistic population: P* = 0.95.
*
' P* = 0.95
N k| &0 A Az A ETSS
- 0.10 { 0.30080+03 | 0.2827¢+03 | 0.1781e+01 | 0.104953¢4-04
. 0.50 §| 0.1227¢+02 | 0.10966+02 | 0.1810e401 | 0.431247e+02
2 | 1.00 | 0.3215¢+01 | 0.25040+01 | 0.1988e+01 | 0.106222e+02
N 2.00 § 0.76310+00 | 0.58830+00 | 0.35560+01 | 0.2682336+01
' 4.00 §| 0.18990+00 | 0.1457¢+00 | 0.3785¢+01 | 0.667647e+00
_‘ 0.10 § 0.43620+03 | 0.3657¢+03 | 0.1574e+01 | 0.211419¢+04
! 0.50 h 0.17680+02 | 0.1436e+02 | 0.1580e+01 | 0.8492140+02
3 | 1.00 | 0.4579e+01 | 0.3388¢+01 | 0.16540+01 | 0.214801e+02
P, 2.00 § 0.12230+01 | 0.695620+00 | 0.3269¢+01 | 0.5533380+01
‘3 4.00 f| 0.28580+00 | 0.18536+00 | 0.3237¢+01 | 0.139794e+-01
p . 0.10 § 0.4991e+03 | 0.4519e+03 | 0.1452¢+01 | 0.318364e4-04
o 0.50 [| 0.2023¢+02 | 0.1787+02 | 0.1453¢+01 | 0.127964e+03
4 | 1.00 § 0.5232¢+01 | 0.4325¢+01 | 0.1464e+01 | 0.324315e4+02
. 2.00 | 0.142004+01 | 0.9417¢+00 | 0.1675e+01 | 0.846044e+01
- 4.00 [| 0.3393e+00 | 0.24230+00 | 0.2163e+01 | 0.218343e+.01
; 0.10 | 0.53810+03 | 0.5259¢+03 | 0.1392e+01 | 0.426098¢+4-04
5. 0.50 § 0.2182e+02 | 0.2086¢+02 | 0.1388e+01 | 0.171314e+03
5 | 1.00 | 0.5649e+01 | 0.5112¢+01 | 0.1379e+01 | 0.434710e+02
2.00 | 0.1546e+01 | 0.1182¢+01 | 0.1430e+01 | 0.114045¢+02
4.00 || 0.3809¢+00 | 0.3002¢4+-00 | 0.1751e+01 | 0.299628e+01
0.10 I 0.6279¢+03 | 0.7682e+03 | 0.1349e+01 | 0.973702¢+-04
{ 0.50 f| 0.25440+02 | 0.3070e+02 | 0.1342e4+01 | 0.391770e+03
h 10 | 1.00 [| 0.6592¢+01 | 0.7667¢+01 | 0.1321e+01 | 0.996400e+02
2.00 [| 0.18270+01 | 0.1923e+01 | 0.1260e+01 | 0.263841e4-02
3 4.00 || 0.4807¢+00 | 0.5216e+00 | G.1344e+01 | 0.724983e+01
[ 0.10 || 0.6674e+03 | 0.9126e+03 | 0.1377¢+01 | 0.153152e+08
. 0.50 || 0.2703e+02 | 0.3659¢+02 | 0.1370e+01 | 0.616396e+03
. 15 | 1.00 || 0.70020+01 | 0.9178e+01 | 0.1354e+01 | 0.156917e+03
2.00 f| 0.1942e+01 | 0.2339e+01 | 0.1310e+01 | 0.416523e+02
4.00 [| 0.52930+00 | 0.6784e+00 | 0.1300e+01 | 0.115109e+02
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Table 20: Constants to implement the two-stage procedure P, for selecting the largest

logistic population: P* = 0.99.

-~

o

P® =099
k| &/e iy ' A ETSS
0.10 || 0.6892e+03 | 0.5071e+03 | 0.1295e4-01 | 0.202774e+04
0.50 || 0.2784¢4-02 | 0.2014¢+02 | 0.1300e4-01 | 0.815644e+-02
2 1.00 § 0.7189¢4-01 | 0.4885e+01 | 0.1308e+01 | 0.207286e+02
2.00 | 0.1966e+01 | 0.1107e+01 | 0.1414e+01 | 0.548768¢+01
4.00 {§ 0.50130400 | 0.2771e400 | 0.2143¢+01 | 0.148773e+01
0.10 § 0.8588e4-03 | 0.5804e+4-03 | 0.1248e+01 | 0.366047e+04
0.50 || 0.3475e402 | 0.2299e+02 | 0.1249e4-01 | 0.147249¢+03
3 | 1.00 | 0.8954e+01 | 0.5614e+01 | 0.1254e+01 | 0.374304e+02
2.00 || 0.2442¢+01 | 0.1300e+01 | 0.1314e+4-01 | 0.988866¢+01
4.00 [| 0.6518e+00 | 0.3209¢+00 | 0.2052¢+01 | 0.278376e4+01
0.10 || 0.9268¢+03 | 0.6663e+03 | 0.1254¢4-01 | 0.526885¢+04
0.50 § 0.375004-02 | 0.2646e+02 | 0.12530+01 | 0.2119920+03
4 | 1.00 | 0.9668e+01 | 0.650104-01 | 0.1250e+4-01 | 0.539214e4-02
2.00 § 0.2647e+01 | 0.1542¢+01 | 0.1268e+-01 | 0.142783e+02
4.00 | 0.7350e400 | 0.46500400 | 0.1230e+4-01 | 0.404885e+01
0.10 § 0.9630e4+03 | 0.7432¢4+03 | 0.1271e+01 | 0.687580e+04
0.50 { 0.3903e+02 | 0.2965¢+02 | 0.1266e+01 | 0.276700e+-03
8 1.00 § 0.10080+4-02 | 0.72830401 | 0.1258¢4-01 | 0.704195¢4-02
2.00 0.2770e+01 | 0.1751e+01 | 0.1252e+01 | 0.186821e4-02
4.00 § 0.7668¢+4-00 | 0.471404+00 | 0.1451e4-01 | 0.532902e+-01
0.10 §| 0.1049¢+04 | 0.99716403 | 0.1343e+01 | 0.1495675e4-05
0.50 § 0.4246e+402 | 0.3976e+02 | 0.1340e+01 | 0.602284¢+03
10 | 1.00 | 0.1099¢4-02 | 0.9879e+01 | 0.1327e+01 | 0.153541e4-03
2.00 | 0.3045¢401 | 0.2443e401 | 0.1296e¢401 | 0.409579e+02
4.00 § 0.8789e4-00 | 0.6787e+00 ;| 0.1394e+4-01 | 0.119728e+-02
0.10 | 0.1088¢4+04 | 0.1147e+04 | 0.1400e4-01 | 0.231194e+-05
0.50 [| 0.4408¢+02 | 0.4583e+-02 | 0.1396e+01 | 0.931205¢+03
15 | 1.00 || 0.1140e+02 | 0.1143e+02 | 0.1384e+4-01 | 0.237593e+-03
2.00 | 0.3166e+01 | 0.2855e401 | 0.1386e+4-01 | 0.635515e+02
4.00 | 0.9277e400 | 0.8022¢400 | 0.1455e+01 | 0.187987e+02
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Table 21: Relative efficiency of the two-stage procedure P;: Equally spaced configura-

tion.
f ‘
Equally Spaced Configuration ’
) o k §/e 3
0.1 a.5 1.0 2.0 4.0
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Table 22: Relative efficiency of the two-stage procedure P;: Slippage configuration.

Slippage Coufiguration
§le

et T A W L A L U T s A LT s ARGEY
Ve £ A L O S o.A AN P

P O R LG LG U PP T T T - ae
o . " .:\,.J,\,.__.__. ".1-"'-'.)-'.-.- IR > __ \._\'_. AT \'r. ~

-
-




A P A LN L S LA L W LU P N R N N T S N A L LI AU A%, ot fatl. bl al et ety At ety At et ety gl Vo ale 8t a¥e aln gt “Alq 2V, 8’ \ Yo 4t ) by D' \ g .
Y. ! B, A DA VTN Y\ . " Y N N VRN U RS VRN »

4 A SINGLE-STAGE RESTRICTED SUBSET SE-
LECTION PROCEDURE FOR SELECTING THE
‘ POPULATION WITH THE LARGEST MEAN
: FROM k LOGISTIC POPULATIONS

5 4.1 Introduction

In the subset selection formulation, if the data make the choice of the best population
difficult (we would expect this to happen if the y; are all very close to one another),
we are likely to select all the populations. In this case it is meaningful to put on an
additional restriction that the size of the selected subset will not exceed m (1 < m < k).

When we use an elimination type two-stage selection procedure to select the best
population and we have only limited resources to use for the secondary exploration,
we also need more flexible procedures which allow us to specify an upper bound m
on the number of populations included in the selected subset. Any selection problem
with such a restriction on the size of the subset is naturally called a restricted subset
selection problem.

Gupta and Santner (1973) studied the restricted subset selection procedure for the
normal means problem in terms of the sample means. They provided the tables of
the required sample sizes and of the expected number of selected populations. Sant-
ner (1975) defined a general restricted subset selection procedure in terms of a set
of consistent estimators for the parameters whose distributions form a stochastically
increasing family for any given sample size. He proved that the infimum of the prob-
ability of a correct selection occurred at a point in the preference zone for which the
parameters were as close together as possible. He also studied some properties of the
rule and conditions which guaranteed that the supremum of the expected number of
\ populations selected over the whole parameter space occurred at some point where the
‘ k populations were all the same.

In this chapter we consider a restricted subset selection procedure Rj3, based on
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the sample means, for selecting the population with the largest mean from k logistic

populations when the common variance is known.

Expressions for the probability of a correct selection for any configuration of the
logistic means and for the infimum of the probability of a correct selection over the
preference zone are derived and some properties of this procedure such as monotonicity
and consistency are studied.

The restricted subset selection procedures are consistent with respect to the pref-
erence zone. However the infimum of the probability of a correct selection over the
preference zone can not become arbitrarily close to the probability level P* as the
constant A, which defines the procedure, becomes infinitely large for the given values
of k, m, 6 and n. This is unlike the ‘usual’ subset selection procedures. A table of the
bounds of the infimum of the probability of a correct selection over the preference zone
is provided for given values of k, m, é§ and n.

A table of the required sample sizes for the restricted subset selection procedure, the
sample sizes for the corresponding fixed subset size procedure of Desu and Sobel (1968)
and the ratio of the above two sample sizes is given for selected values of P*, k, m and
8. The expected number of the selected populations for the two special configurations,
namely the equally spaced and the slippage configurations, are considered.

Instead of designing the rule by choosing the required sample sizes for arbitrarily
given values of A, we can make choice of the rule by controlling the supremum of the
expected size of the populations selected over the whole parameter space as well as
the probability level P* simultaneously. Using this new design criterion a table of the
design constants (n, k) for the restricted subset selection rule Rj is provided.

4.2 Formulation of the problem
Let x;, i = 1,...,k, be k logistic populations with unknown means y; and a common
known variance o, which are denoted by L(u;, o3). Also let

pp) < -0 < P

66

................................




e

Ve Y YRS

of o Il Y

']

A g %S

LI ]

s

".-'-

.

U

» N
-. L

be the ordered means and (;) the population with mean y(g, the best population being

*(k). We assume that there is no a priori knowledge concerning the pairing of {r(}
and {=;}. Let § > 0 and

Q={ﬁ=(l‘l”",ﬂk);—°°<ﬂi<°°,i=1,---,k}

) = {# € Q| (pp) — ) 2 8}
Q%8) = {7 € )| pp) = pg-1) = ppy — 6}-

Each «; yields #id observations X;;, j =1,...,n,i=1,...,k, which are also inde-

" pendent between populations. We propose the following rule R; based on the means

of samples of size n from the k populations. As usual, let X; be the sample mean from
xi,t=1,...,k, and let

Xy < <Xy
denote the ordered sample means.
Rule Rz : Select =; iff
X:.> max{Y[k_,,m],Y[k] — hao/\/n}, hs > 0. (61)

Goal of the ezperimenter : Given P*, § and the rule R3 which selects a subset of

the populations not exceeding m in size, find the common sample size n necessary to

achieve
P3[CS|R3) > P* Vji € Q(6). (62)

The evert {C'S|R3] occurs if and only if the selected subset contains ().

Remark 4.1 Even though the emphasis in this chapter is on the case, 1 < m < k,
where the strict inequality § > 0 insures that the indifference zone does not vanish, it
should be noted that the general theory formally reduces to give the results of Section 2.3

and Section 2.4 for the choices of m =1 and m = k respectively by allowing the weaker
condition 6 > 0.

Remark 4.2 If h3 — 00, Rj is the fized size subset rule which is considered in Desu
and Sobel (1968).
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4.3 Probability of a correct selection
We introduce the following notation. For every | = 1,...,k and for every ¢t = k —
m,...,k—1, let
o k-1
{s:(0),5=1,..., ( ; )}

denote the collection of all subsets of size : from

u(l)= {19”-9"}_{1}

and

(1) = u(l) - Si(D).
Theorem 4.1 For any ji € Q, we have

Pz[CS|R4
-1 (")

= X X /: II Fat+ (uw — pm)V/o )

t=k-m j=1 °7% l1eSi(k)

I {Fat + hs+ (s — spo)vn/o )
1€35(k)

- n(t + (l“[k] - ﬂm)\/f_l/d )}dFu(t)) (63)
where F,(t) is the cdf of the standardized mean of a sample of size n from L(p;,o?).

Proof
Let X(.) denote the sample mean from the population x(;. Then,

P3[CS|R4
= Pa(Xp 2 max{Xpu-m1), Xpp — hso/v/n}]
= Pr{Xw = Xu — hso/V/n forl<kand
X > at least (k—m) X's with | £ k}.

Now, for everyi =k —m,...,k—1and j = 1,...,(":1), let
Al =X = Xy V1€ Si(k) and Xy < Xy V1 € Ti(k)].
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Then
F5[CS|Ry]
= P;:[X(k) 2 X(() - had/\/- Vi < k and ssk-m US=1 ) A']
h=1
= ‘ :-Zl (il) Pg[X'(k) > Xm - hsd/\/; Vi<kand A;]
imk~m j=
For fixed ¢ and j,

P;[X(k) > X(g) hsd/\/_ Vi<kandA* ]
= ng(k) 2 X.(() Vie S’(k) and X(k) < X(x) < X(;,) + hsd/\/f-'l- vie 3’;(/:)]
= [C I Fult+ (- mValo)

€S (k)
o IT {Fa(t+hs+ (b — p)V/o )
1€3;(k)

—Fu(t+ (ppg — p)v/n/o )}dFu(t). O
Remark 4.8 An application of the dominated convergence theorem shows that
Pz{CS|Rs] = 1 as (pgs — #e-1y) — oo. (64)

Next we determine the infimum over () of the probability of a correct selection

in the following theorem.

Theorem 4.2 For any i € Q(§), we have

ﬂel%{n P3[CS|Ry] = infzeqo(sy Ps[CS|Ry)

- ..b?,. (k i l) [ {Fait+ 6vm)a )Y

{Fa(t + ha + 6v/afa ) — Fu(t + §3/nfc )} 'dFy(1)
= /_ :{F..(t + b3+ 6y/nfa )}!

Fn t+6 n/o L
I{ Fo(t + hs + 6551170 )’ k — m,m}dF,(t), (65)

where I{y;a,b} = % J¥w*~1(1 -~ w)*-1dw denote the incomplete beta function with

parameters a and b.
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Proof
We use the following lemma due to Alam and Rizvi (1966) and also due to Ma-
hamunulu (1966).

Lemma 4.1 Let X = (X),...,Xs) have k > 1 independent components such that for
every i, X; has cdf H(z;|0;). Suppose that {H(z|0)} form a stochastically increasing
family. If ¥(X) is a monotone function of X; when all other components of X are held
fized, then Ef¥(X)] is monotone in 0; in the same direction.

Now, let
1; if Xy 2 max{Xpe-m1), Xt — hao/+/7}

0; otherwise.

¥U(X) = {

We claim ¥(X) is non-increasing in X, fori =1,...,k — 1. Let

Xo <X
X=(Xq)..r Xm)
and
X'=Xay---» X(.--x),r(s)_, Xty X(iy)-
Then |

max{ X(e-ms1) X (i} = hao/v/n} < max{X x-ms1)s X (] — hao/v/n}

where the primes denote the order statistics from X'. So if ¥(X) = 0 then ¥(X') = 0.
Hence
PiCSIRs) = Ex(¥(X))

is non-increasing in each of y[y),. . .,4k—1) when all other means are fixed. So
i = i P;[CS|R
ﬁg@]{&)Pn[CSIRa] aelgofw) 2(C S| Ra)

and hence substituting the vector of means (uyy}, . . ., s}, #pa) +6) gives the result. O
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4.4 Properties of R;

We consider next the properties of the restricted subset selection rule R; based on the
sample means. To facilitate this study we let

Py(i|R) = Pz{rule R selects x(;} (66)
and recall the following definitions.
Definition 4.1 R is @ monotone procedure means that for all f € Q and i < j,
Pa(i|R) < Pa(4|R).
Definition 4.2 R is an unbiased procedure means that for all f € Q and j < k,
Pﬁ[R does not select x(;)] 2 Pﬁ[R does not select w)).

Of course, R is monotone implies that R is unbiased. Other optimal properties are

Definition 4.8 R is consistent with respect to )’ means that
”lin;oﬂi:é' P;[CS|R] =1.

Definition 4.4 R is strongly monotone in x(;) means that

Py(ilR) = T in pgy when all other components of ji are fized
L in pg;) when all other components of ji are fized (j # i).

Theorem 4.3 For everyi=1,...,k, R; is strongly monotone in x(;.

Proof
We have already shown this result for : = k. Since for i < k we have

Pa(ilRs) = Ez n(X),

where

0; if otherwise,

2(X) = { L if X2 max{ X ki~m+1), X (5] — h3c/V/n}

the same argument applies to give the desired conclusion. O
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Corollary 4.1 All rules of the form (61) are monotone and unbiased.

Proof
The proof follows from the definition of monotonicity and the property of being
strongly monotone in x(; for alli. O

Theorem 4.4 R; is consistent with respect to }(6).

Proof
We must show that
k~1 k-1 .
. lim F, 6 o)}
.-3-?..( 2 dim [ (Rt v
A Fa(t + ha + 84/n/0) = Fo(t + 6+/n)0)}* "1 1dF,(t) = 1. (67)

We note that each integrand is bounded with respect to the measure F, and so the
dominated convergence theorem applies. For every i < (k — 1) we have

Bm {Fa(t + 6v/n/0) Y {Fa(t + hs + 5/n[0) — Fult + §y/n/o)}*"' " = 0
and fori=k~1
: k-1 _
Jim {Fa(t + Synfo)}t =1,
Hence the result follows. O
This theorem says that no matter what probability level is required for a correct

selection it can be met by choosing a sufficiently large sample, for any given k, m and
s.

Theorem 4.5 For every n and rule R,

Jim inf Pi(CS|Rs| =1

For everyn, m < k and § > 0,

hlx_xgo i:é%fs) F4(CS|Rs]

= k-m(;20) [L0 - Fe- 81
(RO 1{L = Fy(0)™dFu(t)

...........

(- -]
= / I{Fa(t + 65//0); k — m,m}dFa(t). (68)
-co
72
T W R s+ R W G A Ay e e T P e T e N N S




SO R g 949 Ngb Rad FAf au et Vg v ou b et Y 80 b R B N B Bl eV bt O T P VR T  TR  UR IR U s PO R LY

Proof
Both results follow from the dominated convergence theorem. The second result

follows the same theorem and

lim inf P;[CS|R)

hs—sco 2€01(8)
h—
CE () s

{1 = Fa(t + 6v/n/0)}* "'~ 'dFu(2)

'/;:(k - m) (:::1) /(:-F,.(t + 5\/77/0)) ym-l{l - y}k-m-ldydpn(t)

k=m (£ 2) [ 7 g, 4F® 1= Ful™
AFu@)tdE(w),

letting w = F71(1 — y) and changing the order of integration. D

Remark 4.4 The first part states that by taking § sufficiently large we can attain any
P* probability requirement for the rule Ry based on any number of observations. The
second result says that given a fixed 6§ > 0 and a common sample size n, we cannot
achieve all P* values. We can only attain

Pos kem(20) [T R svare)
‘{Fn(t)}k-m-l{l - Fn(t)}m-ldpn(t)
= [ HFut+6va/0)k ~m,m}dFu(t) <1. (69)

Remark 4.5 Using the monotonicity of infzeq(s)Pa[CS|R3] we can obtain the follow-
ing bounds. Form < k and § > 0,

[T {Fu(t + 6vRjo) PR (t)

zinf FalCS| Ry

< [ : I{Fa(t + 6:5//0); k = m, m}dFa(t). (70)
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N Table 23 contains the above lower and upper bounds of the infimum of the proba-

bility of a correct selection over () for k = 3,5,10, m = 2,4,5 < k, §/0 = 0.5,1.0,2.0

N and n = 5,15. All computations were carried out in double-precision arithmetic on a
g Vax-11/780.

.’ For the purpose of implementing the procedure R3 and comparing Rj3 to the fixed
- size subset rule, we have prepared Table 24 and Table 25. For P* = 0.90, k = 5,10,
X m=23,45<k, §/c =05/1.0,2.0 and hs = 0.4,0.7,1.3,1.6, the tables give the
: values of the minimum sample size (n(k3)) which satisfies

' - Fa(t+46 .
: [ (Pt + b + 8yijo)y 1t el b SR k-, maFu(t) 2 P,

the values of the minimum sample size (n(c0)) for the fixed size subset rule, which

satisfies .
L - [ H{Fu(t+ 6Vmfo);k = m,m}dFa(t) 2 P°
o -0
2 and the ratio (n(kh3)/n(co)) of the sample size for the restricted subset selection rule

R3 to the sample size for the fixed size subset rule when both rules attain the same

J
‘I 'l

probability requirements. For large h3 values this ratio is close to one, indicating that
in many cases a slight additional cost will allow the use of a restricted subset selection

procedure which meets the same probability requirement.

EAS AN

The expected number of selected populations depends, of course, on the underlying
j. Some exact comparisons for the equally spaced and slippage configurations will be

considered in the next section.

4.5 Expected number of selected populations
As usual, we define

Y. = { 1 if Xy 2 max{Xp-me1), Xpu — hao/v/n}

AL N

0; otherwise.

This gives S, the number of populations selected, as
k
S = Z Y.
i=1
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Then the expected number of populations selected by R; is given by

QCCIC B

k
Eg[S|Rs] = Z; Pa(i|Rs),
where Pz(i|R3) is defined by (66). /

Theorem 4.8 For any i € ), we have "

e k-1 (Y 5
BalSIRe] = 3, 3. X L. : ls-InF a(t + (s — sm)V/0)

=1 puk-m j= ® e (i

+ II {Falt + hs + (ug — pg)V/o)

1€37(9) .

—Fu(t + (uq — pn)v/n/o)}dFa(t), (1) :

where F,(t) is the cdf of the standardized mean of samples of size n from L(u;,0?).

Proof _«‘
From the above discussion, we see that it suffices to calculate Pz(i|R3) fori = 1,...,k.
Using arguments similar to those in the proof of Theorem 4.1, we get g
. -1 (7)) -

P;i(ilRs) = Z z P,{X(.') 2 X(() Vie Sf(t) i

pxh-m j=1 ®

and X(.-) < X(() < X(.-) + hsd/\/; Vie g:(z)} :‘.

-1 (3

= £ X [0 I Fult+(ma-ravlo) 4
p=hk-m j=1 "7 1esP(i)
+ II {Fa(t+ hs + (ug — pin)v/n/0)
€56
—Fu(t + (ug — un)V/n/o)}dFa(t). O 3

Since Ez[S|Rj] is increasing in h3 the experimenter may seek to use rules with
small A;. On the other hand, for fixed § and P*, the smaller A3 is, the larger n must
be to achieve the required probability condition (62). Hence, the experimenter must
decide what trade off between n, A3 and § he is willing to accept. To investigate the

interdependence in more detail, we have tabulated in Table 26 and Table 27 the values ~
of .
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* E(S) = Eg[S|Ry),

e E(SR) = T%, iPa(i| R3); the expected sum of ranks of the selected populations
and

e E(S)/m; the expected proportion of selected populations

under
1. Equally spaced means @ = (a,a+6,...,a+ (k—1)§) and
2. Slippage means § = (a,q,...,a,a+§),

for
(k,m) = (4,2), (5,3), n = 2,3,4,5,10,15, hy = 0.4,0.7 and /o = 0.1,0.5,1.0,2.0. All

computations were carried out in double-precision arithmetic on a Vax-11/780.

4.6 Supremum of the expected number of selected popula-

tions and a new design criterion for R;

Santner (1975) considered a general restricted subset selection procedure in terms of
consistent estimators for the population parameters whose distributions form a stochas-
tically increasing family for each given sample size. In particular he gave conditions
which guarantee that the supremum of the expected number of populations selected
over the whole parameter space occurs at some point where the k population parame-
ters are all the same.

We can consider the means rule R; as a special case of a location parameter problem
using Santner’s general procedure. By noting that the distribution of the mean of
samples from a logistic population has the MLR property with respect to the location

parameter and hence forms a SI family, we can see that

Theorem 4.7 For every i € (2, we have

sup E3[S|Ry)
= k[T (Fue+ hs)}""I{m%; k — m, m}dFa(t). (72)
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In Section 4.4 we determined the needed sample size n for the rule R; for the arbitrarily
chosen values of h3, k, m and § because we could not determine the values of n and
hs at the same time by controlling the basic probability requirement only. Since we
desire to select smaller S, it is reasonable to make a choice of (n, h3) by controlling the
supzeq Ez(S| R3] as well as infzeq(s) Pz(C S| Ra).

Using Theorem 4.2 and Theorem 4.7, we can choose a new set of design constants

(n, h3) to implement R3 by solving the following equations simultaneously,

| _{Fa(t+ha+ 6y/m/a)}*

-I{mFti‘g;; %’-‘%a) .k — m,m}dFa(t) = P* (73)
k /_: {Falt + ha) P11 ”";" Ak~ m,m}dFa(t) = 1+ ¢ (74)

for the given values of P*,k, m, § and small ¢ > 0.

Table 28 and Table 29 contain the estimates (#,h;) for the constants (n,As),
which satisfy (73) and (74) simultaneously for given values of P* = 0.90,0.975, k =
3,4,5,10,15,m = 2,3,4,5, §/0 = 0.5,1.0,2.0 and € = 0.01. All computations were car-
ried out in single-precision arithmetic on a CDC-6500. The IMSL subroutine ZSCNT
was used to solve the above system of non-linear equations and the f-norm in the tables

indicates the accuracy of the computation, which is defined in the ZSCNT.
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Table 23: Bounds on the infimum of the probability of a correct selection over the

preference zone for rule R;.

SR N
NN IS

‘e

W,

A A
Sa

k §fe n { = bound » = bound
0.50 5 0.6 0.908
18 0.856 L. 974
3 1.00 s 0.902 0.985
18 0.994 1.000
2.00 ) 0.998 1.000
18 1.000 1.000
0.50 5 0.536 0.76%
18 0.774 0.921
1.00 1] 0.840 0.953
15 0.988 0.999
2.00 5 0.996 1.000
5 15 1.000 1.000
0.50 5 0.538 0.962
15 0.774 0.983
1.00 5 0.840 0.996
15 0.988 1.000
2.00 5 0.996 1.000
15 1.000 1.000
0.50 5 0.379 0.574
15 0.654 0.820
1.00 5 0.743 0.885
15 0.977 0.996
32.00 1] 0.992 0.999
18 1.000 1.000
0.50 5 0.379 0.789
15 0.654 0.938
10 1.00 5 0.743 0.968
18 0.977 0.999
3.00 s 0.992 1.000
15 1.000 1.000
0.50 5 0.379 0.854
15 0.654 0.964
1.00 s 0.743 0.980
18 0.977 1.000
2.00 5 0.992 1.000
15 1.000 1.000
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Table 24: The minimum sample sizes needed for rule R3; and the corresponding fixed
size subset rule: P* =0.90, k = 5.

P*=090, k=38
m As §/o n(hs) n(oo) n(h3)/n(oo)
0.70 1.00 '3 . 1.250
2 2.00 2 1 2.000
0.50 18 13 1.385
1.30 1.00 5 4 1.250
2.00 2 1 2.000
0.50 18 13 1.385 0
1.60 1.00 5 4 1.250
2.00 2 1 2.000 :
0.50 20 6 3.333 :
0.40 1.00 2 2.500 >
2.00 2 1 2.000
0.50 16 6 2.667
a.70 1.00 4 3 2.000
3 2.00 1 1 1.000
0.50 1 6 1.833
1.30 1.00 3 2 1.500
2.00 1 1 1.000 Y
0.50 10 6 1.667
1.60 1.00 | 3 2 1.500
2.00 1 1 1.000
0.50 20 2 10.000
0.40 1.00 " 5 1 5.000
2.00 2 1 2.000
0.50 15 2 7.500 :
0.70 1.00 4 1 4.000 :
4 2.00 1 1 1.000 X
0.50 s 2 4.000
1.30 1.00 “ 2 1 2.000
2.00 1 1 1.000
0.50 6 3 3.000 <
1.60 1.00 2 1 2.000 .
2.00 1 1 1.000
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Table 25: The minimum sample sizes needed for rule R; and the correspondmg
fixed size subset rule: P* = 0.90, k = 10.

P =0.90, k=10
Ay é§/o

0.50
1.00
2.00
030
1.00
2.00
0.50
1.00
2.00
0.50
1.00
32.00
0.50
1.00
2.00
0.50
1.00
2.00
0.50
1.00
2.00
0.30
1.00
2.00

-
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Table 26: Performance characteristics of ruie Ry: k =4, m = 2.

k=4 m=2
n hs é8fo conf. 54 conf.
m m
[ [ Jo0.100 || 1.366 | 3.125 | 0683 |1.371 | 3.337 | 0.685 |
0.400 | 0.500 {| 1.269 | 2.045 0.635 | 1.344 | 2.882 0.672
1.000 || 1.147 | 1.426 0.573 11259 | 2.221 0.630
2 2.000 || 1.030 | 1.073 0515 | 1.072 | 1.285 0.538
0.100 || 1.573 | 3.623 0.786 | 1.5¢/8 | 3.850 0.789
0.700 | 0.500 |} 1.442 | 2.401 0.721 | 1.543 | 3.367 0.772
1.000 || 1.256 | 1.628 0.628 ] 1.424 | 2.630 0.712
2.000 |} 1.057 | 1122 0.528 | 1.130 | 1.439 0.565
0.100 || 1.361 | 3.054 0.681 | 1.368 | 3.310 0.684
0.400 | 0.500 |} 1.238 | 1.348 0619 | 1320 | 2.741 0.664
1.000 [} 1.109 | 1.296 0.555 |1.213 ] 1.953 0.607
3 2.000 | 1.012 | 1.028 0.506 | 1.031 | 1.118 0.516
0.100 || 1.566 | 3.545 0.783 | 1.575 | 3.822 0.788
0.700 { 0.500 || 1.396 | 2.162 0.698 | 1.523 | 3.213 0.761
1.000 || 1.194 | 1.448 0597 | 1.356 | 2.311 0.678
2.000 i 1.024 | 1.050 0512 |1.059 | 1.191 0.529
0.100 || 1.357 | 2.985 0.679 | 1.366 | 3.289 0.683
0.400 | 0.500 {| 1.213 | 1.714 neos | 1.315 | 2.620 0.857
1.000 || 1.084 | 1.217 0.542 11175 | 1.749 0.587
4 2.000 {| 1.005 | 1.011 0502 |1.013 | 1.047 0.507
0.100 || 1.562 | 3.481 0.781 | 1.574 | 3.801 0.787 |
0.700 | 0.500 || 1.359 | 1.906 0.679 | 1.503 | 3.079 0.752
1.000 |} 1.151 | 1.337 0.575 ] 1.206 | 2.058 0.648
2.000 § 1.010 | 1.023 0.505 | 1.026 | 1.083 0.513
0.100 || 1.354 | 2.944 0.677 | 1.365 | 3.271 0.683
0.400 ] 0.500 lf 1.193 | 1.616 0.596 | 1.301 | 2.512 0.651
1.000 || 1.085 | 1.163 0.533 | 1142 | 1.590 0.571
s 3.000 || 1.002 | 1.004 0501 {1792 ] 1.019 0.503
0.100 || 1.558 | 3.425 0.779 | 1.572 | 3.782 0.786
0.700 | 0.500 || 1.328.] 1.872 0.664 | 1.484 | 2.959 0.742
1.000 {| 1.119 | 1.259 0.559 | 1.245 | 1.856 0.623
2.000 || 1.004 | 1.009 0.503 |1.011 | 1.035 0.508
0.100 || 1.341 | 2.749 0.670 | 1.361 | 3.202 0.681
0.400 | 0.500 || 1.128 | 1.357 0.564 | 1.239 | 2.097 0.620
1.000 || 1.019 | 1.045 0510 |1.049 | 1181 0.524
10 2.000 {| 1.000 | 1.000 0.500 | 1.000 { 1.000 0.500
0.100 || 1.541 | 3.210 0.770 | 1.568 | 3.709 0.784 |
0.700 | 0.500 || 1.225 | 1.5;1 0.613 | 1.394 | 2.482 0.697
1.000 || 1.037 | 1.078 0.519 | 1.090 | 1.203 0.545
2.000 ! 1.000 | 1.000 0.500 | 1.000 | 1.000 0.500
0.100 || 1.330 | 2.605 0.665 | 1.359 | 3.148 0.679
0.400 | 0.500 | 1.091 | 1.237 0.546 | 1.187 | 1.808 0.594
1.000 || 1.008 | 1.013 0.503 | 1.016 | 1.055 0.508
15 2.000 || 1.000 | 1.000 0.500 | 1.000 | 1.000 0.500
0.100 || 1.525 | 3.048 0.763 | 1.564 | 3.652 0.782
0.700 | 0.500 || 1.163 | 1.385 0581 [ 1.315 | 2.132 0.658
1.000 || 1.012 | 1.025 0.506 | 1.031 | 1.098 0.516
2.000 || 1.000 | 1.000 0.500 | 1.000 | 1.000 0.500 |
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Table 27 Performance characteristics of rule Ri: k=5 m=3.

k=5 m=3 _

n hs éfeo conf. Sli conf.

m m
0.100 [[ 1.503 | 3.e92 0.501 [ 1.508 | 4.423 0.503
0.400 | 0.500 {| 1.314 | 2.189 0.438 | 1.473 | 3.830 0.491
1.000 H| 1.153 | 1.440 0.384 | 1.357 | 2.885 0.452
2 2.000 || 1.030 | 1.074 0.343 | 1.098 | 1.449 0.366 |
0.100 || 1.882 | 8.076 | 0.627 | 1.884 | 5.551 0.628 |
0.700 { c.500 || 1.564 | 2.757 0521 | 1.828 | 4.875 0.609
1.000 § 1.275 | 1.672 0428 |1.637 | 3. 0.546
2.000 {} 1.057 | 1.122 0352 | 1188 | 1.728 0.398
0.100 || 1.493 | 3.859 0.498 | 1.504 | 4.386 0.501
0.400 | 0.500 || 1.267 | 1.929 0422 | 1.452 | 3.632 0.484
1.000 | 1112 | 130 0371 | 1.293 ] 2.483 0.431
3 2.000 || 1.002 | 1.028 0.337 | 1.042 ] 1183 0.347
0.100 |} 1.867 | 4.915 | 0.622 | 1.878 | 5.506 0.626 |
0.700 | 0.500 || 1.480 | 2.387 0.493 | 1.794 | 4.638 0.598
1.000 || 1.202 | 1.468 0.401 | 1.531 | 3.194 0.510
2.000 | 1.024 | 1.050 0.341 | 1.084 | 1.314 0.361
0.100 [ 1.485 | 3.750 0.495 | 1.502 | 4.358 0.501
0.400 | 0.500 [} 1.233 | 1.766 0411 | 1.433 | 3441 0.478
1.000 || 1.085 | 1.219 0362 | 1240 ]| 2172 0.413
4 2.000 || 1.005 | 1.011 0.335 | 1.018 | 1.075 0.339
0.100 || 1.855 | 4.784 0.618 | 1.374 | 5.474 0.625 |
0.700 | 0.500 || 1.420 | 32.149 0.473 | 1.762 | 4.432 0.587
1.000 )| 1.15¢4 | 1.344 0.385 | 1.439 | 2.774 0.480
2.000 || 1.010 | 1.011 0.337 | 1.036 | 1.135 0.345
0.100 || 1.478 | 3.656 0.493 | 1.500 | 4.335 0.500
0.400 | 0.500 [{ 1.208 | 1.851 0.403 | 1.414 | 3.307 0.471
1.000 || 1.085 | 1.164 0.355 | 1196 | 1.927 0.399

0.700 { 0.500 || 1.373 | 1.983 0.458 1.732 4.244 0.577

' 0.400 | 0.500 [ 1. 132 1.365 0.377 1.329 | 2.700 0.443

10 2.000 1.000 | _1.000 0.333 1.000 | 1.000 0.333

0.700 | 0.500 || 1.238 | 1.560 0.413 1.590 | 3.477 0.530

0.400 | 0.500 |} 1.092 | 1.239 0.364 1.258 | 2.263 0.419

15 2.000 j 1.000 | 1. 000 0.333 1.000 | 1.000 0.333

0.700 | 0.500 || 1.167 1.374 0.389 1.469 2.899 0.490
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Table 28: Estimates of constants for rule R3: P* = 0.90, Sup(S) = 1.01.

P*® = 0.900, Sup(S)=1.01 h
k m §lo # Ry = norm Y
.50 19656402 | .1179¢-01 | .6693e-15 '

3 2 1.00 [ .4883¢+-01 | .11660-01 | .4648e-22
2.00 || 11880401 | 1112001 | .8925¢15 .
50 | 23830402 | 9717002 | .2049¢-17 X
2 1.00 || .3946e+01 | .9648e-02 | .2318¢-18 j
4 2.00 || .1476e+01 | .9384e-02 | 1203613 A
50 | 23830402 | .96670-02 | .8419-20 ¢

3 1.00 || .59460+01 | .95980-02 | .31760-19
2.00 || 1476401 | .93340-02 | .3350e-15 (

50 .2686¢+02 | .86136.02 | .9771e-18

2 1.00 || .6715¢+01 | .85800-02 | .2066e-13
2.00 || .1680e+01 | .84396-02 | .1658e-17 "
50 || .2686e+02 | .85630-02 | .41920-16 Y

5 3 1.00 J| .671504+01 | .85280-02 | 3007617

2.00 || .1680e+01 | .83860-02 | .5923e18
.50 .2686¢+-02 | .8562¢-02 | .44330-16 ;
4 1.00 || .67T15e+01 | .85280-02 | .20100-17 4
2.00 .1680e+01 | .83860-02 | .5918¢-18
.50 .3550e+02 | .85356-02 | .1496e-15

2 1.00 .8922e+01 | .6569¢-02 | .4289¢0-13 Y
2.00 .2273e+401 | .6673e-02 | .2864¢-14 -

.50 .3550e+02 | .64880-02 | .2623e-15 {3

3 1.00 .8922¢+01 | .6521e-02 | .2750e-16 0

10 2.00 .2273¢+01 | .66230-02 | .7496e-14 )
50 .3550e4-03 | .64880-02 | .2639¢-15 <)

4 1.00 .8922e+01 | .6521e-02 | .2803¢-18 g

2.00 .2273e+01 | .66220-02 | .7455¢-14
.50 3550e+02 | .64880-02 | .265%9¢-15

5 1.00 || .8922¢+01 | .65210-02 | .2891¢-16
2.00 .2273e+01 | .66220-02 | .74480-14
.50 .4024¢+02 | .5803-02 | .2848e-15 N
2 1.00 .1014e+02 | .58616-02 | .1097e-16 )
2.00 .2602e4+01 | .60620-02 | .4032e-15 A
.50 4024¢+02 | .57580-02 | .3480e-14 ¢
3 1.00 .1014e+02 | .58160-02 | .2559¢-15 -
15 2.00 .2602¢+01 | .60130-02 | .8833e-16 p
.50 4024e+02 | .57580-02 | .1364e-13 q
4 1.00 || .1014e4+02 | 5816002 | .2682¢-15 E
2.00 || .2602¢+01 | .60120-02 | .8877e-168 ","
.50 40240402 | .57580-02 | .1381e-13 _,
5 1.00 .1014e+02 | .58160-02 | .2684e-15 .
2.00 .2602e+01 | .60120-02 | .8877e-16 :
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‘ Table 29: Estimates of constants for rule R3: P* = 0.975, Sup(S) = 1.01.
)
L:. P* = 0.975, Sup(S) =1.01
*odl
;: k m 5/o A Rs J = norm
:: .50 .3894e4-02 | .11820-01 | .1243e-17
b 3 2 1.00 || .9794e+01 | .11750-01 | .6086e-19
] 2.00 || .2504e+01 | .1150e-01 | .2001e-21
8
N 50 4399¢+02 | .97280-02 | .3196e-21
- 2 1.00 [ .1108e+02 | .96916-02 | .1435¢-21
» 4 2.00 || .2841e+01 | .95500-02 | .2¢67¢-18
e .50 .4399¢+02 | 9677602 | .1720e-17
3 1.00 | .1108¢+02 | .96400-02 | .1724e-17
2 2.00 {| .2841e+01 | .94990-02 | .35980-18
' .50 J 47590402 | .86180-02 | .7053e-16
"’ 2 1.00 | .1190e+02 | .86000-02 | .1076e-15
I 2.00 || .3082¢+01 | .85250-02 | .33290-16
.50 AT59¢+02 | .85670-02 | .2190e-18
- 5 3 1.00 || .1199¢+02 | .8549e-02 | .14440-17

2.00 || .3082e+01 | .84730-02 | .2198e-17
.50 47590402 | .85670-02 | .38190-22
B 4 1.00 1199e+02 | .85480-02 | .7657¢-23
2.00 || .3082¢+01 | .84736-02 | .3403e-23
50 5TT1e+02 | .65300-02 | .9562e-16

[ 2 1.00 Y .1456e+02 | .6552e-02 | .11250-15
i 2.00 § .37660+01 | .66236-02 | .1408e-15
: .50 5TT204+02 | .64830-02 | .25476-17
‘ 3 1.00 § .1457e4+02 | .6504e-02 | .13640-17
10 3.00 || .3766e+01 | .65740-02 | .1772e-18

& 50 5TT2e+02 | .64836-02 | .24570-22
A ‘ 100 || .1457¢+02 | .6504e-02 | .12530-22

. 2.00 { .3766e+01 | .65740-02 | .3067e-23
5 50 57720402 | .64830-02 | .6563e-27
' 5 1.00 || .1457e+02 | .6504e-02 | 3524027

‘ 2.00 || .3766e+01 | .6574e-02 | .4089e-26

. : 50 6320e+02 | .57950-02 | .3436e-14

B}
L]

1.00 .1596e+-02 | .5833¢-02 | .3331e-14
2.00 .4139¢+01 | .59660-02 | .3695e-14

\ .50 6321e402 | 5751002 | .8806e-17
% 3 1.00 1596¢+02 | .5788¢-02 | .1271e-17 .
{ 15 2.00 .4139¢4-01 | .5919¢-02 | .8236e-17 .

. .50 63210402 | .5751e-02 | .1326e-21

) 4 1.00 .1596e+02 | .5788¢-02 | .7942¢-22

; 2.00 .4139e+01 | .5818e-02 | .1707e-21

) 50 || .6321e402 | 5751002 | .2524e-27

5 1.00 .1596e4+02 | .5788¢-02 | .9214-27

2.00 4139e+01 | .59186-02 | .5364e-28
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5 AN ELIMINATION TYPE TWO-STAGE PRO-
CEDURE USING RESTRICTED SUBSET SE-
LECTION RULE IN ITS FIRST STAGE FOR
SEI ECTING THE BEST POPULATION

5.1 Introduction

Tamhane and Bechhofer (1977, 1979) studied a two-stage elimination type procedure
for selecting the largest normal mean and we considered in Chapter 3 an elimination
type two-stage procedure P, for selecting the largest among several logistic populations.

It is well known that the above two-stage procedures are quite efficient relative to the

- corresponding single-stage procedures in terms of the required sample sizes. However,

sometimes we may have only limited resources to use in the second stage. In those
cases we need more flexible procedures which allow us to specify an upper bound m on
the number of populations included in the selected subset in the first stage. Gupta and
Santner (1973) studied the selection problem with such a restriction, which is called
a restricted subset selection procedure, for selecting the largest normal mean and we
considered restricted subset selection procedures for selecting the largest logistic mean
in Chapter 4 in the framework of single-stage procedures.

Here we propose an elimination type two-stage procedure P; for selecting a popula-
tion with the ‘largest’ real parameter, in which a generalized restricted subset selection
procedure (Santner (1973, 1975)) is used in the first stage in terms of a set of consis-
tent estimators for the population parameters whose distributions form a stochastically
increasing family for a given sample size. We also propose an optimization problem
using a minimax criterion to find a set of constants needed to implement P;.

We derive a lower bound of the probability of a correct selection and a formula for
the infimum of the lower bound over the preference zone.

We derive an analytical expression for the expected total sample size and study

conditions guaranteeing that the supremum over the whole parameter space of the
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expected total sample size occurs at some point where all of the parameters are equal.
We also derive a general expression for the supremum over the whole parameter space
of the expected total sample size under these conditions.

A non-linear optimization problem which one must solve in order to determine the
constants needed to implement P} for location and scale parameter problems and a
relative efficiency of P; with respect to the corresponding single-stage procedure are
defined.

We apply P; to the location parameter problem of univariate normal populations.
Here we provide tables of constants to implement P} and of the relative efficiency for

each case of the equally spaced and slippage configurations.

5.2 Preliminaries

Let #;, t=1,...,k, be k populations which are characterized by unknown scalars
Ai € A, where A is a known interval on the real line. Let Apj <--- < Ay be the
ordered A;’s,

Q={X=(0,--,M)NEA Vi}

the space of all possible underlying configurations of A;’s and 7(;) the (unknown) pop-
ulation with parameter Ay It is assumed that there is no a priori knowledge of the
correct pairing of the elements in {x;} and {7(;}. The goal is to define a two-stage
procedure P} to select the ‘best’ population where for sake of definiteness x(x) is taken
to be the best population. In some cases ;) might be the best population. Of course,
if t (2 < t £ k) populations all have A\; = Ay, the selection of any of these tied
populations accomplishes the goal.

Each x; yields iid observations X;;, j = 1,...,n, which are also independent be-
tween popula.tions. X;; has cdf F; with parameter A;. Furthermore it is assumed that
there exists a sequence of Borel measurable functions {T,} so that T, is defined on n

dimensional sample space and

Ta(Xa,- .-y Xin) = Tin Z, A; asn — oo.
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The assumptions concerning T, are that its cdf Gn(y|);) with support E,"\" 18 absolutely
continuous with respect to Lebesgue measure with pdf ga(y|\;) and {Ga(y|A)|A € A}
forms a stochastically increasing family for each n.

A preference zone will be defined in {2 by means of a function

p:A— R,
where R ia a real line, such that

1. p(-) is continuous and non-decreasing on A
2. p{A)<A VAieA
3. p: A" B A, where A’ = {) € Alp()) € A}.

Define
Q(p) = (X € Qf Ap—y < pOAw)}
and
0°(p) = {X € 0 Mgy = Ay = PO} -

Let hn(-) be a sequence of functions such that for each n
ho(-): En— R
where UyeaE) C E,, satisfying

1. For each n and z, ha(z) > z,

2. For each n, h,(z) is continuous and strictly increasing in z.
Typical examples of k() are given by
ha(z) =z +dn (dn > 0)
for the location-type procedures and

ha(z) = cpz (cn > 1)
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for the scale-type procedures.

The goal of the experimenter is to select a best population. The experimenter
restricts consideration to procedures (P) which guarantee the probability requirement

P{[CS|P] 2 P* V¥ X € Q(p) (75)

where p(-) and P* are specified prior to experimentation. The event [C'S] occurs if and
only if the experimenter selects a best population.

Here we propose an elimination type two-stage procedure P; for selecting a best

population using a restricted subset selection rule in its first stage and an indifference

zone approach in its second stage.

Procedure P;
Stage 1: Take n,; independent observations

Xi(l) j= 17”‘:"11

j
from each 7,1 =1,...,k, and compute the k estimates
Ta(X$,..., X0 =TH, i=1,.. k.
Determine the subset I of {1,...,k} where

I'=(ITS) 2 max{T{), i AEHTEDY 1

1

and

1 1
i S - ST

denotes the ordered T,-(,:i) . Denote by v the associated subset of {my,...m}.

1. If x; consists of one population, stop sampling and assert that the population
associated with Ty is best. |

2. If x; consists of more than one population, proceed to the second stage.

Stage 2: Take n; additional independent observations Xg), j =1,...,ny, from

each population in 7, and compute the cumulative estimates
To( XD, .., XD XD, X =T foriel,
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where n = n,; +ny. Assert that the population associated with max;er Ty, is best using
randomization to break ties if necessary.

There is an infinite number of combinations of (ny,n3, hs,) for given k, m, P* and
p(-) guaranteeing the required probability condition (75), and different design criteria
lead to different choices.

Let S’ denote the cardinality of the set I in the first stage of procedure P; and let

. S___{o; S =1

76
S S >1. (76)

Then the total sample size required by Pj;, TSS say, is
TSS = kny + Sn,.

Let E[TSS|P;] denote the expected total sample size for P; under X. To make a
choice of (ny,n2, hn,) as well as to have the total sample size TSS small, we adopt the
following minimax design criterion.

For given k, m, p(-) and P* choose (n,ns, kn,) to

minimize  sup E5[TSS|Pj]

len
subject t inf P;[CS|Pj] > P*, 77
Ject o Xén(s) A[ [P 2 (77)

where (n;,n;) are non-negative integers and A, is a real function defined as before.

5.3 A lower bound on the probability of a correct selection

The so called LFC of the population parameters for general two-stage procedures has
not been determincd yet. Moreover, even if the LFC of the population parameters were
known, the problem of evaluating the probability of a correct selection associated with
P, when the population parameters are in that configuration would still remain.
However it is possible to determine a set of constants (n;,n3,hs,) (although not
the best set) to implement P} if a lower bound to the probability of a correct selection

can be found and the LFC of the population parameters can be determined for that
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lower bound. Such a set of constants provides a conservative solution to the problem
since it overprotects the experimenter with respect to the probability requirement (75),
this overprotection being purchased at the expense of an increase in E;[T'SS|P;]. In

this section we consider the problem of a lower bound on the probability of a correct

selection and the infimum of the lower bound.

First we derive a lower bound for P;{CS|P;] in Theorem 5.1. This lower bound is
particularly useful since it achieves its infimum over Q(p) at 0°%(p). This result permits

us to construct a conservative two-stage procedure which guarantees the probability

requirement (75).

Lemma 5.1 For any X € 2, we have

P’[ ((kl))nl 2 ma‘x{T[k-m+l]m’h ( [(1:12.,)} ]
h-l *2)

= X Y[ I ¥
puk-m v=1 * =% jesi(k)
I {GY(hn ) - GRWICHE)
i€SU(k)

and

k-1
Px[Tuyn 2 T(jyny, 5 < k] = /_Z Hl GY (y)dGP¥ (y),
: i=

where n = n, + ng,
. ) k-1
{S;-(I), ]=1,...,( ; )}

denote the collection of subsets of size i from

‘U(l) = {17°"vk} - {l}r
Tl = u(l) - Si(Y)

and
G¥Ny) = Ga(ylAy)-
Proof
The proof of Lemma 5.1 is in Santner (1973). O
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Theorem 5.1 For any X € , we have

-1 () .
Besipg 2 X X [ I 69
pmk—m vml “ % jesP(k)
II {GQ(hn(¥)) — GY)(y)}dGE (y)
J€ST(k)
+ [~ T ePwich) - 1. (50)

Proof

BCSIP) = PT)., > max{T{ s BRHTELDY

Ty 2 mT’(:')ul
P'[T(k)m 2 ma'x{T[k-m-b-I]m’ h-l(T[k]n,)} ’
Tiayn 2 T(jpny J < K]

P X[ (k)v., 2 mx{T[k-m-O-l]m’h;ll ( [k],.,)} ]
+Px[T(h)n 2 T(j)m J < k] - 11 (81)

v

v

and hence the result comes from Lemma 5.1. O
Next the infimum of the lower bound will be considered in Theorem 5.2. Lemma 4.1
due to Mahamunulu (1967) and Alam and Rizvi (1966) will be needed again.

Lemma 5.2 For any X € Q(p), we have

inf Pg(T(n, = max{T§) s Bt (T} = jnf 13, m1),

Xeﬂ()
where
Bm) = [ (G (b @R}
g gl llBo s - m, m}dGn, (v13)
and

’g{ )P,'\'[T(k)n 2 T(J)m .7 < k] ln‘{, ‘I’Z(Arn)y
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where

Bn) = [ {GuulpA) G uIN).

Proof
The first part of this lemma was proved in Santner (1975). To prove the second
part, it suffices to show that for all X € Q(p),

Ps(Tm 2 Tims J < k] 2 inf W3(,n).

Define

1; fTan 2T J<Ek
n(T) = o 2 T 5
0; otherwise.

Then
PX[T(k)n 2 T(j)m i< k] = EX[n(T)]

By Lemma 4.1, it suffices to show that n(T) is non-increasing in T{;), for all I < k. Let
us define T’ such that
T’(;),. > Tyn and T'(j),. =TGim Vi#l 1<k

Then it suffices to show that n(T) = 0 implies n(T') = 0. Suppose that n(T) = 0.
However,
n(T) =0

if and only if

Tiyn < T(jyn for some j <k
and this implies that .

Tom < Tn = Tiayn < Ty
or

Togn < Ty 771 = Tiyn < T(jpne T # 1
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Hence, both cases imply 7(T’) = 0. So we get

P[Tuyn 2 Ty 7 < K]
2 [ {Galylp(u) -GN
= Wa(Apg,n)

> jof ¥a(hn),

which completes the proof. O
From Theorem 5.1 and Lemma 5.2, we can get the following result about the
infimum of the lower bound.

Theorem 5.2 For any ) € §)(p), we have

(nf P(CSIP) 2 jaf 100 m) + faf, Ty(An) - 1, (82)
E

where ¥1(A,n) and ¥3(A,n) are defined in Lemma 5.2.

Remark 5.1 For the special cases of location and scale parameter problems, the infi-
mum of the lower bound is independent of \.
(1). Location parameter case; In this case,

Gn(z) = Ga(z = A), ~00 < z,) <00,
the usual choice of ha(-) is -
ha(z) =2z +ds, dn>0,
and the preference zone is given by
pA)=A1-6 6§>0,

that is,
Q(p) = 6) = {AApy — A1 2 6}
Then ¥;(A,n,) and ¥3(A,n) are given by
C(An) = Ol dmymt) = [ {Guy(y +doy + P

.I{GM(H_“ +‘s),k m,m}dGn,(y) (83)
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WA n) = ¥a(,m) = [~ (Galy + H}dGa(y), (84)
, where Go(-) is the cdf of T when X\; =0.
1y .
: (2). Scale parameter case; For this case,
" Ga(z) = Ga(z/)), 220, A >0,
the usual choice of hy(-) is
& ha(z) = caZ, €21,
% and the preference zone is given by
5 p(A) =)/, 6>1,
2
. that is,
;; 0p) = 06) = (N 2 -
:;. Then ¥,(),n;) and W3(A,n) are given by

GOm) =Gl omym) = [ {Guulemby)}
,-:' I{ Gi"(c:vSy)' k—-m, m}dGﬂl (y) (85)
: and
) Ts(\,n) = Ba(b,n) = [ {Ga(69)}"1dGaly),
) -00
r where Gn(-) is the cdf of T;n when A; = 1.
’
t
5.4 Expected total sample size for P,

-. In order to solve the non-linear optimization problem (77! we w-, =~

expression for the Ex[TSS|P;] and then dciermine sup;  *
total sample size TSS cap be written as

TS = kn o~

; where S is defined in (76) The result coner: 5 o

is summarized in the following thevre::
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Theorem 5.3 For any Xe 1, we have

: e w1 () L.
ETSSIP) = km+mX( X Y [ II 696)

tml pmk—m vml “"% jesP(i)

- I {G¥(hu(¥)) - G2(v)}4CE(y)

i€
b
- [ L ez w)ic@)l (87
ot
Proof
EX[TSSrPﬁ = EX[(’ml +n,S)| Py
= kny + ny3 E5[S|P)
= km +na{ E5[S|P}) - B[S’ = 1|P3]}. (88)
Now for any Xe Q,
kw1 (%5

Esr =X Y 3 [ IO 6¥e)

im] pmk—m ym1 “ =% jeSE(i)

+ II {G@(hn()) — G (1)}GY) () (89)
€S
from Theorem (5.1) in Santner (1975). Hence it suffices to show that
kK poo B
Bis' = 1Pl =3 [ T1 Q0! @)d620). (%0)
= =
Now
P;[S’' = 1|P;] = Pslezactly one population is selected|P;)
h _
= Y Pl is the only one selected).
=l
However,
[x(o §s the only one selected]
iff

(B2 (T o) 2 T, Vi # )

ym?
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Hece the result in (90) holds. O
Next we will consider the maximum value of E5[T'SS|P;] over Q. Conditions which
guarantee that the supremum of Ex[TSS|Pj] in  occurs at some point

X=(A1yeees )

for which Afy) = A are given in Theorem 5.4 and a general expression of the supremum
of E¢[T'SS|Pj] in Q under these conditions is given in Corollary 5.1.

The following regularity conditions will be assumed in some of the theorems that
follow.

(i). EX = E, for all A € A.

(ii). For any [A,A3] C A there exists e(y) possibly depending on A; and A3 such
that '

18GA(yIA)/OA] < e(y) ¥ A € [As, Aal,
where
([ e0)dGulbm@IVH [ cr)dGalyli)} <00 VX225 (81)

Santner (1975) proved the following lemma in which conditions are given which guar-
antee that the supremum of E5[S’|P;] in © occurs at some point

x: (Ab...,Ab)
for which Ay} = A where S’ is the cardinality of the set I in the first stage of P;.

Lemma 5.8 If regularity conditions (91) are satisfied and for all A\1,); in Q@ with
A <A

Xl W)y (4120
- %’J"l)h(h (y)u,)ﬂ“;lvi?l >0 a.c. in En, (92)

then Ex[S'|P;] is non-decreasing in Ay on
A(Am) = {2 € AJA < A}

Jor any fized (Apy), - . ., Ayy)-

AR ORI AT S Lt (o <a S




We will consider conditions which guarantee that the infimum of P¢[S’ = 1{Pj]
occurs at some point
A= (Ao a)

for which Ap) = Ay in the following lemma.
Lemma 5.4 If regularity conditions (91) are satisfied and for all A\, A3 in Q0 with
) V.9

OGM (’;;;l(y)lxl)gﬂl (V'AZ)

A dh;}! .
_ GG%‘\(!? 1) o (B3 (¥)] A\z)—%#l <0 a.c. in E,,, (93)

then Py[S’ = 1|P;j] is non-increasing in Apy) on
AQp) = {2 € AlA £ Ay}

Jor any fized (A, . .., Ap)-

Proof
Fix Ap), ..., Apj for the following argument. Then

Pyls’ = 1|Pj] = Ty(%) + Ta( ),

where . :
T = [, L2031 0)4680)

Lk A
M) =3 [ 1] 6904 )60 w).

Bay jumy
=3 =

Now T3(X) can be rewritten as

B = %[ cOkon [ 6RK0)e0w)
=2 /B

1}

[ ] [
= 3 [ G0k [T GO w)edw)dy.




Next integrating T;(}) by parts we obtain that
Ty(X) = constant with respect to Ay
[ ]
- [, O 2 GRS )CR(: )
=
= conslant with reaped to \yj
o A0 ): Rzt ) 2y,

Hence combining terms it follows that

: Pys" = 1|7
= constant with respect to Ay
& &
-1
; +2 ga(:}(h., )
1 -1
\ GO - G B30) oDy
\ and ﬂn&lly
E S’ = 1|P;
' : 56 (b3} (1))
- -1 _..L'l._.!l._ 7)
; > gaa’(h.. ) {25722 00)
: M‘”ﬂ(r*( y2atlyy, (94
: But (93) gives, for every i = 2,...,k,
’ GR(hz! (v))
' v 40 |
‘ —5'-‘-('—)g('7(h“( ))M <0 a.e.in E,,

and hence (94) is non-positive and this completes the proof. O
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Remark 5.2 We can easily show that (92) and (93) are equivalent by wsing the trans-
Jormation t = A} (y) in (93). Hence the conditions

dE«[S'|P;
20
dip)
and ,
dPy(S' = 1|P}] <0
dp)
are also equivalent.

From Lemma 5.3, Lemma 5.4 and Remark 5.2 we can get the following theorem in
which conditions guaranteeing that the supremum of Ex[TSS|Pj] in © occurs at some
point

X=(Myeeesds)
for which Apy) = Ay are given.
Theorem 5.4 Suppose that the regularily conditions (91) are satisfied and for all
A, Az in R with A, < Ay

G A
B m (1)

- ), 222 20 s i B, (58)

Then Ex[TSS|Pj) is non-decreasing in Apyj on
A(Am) = {2 € A]A < Ay}
for any fized (Aﬂ]v-“’)ﬂl)'

Proof
By noting that

E5(TSS|P;] = kmy + ny{ Ex[S'|P3) = Px[S" = 1|P3]}

the result of the theorem is clear from Lemma 5.3, Lemma 5.4 and Remark 5.2. O




Remark 8.8 Condition (95) reduces to the requirement of MLR in the location or
scale paremeter problems.

A general expression of the supremum of the Ex[T'SS|P;] in 2 under the condi-

tion (98) is given in the following corollary.
Corollary 5.1 For every fized Ay < ... < My, if

4P 5

iy
Jor M) in A[Mpgy), then
:x:gEx[TSSl‘P;] - :137(»\, n),
where
A,m)
= gty [ {Ga (b WP gy s — m, m)
={Gam (A3} (9)12)}*~"1dGm (y12). (96)

Furthermors, if the Aypotheses of Theorem 5.4 hold for Ay = Ay, then ¥(),n,) is non-
decreasing in A and hence if there is & greatest element Ao € A, then

sup E¢[TSS|Pj] = v()o,m1).
fea

Proof
This corollary will be proved by using the following three lemmas and Remark 5.2.
a

Lemma 5.5 For every fized My < ... S My, of

'x:gsﬂs'l?il = mw(k. m),
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-" n(A,m)

i = & [, {Gu (bW g Wik - m,m)dGn 1. (97
" B, ™ y

" Furthermore if (95) holds for A\, = )3 then 1 (), n,) is non-decreasing in A and hence
:: : if there is @ greatest element \g € A, then
o

H 'x:gEx[S'l?;] = 11(Ao, M)

o Proof

::' Santner (1975) proved this lemma by using the following lemma due to Gupta and
‘:‘, Panchapakesan (1972) which gives sufficient conditions for the monotone behavior of
. the 7(A,n;) and hence the proof will be omitted. O

‘: .

¢ Lemma 8.8 Let {F(-|[A)|A € A} be a family of absolutely continwous distributions on
! the real line with continwous density f(-|A) and ¥(z,)) a bounded real valued func-
b tion possessing first partial derivatives ¥, and W) with respect to z and A respectively
o and satisfying regularity conditions (99). Then E\[¥(z,))] is non-decreasing (non-
KR increasing) in \ provided for all ) € A

W : flz 'A)ﬂ(z, A) _OF(z|A) W(z, A) > ()0 for a.c. z. (98)

() oz

& The regularity conditions for Lemma 5.6 are given as follows.

, (i). For all A € A, 2222) is Lebesgue integrable on .

2 (ii). For every [A\1,A1) C A and As € A there exists A(y) depending only on ), i =
R 1,2,3 such that

. S B2 FENINEI) ) vae il (99)
:' 8A 83

and A(z) is Lebesgue integrable on R.

Lemma 5.7 If for every fized Mgy < ... < M,

B dPg(S’ = 1[P}] <0

: Ay

N
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Jor Ay) in A[Apg)), then
infreq P5[S" = 1|P3] = inf (A, m),
where
) =k [ {Gu (B3 GIN}dGn (1Y) (100)
Furthermore, if the hypotheses of Theorem 5.4 hold for A\, = );, then (), n,) is
non-increasing in A and hence if there is a greatest element \g € A, then
infgeq PxlS’ = 1|P3] = 1a(doym1).
Proof
It suffices to prove for all ¢ < k and fixed
Me+1] S -+ S Apyg
that
is non-increasing in A on A[Ai4s)] where
@) = (M- s A Mgtags- -+ s Apap)-
Let
X (-0 M)
and note from (90) that Py, {S' = 1|P;} is invariant under permutations of the ele-
ments in X'. So

dPx(,L{S' = 1|P}} - i 8Px,{S' = 1|‘P’z}
d =1 0'\('1

(o)
- qOPx,jS' = 1|73} '
8n) X(e)
But from the proof of Lemma 5.4,
0P, {S' = 1|P} <o.
) S0
102
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Hence the infimum over Q2 of the Py{S’ = 1|P}] occurs at some point where all the Ajz's
are equal. Since

1A m) = E[¥(y, 2)]
for
¥(y,A) = k{Gw, (A3} W)V},
Lemma 5.6 can be applied and the sufficient condition (98) that ¥3()\,n;) be non-
increasing reduces to

OG.,(';.‘&{Q)IA) o (V) - __L(:_«l_&,m(,,-,( ),A)mq VA aep.

The final part of the result is obvious. O

Remark 5.4 For the cases of location or scale parameter problems the supremum of
the Ex[TSS|Pj] in Q is independent of X provided the conditions in Theorem 5.4 and
Corollary 5.1. Under the same framework of Remark 5.1, we have

(1). For the location parameter case:

sup EA{TSS|P])
€0
= byt iy [ (G (y+du) P g2y b~ mym)
—{Gm (v — du,)}*""1dGw, (v), (101)

vhere Gu(-) is the cdf of the Ty, when ); = 0.
(2). For the scale parameter case:

sup E¢[TSS|P}]
 %en

= kny 4 kg [ [{Goy(emt)} g0y k — m,m)
~{Go (v/cm) 114G (4), (102

where Gy (-) is the cdf of the Ty when A; = 1.
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5.5 An optimization problem and the performance of P}

In this section we first consider the optimization problem (77), which one must solve
in order to determine (n;,nj, hy,,) which is necessary to implement P4 and then we
consider the performance of P} relative to the corresponding single-stage procedure in
terms of the total number of sample sizes needed.

As we noted in Section 5.3, the LFC of the parameter vector X in {(p) has not been
determined in the general case and hence we replace the exact infx.q P5[CS|Pj] by the
conservative lower bound on that probability given by the right hand side of (82). For
the special case of location parameter problems under some appropriate conditions the
optimization problem (77) can be written as follows.

For given k, m, § and P* choose integers n, and n; and a real d,, > 0 to

minimize  kny + kn, /.:’[{G,.1 (y+ d,.,)}"'lI{c—,.%“ﬁ%; k —m,m}
~{Gum (y — dw)}*1dGx, (v)
subjectto [ {(Guy(y +duy + 8}

. I{%; k —m,m}dGn, (y)

+ [~ {Gnsm)8 + P 4G m)(3) = 1 2 P, (103)

where G, (-) is the cdf of the T;, when A; = 0.

For the case of scale parameter problems under some appropnate conditions the
optimization problem (77) can be written as follows. For given k, m, § and P* choose
integers n; and n; and a real c,, >1to

minimize kn, + kn,y /_:[{Gm (c,.,y)}""l{a%; k~m,m}
~{Gm (¥/cm)}**1dGw, (v)
subject to /_: {G.., (cm 89)}*
g ,,‘;, ik —m,m}dGuw, (v)
+ /_: {Gim+n)(69)} G 4m)(y) = 1 2 P",
where G,(-) is the cdf of the T;, when A; = 1.
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As a measure of the efficiency of P} relative to that of the corresponding single-stage
procedure when both guarantee the same probability requirement (75), we consider the

ratio, termed relative efficiency(RE), :
E{TSS|P))

kn, .

where n, is the sample size needed in the single-stage procedure. %
2

5.6 Applications ,
In this section we apply the results of previous sections to a problem of selecting the :
\

population with the largest mean from k univariate normal populations.

Suppose that

Ky~ N(p.-,a’), 1= 1,...,k,

oW )

where the common variance o2 is known and the experimenter is interested in selecting
the population having largest u;. We take

-

1 n
== Xii =Xin, \i=pi

v

¢

(o}

e Aty = ) ‘:
Yy — pi 3

Ga(yl) = B(F=E—EE), :

where & is the cdf of a N(0,1) random variable. Since this is a location parameter X
problem, we take ‘:
"

pp)=p-6 6§>0 g

and : he ‘,
h = ¥

)=t ;

so that 3:
Q(p) = {Apw — pp-1) 2 8}. V

Noting that the distribution of the mean of a sample from a normal population has Ef
MLR with respect to the location parameter, and using Theorem 5.2 and Remark 5.1 ,:1
105 3
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2 [T 0+h+symo)
el k — m, m}dd(y)

PR . Dy

g + [ 18y + svm Fralo)} () - 1, (105)
:‘ ~
: and using Corollary 5.1 and Remark 5.4,
2 EgT
sup Bx[TSS(P;]
3] _
=kt kny [ {9+ B Ity k — m, m)
‘ —{2(y — h)}*"]d®(»). (106)
\" -
%
X Hence the conservative non-linear optimization problem can be reduced to finding
{
s integers ny,n3 and a real number A > 0 to
‘ minimize kny+kny | [{®(y + A)}UT {‘% sk —m,m}
[ ‘/::-1 "
: —{2(y - h)}"")d2(y) (107)

subject to /:: {®(y + b + 6/mr/0)}*?

RS k — m,m}dB(y)

+ [ {80 + sVmFralo)laee) - 12 P, (108)

for the given values of k, m, § and P*.

Table 30, Table 31, Table 32 and Table 33 contain the real valued solutions (i, fi, 7;)
of the above optimization problem, which are necessary to approximate the con-
stants (ny,n3,h) needed to implement P} for P* = 0.75,0.90,0.95,0.99, k = 3,4,5,
m=2,3,4 <kand §/c =0.1,0.5,1.0,2.0,4.0. All computations were carried out in
double-precision arithmetic on a Vax-11/780. The source program in Fortran for the
SUMT algorithm given by Kuerter and Mize (1973) was used to solve the non-linear

R
- e o e
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optimization problem and Gauss-Hermite quadrature with twenty nodes was used to

compute the integrals.
Using above constants, we can define an elimination type two-stage procedure P}
as follows;

Stage 1: Take n; independent observations

- Xg),j=1,...,n1,

from each x;, i = 1,...,k, and compute the k sample means
M _ Lshym
X(m = ’E-:IX,(, yt=1,...,k
Determine the subset I of {1,...,k} where
I= {iIX5) 2 max{XGL mppmr Xisiey — ho/ VA1),
where
1) 1)
fim <00 S Ay
denotes the ordered X(,:Z Denote by x; the associated subset of {xy,...7}.
1. If x; consists of one population, stop sampling and assert that the population
associated with X},,h is best.
" 2. If x; consists of more than one populations, proceed to the second stage.

Stage 2: Take n, additional independent observations X\, j = 1,...,n,, from

each population in 77, and compute the cumulative sample means

b |
Xin= —(E xP+3 xPyviel,

J=1
where n = n; 4+ nj. Assert that the population associated with max;er Xin is best using
randomization to break the ties if necessary.
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The relative efficiency RE of the two-stage procedure P} relative to the correspond-
ing single-stage procedure is given by
n.-x ("‘)

= --—[lml +n¢2 f' {2 X II e+ y#di/o)

pmb-m vl jESE()

- I {®w+h +asbiifo) - B(y + \fanbis/o)}
€309

]
‘E"(V-il'*'\/ﬁ_x&‘i/")}“(v)l, (109)
Joié

where (f4y, i3, h) is the real valued solution of the non-linear optimization problem (107)
and (108),

8ij = pta — Buy
S?(i) and 37(¢) are defined as in Lemma 5.1 and #, is the real solution to

L+ Vadlo)}  dd(z) = P.

Of course, RE depends on § and P* as well as ji.
Table 34 and Table 35 contain the values of the relative efficiency for the two special

cases, namely the equally spaced and slippage configurations, for P* = 0.75, 0.90, 0.95, 0.99,

k=3,4,5 m=2,3,4 <k and §/c =0.1,0.5,1.0,2.0,4.0. All computations were car-
ried out in double-precision arithmetic on a Vax-11/780 and Gauss-Hermite quadrature
with twenty nodes was used to compute the integrals.

From Table 34 and Table 35, we see that for both configurations the values of RE
are less than or equal to one except for some smaller values of k, m and P*. Hence the
two-stage procedure is more efficient than the single-stage procedure in terms of the
expected total sample sizes. Furthermore, the effectiveness of the two-stage procedure
appears to be increasing as each of k, m and P* increases for fixed values of the others.
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Table 30: Constants to implement the two-stage procedure P} for selecting the largest
normal population: P* = 0.75.

e . 1 O e s

0.490798e+4-00

0.1973¢+01
0.4941e+00
0.1234e+00

0.1883¢4-01

0.138729¢4-04
0.556164¢+-02
0.130041¢+-02
0.347003¢+-01
0.860007¢4-00

0.1268¢4-03
0.5118e+-01
0.1281¢4-01

0.119543e+-04
0.478226¢1-02
0.119857e+02
0.296801¢+-01
0.747229¢+-00

RO X XX

C- -

0.198250e+4-04
0.790048¢+-02
0.190236¢+-02
0.498001¢4-01
0.124523¢+4-01

-

0.2987¢4-01
0.4985¢+-01
0.4906e+-01

0.5001¢+01

0.177798¢+4-04
0.T113540+032
0.177830¢4-02
0.444596¢4-01
0.111149e4-01

0.3067¢+-01
0.307is+01
0.4987e4-01
0.4989¢+4-01
0.4908e+4-01

0.1600060+-04
0.676307¢+-02
0.160322+4-02
0.423068¢+-01
0.1087640+4-01

- - .- e

- o W >

-

Tlod Al N T8

T3V AR M *
41: 200,80, 0% 2,4
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i Table 31: Constants to implement the two-stage procedure P} for selecting the largest
‘ normal population: P* = 0.90. ©

e

-k e s

Pt had o

P

P .
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Table 32: Constants to implement the two-stage procedure P} for selecting the largest
< normal population: P* = 0.93.
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Table 33: Constants to implement the two-stage procedure P} for selecting the largest
normal population: P* = (.99.

L]

., o
SRR LR TN
S yv Yy

4.00 } 0.00000+00 | 0.45170+-00 | C.40000+01 | 0.430347e+-01
0.80800+4-03 | 0.80040+03 | 0.18140+01 | 0.0638440+04
0.3641¢+02 | 0.32190+02 | 0.1819e+01 | 0.268537e+03

83 0.884504-01 | 0.800004-01 | 0.40080+-01 | 0.600026¢+-02
0.2138e+01 | 0.20160+-01 | 0.4007e4-01 | 0.167257e4-02
0.83400+-00 | 0.5038e+00 | 0.5000e+01 | 0.418141e+01
0.88840+03 | 0.7841e4-03 | 0.151904-01 | 0.0800160+04
0.38360+02 | 0.31440+403 | 0.18310401 | 0.2720080+-03

4 0.88410+01 | 0.7889e+01 | 0.1520w+01 | 0.680018e+-02
0.221004-01 | 0.196404-01 | 0.1522¢+01 | 0.17000¢e+-02
0.8827e+00 | 0.40000+-00 | 0.1520e+01 { 0.425008e+-01
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Table 34: Relative efficiency of the two-stage procedure P} for selecting the largest
- pormal population: Equally spaced configuration. )
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h Table 35: Relative efficiency of the two-stage procedure P for selecting the largest
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