
AD-R18690 LOGIC PROGRAMMING AND KNOWLEDGE
BASE NINTENNCE(U) L/2

SYRACUSE UNIV NY SCHOOL OF CONPUTER AND INFORMATION
SCIENCE K A BOMEN 38 SEP 96 RFOSR-TR-87-1170

tCL ASSIFIED RFOSR-82-1292FG 12/5 NL

'I

SU"
W .1

im

1~ 1.2

-SOM

" U U U S S S S S U U f % .

WOASHRISD

REPORT DOCUMENTATION PAGEAD-A 185 600 11.REST'RICTIVE 0AKN1

3. 0O1STRIBUTIONIAVAILASILITY OP REPORTECTEApproved for public release; distributiona
b.OaC&.ASS'PCATIO#/00W94GRAOlfr~~l unilimited. I -,_I-

4.IFONMING ORGAN8ZATION R _,NUMSERS) S. MONITORING ORGANIZATION REPORT NUMI -IIII-(S)

DAFOS.T. 8 7 -1170
6& .4AMEf OF 'ERPORiM04G 31GANIZAT1ON% . OFl#CU" SYM40. ?a. NAME Of MONITORING OROANJZATIOIO

Syracuse University Air Force Office of Scientific Research
61. ADORan lCit,. SOON Old ZIP COO) 71 soomm Ma.,. SOON M, zIP code)
School of Computer & Info. Science Directorate of Msthematical & Information
313 Link Hall, Syracuse University eces, Bolling APB DC 20332-6448
Syracuse, NY 13210 _ _ _ _ __ y_)

all. "AM OP PUJWDINGISPONSORING OFPICE SYMWOi O. PROCUREMENT INSTRUMENT IDINTIPICATION IWflE

01"R"NIZATIONfam"
AP H AFOSR-82-0292

e.. 101y. SaIt. ZIP CedO) 110. SOURCE O UNDIN NS.

PROGRAM PRWOCT T' WORK Uit
ELEME1NT 0O. NO., NO

lollIng- DC 20332-6448 61102? 2304 !i "
11. TITS (Alvedk Regwly Chi~fj4eagum

Logic Programming and Knowledge Base Maintenance
IL PERSONAL AUTNORUJ!
Professor Kenneth A. Bowen
131L TYPE OP REPORT 1 3b6 TIME a §j14. aAT) OPRPRM~. & w PAO& COUPT

Fin al P R JO. F
O ,EPO RT ,,

16. *UIPMIKIAINTARY NOTATION

1S. COGATI WOOS I. SUSJECT TERMS (Comw omu wero if o.m. OW eEadwyby bh ambir)
pie GROUP SUB. GA.

19. ASTRACT (Coli n uipew If oteceuar7 and asdoftnI by Nock number

The maintenance of large volatile knowledge bases is the focus of this project. The
viewpoint from which the study is being conducted is that of certain extensions of current
logic programming systems, primarily the so-called "metalanguage" systems in which a logic
programming language is amalgamated with a portion of its metalanguage. Majorthrusts of the
work include (1) study of the extent ot which such representation mechanisms as frames and
semantic nets can be logically treated (thus yielding a measure of independence of representat T
for the rest of the work), and (2) the use of the "metalanguage" facilities for the
maintenance of consistency and integrity under change and other questions of analysis of the
knowledge base.

28, OIeTR#IUTION/AVAILAGILITY OP ABSTRACT T1. ABSRACT SECURITY CLASIPICATION

, UNCLAMIPIED/UNL.IMITEIO 1 SAME AS RPT. 0 OTIC USERS C3 UNCLASSIFIED

UL NAME O R SPONSIBLE INDIVIDUAL TLIPIONE NUMBER OFPICE GYMSOL
Outloi Am Cede)j ,_(202) 767- Z c 73 NM

00 FORM 1473. 3 APR EDITION OP I JAI* 731 S ,GSOLTS. UNCLASSIFIED
L* SECURITY CLASSIP ICATIOqI OF TWO PAGE

V Z%

Contents

A. Introductory Material and Achievements 2

Abstract and Summary 2
1. Logic Programming 4
2. Logic and Knowledge Bases 12
3. Project Plan & Achievements 17
4. Students & Publications 22

B. metaProlog Design & Application 23

1. Introduction 23
2. Meta-level Programming and metaProlog 28
3. The metaProlog System 35
4. Quantification and Naming:. Language Foundations 43
5. Programming Examples: Poirot 53
6. Programming Examples: Bottom-Up Parsing 61
7. Co-routining and Parallelism 64
8. Programming Examples: Inland Spills 67
9. Programming Examples: Circuit Diagnosis %
10. Frames and Arrays 91
11. Programming Examples: Truth Maintenance 96
12. A metaProlog Simulator 117
13. Semantic Foundations 138
14. Implementation Considerations 146
References 150

(Parts 1-7 of Part B written with Tobias Weinberg

AFOR.Tit 8 7-1170

LOGIC PROGRAMMING
AND

KNOWLEDGE BASE
MAINTENANCE

Final Report
tothfe

Air Force Office of Scientific Research
Grant AFOSR-82-0292

Principal Investigator:

Professor Kenneth A. Bowen
School of Computer and Information Science

313 Link Hail, Syracuse University,
Syracuse, NY 13210 Acc,7

(315)-4233564 rm

1)if
Copy

'Fos AI-C

J' ~ df ~ ~ p 0~ VC ~6

Introductory Material & Achievements 2

Part A. Introductory Material and Achievements

Original Abstract

'The maintenance of large volatile knowledge bases is the focus of this
project. The viewpoint from which the study is being conducted is that of
certain extensions of current logic programming systems, primarily the
so-called "metalanguage" systems in which a logic programming
language is amalgamated with a portion of its metalanguage. Major
thrusts of the work include (1) study of the extent to which such
representation mechanisms as frames and semantic nets can be logically
treated (thus yielding a measure of indepe9dence of representation for the
rest of the work), and (2) the use of the 'rmetalanguage" facilities for the
maintenance of consistency and integrity under change and other
questions of analysis of the knowledge base." ,

Extended Summary

Computer-based systems to aid human intelligence analysts are
instances of a generic class of systems known as tracking systems. Such
systems minimally consist of a knowledge base in which records
representing the analyst's concerns are stored. A useful organization of
such knowledge bases distinguishes between events and event-lines.
Events are relatively discrete in time, such as signal reports or activity
reports, while event-lines are extended, continuous sequences of events.
Events may be thought of as discrete points, "plotted" on some event-line.
One may also impose a hierarchical structure among event-lines with
individual event-lines constituting components of some 'higher-level"
event-line. For example, a group of event-lines representing individual
aircraft flight tracks might constitute a sortie event-line. Note that some
individual events, e.g., a particular signal report, may be plotted against
the higher-level sortie-line, rather than against any particular aircraft
event-line. The first problem to be noted is that of designing appropriate
data structures to represent events, event-lines and their relationship in the
knowledge base.

The second problem arises from the dynamic character of the
knowledge base. New entrics (or deletions of existing entries) are steadily
made, both by the hum.an analyst and possibly by other computer
programs. The problem is to avoid degrading the knowledge represented in

•,._..,...._,-.. .-..-. - .-- .- ----- --.-- -...-- >%

Introductory Material & Achievements 3

the database via mistaken or inconsistent entries, and to flag "disturbing"
or 'non-nominal" entries. This is the niainenance problem. In systems of
more than trivial scope, this will require a maintenance subsystem
capable of examining and manipulating the knowledge base.

The third problem is that of assisting the analyst in generating
hypotheses and scenarios, and using these to reach conclusions concerning
events and event-lines in the knowledge base. These include such problems
as whether a given event should be plotted against a particular event-line,
or projecting likely extensions of an event-line (i.e., projecting likely events
to occur on a given event-line).

This project dealt with basic research directed towards providing a
programming system containing powerful tools adequate for the solution of
these problems. The project also set out to test these tools in the
preliminary exploration of methods of solution for the last problem. The
focus of the work was a system called metaProlog which belongs to the
Fifth Generation family of programming languages. metaProlog is a direct
extension of Prolog designed to remedy some of the latters fundamental
inadequacies. Prolog's attractiveness for the management of complex
knowledge bases lies in its rule-based deductive character. However,
ordinary Prolog's facilities for manipulating the databases themselves and
for reasoning about them are quite poor and of a non-logical character.
The major step on the way from Prolog to metaProlog lies in regarding
databases, or theories as they are called, as first-class objects, capable of
being passed as arguments to procedures and returned as values of
variables. This extension provides a very powerful programming tool,
useful in constructing data structures for representing events and event-
lines in a more flexible manner similar to a generalized notion of frame,
while at the same time providing a logically sound method of manipulating
multiple database and contexts.

Logic Programming 4

1.0 LOGIC PROGRAMMING

Logic programming utilizes formalized mathematical logic as the
basis of programming languages for controlling computers. Its principal
practical realizations are the Prolog systems invented by Colmerauer and
Kowalski.

1.1 Proofs And Programs

Formal logics, which constitute the basis of logic programming, are
concerned with the construction of proofs for assertions.

The overall structure of logic as a computational formalism can be
described as follows. A program is produced by constructing a theory T
together with a distinguised formula A. The theory T constitutes a logical
description of the domain in which the computations are to take place (e.g.,
blood diseases and therapeutic antibiotics, econometric equations for
forecasting, messages in an intelligence assistance system). The formula A
is an activation method for the program; input and output is accomplished
by means of the free variables in A. Suppose that A(X,Y) has the free
variables X and Y, where X is intended to be used for input and Y for
output. Then given any term s describing an input, a logical computation
amounts to a search for a term t together with a proof P of the assertion
A(s,t). The proof P is based on the theory T. If such a term t and proof P
can be found, the computation is said to succeed and the term t is its
output. If no such pair can be found, the computaion is said to fail.

1.2 Procedural Interpretation

The key to the power of logic in programming lies in the existence of
two interpretations for formulas A belonging to a theory T. The first, the
declarative interpretation, views A as describing some property of the
entities under consideration. This is the traditional view of logical
formulas, and is the interpretation intended when A is used as part of a
program specification. The second, the procedural interpretation, views A
as giving directions for the solution of some problem. This procedural
interpretation, devised by Kowalski and Colmerauer, is especially
perspicacious for the Horn clause logic systems which include the Prolog
systems.

Logic Programming 5

1.3 Representability

The desired amalgamation of object language and metalanguage uses
a construction which is a special case of the representation of an intuitive
or model-theoretic relation R by a predicate symbol P in the context of a set
of sentences (i.e. , a theory).

In general:

A predicate symbol P represents a relation R in the
context of a set of sentences T if and only if:

There is a naming relation which pairs individuals i
from the domain of R with terms i' of the language of T in
such a way that the following holds:

for all i1 , i 2 , ... in in the domain of R,

(i1 , i2 , ... , in) e R if and only if T I - P(i 1 ' , i2 ,.. ., in').

The symbol I - indicates the provability relation. That is, if A is a formula
and T is a theory, then

TI-A

means that:

There exists a proof of A based on the axioms of T.

* Now suppose that R is the provability relation I-L of a language L. (In
our intended applications L is the full standard form of logic or some subset
such as Horn clause logic.) To represent I -L in another language M
(possibly identical to L) it is necessary to name sentences, sets of sentences
and other linguistic expressions of L by means of terms of M. In general, if
A is a linguistic expression or a finite set of expressions of L we will write
either "A" or simply A' to stand for a term of M which names A.

Logic Programming 6

1.4 The Representation Of Provability

Let demo be a binary predicate symbol of M, where M functions as a

metalanguage for T. If PR is a set of sentences of M, we say that

demo represents I -L relative to Pr if and only if

for all finite sets of sentences T of L and all single
sentences B of L,

T I -L B if and only if Pr I -M demo(T', B').

Recall that T' is the name of T in language M. Note that this notion of
representability does NOT require that the negation of demo,(if it
expressible in M) represent unprovability in L relative to Pr. Indeed the
undecidability of first-order logic entails that for no representation of
provability in L (in a finitary system) does the negation of that
representation in turn represent unprovability in L

It is essential to note that nothing in the foregoing definitions forces
the languages L and M to be distinct. While our intution is to read these
definitions with the assumption that L and M are distinct languages,
careful examination shows that the definitions containing nothing
requiring L and M to be distinct. Thus it is conceivable that L be identical
to M. In this special case, the definition of representability would read as
follows:

demo represents I -L in L relative to Pr if and only if:

for all sets T of sentences of L and all single sentences B,

T I-L B if and only if Pr I-L demo(T', B').

We can carry this even further. Since the quantifier "for all sets T"
ranges over all sets of sentences of L, and since Pr is one of the sets of
sentences of L, we would obtain the following consequence for any language
L and theory Pr satisfying the foregoing defintion:

For all single sentencos 13 ,,(._

Pr I -L B if and nlv if Pr I -L demo(Pr', B').

lil. K~~p - " - ' ~ bf . ",". ". " . ". ". ". ","#

|7W

Logic Programming 7

The existence of such languages is demonstrated by Gddel's famous
construction showing the Incompleteness of Arithmetic, as we will discuss
in more detail later. It turns out that in general, beginning with any
reasonable first-order language LO, one can extend L0 to a language L

which contains a theory Pr satisfying this definition. In particular, this is
true for the languages use for Horn-clause logic, the basis of Prolog. In
fact, the basic expressiveness of Prolog-type languages is sufficient to
directly construct their own proof predicates, as shown in the following.

The following two clauses D1-2 constitute the top-level of a Horn clause
representation of Horn clause provability. (Both the object language L and
the metalanguage M are Horn clause logic.) By virtue of the procedural
interpretation of Horn clauses, DI-2 can also be regarded as the top level of
an interpreter for Horn clause programs.

D1) demo(PROG,GOALS) <- empty(GOALS).

D2) demo(PROG,GOALS) <-
select(GOALS, GOAL, REST),
member(PROC, PROG),
rename(PROC, GOALS, VARIANT-PROC),
parts(VARIANT-PROC, CONCL, CONDS),
match(CONCL, GOAL, SUB),
apply(CONDS & REST, SUB, NEWGOALS),
demo(PROG, NEWGOALS)

1.5 A Database Management Example

Database management requires a combination of object language and
metalanguage. The object language is used to pose ground (yes/no) queries
against the database. The metalanguage is needed to specify the database,
to update and maintain the database as it changes in time and to pose
queries which extract useful information from the database. The following
top level of a simplified database management system (DBMS) illustrates
how the demo predicate can he used to interface the object language and
metalanguage.

In this description of A I)MNS, the predicate

assimilate(CURR_ I). INPUT, NEW_DB)

P% "4 .

Logic Programming 8

describes the relationship which holds when the assimilation of an input
sentence into a current database results in a new database (possibly
identical to the current one). The terms x & y and x-y name the sets xufy)
and x-{y) respectively.

Al) assimilate(CURRDB, INPUT, CURR DB) <-
demo(CURRDB, input).

A2) assimilate(CURRDB, INPUT, NEW _DB) <-
belongs-to(INFO, CURR DB),
INTER DB = (CURRDB - INFO),
demo(INTERDB & INPUT, INFO),
assimilate (INTERDB, INPUT, NEWDB).

A3) assimilate(CURRDB, INPUT, CURR DB) <-
demo(CURRDB & INPUT, false).

A4) assimilate(CURR_ DB, INPUT, CURR DB & INPUT) <-
independent(CURRDB, INPUT).

The clauses A1-4 respectively deal with the folowing cases:

* Al: The new information is already implied by the database;
* A2: The new information implies information in the database;
* A3: The new information is inconsistent with the database;
" A4: The new information is independent from the database.

Clause A2, in particular, selects one item of information in the current
database, removes the item if it is implied by the rest of the database
together with the INPUT, and recursively assimilates the INPUT into the
smaller database. The constant symbol false names the empty clause,
which denotes contradiction Therefore

demo(T', false)

expresses that T is inconst.,,.,

The predicate

•........•.... o-. . ,. .. •. •.. --.-... "

Logic Programming

independent(CURRDB, INPUT)

can be represented in a variety of ways. The clause

A5) independent(CURR DB, INPUT) <-
- demo(A1-3, "assimnilate(CURRDB, INPUT, NEWDB)").

in particular, uses negation by failure to state that the input is independent
from the current database if it cannot be assimilated by any of the preceding
procedures A1-3.

The clauses A1-5 can be imbedded in a program which processes input

streams against the current database. The predicate

process(CURR.DB, INPUTSTREAM, NEW DB)

describes the relationship which holds when assimilating a stream of
inputs into a current database results in a final new database:

P1) process(CURRDB, nil, FINALDB) <- FINALDB = CURR_DB.

P2) process(CURRDB, INPUT.RESTIN, FINAL_DB) <-
assimilate(CURR_- DB, INPUT, INTER DB),
process(INTERDB, RESTIN, FINALDB).

The clauses P1-2 and A1-5, together with the appropriate lower level
clauses and the representation Pr of provability, constitute a complete, if
somewhat simple-minded, database management system.

1.6 The Amalgamation

We have already noted that object language problems of the form

"Find a proof of B from T in L"

(which we will briefly write as T ? I -L B) can be replaced by metalanguage

problems

Pr ? I -M demo(A', I.

Consequently, the metalanguage can replace the object language
altogether. That is, we could dispense with the object language as an

Fps; -.

Logic Programming 1 0

independent entity, and work in the metalanguage with the names of object

language formulas by using demo. On the other hand, many object
language problems can be solved more naturally and more efficiently in the

object language than in the metalanguage. That is, the proof search
meachanism in the object language solves the problems more efficiently
than the search for proofs of "demo(...... in the metalanguage. This is
because "demo" is a kind of interpreter, while the object language "directly
executes" the problems (at least from the relative point of view of comparing
the object language and metalanguage proof search mechanisms.) Thus it
is desirable to combine the directness of the object language with the power
of the metalanguage in an amalgamation which facilitates the
communication of problems and their solution between them. Such
communication is accomplished by means of the following linking rules:

1) Pr I -M demo(A', B')

A I-LB

2) A I-LB

Pr I-M demo(A', B')

These rules simply restate the two parts of the definition of
representability. The first rule allows the metalanguage to communicate
metalanguage solutions of object language problems to the object language.
The second rule allows the object language to communicate the solutions of
its problems to the metalanguage. (These linking rules are what
Weyhrauch[1980] calls reflection principles. The use of EVAL in LISP is
also similar to the use of these rules.)

To summarize thus far, M functions as a proper metalanguage for L
if the following hold:

a) There is a naming relation which associates with every linguistic
expression of L at least one variable-free term of M. (A single expression of
L might have several associated names in M. But every variable free term
in M is associated with at most one expression of L.)

b) There is a set Pr of sentences of M (involving the symbol 'demo') which

Logic Programming

is a representation of I -L by means of a predicate symbol 'demo' such that
the linking rules (1) and (2) hold.

The only restriction on the languages L amd M imposed by this
definition is that the metalanguage M be adequate for the representation
of the provability relation of L. Horn clause logic is more than adequate
to function as a metalanguage for itself. Notice, moreover, that the
amalgamation allows the case L=M, where the two languages are
identical. This case is of special importance, as it allows the formulation
both of sentences which mix object language and metalanguage, and of
self-referential sentences.

Logic & Knowledge Bases 1 2

2.0 LOGIC AND KNOWLEDGE BASES

2.1 LogicalView Of Knowledge Bases

The traditional logical views of databases views a database model-
theoretically as a particular model M of a certain set D of first-order
formulas. The logic programming view sees a database proof-theoretically

as a theory T whose axioms include D (cf. Nicolas and Gallaire [19783). In
the model-theoretic view, answering a query amounts to truth-functionally
evaluating the query over the model M. From the proof-theoretic point of
view, answering a query amounts to attempting to prove the query in the
theory T. This proof-theoretic view seems to solve the traditional problems
of null values and incomplete information (cf. Reiter[1981]). For the
management of change in volatile complex knowledge bases, the proof-
theoretic point of view appears to provide tools to intelligently manage the
complexity engendered by complex queries and updates. This is because
proofs provide explicit connections between elements of the database,
whereas truth-functional evaluation provides no such connections.

2.2 Correctness Of Knowledge Bases

In one way or another, every knowledge base (KB) models some aspect
of the "real" world. The correctness of the fit between the knowledge base
and the world must be maintained in the face of change in the world (which
must be matched by changes in the KB). The minimal constraint to be met
is that after each change, the KB remain self-consistent. But this alone is
insufficient to maintain correctness, since many changes would leave the
KB self-consistent, but no longer correctly representing the intended portion
of the real world. Additional constraints, among them the usual sorts of
integrity constraints, are needed to control the change. (It is important to
note that integrity is a meta-level concept relative to the object language.
Integrity constraints are properties which are predicated of object language
formulas or theories, and as such are metalevel character.) However,
consistency remains the key issue, since the additional constraints are
used simply by requiring that the changed KB remain consistent with
respect to these constraints. This is part of the problem of truth
maintenance.

4V

Logic & Knowledge Bases 1 3

2.3 Truth Maintenance

The core practical problem of truth maintenance is one of efficiency: if
a proposed update or new fact contradicts the present knowledge base, this
must be discovered in reasonable time. (Of course, deciding what to do
about it -- ignore the update or revise the knowledge base -- must also be
accomplished efficiently.)

The fundamental aspect of this project's approach to efficient truth
maintenance is the utilization of the theory machinery of the metaProlog
system to record computed proofs and justifications, maintain
sophisticated proof-theoretic information about the knowledge base, and
express "control" information about how to go about verifying consistency
in particular settings. For example, let the knowledge base To be regarded

as the union of (in general, non-disjont) consistent theories To = T 1 U T2

Suppose A is a formula such that T u (Al is inconsistent. By the classical
Joint Consistency Theorem (cf. Shoenfield [1967]), there must be a formula
B of the common language of T 1 and T 2 U (A) such that T 1 proves not(B)

and T 2 U (A) proves B. That is, we have:

Ti I- -,B and T21- B.

If T 1 and T 2 are suitably chosen so that the common language is
exceedingly small, the possible forms for B are severely constrained. In the
optimal case, B must be a variant of A. But then the search for
n o inconsistency can be restricted from all of To to a search for a proof of

not(B) from T1

Note that since theories are now regarded as "first-class objects", they
themselves can enter into relations in a database. Thus the information
necessary for maintenance of the pairs (T1 ,T2) for a primary knowledge
base can be represented in rule form in a (secondary) knowledge base.

2.3.1 DerivingExpectations -

The 'theory mechani-,, f metaProlog can be used to formulate and
maintain "expectations ,. ,r>: the knowledge base. These include both
static expectations of the ' t.pfied by integrity constraints (e.g., for a
particular data relation r, X.i 'V, entered values for Y must be integers in
the range 50 to 300), ani 1.-nimic expectations regarding patterns of

.

Logic & Knowledge Bases 1 4

change. For example, if over a given period of time, updates for r(x,Y) have
all caused the values of Y to be monotonically increasing in time, the
system should "expect" that future updates of r(x,Y) will furthur increase
the values of Y. Such dynamic expectations can either be derived by the
system or can be included as iron-clad constraints in the basic integrity
machinery expressing the "fit" between the knowledge base and the world it
models.

When a proposed update contradicts a basic integrity constraint or a
derived constraint, the system must react, either questioning the quality of
the data involved in the proposed update, or revising the knowledge base to
accomdate the update. The basic constraints can have logic procedures
attached to them for specification of such reactions. The derived
constraints can have their "proofs" attached to them to guide the reaction
process.

The project explored "what can be said" about the knowledge base
using the facilities of metaProlog. The sorts of "things to say" may include
more sophisticated static integrity constraints than can normally be
expressed, as well as dynamic constraints. To cater to the expression of
dynamic constraints, the knowledge base will almost certainly incorporate
temporal references, either through "time-stamping", as suggested by
Kowalski[1981], or using of a "validity interval" which is attached to each
assertion and which can contain variables at either end of the interval.
Beyond the rather elementary dynamic constraint suggested above, the
project explored the expression of sophisticated descriptions of expectations
for the knowledge base. These can include alternative outcomes depending
on events in the world being modelled. A particularly interesting use of
such alternatives would be in the construction of alternative schenarios in
intelligence knowledge bases, such as those monitoring space missle
launches,

2.3.2 Knowledge Base Analyst -

In addition to formulating specific (static or dynamic) constraints, the
facilities of the metalanguage can be used to formulate knowledge base
analysis rules. For example:

, . , , ,_ . , . ,.:.: .,.f .2.'..2..'. ' 5 f ' " . - - .

Logic & Knowledge Bases 1 5

If a relation has been updated in such a way that all its
arguments save one are fixed, and the values of this last
argument are increasing numbers, and if the period over
which such updates have persisted is at least N time periods,
then it is reasonable to expect these increases to continue.

Using this point of view, rule-based "knowledge base analyst" expert
systems can be constructed. Such expert systems would be expected to
contain "universal" rules applicable to most knowledge bases as well as
domain specific rules conditioned by the domain of the particular
knowledge base being controlled.

2.3.3 Logic And Knowledge Representation.

The theoretical portions of the project attempted to remain
independent of particular knowledge representation choices. Several
routes to this end suggested themselves. The first is to regard the
machinery of elementary frames and semantic nets as "implementation
overlays" on a basically proof-theoretic relational scheme, treating them as
sophisticated indexing schemes or storage grouping schemes. The widely
used inheritance relations between frames, such as "is-a" or "a-kind-of',
appear to be logically treatable by use of the "semantic net as indexing
scheme" coupled with the expressive capabilitie.; of the metalanguage.
Roughly, if p and q are frames, and if "p is-a q" holds, then:

(1) Logically, the pair (p,q) is a tuple in the is-a relation, but the
implementation of "is-a" may be network rather than relational "behind the
scene"; and

(2) Logically, p inherits properties from q via the metalanguage rule:

(V F, g)[prop-offF, q) & name-oftg, 'F(p)') & is-a(p,q) (R)

-+ demo(T,g) I

Here "prop-ofIF, q)" means that F is a property holding of instances of the
generic frame q, "name-of(g, 'A'Y' means that g is a (metalanguage) name
of the formula A, and dcnokT, A') means that A is provable in the theory
T. From a logical point of view, deduction is necessary to use (R) to
conclude that F(p) holds. However, the network implementation of is-a
extends to a network implementation of(R) to allow the conclusion F(p) to be
obtained by fast pointer following.

:... .. ,.. .. ,,o,.- , .- .- .:, ,. ,.,,%.-.._ . . .: . -.¢ : ? ov J

Logic & Knowledge Bases 1 6

2.3.4 Virtues Of The Logical Approach -

This logical approach to truth maintenance has several fundamental
virtues:

1. The expressiveness of the extended metalanguage appears to allow the
complete expression of the necessary constraints on a volatile knowledge
base;

2. If the logic system is used not only as a constraint language, but also
as the programming language for knowledge base implementation (as well
as query language], proving the correctness of a knowledge base
implementation becomes a feasable possibility because the gap between
constraint and implementation expression is so narrow;

%

Pj Pla & c e 17

Project Plan & Achievements 1 7

3.0 Project Plan and Achievements

The original project set out to explore these and related theoretical
ideas, to attempt to build a prototype extended metalanguage/knowledge
base maintenance system, and to exercise it with one or more non-trivial
knowledge bases.

Project Staff and Contributors

The following persons were employed as graduate assistants at
various times during the project: Hamid Bacha, Aida Batarekh, and
Tobias Weinberg. Mr. Weinberg was also employed as a research associate
during the second year of the project. He made very substantial
contributions to the work.

The following persons, while not directly employed on the AFOSR
grant, have made substantial contributions to metaProlog and its
applications. Some have been graduate students at Syracuse University
who, while supported from other sources, worked on aspects of the project,
or are colleagues from other institutions who have contributed by their
valuable discussions with us: Kevin Buettner, Ilyas Cicekli, Keith
Hughes, Robert Kowalski, Robert Moore, Hidey Nakashima, Andy Turk,
Maarten van Emden, and Christopher White.

Original Schedule

Period 1: Theoretical work, including elaborating and working out the
approaches listed above; detailed examination of some existing systems;
experiments with an existing experimental metalanguage interpreter;
preliminary design work on prototype metalanguage system
implementation.

Period 2: Continued theoretical work; preliminary design of expert
knowledge base analyst; t\tt,l.ions of metalanguage system design to
support results of theorvt c.,I ,vork; construction of prototype extended
metalanguage system.

A e

Project Plan & Achlevements 18

Period 3: Experiments with expert knowledge base analysts; refinements of
design for knowledge base analysts and construction of full prototype
analyst; experimental operation of knowledge base maintenance/analysis
system using one or more non-trivial knowledge bases.

Summary Of The Work

We extensively, but not exhaustively, surveyed much of the literature,
and became convinced that many of the advantages of frames and semantic
nets can be captured in logic programming systems by a combination of
new storage organizations and relatively minor modifications of the
interpreters. In the case of frames, this was fairly well worked out, and one
version was originally partially installed in the experimental
metalanaguage interpreter coded in DEC-10 Prolog. The technique which
was used in this first approach was to organize the storage for the clauses
concerned with frames according to the terms to which the predicates
apply, rather than according to the predicate being applied, as is the
standard technique. This allows the predicates applying to a given term
(say their first argument) to be stored together, rather like a generalized
record structure. Some of these predicates can be IS-A or A-KIND-OF
predicates whose second arguement is another frame. The modifications to
the interpreter allow it to take advantage of inheritance along these
hierarchies without distorting the logic on the surface of the program. The
use of this technique -- grouping information according to the term to
which it applies -- is being utilised in a similar way to capture the
applications of semantic nets. This approach works quite well and is
perfectly logical for static frames. It also allows updates for non-static
frames by use of assert and retract, since the frame is represented in the
database. For determinate programs, this has a logical basis. However, if
a program must backtrack over an update to the frame, ordinary
implementations of Prolog backtracking cannot resent the frame. Proper
behavior under backtracking can be regained by extending the
implementation to support a backtrackable assert and retract." However,
the simplicity of this implemu,.itation loses the logical semantics.

We developed a socH,r .iproach to the implementation of frames
based on the use of Pro!,. - -i. ctured terms. These terms are quite like
labelled records in conv(-w., I lprogramming languages, and are quite
appropriate for the repr-, ' ,' o f frames. Again, this approach works
very well for static framn,- I equires no change to the basic Prolog
implementation. However. t., ,',r to dynamic, updatable frames, a form of

|~

Project Plan & Achievements 1 9

destructive assignment must be utilized. This, of course, is on the face of it
highly non-logical. But like our first approach, for determinate programs,
it can be given a logical basis. But once again, if Luie program must
backtrack over frame updates, the changes introduced cannot be recovered.
However, by extending the system to support what is known as "event
trailing", it is possible to both recover the changes and to regain the logical
semantics, even in the face of backtracking. We will discuss this further
later in this document.

The most promising approach is the representation of frames by
means of theories in the metalanguage system, which is discussed
extensively in Part B of this document.

We explored the capabilities of our original experimental
metalanguage interpreter (written in standard Prolog) and extended it
substantially in the process. These extensions went in two directions:
Expressing some existing expert systems in the metalanguage, and
beginning to build knowledge base management systems. The ultimate
goal of the latter of course was systems with extensive truth maintenance
capabilities, as described above. In doing this, we developed a powerful
technique whose potential has yet to be fully developed. The technique can
be briefly described as follows. Starting from the traditional database point
of view, we tend to think of a knowledge base as a "flat" item, a collection of
concepts and facts about some particular kinds of objects (e.g., diseases and
human beings.) Moreover, we tend to visualize truth- and integrity-
maintenance mechanisms as "higher-level" entities supervising the
development and change of the base-level knowledge. However, once
theories have been accepted as first-class entities in their own right, the
base-level theory can "talk about" the theories which make up its
maintenance system. Thus the base-level theory can contain a predicate

integrityTheory(X)

which "points to" the theory X used to maintain basic elementary integrity
of the database under updates. The database manager can be coded so as to

look for such a predicate and use the corresponding integrity theory
whenever an update to the base-level theory occurs. We have included a
simple example of such a database manager, database, and integrity theory
later in this report.

In the realm of expert svtems, we extensivly explored two systems: a
version of the RAND Corporation's ROSIE-based Inland Spills expert for

Project Plan & Achievements 20

Oak Ridge, and a fault finder for digital devices based on work of a student
(K. Esghi) of Kowalski. The latter has particularly improved our
understanding of the needs of the metalanguage system. Both are
discussed in detail in Part B of this report.

Work on the very high-level notion of deriving expectations did not
proceed as far as we would have liked. This appears to be due to two
causes. First, the difficulty in creating a powerful implementation of
metaProlog in which to run serious experiments with knowledge bases.
(We discuss implementation below.) Second, the lack of well-developed
conceptual bases for such "expectations". In part, the latter is due to the
former. It is to be expected that as one gains experience with sophisticated
knowledge bases built using the sort of conceptual tools found in
metaProlog, that intuitions and concepts suitable to the problem will
develop. However, from the efforts we have expended struggling with these
ideas, we have come to believe that workable notions of expectations will be
heavily domain-dependent. Expectations are grounded in the notion of
change (with non-change as a special case). Human beings carry with
them an immense amount of knowledge concerning which (kinds of)
things normally undergo changes and the sorts of possible changes they
normally undergo. Expectations are less or more formal predications that
change will occur normally. Surpise occurs in one of the following general
situations:

1) A normally unchanging thing under goes some sort of non-normal
change;

2) A normally changing thing fails to undergo change;

3) A normally changing thing changes in a manner not among it normal
collection of possible changes.

[Note that 2) can be seen as a special case of 3).]

If interpreted sufficiently abstractly, 1-3) categorize all things and
changes. But because of this and because of the vast scale of the world we
perceive, both directly and indirectly, 1-3) are useless in and of themselves.
To render them useful, humans add further knowledge to 1-3). Specifically,
humans add the ability to categorize situations, and within situations of a
given type, knowledge of things normally change, and what the normal
range of possible changes ot these things will be. lit could be argued that

Project Plan & Achievements 2 1

this latter knowledge is the essence of the ability to categorize situations, but
we will ignore the subtlty of this point.] Part of this knowledge would
classed as common sense, and much of it as specific to the particular
situation, and hence as domain-dependent, with the latter usually being the
most useful knowledge. It seems apparent that much of this knowledge is
represented by relatively rigid scenarios or schemata describing the
things and changes occuring in the situation. Application of these
scenarios to a situation involves simple or complex matching of the
situation against the description provided by the scenario.

These scenarios will have greater or lesser generality to the extent that
they apply to many or few situations. Those with greater generality tend
towards the realm of common sense, while those of lesser generality tend
toward the "technical" or domain-specific. Given a description of a
situation type, the problem of deriving expectations is that of selecting an
appropriate collection of scenarios and determining which of them match
the given situation description. Now while simply presenting an adequate
situation description is no mean eat, and matching it against a scenario
scheme is even harder, both of these tasks appear to be much less difficult
than the problem of selecting an appropriate collection of candidate
scenarios. The present evidence would seem to indicate that human
beings do not infer this collection of candidates, but rather that the
collection of candidates is directly empirically associated with the situtation
type, either through formal instruction or direct experience. Consider the
domains of medicine and military or economic conflict. There are no
general principles available in medicine which allow physicians to deduce
the course of a given medical situation. The scenarios associated by
physicians with disease states have been hard-won by the medical
community through generations of statistical and clinical observation.
Similarly, the schemata wherewith to assess military or economic conflicts

and suggest their possible courses cannot be deduced in a principled
manner, but is learned through historical study and direct participation in
events.

This ability to associate an appropriate collection of scenarios with a
given situation is clearly :i trm of expertise. As such, it will exhibit all the
well-known difficulties of ,'1 uisition and formalization exhibited by other
forms of expertise such a; t'iit diagnosis. In all likelihood, the problem of
situation assessment is rn:kh ,,orse than that of fault diagnosis, both
becuase more information r1:-t generally be processed, but also because
the conceptual basis of cout-, -d-vents description and prediction is much
less well developed. .oltre people can function as successful

Students & Publications 2 2

diagnosticians, correctly determining the causal basis of a faulty state,
than can function as successful prognosticators, correctly determining the
possible outcomes of a normally well-described state of affairs.)

4. Students & Publications.
Students

Hamid Bacha PhD - 12/87
Aida Batarekh PhD -1 2/87
Kevin Buettner MS - 12/85
ilyas Cicekli PhD - 5/88
Keith Hughes MS - 5/86
Andrew Turk BS - 12/86
Tobia Weinberg MS - 5/84

Publications
Refereed Journals
- K.A. Bowen, Meta-level programming and knowledge representation,
New Generation Computing, v.3 (1985), pp.359-383.

Refereed Conferences
- K.A.Bowen & T.Weinberg, metaProlog: A metalevel extension of Prolog,Proc.
1985 Symp. on Logic Programming, Boston, 1985.
- K.A.Bowen,K.A.Buettner, I.Cicekli, A.K.Turk, The design and implementation of a
high-speed incremental portable Prolog compiler, Proc. 3rd Int'l Logic
Programming Conf., London, 1986.
* K.A.Buettner, Fast decompilation of compiled Prolog clauses, Proc. 3rd Int'l
Logic Programming Conf., London, 1986.
- A.K.Turk, Compiler optimizations for the WAM, Proc. 3rd Int'l Logic
Programming Conf., London, 1986.

Invited Conference Talks
* K.A. Bowen, Meta-Level Techniques in Logic Programming, Proc. Artificial
Intelligence '86 Conf., Singapore, March, 1986.
- K.A. Bowen, New Directions in Logic Programming, Proc. 1986 ACM Annual
Computer Science Conference, Cincinnati, 1986.
• Workshop on Meta-Level Architectures & Reflexion -- K.A. Bowen
invited; however, schedule .,-:L',3ms prevented participation.

Part B 2 3

Part B. metaProlog: Design and Application

Contents

1. Introduction 23
2. Meta-level Programming and metaProlog 28
3. The metaProlog System 35
4. Quantification and Naming: Language Foundations 43
5. Programming Examples: Poirot 53
6. Programming Examples: Bottom-Up Parsing 61
7. Co-routining and Parallelism 64
8. Programming Examples: Inland Spills 67
9. Programming Examples: Circuit Diagnosis 76
10. Frames and Arrays 91
11. Programming Examples: Truth Maintenance 96
12. A metaProlog Simulator 117
13. Semantic Foundations 138
14. Implementation Considerations 146
References 150

(Parts 1-7 were written with Tobias Weinberg)

~%

Introduction: Part B 24

1. Introduction

Prolog has many attractive features as a programming tool tor
artificial intelligence. These include code that is easy to understand,
programs that are easy to reliably modify, a clear relation between its
logical and procedural semantics and efficient implementations.
However, we perceive several shortcomings, chief among them being
difficulty in representing dynamic databases (i.e., databases which
change in time) and an apparent restriction to backward chaining depth-
first search using backtracking. Our intent in this paper is to discuss an
extension to Prolog which preserves its attractive features while curing its
ills. Before we proceed, let us examine more closely both the advantages
and disadvantages of current Prolog systems.

* Clear, easily understood code:

Prolog programs consist of assertions ani rules. The assertions
can be regarded as a database of explicit extewiional facts and the
rules can be regarded as serving two functions: (i) extending the
explicit database by allowing the intensional definition of some data, and
(ii) defining derived relations over the primitive data. Both the
assertions and rules have a clear logical interpretation which allows the
programmer to proceed in a mode which amounts to defining or
axiomatizing the relations of concern to the program. Coupled with a
reasonable discipline of commentary and self-descriptive names for
variables, predicates, etc., this declarative reading makes Prolog
programs very easy to understand. On the other hand, the assertions
and rules also have a natural procdural interpretation in which the
rules describe methods for reducing the search for a solution for one
problem to the (joint) solution of other problems, and the assertions
describe immediately solvable problems. This interpretation also makes
it very easy to understand the computational intent of Prolog programs.

Introduction: Part B 25

Modular, easily modified programs:

Each Prolog assertion or rule is implicitly governed by a sequence of
universal quantifiers binding all of the variables which occur in it. This
limits the scope of any Prolog variable to the assertion or rule in which it
occurs, and hence there are no global variables in Prolog programs. This
introduces a strong modularity in Prolog programs. A new (derived or
primitive) relation can be added with impunity since the only variables
it can affect are its own, not any of those belonging to existing
relations. An existing relation can be modified and the only potential
effects are upon those relations which call it, or which call relations
which call it, etc. Among other things, this enables the programmer to
practice a strong data encapsulation discipline.

• Well-developed logical semantics:

The need for a well-developed reliable semantics for programming
languages is widely recognized. Since the clauses of a Prolog program
are explicitly viewable as logical formulas, Prolog programs inherit on
their face the classical semantics of mathematical logic. The discipline
of formal logic has developed over the past 2,500 years as the basis of all
scientific thought. As ouch, the semantics of Prolog is quite close to
normal human scientific thinking, a definite advantage to the
programmer's ability to understand Prolog programs. Moreover, the
mathematical machinery for reasoning about collections of logical
formulas has been well workE -- out over the past 200 years, providing a
powerful tool for formal reasoning about (and ultimately certification of)
Prolog programs.

Introduction: Part B 26

Efficient implementation:

Interpreters and compilers for Prolog have been produced which
rival the efficiency of LISP interpreters and compilers for comparable
code. These systems have been produced during the relatively short 10
year span of Prolog activity and are largly university research efforts
rather than full production grade systems with associated program
development environments. Commercial-grade systems are just
beginning to appear, and it is to be expected that further developments,
such as optimizing compilers will appear. Many obvious optimizations
can be implemented as source-to-source program transformations (e.g.
macros). Such transformers or macro processors are easily written in
Prolog itself since it is a superb symbol manipulation language.

* Difficulties in representing dynamic databases:

As we will discuss more fully in Section 2, many artificial
intelligence applications demand facilities which amount to an ability
to dynamically manipulate databases. In order to take advantage of the
natural deductive machinery of Prolog, the most natural way to
represent a database in Prolog is by means of a set of assertions and
clauses. However, most Prolog implementations do not provide any
method of segmenting the database, much less viewing such databases
as first-class objects which can be modified and passed around. To
meet this difficulty, almost all implementations of Prolog have provided ad
hoc extensions to the basic logic programming paradigm which allow for
dynamic modification of the program database by the program itself.
But since the database is the program, these facilities have an effect of
modifying global variables and data structures. In many cases, this has a
catastrophic effect on the first three of the virtues listed above: The
program becomes very difficult to understand, reliable modification of
the code becomes very hard to accomplish, and the logical semantics is
utterly destroyed. Moreover, even execution is affected. Since these
dynamic modification facilities affect the program database itself, it is
extremely difficult to garbage collect the space which should be
recoverable from retract. Cr -, the database. (We know of no system
which even tries.)

Introduction: Part B 2 7

Apparent restriction to depth-first search control:

Standard Prolog implementations utilize top-down depth-first control
coupled with chronological backtracking to explore the search space for
a given goal, while many artificial intelligence problems seem to demand
other search methods. In part, this apparent difficulty is due to a
problem in point of view. Pure LISP itself has only left-to-right
evaluation and function invokation as available control mechanisms.
What one does is to write deductive interpreters which utilize the
appropriate control structures. The same is easily done in Prolog. The
programming virtues of Prolog listed above make the writing of such
interpreters a relatively pleasant task.

The conflict between the logical semantics and the representation of
dynamic databases was perceived by Bowen and Kowalski (] who
proposed a solution based on incorporating portions of the
metalanguage of Prolog into the system itself. The immediately relevant
consequence of this proposal was that the resulting system provided for
multiple, alternative program databases (essentially a notion of context)
in a setting which still preserves the logical semantics, yet which
provides exactly the tools necessary for the dynamic character of artificial
intelligence applications. By preserving the logical semantics, the
amalgamation also preserves the practical programming virtues of
clarity, modularity, and ease of modification.

The following sections report on the results of an on-going effort to
both develop metalevel programming methods and to build a system which

supports them. The system is based on the proposal of Bowen and
Kowalski, but goes considerably beyond what they contemplated. After
describing the basic outlines of the system, we will illustrate both the
approach and the use of the system in several examples, including some
which indicate the ways in the which the shortcomings of Prolog
mentioned above are overcome.

4 .:. ,:..,.,. .,.,.. ' . ;. . ° -: .--. . -...- '. '':- . , ..-. : - ."''':':

Meta-Level Programming 28

2. Meta-level Programming and metaProlog.

It is important to make clear our notion of meta-level
programming. Our point of view stems from that of classical logic.
Early on in the study of language and reason, it was discovered that
the distinction between use and mention of linguistic entities was
crucial, and this developed into the object-level/meta-level distinction of
current mathematical logic. Briefly, one distinguishes between the formal
language being used to conduct some (unspecified) axiomatic investigation
(the object language) and the language used to carry on any discussion
about the object language (the metalanguage). In the full setting of
traditional mathematical logic, the metalanguage must be powerful
enough to discuss not only the syntactic properties of the object language,
but also the semantic (set-theoretic) structures used in interpreting the
object language. However, for many purposes (including those of this
paper), the metalanguage need only be powerful enough to discuss the
combinatorial syntactic properties of the object language. The essential
point is that the relations of the metalanguage are about the syntactic
entities of the object language: the variables of the object language range
over various syntactic entities of the object language. In contrast, the
variables of the object language either have no specified range (when it is
viewed as a formally uninterpreted language) or range over the entities
(possibly extremely mathematically complex) of some specified set (when
the object language is treated as being interpreted).

Properly viewed, an ordinary Prolog interpreter is already a meta-
level object. For a Prolog interpreter is a particular kind of theorem-
prover, and theorem-provers are meta-level entities. The object level
consists of a formal logic which is usually (a fragment of) ordinary first-
order logic. This fragment is made up of a language and proof predicate.
The latter describes which formulas of the language are consequences
of sets of other formulas of the language. Most proof relations are
composed from more primitive immediate consequence relations. This is
the case for the proof rclatir n used in theorem-provers. The meta-level
of a theorem-prover is com-, ,r d with the manipulation of sets of object-
level formulas in the sc:irch K r collection of formulas which witnesses
the derivability of a 1i .- ii formula from a given set of axiom
formulas. The prover prir t meta-level object because its variables
range over formulas an i 'r syntactic classes) of the object level
language. The nature of , . r (i.e., the structure of its algorithms)

Meta-Level Programming 29

is obviously dependent upon the nature of the immediate consequence
relations of the object level formal logic together with the nature of the
allowable methods for composing these relations into proof relations
(i.e., the object level deduction rules). Figure B.2.1 illustrates the situation.

Real Prolog collapses all three of these levels

'logical variables' are mentioned here; e.g., var(X) is an Real Prolog Proofs

assertion at this level;Xis NIL name of X from NIL;

M7'O7 ML: meta level for MIL + MIL rules + NIL Proofs containing names

Pure Prolog Proofs:

psuedo-proof: ML terms that look like object level IlII}Jl ,
proofs, but contain ML variables ranging over terms of L IML proofs

'logical variabes'used
- here: "find tet - X

,3 such that p(X) is provable

M~NL: MetaLanguage for L + Rules + Proofs i

In an expression such as means: find a sequence of
p(X) :- nonvar(X), call(X), psuedo-proofs (certain terms

the variable X is being both used of ML) satisfying a certain criteria
and mentioned. It probably should (which reflects the proof rules of L)properly be written

p(X) nonvar(@'X) call(X) Note that the variable X' is being........ nonv O , used, not mentioned, here.

ML must contain names for all the concrete syntactic items of L. For example,
if the lowercase first letter of the Roman alphabet is an individual constant of
L, then NIL should include a name for it such as 'a'. It is reasonable to
adopt Quine's convention that concrete symbols of L are used autonomously as
names for themselves in ML. Sinm'iar remarks apply to ML and MML;
but then there may be confusion about the use of a symbol from L: an occurence
of "a" in an MML expression woij!d really be as a name a'' " in MML for the ML
name 'a'" of "a" as a symbol 4 I.

The MetaLevel Structure of Real Prolog

Figure B.2.1.

Meta-Level Programming 30

The formal logic constituting the object level of Prolog is the
fragment consisting of the Horn formulas together with the Resolution
Rule as its sole rule of immediate consequence. The Horn formulas have
the forms

. (Vxl)...(Vxn)[Al & ... & Am -* B] (2.1)

-Vx()... (Vxn)B (2.2)

where B and the Ai are atomic formulas and all of their variables occur
among xl,...,xm. It is important to note that this is a formal logic and
hence that its variables are uninterpreted: there is no pre-selected
domain over which they range. The goal formulas proved by a Prolog
system have the form

(Vyl)...(Vyn)[C1 & ... & Cm], (2.3)

where the Cj are atomic formulas. The first step taken by a Prolog
interpreter (or theorem-prover) is to replace the existentially quantified
object-level variables of (2.3) by existentially quantified meta-level
variables, thus:

C1(Y1,--.,Yk) & ... & Cq(Y1 ,..,Yk), (2.4)

where Ci(Y1,...,Yk) indicates the result of replacing the occurrences of

, Yl,*..,Yk in Ci by Y1,...,Yk, respectively. Two points are worthy of note
here. First, while the object level variables yj are uninterpreted - have
no specified domain over which to range - the meta-level variables Yj
are interpreted - they range over the domain of (syntactic) terms of the
object language. Second, the quantification in (2.3) takes place locally in
that formula, whereas the quantification of the variables Yi occurring in
(2.4) takes place globally in the body of the algorithm for the Prolog
interpeter. In effect, the Prolog interpreter takes a constructive approach
to its attempt to prove (2.3,: it will attempt to find concrete terms replacing

Y1 ... ,Yk for which (2.4) is provable.

The manner in whidh the axiom formulas (2.1) and (2.2) are
employed reflects the PlI,., interpreter's reliance on the Resolution
Rule of inference. At ani tinme before completion of the deduction (or
abandonment of the attempt. the interpreter has before it a current goal

'a~~~ e ~- '*** '% 5* I'"'~"

Meta-Level Programming 3 1

of the form (2.4). First it selects one of the Ci as the next subproblem to be
treated. Secondly, it searches the program or database for a formula of one
of the forms (2.1) or (2.2) such that the predicate and number of arguments
occurring in B are the same as those of the selected Ci . Third, it strips the
quantifiers ("xl)...("xn) from the formula (2.1) or (2.2), generates new
meta-level variables X1 ,...,Xn, and replaces the variables x1,...,xn in (2.1)
or (2.2) by X1 ,... ,Xn , respectively, yielding

A1(X1,...,Xn) & ... & Am(X,....,Xn) - B(X 1 ,...,X n) (2.5)

or

B(X 1 , ... Xn) (2.6)

Fourth, it attempts to match B(X 1 ,. .. ,Xn) with Ci using the Unification
Algorithm (which may cause binding of various meta-level variables). If
this attempted match succeeds, the interpreter modifies the current
goal:

If the matching formula was (2.6), the subproblem Ci is simply
deleted, while if the matching formula was (2.5), Ci is deleted and is
replaced by

AI(X 1 ,...,Xn) & ... & Am(X1 , ..,Xn) (2.7)

All of this is work that takes place at the meta-level, being syntactic
manipulation of object level formulas. If the attempted match by
unification does not succeed, the intepreter seeks alternative formulas
(2.1) or (2.2) to the selected one from the database. If at any time, the
current goal becomes empty (i.e., all atomic formulas or subproblems
have been deleted by matches against formulas of the form (2.6)), the
original attempted deduction of (2.3) from the program succeeds. On the
other hand, if at some point no matching formulas (2.1) or (2.2) for the
selected subproblem Ci can be found, the interpreter backtracks, undoing
variable bindings and S-ubproblem replacements, and explores
alternatives to choices it mTnie previously in selecting matching formulas
from the database. If it ,v, r a;ciktracks all the way to the original goal
(2.3), it quits, concluding tht 23) cannot be deduced from the program
database, and the attempted btl'dUction fails.

~.

Njv \'YW7WV .W , T -. Yvz - - - -w v W'W

Meta-Level Programming 32

Thus a Prolog interpreter really defines a metalevel (or syntactic)
relationship between sets of formulas (the program database) and goal
formulas, namely the relation that the goal formula is deducible from the
program database. However, as commonly implemented, pure Prolog
interpreters essentially incorporate the program database as a fixed part
of the interpreter, and thus really define a parameterized set of a unary
predicates applying to goal formulas. The fundamental operator of
standard Prolog systems is thus a one-place operator (usually written
call(...)) which invokes a search for a deduction of its argument from the
implicit program database parameter. The heart of the proposal set forth
by Bowen and Kowalski (1982) was to utilize a system implementing
the full deducibily relation described above. Such a system would have
metavariables which not only ranged over formulas and terms, but would
also allow the metavariables to range over sets of formulas (called
theories). The fundamental operator of such a system is a two-place
operator, usually written demo(_ , ...), which invokes a search for a
proof of the goal formula appearing as its second argument from the
theory (or program) appearing as its first argument.

In such a system, the only analogue of the standard Prolog
database is the global database containing system built-in predicates. All
other databases are the values of Prolog variables and are set up either
by reading them in from files or by dynamically constructing them using
system predicates. Besides the system predicate demo(_-,...), the
system predicates include addTo(_ , _, _) and dropFrom(_ ,
- , _) which build new theories from old ones by adding or deleting
formulas. Thus for example, one might find the body of a clause
(formula (2.1)) containing calls of the form

... addTo(T1, A, T2), demo(T2, D).... (2.8)

where the theory which is the value of T2 has been constructed by the
earlier calls. The effect of '2.S) would then be to construct (in an efficient
manner) a new theory T2 rpsulting from T1 by the addition of the formula
A as a new axiom; then the -v-tern invokes a search for a proof of the
formula D from the theorv 12 Since demo implements the proof relation,
such programs as (2.8) i. - rve the logical semantics of Prolog while
providing for the dynamc ri-tr .'tion of new databases from old.

The correctness and c,,,; . tuess of an implementation of demo are
expressed by what were cilk, , -ileing rules by Bowen and Kowalski:

Meta-Level Programming 3 3

If demo(T, A), then A is derivable from T. (2.9)

If A is derivable from T, then demo(T, A). (2.10)

These rules provide the justification for the implementation of calls
on demo in the abstract metaProlog machine as context switches. In

essence, at most times the machine behaves as a standard Prolog
machine with the current theory (the analogue of the usual fixed program
database) indicated by a register. When a call demo(T, A) is encountered,
the database (theory) register is changed to point to T and a new search
for a deduction of A is begun. Thus the efficiency of standard Prolog
computations is preserved and the overhead of meta-level computation is
localized in the construction of new theories from old. This method of
reflection has been utilized heavily in constructing the abstract
metaProlog machine on top of a primitive storage management
machine. This approach provides a meta-level programming methodolgy
suitable for constructing other methods of exploring the search space of
derivations of A from T besides the top-down depth-first approach of
standard Prolog. Exploitation of this approach will ultimately provide the
meta-level programmer with a library of search strategies which can
be (programmatically) invoked depending on the particular problem and
context.

Many AI applications require the production and consumption of
large data structures, for example lists, and many of these can be of a size

which strains or exceeds the resources of the hardware. However, it is
often the case that the entire data structure need not really be constructed
in its entirety. Rather, the consumption operation could process it
piecemeal, either ultimately in its entirety, or even only partially (as in
the cases involving search for a component with a particular property).
To provide for such a style of programming, we have explored two
constructs which allow for the description of co-routined production and
consumption processes:

enumerate(Template, Goal, Result) (2.11)

and

streamOf(Goal, Result) (2.12)

From the abstract p, int of view, enumerations and streams are

r-1

Meta-Level Programming 34

first-class objects equally on a par with terms, formulas, and theories.
The actual representations of enumerations and streams are as virtual

lists which can be potentially infinite. Thus in both enumerations (2.11)

and streams (2.12), Result is logically a list which may be extended as
consumption processes attempt to access its tail. In the case of
enumerations (2.11), Result is the stream of instantiations of Template
in the environments corresponding to successful solutions of Goal. Thus
it is simply a "lazy" version of the usual Prolog setof operator with the
variation that if there are no solutions at all of Goal, (2.11) succeeds and
binds Result to the empty list. In (2.12), Goal is expected to be a
determinate tail-recursive predicate which constructs the list Result.
Intuitively, at each recursive step, Goal places another element on the
list; the system evaluates this lazily, suspending furthur action on the
recursion of Goal until some consumer attempts to access the (as yet
undeveloped) tail of Result.

In both constructs above, it is desireable that Goal be allowed to

contain stream variables from other such calls with the consequence
that determinate and-parallelism be implemented in the system. To allow
the system to easily get this straight, such streamOf and enumeration
calls must be wrapped in the "simultaneous" operator construct, as for
example:

simultaneous (streamOf(G, L), streamOf(H, K) (2.13)

where presumably L occurs in the goal H, and K occurs in the goal G. In

the present project, the and-parallelism was implemented on sequential
hardware in a rather standard co-routining method amounting to time-

sharing of the abstract metaProlog machine by the cooperating calls. The
design of the abstract machine, however, would allow the cooperating

calls to be executed on separate (even heterogeneous) processors in a
multi-processor environment (whether tightly coupled or loosley
distributed on a network). We discuss this in more detail in Section 7.

w

metaProlog System 3 5

3. The metaProlog System

The metaProlog system is designed to be syntactically compatible
with the Edinburgh system, to preserve the standard logical semantics,
and to incorporate the full two-place proof relation. Thus, while
syntactically quite similar to Edinburgh Prolog, metaProlog provides a
quite different set of built-in meta-level predicates and allows the
metavariables greater range than the Edinburgh system.

There is one major syntactic difference between the two systems. For

reasons which will be made clear when we discuss quantification, we
require that the implicit universal quantifiers on clauses be made explicit.
Thus, for example, the Edinburgh clause

append([Head I Tail], RightSeg, [Head I ResultTail]) :- (3.1)
append(Tail, RightSeg, ResultTail).

would be written

all [head, tail, rightSeg, result-Tail]

append([head I tail], rightSeg, [head I resultTail]) :- (3.2)
append(tail, rightSeg, resultTail).

If the clause contains only one variable, the list brackets in the

quantifier can be dropped. Additionally, we allow the programmer to
optionally use <- instead of :-, and to connect the literals in the body of a
clause by & instead of comma. Thus the Edinburgh clause

p(X) :- q(X),r(X). (3.3)

might be written

all x : p(x) <- q(x) & r(x. (3.4)

An expression which contiins no meta-variables (but may have object-
level variables occurring h ,,ed in the quantifer) is called a closed

formula. A theory i, .ither the empty theory (designated by
emptytheory) or is of the i ,

A&U (3.5)

4L

metaProlog System 3 6

where A is a formula and U is a theory. A theory is a definite theory if
all of its formulas are closed. (Note that quantified variables may be
present in definite theories.) Theories contained freely occurring logical
variables are called indefinite theories. [Whether or not the programmer
is allowed to directly write free logical variables is a matter of design
controversy. But indefinite programs can always be created by programs at
run-time.]

The proposed built-in predicates of metaProlog include most of those

of Edinburgh Prolog with the exception that all those concerned with the
"program database" are excluded. Instead, a two-place demo, a three-
place demo, the two three-place predicates addTo and dropFrom, the
binary predicate axiomOf, and the unary predicate current are to be built-
in predicates of metaProlog. Additionally, the two three-place predicates
setOf and streamOf, together with the predicate simultaneous are
added. These latter three built-in predicates will be discussed in Section 7.
The specifications of the former predicates follow.

demo(Theory, Goal)

This call invokes a subsidiary (Prolog) computation which attempts
to derive Goal on the basis of the program Theory. If Theory or Goal are
are not fully instantiated, meta-variables occurring in either may be
bound if a successful computation can be found.

Calls on demo support a convenient idiom for describing implicit
unions of theories. Specifically, a call of the form

demo(Theoryl & Theory2, Goal) (3.6)

is logically equivalent to the call

demo(Theory3, Goal) (3.7)

where Theory3 is the odcrcd union of Theoryl and Theory2 in the
following sense: If therie.; ire regarded as the ordered list of their
axioms, then Theory3 sati- fiu

append(Theoryl, Thcrhv. lory3). (3.8)

However, the system does r,,a physically create Theory3, but regards the

metaProlog System 37

expression Theoryl & Theory2 as a description of a virtual theory. In
effect, when searching for a rule or fact to apply to a selected subproblem
of the current goal, it first searches Theoryl for a candidate, and only on
failing to find such a candidate in Theoryl, it then searches Theory2.
Another usage supported is the explicit indication of the axioms of the
theory. Namely, if it is desired to search for a deduction of G from
A1,...,An, this is achieved by the call

demo([A1,...,An], G). (3.9)

(Internally, theories are represented in several forms. The simplest is
just that of a list of axioms, with no special indexing. Retrieval from
such a theory amounts to a linear search of the list. Thus, for all but
relatively small theories, computation from such a theory will be
intolerably slow.)

The two usages can be combined, as in the calls:

demo([A1 An] & Theory2, Goal)
(3.10)

demo(Theoryl & [Al ,...An], Goal).

demo(Theory, Goal, Control)

This call causes a subsidary (Prolog) search for a deduction of Goal
from Theory where, however, the search may be modified by information
supplied in the control expression Control. As with the binary demo, if
Theory or Goal contain uninstantiated meta-variables, these variables may
be bound by a successful computation, though some control expressions
may cause such meta-variables to remain uninstantiated even after a
successful completion of such a call. As with theories, control
expressions may be combined, as in the call

demo(Theory, Goal, C 1- 11 & Control2). (3.11)

In effect, a call on ti,,, !:., ,H place demo first analyses the control
information, causing v ;,,. :i ters to be set, and then invokes the
machinery correspondir- , 'H, two-place demo. Initially, the system
will support the follow1!r ,,rl expressions:

depth(N)

-,. ".. "" """" . , / .""""4 . ". , .""4:'.: € * -""'.'' .. "" .. " """ ,%" t """" ' -:" ,:'.'' . - -:."' 2 :

nmetaProlog System 3 8

This control expression sets a depth limitation of N on branches of

the search tree. If a computation exceeds this depth, the branch is failed
and backtracking occurs.

proof(P)

This control annotation causes the system to accumulate a
representation of the proof branch in the (uninstantiated) variable P,
allowing the programmer to extract a successful proof for furthur
processing, such as providing explanations, etc.

branch(P)

This control expression causes the call

demo(Theory, Goal, branch(B)) (3.12)

to succeed in all cases, binding the uninstantiated variable B to the left-
most branch of the search tree. Note that in the case that the left-most

branch is theoretically infinite, the call will still succeed due to depth
* bound limitations of the system. Backtracking into this call will cause B

to be bound to successive branches of the search tree. As discussed in
Section 7, the call

setOf(B, demo(T, G, branch(B)), Branches) (3.13)

would cause Branches to be bound to the (lazy) list of all branches of the

search tree for G relative to T in the order that they are explored by the
system.

bottomup

Use of this control expression allows a limited amount of single-step
bottom-up processing to tike place. The call

demo(T1, reduct(T2 ,bt tunjip(T3))

constructs the reduction T2 , t"I'l by T3. By definition, T2 will consist of

all reducts R' by T3 of i',t,- belonging to TI, where if R is a rule with
head H and body B, the ro',ict I of R by T is a rule whose head is H and

metaProlog System 39

whose body B' is obtained from B by resolving some literal of B with some
fact in T.

user-choice

Use of this control expression allows the user to specify the choice
function for selection of the subproblems during the main loop of the
interpreter in the style of Pereira [I. Consider the call

demo(T, G, userchoice). (3.14)

The system will expect to find in T an assertion

user-choice(UC) (3.15)

as an axiom, where UC is a (small) theory containing clauses defining
the predicate

choose(Goal, SubProblem).

Here Goal will be a representation of the current system goal and
SubProblem will be bound (when this is run) to the selected subproblem
from this goal. When running (3.14), at each cycle of the search for a
proof of G in T, the system will run the subsidiary problem

demo(UC, choose(Goal, SubProblem, Remainder)) (3.16)

with Goal bound to the current goal in order to select the next
SubProblem and to indicate the Remainder of the Goal left after this
selection. Use of this facility will be illustrated in Section ##.

confidence(C)

While not properly a control description, use of this expression
allows for the propagation of confidence values or certainties of the
programmer's design. The system provides general methods for
attaching terms representing confidence factors to rules and assertions

*: of theories, and for designating predicates for carrying out the propagation
of these factors during deduction, as follows. If R is a rule or fact intended
to to appear in theory T with confidence C, insertion of the expression

metaProlog System 4 0

C::R.

in the source file used to generate T will cause the rule R to be recorded in
T and in addition, causes the fact

'$confidence'(R, C)

to be recorded in T. [The actual implementation differs somewhat from
this.] Such rules with confidence can also be used in the built-in addTo
described below. Assume that normal Prolog control is being used.
Operation of the system with the call

demo(T, (Al & A2 & ... & An), confidence(C))

proceeds as follows. Assume that A <- B is recorded in T with confidence
Cr, that A matches Al via the substitution S, that the result of applying S
to B is B', and the result of applying S to A2 & ... & An is G". The system
first solves the goals

demo(T, B', confidence(CB))

and

demo(T, G", confidence(C')).

Then the system solves the goal

demo(T, '$confidence'(Confi))

and finally solves the two goals

demo(Confi, '$imp-prop'(CB, Cr, CA)

and

demo(Confi, '$cnjprop' CA, C', C)).

Thus the programmer is expe)cted to supply (as a sub-theory of T), a
theory Confi in which he e" e defines the predicates '$imp-prop' and
'$cnj-prop' for propagating confidence factors.

€,%

metaProlog System 4 1

This completes the list of currently contemplated control expressions.

addTo(Theory, Clause, NewTheory)

If Theory is bound to a theory and Clause is a (closed or partially
instantiated) formula and NewTheory is an uninstantiated variable, this
call causes NewTheory to be bound to a theory obtained from Theory by
adding Clause as a new axiom. What actually happens is that the orignal
theory bound to Theory is physically modified by the addition of Clause,
providing fast access to the NewTheory. The variable Theory is rebound
to an internal representation of the result of dropping Clause from the
theory now bound to NewTheory, in a manner inverse the the common
method of representing arrays in logic. Thus the original theory bound
to Theory is still logically available via Theory, but access to it is a bit
slower. If Theory is not bound to a theory or if NewTheory is
instantiated a run-time error occurs. Note that, unlike the treatment of
assert in conventional Prolog, metavariables occurring in Clause are
NOT converted to universally quantified object variables in the assert
fact or rule. This point will be discussed more fully in Section 4 below.

addTo(Theory, Clause, NewTheory, Pointer)

This call is similar to the three-argument form of addTo. Here Pointer
should be an uninstantiated variable. Running of this call will cause have
the same effect as the three-argument form of addTo with the additional
effect that Pointer will be bound to a representation of an internal pointer
to Clause as an element of NewTheory. As will be discussed below, the
value of pointer can be regarded as a meta-level name of Clause.

dropFrom(Theory, Clause, NewTheory)

Under the restrictions of addTo, this call causes NewTheory to be
bound to the theory resulting from the deletion from Theory of the first
occurrence of an axiom of Theory which matches Clause. The internal
representations and run-time errors are similar to those for addTo.

axiomOf(Theory, Clause)

This call succeeds if Clause has been recorded as an axiom of Theory.

metaProlog System 4 2

If Clause is uninstantiated, it will be bound to the first axiom of Theory.
Backtracking into this call will cause Clause to be successively bound to
the axioms of Theory. Theory must be bound or a run-time error occurs.

axiomOf(Theory, Clause, Pointer)

This call succeeds if Clause has been recorded as an axiom of Theory
and Pointer is a representation of an internal pointer to Clause as an
element of Theory. Theory must be bound or a run-time error occurs.
Either Clause or Pointer or both may be unbound, as in the two-argument
version of this predicate.

current(Theory)

This call is equivalent to the Prolog definition

demo(Theory, current(X))
X = Theory. (3.17)

Note that axioms of the current theory can be directly accessed via the
goal

<--current(Theory), axiomOf(Theory, Clause). (3.18)

consult(<theory>,<file>) and consult(<file>)

If <theory> and <file> are both constants and <file> is an
appropriate operating system file name, the first call causes the clauses
listed in the file to be added to the end of the theory currently recorded

under the name <theory>. If <theory> has not yet been established, it is
taken to be the empty theory. The second call is equivalent to
consult(<file>, <file>).

Other meta-level buift-uii .. tl be described in succeeding sections and
in the system manual %1-, :1 it L, co ms available.

&bb

Quantification & Naming 43

4. Quantification and Naming* Language Foundations

Subsection 4.1: Godel's Reflection Construction

In Section 2 we presented our basic point of view regarding the
distinction between object language and metalanguage. In particular,
we pointed out that the metalanguage must contain names for all the
various syntactic entities of the object language as well as variables to
range over those entities. As presented there, it would appear that there
must always be a sharp distinction between object language and
metalanguage. Certainly this is not the case for natural languages such
as English, in which one can carry on discussions of the language in
itself. That it is also not necessarily the case for formal languages can be
seen by first considering the classic constructions of Godel utilized in his
proof of the incompleteness of arithmetic. (Godel carried out his original
proof in the context of Russell and Whitehead's Theory of Types; we will
be content with a version recast in ordinary first-order logic.) The object
language for this construction is simply a version (almost any will do) of
arithmetic axiomatized in standard first-order logic, say as presented
in Chapter 1 of Shoenfield [1967]. The metalanguage, while not usually
precisely specified, is any language containing names for all the
primitive symbols of the object language and having the ability to
represent concatenation and other primitive syntactic operations;
variables whose range includes the syntactic entities of the object language
are included. The situation is represented schematically in Figure B.4.1.

The technical heart of Godel's proof lay in showing that the roles of L
and M could be essentially reversed (intuitively, that the figure could be
inverted). Specifically, Godel showed that L could function as
metalanguage for a sufficiently large enough part of M so as to include
that portion of M actually used in discussing the syntax of L. The trick lay
in showing that natural numbers, the entities which are the intended
ranges of the variables of L, could be (in a systematic way) used as
names of the syntactic entities of M, and that, given this representation
of the syntactic primitive symbols of M, the basic syntactic relations of M
could be defined arithmetically in L. Schematically, the situation would
then appear as in Figure 134 2.

az,

Quantification & Naming 4 4

Figure B.4.1. Language and MetaLanguage.

The essential point is that via this reflection through the
metalangauge, L has the capability of functioning as its own
metalanguage: Numbers can be viewed in and of themselves, or as
names of syntactic elements of L; and relations may be simply relations
among numbers in and of themselves, or may be seen as relations
between syntactic elements of L. In particular, one could define
(primitive recursively) in L the proof relation for L itself:

proof(t, f, a) is derivable in L

if and only if (4.1)

t is a number naming a (finite) theory t' in L, f is anumber naming a formula f of L, and p is a number

naming a finite sequence of formulas p of L such that p'contitutes a formal proof off relative to the theory t'.

Smullyan [] has provided constructions of formal languages inwhich this sort of self-reference is direct without need of the intermediate
reflection through an external metalanguage. Indeed, even Godels
original construction can he viewed as providing directions for building

prot &. a)d is deial inr L ~P' ~ ~ V~,S

Quantification & Naming 45

the name relation directly.

ML = Theory of Syntax of L

, .. n

AL = Peano Arithmetic

Figure B.4.2 The Metalanguage Reflected in the Object Language.

Abstracting from this discussion, we can see that the two
essential requirements we must impose on a language L are:

(i) For every appropriate primitive syntactic entity E of L, there
exists a constant e in L naming E;

(ii) There exist relations in L connecting the names of the

components of a compound syntactic entity of L with the name of the
entire compound entity. [We will elaborate on these requirements
below.]

Before proceeding to set Forth the formal language for the metaProlog
system, we must entertain soome considerations on quantification and

Quantification & Naming 46

the naming of entities.

Subsection 4.2: Quantification

The logical interpretation of Prolog's theorem prover stipulates that
variables actually occurring in the program's clauses are in fact
implicitly universally quantified object level variables, even though they
are syntactically indicated by metavariables. In using a clause, the
interpreter replaces these universally quantified object level variables by
existentially quantified meta-level variables. The syntactic conflation of
object- and meta-level variables is acceptable for pure Prolog deductions,
but causes difficulties as soon as assert (and retract) are added to the
system. If the expression A contains a metavariable X which is
uninstantiated at the run-time execution of assert(A), there is a natural
sense in which the call assert(A) is incoherent: the formula to be added
to the database is not fully specified. The Prolog approach to this problem
is to once again conflate the existentially quantified metavariable X
with a corresponding universally quantified object-level variable,
actually asserting (all X)A into the database. But there are difficulties in
this approach, since it destroys the logical semantics of clauses in
which such calls occur. Assuming no clauses for p are in the database,
the following two goal statements should be logically equivalent:

:- X = b, assert(p(X)), p(d).

assert(p(X)), X = b, p(d).

But the first fails, since it only adds p(b) to the database, while the
second succeeds, since it adds (all X)p(X) to the database. To avoid such
difficulties, the metaProlog system requires that programmers be
explicit about their intentions, clearly indicating universally quantified
object variables. Thus, to add (all X)p(X) to a theory T, one would write

addTo(T, (all X : p(X)), U).

Note that if the xxpression addTo(T, p(X), U) occurs in a
metaProlog program clauze, X is either a constant or is explicitly
universally quantified by a ,Ii.antifier on the clause containing this call to
addTo. In the latter case, ,ri entry to the clause, X is replaced by an
existentially quantified vrniblc at a level meta to the clause. If it is not
instantiated when the call to iddTo takes place, no change to X takes

..AM OL1^ p%~J1RL nmnPMrWI V WWR VqM .,.;, M L,.S IiP 6NROM M MNM M

Quantification & Naming 47

place. Rather, the formula is viewed as partially instantiated, and the
resulting theory U is also seen as partially instantiated.

Subsection 4.3: Naming

In order for any language M to serve as a metalanguage for another
language L, M must contain names for all the appropriate syntactic
entities of L. Thus, since metaProlog is to serve as its own metalanguage,
it must contain names for all of its own syntactic entities, just as any
natural language has the ability to name all its own syntactic constructs,
both by description and by quoting. To this end, in metaProlog, constants

act as names of themselves. For ground items other than constants,
metaProlog may provide structural or non-structural names (and

* sometimes both). The former are compound terms whose structure
reflects the syntactic structure of the syntactic item they name. The latter
are analogous to proper names in natural languages. In particular,
database references (relative to individual theories) act as non-structural
(proper) names of the clauses or other theories to which they point.
Facilities for manipulating names should be provided, for example,
methods of obtaining a (compound) name of a compound expression from
names of the expression's components, as well as methods for moving

between a name and the thing it names analogous to univ (=..) of

ordinary Prolog.

Subsection 4.4: Formal Language Specification

We now will proceed to set forth a formal definition of the current
design of the metaProlog language. The first step will be to precisely
specify the purely linguistic component which we will refer to as L(mP).
Later, in Section 12, we will specify the computational component
operationally as a purely formal mathemetical system. Note that these
definitions are phrased in a language (technical English) functioning as
a metalanguage for L(mPl) eventually we will show that mP has
sufficient power to act as its own metalanguage. As discussed in general
above, this metalangu14o ,technical English) must have syntactic
variables which will range ,,r the various syntactic constructs of L(mP).
The range of the (meta v,', of the technical English metalanguage

must include the logicd . iri.tles of L(mP). The logical variables of
L(mP) themselves will turn , t to function as metavariables for portions of
the L(mP) language. We ,%' 1: L-,, -pressions of the form < > to indicate

" these syntactic metavari, ,f the technical English metalanguage.
U' Because of this multiple U.ti, ,f reta-levels, including the fact that the

Quantification & Naming 48

system mP is intended to be able to function as its own metalanguage, the
possibilities for confusion are rampant. We caution the reader that careful

consideration of the location of the definitions with regard to the
definition's presence in mP or in the technical English metalanguage of

mP is extremely important. The heavy formalism of this section has

been an important tool for elaborating the system and clarifying the
distinctions. The use of the formalism is also motivated by the governing
desire to provide a system which can be seen to possess a logical
semantics.

Definition 4.2. The language L(mP) is specified as follows:

(.1) Any identifier beginning with an alphabetic character is a constant
(irrespective of whether the initial character is upper-case or lower-
case).

(.2) Any sequence of characters beginning and ending with a single quote

is a constant. Single quotes themselves can be embedded in such a

constant by the standard device of repeating them at the point at
which they are to occur.

(.3) Any number (integer or real) in fixed or floating point notation is a

constant.

(.4) Any constant is a name of itself.

(.5) There is a countable collection of symbols distinct from all the

constants and punctuation of mP ; the elements of this collection are
called logical variables.

(.6) Any identifier beginning with an alphabetic character may be used as
a functor symbol (irrespective of the case of the initial character).

(.7) Any functor symbol is a 7zanae of itself.

(.8) Any constant or logicail vriahle is a term. The principal functor of a
constant is itself; loical %ariables have no principal functor.

(.9) If<f> is a functor symbol atnd <tl>,...,<tn> are terms, then

Quantification & Naming 49

<f>(<tl ><tn>) (4.3)

is a term. The functor symbol <f> is called the principal functor of
the term.

(.10) For every term there is a constant of L(mP) which is a name of the
term.

(.11) There are distinguished constants:

emptytheory true demo instance metaname

among the constants of L(mP).

In a fundamental sense, all of the linguistic expressions of L(mP) are
terms. The definitions which follow effectively single out terms of special
forms to function as specialized syntactic items such as literals, clauses,
theories, etc.

Definition 4.4. The reserved symbols of L(mP) are the following. (Note that
the single quotes are part of the technical English metalanguage -- they are
part of its machinery for naming syntactic items.)

" ' a ll , 'if ,&V , 7)' I t, T ,' 1' T{' 'T Y ,

'(, ', .

Definition 4.5. Any term whose principal functor is not a reserved

symbol can be a literal, including logical variables. When a term is used
as a literal, its principal functor is called a predicate name; a literal
consisting of a logical variable alone has no principal functor, and hence
possesses no predicate name.

Definition 4.6. The class of list expressions (or briefly, lists) is defined
recursively as follows:

(.1) [] is a list, called the empty list;

(.2) If<L> is a list and <'T> is any term, then

'[]'(<T>,<L>)

. - , . - _ , , . , , , , - . . , ' , , , , -- - . - . - , ,,

Quantification & Naming so

is a list.

The formal definition of the language renders every syntactic object
either a constant or a term which is written in prefix notation. Human
readability and ease of use requires that we provide parsers which sugar
this syntax and allow more friendly expressions for many of the items. To
this end, we will allow '[]'(<T>,<L>) to be written as [<T> I <L>]. In fact,
if <T> and <U> are any terms, we will allow the user to write

'[]'(<T>,<U>) as [<T> I <U>].

The list

can be written as

[<Ti>, <T2>], etc.

Definition 4.7. If <A> is any literal and <c>,<cl>,...,<cn> are any
constants, then

all(':'([<cl >,.....<cn>], <A>)) (4.8)

and

all(':'(<c>, <A>)) (4.9)
I

are both universal assertions. If <A> contains no logical variables,
they are both called facts. All facts are clauses. The literal <A> is also

'' called a fact matrix.

The sugared syntax allows (4.8) and (4.9) to be written respectively in
the forms:

"p

all [<cl>,...,<cn>] c.-\' (4.10)

all <c> T <A>. (4.11)
Definition 4.12. The class ',:' is defined recursively as follows:

Quantification & Naming 5 1

(.1) The distinguished term 'true' (which is a literal) is a goal.

(.2) If <G> is a goal and <L> is a literal, then '&'(<L>,<G>) is a goal. For
readability, goal expressions such as

'&'(<L1 >,<L2>)
can be written as

& <L2>,
with '&' associating to the right.

Definition 4.13. An implication symbol is one of the symbols '<-',

or 'if.

Definition 4.14. If <A> is any literal, if is any goal, if
<c>,<cl>,...,<cn> are any constants, and if <I> is an implication symbol,
then

all(:([<cl>,...,<cn>], <I>(<A>,)) (4.15)

and

all(:(<c>, <I>(<A>,)) (4.16)

are both called universal implications. If neither <A> nor contains

any logical variables, both (4.15) and (4.16) are called rules. Any rule is a
clause. The expression <I>(<A>,) is called a rule matrix.

For readability, (4.15) and (4.16), say with <I> being '<-', are written
respectively as:

all [<cl>,....<en>] : <A> <-. (4.17)

all <c> : <A> <- , (4.18)

Definition 4.19. The class ,F I/:,ories is defined recursively as follows:

(.1) The constant' emptyt}i, !--- (%which is a literal) is a theory.

(.2) If<C> is any clause and < '- is any theory, then

?-,

4q

Ouantification & Naming 52

&(<C>, <T>) (4.20)

is a theory. For readability, (4.20) can be written as

<C> & <T>, (4.21)

with '&' associating to the right.

Definition 4.22. If is any term and <cl>,...,<cn> are any constants,
then

:([<cl>,...,<cn>],) (4.23)

is a special form. Note that n=0 is allowed so that

:GI,) (4.24)

is a special form. For readability, (4.23) and (4.24) are written respectively
as:

[<cl>,....<cn>] : (4.25)

: (4.26)

,,

I.,

Example: Poirot 53

5. Programming Examples: Poirot

One of the immediate uses to which one can put theories is the handling

of varying points of view, for example as considered by Fain et al. in

Section 3 of [ROSIE]. To quote that paper:

The "problem statement" in this domain is straightforward:
given some set of facts and some set of participants, the
detective, Poirot, must uncover the information necessary to
deduce which participants might be guilty. Poirot uncovers
information by mediating a dialogue between the user and each
participant. Poirot then uses the information gleaned from
the interrogation to make his deductions. In other words, the
user asks the questions and Poirot makes the inferences.

Unfortunately, each potential suspect has his or her unique
viewpoint of and knowledge about the situation. Thus, in
terms of implementation, we need some way of simulating the
privacy of each participants' memory and some mechanism
or mechanisms for simulating the questionianswer protocol
of interrogation.

The mechanism we use here is that of theories: each participant is
represented by a separate theory. Thus, for example, the theory
representing Poirot is named poirot and consists of the following clauses:

rich(mary).
involved(sara).
involved(john).

The theory which represents John is named john and consists of the
clauses

need(john,money).
married to(john,nmry).
lovedijohn,mary).

while the theory represctinm S'ira is similarly named sara and consists

of the clauses

z

%7

Example: Poirot 5 4

sister(sara,mary).
love s(sarajohn).
did-not-loveojohn,mary).
loves~john,sara).

The theory common contains knowledge regarded as common to all
participants:

manljohn).
man(poirot).
woman(mary).

* woman(sara).
found-dead(mary).
detective(poirot).

all individual :
person(individual)<-

man(individual).
all individual:

person(indivi dual)<-
woman(individual).

all [individual, person]:
married(individual, person) <-

married-to(person, individual).
all [individual, person]

married(individual, person)<-
married-to(individual, person).

all [individual, person]:
married(i ndivi dual) <-

wife(person, individual).
all [individual, person]:

married(individual) <-

husband(person, individual).

all [individual, person]
married(individual) <-

spouse(person, individual).
all [firstPerson, secondPerson]

related(firstPerson, second Person) <-

married-to(firstileirson, secondPerson).
all [firstPerson, second Perison

related(firstPerson, secondPerson) <-

!,'Yr1M' %IT % TarKWIJVxVi T ILI KnWI.

Example: Polrot 55

marriedto(secondPerson, firstPerson).

all [firstPerson, secondPerson]
related(firstPerson, secondPerson) <-

sister(firstPerson, secondPerson).

all [firstPerson, secondPerson]
related(firstPerson, secondPerson) <-

daughter(firstPerson, secondPerson).

(Mary, being deceased, has no theory representing her interests.)
Recall that Poirot listens in on the interrogation that we conduct with John
and Sara, and then makes his deductions from the evidence
accumulated (i.e., the positive responses that John or Sara makes.)

Poirot thus requires a theory which represents his "theory of evidence":
the rules whereby he can conclude that someone is a suspect and what
their possible motive might be. This is represented by the theory named
suspct:

all [person, otherPerson, victim]
suspect(person, jealousy) <-

loves(person, otherPerson) &
married(otherPerson, victim) &
founddead(victim).

all [person, victim]
suspect(person, greed) <-

need(person, money) &
founddead(victim) &
rich(victim) &
related(person, victim).

all [person, otherPerson, victim] :
suspect(person, revenge) <-

loved(otherPerson, victim) &
not(otherlcr.,rn = person) &
founddea Yvict?:no &
rejected-by 1, -,, n, otherPerson).

all [person, otherPers,,ri,
rejectedby(person. thci-Person) <-

VT
a *t - V. -

Example: Polrot 56

loves(person, otherPerson) &
not(person = otherPerson) &

not(loves(OtherPerson, Person)).

The workhorse part of the program is contained in the theory

labelled detect. The entry to the entire program is the zero argument
predicate detectiveStory. The first step of this predicate is to assemble the
set (list) of suspects according to Poirot -- this is called Candidates. The
next step is to operate on Candidates using the predicate doInterrogations,
producing a list called Suspects.

It is during the running of doInterrogations that the user asks
questions of the candidates and Poirot "listens." The information Poirot
finds interesting is recorded in the list Suspects. Specifically, the
questions which each candidate answered positively are recorded and
associated with the candidate in the list Suspects. Next, Poirot reorganizes
the evidence using the predicate assembleEvidence. He then uses the
individually recorded evidence (Suspects) together with the reorganized
evidence (TotalEvidence) in conjunction with his theory "suspct" to draw
conclusions about the individuals. He reports these conclusions to the
user via the predicate reportOn.

all [person, candidates, suspects, totalEvidence]
detectiveStory <-

demo(poirot, setOf(person, involved(person), candidates)) &
doInterrogations(candidates, suspects) &
assembleEvidence(suspects, totalEvidence) &
reportOn(suspects, totalEvidence).

dolnterrogations(1,l).

all [person, rest_of_candidates, reasons,rest of_suspects]
doInterrogations([person I rest of candidates],

[suspect(person,reasons) I rest of Suspects]) <-
interrogate(person, reasons) &
doInterrogations(rest ofCandidates, restofSuspects).

The predicate doInterrogations simply recurs down the list of
Candidates, interrogating each person and recording the Reasons for
which that person might be a ;u.spect,

all [person, reasons]
interrogate(person, reasorws <--

..

57. UWVM

Example: Poirot57

conductlnterrogation(person, [,reasons).

all [person, currentReasons, finaiReason, instructions]
conductlnterrogation(person, currentReasons, finaiReasons) <-

obtainFromUser(instructions) &
act~n(instructions, person, currentReasons, finaiReasons).

The predicates conductlnterrogations and interrogate are mutually
recursive. The positive answers to questions are accumulated in the
second argument of conductlnterrogations. When the user's instruction is
to quit this particular interrogation, actOn causes the accumulated
answers to be returned by conductlnterrogations in its third argument.
Note that the privacy of individual views is achieved in actOn by deducing
the user's Query from the theory "common" combined with the theory
defining the individual suspect (e.g., "John").

all command:
obtainFromUser(command) '<-

ni & write('>') & read(command).

all [person, currentReasons]
act~n(done, person, currentReasons, currentReasons).

all (person, currentReasons, finalReasons]:
act~n(interrogate, Person, CurrentReasons, FinalReasons) <-

write('Interrogating') & write(person) & ni &
conductlnterrogation(person, currentReasons, finalReasons).

all [query, person, currentReasons, finaiReasons, newReasons]:
act~n(query, person, currentReasons, finalReasons) <-

demo~common & person, query) &
respond('Yes, ', query) & ni &
addTo(CurrentRecas-ons,Query,NewReasons) &
conductlnterrogat o ,n(person, newvReasons, finalReasons).

all (query, person, currcW lllei ons, FinaiReasons]
act~n(query, person, (irron tReasons, finalReasons) <-

respond('No, it ii rit the case that', query) & nl &
conductlnterroga iti n' person, currentReasons, finaiReasons).

Example: Polrot 58

This completes the definition of doInterrogations. The predicate
assembleEvidence simply forms a virtual union of the reasons associated
with each suspect:

assembleEvidence([], empty-theory).

all [person, reasons, rest-susp, other-ev]
assembleEvidence([suspect(person,reasons) I restsusp],

otherev & reasons) <-
assembleEvidence(rest_susp, other-ev).

The final top-level predicate is reportOn, which handles both
carrying out Poirot's final deductions regarding the status of each
suspect together with reporting on the evidence and the deductions to the
user.

reportOn([],_.

all [person, reasons, rest_susp, totalEvidence]
reportOn([suspect(person, reasons) I rest-susp], totalEvidence) <-

write(Evidence concerning ') &
write(person) & write(':') & nl &
exhibit(reasons) &
determineSuspectStatus(person, reasons, totalEvidence) &
reportOn(rest-susp, totalEvidence).

Poirot's attempts to deduce which persons are really suspects is
carried out in the predicate determineSuspectStatus by the call to demo.
Note that the theory under which the attempted deduction takes place

consists of the theory representing Poirot combined with his theory of
suspects, the common knowledge, and the TotalEvidence acquired
during the interrogations. The full three-argument version of demo is
used so as to obtain the actual proof which is then used in presenting the
conclusions to the user in discussSuspectStatus.

all [person, reasons, totalEvidence, motive, deduction]

determineSuspectStatus(person, reasons, totalEvidence) <-
demo(suspct & common & poirot & totalEvidence,
suspect(person,motive),proof(deduction)) &
discussSuspectSta t u -(person,motive,reasons,totalEvidence,

deduction).

', ; . .,. ..,.,.... '... .:.'-.., .'..- -.,..'

' iU . ,f WV ,UN b W4Ibh T'. . , xA T r n .j n .K iP . r n .

Example: Polrot 59

all person : determineSuspectStatus(person, .) <-
discussSuspectStatus(person, _, _, _, innocent).

The remaining predicates are concerned with reporting to the user.
We will omit their details. Below is a transcript of part of one run of the
program (User input is shown in boldface.)

>interrogate.
Interrogating john
>needojohn,money).
Yes, john need money
>related~johnmary).
Yes, john related mary
>lovedljohn, mary).
Yes, john loved mary.
>lovesljohn, sara).
No, it is not the case that john loves sara.
>loves(sara, john).
No, it is not the case that sara loves john.
>done.
>nterrogate.
Interrogating sara.
>need(sara,money).
No, it is not the case that sara need money
>related(saramary).
Yes, sara related mary
>Iovedojohn, mary).
No, it is not the case that john loved sara.
>lovesljohn, sara).
Yes, john loves sara.

loves(sara, john).
Yes, sara loves john.
>done.

Evidence concerning john:

john need money
john related mary
john loved mary

john is a suspect. Motive: gr, ,,i.

"J J "- "- -"~~ -% -% %;- '", ","."."-,"' """- . . .:,:'.:'.'";'.::.::"::,:,"

Example: Poirot 60

Poirot concludes that john is a suspect with the motive of greed. Here's his
reasoning:

john related mary is established.
mary is rich is established.
mary is founddead is established.
john need money is established.
john suspect greed because of the rule

john suspect greed holds if
john need money &
mary is founddead &
mary is rich &
john related mary.

Evidence concerning sara:
sara related mary
john loves sara
sara loves john

sara is a suspect. Motive: jealousy.

Poirot concludes that sara is a suspect with the motive of jealousy. Here's
his reasoning:

"

mary is founddead is established.
john married mary is established.
sara loves john is established.
sara suspect jealousy because of the rule

sara suspect jealousy holds if
sara loves john &
john married mary &
mary is found-dead.

Notice the two different points of view expressed by the different
answers john and sara give to the questions presented.

"

,

%U.

-7~~.-..- -.K .C

V: MWV M'M' WPm;, = UK V*,. V I- V. V , Ww u-. hI : ,. :. L -. , ',, -. ' ; m '::- ., - -
. - : , " d :

-
, :

. F
, . -

' - 'J -

Example: Bottom-Up Parsing 61

6. Bottom-Up Parsing

Our next programming example is an unusual construction of a

bottom-up parser using the ability to generate new grammars
(represented by theories) on the fly. The grammars are expressed with the
rules of Definite Clause Grammars (cf. Pereira and Warren [1980]). They
process a list of Prolog terms representing the tokens of the sentence to
be parsed. At all points in the algorithm, the processing is relative to a
current extended grammar XG. (The original grammar G is always
passed along for use in generating the next extended grammar.) The
essence of the algorithm is as follows:

1. If the sentence is the empty list and the rule

(sentence -- >)

belongs to XG, terminate successfully.

2. If the sentence is non-empty and the rule

(sentence -->)
belongs to XG, backtrack.

3. Otherwise, let T be the left-most token, let R be the remainder of the
sentence list, and proceed as follows:

a) Select a "grammar fact" from G which will reduce the selected
token to a non-terminal grammar symbol and apply it to T, yielding
Ti.

b) Select a grammar rule from XG with a non-terminal symbol NT
as its head such that the first symbol in the body of the rule matches
T1; let RB be the remainder of the body of this rule.

c) Use XG, NT, and the reduced rule
NT --> RB

to construct a new extended grammar XXG; replace XG by XXG and
goto step 1.

Step 3c) expands to the fol1cwing ailgoiithm:

i) Collect the set K of all r,!1:ce, rules of the form
H --> B,

Example: Bottom-Up Parsing 6 2

where the rule
H--> NT, B

belongs to XG; note that B may be empty.

ii) If K contains a rule
(H1 -->),

choose one such, and let XXG be the set of all rules of the form
H2 --> B2,

where the original grammar G contains the rule
H2 --> H1, B2.

iii) Otherwise, let XXG be K together with the rule
NT --> RB.

The code for implementing a simple version of this in metaProlog runs as
follows:

all [G, SI : parse(G, S) <- pp(G, G, S).

all [G, XG] : pp(G, XG, []) <- belongs((sentence -- >), XG) & fail.

all [G, XG, T, R, T1, NT, RB, XXG]•pp(G, XG, [T I RI) <-

belongs((T1 --> [T]), G) &
belongs((NT -- > T1, RB), XG) &
reduce(G, XG, NT, RB, XXG) &
pp(G, XXG, R).

all [G, XG, NT, RB, XXG, H1]:
reduce(G, XG, NT, RB, XXG) <-

belongs((HI --> NT), XG) &
filter(G, H1, XXG).

all [G, XG, NT, RB, XXG, H1, GIl
reduce(G, XG, NT, RB, XXG) <-

not(belongs((HI -- NT), XG)) &

filter(XG, NT, (1 ,&
addTo(G1, (NT --> Iffl), XXG).

The predicate filterk-l'l, X, T2) is defined to hold if T1 is a theory and
T2 is the theory consisting ot ,ill those rules of the form

Example: Bottom-Up Parsing 63

H --> B

where

H--> X, B

belongs to T1. Something like this filter, but more general, is a candidate
for being a built-in for metaProlog, but more experimentation is necessary
before a decision is made. [In general, there is considerable room for
discovery and specification of theory-manipulation predicates.] It is
possible to simulate filter(T1, X, T2) by using setOf to create the list of all
axioms of T1, and recusrsively process that list to build up T2 from the
empty theory.

.4.- - -~~!

% '. 4.4W~4.4' 4. '4.!

S& Parals 6

Co-routining & Paralleism 64

7. Co-routining and ParallelismM

As part of our program of providing powerful tools for Al
programming, we seek to offer the programmer control of stream-based
communication between concurrent processes, while still holding to our
program of preserving the essential elements of Prolog semantics. In the
logic programming context, this amounts to implementing some form of
and-parallelism. The most straight-forward sort of and-parallelism to
attack is simple producer - consumer computations. However, since the
implementation of producer - consumer relations in which the producer is

allowed to non-determinately reconsider the stream it has produced is
difficult to say the least, we restrict ourselves to determinate and-parallel
situations. Other approaches to parallelism in Prolog (e.g., Parlog (Clark
and Gregory [198?]) or Concurrent Prolog (Shapiro [19831)) achieve this
restriction by introducing committed choice. However, while preserving the

correctness of the computations, this approach loses Prolog's deductive
completeness. In contrast, we preserve both the correctness and
completeness by restricting ourselves to running in parallel only producer -
consumer computations in which the production of the stream is

determinate. (Note that the computation of the elements of the stream may
involve non-determinate aspects; it is simply at the point of adding a new

element to the stream that the producer must act determinately. Also,
consumption of the stream may be entirely non-determinate.) The essential
point appears to us that it is not really the processes which must be forced to
be determinate, but rather the communication between them. Thus our
approach is to force the producing process to determinately fill the

communication buffer; all else can be non-determinate.

We have identified two useful classes of producer - consumer

computations which meet our requirement (and the possibility of others
certainly exists).

The first is the (lazy) production of sets via complete exploration of a

search tree (i.e., the lazy form of Prolog's setof construct) and the
production of streams by determinate tail-recursive procedures. These are
indicated in metaProlog programs by the constructs

.,. ,_,'. ,_ , =*,. ,,,. ,%, , %' ,'~~~~~....... %......_..... ,..'-......,......... .,-..-......,..-. -.-

* Co-routiling & Parallelism 65

allsolutions(Template, Goal, Stream)

and

streamOf(Goal, Stream).

We see these as entirely encapsulated independent computations: their
only method of communication with parent or sibling processes is via the
stream variable. Every element of the stream must be ground. If the
producing process would have otherwise produced a partially instantiated
term as a stream element, that term must be converted to a ground term by
use of the 'naming' or 'indicating' operator discussed above in conjunction
with quantification. The same restrictions clearly must apply to the Goal
argument of both streamof and allsolutions. One method of
implementation is that of producer variables. The first invocation of Goal
binds the variable Stream to a buffer together with a description of Goal and
its environment. Subsequent attempts to access the variable stream by the
consumer causes Goal to be run through one cycle of its computation,
binding Stream to a cons cell whose first element is the item produced and
whose second element is a description of the rest of the buffer together with
the current state of the computation of Goal. It is important to recognize
that the producer variable does not act like normal Prolog variable. Indeed,
since any attempt to match a non-variable term against an element of the
stream causes the stream element to be instantiated to a ground term by the
producer, and since the producer is determinately committed to the binding
it produces, producer variables behave for all intents and purposes as

ground objects. Thus it is perfectly permissable for producer variables to
appear in the Goal arguments of other producer processes. This allows for
two-way communication between producers. Process synchronization is
achieved by requests for bindings passed from process to process. It is clear
that the two communicating processes must created simultaneously. The
construct

simultaneous(Proces-sl, Process2)

achieves this effect. It can ke inrvoked with any number of arguments.

Because we see th.es pr c ,cs as entirely sealed computations with
their own environments, it !. -- le, in appropriate hardware settings, to
run them truly in parallel. ;11! i.n- the producing process to fill the buffer

"% '° -. '.%'' ' % % '% w . " " % . .,55_ 5 *l % % . % . % ., . 5 . '. -. .. -. 5. ". %. .' ". ", . ".5 *,~ .55 %

Co-routining & Parallelism 66

up to some pre-set limit or even run to completion when the stream is finite.

On sequential hardware, the implementation is simple co-routining of the

producer and consumer, with the additional overhead entirely localized in

the communication -- there is no slow down of the basic Prolog
computation. In particular, the computational children of the Goal of one of

these processes do not inherit the parallel mode: they run as normal Prolog
processes. It should be possible to mix parallel and co-routined execution
with no change to the program or its behavior. Finally, while we have

not attempted to do so, it seems evident that or-parallelism could be

introduced with a stream operator whose top level was expanded in an or-

parallel manner. One might even introduce committed-choice versions of

such an operator without disturbing the semantics of the rest of the system.

4

a

-

Example: Inland Spills 67

.

.8. Programming Examples: The hIland Spills Expert

S,. Here we discuss an adaptation of a program to manage inland

chemical spills at the Oak Ridge National Laboratory. The problem is
discussed in detail in Hayes-Roth, et al.[1984. Our metaProlog program
for this problem was strongly influenced by the Rosie SPILLS program
(Fain et al.[1982]), from which the following problem statement was
drawn:

The SPILLS program locates and identifies hazardous
chemical spills, given a database describing the location of the
spill, the location of chemical storage containers, and a
description of the drainage network. SPILLS evolved as an
answer to a problem posed at the expert Systems Workshop
in San Diego, August 1980 ...The problem involved the creation
of an on-line assistant to aid a crisis control team in the
location and containment of chemical spills at the Oak
Ridge National Laboratory. Two experts in the field plus a
preliminary report ... provided the necessary expertise.

The Oak Ridge Laboratory has approximately 200
buildings scattered over a 200-square-mile area, many storing
hazardous chemicals in containers ranging in size from
small 1-gallon bottles or cans to huge 5,000-gallon storage
tanks. The drainage network under the building collects all
spills and discharges them into White Oak Creek, a waterway
running along one side of the lab's complex. When chemical

discharges are noticed in the creek they must be traced back
to some source (a storage container in or near a laboratory
building) so the leak can be stopped and the spill contained.

The SPILLS program attempts to locate the source of the

spill by tracing the flow of spilled material through the
drainage basin back to the source. This search method
requires a human n- i-t:int who must go out in the field and

actually look into the dr~iinage networks at various check
points (usually manhol, -) to Zee if the spill material is there.
There are so many rinirdi lcs (hundreds, hat it is not
practical to check th,,m ill !,)r traces of the spill. Instead, the
program uses the informit ,n at its disposal to decide which

Example: Inland Spills 68

checkpoint would provide the maximum amount of
informaticn at any given time, and recommends that the
assistant examine that checkpoint. After the program is told
the result of that examination, it recalculates the new optimal
checkpoint, and the process continues until the source is
found.

Besides processing reports on the location of the spill
material, the program processes reports describing the
characteristics of the spill material. It attempts to
determine what the material is and how much of it has been
spilled. This information, in turn, helps reduce the number of
possible locations to be checked.

One of the many drainage basins at Oak Ridge is shown in Figure
B.8.1 below.

.

U,

., UP' rZ.V , ~*'**~U-

Example: Inland Spills
69

m19J 36503675 dg 3024 //dg41/

, Bld g2

FT -1". I, ,/

Bldg35 ' I I I8/
/m16 m1 m u I I dg3S

mm22
Ls5 J Bldg3023

i'- BI 3517

63 7Z

"" 14 12

M11 5gldg3504
m3

.,m4

ldg 351_ 1 _ -- 61,_7_l s .. J

ak9 Creek6 ;d 3 lg30

': Figure B.8.1.
A- Part of One of the Drainage Basins at Oak Ridge National Laboratory.

S.M1

It is evident that the basin forms a tree with its root at the White Oak
Creek effluence and its tips consist of the various sources. The problem
then is one of exploring this search tree starting at the root (where the
spill is first observed) and locating the offending tip (a leaky tank). The
difficulty in this exploratinn (which involves a human assistant going
out and looking into the manholes) is the large size of the tree. Thus the• o program, just as a human, will attempt to apply knowledge to minimize

i -2- *5-;:.*.;:- ;, :,.......-, - :.-....-.-..-.-...:....-..."....:';; ::: : . " :;:: : L,;:;::: ; -1; ;:; ' ::': :,

Example: Inland Spills 70

the portion of the tree which must be examined.

Conceptually, at the outset of the search all of the tips are possible
sources of the spill. As knowledge (of the nature of the material and of the
manholes at which it has been observed) is accumulated, various of the
tips are eliminated as possible sources. Our metaProlog program,
named OakRidge, emulates this approach by maintaining a dynamic
theory representing the current state of its knowledge. At the outset, it
consists solely of a collection of assertions to the effect that each of the
sources in the basin is a possible source of the spill:

possibleSource(s(1)).
possibleSource(s(2))

possibleSource(s(70)).

As the search progresses and various sources are eliminated, the
appropriate possibleSource(s(N)) assertions are deleted, while assertions
regarding the nature and properties of the spill material are added
along with assertions about the manholes at which it has been observed.

The knowledge which the program possesses at the outset is broken
up into various static theories which are utilized by the reasoning
processes. The knowledge of the topology of the network, the nature of
its nodes, and the nature of each of the sources is contained in a theory
called srcs:

isPond(pond(3513)).
outfall(woc(6)).
isBuilding(building(3023))

isBuilding(building(3550)).

all N: isDrain(drain(N)) <- between(O, N, 16).
all N: isManhole(m N,) <- between(0, N, 47).
all N: isSource(s(N,) <- b1etween(0, N, 71).
all N: near(s(N), pond, 2,513) <- between(O, N, 8).
all N: in(building 3)220 , N 0 <-between(43, N, 46)

all N: in(building(35 -, N . <- between(10, N, 17).
all N : in(building(350 I N,) <- between(67, N, 70)

..................................)L

Example: Inland Spills 7 1

parent(woc(6), mi(1)).

parent(m(1), m(2)).
parent(m(2), m(3)).
parent(m(2), m(4)).

all N : parent(m(5), drain(N)) <- between(7, N, 10).

all [M, NI :parent(drain(N), s(M)) <- between(2, N, 5) & M is N+1.

contains(s(1), gallons(20 00), [transformer, oil]).
contains(s(2), gallons(1 000), (gasoline]).
contains(s(3), gallons(1 0), [acetic, acid]).

Other static theories contain knowledge about how to infer the
nature of the spill material from its properties, how to infer the next
manhole to examine, and how to eliminate possible sources. These will
be described below. The top level of the program appears as follows:

oakRidge <- investigate(null).

all [currentData, updatedData, dO, dl, d2, d3]:
investigate(currentData) <-

write('Report please:') & ni &
getReport(currentData,updatedData) &
workOnMaterialType(updatedIData,dO) &
workOnMaterial(dO,dl) &
workOnMaterialVolume(dl ,d2) &
workOnMaterialSource(d2,d3) &! &
dispatch-investigatc(d3).

all updatedData :
dispatch investigate(updatedData) <-

finished(updatedl),tai & !.

all data : dispatch-invest u-,i::' ,i) z-
& investigate(data.

The predicate getRepoit i- tHi "natural langilage" front-end which

Example: Inland Spills 72

obtains information to the user. The details of its definition are included in
the appendix to this section. The variable CurrentData is bound to a
theory which represents the current information regarding the spill
being investigated. This is extended by getReport N ith the information
obtained. The workOn - predicates are concerned with

inferring the general nature, specific identitiy, volume of, and source of,
the spill. They each take the current information as input, and add to
it any inferences they may make to produce their output. Finally,
dispatch investigate determines whether or not the source has been
determined, and hence, whether or not the investigation should be (tail
recursively) continued.

Consider the predicate workOnMaterialType. It is concerned with
the problem of inferring the general nature of the spill material. It bases
its deductions on the current information regarding the spill material
(the variable UpdatedData) and a small theory "typeOfMaterial" which
encodes the "expertise" for inferring the types of spill materials in this
setting. The definition of workOnMaterialType runs as follows:

all [data, extendedData, x]
wcrkOnMaterialType(data, extendedData) <-

write('Trying to determine material type...') & nl &
demo(typeOfMaterial & Data,type ofmaterial(spill,x)) &
! &

addTo(data, typeof material(spill,x), extendedData) &
write('The type of the spill material is ') &
print(x) & nl & n.

all data :
workOnMaterialType(data, data) <-

write('Can"t determine the type of the spill material now...') &
nl & nl.

The theory typeOfMaterial contains the following axioms:

all n : type-of material -pill. , ill) <-

appears(spillsolubilIt,, [lo]v~) &
approximates(phof-; ill, nl & 5 <n & n <9.

all n : type-of material(-.iil.-, <-
appears(spill_solubility i Q .i ; &
approximates(phof-spillirQ & 8 < n.

_. 8 n.

. . . . '- . .

Example: Inland Spills 73

all n : type-..of...material(spill,[acid]) <-
appears(spill-solubility, [high]) &
approximates(ph-ofspill,[n]) & n < 6.

The predicate workOniMaterial attempts to infer the specific
composition of the spill. It bases its work on the current information at
the time of its invocation (the theory dO) together with the theory
"materialType" contains the expertise for inferring the spill composition.
The definition of workOnMaterial runs as follows:

all [data, extendedData, x]:
workOnMaterial (data, extendedData) <-

write(CTrying to determine material...') & n1 &
demo(materialType & data, consists(spill,oax))) & !&
addTo(data, consists(spill,o~x)), extendedData) &
write('The spill consists of') & write(x) & n1 & n1.

all data: workOnMaterial(data,data) <-

write('Can"t determine what the material is now...') & n1 & ni.

The theory materialType contains the following axioms:

consists(spill,ofR[sulpheric,acid])) <- iss(sulphate-ion-test, [positive]).

consists(spill ,of~gasoline])) <-

type-of material(spill,[oill) & smells(spill,of([gasoline])).

* consists(spill,of([diesel,oil])) <-

type-of material(spill, [oil]) & smells(spill,of([die sel,oil])).

consists(spill,of(acetic,acidl)) <-

type-of-material(spill ,acid1) & smell s(spi11, of([v ine gar])).

consists(spill,of([hydrochloricsicid])) <-

type-of material(spill,[acidb) &
has(spill,[pungent,'/',chiokinig,odor]).

While the content of thie rules in these theoies is not particularly
deep, nonetheless, they exhibhit the necessary chiaracteristic of expert

Example: Inland Spills 74

system rules: the clear expression Of whatever expertise they embody.

The code for trying to determine the source of the spill runs as follows:

all [data, extendedData, xDatal, xData2] :
workOnMaterialSource(data, extendedData) <-

write(CTrying to determine source...') & n1 &
updateDetected(data, xDatal) &
eliminatePossibleSources(xDatal, xData2) &
checkForSource(xData2, extendedData).

all data:
workOnMaterial(data,data) <-

write('an"t determine what the material is now...')
& n1& nl.

all [dataln, dataOut, prevHighNode, newHighNode]:
* updateDetected(dataln, dataOut) <-

axi omOftdataln, highestNodeDetected(prevHighNode)) &
demo(dataln, detected(spill, at(newHighNode))) &
demo(srcs, above(newHighNode, prevHighNode)) & ! &
dropFrom(dataln, highestNodeDetected(pre vHighNode), datal) &
adciTo(datal, highestNodeDetected(newHighNode), dataOut).

all data:
updateDetected(data, data).

all [dataln, dataOut, conseq, fact,
possibleConditions, excludedSrcs, xData]:

eliminatePossibleSources(dataln, dataOut)<-
setOf~conseq,

(axiomOffdatalni, fact) &
demo(seekSrc, conseq, bottom_up(fact)),

possibleConiditions) &
checkOut(srcs & datain, possibleConditions, IIexcludedSrcs) &
revise(dataln, excluldedSr-cs, xData) &
checkForBypass(xD1]ta, data~ut).

all (theory, accumulated, finaIJ:
checkOut(theory, [1, accumulated, final)<-

f n,,! = accumulated.

A-^.........................

Example: Inland Spills 7 5

all [theory, restConds, accumulated, final]:
checkOut(theory, [true I restConds], accumulated, final)<-

* checkOut(theory, restConds, accumulated, final).

all [theory, S, C, restConds, accumulated,
implications, newAccumulated, final]:

checkOut(theory, [true I restConds], accumulated, final)<-
set~fimpSrc(S), demo(theory, (C & source(S)) ,implications) &
append(accumulated, implications, newAccumulated) &
checkOut(theory, restConds, newAccumulated, final).

The theory seekSrc contains rules such as the following:

L all [S, material, N, otherMaterial]:
impossibleSource(S) <-

consists(spill, of(material))&
contains(S, gallons(N), otherMaterial) &
not(material = otherMaterial).

all [S, V, SomeMaterial]:
d impossibleSource(S)<-

volumeOfgspill, gallons(V)) &
contains(S, gallons(N), SomeMaterial) &
N <V.

Example: Circuit Diagnosis 7 6

9. Fault Detection in Digital Circuits.

In this section we describe approaches to fault-detection in digital
ciruits based on the ideas of Esghi [], extended to a hierarchical setting

similar to that of Genesereth[].

9.1. Circuit Description and Simulation

For the purposes of fault-finding, the devices must be described in

some sort of predicate calculus formalism. The exact format is

unimportant. For the purposes of the simple example we consider, we
label the gates and lines (nodes) of a combinational circuit as indicated in
Figure B.9.1.

'i) g3
. o

Figure B.9.1. A Simple Circuit.

The predicate

andGate(G, Inl, In2, Out)

expresses that G is an and-gate with input lines Inl and In2, and

output line Out. Similarly for orGate. The topological description of the

circuit is contain in the theory cl:

QI

-o

Example. CIrcuit Diagnosis 77

andGate(gl, a, b, e).
andGate(g2, c, d, 0.
orGate(g3, e, f, h) (9.1)
inputNodes([a, b, c, d]).
outputNodes(ih]).

The predicate inputNodes holds of the list of inputs to the circuit as
a whole, while the predicate outputNodes holds of the list of output nodes
for the entire circuit. The behaviors of the circuit components are
described in the theory tt (for truth tables):

all [Gate, InI, In2, Out]
andTable(Gate, Inl, 1n2, Out) <-

Z ~not(exceptional (Gate)) &
standardAnd(Inl, In2, Out).

all [Gate, mnl, 1n2, Out]
orTable(Gate, Inl, 1n2, Out) <- (9.2)

not(exceptionalI(Gate)) &
standardOr(Inl, 1n2, Out).

standardAnd(high, high, high).

all 1n2 :standardAnd(low, 1n2, low).
all Inl :standardAnd(Inl, low, low).
all 1n2 :standard~r(high, 1n2, high).
all Inl :standardOr(Inl, high, high).

standard~r(low, low, low).

5% user..choice(delTab).

The significance of thie predicates "exceptional' and "user-choice"
will be described later. The topology and component behaviors can be used
to predict the circuit out put s given the inputs as described in the theory

laws:

all InputList
predict(InputList, [1, (I) < -

write('predict ground

Example: Circuit Diagnosis 78

all [InputList, Node, RestOutputNodes, State, RestOutput]

predict(InputList, [Node I RestOutputNodes],
[out(Node,State) I Rest-Output]) <- (9.3)

state(Node, InputList, State) &
predict(InputList, RestOutputNodes,

Rest-OutputNodes, RestOutput).

all [Node, InputList, NodeState, GateName, InputLinel, InputLine2]
state(Node, InputList, NodeState) <-

andGate(GateName, InputLinel, InputLine2, Node) &
state(InputLinel, InputList, Line_1 _State) &
state(InputLine2, InputList, Line_2_State) &
andTable(GateName, Line 1 State, Line_2_State, NodeState).

all [Node, InputList, NodeState, GateName, InputLinel, InputLine2]J

state(Node, InputList, NodeState) <-
orGate(GateName, InputLinel, InputLine2, Node) &
state(InputLinel, InputList, Line_1 State) &
state(InputLine2, InputList, Line_2_State) &
orTable(GateName, LineIState, Line_2_State, NodeState).

all [Node, NodeState, RestInput] :
state(Node, [in(Node, NodeState) I Rest_Input], NodeState).

all [Node, Rest-Input, NodeState] :
state(Node, L I Rest-Input], NodeState) <-

state(Node, Rest-Input, NodeState).

The predicate predict can be used to simulate the action of circuits.
Thus, for example, to simulate the action of the sample circuit described
above when the input lines a, b, c, and d are respectively set to high, low,
low, and low, one would run the metaProlog goal

demo(cl & tt & laws, (9.4)
predict([in(a,high),in(b,low),in(c,low),in(d,low)], Out))

whicn would be solved yielding the value Out [out(h,low)].

V.-, ',- - i" i" " " '1 " I : :

a-

Example: Circuit Diagnosis 7 9

9.2. Fault Diagnosis

This use of predict for simulation of circuit behavior is
interesting, but not very exciting. However, the predicate predict can be
used in metaProlog to organize a very promising approach to fault
diagnosis in digital circuits. This approach relies heavily on the ability
to manipulate and create theories. The essence of the approach is this. We
are given a description D of the circuit under diagnosis, together with an
input-output pair (If, Of) for the actual circuit in which the output behavior
Of is faulty: it is not what predict would calculate based on D. The heart
of the approach is to infer a new description Df by a "minimal"
perturbation of D such that using Df, predict would correctly calculate
the pair (If, Of). That is, Df will be a correct description of the faulty
circuit. By comparison of D and Df, the fault can then be located. We
will assume that the original circuit D is reachable and observable, and
moreover, that the faulty behavior is due to a single pin of a single gate
being stuck either high or low. However, both assumptions can be
weakened. In the absence of observability, the output of the algorithm will
be a list of candidate descriptions of the faulty circuit. Multiple faults or
short circuits can be attacked by modifying the hypothesis generation
stage of the algorithm.

The basic diagnostic algorithm runs as follows: (9.5)

1: From D and (If, Of), construct a set HYP = (H1,H2 of theories
such that the following two conditions hold:

1.1) For all i, demo(Hi & laws, predict(If, Of)) holds.
1.2) For some i, Hi correctly describes the faulty circuit.

2: If cardinality(HYP) = 1, halt and output HYP.

3:

3a) Choose distinct Hi and Hj in HYP;
3b) Construct, if po-zbli. a discriminating input Id which

distinguishes tli avi1 Ili"
3) If steps 3a) and :2)K, i,-, riot jointly possible, halt and output HYP;

Else, goto step 4.

4: Apply Id to the phv-ic.d l,,tIty circuit to obtain the resulting
output Od.

. ~%

Example: Circuit Diagnosis 80

5: Delete from HYP all Hi for which the goal

demo(Hi & laws, predict(Id, Od))

fails.

6: Goto step 2.

Steps 2 - 6 of this algorithm constitute a reasonably standard "test
and eliminate" loop which we will discuss later. The most interesting
part of the algorithm is its first step, that of generating the candidate
descriptions of the faulty circuit. (Note that the entire algorithm is a
classic "generate and test.") What is needed is a heuristic to guide this
generation through the combinatorial nightmare of all possible circuit
descriptions. The key is provided by the mathematician's observation
that even failed attempts at proofs are often useful in guiding a search for a
correct proof (as strikingly illustrated by Kemp's false proof of the four-
color conjecture and the Appel-Haken correct proof.) First note that since
(If, Of) is a faulty 1-0 pair for the correct circuit D, the goal

demo(D & laws, predict(If, Of)) (9.6)

must fail. However, in the process of failing this goal, the metaProlog
system systematically explores the search tree for this goal. Each of the
branches of this tree is a failed proof of the goal.

What we propose to do is what a mathematician normally does not
permit himself, namely to ask the question: Can I modify the axioms of
the theory D to make this failed proof into a correct proof relative to the
modified theory? In our case, we will only allow modifications to D which
reflect "sticking" a pin of a gate at either high or low. Thus we will
generate all those modifications of D which

(1) are obtained by Kticking' one pin of one gate at high or low,

and

(2) allow the goal (9.6, to be successful.

•. A , , . - a , ,
-

,N . . ", 'J ,

Example: Circuit Diagnosis 8 1

Under our basic assumptions, this procedure will satisfy the
requirements of step 1 of the algorithm, and obviously substantially prunes

the search space of all possible variations on the circuit D. The filter

provided by steps 2-6 then zeros in on the best description(s) of the faulty
circuit.

9.3. Implementation in metaProlog

Thu full three-argument form of the demo predicate provides us
with the facilities to accomplish this task. While the call (*) above will
fail, the call

demo(D & laws, predict(If,Of), branch(B)) (9.7)

will succeed, binding B to an unsuccessful branch of the search tree.
Thus the call

streamOf(B, demo(D&laws, predict(If,Of), branch(B)), Branches) (9.8)

will cause Branches to be bound to the list of all (failed) branches of the
search tree. Having obtained this list, we then must sift through it to
extract those brancnes which can be converted to succes.,k'A proofs by
changing the behavior of one pin on one gate.

To this end, it is would be convenient if all of the branches were
organized so that all attempts to access facts in the gate portion (tt) of the
circuit description D occurred last in the branch with no later
processing of predict calls or topology calls. For then, the last (failed) goal
on the branch will be a collection of gate-database (tt) calls, at least one of
which fails. Filtering of the list Branches would then be easy, since we
would only select those branches for which all but one of the gate-database

(tt' calls in the final (failed) goal were in fact successful, and the
modification to the gate database to make this branch succssful is then
obvious. That it is possible to so organize the generation of the search tree
follows from one of the fundamental theorems at the founCation of logic
programming, namely Hills theorem to the effect that the existence of
successful computations is independent of the rule for the choice of the
next literal or call at each stage of exploration of the tree (cf. Lloyd[], p.).
Thus we will utilize a computation rule which delays choosing "gate"
calls (on tt) as long as psihle: all calls on andGate and orGate (and
other gates) will be pushed to the end of the branch. This control of the
choice of the next literal at ;ich stage of processing is achieved by use of

%
a~~~~C

A7 **-. .

Example: Circuit Diagnosis 82

the "userchoice" control annotation in addition to the "branch(B)"
annotation.

With these preliminaries, the top level of the diagnostic algorithm
would now appear as:

all [Topo, Gates, I, 0, Branches, HYPS, FAULTS]:
diagnose(c(Topo, Gates), p(I, 0), FAULTS) <-

streamOf(demo(Topo & Gates & laws, predict(I, 0),
branch(B)+userschoice), Branches) &

make hyps(Topo, Gates, I, 0, Branches, HYPS) &
testand-elim(HYPS, FAULTS).

As indicated in Section 3, the "user_choice" control annotation
causes the metaProlog interpreter, at each cycle of the basic deduction
mechanism, to seek an assertion of the form

"user-choice(UC)"

in the theory under which it is carrying out the deduction. Recall that the
theory tt above contains just such an assertion:

userchoice(delTab).

* The interpreter expects delTab to define a predicate

choose(Goal, SubProblem, RemainingLiterals)

The metaProlog interpreter tries to solve a call on this predicate relative to
the theory delTab using the current main goal state in order to choose the
next SubProblem of that main goal, state for attempted resolution.
Recalling the basic forms of goal statements from Section 4, we see that
the following clauses will constitute an adequate definition of delTab:

all [B, Literal, Remainder]:
choose((true, B), Literal, R1e'ninder) <-

choose(B, Literal, Remwinder).

all [A, B, Literal, RestB]
choose((A, B), Literal, (RestB, \) <-

table(A) & choose(B, Litcral, lRestB).

! . ., ',-. -.. .- ¢...~i -. . - . o . . , ,. . . ; . -. - ::- :.-.-,, . ? ¢:,. . :. : :.:.: : : : .Q ., ,

Example: Circuit Diagnosis 83

all [Al, A2, B, Literal, RestA]

choose(((Al, A2), B), Literal, (RestA, B)) <-
choose((Al, A2), Literal, RestA).

all [A, B, Operator] :
choose((A, M), A, B) <-

functor(A, Operator, _) &
Operator == ,.

all [A, B, Literal, Remaining, Operator]
choose((A, B), Literal, Remaining) <-

functor(A, Operator, _) &
Operator \== ',' &
choose(B, Literal, Remaining).

all [A, Operator]
choose(A, A, true) <-

functor(A, Operator, _) &
Operator \== ','.

table(andTable(-, _, ,)).
table(orTable(, -, 9).

The predicate make-hyps simply recurses down the Branches list
attempting to generate a candidate theory from the branch:

make hyps(_, _, _, _, [], []).

all [Topo, Gates, I, 0, Branch, Branches, Hyp, Hyps]
makehyps(Topo, Gates, I, 0, [Branch I Branches], [Hyp I Hyps]) <-

gen(Topo, Gates, I, 0, Branch, Hyp) &
make hyps(Topo, Gates, 1,0, Branches, Hyps).

all [Topo, Gates, 1, 0, Branches, HYPS]
makehyps(Topo, Gates, 1, 0, [- I Branches], HYPS) <-

*-: make hyps(Topo, Gates, I, 0, Branches, HYPS).

The work of attempting to generate a candidate circuit description is
carried out by the predicate "gen". For our purposes here, we will
assume that the brar-h() control annotation has been implemented by
what is in fact the convenient method of representing the branch as a

V , II 1" "

Example: Circuit Diagnosis 84

list in reverse order of generation, so that the last (failing) goal state is the
head of the branch. Thus all gen needs to do is to pluck the head of the

branch off, and determine whether or not it consists solely of "table" calls,
all but one of which are in fact solvable relative to the theory Gates. If this
is indeed the case, it will note the offending table call, say for gate G, and
then generate the required theory from Gates by adding the assertion

exceptional(G).

to Gates, together with an explicit truth table for G (in the form of a
collection of Table(G,) assertions) which is as close as possible to
the standard table for gates of the type of G, but which allows the offending
call to be solved. Since the gate G is now defined as being exceptional in
Gates, the default standard rule for gates of the type of G will not succeed,
but the explicit (non-standard) truth table for G will be used.

all [Topo, Gates, Goal, HypGates, Offendor]
gen(Topo, Gates, [Goal I J, Topo & HypGates) <-

singlejf(Gates, Goal, Offendor) &
mkcandidate(Gates, Offendor, HypGates).

all [Gates, TableCall, Rest] :
single-f(Gates, [TableCall I Rest], TableCall) <-

not(demo(Gates, TableCall)) & allwork(Gates, Rest).

all [Gates, TableCall, Rest, Offendor] :
singlef(Gates, [TableCall I Rest], Offendor) <-

demo(Gates, TableCall) & singlef(Gates, Rest, Offendor).

allwork(_, []).

all [Gates, TableCall, Rest] : allwork(Gates, [TableCall I Rest]) <-
demo(Gates, TableCall) & allwork(Gates, Rest).

all [Gates, G, Inl, In2, 0, H{vp, Table]
mk_candidate(Gates, andTable(G, Inl, In2, 0), Hyp) <-

mk_andcand(Gates, (, l, In2, 0, Table) &
add-all(Gates, [eyceptinal(G) I Table], Hyp).

Example: Circuit Diagnosis 85

all [Gates, G, Inl, In2, 0, Hyp, Table]
mk_candidate(Gates, orTable(G, [nl, 1n2, 0), Hyp) <_

mk-or-cand(Gates, G, Inl, In2, 0, Table) &
add-all(Gates, [exceptional(G) I Table], Hyp).

all [Gates, G, Inl, In2, 0, Rules]
mkand-cand(Gates, G, Inl, In2, 0, Rules) <-

Rules = [andTable(G, Inl, In2, 0),
'all (11, 12, 00] :
andTable(G, I1, 12, 00) <-

(I1 \== Inl ; 12 \== In2) &
standardAnd(I1, 12, 00).']).

all [Gates, G, Inl, In2, 0, Rules] :
mkorcand(Gates, G, Inl, In2, 0, Rules) <-

Rules = [orTable(G, Inl, In2, 0),
'all [I1, 12, 00] :
orTable(G, I1, 12, 00) <-

(Ii \== Inl ; 12 \== In2) &
standard0r(1, 12, OO).']).

In the last two rules, the quoted expression appearing as second
element of the list in the body is just a shorthand for the present
purposes. This shorthand indicates the result of building a term
representing a rule using the appropriate naming operators. The last rule,
for example, would more likely appear:

all [Gates, G, Inl, In2, 0, Rules]
mk or cand(Gates, G, Inl, In2, 0, Rules) <-

Rules = [orTable(G, Inl, In2, 0), R_Others] &
mkorrule(G, Inl, In2, 0, ROthers).

The predicate mk or rule would use the naming operators to
construct the indicated short-hand rule out of G, In1, In2, and 0. [The
obvious utility of the short-hand notation suggests a further extension of
metaProlog allowing such constructs. Care in constructing such an
extension must be exerciseid however, since a solution must be provided
for the problem of quanitit'.ing into quotational contexts and all the
referential opacity that %,ould result.] Finally, add-all is defined as
follows:

..- ,

Example: Circuit Diagnosis 86

all T1
add_all(T1, [], T1).

all [T1, A, As, Result, T2]:

add-all(T1, [A I As], Result) <-

addTo(T1, A, T2) &
addall(T2, As, Result).

9.4. Coroutining

The code for testandelim, while somewhat complex, is relatively

straight-forward, and so will be omitted here. In this formulation of the
diagnostic algorithm, the first

streamOf(demo(...

call, when run in a purely sequential version of metaProlog, produces a

completed list of all branches of the search tree. This complete list is

recursively processed by makehyps, producing a completed list HYPS of

candidates, and this is then recursively processed by testandelim. For

real-world circuits, these lists might be unthinkably large. Instead of

processing completed lists, it would be preferable to generate them as

coroutined streams in a lazy manner, allowing consumption of

branches by make hyps as they are generated by the streamOf call, and

allowing consumption of candidate theories by testandelim as they are
generated by make-hyps.

The concurrency facilities of metaProlog will allow just such an

approach. They in fact allow the organization of test-andelim as a

dynamically growing stream of filters, much as classical concurrent

implementations of the seive of Eratosthenes. In the more general

setting where we abandon the "single stuck-at" fault assumption, a given

branch from the search tree may in fact produce more than one candidate

theory. In this setting, we can use the concurrency facilities to organize
makehyp as a cascade of streams. This structure is indicated

schematically in Figure B.9.2 below. In an implementation of metaProlog

on a multiple-processor machine, the indicated processes could run
concurrently on separate processors.

r , ,_+,' .' v,'_,.. .*' .',.+ .*-...' - :z -: :: : - ./ .:

Example: Circuit Diagnosis 8 7

(fin,fout)- faulty I/0 pair

demo(top&prop&fun, prp(fin,fout)) fails

demo(top&prop&fun, prp(fin,fout), ??, Branches) - succeeds

failed branches of search spaceIlnfer changes to 40&000da

theory fun which
will make branch

successful andidate theories of faulty circuit

Generate distinguishing input
Sfor pairs of candidate theorieslx(Get Ox for

Ix from real Candidate theories

faulty circuit
Insert in Pass if predicts (11,01)

Check previously filter tower -

passed candidates

I/0 indistinguishable candidates

Figure B.9.2. Cascaded Generation & Testing of Candidate Theories.

' . , ,L - - % • " " " ' "l. % " - \ " % %., m

Example: Circuit Diagnosis 88

9.5. Hierarchical Diagnosis

One classic cognitive technique for managing complexity is the
imposition of hierarchical structure. Genesereth (] has observed that this
approach can be of considerable use in the diagnosis of circuit faults. Here
we will sketch the extension of the algorithm described above to a
hierarchical setting.

Viewed hierarchically, complex devices can be seen as simple black
boxes at one level, which, at the next lower level, decompose into collections
of simpler devices. The connecting lines at the lower level may correspond
directly to connecting lines at the upper level, or may themselves
decompose into collections of simpler connecting lines. In the following
diagram, the lines at the upper level decompose into collections of lines
at the lower level.

p%

rwliljvzvlvv"Vvw . w'.1 v v WI W1 VW MW riP W ~r N' - N -- LWlol7T-- I- 'N'V IL AL P- rn;n W

Example: Circuit Diagnosis 89

Device dl

Adder al

n2.

n3 ...-R. "-

n t

n 4 ---- 30-

nil njl1 n1i ,n3 , ,
n i2 , nj2 ni4 , n,

Adder al

F1 F

nkl nk3
V nk2 , nk4

Figure B.9.3. Hierarchical Views of a Device.

While the diagram is simplified, at the upper level, the input lines
might carry integers in the range 0, ...256. These might correspond to
collections of 8 lines at the lower level, each carrying a single bit. At each
level of abstraction, we must have available theories which describe the
topology of that level, the behaviors of individual components at that level,
and the laws of propagation at that level (though these latter may not
vary substantially from level to level). We will assume that devices are
represented by a compound term of the form

.IT. Vb7..IT77 76 - V~W X

Example: Circuit Diagnosis 90

d(Type, Topology, Behaviors, Laws, Corresp)

wvhere Type is an atom indic-ating the kind of device, and Corresp is a
collection of rules indicating the mapping from the input and output lines
of the given device - viewed as a black box at the upper level of abstraction
- to the internal lines when the device is 'opened up" and viewed at the next
lower level of abstraction. The collection of all such device descriptions is
assumed to be stored in a named theory maintained at the top level of
metaProlog, named "devs". [The system provides a "built-in" predicate
catalogue(Name,Theory) which is user-extensible.] Here is a sketch the
revised hierarchical diagnostician:

all [DeviceI ,O,Topo,Behavs,Laws, Corresp,Branche s,HYPS,D ev-FLTS1
diagnose(Device, p(I,O)) <-

catalogue(dev, d(Device, Topo, Behavs, Laws, Corresp)) &
streamOf(B, demo(Topo&Behavs&Laws, predict(I ,O),

branch(B)+user-choice), Branches)) &
make-hyps(Topo, Behavs, 1,0, Branches, HYPS) &
test-and-elim(Device, HYPS, Dev-FLTS) &
report..on(Device, Dev_FLTS) &
decomp(Device, DevFLTS, p(1,0)).

all (Device, Hyp-List, 10_pair]
decomp(Device, Hyp...List, I0_pair) <-

prim-itive(Device) &

report..on(Device, HypList).

all [Device, I0...pair]
decomp(Device, [], IO-pair) <-

not(primitive(Device)).

all [Device, Hyp, Rest-Hyps, 10 pair, Device_Info,SubDevice,
Sub_F_In, SubF.9utl

decomp(Device, [Hyp I Rest-Hyps], IO-pair) <-

not(primitive(De vice)) &
catalogue(dev, Device_ Info) &
ident-fault-omp(Deice, DeviceInfo, I0_pair, SubDevice) &
map-inputs(Device. Dev.ice_Info,SubDevice,IOpair,SubFIn) &
map outs(Device, D(!vlIce _ nfo,SubDevice,I0piSb FOut) &
diagnose(SubDevice, p Siub_n, SubFOut)) &
decomp(Device, RestHvps, 10_pair).

Frames & Arrays 9 1

10. Frames and Arrays

Frames ([Minsky], [FRL]) are among the more widely-used and
powerful techniques in artificial intelligence programming. Abstractly,
frames a just a collection of "slots" with labels. Though they have many
manifestations, there appear to be two crucial properties common to most
implementations:

i) The collection of slots making up an individual frame are physically
grouped together in storage guaranteeing that they can be accessed as a
group; if the frame is a first-class object, they can move about together.

ii) Besides being fillable with rather ordinary entities (atoms,
numbers, compound expressions), (certain) slots can be filled with
references to other frames. These references can be used to organize
collections of frames in various kinds of hierarchies which can be
exploited by systems which are utilizing the collection.

Typically, a frame carries an identifier which specifies it uniquely
in the collection. Thus, a frame labelled "elephant" might contain the
following slots among others:

a-kind-of : mammal
color : grey
number-of toes : 4

Another frame, labelled "clyde" and intended to represent a particular
elephant, might contain the following slots among others:

a_kindof: elephant
home : londonzoo

The entry "elephant" in the frame for clyde might indeed be the
identifier "elephant", or might be an internal direct reference to the frame
representing generic elephants. In the former case, a frame processing
system which was looking in clyde's frame and needed to obtain some
information from the elephant frame (which is generic information
generally true of all elephants) would first need to look up the identifier
"elephant" in some internal table giving it the location of the generic
elephant frame. Also, generic information is in such settings usually used

Frames & Arrays 9 2

as a default, and can be over-ridden by information in the specific frame.
Thus if clyde were an albino, the frame for clyde could contain the slot

color white

which would be accessed when clyde's color was needed. When
attempting to obtain information from a particular slot in a particular
frame, processing systems typically default to higher frames in the
"a_kindof' hierarchy only when the given slot is not present in the
particular frame.

From a logical point of view (cf. [Hayes]), the slots of a frame and
their contents can be viewed as assertions. Thus the frame for
elephants could be taken to be equivalent to the collection

a_kind-of(elephant, mammal)
color(elephant, grey)
number-of toes(elephant, 4)

while the frame for (the albino) clyde could be taken as being equivalent
to the collection

a_kind_of(clyde, elephant)
home(clyde, londonzoo)
color(clyde, white).

But in metaProlog, the theory construct is designed specifically for
the representation and manipulation of collections of assertions.
Moreover, the collection of assertions making up a theory can indeed be
physically grouped together, or else the actual arrangement is such that
the access effects are very much as though the assertions were grouped
together. Thus it is obviously natural in metaProlog to represent frames
as (possibly small or large) theories containing assertions which
correspond to the slots and their contents.

Given this point of view, it remains to be seen how we may organize
the manipulation of these theories representing frames so as to achieve
the effects produced by typical frame manipulation systems. (We will do
this first from a straight-fCorward naive point of view; later we will refine
the approach to achieve more compact storage utilization and the effects
of direct embedded pointers from "a-kind-of' slots to other frames.)

Frames & Arrays 93

First off, let us assume that we have a master theory called
animals" in which our work will be carried out. Recall that any theory

can contain assertions about other theories since the latter are first-class
objects. Within the theory "animals" we will find some assertions
identifying frames:

isframe(elephants, Teleph)
isframe(clyde, Tclyde).

These assertions can be collectively viewed as a table associating the
individual collections of assertions corresponding to a frame with the
identifier naming the frame. (The actual implementation would allow
access to the individual collections, given the frame identifier, at the low
cost of sequential probes in two hash tables; in the revised version below,
the cost is one probe in a single hash table, and then the following of a
direct pointer.) The individual collections Teleph and Tclyde might have
been initialized from files by calls such as

consult(Teleph, 'elephants.mysys').

New slot entries (i.e., new assertions) can be entered in the
individual collection by use of the addTo built-in predicate. The question
arises as to what transpires when one wishes to modify (update) an
already existing slot value (i.e., in this setting remove an existing assertion
and replace it by a new one). As will be discussed in Section 14, the
implementation of theories is as a kind of "mutable array" which
supports backtracking, yet provides all the speed of normal array access.
In short, in a call

addTo(T1, A, T2),

the mutable array representing the theory to which the variable T1 is
bound is actually updated by the insertion of A, this updated array is
bound to T2, a descriptor referencing this updated array and A is bound to
T1, and everything appropriate is trailed. The descriptor to which T1 is
bound describes the original value of T1 in terms of A and the updated
value currently bound to T2. See Section 14 for a more detailed discussion.

For our purposes here, it suffices to say that the theory representing
the frame can be updated in such a way as to provide the same fast access
as the original frame and yet still preserve the logical characater of the

Frames & Arrays 9 4

computation.

It remains to be seen just how the remaining actions of frame
processors are effected in this context. This is most easily seen by
considering the clauses which might be added to an ordinary Prolog
definition of the metaProlog interpreter (i.e., the predicate demo).
Briefly, one needs to add something like the following clauses to the set of

clauses defining demo:

demo(Theory, Goal)
Goal =.. [Predicate, Argl I RestArgs],
demo(Theory, is_frame(Argl, FrameTheory)),
demo(FrameTheory, Goal).

demo(Theory, Goal):-
Goal =.. [Predicate, Argl I RestArgs],
demo(Theory, is-frame(Argl, Frame_Theory)),
demo(FrameTheory, a-kind-of(Argl, B)),
H =.. [Predicate, B I RestArgs],
demo(Theory, is_frame(B, BFrame-Theory)),
demo(BFrameTheory, H).

As indicated above, we will later revised this to compact code and
storage and increase efficiency. But for now, let us see just how this will
work. Given the call

demo(animals, color(clyde, X))

the first of the two clauses above will apply, so that the theory Tclyde will be
retrieved by the second call in the body, and the third call will have the
effect of binding X to white. On the other hand, given the call

demo(animals, number of toes(clyde, N))

the first call will ultimat-,.v Ftl. causirng 1,he second clause to be invoked.
After retrieving the t-dov i'a1vIt ind succeeding in deriving ti,,it
a kind-of(clyde, elephbir.r fn it, the theory Teleph will h- retxr,,..
and the call

demo(Teleph, num.h .pnt. N,)

AD-A95 see LOGIC PROGRAMMING AND KNOWLEDGE BASE
AINTENNC() 2/2

SYRACUSE UNIV NY SCHOOL OF COMPUTER AND INFOAIN

1) R.0 500 SCIENCE K A BOWEN 36 SEP 86 RFOSR-TR-87-1176

UNCLASSIFIEID $SAFOSR-82-0292 F/G 12/5 N

Esoonhhhh
mE~hEhhhmh

3A50

'' 1.0// 122~\ '5\
9 ,

11100

g W qP 0 .W • g
• • g g

.

Frames & Arrays 9 5

will be run, finally binding N to 4, in the accepted manner of inheritance.

As naively described above, the organization of collections of frames is
based on "master hash tables" containing pointers to the various frames.
Given a modern workstation processor of sufficient power, this might not be
a bad approach. However, the elements of the metaProlog approach provide
a more sophisticated organization. The cost of the naive approach is
encountered when following inheritance pointers such as "is-a_kind_of'.
The tracing of these pointers would involve multiple probes in the master
hash table. However, these can be replaced by the tracing of pointer chains
as follows.

The notion of a metaProlog name is similar to the natural language
notion of name. It is a syntactic item which somehow directly refers to the
object it names. The details of an implementation method are irrelevant so
long as the name relation posseses the required abstract properties.
Consequently, we are free to implement the name relation and names any
way which provides the essential "referring" property of names. Since all
the items referred to by metaProlog names are themselves syntactic items,
the things named are ultimately just computer data structures which must
reside at locations in memory. Consequently, a prime candidate for the
implementation of names is the use of internal memory pointers referring
to the locations of the data structures. Most likely these references will be
more complex than raw pointers - for example, they might be tagged
pointers. But metaProlog names are just metaProlog entities, no different
in general character from other metaProlog entities, and consequently,
names can participate in assertions just like all other entities. Hence, the
inheritance assertions contained in a frame can refer to the super-ordinate
frame using such a name of the super-ordinate frame. But then, following
inheritance frames simply involves extracting the memory address from
the name, and following the resulting pointer, etc.

I

TrPuwxnth. - W flMUP W x flwM -- -------------- Concu-rr---ncy 96

Truth Maintenance & Concurrency 96

11. Truth Maintenance & Concurrency

11.1. Related metaProlog Facilities.

Part of the original motivation for the original design of metaProlog
was the desire to provide a logically sounder basis for the use of logic
databases. Specifically, many Prolog programs utilize the program
database itself to represent knowledge being manipulated by the program.
This involves on-the-fly modification of the program database by the built-in
predicates assert and retract. This has at least three drawbacks:

1. It is logically unsound. There is no known logical basis for performing
deductions from a set of axioms which vary as the proof is being
constructed: classical logical is a-temporal.

2. There exists the possiblity of confusion between the program itself and
the knowledge base it manipulates since they occupy the same name space.

3. There is no possibility of dealing directly with distinct alternative
knowledge bases, since everything must be recorded in the single program
database.

Sequential metaProlog solves these problems. While sequential
metaProlog is logically sound, some difficulties remain in the run-time

N interpretation of some constructs. To deal with these difficulties, we
explored borrowing constructs from Concurrent Prolog. Besides solving the
problems, the concurrency constructs permit a useful programming style
for reasoning systems.

Ordinary Prolog systems provide for the representation of just one
logical theory: the program in its entirety is identified with that theory. Yet
there are many circumstances in which one would find it extremely useful
to be able to represent different logical theories within the same program.
This facility could be used, for example, in a medical diagnosis and
therapy program not only to increase modularity and efficiency by
segregating information about different classes of diseases and drugs into
different theories, but also to represent alternative diagnostic and
therapeutic approaches and regi emes.

metaProlog can be thought of as being obtained by starting with an

sz -a

Truth Maintenance & Concurrency 97

ordinary Prolog system and extending it so that the following criteria are
met:

1) For every term and formula E of the system, there is a term of the
system, say call it

n(E),

which serves as a name of E. The connection between the two is

provided by a primitive predicate

name(E,n(E)).

2) For every finite set S of formulas of the system, there is a term t(S)
which is thought of as the name of the theory whose axioms are the
members of T. The connection between the members of S and t(S) is
provided by the primitive predicate

axiom_ofgX,t(S))

which holds between X and t(S) iffX is the name of an element of S.

3) There is a primitive predicate

demo(T, G, C)

which holds iff T is the name of a theory, G is the name of a goal, and
C describes generalized control information to be obeyed in searching
for a proof of G from T.

4) There exist primitive predicates

addTo(T, F, U) and dropFrom(T, F, U)

such that if T and U are names of theories and F is the name of a
formula, then:

.addTo(T, F, U) holds iff U names the theory obtained from the
theory named by T by rieans of adding the formula named by F
as an axiom;

|*,~

Truth Maintenance & Concurrency 98

dropFrom(T, F, U) holds iff U names the theory obtained from
the theory named by T by means of removing the formula named
by F from the axiom set of T (and doing nothing if it does not
occur there.)

Besides use of the predicate addTo described in 4), unions of two
theories such as T and S can be implicitly referenced via calls such as

demo(T & S, G, C, P).

11.2. Simple Reason Maintenance

Consider a simple reason maintenance system designed to record the
answers of suspects being questioned by our detective Poirot as described in
Section 5. Assume that reasons are maintained in a theory called TM,
and that evidence for an assertion is maintained by the predicate

evidencefor(Assertion, Reasons)

where Reasons is simply a list of the supporting evidence for Assertion.
The assertions themselves are recorded in a theory called KB. Suspects,
being nothing more than the sum total of their beliefs, are represented by
the theory consisting of their beliefs. For example, john (in a recasting of
the original Rosie version) consists of.

needs(john,money).
married_to~john,mary).
loves(john,mary).

(mary is the dead victim in this thriller.) The victim's sister sara consists
of:

sister(sara,mary).
loves(sara john).
false(loves~john,mary)).
loves(john,sara).

(Note that sara believes that john loves her, while johns feelings differ
somewhat.) Questions to Su.-pccts are generated by the user. Given a
question Q, the system poses the question to a suspect, say john, by running

MMMIIIIHEMW. NMmIau rnmiNf

Truth Maintenance & Concurrency 99

the goal

?-demo~john, Q).

Depending on the success or failure of this goal, the system passes
either q...aoohn,yes) or q...aoohn,no) together with Q to the reason
maintenance predicate rm, which can be defined by the clauses:

all [KB,TM,Q,Who,KB,NewTM]:
rm(KB, TM, Q, q..a(Who,yes),KB, NewTM) <-

demo(KB, Q) &
addEvidence(TM, Q, q a(Who ,yes),NewTM).

all [KB,TM,Q,Who,KB,NewTM]:
rm(KB, TM, Q, qa(Who, yes),NewKB, NewTM) <-

demo(KB, false(Q)) &
revise(KB, TM, false(Q) &
q...a(Who, yes) &
NewKB, NewTM).

all [KB,TM,Q,Who,KB,NewTM]:
rm(KB, TM, Q, qa(Who, yes),NewKB, NewTM) <-

addTo(KB, Q, NewKB) &
addEvidence(TM, Q, q...a(Who, yes) &
NewTM).

Similar clauses must be added for combinations such as false(Q) with
q__,a(Who, yes), Q with qa(XWho, no), etc. The predicate addEvidence is
defined by:

all [TM,Q,Reason,Ne wTM T,New-evidence,Intermed_TM]
addEvidence(TM, Q, Reason, NewTM) <-

demo(TM, evidence-for(Q, Evidence)) &
dropFrom(TM, evidence for(Q,)), IntermedTM) &
insert(Reason, Evidence, New_Evidence) &
addTo(IntermedTM'%, vvi dence-for(Q, NewEvidence),NewTM).

The relevant clause for rev i-o

Truth Maintenance & Concurrency 1oo

all [TM,Q,Reason,NewTM,NewKB ,Pos..Ev,Neg..Ev,ConclI
revise(KB, TM, false(QXReason, NewKB, NewTM) <-

demo(TM, evidence_for(Q, PosEv)) &
demo(TM, evidence-for(false(Q),Neg..Ev)) &
insert(Q, Neg...Ev, Neg_.Ev) &
demo~resolve, adjudicate(KB, false(Q),Pos..Ev, Neg..Ev, Conci)) &
finish_rev(KB, TM, false(Q), Conci, Pos...Ev, Neg_.Ev, NewKB,

NewTM).

The predicate finish_rev is similar in spirit to addEvidence. More
interesting is the theory resolve which encodes rules for resolving
contradictions according to the evidence for an assertion and its negation.
Packaging this as a separate theory allows such a system to be easily
adjusted for varying applications. It even allows differing theories of
conflict resolution to be selected dynamically by the system according to
criteria depending on the structure of Q, or on criteria to be found in KB or
TM (and thus possibly varying in time).

In this case, resolve is simple:

all [KB,TM,What,EvForEvAgainst]
adjudicate(KB,TM,What,Ev.Yor,Ev..Against,pre serve) <-

member(qa(Who,yes), Ev...For) &
demo(KB, reliable(Who)).

all (KB,TM,What,Ev..For,Ev..Against,SomeOne]
adjudicate(KB,TM,What,Ev.For,Ev..Against,reverse) <-

member(q-.a(Who,yes),Ev..Against) &
demo(KCB, reliable(Who)) &

d ~not((member(q..a(SomeOne, yes),Ev..For) &
demo(KB, reliable(SomeOne))).

all [KB,TM,What,Ev_.For,Ev_.Against,LFor,LAg]
adjudicate(KB,TM,What,Ev.Yor,Ev_.Against,preserve) <-

length(EvFor, LFor) &
length(Ev..Against, LAg) &
LAg =< LFor.

Truth Maintenance & Concurrency 101

all [KB,TM,What,EvFor,EvAgainst,LFor,LAg]
adjudicate(KB,TM,What,EvFor,EvAgainst,reverse) <--

length(EvFor, LFor) &

length(Ev-Against,LAg) &

LAg > LFor.

Here member is ordinary list membership, while length is ordinary
list length, and not is the common 'negation by failure' of logic
programming.

11.3. Adding Concunency to metaProlog

One can conceive of starting with either metaProlog and adding
concurrency features, or conversely, beginning with a system such as
Concurrent Prolog, and adding metaProlog features as system built-ins.
We adopt the latter approach here. Thus, theories are regarded as first-
class objects, as earlier, and demo is treated as a built-in from the point of
view of Concurrent Prolog. However, unlike the other built-ins, it is
backtrackable, so that among other things, it provides an interface from the
Concurrent Prolog interpreter to a sequential interpreter. If a theory
argument is added to the Concurrent Prolog interpreter "solve" of Shapiro
[], then the interface back from the sequential world to the concurrent
world is provided by allowing calls of the form

demo(Theory, Goal, concurrent).

This causes Goal to be solved by a Concurrent Prolog interpreter which
carries Theory as its additional argument. In our current experimental
system, the user surface level is regarded as Concurrent Prolog running
against a user-supplied theory as its extra argument. The upper-level of
the detective program considered earlier now appears as follows:

all (TerminalInput,Poirot_KBM,PoirotUser,
KBMUser,TerminalOutput]

detective <-
instream(TerminalInput) &
poirot(TerminalInput?, PoirotKBM, PoirotUser, KBMUser?) &
kbm(TerminalInput?, Poirot_KBM?, KBM_User) &
merge(PoirotUser?, KBM_User?, TerminalOutput) &
outstream(TerminalOu tput?).

V~~~nAKJWUW~~WW WW%5WR %"w UWx~x maa w ~ u J rlM

Truth Maintenance & Concurrency 102

Beyond the user, the major components of this program are the
knowledge base manager, kbm, which records the results of the
questioning together with maintenance of the reasons, and a detective,
poirot, who listens to the questioning and attempts to make deductions
regarding the suspects. The kbm is defined by:

all [Termln,Poirot-.KBM,KBMUser]
kbm(Termln, Poirot-CBM, KBM_User)<-

kbm(Termln, PoirotKBM, KBMUser,common &
integ(integ) & tm(tm)).

kbm([], -, [], -).

all [Query,Termlns ,Poirot_-KBMs ,KBM_.Users ,KB]
kbm([q(Query) I Termlns], PoirotKBMs,

[true(Query) I KBMUsers], KB) <-

demo(KB, Query) I
kbm(Termlns?, Poirot_KBMs, KBMUsers, KB).

all [Query,Termns,Poirot_KBMs,KBM...Users,KB]
kbm([q(Query) I Termlns], Poirot_KBM,

[false(Query) I KBMUsers], KB) <-

demo(KB, false(Query)) I
kbm(Termlns?, PoirotKBMs, KBM_Users, KB).

all [Query,Termlns,Poirot_KBMs,KBMUsers,KB]
kbm((q(Query) I Termlns], PoirotKBM,

(unknown(Query) I KBMUsers], KB) <-

otherwise I
kbm(Termlns?, PoirotKBMs, KBM_Users, KB).

all [Query,Termlns,Poirot- KBMs,KBM-Users,KB,Who,
What,NewKB,Maint_-Resp]:

kbm([ask(Who,What) I Termlns] ,Poirot_-KBMs,
[answer(Who,What,Response) I KBUsers], KB) '<-

question(Who, What, Response) &
reason-maint(KB, What,

q~a(Who, Response?),NewKB, Maint_.Resp) I
kbm(Termlns?, PoirotKIBMs, KBUsers, NewKB).

Truth MaIntenance & Concurrency 103

all [Evid,Termlns,PoirotjCBMs,KBM -Users,KB,TM,What]
kbm([evidence(What) I Termlns], Poirot_KBMs,

[evidence(What, Evid) I KB...Users], KB) <-

demo(KB,tm(TM)) &
demo(TM?,evidence_for(What, Evid))
I kbm(Termlns?, PoirotKBMs, KB...Users, KB).

all [Command,Termns,Poirot_KB~s,KBM_TUsers,KB]
kbm([Command I Termlns] ,Poirot..KBMs,

[unknown..cmd(Command) I KB_Users], KB) <-

otherwise I
kbm(Termlns?, Poirot..KBMs, KBUsers, KB).

all [Who, What]:
question(Who, What, yes) <-

demo(Who & common, What)
I true.

all [Who, What]:
question(Who, What, no) <-

otherwise
I true.

all [KCB,What,Reason,NewKB,TM,InterKB,NewTM,MidKB]
reason-maint(KB, What, Reason, NewKB) <-

writelnl(['Init Reason Maint: ', What, '-',Reason])

I demo(KB, tm(TM)) &
rm(KB, TM?, What, Reason, InterKB, NewTM) &
dropFrom(InterKB?, tm(TM),MidKB) &
addTo(MidKB?, tm(NewTM),NewKB).

It remains to sketch the definition of the detective poirot who listens to
the questions asked (by having access to the streams TerminalInput and
KBMUser) and who attempts to make deductions based on the evidence.
Since the kbm is intended to implement the corporate detective memory,
the simplest version of Poirot provides him with no local memory (i.e.,
private theory) of his own, but Forces him to rely on the kbm with which he
interacts through the streani PoirotKBM. (Additional clauses must be
added to the definition of kbni to reflect the interaction; we wvill indicate

Truth Maintenance & Concurrency 104

some of these as we proceed.)

poirotflJ, [(], [], _.).I

all [Who,What,RestQ,PI..BM,P_.User,IBM...User,Q]
poirot([ask(Who, What) I RestQ], P...JBM, P....User, KBM...User) <-

perk..Up(Who, What, PKBM, P_User, KBMUser?) &
poirot(RestQ, PKBM, P-.User, KBMUser).

all [Who,What,,PKBMPUser,KBM_User,
Message,Rest KBMUser,Response]

perk..up(Who, What, PKBM, P_.User, [Message I RestKBM_User])

Message = answer(Who, What, Response) I
try...deduction(Who, What, Response, PKBM, P...User).

all [Who,What,,P..KBM,P..User,KBMUser,
Message,Rest, KBM_-User,Response]

perk..up(Who, What, P_KBM, P...User, [Message I RestKBMUser])

otherwise I
perkup(Who, What, P_KBM, P .User, Rest..KBMUser?).

all [Who,What,Response,KBPKBMs,PUser,Whom]
try...deduction(Who, What, Response, [cur(IC) I P_KBMs], P...User)

demo(relevance, concerns(What, Who, Response, Whom)) I
try...suspect(KB, Whom, PKBMs, P..User).

try-deduction(_,-,. -_)<

otherwise I true.

Truth Maintenance & Concurrency 1 05

all [KB,Who,Motive,ProofPJ(IMS,P..Users]
try..suspect(KB, Who,

[record(suspect(Who, Motive),Proof) I PKBMsJ,
[poirot(suspect(Who, Motive)) I PUsers])

demo(suspect & KB, suspect(Who, Motive),prolog, Proof) I true.

try...suspect(_, -, _, _) <-

otherwise I true.

The additional necessary clauses for kbm are:

all [Termln,KB,PoirotKBMs,KBM..User,KB]
kbm(Termln, [cur(KB) I PoirotKXBMsJ, KBMJUser, KB) <-

kbm(Termln, PoirotKBMs?, KBM_User, KB).

all [Termln,KB,Poirot_KBMs,KBMUser,KB,
Assertion,Reason,As serions, Reasons]

kbm(Termln,
[record(Assertion,Reason) I PoirotKBMS], KBMUser, KB)

reason..maint(KB, Assertion, Reasons, NewKB) &
kbm(Termln, PoirotKBMS?, KBM_User, NewKB?).

Note that since theories are first-class objects, poirot uses the paritally
instantitated message cur(X) on the stream Poirot-KBM to request the
entire current state of the knowledge base from the kbm, and use it in his
deductions.

The theory relevance contains rules for concluding when a given
question and response leads to a concern regarding a possible suspect
(Whom), while suspect is Poirot's theory of what makes a person a suspect
with what motive. It appears as follows:

all [Person,OtherPerson,Victim]:
suspect(Person, jealousy) <-

loves(Person, OthierPerson) &
married(OtlierPerson, Victim) &
found-dead(Victim).

Truth Maintenance & Concurrency 106

all [Person,Victim]
suspect(Person, greed) <-

need(Person, money) &
found-dead(Victim) &
rich(Victim) &
related(Person, Victim).

all [Person,OtherPerson,Victim]
suspect(Person, revenge) <-

loved(OtherPerson, Victim) &
not(OtherPerson = Person) &
found-dead(Victim) &
rejected by(Person, OtherPerson).

all [Person,OtherPerson]:
1% rejected-by(Person, OtherPerson) <-

loves(Person, OtherPerson) &
not(Person = OtherPerson) &
not(loves(OtherPerson, Person)).

meta Pro log/Co ncu rrent Simulator10

Appendix to Section UI:

The Combined metaProlog/Concturrent Simulator.

:-op(1 199,Xfy,' I')
:-op(45O, xf, 7).
:-op(95O, Xfy, '&).

c :-op(1199,xfy'),
op(450, xf,'?').

watch
re tract(value(trace,off)).

nowatch
assert(value(trace,off)).

setup
set(smode,depth..first),
set(tracesntjcalldemo(-j,sucdemo(-),

dernodemno(J),reduction(_), suspension(_)],
set~countingset,[]),
set(smode(read(-)),breadth-f irst),
set(i nitialized, true).

trc(Forrm)
clause(value~traceset,Current),true,PTR),

erase(PTR),
assert(value(traceset,[Form I Current])).
tr(PredlArity)

source-clause(Pred,Arity,J,
fun ctor(Forn, Pred,Arity),
trc(call(Form)),
trc(reduction(Form)).

solve(Goal)
% ~clear-counters,
% solve(GoaI, 0),

display-.counters.

solve~true, 9

solve(otherwise,9

solve(Cotherwise I Rest], Depth)
solve(Rest, Depth).

solve(Goal, Depth) -
con-system(Goai),!,
trace(system(Depth), Goal), Goal

trace(solve(Depth),Goa 1),

meta ProIog/Coflcurreflt Simulator 108

schedule(Goal, X,X, Head, (cycle(l) I Tail]),
solve(Head, Tail, nodeadlock, Depth),
trace(solved(Depth),
Goal).

solve([otherwise I Head], Tail, DL, D) :!
solveCHead, Tail, DL, D).

solve([cycle(N)], -, -, D) :-!,
(D=O, write(['*** cycles: ',NJ), ni; true).

solve([cycle(N) I Head], [I, deadlock, D) :'
D=O, write(U** *cycles: ',N]),nl,
writelnl(['** *Deadlock detected. Locked processes:' I Head]); fail.

solve([cycle(N) I Head], [cycle(N1) I Tail], nodeadlock, D)
Ni is N+1,
solveCHead, Tail, deadlock, D).

solve([read(X) I Head], Tail, DL, D) :
solve..wait-wlrites(Head, Tail, DL, D,

NewHead, NewTail, NewDL, NewD),
read(X),
solve(NewHead, NewTail, nodeadlock, NewD).

solve([(A & B) I Head], Tail, DL, D) :!
D Dis D+1,
solveCA, D1),

solve(B, D1), !,
* solveCHead, Tail, DL, D).

solve([A I Head], Tail, DL, D)
con..system(A),!,
trace(system(D),A),
A,
solve(Head, Tail, nodeadlock, D).

solve([demo(T,A) I Head], Tail, DL, D) :-!,
solve([demo(T,A,prolog,..) I Head], Tail, DL, D),!.

* solve([demo(T,(A,B),prolog,InPrf,OutPrf) I Head], Tail, DL, D)
D1 is D+l,
trace(calldemo(Dl),T/A),

(built-in-meta(A), A, !,Reas=bi(A)
retrieve(T,A),
Reas=s(A,fact)),

trace(sucdemo(DI), T/(Atruc)),
schedule(demo(T, B, prolog, [Reas I InPrfl, OutPrf),

Head, Tail, Newflead, NewTail),
solve(NewHead, NewTail, ncodeadlock,Dl).

solve((demo(T, (A,B),prolog, InPrf, OutPrf) I Head], Tail, DL, D)
Dl is D+1,
trace(calldemo(Dl), TIA),
retrieve(T, (A <- Body)),

meta ProlIog/Co ncurrent Simulator 109

trace(suacdemo(D1), T'(A <c-Body)),
schedule(demo(T, (Body, B),prolog, lis(A,(A<-Body)) I InPrfl, OutPrf),

Head, Tail, NewHead, NewvTail),
solve(NewHead, NewTail, nodeadlock,MD),

solve([demo(Tl, demo(T2, A), C, InPrf, OutPrt) I Head], Tail, DL, D)
D1 is D+1,
trace(demodemo(D1),T1/(T2IA)),
schedule(demo(T2, A, C, [I, SubPrf),

Head, Tail, NewHead, NewTail),
solve(NewHead, NewTail, nodeadlock, Dl).

solve([demo(T, A, C, InPrf, OutPrf) I Head], Tail, DL, D)
D1 is D+1,
trace(calldemo(D1),T/A),
(built;_n_..meta(A),! ,A,Rea s=bi(A), Flag:=oA

con_retrieve(T, A, Flag),
Reas = s(Afact)),

(Flag=ok, !,trace(sucderno(D 1),T/A),
solve(Head, Tail, nodeadlock, D1),

OutPrf=liReas I InPrf);
Flag-susp,

schedule(suspended(demo(T,A,C,InPrf,OutPrf)),Head,Tail,NH,NT),
solve(NH, NT, DL, DI)).

solve([demo(T, A, C, InPrf, OutPrt) I Head], Tail, DL, D)
D1 is D+1,
trace(callderno(D1),A),
con-.retrieve(T, (A <- B),Flag),
(Flag=ok,!,

trace(sucdemno(Dl),T(A <-B)),
schedule(demo(T, B, C, C(A, (A <-B)) I InPrfI, OutPrf),

Head, Tail, New Head, NewTail);
Flag=susp,
schedule(suspended(demo(T,A,C,InPrf,Outprf)),

Head,Tail,NewHead, NewTail)),
solve(NewHead, NewTail, nodeadlock, Dl).

solve([demo(...,,,,J I HeadlTai 1, DI,D) :-!,fail.

solve((A I Head], Tail, DL, D)
DI is D+1,
trace(call(Dl),A),
reduce(A, B, DL, DLl, DO),
trace(reduction(D1),(A<-Bn),
schedule(B, Head, Tail, Newifead, NewTail),!,
solve(NewHead, New'rail. DLI, D).

solve-wait-writes(Head, Tail, M., 1), Iliad, Tail, DL, D)
Head == Tail.

% 14-K" AUI PINnwIn 7 x7%K

meta Pro log /Con current Simulator 11 0

solvewait,.writes([wait.write(X,Y) I Head], Tail, DL, D,
NewHead, NewvTail, NewDL, NewD):

not;(var(X)),!,
call(write(Y)),
ni,
solve...wait-.writes(Head, Tail, DL, D,

NewHead, NewTail, NewDL, NewD)).

solve..wait-.writes([Process I Head], Tail, DL, D,
(Process I NewHead], NewTail, NewDL, NewD):

solve-wait.writesCHead, Tail, DL, D,
NewHead, NewTail, NewDL, NewD).

reduce(demo(.,j,_.,_.,,_9 :-!,fail.
reduce(demo_,,,,.,,,j_ :-!,fail.

reduce(A, B, -, nodeadlock, D) :
guarded~clause(A, G, B, D),
trace(try~clause(D),(A<-(G I B))),
solve(G, D),

reduce(A, suspended(A), DL, DL, D)

trace(suspension(D),A).

reduce(denio(T,true ,, InPrf, InPrf),true ,-,nodeadlock,D).

reduce(A, B) :
guarded clause(A,G,B,1),
solve(G,1).

reduce(A, suspended(A))
trace(suspension(A)).

schedule(true, Head, Tail, Head, Tail) :!

sch edule(suspended(A), Head, [A I Tail], Head, Tail) :!

sch edule((A, B), Head, Tail, NewHead, NewTail)
value(smode, breadth jirst),

schedule(A, Head, Tail, Headi, Taill),
schedule(B, Headi, Taill, NewHead, NewTail),

schedule((A,B), Head, Tail, Newflead, NewTail)
value~smode, depth j'irst),

schedule(B, Head, Tail, Ifead, Taill),'
schedule(A, Headi, Tail 1, Newlfead, NewTail),

schedule(A, Head, Tail, [A I Head, Tail)
value(smode(A),
depth jirst),

metapro log /Con currenlt Simulator11

scheduleCA, Head, (A I Tail], Head, Tail)
value(smnode(A),
breadth-first),

schedule(A, Head, Tail, [A I Head], Tail)
value(smode, depthjfirst),

schedule(A, Head, [A I Tail], Head, Tail)
value(smode, breadthjirst),

guarded.clause(A, G, B, D)
ready-.clause(A, B1, D),
find-.guiard(Bll, G, B).

find..guard((A I B),A, B) :!
find..guard(A, true, A).

ready...cause(A, B, D)
functor(A, F, N),
functor(Al, F, N),
clause(AI, B),
race(concurrent..unify(D),(A, Al)),
concurrent..unify(A, Al).

concurrent..unify(X,Y) :
(var(X) ; var(Y)), !, X = Y.

concurrentunify,(X?, Y) :!

non var(X,
concurrentunify(X, Y),

nonvar(Y),
concurrent..unify(X, Y),

concurrent;_unify'([X I Xs], CY I Ys]) :-!,
coneurrent.unify(X, Y),
conctirrent.unif~'(Xs, Ys),

concurrent-.unify((I, (1) :'

concurrent..unify(X, Y)
X =..(F I Xi],
Y =..(F I YsJ,
concurrent-.unify(Xs, Ys),

con curre nun ify(X,Y,ok)
(var(X); var(Y)),

!XzY.

moeProlog/Concurrent Simulator 112

concurrent~un ify(X?, Y, susp)
var(X,
nonvar(Y),

concurrentunify(X?, Y, Flag) :'

nonvar(X,
concurrentunify(X, Y, Flag),

concurrent-unify(X, Y?, susp)
nonvar(X,
var(Y),

concurrent- unify,(X, Y9, Flag) :!

nonvar(Y),
concurrent.unify(X, Y, Flag),

concurrent-.unify((X I Xs], [Y I Ys], Flag) :~
concurrent-unify(X, Y, Fl),
(Fl =susp,!, Flag=susp;

nonvar(Fl),
Fl =ok,concurrent uni6I(Xs, Ys, F2),

(F2=susp,!, Flag=susp;
nonvar(F2),
F2=ok,!,Flag=ok)),

concurrent,-uni1f,([], [J, ok) :-1.

concurrent-.unify(X, Y, Flag)
X=.[F I Xs],
Y=. (F I YsI,
concurrent unify(Xs, Ys, Flag),

aL

* trace(_, .
value~trace, off),

trace(A, B)
ad&..counter(A),
% break(A, B), % add a break package
value(traceset, S),
(rnember(A,S); S =all),

writel([A, 131 B),

trace(_, J.

clear-counters
value(counter(X),Y),
Y> 0,

* set(counter(X),O), fail; true

add...counter(A) -
value(countingset, S),

ArLIWWN AK rj~v~x xr PW W w v mwum

meta ProlIog/Co ncu rrent Simulator 113

member(A, 8),
addl(counter(A), J); true.

display-..counters :
value(countingset, S),
member(X, 5),
value(counter(X),Y),
Y>O0,
writel([L# ',X,': ',Y]),
nl,fail;

sum..counters;
true.

sum-.counters
value(countingset, S),
setof(Y, XA (mernber(X, S),value(counter(X),Y)),1),
sum(S1, 0, Total),
writel([LTotal: ', Total]), ni.

sum([],Tenip,Temp).

surn([H I T],Temp,Total)
NT is H.Ternp,
surn(T,NT,Total).

strip-.qs(X,X)
var(X),

strip..qs(X?,Y)
!, strip.qs(X,Y).

strip..qs([],O)

strip..qs([H I T),[SH I ST])

strip..qs(H,SH),
strip-.qs(T,ST).

strip-qs(In,Out) :
In =..(F I Argsl,!,
strip..qs(Args, Stripped-Args),

Out =..(F I Stripped.Argsj.

strip..qs(X,X).

set(A,B) :
(clause(value(A,V),true ,PTR),

!,erase(PTR);
true),

assert(value(A,B)).

wait(X) :
wait(X, ..

wait(X, -):
var(X),

meta ProlIog/Concu rrent Simulator 1 1 4

wait(X?, Y)
!, wait(X, Y).

wait(X, X).

dif(X, Y) :
Cvar(X); var(Y)),
!,fail.

di"~?, Y) :

di"X, Y?) :

dif(O, 0) :-
!, fail.

diiTtX I Xs], (Y I YsD:)

dif(X, Y);
diftXs, Ys).

difXX, Y) :
X =..[Fx I Xs],
Y =.. (Fy I Ys],
(Fx \== Fy;

diAMX, Ys)).

difXX, Y) :
(var(X); var(Y)),
fail.

con-.system~wait(_, J).
con-system(wait(j).
co n.sy stem (di f_,_)).
con-.system(freadUj).
con-.system(otherwise).
on-.system(writel(j).

%deal with the meta built-ins

con..system(addTo(,,_)).
con..system(dropFrom(,_,_
con..system(consut(,)).
con-system(ask(,J).
con-.system(Otherwise)

systemi (Otherwise).

all Xs :
instreani(Xs) <_

read(X) I instream(X, Xs,

m,,aProlog/Caflcurreflt Simulator 1 15

instreani(end.of-..fle, [1).

instream(close..stream, M-I)

all (Xs,Ys,Y]:
instream([], Xs) <-

instrearn(Y?, Xs),
read(Y).

all (X,Xs,Ys]
ins~ream([X I Xs], [X I Ys]) <-

instream(Xs, Ys).

all [X,Xs,Y]
instream(X, [XC I Xs]) <-

wait(X) I
instream(Y?, Xs),
read(Y).

all [X.Xs] :
outsbream([X I XsI) <- %Xs is the current output stream

writel(('** outstream: ', X]), nl I
outstream(Xs?).
outstreamC(O.

all [XYJ:
wait..write(XY) <- % wait for X and output Y to current output stream

wait(X) I call((write(Y),nl)).

% wrap stream elements with an identifying tag

wrap(fl, -, 0).
all [XX9,WrappedX,Ys,Wl
wrap([X I X91, W, (WrappedX I Ys]) <-

WrappedC =..W, X) I wrap(Xs?, W, Ys).

all CXXI,YYi]
lt(X,Y) c-

wait(X, XI),
wait(Y, Y1) I X1 Y1.

all DCXX,YYl]
le(X,Y) <

wait(X,Xl),
wait(Y, Y1) l x1 =< Yl.

% lazy evaluator or arithmetic expressions
eval(XY)

wait(X,Y), integer(Y) I true.
eval(X+Y,Z) :

eval(X?, XI), eval(Y'?,Y1). plus(XI, YI, Z).
eval(X-Y,Z) :

eva](X?, XI), eval(Y?,Y1), plusiZ, YI, X1).
eval(X*Y,Z)

...... % -, '.P P

meta Pro Iog/Co ncurrent Simulator 1 16

eval(X?, Xl), eval(Y?,Y1), times(X1, Y1, Z).

plus(X,Y,Z) :-wait(X,X1), wait(Y,Y1) I Z is XI+Yl.
plus(X,Y,Z) wait;(X,X1),wait(Z,Zl) I Y is Zl..Xl.
plus(X,Y,Z) wait(Y,Y1),wait(Z,Zl) I X is Zl-Yl.

times(X,Y,Z) wait(X,X1), wait(Y,Y1) I Z is X1*Y1.
times(X,Y,Z) wait(X,Xl), wvait(Z,Zl) I Y is Zl/Xl.
times(X,Y,Z) wait(Y,Yl), wait(Z,Z1) I X is Z1/Y1.

member(XCX I J).
memnberMX [Y I TI) :-member(X, T).

writel(X:- var(X),!.

writel([H I TI) :-write(H), !, writel(T).

writelnl(fl) :-ni,!.
writelnl([H I TI) :-write(H), nl,!, writelnl(T).

fread(X) :-write(>), read(X.

systeml((X is Y)).
systemi (true).
systemi ancestors(Ancl)).
systemi (call(X)).

con...retrieve(Theory, (Call <-Body),Flag)
functor(CalI, F, N),
functor(Calll, F, N),
retrieve(Theory, (Calil <-Body)),
trace(concurrent.unify(D),(Call, Calli)),
concurrent.unify(Call, Caill, Flag).

con-.retrieve(Theory, Call, Flag)
functor(Call, F, N),
functor(Calll, F, N),
retrieve(Theory, Calli),
trace(concurrent.unify(D),(Cal I, Calli)),
concurrent~unifyCCall, Calli, Flag).

metaProlog Simulator 17

12. A metaProlog Simulator.

/** ------------ --------------- --------------- --------------- --------------

File: demno-.react.pro
Author: Kenneth A. Bowen
Date: 24 July 1985

Notes: Central interpreter for metaProlog
-- *1

:-op(lOOO, xfy, W).
:-op(ll5O, xfy, &.

:-op(llOO, xfy, ')

:-op(ll0l, fy, all).
:-op(99O, fy, if).
:-op(98 5, xfy, then).
:-op(98O, xty, else).

demno(Theory, Goal)

demoCTheory, Goal, Control).

demo(Theory, Goal, [])

emptyCGoal).

demo(Theory, true, [I)

demno(Theory, Goal, [Reason f RestProof])

select(Goal, SubGoal, Rest-Goal s, Theory),
react(Theory, SubGoal, Reason, Con tinuation-.Goals),
mnerge(Continuation_.Goals, Rest_.Goals, New_.Goal, Theory),
demo(Theory, New-.Goal, RestProof).

react(Theory, demo(New_.Theory, Subsid..Goal, Subsid-.Proof),

sbs(Subsid-.Proof), true)

demo(NewTheory, Subsid..Goal, SubsidProof).

react(Theory, demo(New.Th eory, S uhsidGoal), sbs(Subsid-Proof), true)

demo(New_.Theory, SubsidGcal, SubsidProof).

react(Theory, current(Theory), !cu rr. uit), true):-!.

react(Theory, (Vars : Goal), strip_.1 r, Internal_.Goal)

metaProlog Slmulator 1 18

make-internal((Vars: Goal), Internal-Goal, true).

react(Theory, not(Goal), neg(Goal), true)

\+(demo(Theory, Goal, J).

react(Theory, (if Condition then SuccessGoal else FailureGoal),
if_then-else(s(Condition, Cond_.Proof)), SuccessGoal)

demo(Theory. Condition, Cond_.Proof), !

react(Theory, (if Condition then SuccessGoal else FailureGoal),
if-then-else(f(Condition)), FailureGoal)

react(Theory, (if Condition then Goal), if...then(s(Condition, Cond_Proof)), Goal)

demo(Theory, Condition, Cond_Proof), !

react(Theory, Goal, built...n(Goal), true)

built...n(Goal), !

Goal.

/*--Additions for frame processing....

react(Theory, Goal, fr(Frame..Trace), true)

Goal =.. [Pred, Argi I Rest.Argsl,
is-.theory(Argl),
Frame-.Goal =.. (Pred I Rest.Args],
demo(Argl, Frame_Goal, Frame-Trace).

react(Theory, Goal, inh(Proof), true)

demo(Theory, is...a(Super_Frame_Name), 9
name-.of(Super-FrameName, Super_.Frame..jheory),
demo(Super-Frame..heory, Goal, Proof).

react(Theory, update(Frame, Slot, New-.Value), upd(Frame, Slot, New...Value), true)

4 OldAssert =..Slot, Old_.Value],
dropjfrom(Frame, Old-Assert, Intermed-.Frame),
NewAssert =.. [Slot, New..Value],
add-.to(IntermedFrame, New-Assert, New-.Frame).

/* Modified form to use to allow demon processing on update; similar
modification should be made to other frame axioms if demon processing
is desired there; e.g., on access, or on inheritance, etc

react(Theory, update(Frarne, Slot, New _Value), upd(Frame, Slot, New..Value), true)

Old_.Assert =..(Slot, OldValue!,
drop-.from(Frame, Old-.Assert, rntermedFrame-0.),

metaProlog Simulator 19

NewAssert .. [Slot, New...alueI,
add-to(Intermed-Fraine, Newv_Assert, IntermedFrame-1),
demo(IntermedFramejl,

demon(Slot, Oldjyalue, New_Value, IntermedFrame-1), 9

rec(hoy edDsiainhoy esgRsos)

reat(heoysend(DestinationTheory, Message, Response),re

snd(DestinationTheory, ieMessage, Response), true

react(Theory, assert(Database_.Theory, Assertion, Response),
assert(DatabaseTheory, Assertion, Response), true)

demno(Databaseffheory,
process(add(Assertion, Response),

DatabaseTrheory, New...Database_.Theory), J.

react(Theory, SubGoal, s(SubGoal, Rule), Rule-.Body)

find(SubGoal, Theory, Rule),
parts(Rule, RuleHI-ead, Rule-.Body),
match(SubGoal, Rule_.Head).

ind(Goal, Theory-.UiTheoryV Clause)

retrieve(Theory_.U, subtheory(Theory-.V), true, 9,
find(Goal, Theory_.V, Clause).

find(Goal, Theory, (Goal:- Body))

retrieve(Theory, Goal, Body, 9.

parts((Head:- Body), Head, Body).

match(Itern, Item).

select(((SubSubGoal & SubSubGoals) & SubGoals),
SubSubGoal, (SubSubGoals & SubGoals), 9:-!.

select((SubGoal & SubGoals), SubGoal, SubGoals, 9:-!

* select((SubGoal && SubGoals), SubGoal, bftSubGoals), 9:-.

select(Goal, Goal, true, 9

mnerge(New...SubGoals, true, NewSubGoals,9-!

merge(true, Continuation, Continuation, 9:- !

merge(New...SubGoals, Continuation, (NewSubGoals & Continuation), j9

check-.demo-.spyingenter(Goal)

metaProlog Simulator 120

spy..or-trace(Goal),
write('demo:enter: '),write(Goal),nl.

check-demo..spying-enter(Goal):-nospy~r.trace(Goal).

spy..or...trace(Goal).-demo-spying(Goal).

spy-.or.trace(Goal):-demo~tracing.

nospy.or..trace (Goal):
\+(demo..spying(Goal)), \ +(demo-.tracing).

check...demo-.spying...exit(Goal):-
spy..or...trace(Goal),
write('demo:exit: '),write(Goal),n].

check...demo...spying...exit(Goal):
spy..or..trace(Goal),
write('demo:retry: '), write(Goal),nl, !, fail.

check-.demo-.spying-.exit(Goal) :-no..spy..or..trace(Goal).

demno..trace:- assert(demo..tracing).
demo-.notrace:- retract(demo-.tracing).
demno-notrace.

/*..---------

File: meta..topjlevel.pro
Author: Kenneth A. Bowen
Date: 20 May 1985

-- *1-

start.up..meta.

start..up_..meta

$prompt(2, ", '1:'),
write('----------------------------- ,]

write('metaProlog 0.5'),nl,
writeC(c) 1985 Kenneth A. Bowen'),nl,
write('AlI rights reserved.'),nl ,nl,
Write('system file? I,
read(System-.File),
con sulLand-.go(SystemFi I e),
write~after consult-.and..go succeed:.. aborting to PrologD),nl,
abort.

start..up..meta

abort.

con sult-.and-go(SystemFilIe)

meta Prolog-con sul t(Sys te m_ aT ry, Systemjld, System-File),
write(CFile '),write(System_ File w,,rite(' consulted to theory)

metaProlog Simulator 12 1

write(System..heory), ni,
demoCSystem..Theory, systemstartup, Pr f).

rnetaProlog consult(Systemj d, System Id, System File)

write('metaConsult:file='),write(System File),nl,
(var(Systemjld), !, theory..gensym(System-ld); true),

I,- see(System...File),
read and record(Systemj d),
close(System..File),
asserta(parent-.theory(SystemId, empty~theory, consult)).

read-and-record(Systemjld)

- read(Item), !

dispatch-read-and-record(Item, System-jd).

dispatch-read_and-record(endoLflle, 9-'

dispatch-read-and-record(Item, System-jd)

make-internal(Itemn, Head, Body),
assertz((Head:- Body), Ref),
assertz(belongs-to(Ref, Systemi1d)),

read-and-record(Systemjld).

File: module-db-mgr.pro
Author: Kenneth A. Bowen
Date19 May 1985

Module-based revisions begun 27 Aug 85
------ ---

is..theory(C$th.%'C.,-,..

retrieve(empty.Aheory, Goal, Body, Control):- fail.

retrieve((TI & T2) Goal, Body, Control)

retrieve(T1, Goal, Body, Control) ;retrieve(T2, Goal, Body, Control).

SD retrieve(T, Goal, Body, Control)

clause(Goal, Body, Reference,
a' belongs-.to(Reference, T).

belongs-to(Reference, T)

parentof(T, T1, 9
belongs-.to(Reference,T 1).

/* Ground "belongs-..to" assertions are cre~ated by add-to with a-serta ~

e- Cpn

metaProlag Simulator 122

add&To(Theory, Assertion, NewTheory_Id)

make..jnternal(Assertion, Head, Body),
theory-.gensymCNewTheory-jd),
assertz((Head:- Body), Ref),
asserta(belongsj.o Ref, New-Theoryjld)),
asserta(parent-theory(Newv.Theoryild, emptytheory, add(Assertion))).

instance(WGas : Gal), Internal-GaI Varals), bls

isacreC(evar al)V, Intern al, Inrale arabe
repaceGoa, VrsInternalVariables, Internal-Goal).

instnce(Gal[ars), ntenalGoal, Intern alVari able s)

instnce(Vas :Goa), ntenalGoal, Intern alVariables).

mak-iteralallItm),NeHedNewBody)

make-internal(Item, NewHead, NewBody).

make -internal((Vars -(Head <-- Body)), NewHead, NewBody)

create~variables(Vars, InternalVars),
replace(Head, Vars, Internal_Vars, New-.Head),
replace(Body, Vars, Internal-Vars, New-.Body).

m ake-in tern al((Vars :Fact), NewFact, true)

c reate-vari able s(Vars, InternalVars),
replace(Fact, Vars, Internal_Vars, New-Fact).

make-internal((Head <-- Body), Head, Body):- !

make-internal(Fact, Fact, true):-

create-variables([I, [M.

create-variables([Identiier I RestIdentifiers], [Var I RestVars])

create-variables(RestId('n tifiers, Rest-Vars).

replace((A & B), Vars, Interi I-. Vr;, , New-.A & New-.B))

replace(A, Vars, Internal - r*Ne wA),
replace(B, Vars, Internal \.v rB)

replace([], Vars, InternalVan',,

replace(ffirst I Rest], Vars, lnteril .Vars, tNew_First I New..Rest))

metaProlog Simulator 123

replace(First, Vars, Internal-Vars, New-.First),
replaceCRest, Vars, InternalVars, New_Rest).

replaceCA, -- ,A)

integer(A), !

repl ace(A, Vars, InternalVars, New_.A)

atom(A), !

look-up(Vars, A, Internal_Vars, New.A).

replaceCA, Vars, InternalVars, New..A)

A =..(Operator I Args], !
replace(Args, Vars, Internal.Vars, New..Args),
NewA =. .[Operator I New..Argsl.

look..up(EI, A, _, A):- !

look...up([A I J, A, [NewA I J, New_.A):-!.

look.-up(L I Rest...Varsj, A, L I Res tIn tern aVars]1, New..A)

look--up(Rest..Vars, A, RestInternal-Vars, New-A).

'@# % %'()

theory..gensym(M)

retract('@# % % (N4)),
M Mis N+1,
assert('@# % % 'CM)).

append(O, X, X).
append([H I TI, Y, [H I ZI)

append(T, Y, Z).

bagOIRTemplate, Goal, Output)

gensym(Tag),
assert('%bag% OM~ store %c (Tag, [1)),!,
'%bag O%f '(Tag, Template, Goal, Output).

* '%bag O%f'(Tag, Template, Goal, output)

Goal, add-element.bagoflTag, Toemplate), fail.

'%bag O%f'(Tag, Template, Goal, Output)

metaProlog Simulator 1 24

'%bag% Of% store % W(ag, Temp),
retract('%bag% Ofo store % (Tag,9,
reverse(Temp, Output).

add_element..agof(Tag, Template)

'%bagO/ Ofo store % (Tag, Current),
retract('%bag% Ofo store % '(Tag, Current)),
assert(C%bag% Of~l store % '(Tag, [Template I Current])),

reverse(X, X).

gen symn(Tag)

retract('@g#e$n%s~y&m*'(gensym(N))), !

M is N+1-,
Tag = gensym(M),

assert('@g#e$n%SAy&M*'(gensym(N))).

gensymn(gensymn(O))

assert('@g#e$n%SAy&M*'(gensym(O))).

/* --

File: system-.predicates.pro
Author: Kenneth A. Bowen
Date : 19 May 1985

-- 1

builtin(true).
b uilt - n(fai I).
built,_n(update..,.,.)).
built~in(add_To(_, _, J3).
built.Jn(drop_From(_., _,J)
builtjn(metaProlog..consult-,-.,-)).
built-in(readU-).
built-in(writet)).
built-in(nl).
builtjin(atom~j).

0 ~builtjin(instance(_,-,..
built..in(halt).
builtjn(abort).
built-in(saveU).
built-in((spy -9).
built-in((nospy _)

bui I Lin(trace).
built-in(notrace).
built-in(demo-trace).
built-in(demo-notrace).
bui ltJ -n(demo-.spy(-.)).
built -in(deep..spy(_)).
built -in(no-demo spy(-)).
built - n(no-.deep..spy(-3).
built -in(bagOfX-., -,J)
built.Jn(setslot(, J.).

metaProlog Simulator 125

builtin(make-frame(-)).
built-in(L < _)).
built-in((- =< _)).
builtjn((_ > _)).
built-in((- >= _)).
built-in((- is _)

built-in(L = -)).
built-in(built-in(_)).

a

metaProlog Simulator 126

12.2. Towards a More Se ious Simulator (by Keith Hughes).

The following is a description of the current metaProlog simulator.
The idea is different from the previous metaProlog simulator in that
clauses are now fully compiled, rather than interpreted (at least as far as I
understand the previous implementation). This compilation is achieved
through the guard clause, an idea proposed by Andy Turk for compiling
meta at the machine level.

The basic idea is that theories are denoted by lists. When an addTo or

dropFrom is done, a unique theory ID is generated. The path to this new
theory is then the new theory ID appended to the end of the old theory
descriptor. In the case of an addTo, a new clause is asserted, while in the
case of a dropFrom, the old clause in the database is modified.

For example, if the fact p is added to the empty theory ([]), a new theory

descriptor of [0] would be created (addTo([],p,[0])). A rewritten form of p is
then asserted into the database. This new form has an extra argument
added to the beginning of the head and to each subgoal in the body of a
clause. For instance, in the case of p above, the new clause asserted would
be

p(TheoryIn) :- guard(TheoryIn,[O I_],]).

guard does the real work in meta. It makes sure that the clause can be
used in TheoryIn, the theory descriptor handed to the call of p by demo. The
second argument of guard describes the theories in which p is known by
giving the initial sequence of all theories that can access p. For each theory
that cannot access p, the third argument of guard contains the initial
sequence of all theories where the clause is no longer valid. This third
argument will be a list of lists. A clause with aguments and subgoals, such
as

p(A) :- g(A,B), r(B)

would be asserted into theory [),1] as

p(Theoryln,A)

guard(Theoryn,[O,1 I I
g(Theoryln,A,B),r(Thi i, 'In, - B).

metaProlog Simulator 127

The theory behind guard is simple. If a sequence of addTo's is done,
the theory descriptor coming out of the last addTo is a list of that theory. For
example,

addTo([],p,Ti),addTo(T1 ,q,T2),addTo(T2,r,T3)

would instantiate T1 to [0], T2 to [0,1], and T3 to [0,1,2]. p is known in all of

these theories, and the second argument of it's guard clause is [0 I_,
which would unify with any of the above theory descriptors (T1,T2,T3). [0 I]
is said to be an initial sequence of these theory descriptors. So, any theory
descriptor starting with a 0 knows about p. q's initial sequence is [0,1 I].
This is not an initial sequence of [0], so cannot be found in the first theory,
but will be found in theories [0,1] and [0,1,2].

dropFrom works by adding to the third argument of a clause. To
continue the above example, if a dropFrom([0],p,T4) is executed, T4 will be
instantiated to [0,3], and the clause in the database will be changed to

p(Theoryln) :- guard(TheorylnJO 1 J,[[0,1,2 I j]).

So, this third argument contains a list of initial sequences of theory
descriptors with roots where p was defined (theory [0] in this case), where p
no longer exists. If p was put into meta from another addTo, this addTo
would create a different clause for p of the same form as above. The guard

clause, if the first two arguments unify, will check Theoryln against the
theory descriptors in the list in the third argument position, and fail guard
if any are an initial sequence of Theoryln.

guard also handles the union of theories. If the user does a

demo(Tl+T2+...+Tn,Goals), the entire group of T1+T2+....+Tn is passed
through to the Goals in the first argument. If guard notices a union, it will
try and find the clause in the first theory in the list. If it isn't there, the next
theory will be tried. This checking is put into guard to avoid excess work. If

a late subgoal in the list of Goals fails to be found in T1, the interpretor must
not fail all the previous ,uhgoals just because this subgoal can't find

anything in T1. So, this suhgol ,vill look in T2 next.

demo(TheoryID,Goals) ,%:l1 c Il Goals with a particular TheoryID. The
list of goals is rewritten to 1'.i-i in TheoryID as the first argument. If
TheoryID is a variable, demo .%ill unify TheoryID to a theory descriptor

,2lo N ,-

AEUMPWWMI v.. U'rIrM ViNM W'WWWPM WnMU WTI PMU MMPDU PW Phn %.It UN~r-%nMM VVW' uN I

metaProl - Simulator 128

where the goal is true. addTo and dropFrom are implemented so that they
can backtrack. If a cut is executed, when backtracking is done, the clauses
will be left in the database. This is not a problem, however, since the guard
for these clauses will never fire again.

There are two extra builtins added for fun. One is called
baseTheory(FileName), which is like consult. The file contains lines like

theory(TheoryName).
theory for TheoryName
endTheory.
theory(NewTheoryName).
etc.

Once a theory is described, clauses can also be added by

TheoryName :: Clause.

To use clauses in a theory entered using baseTheory, the predicate
theory(TheoryName,TheoryID) is used in conjunction with demo. For
instance,

....... , theory(phideaux,T1), demo(T1,Goal),

would pick up the theory ID bound to the name phideaux and use it in

demo. These theory names cannot themselves be used by the core meta
predicates.

An example of a file for baseTheory follows.

theory(a).
a(a). a(b). a(c). a(d).
endTheory.
theory(b).

b(a). b(b). b(c). b(d).
endTheory.
b : b(e). a :: a(e) a(b).

.

- - -

-'A AA~w ". -. ":1- % '~. ~

metaProlog Simulator 129

/ --
demo(TheoryID,Goals) will call Goals with a particular TheorylD. If TheorylD
is a variable, demo will unify TheorylD to a theory descriptor where the goal is
true.

addTo and dropFrom are as they should be; they even backtrack. There are two

extra builtins I added for stuff I'm doing. One is called

baseTheory(FileName),

which is like consult. the file contains lines like

theory(TheoryName).
theory for TheoryName
endTheory.
theory(NewTheoryName).
etc.

Once a theory is described, clauses can also be added by

TheoryName :: Clause.

For an example, see the file -hughes/research/meta/test. To use clauses in a
theory entered using baseTheory, the predicate theory(TheoryName,TheoryID)
is used in conjunction with demo. for instance,

...... , theory(relativity,T1), demo(T1,Goal)

would pick up the theory ID bound to the name relativity and use it in demo.
These theory names cannot themselves be used by the core meta predicates.

The reader doesn't understand variable quantification yet; standard prolog
rules are used.

The dropFrom bug is fixed. Clauses really disappear when they are supposed to. It
makes the code run a little slower when there are a lot of dropFroms, but that's
life.

--

% written by keith hughes 4/10/86

% modified by ken bowen 4/28/86 --

:-consult('../system-predicates.pro').

* op(1200,xfy,::).
:-op(1000, xfy, '&').
:--op(1150, xfy, '&&').

:-op(1100, xfy, '<-').
:-op(1100, xfy, ':').
:-op(1101, fy, all).
:-op(990, fy, if).
:-op(985, xfy, then).
:-op(980, xfy, else).

-. " '. L -v'P "W~U W vW V-

I metaProlog Simulator 1 30

I%
%1 guard(CurTh eory, Botto mNode,Wh e re lAm, Exclusi on List):
%7 CurTheory is where we currently are in the execution state at this time.
7o BottomNode is the last element in the list CurTheory
* NWhereIAm is the theory in which the clause was compiled into
* ExclusionList is a list of the bottom elements of a theory list where
%7 the clause no longer exists

guard(Theory,CurTheory, Exclusion List)
nonvar(Theory),
Theory =FirstTheory+RestTheories,
guard(FirstTheory,CurTheory, ExclusionList).

guard(Theory,CurTheory,ExclusionList)
nonvar(Theory),
Theory =FirstTheory+RestTheories,
guard(RestTheories,CurTheory,Exclusion List).

guard(CurTheory,CurTheory,Exclusion List)
notDropped(ExclusionList,CurTheory).

notDropped(Element,_)
var(Element),!.

notDropped(l,.. :- 1.
notDropped([E1 I JE2)

initial(E1 ,E2),
* !, fail.

notDropped(L I Restl,E)
* notDropped(Rest,E).

initial(El,E2) :
var(E2),' ,fail.

initial(El,E2)
var(El),!.

initial([X I Resti],[X I Rest2l)
initial(Restl ,Rest2).

" addTo(OldTheory,Clause,NewTheory): add Clause to OldTheory, creating
" NewTheory

addTo(CurTheory,Clause,NewTheory)
newTheoryDesc(CurTheory,NeATh eo ry, End),
adjustClause(Clause,NewTheory,Ne wClause),
asserta(clauses-of(NewTheory1,NewClause)),
xassert(NewClause,DBRef),

End= 0, % yuch gasp argh
backtrackAddTo(DB Ref).

exhibit(Theory)
clauses-.o(Theory,Clause),
show-clause(Clause),
fail.

exhibit(Theory).

Nor .;- e.

q~~a917UrP~~~wr~x
4r MA SnA run anLqLJW- -N"J IL..& ILK NN - .j 7K

metaProlog Simulator 13 1

show-clause(C) write(C),nl.

% this backtracks addTo

backtrackAddTo(DBRef).
backtrackAddTo(DBRef)

$dbref..erase(D BRef),
fail.

% just append, sort of

newTheoryDesc(.I,[NewID I EndI,End) 1,
newTheoryID(NewID).

newTheoryDesc([XlILl],(X IL21,End)
newTheoryDesc(L, ,L2, End).

currentTheoryD(O).

newTheoryID(X)
* currentTheoryID(X),

retract(currentTheoryID(X)),
NX is X +1,
assert(currentTheoryl D(NX)).

adjustClauseCCHead :-Tail),TheoryID,(NewHead Guard,NewBody))
adjustHead(Head,NewHead,Theoryln),
adjustBody(Tail,NewBody,Theoryln),
makeGuard(TheorylD,Theoryln ,Guard).

adjustClause(Head,Theoryl D,(New Head :-Guard))
adjustHead(Head,NewHead,Theoryln),
makeGuard(TheoryID ,Theoryln ,Guard).

makeGuard(TheorylD,Theoryln,guard(Theoryln,TheoryID,[1)).

adjustHead(Head,NewHead,Theoryln)
Head =.. [Functor I Argsl,
NewHead =.. [Functor,Theoryln I Argsl.

adjustBody((addTo(T1 ,GoaI,T2),Rest),(addTo(T1 ,GoaI,T2),NewRest),TheoryID)
adjustBody(Rest,NewRest,Th eoryl D).

adjustBody((derno(T,Goal), Re styd e mo(T,Goa 1),NewRest),Theo ry ID)
adjustBody(Rest,NewRest,Th eorv ID).

adjustBody((dropFrom(T1 ,Goal ,T2), Rest),
(dropFrom(T1 .GoaI,T2)XNewkRest),TheoryID) :'

adjustBody(Rest,NewRest,Theorvl1 D).
adjustBody((First,Rest),(First,NecwR.'st),TheorylD)

built.Jn(First), !,
adjust;Body(Rest;,NewRest,Theor 11)

adjustBody((First,Rest),(NewFi rst ,N.t .. Rest),TheorylD)
First =.(Functor I Argsl,

metaProlog Simulator 1 3 2

NewFirst =.. [Functor,TheoiyID I Argsl,
adjustBody(Rest,NewRest,TheoryID).

adjustBody(addTo(T1 ,Goal,T2),addTo(T1 ,Goal .T2)_
adj ustB ody(de rn o(T, Goal), de mo(T,Go aI),J:-!
adjust Body(dro pFrom(T1, ,Goal1,T2), dro pFrom (T1 ,Goal ,T2),_)
adjustBody(Only,Only,TheoryID)

built~in(Only),!.
adjustBody(Only,NewOnly,TheoryID)

Only =.. [Functor I Args],
NewOnly =.. [Functor,TheorylD IArgs].

% dropFrom(OldTheory,Clause,NewTheory)

dropFrom(TheoryID,Clause,NewTheoryID)
newTheoryDesc(TheoryID,NewTheorylD,NewEnd),
fixClause(Clause,TheoryD,End,NewTheoryD),

NewEnd = 0]. % yech arg garg

fixClause((Head :-Body),TheorylD,End,NewID)
adjustHead(Head,NewHead,Theoryln),
adjustBodyCBody,NewBody,Theoryln),
cl ause(Head,(guard(Th eory In,Wh ereUr, E xclude),NewBody),AD BRef),

not(not(guard(Th eo rylD,Wh ere lAm, Exclude))), % horrider and horrider
$dbref.erase(ADBRef),
xassert((NewHead :

guard(Theoryln,Whe relAm, (New ID I Excludel),NewBody),DBTRef),
backtrackDropFrom(D BRef,

(NewHead: guard(Th eoryln,Wh ere lAni,Exclude), New Body)).
ixClause(Head,TheoryID,End,NewID) :

adjustHead(Head,NewHead,Theoryln),
clause(NewHead,guard(Th eo ryIn ,Wh ere lAm, Excl ud e),AD BRef),

not(not(guard(Th eoryID,Wh ere lAm, Exclude))), % horrider and horrider
$dbref..erase(ADBRef),
xassert((NewHead :-guard(Theoryln,WhereIAm ,[NewID I Exclude])), DBRef),
backtrack DropFrom(DBRef,((Ne wHead guard(Theoryln ,WherelAm ,Exclude)))).

% this is so dropFromn can backtrack

backtrackDropFrom(DBRef,C lause).
backtrackDropFrom(DBRef,Clause)

$dbref..erase(DBRef),
assertCClause),
fail.

% demo(Theories,Goals)

* derno(Theories,Goals)
var(Theories),!,
rewriteGoals(GoalsTheories,N. .

call(NewGoals),

metaProlog Simulator 133

fixTheory(Theories).
demo(Theories,Goals)

rewriteTheory(Theories,Ne~vTheories),
rewriteGoals(Goals,NewTheories,NewGoals),
call(NewGoals).

% needed to fill in last element part of theory description

ixTheory([LastElement])) -
fixTheory(-I RestElements]))-

rixTheory(RestElements).

% add in theory ID carriers

rewrite Goal s((addTo (T 1,Go al ,T2), Re stGo al s),The ori es,
(addTo(T1 ,Goal,T2),NewRestGoals)) :-!,

rewriteGoals(RestGoals,Theories,NewRestGoal s).
rewriteGoals((demo(T,Goal),RestGoals),Theories,

(derno(T,Goal),NewRestGoals)) :-!,
rewriteGoals(RestGoals,Theories,NewRestGoals).

rewriteGoals((dropFrom(T1 ,Goal ,T2),RestGoals),Theories,
(dropFrom(T1 ,Goal,T2),NewRestGoals)) :-!,

rewriteGoals(RestGoals,Theories,NewRestGoals).
rewriteGoals((set~f(T ,Gs,L),RestGoal s) ,Theories,

(set~f(T,NGs,L),NRestGoals)) :~

rewriteGoals(Gs,Theories,NGs),
rewriteGoals(RestGoals,Theories,NRestGoal s).

rewriteGoals((FirstGoal,RestGoals),Theories,(FirstGoal ,NewRestGoal s))
built.in(FirstGoal),!,
rewriteGoals(RestGoals,Theories,NewRestGoals).

rewriteGoals((FirstGoal,RestGoals),Theories,(NewFirstGoal,NewRestGoals))
FirstGoal =.. [Functor I Args),
NewFirstGoal =.. [Functor,Theories iArgs],
rewriteGoals(RestGoals,Theories,NewRestGoals).

rewriteGoals(demo(T,Goal),Theories,demo(T,Goal))
rewriteGoals(addTo(T1 ,Goal,T2),Theories,addTo(T1 ,Goal,T2))
rewriteGoals(dropFrom(T, ,Go aI,T2),Th eori es, drop From (T1, Go al,T2))
rewriteGoals(set~fXT,Gs,L),Theories, set~f(T,NGs,L)) :~

rewriteGoals(Gs,Theories,NGs).
a, rewriteGoals(OnlyGoal,Theories,OnlyGoal)

built-in(OnlyGoal),!.
rewriteGoals(OnlyGoal,Theories,NewOnlyGoal)

OnlyGoal =.. (FunctorlArgs],
NewOnlyGoal =.. (Functor,TheoriesArgsl.

% baseTheory(File): read in a base theory

baseTheory(File)
see(File),
procBaseTheory,
seen.


~~~~~~~U~~~~7V 
v 

UW.JU 
vU~~U LvWJUv WU. ~ ~ ~n . Fn .. UM.

metaProlog Simulator 134

procBaseTheory
read(Clause),
procBaseTbeory(Clause).

procBaseTheory(endofjde)
procBaseTheory(theory(TheoryName))

newTheoryID(NewID),
assert(theory(TheoryName,[NewID])),
write(TheoryName), write(' = '), write([NewI D]),nl,
readTheoryClauses([NewID IJ)
procBaseTheory.

procBaseTheory((TheoryName ::Clause))
theory(TheoryName,TheoryID),
fixlD(TheoryID,NTheoryID),
addTo(NTheoryID,Clause),
procBaseTheory.

readTheoryClauses(TheoryID)
read(Clause),
procTheoryClause(TheoryID,Clause).

procTheoryClause(_,end~of file)
procTheoryClauseQ-,endTheory)
procTheoryClause-, stable(Fact)) :!

assert(stable(Fact)),
readTheoryClauses(TheorylD).

procTheoryClause(-,Clause)
stable(Clause),!,
make-internalClause, Head, Body),
enter(Head,Body),
readTheoryClauses(Theoryl D).

p rocTheoryClaus e(TheoryID,Cltau se)
make-internal(Clause, Head, Body),
addTo(TheoryID,(Head :-Body)),
readTheoryClauses(TheoryID).

stable(stable(_)).
stable((Head <- Body)) Istable(Head).

stable((all Vars :Clause)) :- !, stable(Clause).
enter(Head, true) !,assertz(Head).
enter(Head, Body) assertz((Head Body)).
fixID([ID],[ID I j)
fixID(CID I Rest;],ID I ERest])

fixID(Rest,ERest).

% addTo(TheorylD,Clause): add Clause to TheoryID with no new ID

addTo(TheorylD,Clause)
adjustClause(Clause,TheoryID,Nc,vClause),
assert(NewClause).

1A



metaProlog Simulator135

% rewriteTheory(OldTheory,NewTheory): rewrite virtual theory descriptor
% for demo

rewriteTheory(OldTheory,OldTheory)
var(QldTheory),!.

rewriteTheory(OldTheory-Clause,NewTheory)
subtractClause(OldTheory,Glause,NewTheory).

rewriteTheory(OldTheory+OldTheory2,NewvTheory+NewTheory2)
re writeTheory(OldTheory, NewTheory),
rewriteTheory(OldTheory2,NewTheory2).

rewriteTheory(OldTheory,NewTheory) %take care of named theories
theory(OldTheory,New-Theory),!.

rewriteTheory(OldTheory,OldTheory).

subtractClause(Fron tTheory+RestTheories,Clause,
NewFrontTheory+NewRestTheories) :- !,

subtractClause(FrontTheory,Clause,NewFrontTheory),
subtractClause(NewRestTheories ,CI ause ,NewRestTheories).

subtractClause(Theory,Clause,NewTheory) -
rewriteTheory(Theory,NTheory),
drop From(NTh eo ry,C lau se,Ne wTh eory).

instance((Vars :Goal), InternalGoal, In ternalVari able s)

create-variables(Vars, Internal-Variables),
replace(Goal, Vars, Inte rnalVari able s, InternalGoal).

instance(( Goal/Vars ), Internal_Goal, Internal_Variables)

instance((Vars :Goal), InternalGoal, Intern al_Vari able s).

instance(Goal, Goal, [I).

make-internal(all(Item), New-Head, New-Body)

m ake-in tern al(ltem, NewHead, New-.Body).

make -internal((Vars :(Head <- Body)), NewHead, NewBody)

make_list(Vars, LVars),
create-vari able s(LVa rs, Internal_Vars),
replace(Head, LVars, Internal_Vars, New-Head),
replace(Body, LVars, Internal_Va rs, NewBody).

make internal((Vars :Fact), New_Fact, true)

make_list(Vars, LVars),
create-variables(LVars, lnternal _Vars),
replace(Fact, LVars, Internal-_Virs, NewFact).

make internal((Head <- Body), HaBody)

make internal(Fact, Fact, true)-

. . . . . . . . . . . . . . . . . . . . . . . .



metaProlog Simulator 136

rnake-l.ist([], [1) :-1
make-list([X I YL, MI I YD)
make-Iist(X, [XI).

create -variablesMi, [1) :'

create-variables([Identifier I RestIdentifiers], [Var I Rest-Vars])

cre ate-vari able s(Re stIden tifi ers, Rest_Vars).

* replace(A, - ,A)

(integer(A);var(A)), !

replace((A & B), Vars, InternalVars, (NewA ,NewB))

.4lc(,Vrs nenlVas e-)
replace(A, Vars, InternalVars, New_A),

replace(, Vars, Internal_Vars, New).

replace([First I Rest], Vars, Internal-Vars, [NewFirst I New-Rest])

replace(First, Vars, InternalVars, NewFirst),
replace(Rest, Vars, InternalVars, NewRest).

replace(A, Vars, InternalVars, NewA)

atom(A),!
I' look..up(Vars, A, InternalVars, NewA).

4 replaceCA, Vars, Internal_Vars, New.A)

A =..[Operator I Args],,
replace(Args, Vars, Internal -Vars, New.Args),
NewA =. .(Operator I NewArgs].

look-up([], A, -, A) :

look...up([A I J, A, [New_.A I 1, New-A):

look-.up(L I RestVars], A, [_ I Res tIn tern alVars], NewA)

loak..up(RestVars, A, Rest-In tern alVars, NewA).

A @# ~% % C)

0 theorygensym(M)

retract('@# % % '(N)),
M is N+1,
assert('@# % % (M)).



metaProlog Simulator 137

append([], X, X).

append([H I T], Y, [H I Z])

append(T, Y, Z).

setOfRTempI, Gs, L)
setof(Templ, Gs, L), !

setOf(Templ, Gs, [I).

xassertCClause,DBRef) xasserta(Clause,DBRef).
xasserta(Clause,DBRef)

builtins:gethead-information(C] ause,TransformedClause,Module,ProcNarne,Arity),
$compile-clause(Module,Transformed~lause,code,DBRef),

$dbrefasserta(Module,ProcName,Arity,DBRef).



Semantic Foundations 138

12. Semantic Foundations. P.

Subsection 13.1: A Formal Deduction Calculus I-I.

To precisely specify the metaProlog system, we first specify the
mathematical formal system of which the computational system is an
implementation. The specifications (4.2) of Part B fix the language of the
system. To complete the specification of the formal system, we must
supply the rules of proof. Note that just as with the specification (4.2), the -

following specification of the rules of proof of mP takes place in a
language (technical English) functioning as a metalanguage for mP.
First we must define some auxilliary notions.

Definition 13.1. An environment is a finite set (table) of ordered pairs
whose first element is a logical variable of mP and whose second element

is a term of mP such that no two ordered pairs have the same first
element (i.e., the set defines a function or mapping).

If E is an environment and X is a logical variable, we will say that E
is defined on X or X is defined in E if there is some term T such that the
ordered pair <X,T> belongs to E.

Definition 13.2. Environment E2 is an extension of environment El
provided that El is a subset of E2.

Definition 13.3.
(.1) An expression is either a term or a literal.

(.2) If X and Y are sets, we will write X & Y for the union of X and Y. If
Xis a set and z is a possible element of X, we will write X & z for

XUPWaXu~z).

(.3) An atom <U> occurs freely in a clause

[<VI>,...,<Vn>]:M

provided that <U> occurs in M and is distinct from each of
<VI>,....,<Vn>.

(.4) IfC is the clause

%,,



Semantic Foundations 139

[<wl>,...,<wn>]:M

and D is the formula

[<v1>,.....<vn>]:N,

if none of <wi>,...,<wn>, occur freely in N, and M results from N by
simultaneously replacing vi by wi for i = 1,...,n, we say that C is a
variant of D.

(.5) We say that a clause C is in a theory T if there is a variant C' of C
which satisfies the following:

i) T is D & S, and either C'is D or C'is in S;
ii) T is T1 & T2 and C' is either in T1 or is in T2;
iii) T is [D I L, and either C' is D or C' is in L.

Definition 13.4. Let A and B be expressions and let El and E2 be
environments. The relation

match(A, B, El, E2) (13.5)

is defined (at a level meta to mP) recursively as follows:

(.1) match(A, B, El, E2) holds if A and B are identically the same constant
*. and E2 is identical with El.

(.2) match(A, B, El, E2) holds if A is a logical variable which is not defined
*, in El and E2 is El + <A,B>.

(.3) match(A, B, El, E2) holds if A is a logical variable which is defined in
-* El with <A, T> in El and match(T, B, El, E2) holds.

(.4) match(A, B, El, E2) holds if B is a logical variable which is not defined
in El and E2 is El + <B,A>.

(.5) match(A, B, El, E2) holds if B is a logical variable defined in El with
<B, T> in El and match(A, T, El, E2) holds.

(.6) match(A, B, El, E2) holds if A and B are of the forms

<op>(Cl,...,Cn) and <op>(D1,...,Dn),

respectively, and matchlist[Cl,...,CnI, [Dl,...,Dn],E1,E2) holds.
(.7) match-list(L1, L2, El, E2) holds if Ll and L2 are both empty and El is



Semantic Foundations

,* identical with E2.
(.8) match-list(Li, L2, El, E2) holds if the heads of Li and L2 are HI and

H2, respectively, the tails of Li and L2 are T1, and T2, respectively, if

match(HI, H2, El, E3)

holds, and if

match_list(Tl,, T2, E3, E2)

holds.
(.9) The only conditions under which match or matchlist hold are those

specified by (.1)-(.8) above.

Definition 13.6. If E and F are expressions, Cl,...,Cn are logical variables,
and Ti,...,Tn are terms, then

subst(E, C1,...,Cn, T1,...,Tn, F) (13.7)

holds if and only if F is the expression resulting from the simultaneous
substitution of Tl,...,Tn for Cl,...,Cn throughout E.

We will assume that the logical variables of mP can be enumerated in
some fixed order. Expressions such as "the first n logical variables ... "

refer to this ordering.

Definition 13.8. A d-expression is an expression (meta-level to mP) of the

form:

d(T, G, E, P) (13.9)

where:
T is theory of mP;
G is a goal of mP;
E is an environment;
P is a list (possibly) empty of expressions of the form s(T,G,E,R),
where R is either a clause or various constants.

Definition 13.10. A d-exprc-ion

d(T, <empty>, E, P) (13.11)

,O ,, .Cc, C ,.?,,,, x, .. ck .L , L¢..
.

... %,' .. '%-..% .'.r . . .. t . ... ..... ' .%.'.'€.' t., ........ j.......'.."



Semantic Foundations 14 1

is said to be terminal.

Definition 13.12. An m-derivation is a finite sequence of d-expressions
such that the last d-expression in the sequence is terminal and each d-
expression in the sequence after the first follows from the preceeding by
one of the rules of inference (13.21)- (13.yy) listed below.

Definition 13.13. If G is a primitive goal:
(.1) If G is a literal, then

selection(G, G, <empty>) (13.14)

holds.

(.2) If G is the primitive goal (H,J) where H is a literal, then

selection(G, H, J) (13.15)

holds.

(.3) If G is the primitive goal (H,J) where H is not a literal, and if

selection(H, K, L)

holds, then

selection(G, K, (L,J))

holds.

Definition 13.17. If G is a primitive goal, A <- B is a rule matrix, and

selection(G, H, K)

holds, then

transform(G, A <- - B, (1B, K)) (13.18)

holds, where ifK is <empty>, then i(13, I) is B.

Definition 13.19. If G is a primitive goal, A is a fact matrix, and

.
_-- 

. - " .. . . .



Semantic Foundations 14 2

selection(G, H, K)

holds, then

transform(G, A, K) (13.20)

holds.

Inference Rule 13.2L

d(T, G, E, P)

d(T, G', E', P')

provided there exists a clause

k<cl>,...,<cn>'] C

in T such that if <D1>,...,<Dn> are the first n logical variables of niP not
occurring in G, E, or P (briefly, are unused), if

subst(C, <c1>,...,'<cn>, <D1>,...,<Dn>, M' (13.22)

holds, if the head of C' is A', if

select(G, H, J) (13.23)

holds, then

match(H, A, E, E') (13.24)

holds, and

transform(G, C', G') (13.25)

and P' is

[s(T, G', E', [<ci> ,*c n I C) IP]. (13.26)



Semantic Foundations143

Inference Rule 13.27.

d(T, demo(T', G'), E, P)

*d(T', G', E, Ls(L, G', E, rfeto)IPI)

Inerence Rule 13.28.

d(T, current(U), E, P)

d(T, current(U), E', [s(T, current(U), E', current) I P])

where

match(T, U, E, E') (13.29)

holds.

Inference Rule 13.30.

d(T, var(U), E, P)

d(T, <empty>, E, [s(T,czempty>,E,var) I P])

where U is a logical variable of mP and

dereference(U, W, E) (13.31)

holds, where dereference is defined as below, and W is a logical variable of

Definition 13.32. Let U be a logical variable of mP and let E be an
environment. Then

*dereference(U, W, E) (13.33)

is defined as follows:

(A1) If U is not defined in E, dicii %V is U.

..e~.



Semantic Foundations 144

(.2) If U is defined in E, say (U, V) is on E, then

(.2.1) If V is not a logical variable of m.P, W is V;

(.2.2) If V is a logical variable, W must satisfy

dereference(V, W, E). (13.34)

Finally, we specify that the only goals that can be directly submitted to

the metaProlog interpreter are those of the form

demo(T, G, E, P).

Definition 13.35. A metaProlog goal demo(T, G, E, P) is solvable if there

exists an m-derivation whose first element is d(T, G, E, P).

.%-

a

. . . . . •- - o ° . -,- • . "• " "-" " =, . '.' •"= '=.% % *- % ° % % " % %,,' ''" " ""% " ='" -"• 2 
•

5,
"



I

I

I



Implementation 14 6

14. Implementation Considerations.

Our approach to implementation has proceeded through three phases:

(1) Implementations built on top of ordinary Prolog.

(2) An interpreter written in C.

(3) A compiler derived from Warren's work [ ] on Abstract Prolog
Machines (APMs).

As can be seen in Section 12 and in the Appendix to Section 11, it is
possible to effectively use ordinary Prolog to create interpreters for parts of a
metaProlog system. However, this creates a double layer of interpretation,
resulting in far too poor performance. Moreover, the only reasonable way to
carry out such implementations is to identify the variables of the language
being implemented (in this case, metaProlog) with the Prolog variables.
But this identification looses far too much of the metaProlog subtlty and
bars us from a full implementation of the system.

Besides the desire for efficiency, the progression from one stage to the
next has be driven heavily by two factors:

(1) The subtlety of the treatment of the transition from formula terms as
data objects to terms as code objects and the effects of the introduction of
notions of concurrency. The details of these problems run as follows:

Existing Prolog implementations trade cleverly on an ambiguous
treatment of program expressions, allowing them at one an the same time
to be treated as terms which can appear as arguments to predicates and
simultaneously as literals (predicate calls), clause heads, and clauses
themselves. Much as we have struggled to take advantage of this trick, the
subtlety of the metaProlog system has eventually led us to partially
abandon the device, which caused us to redesign some parts of the basic
system. The fundamental -lifficulty lies in the treatment of variables.
Standard Prolog systems identify object level and meta level variables,
effectively rendering all varia les of the system to be of a limited meta level
kind. This causes difficulty :it two closely related points: the full recursive
invocation of the demonstrate predicate (the interpreter) and the proper
implementation of the stre: iri)f (setof) construct (the set-as-list of all i
entities satisfying a given condition). To obtain the correct handling of

. k" =' = == J . '" ,'. " ="jd = . .,," b'. J J' . '. .p , . . ". '. . .., " ' ," " ' ,.'t' ' " ", ""4' ' "P ° "" ./"*.* " -" .*"*"" " = "



Implementation 14 7

environments for both of these constructs, careful distinction between the
object level and meta level variables must be maintained, and this is not
possible with the standard approach.

(2) Concurrency was introduced both to provide a powerful programming
construct and to allow for the proper treatment of the interaction between
tt e interpreter and certain built-in predicates for manipulating theories
(or contexts). For example, the predicate addTo(Ti, A, T2) holds if theory
T2 is the result of adding assertion A to theory T1. The difficulty arises in
the interaction between the interpreter's sequencing of predicate calls and
execution of such a predicate. If at the actual run-time invocation of addTo,
the assertion A has not been fully instantiated to an object level term (i.e., it
still contains meta level variables), the action of the predicate is not well-
defined. In general, it is not known whether the programmer intends a
partially-instantiated theory to be created, whether this lack of instantiation
is because some predicate call which has not yet been executed will fully
instantiate A. Without concurrency and real first-class theories which can
be partially instantiated, it would appear that the only choice is to treat this
situation as a run-time error. But to treat this as a run-time error is far too
brutal an approach for a logic-based system. As an alternative to the full
introduction of partially instantiated theories, by introduction of
concurrency facilties, we allow such a call to addTo to suspend, awaiting
full instantiation of A. (Similar problems arise if T1 is not fully
instantiated. We are also pursuing the full introduction of partially
instatiated theories. However, this leads us to the notion of compiled code
which is only partially instatiated, and ultimately, to a limited notion of
unification of the compiled code representing formula terms.) Since it is
desired that metaProlog be as close as possible in spirit to standard
sequential Prolog, we are not able to use all the techniques of
implementation available for Concurrent Prolog or PARALOG. In
particular, we cannot make use of the read-only variable construct without
far-reaching effects on both the philosophy and implementation of the
system. Consequently, we were forced to make a careful analysis of the
intended uses of the concurrency constructs, both as programming tools
and for control of the intertition of the interpreter with the indicated built-
ins. The result was bc,(r .i r,tion of producer variable which appears to
provide the desired prnvr.irining tools, maintains the basic spirit of
standard Prolog, and .i1,;r,,,priately controls the interation of the
interpreter and the probleni.itic bhilt-ins.

For the interpreter wnttr'i inr C, a unifier, low-level storage allocation



'4t

Implementation 1 4 8

routines, and' a searcher (the control portion of the interpreter) were
designed, and the first two fully coded and tested before we reached the
conclusion that it was necessary to move on to stage (3).

The fundamental reason for moving to stage (3) -- a compiler-based
system -- was efficiency. Writing an interpreter in C gave us sufficient
control to solve the subtle difficulties. And while C is efficient, interpreters
for Prolog simply will not produce the speeds necessary to run realistic
large-size experiments.

Consequently, in the final year of the project, we embarked on the
development of a compiler for metaProlog. Due to the significant problems
mentioned above, there were no known compiler construction techniques
which we could draw on for the entirety of the project. Instead, we have
had to develop substantially new ideas and techniques as we progressed.

Since metaProlog is an (albeit significant) extension of Prolog, we
began with Warren's ideas for the compilation of Prolog (cf. ), using the
copy-term approach (cf .... ). No versions of such a Prolog compiler were
available to us in source form, so our first task was to construct a solid
version of such a Prolog compiler to use as the basis of our further work.
We first set out to proceed by a classic bootstrap, writing the compiler in
Prolog, and booting it on itself using C-Prolog on a VAX 780. We joined
forces with the group led by Ross Overbeek and Rusty Lusk at Argonne
National Labs, who had written an implementation of a copy-stack Warren
abstract machine (WAM) in C as part of their exploration of concurrency in
Prolog. We succeeded in writing the compiler, but the limitations of our C-
Prolog and our then current UNIX system on the VAX made this incredibly
awkward, forcing us to segment the compiler sources in many small
source files. Moreover, the performance of the Argonne WAM left much to
be desired. Thus, we rewrote the entire system in C, providing the
performance we desired (Bowen, et al. [1985]). Of special concern was the
ability to dynamically handle compiled code as required by the dynamic
Prolog database predicates "assert and retract". No previous system had
been able to deal with these, and forced programmers to declare predicates
which would be acted on by assert or retract, in which case the system kept
these predicates interpreted, causing considerable slowdown. The case of
assert was not difficult to deal with, since we simply included our C-coded
compiler as a callable built-in predicate -- its performance made this
eminently sensible. However, the case of retract is very different. One is
given a term - i.e., Prolog StLructure - and must located the head of a
compiled clause which matches that structure. The group developed a new



Implementation 1 4 9

technique of decompilation to deal with this problem (Buettner [1985]). It is
unlike traditional decompilation techniques which pick apart the compiled
code to try to infer the source code which produced it. Instead, it exploits
the fact that compiled Prolog still represents the pattern-matching the
unification carries out during Prolog execution. Simply put, by running
the compiled clause of the code in an odd mode, we force it to build a copy of
the source from which it was compiled. (NO special compilation mode is
used.) Then the head of the decompiled clause is matched against the term
passed to retract. Along the way, we discovered a number of compiler
optimizations which were previously unknown (Turk [1985]).

We have begun developing serious designs which will guide us in

reshaping the present Prolog compiler (dubbed Columbus Prolog) to become
a compiler for metaProlog. As we see it now, most of the effects will take
place in the underlying abstract Prolog machine -- most of the process of

compilation of metaProlog clauses to instructions for the new machine will
be almost identical to that for Prolog. We must not only support theories as
first-class data objects, but must move compiled code from a separate code I
space to exist on the abstract Prolog machine heap. All of this will have
profound impact on the garbage collection process. Our current thinking,
which is well-developed, is partially reflected in the simulators shown in

Section 12. We plan to continue this work under the RADC Artificial
Intelligence Consortium grant.

11
%"

-



')~~NJ IW~'.~ -J VW~ NVw', w7~ZW~f W1Vq. 3 r iWVwVU-. WJ r'. w-.n

References 150

REFERENCES

Bowen, K.A. Meta-level programming and knowledge representation, New
Generation Computing, v.3 (1985), pp.359-383.

Bowen,K.A., Buettner,K.A., Ciceklil., & Turk,A.K., The design and implementation
of a high-speed incremental portable Prolog compiler, Proc. 3rd Int'l Logic
Programming Conf., London, 1986.

Bowen, K.A., and Kowalski,R.A., Amalgamating language and
metalanguage in logic programming, in Logic Programming, Clark and
Tarnlund, eds, Academic Press, 1982.

Bowen, K.A. & Weinberg,T., metaProlog: A metalevel extension of Prolog,Proc.
1985 Symp. on Logic Programming, Boston, 1985.

Buettner,K.A., Fast decompilation of compiled Prolog clauses, Proc. 3rd Int'l
Logic Programming Conf., London, 1986.

Duda, R., Hart,P., Barrett,P., Gaschnig,J., Konolige,K.,Reboh,R., and
Siocum,J., Development of the Prospector system for mineral exploration,
Final Report, SRI International, Menlo Park, CA, 1978.

Fain, J., Hayes-Roth, F., Sowizral, H. & Waterman, D., Programming in
ROSIE: An Introduction by Means of Examples, Report N-1646-ARPA,
Rand Corp., 1982.

Hayes-Roth, F., Lenat, D., & Waterman, D., Building Expert Systems,
Addison-Wesley, 1984.

Kowalski, R.A. Logic as a database language, preprint, Imperial College,
London, July, 1981.

Nicholas, J.M., and Gallaire, H., Database: theory vs. interpretation, in
Logic and Databases, ed. Gallaire and Minker, Plenum Press, New York,
1978.

Reiter, R., Towards a logical reconstruction of relational databasse theory,
preprint, Dept. of Computer Science, Univ. of British Columbia, 1981.



References 1 51

Shoenfield, J.R., Mathematical Logic, Addison-Wesley, Reading, Ma..,
1967.

Turk, A.K., Compiler optimizations for the WAM, Proc. 3rd Int'l Logic
Programming Conf., London, 1986.

Warren, D.H.D., An abstract Prolog instruction set, SRI Technical Report,
1983.

Warren, D., Pereira, L., and Pereira. F., Prolog--The language and its
implementation compared the LISP, SIGPLAN Notices 12., no. 8,1977,
109-115 (also SIGART Newsletter, no.64).

Weyhrauch,R. Prolegomena to a theory of mechanized formal reasoning,
Artifical Intelligence, 13,133-170.

'I



A..

I

.4'
'p

J

9

4 W~'4~" j 'S
*0 * 0~ 0~


