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Abstract

We present autoregressive (AR) and autoregressive moving average (ARMA)

processes with bivariate exponential (BE) and bivariate geometric (BG) distri-

butions. The theory of positive dependence is used to show that in various

cases, the BEAR, BGAR, BEARMA, and BGARMA models consist of associated random

variables. We discuss special cases of the BEAR and BGAR processes in which

the bivariate processes are stationary and have well known bivariate exponen-

tial and geometric distributions.

Keywords and phrases: Bivariate exponential and geometric distributions,

bivariate autoregressive and autoregressive moving average models in exponen-
tial and geometric random vectors, association, joint stationarity.
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1. Introduction and Summary

A primary stationary model in time series analysis is the pxl linear pro-

cess given by:

(1.1) X(n) - I A(j)e(n-j), n -

where A(J), j - 0,±l,±2,..., is a sequence of pxp parameter matrices such that

SIIA(i)II < c, and e(n), n - 0,±I,±2,..., is a sequence of uncorrelated
J--Ca

pxl random vectors with mean zero and common covariance matrix. It is well

known that (1.1) includes the stationary vector autoregressive (AR) process

and the stationary and invertible vector autoregressive moving average (ARMA)

process. However, in some physical situations where the random vectors X(n)

are either positive or discrete, the preceeding assumptions on the e(n)

sequence are inappropriate (see Lewis (1980), p. 152).

Several researchers, addressing themselves to this problem, have con-

structed univariate stationary AR type models and stationary ARMA type models

where the random variables X(n) have exponential or gamma distributions, and

discrete models where X(n) assumes values in a common set. Lawrence and Lewis

(1977, 1980, 1981) and Jacobs and Lewis (1977) present stationary AR and ARMA

type models where the random variables X(n) have exponential distributions;

Gaver and Lewis (1980) consider stationary ARMA type models where the random

variables X(n) have gamma distributions. Jacobs and Lewis (1978a,b, 1983)

construct ARMA type models where the random variables X(n) are discrete and

assume values in a common finite set. The aforementioned models have been

used in the various fields of applied probability and time series analysis,

for example, these models have been used to model and analyze univariate point

processes with correlated service and correlated interarrival times (see
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Jacobs (1978)). Details concerning bivariate exponential and geometric MA

type processes and the corresponding point processes may be found in Langberg

and Stoffer (1985).

In this paper we present two classes of AR and of ARMA type sequences of

bivariate random vectors. The first class has exponential marginals while the

see-,d class has geometric marginals. We denote the first [second] class of

models as BEAR(m) [BGAR(m)] and BEARMA(mlm 2) [BGARMA(ml,m 2 )] for bivariate

exponential [geometric] autoregressive, order m, and autoregressive moving

average, order (ml,m2), respectively, where m and (m 1,m2) parametrize the

order of the dependence on the past. We use the theory of positive dependence

to show that in a variety of cases the classes of sequences are associated.

In Section 2 we define the bivariate exponential and geometric distribu-

tions which are the underlying distributions of our two classes, and present a

variety of examples of such distributions. Furthermore, in Section 2 we

define the concept of association and present a variety of bivariate exponen-

tial and geometric distributions that are associated. We conclude Section 2

by describing the bivariate dependence mechanisms which are used in generating

the various models. In Section 3 we construct the general BEAR(m) and

BGAR(m) models showing that the sequences have bivariate exponiential and

bivariate geometric distributions, respectively. Also, we discuss the auto-

correlation structure of the two classes of sequences. In Section 4 we con-

sider special cases of the BEAR(l) and BGAR(1) sequences. We show that

defined appropriately, the bivariate processes are stationary, and obtain well

known bivariate exponential and geometric distributions. Finally, in Section

5, we present the BEARMA (ml,m 2) and BGARMA(ml,m 2) models. We conclude by

describing the association properties of the sequences and discussing how to

Y I
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utilize association to obtain some probability bounds and moment inequalities

for the bivariate processes and the corresponding point processes.

2. Preliminaries

In this section we present definitions and prove some basic results to be

used in the sequel. First, we give definitions of bivariate geometric and

exponential distributions and provide some examples. Then we present the con-

cept of association and give some examples. Finally, we discuss some bivari-

ate dependence mechanisms.

First, we present a definition of a bivariate geometric distribution.

Definition 2.1. Let M,N be random variables assuming values in the set

(1,2 .... ). We say that (M,N) has a bivariate geometric distribution if M and

N have geometric distributions.

Examples 2.2. (a) Let N be geometric. Then (N,N) is bivariate geometric.

(b) Let M and N be independent geometric random variables, then (M,N) is

bivariate geometric. (c) Let NI, N N be independent geometric random vari-

ables, and put M - (min(NIN 3 )), N - (min(N2,N3)). Then (M,N) has the Esary-

Marshall (1974) bivariate geometric distribution. (d) Let p00 ,pol,pl0 ,plI be

in [0,1] such that (i) Po o+Pol+Plo+Pll - 1, (ii) pol+pll < 1 and Pl0+pll < 1,

and let M,N be random variables assuming values in the set (1,2 .... deter-

mined by:

]Pll [Pol+Pll j m, n > m,

(2.3) P(M > m, N > n)- r
P n[Pl0+Pll , n < m, m,n -1,2 .....
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Then (M,N) has the Block (1977) fundamental bivariate geometric distribution

(see also Block and Paulson (1984)). (e) Let (MI,M2) be bivariate geometric

and let (N1 (J),N 2 (J)), j - 1,2,..., be an iid sequence of random vectors with

bivariate geometric distributions which are independent of (MIM 2 ). Then

M1  M2

I NI(j), I N2 (j)) has a bivariate geometric distribution (cf. Lemma 2.14).
j-1 j-1

In the following remark we show how some of the bivariate geometric dis-

tributions are particular cases of Example 2.2d. Other examples are given in

Remark 4.10.

Remarks 2.4. (a) Let plo-pol-O in equation (2.3). Then we obtain the

distribution introduced in Example 2.2a. (b) Let pl1 - (plI+pI0 )(plI+poI) in

(2.3). Then we obtain the bivariate geometric distribution introduced in

Example 2.2b. (c) Let pll>(pll+plo)(pll+p0 1 ) in (2.3) and let N1 ,N2, N3 be
-I

independent geometric random variables with parameters Pll(Pll+P01 )  ,
Pll(Pll l -I

1, 1 (pll+plo) (pll+pOl), respectively. Put M - (min(Ni,N3))

and N - (min(N2,N3f}. Then (M,N) is stochastically equal to the Esary-

Marshall bivariate geometric distribution given in Example 2.2c.

Next, we present a definition of a bivariate exponential distribution.

Definition 2.5 Let EVE2 be random variables assuming values in (0,-). We say

that (E,E 2) has a bivariate exponential distribution if E1 and E2 have

exponential distributions.

Examples 2.6 (a) Let E be exponential. Then (E,E) is bivariate exponential.

(b) Let EVE2 be independent exponentials. Then (E,E 2 ) has a bivariate

exponential distribution. (c) Let XI, X X be independent exponentials and

put E1 - (min(Xi,X3)), E2 - (min(X2 ,X3)). Then (E,E 2) has the Marshall-Olkin
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(1967) bivariate exponential distribution. (d) Let (M,N) have a bivariate

geometric distribution and let (E1(j),E 2 (j)), j - 1,2,..., be an iid sequence

of random vectors with bivariate exponential distributions, independent of M

M N
and N. Then ( Z E1(j), I E2 (j)) has a bivariate exponential distribution

j-1 j-1

(cf. Lemma 2.14). (e) Let 0 < a < 1. then (E1 ,E2) determined by

P(E1 > x, E2 > y) - exp(-x-y-axy), x,y > 0, has a Gumbel (1960) bivariate

exponential distribution. (f) Let Ial < 1. Then (E,E 2 ) determined by

P(EI < x, E2 < y) - (l-e-x)(l-e'Y)(l+ae'x'Y), x,y > 0, has a bivariate Gumbel

(1960) exponential distribution. (g) Let a > 1. Then (E1,E2 ) determined by

P(E1 > x, > y) - e(x+Y) , x,y > 0, is bivariate exponential. (h) Let

(X,Y) be a random vector with continuous marginal distributions F and G,

respectively. Then the random vector (-ln[1-F(X)], -ln[I-G(Y)]) is bivariate

exponential.

Example 2.6(d) has been used by several researchers to generate bivariate

distributions (for example Arnold (1975), Downton (1970), and Hawkes (1972) to

mention a few). In the following remarks we illustrate how some of the

bivariate exponential distributions are obtained from Example 2.6(d). Other

examples are given in Remark 4.5.

Remarks 2.7. (a) M - N and let E1 (J), E2(j) be independent exponentials,

j - 1,2..... Then we obtain the distribution introduced by Downton (1970).

(b) Let (M,N) be as in Example 2.2(d) and let E1 (J), E2(J) be independent

exponentials, j - 1,2..... Then we obtain the bivariate exponential distribu-

tion introduced by Hawkes (1972) and Paulson (1973). (c) Let (M,N) be as in

Example 2.2(c) and let E1 (J) - E2(j), j - 1,2 ..... Then we obtain the

Marshall-Olkin (1967) distribution given in Example 2.6(c) (for details see

Marshall-Olkin (1967)).

._1
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Next, we present a concept of positive dependence.

Definition 2.8 Let T - (TV ....T n), n - 1,2,..., be a multivariate random vec-

tor. We say that the random variables TV ... Tn are associated if

cov(f(T),g(T)) > 0 for all f and g monotonically nondecreasing in each argu-

ment, such that the expectations exist.

Remarks 2.9. (a) Note that independent random variables are associated

and that nondecreasing functions of associated random variables are associated

(cf. Barlow and Proschan (1975) pp. 30-31). Thus the components of the vector

given in Example 2.2(c) and the components of the vector given in Example

2.6(c) are associated. (b) Let (E,E 2 ) be as in Example 2.6(e), with a > 0,

or as in 2.6(f) with -1 < a < 0. Since P(E > x, E2 > y) < P(EI > x}P{E 2 > y}

for x,y > 0, E1 and E2 are not associated. (c) Let (X,Y) be as in Example

2.6(h). Then -ln[l-F(X)l and -ln[l-G(Y)] are associated if and only if X and

Y are associated (cf. Barlow and Proschan (1975), Proposition 3, p. 30). (d)

The components of the bivariate geometric distribution given in Example 2.2(e)

are associated provided M1 and M29 and N1 (1) and N2 (1) are associated (cf.

Langberg and Stoffer (1985), Lemma 2.10). (e) The components of the bivariate

exponential distribution given in Example 2.6(d) are associated provided that

M and N, and El(1) and E2 (1) are associated by the same reasoning as in Remark

2.9(d).

We are now ready to discuss the various dependence mechanisms used in

obtaining bivariate exponential and geometric distributions. It turns out

that many of these mechanisms are related and we describe these relationships.

st
The notation X - Y will mean that X and Y are random variables (or vectors)

with the same distribution.
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Lemma 2.10. (Random Mixing) (a) Let (XX 2 ) and (Z1, 2 ) be independent random

st st

vectors with exponential marginals where X 1- Z1, X 2 - z2 n XI )

-1 -1l P
(Z1, 2 ) have mean vector (Al P'\2 ). Let (11,12 ) be a bivariate Bernoulli ran-

dom vector independent of (XX 2), (Z1, 2 ). Also, assume

(2.1) (I - 12 -J) pi i"j - 0,1

such that pi. - 1; 1-7r 1 - p1 0 +p 11 < 1, and 1-w2 - p01 +p1 1 < 1. Then a ran-

dom vector given by

st
(2.12) (Y1,Y 2) - (11 zip 1 2 2 ) + (W 1 X1, ir 2 X2)

has a bivariate exponential distribution with the same marginals as (XX 2)

and (Z1, 2 ). (b) Let (MM 2 ) and (K1,K 2) be independent geometric random vec-

tors such that for k - 1,2,..., PIM i - k) - (pi/iri)(l-p,/, i ) and P1K.i - k)

- i(l-p~ , k i - 1,2, with 0 < p1,p2 < 1. Let (11,12 ) be defined by (2.11)

and be independent of (M1 ,M 2), (KK 2 ). Then a random vector given by

st
(2,13) (G1,G)- (I Kit, 1K 2) + (M1,M)

has the same marginals as (K1,K 2).

Proof: Parts (a) and (b) follow easily by computing the marginal characteris-

tic functions. I

Raftery (1985) gives a special case of Lemma 2.10a where Z I Z 2

Lemma 2.14 (Random Summation). Let (X lj'X 2j) [(MljM 2j )], J- 1,2,..., be iid

bivariate exponential [geometric] random vectors with mean vector

Or 1 /A,\I X2 /A2) [(l/l Ir2/p2)]' 0 < xl w2 < 1. Let (N1,N 2) have a bivariate

fttzrt;ze~:t: LO LIU
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geometric distribution with mean vector (r1 i 2 )and be independent of the

(X1 j.,X 2 j) and the (M1j ,M2j). Then random vectors given by

st NI1 N 2

(2.15) (YI,Y 2 ) Xj, E X2j)
j-1 j-1

and

st N1 N2
(2.16) (GI,G2) - ( 7 , 2j)

j-1 j-1

have bivariate exponential and bivariate geometric distributions with mean

vectors (A 1,A 2 ) and (plp 2 1 ), respectively.

Proof: The proof follows easily by computing the marginal characteristic func-

tions.

Finally, we describe how random mixing and random summation are related

Nin the following lemma and corollary. The connection between the two concepts

is a key element in the development of the bivariate exponential and geometric

AR and ARMA models discussed in Sections 3,4, and 5.

Lemma 2.17. Let (XljX 2j) and (M1 jM 2j), j - 1,2,..., be as defined in Lemma

2.14. Let (NI,N2) have the bivariate geometric distribution given by (2.3)

with 1-wI - Pl0+Pll < 1; 1-W2 - P01+Pll < 1, and be independent of the

(X1jX 2j) and (M1jM 2j). Furthermore, let (XI,X2 ), (11,12), (MI,1M2) and

NI  N2

(K 1,K 2 ) be as defined in Lemma 2.10. Then (Y1 ,Y2 ) - (XXl , E X2j) has the

NI  N2

representation (1IZ 1112Z2) + (W1X1,1r2X2), and (GI,G 2) - (E MX - 2j ) has
jt1 J-1(

the representation (I IK 2K 2 MM ,ie



(2.18) E[exp(it Y 1 + it 2 Y2) -~x~tI( i XW 12z2+r2X2

and

(2.19) E[exp(it 1G1 + it 2 G 2) E[exp(it 1(1 1K 1+M 1)+it 2(1 2 K2+M 2 M)

Proof: We prove the lemma for the exponential case, the geometric case being

N1 N2N 1N2

st

wher X enoes te idictorfunction. Clearly (X illX 2 2) - (iX 1 ir 2 X2 ) and

N 1  N2

we are lett hwtat(( 1 X 1 j, X(N2 >1) E X2  has the same distri-
j-2 J-2 n

bution as (1 1 zI Z ).2 Note that

N N2

(2.20) ~j- l(( 1 j - xl, X(N 2>1) Z X2. <5 x2)

1 1 N1 N2
- X P(X(N I>1) E X <j5x1 , X(N 2>1).Z X2 J <x 2 '

i 1-0 i 2-0 J-2 lj--2 ~

X(N 1>1) - il, X(N 2>1) Y'

Now, for (i1,i 2) (1,1) in (2.20) we have

N 1  N2

(2.21) P( I X <j! x1, E X 2j:<2 N 1>1, N 2>1)
J-2 j J-2 2
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x n1- x ij X1 <X 1 , E j: 2 < ( lnl1 2-n2).
n12n 2-2 j-2 j-2 2 2 PN-1

But P(N 1-n1 , N 2-n 2} P(N 1-n 1 -1, N 2-n 2-1) P(N 1>1, N 2 >1), so that (2.21) is

equal to

N 1N2

P(Z xi X <x1 j- x 2j :x2 (I 1 1 12-1)

-( 1' Z < x 2)P 1-,1 -)

For (i11i 2) (1,0) in (2.20) we have

N1
*(2.22) P(X Ix 1 .<5 X 0 <x 2'N1>1, N2-i)

j-2 -1' -2 1 '2

CD n
- x P( I x <: x 1)P(N 1-n1N2-1).

*n-2 j-2

It is easy to check via (2.3), that P(N1-nI N 2-1) -l~o'o)Popl n-2

-P(N 1-n-1)P(N 1>1,N 2 -1), so that (2.22) is equal to

N 1

j-1 l j - 1 )P(1 1 - 1112 - 0)

-P(Z I < xl)P(11 - 1112 - 0).

The case when (i1 ,i 2) (0,1) and (i1,i2) (0,0) in (2.20) follow similarly.

IIT
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3. The General BEAR(m) and BGAR(m) Models

In this section we construct two classes of AR sequences of bivariate

random vectors. In each class the sequences are labeled by the parameter m.

We denote the first class of sequences by (X(m,n) - (X1 (m,n),X 2 (m,n))',

n - 0,1 .... ) and the second class of sequences by (G(m,n)

- (G1(m,n),G 2 (m,n))',n - 0,1,...) , m - 1,2 ..... We show that the random vec-

tors X(m,n) and G(m,n) have bivariate exponential and geometric distributions,

respectively, with mean vectors that do not depend on m or n. Then we discuss

the association property for any finite number of random variables belonging

to one of the two AR classes. We conclude this section by discussing the

autocorrelation structure of the two classes of sequences. Throughout, n

ranges over the nonnegative integers and I assumes the values 1 or 2. For

notation simplicity we suppress the parameter m since it is fixed throughout

the section.

First we construct the class of BEAR(m) sequences. Some notation is

needed.

Notation 3.1. Let AlA 2 G (0,), let r 1(n),r 2 (n) G (0,1), and let B(n) be a

2x2 diagonal matrix with B(n) - diaglr l(n),ir2 (n)). Further let

E'(n) - (El(n),E 2 (n)) be a sequence of independent bivariate exponential ran-

dom vectors with mean vector (A 1 A- )', let ej be a m-dimensional vector with

component j equal to 1 and the other components equal to 0,j - l .... m, and

let 0 denote the m-dimensional zero vector. Finally let I'(n) -

(11 (n,l), ...11 (n,m), 12 (n,l),... ,12 (n,m)) be a sequence of 2m-dimensional

independent random vectors with components assuming values 1 or 0 independent

of all E(n), and let A(n,q) be a 2x2 random diagonal matrix with A(n,q) -

diag(1l(n,q),I 2 (n,q)), q -
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We assume that for I - 1,2,

m
(3.2) E P{(l I(n,l),..... I (n,m)) - e.) - l-irI(n),

Ji1

and that

(3.3) P((1 I(n,l),..... I (n,m)) 7 I' - (n).

We define the BEAR(m) sequences as follows.

E(n) n 0,...,m-1
(3.4) X(n) -

m
A(n,q)X(n-q) + B(n)E(n) n - m,m+l,....

q-1

Next we construct the class of BGAR(m) sequences. Some notation is needed.

Notation 3.5. Let pl,p 2,"l(n),a2 (n) G (0,1) such that p, < 1 (n), let N'(n) -

(N1 (n),N 2 (n)) be a sequence of independent bivariate geometric random vectors

with mean vectors (a1 (n)p1 , a2 (n)p2 1), respectively, and let

M'(n) - (M1 (n),M 2 (n)) be a sequence of independent bivariate geometric random

-1 -l 1vectors with a common mean vector (pI ,p2 ) independent of all N(n). Further

let J'(n) - (Jl(n,l),...,J I(n,m), J2 (n,l),...,J 2 (n,m)) be a sequence of 2m-

dimensional independent random vectors with components assuming the values 1

or 0, independent of all N(n) and M(n). Let C(n,q) be a 2x2 random diagonal

matrix with C(n,q) - diag(J1 (n,q),J 2 (n,q)), q - 1'....

We assume that for I - 1,2,

m
(3.6) E P((J (n,l), ...,J (n,m)) - ej) - l-=2 (n)

J-1i
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and that

(3.7) P(J (n,l),...,J (n,m)) - 0') - aI(n).

We define the BGAR(m) sequences as follows.

M(n) n 0,...,m-1
(3.8) 2(n) - m

I C(n,q)G(n-q) + N(n) n - m,m+l .....
q-1

Next, we show that X(n) and G(n) have bivariate exponential and geometric

distributions, respectively.

Lemma 3.9. For n - 0,1,..., X(n) [G(n)] has a bivariate exponential

-1 -1 -1 -I
[geometric] distribution with mean vector (A1 ,A2 ) [(pl ,p2 )].

Proof: We prove the results of the lemma by an induction argument on n. For n

- 0,...,m-l, the results of the lemma follow by the defin'tion of X(n) and of

G(n). Let us assume that the results of the lemma hold for all nonnegative

integers that are less than or equal to r, r > m-l, and prove that the results

of the lemma hold for r+l.

Let E' - (E,E 2 ) [L - (MI,M2)] be a bivariate exponential [geometric] random

vector with mean vector (A1 ,1 2
) [1lp 2 1)] independent of all E(n)

(1N(n) and M(n)]. Then, by the induction assumption, we have for 1 - 1,2 that

EI + X I(r+l)EI(r+l), w.p. l-m (r+l)

XI(r+l) " x [j(r+l)EI(r+l) w.p. 7(r+l)

and that

IliaI
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st MI + N/(r+l), w.p. 1-aI(r+l)

I N.2 (r+l) ,w.p. a

where w.p. stands for 'with probability'. It is easy to check that XI(r+l)

[GI(r+l)] has an exponential [geometric] distribution with mean A 2  [p1 1.

Consequently the results of the lemma follow. II

Now we consider the association of any finite collection of the X2 (n)'s

and of the GI(n)'s.

Lemma 3.10. Let us assume that for j - 0,...,m-l, the random variables Xl(J) ,

X2 (j) in (3.4) are associated; let n1 < n2 <...< nr, be nonnegative integers

and let 21, ... 9.r G (1,2), r - 1,2..... Then the random variables X (n), q
q

- 1,. .. r, are associated.

Proof: Let T2j - X2 (J-1) and let T2jI - XI(J-1), j - 1,2 ..... To prove the

result of the lemma it suffices, by Barlow-Proschan (1981, P1 , p. 30), to show

that

(3.11) the random variables T1 .... Tr are associated for all r-l,2,....

We prove (3.11) by an induction argument on r. For r < 2m (3.11) follows by

the lemma assumption and by Barlow-Proschan (1981, P4' p. 30). Let us assume

that (3.11) holds for r, r > 2m and prove that (3.11) holds for r+l.

By (3.4) the conditional random variable Tr+I Ti ..... Tr is stochastically non-

decreasing in TV ... Tr ' Thus by Barlow-Proschan (1981, Lemma 4.8, p. 147),

there is an r+l argument function h, nondecreasing in each argument, and a

random variable U independent of TV ....T r , such that (TI .... T r+l)

st
(TV .... Tr I h(U,T ..... Tr. By Barlow-Proschan (1981, P2' p. 30), U is
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associated and hence by Barlow-Proschan (1981, P3 p. 30) the random variables

1',TlP..I are associated. Consequently by Barlow-Proschan (1981, P3, p.

30), (Tit,...IT r 1 ) are associated. I

Using a similar proof we obtain the following.

Lemma 3.12. Let us assume that for j - 0,...,m-1, the random variablesG

G2(Q) in (3.8) are associated. Let n1 < n2 < ... < nrI and 21 . ,A 1 r-

1,2,..., be as in Lemma 3.10. Then the random variables G(n ),q -1,.r

are associated.

Finally, for each class of sequences, we compute the autocorrelation

functions in the case when the marginal processes are stationary.

For the exponential models, put r I(n) - w., all n;1 - 1,2, and let

such that

m
Mi 02 (q)>0O, and (ii) Z 0 2(q) - l-1, I - 1,2,

q-1

as specified in equation (3.2). Define

PX Mk - Corr(X I(n),X I(n+k)), 1-1,2; n - m,m+l,... .;k-1,2,....

Then

(3.13) pXI(k) - 0 MP (kl)+ I (2)p xI (k-2)+. ..+Ok~mP (k-in)

wihVar(X I(n)) - -l2 1 - 1,2.

For the geometric models, put a I(n) -a., all n; 1- 1,2, and suppose thatI

%S
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P(j (n,q) - 1) - -y(q), 1- 1,2;q - 1....m

such that

m
(i) 7,(q) O, and (ii) 2 -y(q)-l-a, I - 1,2,

q-1

as specified in equation (3.6). Define

PG (k) - Corr(GI(n),GI(n+k)), 2-l,2;n-m,m+l,...;k-l,2.....

Then

(3.14) G (k) - 72( 1)G (k-l)+17(
2 )PG (k-2)+. . .+7(m)PG (k-m)

I I 1 -0

with Var{G (n)) - (l-pl)p 2 , 1 -1,2.

Evidently, the marginal correlation structures of the bivariate exponen-

tial and geometric sequences, as given in (3.13) and (3.14), respectively, are

similar to that of the Gaussian AR(m) process. We note that, in general, even

when the marginal processes are stationary, the joint process is not station-

ary. This is easily seen, for example, by letting m-l in (3.4) with

XI (n) - x, all n;1 - 1,2; choosing E(n) to be an iid sequence of random vec-

tors where E1 (n) and E2 (n) are iid exponential random variables for all n, and

letting 1(n) be an iid sequence of random vectors for which P(1I(n)-l,1 2(n)-11

"Pl - (1I )(1-r 2 ). A simple computation shows that Cov(X1(1),X 2(l))

0 Cov(X1 (2),X 2 (2)) in this example.

In the next section, we develop models in which the joint processes are

also stationary.

m
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4. The Stationary BEAR(l) and BGAR(1) Models

In this section we consider special cases of the BEAR(m) and BGAR(m)

models given in Section 3 in which the joint processes are stationary.

Throughout this section we put m - 1, assume that r I(n) and aI(n) do not vary

with n, and put more structure on the E(n), M(n), and N(n) sequences. We show

that for these models, the bivariate distributions of X(n) and of G(n) have a

form of the type studied by Arnold (1975). By selecting the E(n), M(n), and

N(n) sequences, as defined in Section 3, appropriately, we can obtain well

known bivariate distributions. For a stationary BEAR(l) model we obtain the

(i) Marshall-Olkin (1967), (ii) Downton (1970), (iii) Hawkes (1972), and (iv)

Paulson (1973) bivariate exponential distributions. For a stationary BGAR(l)

model we obtain the (i) Esary-Marshall (1973), (ii) Hawkes (1972), and (iii)

Paulson-Uppuluri (1972) bivariate geometric distributions. We conclude this

section by computing the autocovariance matrices for each model.

First we present the exponential case. Some notation and assumptions are

needed.

Let m - 1 and let us assume that (11 (n,l), 12 (n,l)), given in (3.1), is an

i.i.d. sequence of bivariate random vectors.

For simplicity of notation, denote rI(n) by x., for I - 1,2, and let

Pij - P(( 1I(nl),I 2 (nl)) - (i,j)}, i,j - 0,1. Note that by (3.2) and (3.3)

(4.1) P10 + P  " -I, P0 1 + pl 16

Further let (N1 ,N2 ) be a bivariate geometric random vector with parameters

PiJ' i,j - 0,1 given by (2.3), and let E(r), r - 1 , ± 2,..., be an i.i.d.-1 -I
sequence of bivariate exponential random vectors with mean vector (A 1 -,A2

%~~~~ % .. *4



1, v'vvv iW9Vv VIE VWW5WR Vw h6 1f* V7 M- RVN J V.5 IraRF~f J~b VW W Y ww ' -1 .wrv.WNrlVYW 'rY~UIV

-20

independent of (N1,N ) and all (I (n,l), I (n,l)). Note that by Lemma 2.14
N2 2

I r n1E 1(-J), I r -) is a bivariate exponential random vector with

mean vector (A 1 ,A - ). We assume that

1  2

(4.2) E(0) Z w1E1 (-j), Y 2-),

Define A(n) to be the 2x2 diagonal random matrix A(n) - diag(I (n,l), I (n,l))

and B to be the 2x2 diagonal matrix B - diagr 1 ,ir 2) The stationary BEAR(1)

model is defined as follows.

(E(0) n-0
(4.3) XC(n) - lA(n)x(n..l) + BE(n) n-1,2,..

We now state and prove a characterization of X(n).

Lemma 4.4 Let X(n) be defined by (4.3). Then for n -01..

sts

XL(n) - ECO)
where E(O) is given in (4.2).

Proof: We prove the result of the lemma by an induction argument on n. By

definition the result of the lemma holds for n - 0. Let us assume that the

result of the lemma holds for n, n > 0.

Note that

N-1  2-

E'(0 - 1 > 1 1 (-IE )E(- j)(N2>) -r21E2-)

J-2 1j-2

10 111
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+ (7r1E1 (-l), ~2 2E2(-I)),

where X(') denotes the indicator function, and that the two summands are

independent random vectors.

Now by Lemma 2.17, (4.1) and the induction assumption

NI  N2 .
N1  2

(x(NI1>1) 7r 1 E1('J),X(N 2>1) 7r2 Z E 2(-J))

j-2 j-2

st N1 2
- (II(n,l) I E1 (-J),1 2 (n,l)wr2  E2 (-J))

j-1 j-1

st

- (II(n,l)X 1 (n),I 2(n,l)X2 (n)).

Further by the definition of E(r)

st

(nEI(-), 2E2 (-1)) - (iE (n), 7r2E2(n))
•

Since the random vectors (w1EI(n), w 2E2 (n)) and (11(n,l)XI(n),1 2 (n,l)X2 (n))

are independent we have by (3.4) that

NI N2 st

? 1 EI('J), w2 X E2 (-J)) - (xIEI(n), 7f2E2(n))i-i i-i

+ (II(n,l)X1 (n), 12 (n,l)X2(n)) - X'(n+l).

Consequently the result of the lemma follows. II

In the following remark we show that many interesting bivariate distributions

are possible in Lemma 4.4. See Block (1977) for further details.

2
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Remark 4.5. (a) Let E be an exponential random variable with mean 0,

0 < 0 < (A 1 +A 2) ~let ir - A 1 0 ?r 2 - A 2 0 and let E(l) -O ,7 )

(i) If Poo - 0, P'ol - 7rl P10 ' i 2 and p11 - 1 - (Xl+A 2)0, then the resulting

X(n) has independent components.

(ii Lt b~b2' 3 benonnegative real numbers such that A -b I+ b 12and

A 2 - b2 +b 12  If po - Ob1  p - p0  -b and Pi -0bb +b
2 2 2' 10 b2  OI 1 ll -Gbsb2  12)

then the resulting X(n) has a Marshall-Olkin (1967) bivariate exponential dis-

tribution.

(b) Let E(l) have independent components:

Mi If pill - 7(l+-Y) 1, 0 < -y, p10 - p01 - 0, and p00 - (1+-y)- then the

resulting X(n) has the Downton (1970) bivariate exponential distribution.

(ii) With different requirements on p..j i~j - 0,1, the resulting X (n) has the

Hawkes (1972) and the Paulson (1973) bivariate exponential distribution. See

Block (1977) for details.

Next we present the geometric case. Some notation and assumptions are

needed.

Let m - 1 and let us assume that (J 1(n,l),J 2(n,l)), given in (3.5), is an

i.i.d. sequence of bivariate random vectors.

For simplicity of notation denote a I(n) by al I - 1,2, and let p j

P~ 1 (n,l),J 2(n,l)) - (ij)), i~j - 0,1. Note that by (3.6) and (3.7)

(4.6) Po+ 1- 1-a ,Pt i - 1-a 2

Further let (QQ be a bivariate geometric random vector with parameters
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pij, i,j - 0,1, given by (2.3). Let p1,p2 G (0,1) such that p, < a,, and let

N(r), r - ±1,±2,..., be an i.i.d. sequence of bivariate geometric random vec-

tors with mean vector (a pi ,a2P2
I ) independent of (Q1,Q2) and all (J1 (n,l),

J2 (n,l)). Note that by Lemma 2.14 ( NI(-j), X N2 (-j)) is a bivariate
j-1 j-1

geometric random vector with mean vector (p 1'p 2 ). We assume that

QI Q2,'

(4.7) M(0) - ( NI(-j), I N2(-)),.
j-l J-1

Define C(n) to be the 2x2 diagonal random matrix C(n) - diag(Jl(n,l),J2 (n,l)).

The stationary BGAR(l) model is defined as follows.

M(0) n-0
(4.8) 2(n) - LC(n)G(n-l) + N(n) n-1,2 ,. . ...

We now state and prove a characterization of G(n).

Lemma 4.9. Let G(n) be defined by (4.8). Then for n - 0,1,...,

St
G(n) - M(0)

where M(0) is given in (4.7).

Proof: We prove the result of this lemma by using a similar argument to the

one used in the proof of Lemma 4.4. II

In the following remark we show that many interesting bivariate distributions

are possible in Lemma 4.9. See Block (1977) for further details.

Remark 4.10. (a) Let a1 - Pl, 2 - P2, thus N(l) - (1,1):

(i) Let 81,82,a12 G (0,1) and let 1-a I- 0112' 1-a 2 - 2 0 12 Further let

1' 2'12 1 1 12 2 2l21v

~~~~~ a, V'Nw% *
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I'll 01 02 612' P10 1 l(1l0 2 )0l2' p0 1 - (1l0 1)0 2 0l2 and p00 -= l-plpo

Then the resulting 2(n) has the Esary-M4arshall (1973) bivariate geometric dis-

tribution in the narrow Sense.

(ii) If p 11 - (l-a 1)(l-a 2), p0 1 - o 2 (l-a2), p10 - (l-a 1)a 2 and p0 0 - ala2 then

the resulting g(n) has independent components.

(iii) With no special requirements on the p..j i~j - 0,1, the resulting 2(n)

has the Esary-Marshall (1973) bivariate geometric distribution in the wide

sense, or equivalently, the bivariate geometric distribution due to Hawkes

(1972).

(b) If N(l) has independent components, the resulting g(n) has the Paulson and

Uppuluri (1972) distribution.

Finally, we give the autocovariance matrices for the 3tationary BEAR(l)

and BGAR(l) models. Let Ex- Var{X(n)) be the variance-covariance matrix of

X (n), and XG- Var(G(n)) be the variance-covariance matrix of 0(n). Note that

Xand ICare independent of n by Lemmas 4.4 and 4.9, respectively. Define

r X(k) - Cov(X(n+k),X((n)), k - 0,1,2,..., and r G(k) - CovtG(n+k),G(n)), k-

0,1,2,..., and note that r X(0) - XXand r G(0) - IG. In view of (4.3) and

(4.8), it is easy to see that r X(k) - A X (k-1) and r G(k) - cr G(k-1), k -

1,2,..., respectively,'where A and C are the 2x2 diagonal matrices defined by

A - diag(l-r 1 ,l-lr 2 ) and C - diagtl-a1 1-a 2 ). Hence, for the stationary

BEAR(l) model we have

(4.11) r (k) - A k Zx -k)-r() k-0,1,2, . .Xx rX~ rXk)

and for the stationary BGAR(l) model we have

(4.12) rG(k) - C kX; r (-k) - r0(k), k-0,1,2,....

G IG G -GN
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5. The BEARMA(ml,m2I and BGARMA(ml,m2 Models

Using the results of Section 3 and the results of Langberg-Stoffer (1985)

for MA sequences, we construct four classes of ARMA sequences of bivariate

random vectors. In each class the sequences are labeled by the parameters

ml,m2. We denote the first two classes of sequences by (Z'(J,ml,m2,n) -

(Zl(J,mlm 2 ,n),Z 2 (J,ml,m2,n)), n - 0,1 .... ), j - 1,2, and the other two

classes of sequences by (L'(j,ml,m2,n) - (Ll(j,ml,m2,n),L 2 (J,ml,m2,n)),

n - 0,1 .... ), j - 1,2. We show that the random vector Z'(j,ml,m 2,n)

[L'(J,ml,m 2,n)] has a bivariate exponential [geometric] distribution with a

mean vector that does not depend on J,ml,m2, or n. Then we discuss the asso-

ciation property of any finite number of random variables belonging to one of

the four ARMA classes. For notational simplicity we suppress the parameters

m and m2 since they are fixed throughout this section.

First we construct the two classes of BEARMA(ml,m 2 ) sequences. Some

notation is needed.

Notation 5.1. Let X(n) be a BEAR(ml) sequence given by (3.4), and let Y(n) be
an m 2-dependent BEMA sequence as given by Langberg-Stoffer (1985, p. 7),

independent of the X(n) sequence. Further let V'(n) - (V1(n),V 2 (n)) be a

sequence of independent bivariate random vectors with components assuming the

values 1 or 0, independent of the X(n) and Y(n) sequences and let

P(VI(n) - 1) - rI(n), 0 < w0(n) < 1, 1 - 1,2.

We define the two BEARMA(ml,m2 ) sequences as follows.

(5.2) (Z1 (l,n),Z 2 (l,n)) - ((l-w 1 (n))Y 1 (n),(l-ir2 (n))Y 2 (n))

+ (Vl(n)Xl(n),V2 (n)X2 (n))

2 2

N N N' f =p ~ . -"



26 -

(5.3) (Zl(2,n),Z 2 (2,n)) - ((l-ir2 (n))X 2 (n),(l-ir2 (n))X 2 (n))

+ (V1 (n)Y1 (n),V 2 (n)Y2 (n)).

Now we construct the two classes of BGARMA(mlsm 2 ) sequences. Some notation is

needed.

* Notation 5.4. Let 61,62,i,,2 G (0,1) such that 6, 6, 1 - 1,2, and let

G(l,n) [G(2,n)] be a BGAR(m sequence with mean vector (01 ,6 1 ' 262 1

[ 121 given by (3.8). Further let H(l,n) [H(2,n)] be an2-dependent

BGMA sequence with mean vector (611 , ) [(016
1 ',262)] given by Langberg-

Stoffer (1985, p. 8), independent of all G(l,n) [G(2,n)]. Finally let U(n) -

(U1 (n),U 2 (n)) be an i.i.d. sequence of bivariate random vectors with com-

ponents assuming the values 1 or 0 independent of all the previous random vec-

tors such that P(U (n) - 1) - 1-P I - 1,2.

We define the two BGARMA(ml,m2 ) sequences as follows.

(5.5) (L1 (l,n),L 2(l,n)) - (G1(l,n),G 2 (l,n)

+ (U1(n)H1 (l,n),U 2(n)H2(l,n)),

(5.6) (L1 (2,n),L 2(2,n)) - (H1 (2,n),H 2 (2,n))

+ (U1(n)G1 (2,n),U 2 (n)G2(2,n)).

Next we show that Z(j,n) and L(j,n) have bivariate exponential and

geometric distributions, respectively.

Lemma 5.7. For j - 1,2, and n - 0,1,..., Z(J,n) [L(j,n)] has a bivariate

-1 -1 - -I
exponential [geometric] distribution with mean vector (A1 , A2 ) [(6 162 M.
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Proof: By Lemma 3.9 X(n) [G(j,n)] has a bivariate exponential [geometric] dis-

tribution. By Langberg-Stoffer (1985, Corollary 3.8), Y(n) [H(j,n)] has a

bivariate exponential [geometric] distribution. Consequently the result of

the lemma follow by the four definitions and by Lemma 2.10. Ii

Now we consider the association property of any finite number of random vari-

ables belonging to one of the four ARMA classes. We assume that the assump-

tions of Langberg-Stoffer (1985), Lemmas 3.12 and 3.13) are satisfied. We

need the following lemma.

Lemma 5.8. Let SI .... Sr T ... ,Tr be nonnegative random variables. Let us

assume that SI ... Sr and TV ... ITr are associated, and that the random vec-

tors (SI .... S )and (TI .... T ) are independent. Then the random variables
rr

S TI ... ,SrTr are associated.

Proof: Let T - (Ti ... Tr), let W - (SITI ..... S T r), and let f,g be two nonne-

gative functions each with r arguments, nondecreasing in each argument.

The components of the conditional random vector WIT are nondecreasing func-

tions of the associated random variables SI, ... Sr. Thus, by Barlow-Proschan

(1981, P3' p. 30), the components of WIT are associated. Hence,

E(cov(f(W),g(W))fTl > 0.

E(f(W)IT) and E(g(W)IT) are two nondecreasing functions of the associated ran-

dom variables T I .... Tr . Thus, by Barlow-Proschan (1981, P3' p. 30), the two

random variables E(f(W)IT) and E(g(W)IT) are associated. Hence

cov(E(f(W)IT), E(g(W)1T)) > 0.

Note that
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,0 cov(f(W),g(W)) - E(cov(f(W),g(W))jT)

+ cov(Etf(W)IT) Eg(W)1T)).

Consequently the result of the lemma follows.

Lemma 5.9. Let us assume that for n - 0,1,..., V1 (n) and V2 (n) are associ-

ated. Let n1 < n2 <...< n, and .,... ,r' r - 1,2,..., be as in Lemma 3.10.

Then the ZI (l,nq) [Z q (2,nq q - 1,...,r are associated.
q q

Proof: By Lemma 3.10, X (n q), q - 1,..., r are associated. By Langberg-

qd qq

*Stoffer (1985, Lemma 3.12), the random variables Y (nq), q - 1,.... ,r are

q

associated. By our assumption and by Barlow-Proschan (1981, P4' p. 30),

V (n ), q - 1,...,r are associated.
q

* q

Thus, by Lemma 4.8, VA (nq) X1 (nq), q - 1,... r, and VA (nq) Y1 (nq), q -

q q q q

1,.... r, are associated. Now, Barlow-Proschan (1981, P4, p. 30), the random

variables (XA (nq), VA (nq)YA (nq), q-l,...,r) and the random variables
I q q Iqq

• (Y (nq), VAI (nq)X2 (n q), q-l,... ,r) are associated. Consequently the results

of the lemma follow by (5.2), (5.3) and by Barlow-Proschan (1981, P3, p. 30).

Using a similar argument we obtain the following.

Lemma 5.10. Let us assume that U1 (0), U2 (0) are associated; let

n1 < n2 <...< nr, and AI .... r, r - 1,2,..., be as in Lemma 3.10. Then the

LA (l,n ) [L (2,n q - I....r, are associated.
q q LA (Iq)]I
q q

Langberg-Stoffer (1985, Section 4) present inequalities and probability
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bounds for the bivariate point processes related to the bivariate exponential

or geometric MA sequences. We note that all the results given by Langberg-

Stoffer (1985, Section 4) hold for the bivariate point processes related to

the bivariate exponential or geometric AR sequences, given in Sections 3 and

4, and to the ARMA sequences given in this section, provided that they are

associated.

h

~1
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