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Lisp: A language for stratified design

Harold Abelson and Gerald Jay Sussman

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

August 1987

Abstract

We exhibit programs that illustrate the power of Lisp as a language
for expressing the design and organization of computational systems.
The examples are chosen to highlight the importance of abstraction
in program design and to draw attention to the use of procedures to
express abstractions)

Just as everyday thoughts are expressed in natural language, and formal
deductions are expressed in mathematical language, methodologica thoughts
are expressed in programming languages. A programming language is a
medium for communicating methods, not just a means for getting a computer
to perform operations-programs are written for people to read as much as

\they are written for machines to execute.
This article exhibits programs that illustrate the power of Lisp as a lan-

guage for expressing the design and organization of computational systems.
The examples are chosen to highlight the importance of abstraction in pro-
gram design and to draw attention to the use of procedures to express abstrac-
tions. Any programming language provides primitive components, means by
which these can be combined, and means by which patterns of combination
can be named and manipulated as if they were primitive. With appropriate
abstractions to separate the specification of components from the details of
their implementation we can provide a library of standard components that
can be freely interconnected, allowing great flexibility in design., --

A language for design should not unnecessarily limit our ability to make
abstractions. Most traditional programming languages, however, place ar-
bitrary restrictions on procedural abstractions. Three common restrictions
are: (1) requiring that a procedure be named and then referred to by name,



rather than stating its definition at the point of reference; (2) forbidding
procedures to be returned as the values of other procedures; (3) forbidding
procedures to be components of such data, structures as records or arrays.

The well-publicized programming methodology of top-dowri, strictured

design produces systems that are organized as trees. Following f his method-
ology, a system is designed as a predetermined combination of pa rts t hat have
been carefully specified to be combined as determined. Each of the parts is
itself designed separately by this same process. The methodology is flawed:
if a system is to be robust it must have more generality than is needed for
the particular application. The means for combining the parts must allow
for after-the-fact changes in the design plan as bugs are discovered and as
requirements change. It must be easy to substitute parts for one another and
to vary the arrangement by which parts are combined. This is necessary so
that small changes in the problem to be solved can be effected by making
small changes in the design.

To this end expert engineers stratify complex designs. Each level is con-
structed as a stylized combination of interchangeable parts that are regarded
as primitive at that level. The parts constructed at each level are used as
primitives at the next level. Each level of a stratified design may be thought
of as a specialized language with a variety of primitives and means of combi-
nation appropriate to that level of detail. For example, in electrical design,
resistors and transistors are combined as analog circuits to make TTL, a
language appropriate to digital circuits. TTL parts are in turn combined to
build processors, bus structures, and memory systems appropriate to com-
puter architecture. The real power of Lisp is that its unrestricted abstractions

support the construction of new languages, greatly facilitating the strategy
of stratified design.

The programs in this article are written in the Scheme dialect of Lisp.
Scheme is an especially good vehicle for exhibiting the power of procedural
abstractions because, to a greater extent than other Lisp dialects, Scheme
does not distinguish between patterns that abstract over procedures and
patterns that abstract over other kinds of data.
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1 Expressing abstractions as procedures

Procedural abstractions can hell) elucidate a process by allowing us to express
it as an instance of a more general idea. Consider the simple square root
program of figure 1. The algorithm here is implemented in a straightforward
way-the internal procedure try is iterated to repeatedly improve a guess
for the square root until the guess is good enough.

Although the square-root implementation is straightforward, it does not
express the underlying idea in generalizable form. It is not built out of
components that can be easily isolated for use in solving other problems. A
clearer way to formulate the algorithm is as a process of computing a fixed
point: the square root of a radicand x is the number y such that y = x/y or,
in other words, y is a fixed point of the procedure

(lambda (y) (/ x y))

How do we find a fixed point of a function? In favorable cases, we can
iterate the function until the result is close to the input. For example, during

* . boring meetings many of us have noticed that we can find the fixed-point
of the cosine function by entering I on a pocket calculator and repeatedly
pressing the cosine button. After a while the calculated value converges to
approximately .739085. We can capture that general idea as the fixed-point
procedure shown in figure 2. Fixed-point, given a one-argument procedure
f and an initial value, keeps applying f until successive values are close to
each other.

We can attempt to find square roots by

(define (sqrt x)
(fixed-point (lambda (y) (/ x y)) 1))

Unfortunately, this doesn't work. Unlike the cosine function, applying the
indicated procedure over and over does not converge to a fixed point, but
rather alternates between the same two values, which are on opposite sides
of the square root.

In situations like this we can often force convergence by averaging. The
average-damp procedure shown in figure 3 takes as its argument a proce-
dure that computes a function f and returns as its result a procedure that
computes a function with the same fixed point as f, but whose oscillations
are damped out by averaging successive values. Figure 3 also shows how to

3



use average-damp to express the square root method as a process of finding
the fixed point of an average-damped function.

The advantage of this formulation is that it decomposes the method into
useful pieces-finding fixed-points of general functions and using damping
to encourage convergence. These ideas are formalized as procedural abstrac-
tions, identifiable units that are available to be ,used in other contcxts.

2 Stratified design

Peter Henderson [5] used stratified design in a beautiful analysis of the con-
struction of the "Square Limit" woodcut of M. C. Escher. lie created a
sequence of languages that makes it easy to describe such images. There is
a language of primitive pictures that are constructed from points and lines.
Built on top of this is a language of geometric combination that describes how
pictures are placed relative to one another to make compound pictures. Built
on this is a language that abstracts common patterns of picture combination.

In Henderson's system, a picture is represented by a picture-drawing pro-
cedure that takes a rectangle and draws an image scaled to fit the rectangle.
At the lowest level of description, a picture-drawing procedure can be gen-
erated beginning with a collection of geometric elements specified in terms
of (x,y) coordinates with respect to the unit square (0 < x < 1;0 < y : 1).
Figure 4 shows two simple pictures, diamond and leg, each constructed from
a set of line segments by the procedure primitive-picture. Besides seg-
ments, other picture elements appropriate to this level are circles with spec-
ified radii and centers, spline curves through designated points, and so on.

The primitive-picture procedure itself (figure 5) takes a list of line
segments and returns the corresponding picture-drawing procedure. For any
rectangle, the scaling and shifting required to transform geometric elements
to fit the rectangle can be described by an affine transformation on points
in the plane that maps the unit square to the rectangle. The point-map
procedure shown in figure 6 takes a rectangle and returns the appropriate
transformation for that rectangle.

The next level of description in Henderson's system is a language of ge-
ometric combinators that place pictures beside or above one another and
rotate pictures through multiples of 90 degrees. For instance, the beside
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combinator illustrated in figure 7 adjoins two pictures horizontally so that
their widths are in a given ratio.

One important feature of Henderson's geometric combinators is that the
set of all pictures is closed under combination: The beside of two pictures is
itself a picture and can therefore be further combined with other pictures. In
addition, combinators can be abstracted: We can express common patterns
of picture combination as new picture combinators defined in terms of other
combinators. For example, a triangle combination is formed by placing one

picture above two copies of another as shown in figure 8. Since combinators
are expressed procedurally, we have all the power of Lisp at our disposal
in defining complex combinators. Figure 9 shows the recursive combinator
right-push. The combinator language derives its power from the closure
and abstraction properties of the combinators. That is why it can describe
seemingly complex figures using only a few simple ideas.

The combinators themselves are manipulated at a third linguistic level
that describes common patterns of combining picture combinators. Just as
the square root algorithm above is elucidated by expressing it as a fixed-point
computation, right-push can be re-expressed as an instance of a general
pattern of "pushing" -repeatedly applying a combinator:

(define right-push (push beside))

Figure 10 shows how to define push as a procedure that transforms combina-
tors to combinators. Having isolated the push abstraction, we can apply it
to other combinators such as triangle, and we can use the resulting derived
combinators to produce simple, stratified descriptions of complex pictures,
such as the one in figure 10.

The stratified description of the picture in figure 10 is flexible. We can
vary the pieces at any level: We can change the location of a point in the

primitive picture leg, we can replace the compound picture animal by some
other basic repeated unit, we can replace triangle by some other combin-

tor to be pushed, or we can replace push by some other transformation of

combinators.
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3 Metalinguistic abstractions

Procedural abstractions are a source of power in creating stratified designs--
we build structures by composing procedures, we abstract common patterns
of usage, and we build upon this framework. But for some problems the ap-
propriate means of combination may be awkward to express as compositions
of procedures; towers of abstractions may not suffice.

The natural programming style for Lisp is functional-the structural units
are single-valued functions implemented by procedures. Within this style,
Lisp accommodates object-oriented programming and imperative program-
ming. Traditional algorithmic languages such as Pascal, C, and FORTRAN
are more naturally imperative-the statements and the subroutines we build
modify the memory of an abstract machine. In a logic programming language
such as Prolog the natural structural units are (multi-valued) relations rather
than (single-valued) functions or imperative operations. In simulation or
artificial-intelligence applications it is natural to describe processes in event-
driven style by specifying collections of rules that correspond to conditions
or goals. Each of these programming paradigms is legitimate, but no sin-
gle paradigm is sufficient-large systems typically have some parts that are
naturally described using one style and other parts that are more naturally
expressed in other ways.

Part of the wonder of computation is that we have the freedom to change
the framework by which the descriptions of processes are combined. If we
can precisely describe a system in any well-defined notation, then we can
build an interpreter to execute programs expressed in the new notation, or
we can build a compiler to translate programs expressed in the new notation

into any other programming language.
When we design a system that incorporates an application language, we

must address metalinguislic issues as well as linguistic issues. That is to
say, we must consider not only how to describe a process, but also how to

describe the language in which the process is to be described. We must view
our programs from two perspectives: From the perspective of the interpreter
or compiler, an application program is merely data, and the interpreter or
compiler operates on that data without reference to what the program is

intended to express. When we write programs in the application language,
we view that same data as a program with meaning in the application domain.

6
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Interpreters and compilers are just programs, but they are special pro-
grams. An application program to be interpreted or compiled is not a compo-
sition of abstractions of the language in which the interpreter is implemented
or to which the compiler translates. This linguistic shift transcends the limits
of abstraction.

One can implement interpreters and compilers in any programming lan-
guage, but Lisp's facility with symbolic data provides unusually good support
for developing such subsystems. The Lisp community regards metalinguistic
abstraction as a standard programming technique. Almost every large Lisp
program includes interpreters and compilers for several specialized languages,
each tailored to a specific part of the application problem.

3.1 A rule language

Consider the problem of simplifying algebraic expressions. For example, it
should he possible to simplify

(x + sin(xy)) (sin(xy) - x) + cos(xy) cos(yx)

to 1 - x2 . The simplification process may be captured as a collection of
rules and a strategy for applying them. The rules embody the commutative
and distributive laws, various trigonometric identities, and so on. Each rule
describes how to reduce expressions of a certain form to simpler equivalent
expressions. Given an expression, one finds an applicable rule, transforms
the expression accordingly, and then attempts to simplify the transformed
expression. The process continues until one reaches an expression to which
no rules apply.

Figure 11 shows some algebraic-simplification rules written in a language
that was designed specifically for implementing simplifiers. A rule in the
language has three parts: a pattern, some extra conditions, and a skeleton.
The pattern specifies the classof expressions to which the rule is applicable.
Patterns may contain constant terms and pattern variables that indicate ei-
ther individual elements or arbitrary segments-sequences of zero or more
elements-that can appear at designated positions in the expression. One
can also use pattern-variable predicates to restrict the range of values of an
element or segment. A rule is applicable to an expression if the rule pattern
matches a subexpression and if the extra conditions are satisfied. The result

7



of a rule application is the original expression with the matched subexpres-
sion replaced by the instantiated rule skeleton. The instantiated skeleton is
formed by substituting values provided by the match in place of the indicated
skeleton variables.

In all, about 30 rules such as the ones in figure 11 suffice to produce an
algebraic simplifier that operates on expressions represented using Lisp-style
prefix notation. Having created the rule language, we can apply it to other
problems as well by specifying other sets of rules. For example, we could do
algebraic simplification using some other syntax for algebraic expressions, or
we could build a peephole optimizer for a compiler by specifying a collection
of rules that reduce specified sequences of computer instructions to more
efficient, equivalent sequences.

3.2 The rule interpreter

Programming a simplifier in the rule language allows us to focus on the rules
themselves, without becoming distracted by concerns about the strategy and
mechanism by which rules are applied. These issues are faced by the rule 0
interpreter.

Given a list of rules, make-simplifier, shown in figure 12, returns a
simplification procedure that applies these rules. This procedure embodies
a rule-application strategy whereby rules are repeatedly applied until the
expression is unchanged. Using this strategy with a set of arbitrary rules
can be dangerous-the rule application process may not terminate, or the
result of applying the rules may not be well-defined. With this strategy, we
must be careful to propose rules that yield a reduction process---one that will
eventually terminate with a canonical form.

The mechanism of rule application is implemented by try-rules, which
is shown in figure 13. The pattern-matcher used by try-rules (see fig-
ures 14, 15, and 16) is written in continuation-passing style. In this style,
a procedure is passed continuation procedures that are to be called when
the procedure is done. Continuation-passing style can be used to implement
many sophisticated program control structures. The matcher exploits con-
tinuation style to implement the backtracking required to handle segment
variables.

The difficulty with segment variables is that, they allow a pattern to match
The
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a given data item in more than one way. For example, the pattern

((?? x) (?? y) (?? x) (?? z))

can be matched against the expression

(12 31 23 1 23)

to give the dictionary

y :(2 3)
z :(2 31 23)

or the dictionary

x:(1 2)
y :(3)
z :(3 1 23)

( to- or thl)e dictionary

x: (1 23)

y : ( )I
z :(1 23)

, or 13 other possible dictionaries.

~One way to handle such multiple matches is to design the matcher so that
it returns a list of all possible dictionaries that could complete the match.
But this would be very inefficient-for a complex pattern there could easily
be thousands of possibilities and there is no need to generate them all. An
alternative idea is to have the matcher generate a single dictionary to be used

,, by the rule interpreter, together with a way to go back and generate more
~possibilities if the first one proves to be unsuitable, for example, if the values
,, in the dictionary turn out not to satisfy the rule predicate. The strategy of
~returning to a previous choice point in a program to try more possibilities is

~called backtracking. While there are many ways to implement backtracking,

continuation passing fills the need nicely, because the "place to go back to"
cani be einbedded in the failure continuation.

Iw
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Figure 16 shows the procedure segment-match, which uses continuations
to implement backtracking in this way. Where there is no value for the
pattern variable already in the dictionary, the matcher is free to bind the
segment variable to any initial segment of the datum. The choice is made

using the internal procedure try-segment, whose argument is the rest of
the data after the segment to be tried. The success continuation for this
choice is the same as for the original call. The failure continuation reruns
try-segment choosing a longer initial segment. Successive failures will try

longer and longer segments until either the match succeeds or the data runs
out and the original fail continuation is invoked.

3.3 Memoizing to avoiding redundant computation

If a subexpression appears in an expression more than once, the rule-interpreter
will go through the work of simplifying the expression each time it appears.

For example, in simplifying (+ (* x 2 y) (* x 2 y)), the subexpression
x 2 y) is simplified twice. Such redundancy is typical of programs that

use recursive decomposition. Perhaps the best-known example of this phe- 0

nomenon is in computing the Fibonacci numbers using the recurrence rela-
tion:

0 if n = 0
Fib(0) = 1 if n = 1

Fib(n-1)+Fib(n-2) if n>2

Interpreting this recurrence as a recursive procedure leads to a process in
which the time required to compute Fib(n) grows exponentially with n, due
to the redundant computations.

One could implement another algorithm for computing Fibonacci num-
bers, or make ad hoc modifications to the rule interpreter's control structure.
However, there is a technique for dealing with this problem in a uniform way
by using memoized procedures. A memoized procedure maintains a history of
the values it has been asked to compute. When asked to compute a value, the
procedure first checks to see if that value has already been computed. If so, it
returns the remembered value immediately. If not, it computes the value and
records this for future reference. Figure 17 shows a higher-order procedure
memoize, which, given a procedure f as argument, returns a memoized ver- I
sion of f. The memoized version of f is called in the same way that f is, but

10
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will run be much faster because it avoids redundant computation. Figure 18
shows the make-simplifier procedure redefined using the memoizer.

Like the fixed-point procedure discussed earlier, memoize expresses a
general method of computing as a higher-order procedure. Also, as with
fixed-point, the power of this approach is that we can divide programs
into meaningful modules, thus separating the particular task of simplifying
expressions or computing Fibonacci numbers from the general strategy of
memoizing.

4 Conclusion

People who first learn about Lisp often want to know for what particular
programming problems Lisp is "the right language." The truth is that Lisp
is not the right language for any particular problem. Rather, Lisp encour-
ages one to attack a new problem by implementing new languages tailored to
that problem. Such a language might embody an alternative computational
paradigm, as in the rule language. Or it might be a collection of proce-
dures that implement new primitives, means of combination, and means of
abstraction embedded within Lisp, as in the Henderson drawing language. A
linguistic approach to design is an essential aspect not only of programming
but of engineering design in general. Perhaps that is why Lisp, although the
second-oldest computer language in widespread use today (only FORTRAN
is older), still seems new and adaptable, and continues to accommodate cur-
rent ideas about programming methodology.

5 A note on Scheme

Programming languages should be designed not by piling feature on top of
feature, but by removing the weaknesses and restrictions that make addi-
tional features appear necessary. The Scheme dialect of Lisp demonstrates
that a very small number of rules for forming expressions, with no restric-
tions on how they are composed, suffice to form a practical and efficient
programming language that is flexible enough to support most of the major
programming paradigms in use today.
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(define (sqrt x)
(define epsilon i.Oe-1O)

(define (good-enough? guess)
(< (abs (- (square guess) x))

epsilon))

(define (improve guess)
(average guess (/ x guess)))

(define (try guess)
(if (good-enough? guess)

guess
(try (improve guess))))

(try ))

Figure 1: Scheme is a block-structured language, incorporating the internal definitions

and lexical scoping of the Algol family of languages into a modern Lisp dialect. This

simple Scheme procedure computes the square root of its argument using the method

of successive averaging attributed to Heron of Alexandria. (Numerical analysts: Please

forgive us for the end test.)

13
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(define (fixed-point f initial-value)

(define epsilon 1.Oe-1O)

(define (close-enough? vI v2)

(< (abs (- vi v2)) epsilon))

(define (loop value)

(let ((next-value (f value)))

(if (close-enough? value next-value)

next-value
(loop next-value))))

(loop initial-value))

(fixed-point cos 1) --> .739085

Figure 2: This procedure implements the "boring meeting" method of finding a fixed

point of a function. Note the use of this procedure to find a fixed point of cosine.

14
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(define (average-damp f)
(lambda Wx
(average x (f x))))

~(define (sqrt x)

(fixed-point (average-damp (lambda (y) (/x y)))
M

Figure 3: Average-damp is a procedure that takes a procedure f as an argument and

returns a procedure, the value of (lambda Wx ... ), as a value. Such general methods

combine to allow a very clear description of Hleron's algorithm.
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(defia diamond (define log

(lot ((vI (vortex 0.5 0)) (let ((vl (vortex 0.125 0))
(v2 (vertex 1 0.5)) (v2 (vertex 0.25 0))

(v3 (vertex 0.5 1)) (v3 (vertex 1 0.75))

(v4 (vertex 0 0.5))) (v4 (vertex 1 0.875))

(primitive-picture (vS (vortex 0.25 0.333))

(list (v6 (vertex 0.125 0.5)))
(segment vI v2) (primitive-picture

(segment v2 v3) (list
(segment v3 v4) (segment vi ye)

(segment v4 vi))))) (segment v6 v4)

(segment Y3 v5)
(segent vS v2)))))

Figure 4: At the lowest level of description in Henderson's language, pictures are specified

as collections of individual geometric elements. Here are two simple pictures, diamond and

log.

16



(define (primitive-picture segments)
(lambda (rect)
(for-each
(lambda (segment)

(drawline ((point-map rect) (start-point segment))
((point-map rect) (end-point segment))))

segments)))

Figure 5: The primitive-picture procedure takes a list of segments and produces a
picture. A segment is a structure from which we can extract a start point and an end

point. Drawline is a procedure that draws a line between two specified points. For-each

takes a procedure and a list and applies the procedure consecutively to each item in the

list.

17
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(define (point-map rect)
(lambda (point)

(+vect (scale-vector (x-coordinate point) (bottom-edge rect))
(scale-vector (y-coordinate point) (left-edge rect))
(origin rect))))

Figure 6: A rectangle is a data structure from which we can select vectors representing

the bottom and left edges of the rectangle (that is, the vectors that run from the origin

of the rectangle to the lower right corner and to the upper left corner) and the vector
that runs from the origin of the coordinate space to the origin of the rectangle. Scheme,

as a dialect of Lisp, provides list opezations from which we can construct compound

data objects such as rectangles and vectors, together with operations on compound data
objects, such as vector addition and scaling. Point-map produces a transformation that,

for a given rectangle, maps the interior of the unit square onto the interior of the rectangle.

The transformed image of a point (z, y) is obtained by scaling by the bottom edge by z,
the left edge by y, and summing these together with the origin vector.



(define legs (beside leg (rotate90 leg) 0.3))

(define (beside picti pict2 ratio)
(lambda (rect)

(picti (left-subrectangle rect ratio))
(pict2 (right-subrectangle rect ratio))))

Figure 7: Here is a compound picture formed from the primitive element leg. The

picture language includes geometric combinators for adjoining pictures horizontally and

vertically, and for rotating pictures by 90 degrees. Beside takes two pictures and a ratio

and returns the procedure that, given a rectangle, splits the rectangle according to the
ratio into right and left subrectangles and draws one picture in each part.
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(define animal (triangle diamond legs 0.3))

(define (triangle picti pict2 ratio)
(above picti

(beside pict2 pict2 0.5)
ratio))

Figure 8: The triangle combinator places one picture above two copies of another. We

can use triangle to combine diamond and legs.
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(right-push leg 4 0.4)

(define (right-push pict n ratio)

(if (a n 0)
p ict

(beside pict
(right-push pict (- ni 1) ratio)
ratio))

Figure 9: Right-push is a recursively-defined combinator that repeatedly adjoin n copies
of a picture, scaled by a given ratio. Here we see the result of adjoining leg to itself 4
times.
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((push triangle) animal 3 0.5)

(define (push combiner)
(lambda (pict n ratio)
(define (basic-combination p)
(combiner pict p ratio))

((repeated-application n basic-combination) pict)))

(define (repeated-application n operator)
(if (- n 0)

identity-operator
(compose operator

(repeated-application (- n 1)

operator))))

(define (compose f g)
(lambda (x) (f (g 

x))))

(define identity-operator (lambda (x) x))

Figure 10: Push is a higher-order combinator that transforms combinators to more

elaborate combinators. The helper procedure repeated-application takes a positive

integer n and a procedure p and returns the procedure that applies p n times.
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Rule 1: C C- C? x) C? y)) ;pattern

none ;extra condition

(+ (: x) (*-1 C: y))) ) ;skeleton

Example: (- a b) --> (+ a (* -1 b))

Rule 2: ( C* C?? a) (+ (? b) (?? c)) C?? d))
none

(+ (* (:: a) (: b) C:: d)) (* C:: a) (+ C:: c)) C:: d))) )

Example: (* v x (+ p q r) z) > (+ C* V x p z) (* v x (+ q r) z))

Rule 3: ( (+ (? cl number?) ? c2 number?) (?? s3))

none
(+ (: (+ cl c2)) (:: 3)) )

Example: (+ 3 4 x y) --> (+ 7 x y)

Rule 4: ( C* C?? 81) ? fl) ?? s2) ? f2) ?? 3))

(same-base? fl f2)

C* ( (: (base fl)) (: C+ (exponent 11) (exponeut 12))))

C:: si) C:: s2) (:: 3)))

Example: C* a ( b c) ( x 3) y ( x 4) (- z 2))

--> (* ( x 7) a (+ b c) y (- z 2))

Figure 11: Here are some algebraic-simplification rules expressed in a reduction-rule

language, together with examples of their use. Question marks in patterns denote pattern

variables. The pattern in rule 1 matches any list of three elements that begins with a

minus sign. The colons in skeletons indicate that the corresponding values for the pattern

variables are to be'substituted when the skeleton is instantiated. Double question marks,

as in rule 2, denote segment variables-these can match any sequence of 0 or more ele-

ments. Double colons in skeletons specify that the segment value is to be spliced in at this

position during instantiation. Rule 3 illustrates the use of predicates for pattern variables.

Here cl and c2 must satify the number? predicate. In general a pattern-variable predicate

can be any Lisp procedure. Rule 4 uses an extra condition to specify that factors f1 and

f 2 must have the same base if their exponents are to be combined. Observe that instanti-

ating the skeletons for rules 3 and 4 requires more than just substitution-embedded Lisp

expressions must be evaluated.
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(define (make-simplifier the-rules)
(define (simplify-exp exp)

(let ((result
(try-rules (if (compound? exp)

(map simplify-exp exp)

exp)

the-rules)))

(if (equal? result exp),0
result
(simplify-exp result))))

simpl ify-exp)

Figure 12: Given a set of rules, make-simplifier produces a procedure that applies

these rules to expressions. It recursively simplifies every subexpression of a compound

expression and simplifies the resulting combination of the simplified parts. Simplification

is iterated until the expression is unchanged.

24



(define (try-rules exp the-rules)
(define (scan rules)

(if (null? rules)

exp
(match (pattern (car rules)) exp (make-empty-dictionary)

;; procedure to call if the match fails

(lambda 0 (scan (cdr rules)))

;; procedure to call if the match succeeds

(lambda (dict fail)

(if (check-predicate (rule-condition (car rules))

dict)

(instantiate (skeleton (car rules)) dict)

(fail))))))

(scan the-rules))

Figure 13: Try-rules performs a sequential scan through the rules, using a pattern

matcher to check whether a rule is applicable. Match is designed to be called with five

arguments-a pattern, an expression, a dictionary of bindings for pattern variables, a

procedure to be executed if the match fails, and a procedure to be executed if the match

succeeds. If the match is successful, try-rules checks that the values in the dictionary

satisfy the rule's extra conditions. if they do, the dictionary is used to instantiate the

skeleton part of the rule. This is returned as the result of the rule application. If the

dictionary fails the extra condition test try-rules continues just as if the match had

failed, by calling the fail procedure.
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(define (match pat dat dict fail succeed) 'A

(cond ((eq? pat dat)
(succeed dict fail))

((arbitrary-element? pat)
(element-match pat dat dict fail succeed))

((constant? pat)
(if (same-constant? pat dat) (succeed dict fail) (fail)))

((start-arbitrary-segment? pat)
(segment-match pat dat dict fail succeed))

((constant? dat) (fail))
(else
(match (car pat) (car dat) dict

fail 01
(lambda (dict fail)
(match (cdr pat) (cdr dat) dict

fail
succeed))))))

Figure 14: Match is a recursive comparison that proceeds by case analysis. Pattern
variables are of two classes, elements and segments, handled by element-match and
segment-match. If the pattern and the datum are both general compound expressions,
match calls itself recursively to match the first element of the pattern against the first
element of the datum. The fail continuation for this sub-match is the original fail con-
tinuation. If the sub-match succeeds, the rest (cdr) of the pattern is matched against the
rest of the datum using the dictionary produced by the sub-match and the continuations
specified for the original match.
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(define (element-match pat dat dict fail succeed)

(let ((vname (var-name pat)) (p (var-restriction pat)))

(let ((v (lookup vname dict)))

(if (entry-exists? v)
(let ((val (element-in v)))
(if (and (equal? val dat)

(apply-restriction p val))
(succeed dict fail)

(fail)))
(if (apply-restriction p dat)

(succeed (extend-dictionary vname dat dict) fail)

(fail))))))

Figure 15: Element-match takes a pattern variable, a datum to match, a dictionary,

and fail and succeed continuations. If there is already an entry for the variable in

the dictionary, the match succeeds if the value in the entry is the same as the datum to

be matched. Otherwise the original dictionary is extended by adding a binding of the

pattern variable name to the datum. The extended dictionary is passed to the succeed

continuation.
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(define (segment-match pat dat dict fail succeed)0 (let ((vname (var-name (car pat))) (p (var-restriction (car pat))))
(let ((v (lookup vname dict)))
(if (entry-exists? v)

(let ((val (element-in v)))
(if (restrict-segment p val)

(let ((rest (after-initial-segment val dat)))
(if (not (eq? rest 'no-initial-segment))

(match (cdr pat) rest dict fail succeed)
(fail)))

(fail)))
(let () ;to permit internal definition
(define (try-segment rest)
(define (try-longer-segment)
(if (null? rest) (fail) (try-segment (cdr rest))))

(if (restrict-segment p (make-segment dat rest))
(match (cdr pat)

rest
(extend-dictionary mname

(make-segment dat rest)
dict)

try-longer-segment
succeed)

(try-longer-segment)))
(try-segment dat))))))

Figure 16: The procedure that handles segment matching implements backtracking
via a failure continuation that tries successively longer segments. The utility procedure
after-initial-segment returns the rest of the datum after a given initial segment, or
notes that the initial segment of the datum does not match the desired segment.
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(define (memoize f)

(let ((table (empty-table)))
(lambda (x)

(let ((seen (lookup-in-table x table)))

(if (valid-table-entry? seen)

(table-entry-value seen)

(let ((ans (f x)))
(insert-in-table! table (make-table-entry x ans))

ans))))))

(define fib
(memoize
(lambda (n)

(=n 1) 1)

(else (. (fib C- n 1)) (fib - n2)))))

p-p

Figure 17: Memoize is a higher-order procedure that transforms its argument procedure f

into a new procedure that computes the same result, only avoiding redundant computation.

The recursive fib procedure uses the memoizer to compute (fib n) in time proportional

to n.N

29)

% % e2 2M.



eil

(define (make-simplifier the-rules)
(define simplify-exp

(memo ize
(lambda (exp)

(let ((result
(try-rules (if (compound? exp)

(map simplify-exp exp)
exp) J

the-rules)))
(if (equal? result exp)

result
(simplify-exp result))))))

simplify-exp)

Figur~e 18: Memoizing the simplifier can greatly improve the performance of the rule

interpreter.
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