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METHODS FOR REDUCING COMPUTATIONAL COSTS OF TYPICAL

FINITE ELEMENT UNSTEADY HYDRODYNAMIC MODELS

PART I: INTRODUCTION

I. In general, either the finite difference method or the finite ele-

ment method are employed to obtain numerical solutions of the partial differ-

ential equations governing the motion of bodies of water. Historically, the

majority of numerical hydrodynamic models have employed the finite difference

method. The major reason for this is probably because the replacement of de-

rivatives by divided differences is much easier for the typical engineer to

understand than basic ideas in variational calculus, upon which the finite

element method is based. However, as will be demonstrated, the two methods

share much common ground. In fact, most computational methods can be derived

from the method of weighted residuals, with the major difference in the

methods determined by the selection of the weighting function to which the

solution error is made orthogonal. Undoubtedly, the major reason the finite

element method came to be applied in numerical hydrodynamic modeling is be-

cause of its ability to resolve complex geometry in the computational domain.

In particular, the ability to resolve winding navigation channels in estuarine

sedimentation studies is virtually a necessity. However, despite its .ability

to resolve complex geometry in the physical domain, the finite element method

suffers from the fact that it is relatively more complicated and expensive to

program. In addition, most existing hydrodynamic finite element models appear

to require significantly more computational effort per time-step. However,

this may be attributed to the techniques commonly employed by finite element

modelers in solving the resulting matrix equation system rather than the

method itself.

2. A good example of typical finite element hydrodynamic models is the

set of models developed by Resource Management Associates ( M) for the U.S.

Army Corps of Engineers Waterways Experiment Station's Hydraulics Laboratory.

Codes for laterally averaged water bodies (RMA-7), vertically averaged estu-

aries and bays (RMA-2) and completely three-dimensional (RMA-10) have been

developed. These codes are rather general in that non-structured grids that

can be composed of combinations of element types, e.g. quadrilaterals,
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triangles, etc. are employed. Since the governing equations are not linear-

ized, Newton iteration is required to solve the resulting set of nonlinear

algebraic equations. At each iteration of the Newton scheme a set of linear

equations is solved using a form of Gaussian elimination called a frontal

solver.

3. Such models can be efficiently applied in studies where steady state

solutions are desired. However, even two-dimensional computations can become

costly for relatively long term (many tidal cycles) simulations on relatively

modest grids. Long term three dimensional simulations are virtually impos-

sible from au economic standpoint with such solution schemes.

4. The major purpose of this study was to suggest ideas for reducing

the computational time of typical finite element hydrodynamic models. The

approach taken has been to consider "quick fix" ideas, e.g. implementation of

explicit time integration with a diagonalized mass matrix, as well as, a more

"permanent fix" involving a tensor product implicit solution programmed for

parallel processing. The comprehensive permanent solution suggested has bene-

fitted from the substantial progress made in aerodynamics computational fluid

dynamics research over the past decade. The algorithm construction presented

represents a step forward in top-down CFD algorithm/code design from theory

rrough to parallel processing organization.

5. Before presenting ideas for increasing the computational efficiency

of typical finite element hydrodynamic models, features of both the finite

difference and finite element methods are discussed. This discussion focuses

on the common basis of the two computational methods as well as reasons why

the finite element method can be so costly.
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PART II: SOLUTION METHODS

Types of Numerical/Free-Surface Hydrodynamic Models

6. Numerical hydrodynamic models can differ widely, depending upon such

things as the solution technique applied to the governing differential equa-

tions representing the physical processes, the assumptions made in the deriva-

tion of the governing equations, whether the phenomena are steady or time-

varying, and the spatial dimensionality considered.

7. If the complete three-dimensional (3-D) equations of motion are

integrated over a cross section, one-dimensional (l-D) models result. Such

models are commonly applied in computing river hydrodynamics, e.g., the com-

putation of floods. Averaging over either the depth or the width results in

two-dimensional (2-T)) models. Vertically averaged models are applicable for

the computation of nearly horizontal flow in relatively shallow and well-mixed

- bodies of water, whereas laterally averaged models are appropriate when deal-

ing with relatively narrow and deep bodies of water experiencing vertical

stratitication of the water density.

8. Even though a free surface exists on open bodies of water, some

modelers have treated the surface as a rigid lid when very little motion of

the free surface occurs. The surface then becomes in essence a solid boundary

-tnd the normal component of the velocity must be zero. In addition, the pres-

sure can no longer be prescribed at the surface but rather must be computed.

The pressure boundary condition then takes the form of a derivative boundary
a condition, i.e., a Neumman condition as opposed to a Dirichlet condition in

the truc free-surface case. All hydrodynamic modeling discussed in this

report treats the surface as being free to move so that free-surface waves,

e.g., tidal waves in estuaries, are free to be computed.

9. The governing hydrodynamic equations are nonlinear partial differ-

ential equations, which in a strict mathematical sense are classified as being

of the parabolic type. However, outside the boundary layer the equations ex-

hibit a strong hyperbolic or wave character due to the dominance of the con-

vective terms and thus are often considered as being of the hyperbolic type.

In any case, because of the nonlinearity, analytical solutions do not gener-

ally exist and one must resort to numerical methods to obtain an approximation

of the continuous solution of the differential equations. Such methods
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co, ;it primarily of the use of either finite differences or fitite elements.

Finite Difference Method

10. Ili the finite difference method, the domain of the independent

variables is it.placed by a finite set of points, referred to as lij or mesh

points, whicl, ire structured, i.e., there are ordered directions ill the mesh.

One then seeks to determine approximate values for the desired solutions at

these points. The values at the mesh points are required to satisfy differ-

ence equations that, can be derived in several ways, although they are usually

obtained by replacing partial derivatives by difference quotients. Three

approaches are presented below.

l'olynomial fitting

11. With the polynomial approach the dependent variables are repre-

sented by a polynomial function with the coefficients determined by the method

ot (ollocation, i.e., evaluation of the polynomial at the net points. The

polynomial i3 then analytically differentiated to yield differenc expressions

for various order derivatives.

12. Consider the representation in one dimension of a dependent vari-

able as a quadritic, i.e.

f(x) = a + bx + cx (1)

Evaluating f(x) at the mesh points shown below

Ax Axi-I i i+1

= a - bAx + cAX2  (2)
fi-I

..

f i+l 'a - bAx + CAx 2  (4)

6
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from which

a = f1  (5)

b fi+l - fi-I (6)
2Ax )

fi+1 + fi-I 2f(i
2Ax2

Now, differentiating Equation (1) and substituting the expressions from Equa-

tions (5) - (7) yields the centered difference expressions below for first and

second order derivatives.

f (8)

( xxi 2Ax

2 f +f -2f
f i+1 i_1 (9)

f)2 1 Ax2

13. As will be seen later, the idea of representing the dependent vari-

ables by piecewise continuous polynomials is basic to the finite element

method. However, unlike the approach taken above, the method of collocation

is not employed.

Integral method

14. In the integral method, the governing equation is approximately

satisfied in an integral rather than a differential sense. Consider the

ID equation

,0 3€( 0u) ( 1)I.O I
with an integration over the spatial domain from (x - Ax/2) to (x + Ax/2)

7
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x+Ax /2 x x-x/ 2
"0 dx - - 3(0u) dx
fx-Ax/2 J x-Ax/2 'x

- (U)x+,x/2 - (01)xLxl2 (11

Bv the mean-value theorem of calculus

f x+Ax/2
J+A/20 dx (x) A x (1"3

x-Ax/2

where x lies between (x-Ax/2) and (x+Ax/2). Using a mid point evaluation

9yields

(0u) i+1/2 - (0u)f1/2' v -0 .= (13)
Ax

which can be solved for 0 using some time integration scheme. Note that

on:e again the replacement of the spatial derivative is the equivalent of a

centered difference expression.

15. The idea of satisfying the differential equation in an integral

sense rather than a differential sense is also basic to the finite element

method. However, in the finite element method, rather than setting the inte-

* .%gral of the equation over the spatial domain equal to zero, the integral of

the solution error multiplied by a non constant weighting function is set to

zero.

Taylor series expansion

16. The most common approach taken in the finite difference method is

to use Taylor series expansions to derive difference quotients that replace

the partial derivatives in the governing equations. For example, f(x)

evaluated at x = i+1 would be written

f i+1 = f + af Ax + 2 f Ax2 +
7x x 2i 2

8 %
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and thus

_ =fi~ - f
3f f i+1 f + O(Ax) (15)

ax Ax

where O(Ax) refers to additional terms with factors of size Ax Equation 15

is referred to as a forward difference approximation to the first derivative

of f(x). Expanding a Taylor series backwards to x=i-I yields a backwards

difference expression. A subtraction of the forward and backward e\pression

yields the centered difference expression presented in Equation 8. Expres-

sions for higher order derivatives of various degrees of accuracy can be

derived in a similar fashion. The finite difference approximation of the dif-

ferential equation is then obtained by replacing the partial derivatives by

the difference quotients. Roache (1972) presents an excellent discussion of

the use of the finite difference method in solving partial differential

equations.

17. All of these approaches to deriving a finite difference recursive

algorithm can lead to the same expressions under certain conditions- However,

this is not true in general. For example, beyond the second order polynomial

the expressions obtained are not identical to those from higher order Taylor

series expansions. Similar results will be demonstrated for the finite ele-

ment method. For example, the finite element method always yields tht' appro-

priate order-accurate finite difference recursion relation on a uniform

discretization in one dimension if the governing differential equation is

linear and linear polynomials are employed. This is not normally true for

nonlinear equations and/or nonuniform discretizations and/or multidimensional

problems.

Finite Element Method

18. In the finite element approach, the field is divided into smaller

regions of convenient shapes, such as triangles or quadrilaterals, and the

solution is approximated on each element by interpolation from nodal values on

the element. Using a variational principle for Sturm-Liouville type equa-

tions, or a weighted-residual method for general equations, the partial dif-

ferential equations are then transformed into finite element equations

q9



governing each isolated element. These local equations are then collected to

form a global system of ordinary differential (in time), or algebraic, equ ,-

tio.s including a proper accounting of boundary conditions. The nodal vaije;

of the dependent variables are then determined from solution of tli.i; matri:.

equation system. Baker (1983) introduces the method in the iollowing m:inrer

"the finite-element algorithm is perhaps most easily ititeipteted

as an approximate transformation of a partial differential equa-

tion (system) into a larger system of lower order differential

equations. The computational mesh is formed by the union (.;tmma-

tion) of nonoverlapping subdomains, called finite elements, and

the mesh can be "arbitrarily" nonregular. Approximation p.lvno-

mials (of degree k) are prescribed on a local basis within each

finite element, to represent all dependent variables and param-

eters, such as viscosity, Reynolds stress, and thermal conductiv-

0ity. These approximation basis function sets are "cardinal,"

i.e., they reduce to zeroes and ones at predetermined locations,

within or on the boundary of each computational subdomain called

nodes. The boundary of the solution domain need not coin ide with

surfaces of a global coordinate system. Nevertheless, the

1"natural" elliptic boundary condition specification, relating the

dependent variable and its normal derivative, is routinely imple-

mented along any (all) disconnected portions of the solution domain

boundary. The ultimate algebraic equation solution matri: struc-

ture produced by the finite element algorithm is sparse and banded,

with band width being a function of problem dimension, the degree

of interpolation, and the discretization node numbering. The

resultant svstem is directly solvable, or an iterative procedure

may be developed using tensor matrix products or other formlations.

For parent equation systems exhibiting initial value character, the

algorithm yields a system of ordinary differential equatioii, that can

be integrated using any explicit or implicit procedure."

Variational approach

19. In contrast to the calculus of a function, the finite element

method is based upon the calculus of variations. In general, if we wish to

find functions t(x,y) that are differentiable on (x,y) and sat isfy fixed
II
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, ~,constraints on the boundary of the domain that minimize some Integral

functional

I = ff Y'$i' *- dx dy (16)

D

the calculus of variations determines that ¢i(x,y) are the solutions of the

Euler-Lagrange equations

[(V) --- (17)[(V j

Thus. if the problem is to determine solutions of linear partial differential

equations similar to equation 17 one can instead extremize the integral state-

ment given by equation 16 once the functional has been determined by inspec-

tion. Identification of the functional

is, of course, a crucial step. Construction of the finite element solution is

based upon an approximate evaluation of the integral, followed by construction

of the extremum.

20. In the evaluation of the integral, a functional form must be

assumed for i which contains expansion coefficients. From a review of

properties of fundamental solutions of Sturm-Liouville type equations such as

Equation 17, Baker (1983) discusses the desirable properties of orthogonality

and compfeteness and their relationship to the selection of the functional

form for di The basic definition of these two properties are given below.

Two tunctions are orthogonal on the interval x, < x < x2  if

x 2

"b W(x) U (x) U (x) = A n 6
n m n nm (1)xI

z 1



where n is the Kronecker delta. The finite element procedure ieads to thenm

est-iblishment of locally orthogonal approximation functions, i.e. Iquatioll I"

is satisfied with the e>.ception that the integral fails to vanish on an indi-

vidtial finite element. The orthogonality property is important since it IL-

sults in sparse coefficient matrices; in the iesulting linear algebra prbl(,:.

21. A junction set U (X) is del ited as complete On x I  X< ,.. if

fei every 6 -- 0 there exists a number N > I such that the dist!"-,eC Iietweell

an arbitrary square integrable function f(x) and a series expainsion in

1 (x) can be made arbitrarily small, i.e.
n

f(:) C' Un(X 2 dx < 6 (20)=0 n=0

With this property an increase in accuracy for the solution f(x) as N

*increases is guaranteed.

22. The use of local polynomials as the approximating functions pro-

v"Ideq some degree of orthogonality coupled with the assurance of reducible

i-ror as either the grid is refined or as the degree (if the polynomial is

increased, i.e., as a more complete basis is utilized. Other functions could

be osed, e.g., completely orthogonal functions such as Bessel functions or

perhaps a polynomial spanning the entire spatial domain rather than an indi-

vidIial element. However, as Baker (1983) notes, the use of completely ortho-

gonal functions severely constrains boundary condition flexibility, althoug'h

it does admit improved solution accuracy with the use of a more complete

basis. The use of polynomials spanning the complete domain results in no

(degree of orthogonality and thus tile coefficient matrix that is fiormedl in the

linear algebra problem becomes extremely dense and numerical error eventuall y

swamps the solution as higher degree polynomials are employed. Tile finite

element method is synonymn~ous with the use of piecewise local iiterpolation

polynomials for approximating functions.

Method of weighted residuals

, 23. Since the equations of fluid mechanics are written in ;in Eulerian

frame of reference they are nonlinear. Thus the variational apprech to tl,e

finite element method cannot be used since the fuinctional given t, Equiation U)

%:'- cannot be found. Therefore, for nonlinear equations the ftlite element met:hod

.I Z



is based upon the method of weighted residuals. As a matter of fact, virtu-

ally all computational methods can be derived in this manner.

24. As discussed by Baker (1983), the fundamental concept is the con-

straint of the solution error. One deals directly with the different. il equa-

tion L(q) and the boundary condition i(q) , where L(-) and 4(') are
differential operators. Assuming that q is the approximate solution, then
L(qh ) and Z(qh) are statements of the error in the solution approximatlon.

This error is then required to be orthogonal to some set of weighting func-

tions W(x) over the domain and its boundary i.e.,

h - h~W(Y. L(q )dx - X W(X)Q(q )do {01 (21)

2 where

X = Arbitrary multiplier

hX = X, yZ

= Computational domain

= Boundary of domain

do = Boundary area differential

dx = Domain volume differential

There are as many scalar equations as members of the weight set {W(x) . The

next step is to write Equation 21 as the global assembly of the equation

applied over each element, i.e.

{W(x)}L(qe) dx - X {W()}9(q e) do ?0)

fe e e

where M
h 

(23)Xq(x) q (x)(23)~e=l

ant! M is the total n'mber of elements. The basic distinction between the

finite element method and other computational methods, e.g. finite volumes, is

the selection of the weight function basis {W(x) .

25. Baker (1983) demonstrates that in order to reproduce the energy

functional extremization tor the linear, steady state heat conduction problem

13



the weight function basis must employ the same basis as used in tILe approxi: -

t iou of thesouin ..

T
q ex {k Q } e

andi thusZ

{W(X-)} INk (-X))

The comparlson Is exact except for a closed surface integral over the bouindary

of each element. For the analogy to be exact this integral must bc zero.

This is not the case for an individual element but the assembly of" the surface

integral over the complete domain does yield a zero value. Ho-wcvei-, this

implies that the derivative of a dependent variable may be discontinuous at

element intersections.

26. A finite difference algorithm can be derived by setting the weight

function basis {W(x)) to be a set of constants. The surface integral noted

above then becomes zero over each element since a derivative of NW1x)

appears in the integral and the derivative of a constant is zero. Therefore,

derivatives of the dependent variables are continuous at finite differen~ce

cell interfaces. ThLis is a fundamental difference between the two Plethods a-

derived by the method of weighted residuals. The reason for defining the

finite element method by forcing the method of weighted residual.- to reproduce

the variational problem for a linear problem is because the theoret ical struc-

ture for such linear problems guarantees an optimally accurate solution.

The Linear Al gebra Problem

27. Consider, for example, the d epth-ave raged 2-1) equation,; for free-

surtfc( hydrodynamic flows. A finite element (FE) algorithm for thiese equa-

*tions formally states the requiremelit to establish ain approxiiat iol (I (-) to

the solution set q(x,t) - d') , u I(-) where is the wajter sro and

U. is the velocity, to be constructed on a discretization 21of the solii-

tin domain Q c R ' L f-fx. I 'I <~ 2, t :-t I. I'M!; oxrm is1

14



constructed as the union of elemental contributions qe(xit) , which in turn

are defined as expansions in the kth degree polynomial cardinal basis set

Nk (-)} and time-dependent nodal expansion coefficients {Q(t)} Mathemat-

ically, this statement of approximation is

h
q U q (xi,t) (26)

where

qe - {Nk(Xi)} T{Q(t)}e (27)

28. Since Equations 26-27 define the approximation, substitution into

the flow equations defines the associated error. The second step of a FE

algorithm is therefore a formal statement of constraint on this error. The

form of this constraint which, as previously noted, enjoys an optimal error

estimate for a linear elliptic problem statement, is the so-called Galerkin

statement, which requires the distribution of the error to be orthogonal to
h

the function space {Nk(-)I used to construct q . For the more reneral

-< problem statement wherein nonsmooth solutions to hyperbolic equations are

sought, the Galerkin statement is typically augmented with an additional dis-

sipative constraint, Baker (1983). The mathematical statement of error con-

straint is thus of the form

f.{Nk(-)} L(qh) + 8. 2 V{Nk(-))LC (qh) -0) (28)

where 8 is a parameter set that can be optimized and 1,C(-) is the sub-

stantial derivative operator.

29. Upon evaluation of the integrals in Equation 28, there results an

ordinary differential equation system written on the time evolution of the

expansion coefficient set {Q(t)} in the form

[M] Q {u T [C] 4 (C {01 (29)
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where

[M] = mass matrix

{U} = convection velocity field

[C] = associated (convective derivative) influence on the dependent

variable set {Q}

{G1 = remaining source terms

For the time-accurate solution, Equation 29 is employed to evaluate the Taylor

series

- {0

[F} £ {QIj+I - At d { +6  " (30)

Fquation 30 is a nonlinear algebraic equation sv;tem for 0 > 0 , the solution

stitement for which is cast using a Newton iteration algorithm in the form

[J] {6Q)P+ I -- {F p  (31)
j+. j+ I

where p is the iteration index. The solution field is defined as

Q{QP+l - {Q}p + [6QJ?+' (3:2)Qj+I 3"+1 Lj+I

and the Newton Jacobian is constructed as

V [ {F1 (33)

All computational models of unsteady physical conservation laws eventually

pr,,dhce the algebraic equation system (Equation 30) the numerical. solution ",

w'hich (Equations 31-33) constitutes the heart of a code.

-T). In the finite elenent method the lacobian or coefficient matrix is

a relatively sparse matrix whose bandwidth crucially impacts upon the computa-

t ionl costs of solving equation 31. The bandwidth is dependent upon the

dimenf:[nality of the problem, the number of coupled variables being computed,

the number of elements and the degree of the approximating polynomnials. Si, no

04 % .0 6
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the Jacobian is independent of x , any direct solution procedure is usable.

Mest existing finite element hydrodynamic models, e.g. RMA models, em ,ploy a

-solution scheme which reduces the bandwidth before employing Gaussian elitina-

t io,. however, the computational costs for multidimensional (especially 3D)

,.oJt!s can stifl becoine astronomical for time dependent problems.

Summary

31. The two major computational methods, i.e. finite differiice and

finite element, have been discussed. Cormnon features as well as major diifer-

ences have been noted. The finite element method for general equations must

be derived using the method of weighted residuals, with the weighting function

N being the same as that med to approximate the dependent variable. It can be

shown for a linear equation that this results in the lowest possiblk! solution

error. However, this can not be shown for nonlinear equations and, in addi-

,tli,% as a result of a nonzero surface integral on individual elemenits, deri-

"% vatives of the dependent variables are not generally continuous. 'Iherefore,

"imass continuity may not be satisfied locally in hydrodynainic models, although

it will 1,e satisfied globally, i.e. over the complete domain.

32. Finite difference algorithms are normally derived by replacing the

derivatives 1,v difference quotients derived from Taylor series expansions.

'the itzsulting difference equations are then evaluated at each net poin.t. As

denmstrated, however, tliere are other approaches, e.g. the use of polynomials

and the integral method. Each possesses features of the finite element

method. In fact, if the weighting functions are taken as constants, finite

difference type algorithms can be developed from the method of weighted resid-

uals. In particular, setting the constants equal to one results in, what is

referred to is a finite volume algorithm. On a structured grid with unitorm

grid spacing, a finite difference algorithm that would result from application

of the Integral method results. With constants used for the weighting Itinc-

t ions, the continuity of derivatives Is assured and thus mass coon,;,-vat ion is

!;ztisiied even on the element level. However, the global solution crror may

be larger than when the v.eighting functitn is talen as the basis function.

33. Finally, it ha!. been demonstrated that regardl ,ss of the co,,pota-

tional theory, ultimately a linear algebra problem must be solved. 'M c mInner
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in which this problem is handled is the major factor that determines the com-

putational cost in three dimensional time varying hydrodynamic models.

.18
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* PART II[: SUGGESTION FOR IMPLEMENTATION IN THE SHORT-TERM

34. The major computational costs Involved in multidimensional numeri--

cal h~drodynamic models occur in solving the linear algebra problem given by

Equation 31. Note that even if the original system of equations are non-

linear, a linear system of the form

[A]{x) = {b} (34)

must be solved for each Newton iteration. Therefore, the major considera-

tion in attempting to reduce the computational costs involves the manner in

which the linear algebra problem is solved.

35. As previously noted, the size or bandwidth of the coefficient

*matrix A is dependent upon the problem dimensionality, the number of coupled

Idependent variables, the number of finite elements, and the degree of the

* interpolating polynomials. Anything that can be done to reduce the size of

* A should reduce computational costs, regardless of the solution procedure

. employed for the linear algebra problem.

36. Depending upon the type of element shapes employed, the complexity

of various integrals formed in the finite element method varies. If numeri-

cal quadrature is required for the evaluation of these integrals over each

element, a substantial portion of the computational costs for one and -two

dimensional hydrodynamic models can be related to construction of the coeffi-

cient matrix. Therefore, one area to consider for possible reduction of

computational costs is in the construction of the coefficient matrix.

37. Numerical hydrodynamic models are typically time dependent models

for computing flows over time periods ranging from a few tidal cycles to

perhaps several months. In recent years most models, both finite difference

and finite element, have employed implicit time integration schemes. How-

ever, depending upon the application, explicit schemes may be more economi-

cal and should be considered as a solution that could be implemented in a

short-term time frame.

Linear Algebra Solvers

38. Any numerical linear algebra procedure is a candidate for solving

19
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hqtuation 34. A key implementation aspect relates to code efficiency. Finite

element fluid mechanics codes have gained a reputation for being less effi-

cient than their finite difference counterparts. As noted earlier, this is

not a consequence of the finite element theory itself, but instead reflects

directly on implementation choices for the linear algebra statement. Based on

the finite element structural mechanics historical development of direct,

out-of-core solvers, many (most) finite element code implementations have

relied on direct extension of these solver software packages to the fluid

V mechanics problem classes. In distinction, a direct solution (of even a

linear Poisson equation) is never attempted in a FD code, but instead a matrix

iteration procedure is defined that uses easily formed (usually block-
.

tridiagonal) approximations to the Newton algorithm Jacobian (Equation 33).

The computer storage requirement for the approximate Jacobian is negligible in

comparison, as is the CPU needed to execute an LU decomposition and back sub-

stitution. The computational penalty is a much reduced convergence rate in

comparison to a Newton iteration, but each iteration proceeds so rapidly that

the many grid sweeps required for the FD code are typically completed with

minimal expenditure of computer resources.

39. Candidate methods employed in finite difference models include

point iterative methods (Jacobi, Gauss-Seidel, successive over-relaxation),

line iterative methods (vertical/horizontal over-relaxation, alternating

direction implicit, approximate factorization), conjugate gradient methods and

multi-grid techniques.

40. The RMA models employ a direct solver called a frontal solution

procedure. In the frontal method the assembly and elimination of equations is

interweaved, based on the fact that an equation can be eliminated if all the

elements contributing to the equations are assembled. The front is defined by

all the active coefficients that are not yet eliminated. Thus, the equations

are not assembled and eliminated sequentially. New equations take up the

positions of equations which have ceased to be active and the front matrix

contains only a small number of zero coefficients. When employed in a finite

element context, the efficiency of a frontal scheme is dependent upon the

ordering of the elements, with the ordering of the nodes being immaterial

since the equations are assembled on an element-by-element basis. A detailed

discussion of the frontal approach is given by Irons and Ahmad (1980). Sloan

20
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* and Randolph (1983) show that an upper bound on the number of operations is

given by

T (W2 + W -2) (35)2

where W is the maximum front width and the rank of the coefficient matrix is

N. By comparison, Gaussian elimination operating directly on [A] involves a

3
total number of operations proportional to N

Structured vs Unstructured Grids

41. The solution cost can be directly related to the type of grid

employed. A mesh or grid is said to be structured or regular if the geometric

Idomain is divided into q rows with p elements per row. With regular

grids, the unknowns are ordered such that the nonzero entries of the coeffi-

- cient matrix lie in a predictable pattern. A completely unstructured grid

* implies that the non-zero entries are scattered rather haphazardly throughout

the matrix. Between these two types of grids are semi regular grids. With

4semi-regular grids the domain is divided into rows and columns but there may

be a variable number of elements per row. Figure 1 illustrates the three
types of grids.

42. Usually, the more flexible and general a model is the greater are

its solution costs. Therefore, allowing for completely unstructured grids in

the RMA codes significantly increases the matrix solution cost. The factors

which most affect matrix solution costs are total arithmetic operations re-

quired, storage requirements and overhead due to data transmission and to

logical operations associated !,ith the solution method. The relative impor-

tance is dependent upon the computer being used and the size of the problem

being solved.

43. Many efficient direct methods exist, e.g. the frontal solution

scheme employed in the RMA codes; however, depending upon the problem an

iterative method can be more efficient. Among the factors to be considered

are computer storage requirements and the number of arithmetic operations re-

quired. Hageman and Young (1981) state that for many problems there is a

cross-over point in the number of unknowns, above which a good iterative
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method becomes more cost effective than a good direct method. In particular,

they indicate that for unstructured grids the block CCSI (cyclic Chebyshev

semi-iterative) scheme, used with an algorithm to minimize bandwidth, is

worthy of consideration. A recent paper by Mavriplis and Jameson (1987)

demonstrates that the efficiency of a multigrid solution on unstructured tri-

angular meshes employing Jacobi iteration is competitive with available struc-

tured mesh Euler solvers. Therefore, one measure worth considering for

implementation in codes such as the RMA codes is an iterative solution scheme.

A more permanent solution to the reduction of linear algebra costs is to re-

duce the generality of the model to allow at most only semistructured grids

such that a tensor product factorization of the coefficient matrix is pos-

sible. Through the use of grids composed of blocks, significant generality is

retained. With such an approach the finite element method becomes a viable

solution method for computing long term hydrodynamics. This approach is dis-

cussed in PART IV.

Reduction of the Size of the Coefficient Matrix

44. The size, i.e., bandwidth of the coefficient matrix in the linear

algebra problem is dependent upon the number of coupled partial differential

equations to be solved, the dimension of the problem, the number and ordering

of the finite elements and the degree of the basis function, i.e., the, approx-

imating polynomial. Thus, in order to reduce the size of the matrix one or

more of the above factors must be addressed. Since the problem dimension and

the number of finite elements employed are problem dependent these are not

* considered. However, the coupling of equations and the completeness of the

basis function are certainly areas in which modifications should be

considered.

* Reduction of matrix rank

*, 45. Typical finite element hydrodynamic codes, e.g. the RMA models, are

completely implicit in that all variables are coupled. For example, in the 3D

RMA-10 model the coupled variables become the water surface, three velocity

components and salinity. One approach taken in numerical hydrodynamic models

that employ the finite difference method is to compute the water surface

implicitly through the derivation of a frictionally damped wave equation and

to then use the implicitly computed water surface in explicit computations for

23

%

n4 'Y1..'~~ t.*** ,



the velocity components, which are then employed in computations for the sa-

linity, i.e., the equations are uncoupled. With this approach, restrictions

on the allowable time step will occur; however, the stability criteria are

primarily related to the speed of a water particle rather than the speed of a

* -. free surface wave, which can often be quite restrictive.

a 46. With this approach employed in RMA-10, five matrix equations would

need to be solved but each matrix would only be 1/5 the size of the matrix

arising from the coupled case. Since the arithmetic operations required for

solution are proportional to the rank of the matrix times the square of the

.. bandwidth, obviously the solution of five small problems will be much less

expensive than that of the large problem. This should be true even though the

computational time step allowed will be smaller than that for the completely

implicit case.

Bandwidth reduction

• I 47. The second way in which the size of the coefficient matrix can be

reduced is related to the degree of the approximating polynomial. The greater

the degree of the polynomial the denser the coefficient matrix becomes since

the higher degree elements connect nodes over a larger stencil. Thus, the

bankwidth is significantly larger. Baker (1983, Ch. 3) compares the computa-

tional requirements for a potential flow solution using linear and quadratic

approximating polynomials. A discretization containing 624 nodes was solved

in both cases. The quadratic solution required approximately twice the com-

puter storage and 40 times the CPU. The two solutions were comparable in
, .accuracy.

48. In the RMA codes, the water surface is approximated with a linear

basis function; whereas, the velocity components are approximated by a qua-

dratic. For a non-free surface incompressible fluid, the velocity is required

to be approximated by a polynomial of one degree greater than the pressure.

However, free surface hydrodynamic computations are analogous to compressible

flow computations in aerodynamics. For example, hydraulic jumps develop when

the water velocity become supercritical while shock waves develop in air when

the Mach number exceeds one. Finite element researchers in the aerodynamics

field routinely employ the same degree basis function for the velocity and

pressure. Therefore, one possible means for reducing the computational costs

of codes such as the RMA finite element models would be to employ a linear

basis function for the velocity components also. Naturally this will reduce
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the theoretical accuracy of the computations for a fixed mesh size. However,

as illustrated by the potential flow solution example above, this may be a

preferred alternative. One point to consider is that rather large eddy dif-

fusion coefficients must often be employed in models, such as the RMA codes,

* that employ the standard Galerkin finite element method in order to dampen

dispersion error waves that are created. The use of eddy coefficients multi-

plied by second derivatives, however, does not provide selective damping.

Therefore, the flow solution of interest is also damped with the net effect

being that a lower order approximation with built in numerical diffusion might

as well have been used. A discussion of finite element solutions based on the

Taylor weak statement, which provides selective numerical damping (dampens

primarily the short wave lengths) is presented in PART IV.

* Static condensation

49. One additional method for reducing the size of the coefficient

matrix is referred to as static condensation. This technique can only be

applied to linear equations using higher degree basis functions. The proce-

dure involves reducing out the interior nodes of a higher degree element from

the problem. The effect is an overall reduction in the rank of the coeffi-

cient matrix and thus substantial potential savings in computer costs. Of

course, due to the nonlinearity of the hydrodynamic equations static conden-

sation can not be applied unless the equations are linearized. However, this

is often done in finite difference models where the nonlinear convective

terms, e.g. u 'are handled by taking the u at the previous time step

or perhaps, as in the uncoupled frictionally damped wave equation approach,

the complete term is lagged at the previous time step. This effectively

linearizes the equations at a time step and thus static condensation could be

employed if higher degree basis functions are assumed.

'4. 50. One additional comment concerning the lagging of the nonlinear

z.' terms at the previous time step should be made. With such an approach, the

matrix equation is solved only once per time step as opposed to the iterative

Newton Raphson scheme employed in models such as the RMA codes to solve sys-

tems of nonlinear algebraic equations. The RMA codes commonly require 2-3

iterations per time step. Lagging the nonlinear terms will immediately reduce

the computational cost by a significant factor, even if nothing else is done.

Lagging the nonlinear terms should not significantly influence the solutions
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4 : generated by codes such as the RMA models since they are normally applied for

the computation of gradually varying phenomena, e.g. tidal circulation in

estuaries. This would not be the case if the models were intended to compute

rapidly varying surges or perhaps hydraulic jumps, i.e., highly nonlinear

phenomena.

Reduction of Costs in Problem Setup

51. In the finite element method, integrals involving the basis func-

tions and derivatives of the functions arise. If the finite elements are re-

stricted to be triangles in two dimensions (N = 2) and tetrahedrons in three

dimensions (N = 3), all integrals can be analytically evaluated through the

use of the expression below

NI N2 N3 N4 - DN NI N2 N 31 N4 1J1 2 63 54 dx= N NN (36)
N' 12 cRN

e

for linear as well as quadratic basis functions. However, if quadrilaterals

and/or quadrahedrons are employed the resulting integrals can not in general

be evaluated analytically. Therefore, the integrals must be evaluated numeri-

cally with Gaussian quadrature commonly employed. This of course increases

- the computational costs involved in forming the matrix equation, with these

costs being directly related to the order of the quadrature employed. Since

2k
the quadrature error is 0(h) , where k is the order of the quadrature

4' formula and h is a measure of the mesh, using k=2 should be quite suffi-

cient for models employing quadratic basis functions. Reducing the order of

the numerical quadrature in finite element models to be no greater than the

41 order of the basis function employed will reduce problem setup costs.

Implicit vs Explicit Time Integration

. 52. The finite element algorithm applied to time dependent partial dif-

ferential equations yields a large order system of ordinary differential equa-

tions. In other words, the matrix equation involves unknowns that are time

derivatives of the nodal values of the dependent variables. Any integration

26



formila can be applied to transform the system of ordinary differential equa-

tions to an algebraic system.

53. The general form of the system of ordinary differential equations

becomes

[C] d{Q(t)} + (D] {Q(t)} = {B} (37)
dt

*Employing a one step time integration algorithm yields

w C] + AtO [D ) }Qn+l + (At(I-)(D] - [C {Q}fn = At {B} (38)

where G controls the implicitness, e.g., 6=1 yields a completely implicit

scheme while e=0 results in an explicit time integration scheme, i.e., the

forward Euler integration scheme. An interesting observation is that even if

6=O , i.e., the time integration is explicit, a system of algebraic equations

remain to be solved in an implicit fashion since the matrix [C] is not a diag-

onal matrix. This, of course, is unlike the finite difference method which

yields (by delinition) a diagonal recursive relationship for the unknowns when

an explicit time integration scheme is employed.

54. Based upon the the fact that [C] is not diagonal, it would appear

foolish to employ an explicit time integration scheme with the finite element

method since essentially the same linear algebra problem remains, but with the

computational time step restricted by stability criteria. One solution is to

diagonalize [C]. As discussed by Baker (1983, Ch. 4), there are two common

approaches taken. One method is row wise summation, i.e.,

n

C .i C ij ;(39)

whereas, the second is normalization of the diagonal elements of [C] with the

off diagonal terms then set to zero. The non-diagonalized matrix is referred

to as a consistent matrix, whereas, the diagonalized form is referred to as a

condensed matrix.

55. Baker (1983, Ch. 4) presents solutions for the one dimensional

diffusion equation (without convection) for using both the consistent and
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condensed forms on the same grid. The grid used was rather coarse, and dis-

persion error "wiggles" developed in the consistent solution. However, the

wiggles disappeared in the condensed solution, confirming that the condensing

operation yielded an artificial smoothing of the solution. It might be noted

that the maximum allowable time step for explicit integration of the condensed

form was about twice that of the consistent form.

56. To further illustrate that finite difference recursion relations

can be derived from the weighted residual method used for generating the

finite element method, Baker (1983, Ch. 4) shows that for a convection-

diffusion problem in one dimension, with a linear basis function, the finite

element method, employing the trapezoidal rule time integration algorithm,
%"

yields what is referred to as the Chapeau finite difference algorithm on a

uniform discretization. If the trapezoidal rule integration is employed, but

the coefficient matrix multiplying the vector containing the unknown deriva-

tives of the nodal unknowns is diagonalized, the resultant recursion relation

becomes identical to the Crank-Nicolson finite difference scheme.

57. It appears that if the hydrodynamics of a water body are to he com-

puted on an unstructured grid, an explicit time integration scheme with a con-

densed matrix should be considered for implementation. Even though the time

step will be restricted, the linear algebra problem becomes a trivial opera-

tion and the computational costs may well be significantly less. This will

especially be true if the water surface is computed implicitly with all other

variables computed explicitly using the condensed form, since the most severe

stability criterion, i.e., the free surface wave speed, will be removed from

the stability criteria.

A
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PART IV: LONG TERM (PERMANENT) SOLUITION APPROACH

58. The discussion up to this point has focused on ideas for reducing

computational costs that can be implemented in a relatively short period of

time. A longer term research effort following the approach outlined below

will yield not only a computationally efficient finite element model but one

with excellent stability properties. Much of the suggested approach is a re-

sult of a study of the fairly typical finite element hydrodynamic code RMA-10

which was developed by King (1982).

Problem Statement

59. The Reynolds-averaged Navier-Stokes equations, Cebeci and Smith

(1974), are considered appropriate for hydrodynamic three-dimensional flows.

The form usually considered as baseline for hydrodynamics analyses is given

by King (1982) as,

" u 3u 3u 3u 3 3u. 3 3u
P 7 + PuLU + Pv~- + pw x- - -y(cyL) (40)

"a E Lu. - P 2 - * =0:'.- -z ( xz z ax x

,v Bv 3v + v 3 v) , v(--v + cL ~ (41)
3+t + PV3 y W -3z x (yx) ay tyy y

a 3v
Tz (yz3z) 3y y

3w + w + w + w 3 3w w
0- + pUx + Vy + PW~z -(e -zx) yczy y) (42)

3 (E Lg - * =  0
3zz g - z

,au

u + 3w (43)
3x 3y 3z
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4,.-% where x = {x,v,zl is the cartesian coordinate system, u = lu,v,wl is the

corresponding velocity field expressed in cartesian components, g is grav-

itv, p is pressure, and P is the water density. Further, E
xx xy

etc. are the turbulent eddy viscosity coefficients, and T* , * T* are
x V '

the surface tractions operating on the boundaries only. Figure 2 schemati-

cally represents the water body and conventional directions for the axes and

% velocities. For the RMA-10 analysis, it is assumed that the vertical momentum

equation (42) may be reduced to the form,

Pg + = 0 (44)

i.e., the pressure in the vertical (z) direction is hydrostatic.

60. RMA-10 handles both homogeneous and stratified flow problem de-

scriptions. Taking the general case, the assumption of Equation 44 yields the

-.. pressure gradient expressions

3 p =g d z (4 5 )

4 Jz

= dg (46)

For the homogeneous flow assumption, Equations 45-46 then simplify to,

--O h+ a(47)

3h + a) (48)

' " ' where the definitions h(x,y,t) and a(x,y) are noted in Figure 2. The RMA-10

.- equation set is completed with the inclusion of an advectlon-diffusion equa-

~tion for transport of scalar fields, eg., temperature, salinity, sediment, In

'. the form (with temperature as the example),

V ..
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~u pgV___ Pg vV (1
x C 2 y 2

where V = (u + v) , the surface velocity magnitude and C is the Chezy

coefficient. These stresses are not constant and thus are incorporated into

the nonlinear solution dependent upon the local velocities (only over

surfaces).
61. As a final formulational step, the hydrostatic pressure assumption

deletes the remaining terms in Equation 42 as higher order. Thus, the con-

tinuity equation 43 becomes that governing the vertical velocity component w.

Integrating over z yields

f a+h Iau + La+h Dw dz = -w(x,y,a+h) +w(x,y,a) (52)Zga x +  y dz a z

At the top surface,

w(x,y,a+h) = u(x,y,a+h) 3(a+h) + vCx,ya+h) 3(a+h) +h (53)

*" While at the bottom,

w(x,y,a) u(x,y,a) La + v(x,y,a) a (54)

,3

Combining Equation 52-54 yields,

Sh+h

dz + v dz +; t (55)
a fa

Thus, with Equation 55 the vertical velocity appears only in the lateral (x,y)

momentum equations. RMA-10 treates only a minor coupling, computing w sepa-

ratebly from the basic continuity dquation 43. The pressure p can be elimi-

nated via Equations 47-48 and replaced by depth h which is a function only

of x , y and t , as governed by Equation 55. Finally, Equation 49
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completes the set for scalar field convection-diffusion along with p=p(S,T).

62. RMA-10 code implementation of a finite element algorithm for solu-

tion of Equations 40, 41, 43, 49 and 55 utilizes a coordinate transformation

to a "regularized" solution domain, which in itself creates potential numeri-

cal instabilities. Contemplating the need to alter this, the first step to

long term generalization would be to re-express the governing hydrodynamic

equation system in the preferred form of a (hyperbolic) conservation law

statement. The computational aerodynamics literature has become filled with

the observation that this form is preferred for a variety of reasons including

Atruncation error control, stability and exact satisfaction of sharp solution

gradient (approximations). Thus, without loss of any generality, the first

step would be to complete the details of re-expression of Equations 40-43 and

49 in the form,

L(P) = - (u i ) = a0u + p + 22w = 0 (56)
ax ax 3y 3z

a (pui) + - 0 (57)
L(pua) t ax. (a uu + Pu i 0ij 5j)

L(Ot) = 2 + ( - d.+ = 0 (58)
at ax - - dj

.- " l.() = *3h + ___ u h + f(a,h) + S = 0 (59)

at hx. hJ

Equation 56 expands the summation index convention, the variables have the

same interpretation, and 0 represents any scalar field.

63. The generalized stress tensor a is constituted of its laminar
I j

and Reynolds averaged contributions,

.= Eij - Puiuj  (60)

"a,.

and the integral of E. = ?u/x + 3u./;x yields the surface stresses

explicitly expressed in Equations 40-42. The Reynolds stress u'.u. , as well
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as the diffusion flux d in Equation 58, would be expressed In a gradient-

* diftusion law statement, i.e.,

-Uu = d k=-k 2AL~ (61)',- -~ u\k _ " i ' 3 k j 3x.

/ k

where v t is a turbulent eddy viscosity tensor and k is the correspond-
jk ij

ing diffusion tensor for The terms s and sh are the corresponding

source terms, and f(a,h) is a functional form to be established that contains

the differentiability required in conversion of Equation 55 to 59. Once this

is completed, the 3D hydrostatic form of the governing equation system can be

compactly stated as,

L(q) 71 (62)t x.
J

*where the dependent variable set is q (pw, pu, pv, p6, h). The exact forms

for the corresponding flux vectors f. , and source term s would be derived.

Equation 62 expresses the governing equation system in the preferred conserva-

tion law statement form.

Transformation for Variable h

64. The RMA-1O computer program employs a coordinate transformation to

"* regularize the solution domain and eliminate the explicit appearance of a

time-varying upper surface (h) location. Figure 3 illustrates the transfor-

mation, which is defined by King (1982) as

h(x,y,t)z' = z - a(x,y) , x' x , y' = y (63)

." Thus,

3u(x,Uz(z)) -L(x, ,y,z,) - 3h , Da 3u' (64)
ax 3, 'h x + T64
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__u _u_, I ,=h , +3a Bu'-y(x,y,z(z')) = -U-1 (x ,y',z') - I ,h- + - (65)

".,..( )) = _ L (x,,y, z') (66)?z -  h 3x'

--(x,y,z(z')) = -( ,y, ,z) - I (2T-z ) l (67)

where u' u'(x',y',z'h+a). Similar expressions are generated for v' and w',

which when substituted into the vertically integrated continuity equation 55

yields,

a) Domain Grid b) Transformed
In Physical Space Solution Domain

Figure 3. TABS-3 Solution Domain Transformation,

From King (1982, Figure 2.2)

(L -. 1 .u 1(..xhzlh + 3a Dw' + v' I 1 ah , + 2) v) h dz'
- h a W' 1 ('Y a;'

, r 1 @aaaa a - ' ,, (ah)z5**I.~ ha x0 y ia ya (68)

+ u' (x',y1 ) - u'(x',y',O) +  (x , a(a+h)

ax ~ ax a

I- v'j(x,y',O) 2 + ] = o

65. After integrating and proceeding through the remaining equations,

expressing all variables in the primal system then yields the final 3D govern-

ing equation system in RMA-10 as
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0-(hu') + L. (hv'))dz'I + Lh= 0 (69)
0 a at

ph'9- + phu-- + phv'2- + pw* - p( x + v's , + z h au (70),tax, ay 3z x y t P

- h 3 - h [ a y3u' - 'r azr)  - = 0
ax 'Iy1 axx'

hay '  ,av' av' ,av' ' ,a v

P a + phu '- + phv v' + pw - p(u'sxv + V's + 't)2Y-' (71)
at ax TY~r 3zya t aZT

hL. a av hv'] _ "-' a Lv' - 2E

-ax'y x h y y az y az . )  ay y

". ah 1 -a-~, (hv')1 d, 1
{-2- (hu') + -2- (hv } dz 0 (72)

at ah aT

+ nu -+hv . +w"' (u's + V'sy + z' "h -- (73)

- a aT a aT a aTh- (D LT)- h7-(Dyw-Tr) - s - 0

Equations 70-73 are completed with the state equation p=p(S,T) , and after

transformation,

p = pgh dz' (4)

The prime notation on the eddy diffusion coefficients indicates their approxi-

mate similarity to the original coefficients.

66. King (1982) notes that a price is paid in terms of mathematical

consistency for the domain coordinate transformation. Specifically, parallql

flow at the top or bottom of the new system transforms to flow parallel to the

surface in the original system. Thus, at slope changes in the bottom profile

there is a discontinuity in the flow trajectory and in the magnitude of the
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vertical component. For example, (see Figure 3a), the vertical velocity is

zero in the left-hand element and finite in the right-hand element. Thus, to

record velocities at nodes for output requires averages be taken and slight

inconsistencies are generated. Vertical steps (or sharp changes) in the bot-

tom profile can only be treated by approximate boundary condition specifica-

tions, and in general the approach is unable to accurately describe such a

system. Flow separation is not restricted, however, and the coordinate trans-

formation does ensure global satisfaction of continuity.

67. Definition and use of this coordinate transformation requires a

close examination, to be conducted in this second step analysis, since realis-

tic bed profiles containing fairly sharp changes in a(x,y) will destabilize a

RMA-10 computation. (Certainly to proceed to a vectorization with this in-

trinsic limitation does not make sense in the longer term.) The approach

would be to examine the generalized (body-fitted) coordinate transformation

concepts employed throughout aerodynamics (see Thompson, et al, 1985) to the

developed conservation law statement form ie., Equation 62. The functional

form is essentially identical to Equation 63, ie., x'i = x'i (xjt) , where

the time-dependence is contained in h=h(x,y,t). The basic step is to re-

express the derivative operators in the conservation law statement into the

primed coordinate system. Quite simply, this is no more than

Bq _- 3 + 3q I x (75)
. ' i fax \at )x

where the bracket with subscript notation implies derivatives with the cor-

responding variable held fixed. That is, the left side of Equation 75 is the

time derivative in transformed space where the surface h(xi) appears fixed

(in time). The time derivative on the right is as seen in physical space, and

in the third term (ax J/t)x' = ,. is the (grid) speed of the physical coor-

dinate system (nodes) as seen in the fixed (x) system. Hence, for

Equation 62

a at (at x (txi

(76)
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3X afx axJ , X x
3 i  x i  3

Re-ex-ressing the second derivative in the first line of Equation 76 in terms

of x'i . the accounting for the variable lid h=h(x,y,t) is then intrinsi-

cally embedded in the conservation law statement when rewritten as,

'(q) = + f- k 0 (77)

at() ( a, -ax(
68. The specific form for Equation 77 must be derived for arbitrary

(within the validity of the hydrostatic assumption) surface forms h=h(x, t)

The net output will be the specific form for the grid velocity xi ; whereupon

*Equations 77 and 70-73 can be exactly compared term by term. Of importance,

no a priori constraint is implied on variation of bed profile a(x,y) . Once

established, the form of Equation 77 is ideally suited to the next two steps.

Body Fitted Coordinate Transformations

69. This item is the significant third step upon completion of step 2.

• -Finite elements have always been viewed for their geometric versatility, ie.,

one can readily triangularize (or discretize into unions of tetrahedra, pen-

- tahedra and hexahedra in 3D) any region with geometrically-complicated bound-

ary. Figure 3 gives an elementary example. However, especially for a moving

boundary, and in general, highly structured coding procedures are one natural

consequence of embedding a generalized coordinate transformation to the con-

servation law statement before writing the finite element algorithm statement.

Equation 77, as the successor to eqn 62, is already written in the desired
form which is therefore immediately applicable for use with any (body-fitted)

coordinate transformation. For example, the finite element algorithm state-

ment for Equation 77 would be immediately applicable to analysis of Charleston

Harbor, Figure 4a, or to flow past an airfoil, Figure 4b. Conversely, it

would also be immediately extensible to use with adaptive mesh procedures to

place finer griddings in regions of sharp solution gradients, Figure 4c.
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a) Charleston Harbor b) Aerodynamic Profile

. 7/Ll/I L125

Isobars

- c) Solution - Adaptive Gridding

Figure 4. Examples of Body-Fitted Coordinate Transformations for which
Eqn. 77 is Applicable, from Thompson, et. al. (1985).

a) Brick b) Tetrahedron c) Prism d) Pyramid

Figure 5. Finite Elements Used in the TABS-3 Computer Program,
D ) enotes Node Locations, from King (1982).
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70. The formulational details of the body-fitted coordinate transforma-

tion implementation must be completed. The Galerkin weak-statement finite

element algorithm (the theoretical basis for RMA-10) form of Equation 77 is

weLl known. Specifically, q is approximated by a projection onto functions

% generated from a suitable space of trial functions ShCHl yielding,

q = qh (xit) = Ej .(x i Q(t) (78)

or conversely, expressed in terms of the cardinal basis {N (p)( over the

union of elements of the discretization,

Sqh = U {Nk(n {Q(t)} (79)

e

71. Figure 5 shows the elements available in the RMA-10 program, for

which the cardinal bases {Nk(n) are well known (and in which n- is a local

coordinate system). The Galerkin weak statement for Equation 77 is then,

Se f{NkI L(qh)dx = {0} (80)
j f cen

e

where e is the generic finite element domain, recall Figure 5. For k=2
the quadratic basis is defined, as is utilized in RMA-IC for the two trans-

verse momentum equation, while k=l defines the linear basis as used by

RMA-10 for the integral continuity equation. Neglecting for the moment the

grid velocity term, and using for example the scalar convection-diffusion

equation (58), and anticipating the embedding of h, the expanded form of

Equation 80 is,

+ uiph - k, a' dx (81)
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72. In Equation 81, the superscript "h" on [ ] denotes use of Equa-

tion 79, and S is the familiar finite element assembly operator. Using the'e

Green-Gauss form of the divergence theorm in Equation 81 to transport the

functional support for 3/ax! yields the flux vector term as,

e }l( u k j- k j \ dx (82)

e

'* 73. The basic form of the diffusion term is immediately recognized,

where k. is the directional coefficient. One can recognize that 3{N }/Dx' jIk j
' is a direct operation, and the key step is to use {N k } to interpolate the

coordinate transformation on the (each) element domain Se . Denoting thee

(global) node coordinates as the arrays X e' {Y}e and {Z} e , ie., {XI} , and

using Equation 79, yields the local coordinate transformation

"2- {Nk(nj) I (83)

As detailed in Baker (1983, Ch. 5), the Jacobian of the forward transformation

on f is readily evaluated as a rank n square matrix. The Jacobian of the.i e

inverse transformation can be formed analytically, thus yielding the form,

"ii\+ .. ETAJ (84
)x e detJ' )E (84)

where the I < (1,J) < n entries in the array (ETAJI) einvolve distributed
e~differences in the entries in (XI} .

e
74. Noting that dx = det J' dx', and denoting the (contravariant)

h
components of the velocity field ui , that are parallel to the coordinate

-h
curves of the x' coordinate system, as uj the first term in Equa-

tion 82 for a typical element becomes

- -C {N}(0) h u 'x 1\ I - 3{N} UBARJ}T{N} {N}T {RHPHI } dx'

e ee \  / (85)
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The integrals defined in Equations 85 are evaluable using standard techniques.

Det J' has cancelled out. [UBARJ] contains the nodal values of velocities

parallel to the x'j coordinate system (hence, parallel to the free surface

and {RHPHII e contains the nodal values of (Ph) e . The diffusion term involves

(outer) products in (ETAJI)e (ETALI) e/det J', and its evaluation is straight-

forward. This outlines the generalized coordinates formulation for

Equation 77.

Enhanced FE Algorithm Stability

75. The finite element algorithm upon which RMA-1O is constructed is

*the Galerkin weak statement, ie., the Galerkin criteria for the weight func-

tions in a weighted residual statement, as expressed in Equation 80. It has

become well verified in the last few years that the Galerkin formulation is

4very limited in terms of stability for problem definitions with significant

fluid convection, ie., large Reynolds-Peclet number fluid-thermal flows.

Experience in using the RMA codes at WES for certain problem simulations,

*" especially those with significant bed profiles, confirms that destabilizing

mechanisms can become evident and a problem. One "numerical cure" for this is

to increase the "eddy viscosity" coefficient, the essence of which is to re-

duce the computational Reynolds number to that required for Galerkin stabil-

ity. Unfortunately, this severely compromises the ability to simulate flows

with realistic Reynolds numbers. One goal in the reformulation would be to

moderate the stability perturbations induced by geometrically-significant bed

profiles as well as the dynamic free surface. The next step of this reformu-

lation analysis is to thus enhance algorithm stability performance in a robust

and mathematically consistent way.

76. The numerous artificial diffusion (viscosity) methods devised for

finite difference CFD methods, as well as essentially all of the comparison

'finite element constructs, eg., Petrov-Galerkin, Taylor-Galerkin, character-

istic-Galerkin, penalty-Galerkin,.., have been firmly established as belonging

to the family of Taylor weak statements (TWS) by Baker and Kim (1987). Rather

than arbitrarily adding diffusion-type terms to the algorithm statement, Equa-

tion 80, the TWS procedure generates appropriate functional expressions for

any specific conservation law statement, e.g. Equation 77. Realizing that the

coordinate transformation is a formulational detail, neglecting the associated
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notational complication, expand the parent expression (Equation 62) in a

Taylor series,

qn+1 = qn + At qn + l/2At2 qt + I At3 qt + (86)

where subscript "t" denotes order of temporal derivative at tn  and

tn+1 = tn + At . Equation 62 allows restatement of the time derivatives in

Equation 86, neglecting the source term s, as

qt = -fx = fqqx = - Aqx (87):o-
q qtt -f = -ftx = -(f qqtx = (fq f x)x -- Aqt+ Afx (88)

q -xtt (-Aq) t ;(Aq)xt -- (AAq)t (A2 I' + (A2)) q

i + -(A2 2))f x (89)

x

- The matrix A is the Jacobian of the flux vector f the coefficients

-Y . and p are arbitrary, to within a convex sum constraint, and their

specification ultimately reflects choices to be made for the final functional
form. Combining Equations 86-89 and collecting terms yields,

S.A- = _fnx + At-Aq + Af x + (-  + A t

At x 6 ) xq

A A2)x + A 2 .fln+
x

The left side of Equation 90 expresses the discrete approximation to qt

Assuming the limit is taken, Equation 90 can then be re-expressed as At 0

without temporal approximation (but retaining the higher order terms) as

"o.o.



L(q) = q- A A qtx t (( A)x +A 2

"I(91)

+f At - At2- 2 .
(_ A f) j A +A "

x 2 x 6

77. Equation 91 is the conservation law form desired for constructing

the finite element Taylor weak statement algorithm wherein At will not

vanish. Importantly, Equation 91 is identically satisfied by the exact solu-

tion to Equation 62 for = B and = upon reintroduction of the source

"Vi term.

78. Constructing the finite element weak statement for Equation 91

follows the standard Galerkin finite element procedure. The approximation

statements, Equation 78-79 are unchanged, and in Equation 80, L(qh) is re-

placed by L (qh) . Letting {.} denote the global array of (Galerkin)
w h

weighting functions N, replacing f everywhere by Aqx and reintroducing

the source term s , the TWS algorithm replaces Equation 80 with the

expression,

)cRn qh + Ahqh + Sh)dx+ At f T} h (aqh + Ahqh)dx

(92)At2{ x  h, 2- h\ h h

+ At IT Y (A )-7 qtx + IiAhqh) dx = {01

The first term in Equation 92 is the classic Galerkin statement, while over a

dozen (dissipative) FD and PE algorithms are recognized (solely) by the

designer's choice for the approximation (A h) to the Jacobian and the coeffi-

cient set Y , , , in the second term, cf., Baker and Kim (1987).

79. Figure 6 summarizes numerical results published by Baker and Kim

(1987) for sample ID hyperbolic problems of unsteady and steady-state solu-

tions for linear and non-linear inviscid test problems. The implicit Galerkin

algorithm sets the last two terms in Equation 92 to zero (as utilized for

RMA-10), and propagates the linear unsteady sine wave with little diffusion

but significant dispersion error (trailing wake), Figure 6a. The steady
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1.-

.. linear wall-layer solution for Pe=180, Fig. 6b, confirms cascading ,f the di.;-

persion error into the 2tx oscillations intrinsic to Galerkin methods. In th,.

non-linear stationary shock, Figure 6c, this basic instability casc.de. , non-

linearly to turn the solution to trash. In distinction, the Euler-Ta,',"1r-

-alerkin (ETG) algorith of Donea (1984), corresponding to c.=O= and '-=5IY

in Equation 92, does an excellent job of controlling dispersion error for the

unsteady linear travelling wave, Figure 6d. Conversely, the pvci.IltN-Galerkin

-.- (pG) algorithm of Baker (1983), a=l/2=T and Y=O=V in Equation 92 does an

excellent job for the steady-state linear wall-layer and steady-state non-

linear shock, Figure 6e-f.

80. This step will develop and derive the TWS finite element algorithm

for the hydromechanics conservation law restatements as derived before. The

goal is to establish a mathematically robust, highly phase-selective dissipa-

tive Galerkin algorithm and to thus identify needed modifications to the

RMA-10 algorithm (successor) to permit consistent stabilization for simula-

p tions with large convection velocities and/or significant bed profiles.

The Linear Algebra Statement for Supercomputing

81. Step 4 completes the detailed derivation of the TWS finite element

algorithm form, Equation 92, for recasting, extension and/or total restatement

of the RMA-10 algorithm. While this involves great detail, upon completion of

the indicated integrals, Equation 92 ultimately becomes an ordinary differen-

tial equation written for the time evolution of the expansion coefficient set

{Q}, Equation 79, of the form:

=Md{Q} h h h h h h h
'L({Q}1) M - + {E - E + {Fh  F + {Gh- G + S -A

dt v ~ vf v

2-2 h (n'B ) , }\ 2.h

(,BA) + ,n(,B- t2 ({E h(a,B-,A) .. ) (93)

The first line of terms in Equation 93 constitutes the conventional Galerkin

weak statement for the governing Equation 77, including the grid speed and

. source terms, and expressed in the ( ,rr) transformed coordinates. The

second and third groups of terms constitute the Taylor weak statement
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Figure 6. Comparison of Various Finite Element & Algorithm Solutions to

Hyperbolic Test Problems, from Baker and Kim (19R7)

i " %%

:,, -." 4

a /
',) ,; + " "-" "' -,,." " ".I, - ,- '. . -... "...'." ."- • ".°j-,.' " " . "+'.,.." " " '.- ", '."''.,." ".



additions for embedding stability mechanisms according to the definitions for

y , and A

82. The TIWS finite element algorithm is ultimately reduced to a linear

algebra statement for coding design for a supercomputer environment. For

notational simplicity, functionally combining terms in Equation 93 yields the

ODE matrix statement

-- d{Q}
(a,y) -. + (R ({Q}, S, ) S}, A, At)) = {0} (94)

0)dt (4

The specific construction for M(-) and {R(.)} depends explicitly on the

choice of the trial space basis (N k}) and the TWS parameter choices. Once

selected, Equation 94 permits evaluation of the time-derivative of the dis-

crete Taylor series,

-QIQ, + A t d{Q} (95)n+l = tQ8n dt n+O

where 1/2 < 0 <1 for the required implicit algorithm. Substituting Equa-

* tion 94, arranging terms and writing the resultant in homogeneous form yields

the final linear algebra statement.

F= M {AQI + At (e{R}n+1 + (I - 0) {R}n) (96)

d where {AQ} = (Q)n+1 - IQ)n and subscript (n+l, n) denotes evaluation at the

corresponding time level. Linearizing around t and dividing through by AtN n

yields the Taylor weak statement computational linear algebra statement in

delta form as,

r 1{}(7
-- M + 0 ] {AQ} I (97)
[At = -Q n

83. The form of Equation 97 is ideally suited to rapid determination of

the steady-state solution, as well as time-accurate predictions of the tran-

sient. The solution converges when (R(-)} ' (01 , hence depends only on the

Taylor weak statement parameters B, p, and A . The rate of approach to
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steady-state depends on , 8, y, V, At and 0, and in the limit At - F 'o Equa-

tion 97 is a Newton algorithm. The choice of an implicit integration proce-

(lure is crucial to the algorithm, and a wide range of choices affecting

stability and convergence rate exists within the Taylor weak statement.

84. Equation 97 ultimately resides in the (supercomputer) code, and the

.matrix iterative solution procedure to be selected is crucial to overall

efficiencv, hence utility of the Taylor weak statement finite element algo-

rithm. The RMA-10 code now uses a decoupled full-dimensional approximation to

the Jacobian [M/At + ...], in Equation 97, which is a candidate for replace-

ment in a supercomputer implementation. The embedded coordinate transforma-

tion has conveniently established "generalized implicit lines (GILS)", cf.,

LAn (1985), upon which an efficient factorization of the Jacobian can be con-

structed. Therefore, the appropriate procedure appears to be a tensor matrix

product approximation to the Jacobian, whereupon the left side of Equation 97

*is replaced by a factored form

"{R1 L J "J " J  (98)
4 At 377Q

The factors J and J , spanning the transverse (horizontal) plane will be

classical constructions, i.e.,

3{R1 [MC + O--IR (99)

each of which is block (2k+l) diagonal, where k is the completeness degree

of the finite element trial space basis {N k  The vertical direction factor

J can be arranged to account for the continuity equation integration, but

otherwise will be the classical formulation, i.e.,

J M + 0 (100)

85. This step completes the definitions of the Jacobian factorization,

Equations 98-100, as a function of A and ;, , y, i and 0 of the TWS algo-

rithm statement.
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Design for the Supercomputer Environment

86. The first five steps have lead to this critical point, which anti-

cipates that a major redesign of the RMA-1O linear algebra solution procedure

is critical to an efficient supercomputer embodiment (code) of the igorithm.

It is important to emphasize that this redesign focuses on the very internal

workings only of the code, ie., the computationally dense DO loops over ele-

ments that form Equation 96 and manage the (proposed) solution steps, Equa-

.. tions 97-100. The entire "external" hierarchy regarding input/output, the

-* element library, grid generation, graphics, etc., can be retained unchanged.

It is well understood that these portions constitute the major fraction of any

working code and that they remain essentially intact (on the host computer)

N while the intense number crunching operations are moved over to the supercom-

puter environment.

87. A second important point regarding step 5 is that the suggested use

of tensor matrix factorization of the linear algebra Jacobian in no wa limits

the geometric generality of the finite element algorithm. Because of the

hydrostatic assumption, leading to solution of the continuity equation in the

z-direction as an initial-value problem, there is a corresponding organization

to the 3D mesh, recall Figure 3. This is recognized in Equation 100, and

there is no requirement that these columns contain the same number of nodes,

as is the case with an approximately-factored finite difference algorithm.

The concept of tensor matrix products and sweeping on (curvilinear) paths is

directly applicable to the 3D mesh equivalent of that illustrated in Fig-

ure 3b, with the embedded tri-angular (ie., tetrahedron/pentahedron) elements

providing required geometry transitions along the bed profile as presently

done in RMA-10. It is also important to note that the "vertical" coordinate

* lines need not be exactly parallel and/or vertical, since the continuity equa-

t ion algorithm redesign will become re-expressed in terms of the contra-

variant velocity components which are always parallel to (transformed) coordi-

nate curves. The tensor transformation law is then used to provide the

. required physical velocity components.

88. Step 6 identifies the key matching facets of the RMA-10 algorithm
restatement with the supercomputer vector/multi-processing/parallel processing

environment. For this, construction of Equation 96 and 97 readily generalizes

on the concept of a general implicit line.
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L
The two basic loops for solution of Equations 96 and 97 therefore, are:

1. Over dependent variables on N grid cells, form (F}={F(3D geom,
Q, ,.. ...) and}

N3
2. For an N grid and all variables on three general planes, form

Ji=Ji (ID geom, Ui, ... )

3. Solve A, B, {Q}=f (0 , data).

Thus, the linear algebra solution sequence defined by Equation 98 effectively

sub-divides an N 3 problems into 3N2 problems of N length without loss of

'N accuracy or connectivity, making the algorithm construction highly suited for

concurrent (MIMD) parallel processing implementation.

89. In addition to parallelism derived from the factoring of Equa-

tion 97, parallelism also occurs throughout the algorithm at various levels

-.* including:

1. Independence of {F} and J in the same time period, as

illustrated in Figure 7.

2. Parallel formation of J and J on different planes, as
1 2

S"illustrated in Figure 8.

3. Simultaneous formation of equation terms for the {F} and J.
- arrays. The terms are position independent in each differential

equation.

4. Parallel and systolic methods for solving the formed system of
equations.

90. Figure 7 is a schematic diagram of logic and data flow for the

defined general implicit line algorithm. The processing direction is gen-

erally clock-wise beginning at the upper left. The vertical divisions (sweep

1,2,3) indicate operations performed in each sweep direction. The rectangular

boxes are the operations performed and the bracketed symbols represent inter-

mediate data temporarily retained for use in the next set of operations. In

each sweep direction a loop over a row of the discretized geometry builds an

equation system which is solved using Gauss elimination. At the end of sweep

". ,~ direction 3, Equation 98 is complete and a time step is taken proceeding from

-A' two to one. Closure data is evaluated at the new time step and the cycle is

*re-initiated.

91. Upon closer examination of the serial processes in Figure 7, and

with an understanding of pipelining, it becames obvious that any serial set of

-,: operations can be made parallel through the use of pipelining (also defined as

psystolic, Kung, 1980). The simple requirement is that the processors involved
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are synchronized such that the output from pairs of processors forms the input

to the next processor. The output can be bit, byte, word, or array sized,

utilizing appropriate intermediate storage for proper synchronization. Hence,

all processors are continuously busy working on the same job in different time

slots of job completion.

92. Pipelining is illustrated in Figure 7. If {F) and J. are swept

in planes normal to the x3 direction, the completion of the first direction

sweep in each plane produces the data {A} required for the second direction

sweep in that plane. Hence, the first and second direction sweeps, which are

defined serially, can be made parallel through a processing time delay and use

of an intermediate buffer array to hold the intermediate data.

93. Each difLerential equation term in {F} and its derivative J

consists of products and sums which are position independent. This means that

the terms can be evaluated in parallel and finally combined for each gridpoint

on a sweepline. Parallelism at this level has the capability to consume large

quantities of problems data. The utility of this parallelism, therefore, is

strongly dependent upon memory/processor speed ratio, data communication speed

* . "and the number of paths between memory and processors.

94. Finally, parallel processing of the equation solving process is a

consideration. Due to its broad application arena, this area has received

considerable attention by various researchers e.g., Ortega and Voight (1985).

Also, as illustrated in Figure 9, the equation solving process represents only

about 15% of the work required for a tensor product factored CFD solution.

The formation of the coefficients and right side (F) account for 85%; there-

fore, this step concentrates on parallelism in the formatiorf aspects of the

{F} and Ji components, and re-assembly of the data for an efficient, paral-

lel, iterative solution.

Data organization

95. Local spatial coupling of data is an extremely important character-

istic of numerical PDE algorithms. This coupling requirement complicates the

separation of problem data for parallel processing. This suggests the forma-

tion of data in hierarchical packets with certain data repeated among the

packets to meet the local coupling requirements. Packets at the top of the

d hierarchy would contain a few large groups of data with less repetition, while

packets at the bottom of the hierarchy would be many and small and be more

52

rr .,..lx 111 .I , I. - . . . . 1- .a



Re0vMods AvelfindB
110 Naver Stokes -

0 

IN

E,. LUl
90

U 1 0 Y

070

60
so

JU

S20

10

02

NUMER OF DIFFERENTIAL EtnUATIQN4

Figure 9. Computational Load Distribution

-GEOMETRIC INDICES (Loading. Global) ADES £OaSs MM - 2 * fiSET-
I PHYSICAL DATA STOAAC3N I

I r4 1 1.2 2 2.. ...... 5.
1 * 2 ' D EQUATION INDICES (W~eading. GlJobal) jx.f[]

I MI-

LP.

7t JJj*. IE,

Ai LittB

------------------------------------- A

AII M) 11411

Figure 10. Data Structures (F Array)

53



repetitious. Hence, the data would be distributed among parallel machines for

concurrent processing.

96. Full categorization of parallel and concurrent processing will re-

quire definition of the concurrency constraints and penalty imposed by data

unavailability of each level of the hierarchy. Categorical subdivision of the

data into specified problem data and partially processed data (intermediate

data) provides some insight. The problem data is relatively stagnant, chang-

ing only occasionally toward the top of the hierarchy. Intermediate data, on

the other hand, must be accumulated for portions of the algorithm at lower

hierarchal levels. At each level, progressively smaller memories or registers

(buffers) serve to hold data until it can be processed. Ideally, each buffer

* has a path to all processors requiring the memory data, and the data is "used

up" requiring no further transfer.

97. Since data storage and communication are increasingly important

factors as the number of processors increases, a system for decreasing data

motion is beneficial for parallel processing. In a synchronous system, data

must be available to the processors each cycle in order to maintain effective

processor use. Data manipulation and overhead are the principal culprits in

current supercomputer inability to maintain optimal speed. The need to con-

tinually rearrange data into long vectors for efficient pipeline operations

wastes cycle time and adds a tremendous overhead burden to an algorithm.

98. One method for significantly reducing this problem for parallel

processing is through use of indirect addressing pointers. The problem data

is stored in a global set and pointers are generated for random data selection

from the global set. Using this method, data manipulation is minimized with

low overhead penalty and lower level packet data repetition can be minimized.

99. Figure 10 illustrates an indirect addressing scheme for the {F}

array problem data which uncouples the global geometry and the physics. The

problem description data is represented in the lower right of Figure 10(a) as

two dimensional arrays. Four types of data are required for complete physical

descriptions. These are: initial values of the dependent variables (Q),

spatially distributed parameter coefficients (P), local field constants (C),

and differential operator arrays (M). Each of the data categories are stored

in two dimensional arrays for ROW/COLUMN addressing. The row pointers are

derived from geometric indices (10b, 10c) which are a function of geometric
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, location (grid points). The column pointers (10d) select the differential

equation variables.

Hardware variables and constraints

100. Computer hardware architectures for parallel processing are as

diverse as algorithm variations in CFD. Each architectural design has its

strong and weak points, each of which may be dependent upon the specific ap-

plication involved. It appears, however, that there are certain design crite-

ria which can be utilized to determine the ultimate effective speed of a

machine.

101. As computational chip speeds increase, it is becoming increasingly
'C

apparent that the effectiveness of a parallel architecture is ultimately mea-

sured in the ability to communicate the data from memory to processor and be-

tween processors. In a parallel system, the limit of the number of processors

4effectively used is determined by the ability to get the data to the processor

at every time cycle. The inability to do this wastes processor cycles and,

therefore, compromises solution speed.

102. Assuming two inputs and one output are required for each processor

-, operating from a single memory bank, for example, the memory access speed to

keep six processors busy must be at least 18 times the speed of each proces-
sor. If the memory access speed is only 12 times the speed of each processor,

for example, a bottleneck will result and processor cycles will be wasted

waiting for the next data to arrive.

103. Some of these machine limitations, however, can be circumvented at

the algorithm level. In the above example, the problem might be altered to

allow for four of the processors to operate in parallel on data from memory

and the other two processors to operate on data from the output of the four

processors in pipeline fashion. This would reduce the memory access require-

ments from 18 to 10 accesses per processor cycle, thus keeping all processors

continuously busy. The limiting factor for pipelines, however, is pipeline

initiatlon/end cost which in this case is two process cycles.

104. By knowing the hardware memory and processor speeds, together with

communication links, therefore, algorithm components may be made to keep the

hardware busy. Since these relative numbers of hardware components are dif-

ferent for different machines, the resulting detailed algorithm structure will

appear differently on each machine.

105. Each of these precepts was independently analyzed to construct the
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COMSYS (TM) aerodynamics algorithm, resulting in a prototype vector/parallel

processing structure. This was then coded (in Fortran) for testing and veri-

fication runs on a serial computer, ie., a Cyber-170/835. This machine then

serves as the host for an echos simulation of the assembly language code, as

well as the actual execution on a parallel processor which in practice to date

has been a Control Data Cyberplus attached parallel processor.

106. A (each) Cyberplus machine consists of a base (integer) processor

containing II units, a floating point processor having 3 units, and a 512-K

word high performance memory (HPM). All processor and memory interfaces oper-

ate simultaneously on a 20-ns clock, and communicate through a fully connected

crossbar on every cycle. The HPM is used to maintain a plane of dense mesh

raw data, together with intermediate data awaiting sequential use. The Inte-

N,- ger finite element mesh connection data string is a critically important speed

feature for parallel processing that heretofore has saddled serial machine

finite element code implementations with speeds a factor of 2-4 slower than

finite difference codes. These data are transferred from the HPM to the base

processor memories and indices pointing to problem data stored in the HPM are

calculated. In the floating point processor, multiply and add units operate

on pre-selected data to form the problem solution arrays.

107. Example executions of a model 3D problem discretization using bi-
6 2 2 2

linear hexahedron elements on meshes up to 10 nodes (ie., 10 x 10 x 102)

have a Cyberplus speedup factor of 70 over host speed. The Cyber 170-835

host speed is about one Mflop, yielding a predicted operating speed on Cyber-

plus of 62 Mflop. The base and floating point processors in Cyberplus are

high performance (50 Mflop each), hence the present verification has achieved

about 60% of the available speed.

108. A host of parallel architectures (Figure 11) have recently come

into existence and are available for algorithm testing. Many of these use

standard market chips such as the Motorola Series 6800. While software is
limited for these machines, many have some Fortran capability under Unix.

1  This utility, together with strong assembly language capability, provides the

basis for coding and testing various aspects of algorithm parallelism as was

done on the Cyberplus.

Example, FLEX/32 Architecture Variations

109. With the background established, algorithm/architecture variations

for real machine configurations require testing. The enhanced FLEX/32
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parallel processor provides an ideal setting to study these phenomena. Each

cabinet can contain up to 20 processors and 30 high speed co-processors, large

main memory of up to 18 megabytes and local memories for each protessor of up

to one megabyte each. The processors and memories can be interconected vari-

ously to provide a system adaptable to the optimal configuration defined by

the parallelism inherent in each algorithm component.

110. On the FLEX/32 system both parallel (MIMD) and pipelined

(SYSTOLIC) algorithm configurations can be tested within the same framework.

The comparative machine architectures are illustrated in Figure 12 where CCC

and CAC represent common memory access and each C2C represents 68020-based

chips in parallel with micro-code-capable computer with high speed floating

point processor. In Figure 12a, the global memory across the top is conveyed

*to all local processor/memory systems (C2C) equally for parallel processing.

In Figure 12b, the global memory feeds a single computer and results are cas-

caded to other computers, thus reducing common memory access speed require-

. ments for the same number of processors. Since each of these configurations

*. is anticipated as optimal for portions of a candidate PDE algorithm, the

FLEX/32 architecture provides an ideal test bed.

ill. Coding of the learned CFS/parallel concepts on a FLEX/32 provides

the real machine environment experience which exposes the solution capability

,.** and limitations.

558.4%



i.

CCC CAC CAC CCC

C2C C2C C2C C2C C2C C2C

a) Parallel Configuration b) Pipelined Configuration

Figure 12. FLEX/32 Multicomputer Configurations
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PART V: SUMMARY AND CONCLUSIONS

I Summary

*. 112. Despite its ability to resolve complex geometry in computmtional

* .domains such as estuaries, rivers and coastal areas, the finite element

method, as commonly applied on unstructured grids, suffers from the fact that

it requires excessive computational effort per time-step. However, this can

be attributed more to the techniques commonly employed by finite element

modelers in solving the matrix equation system than the method itself.

113. This study was conducted with three objectives in mind. The first

was to provide the average reader with an increased understanding of the two

* computational methods most often applied in computational fluid mechanics;

namely, finite differences and finite elements. Hopefully the discussion pro-

O vided has amply demonstrated that the two methods share common ground. As

noted, all computational methods can be cast into the form of a weighted re-

sidual statement. Different methods result depending upon the selection of

the weighting functions and/or stability constraints. The second objective of

the study was to offer suggestions or ideas that might be implemented in a re-

latively short timeframe to reduce the computational costs of typical finite

element hydrodynamic models. Ideas such as implementing an iterative solver

for the linear algebra problem, employing an explicit time integration scheme

with a condensed matrix, utilizing only triangular type elements to eliminate

the computation time associated with numerical quadrature, and uncoupling the

dependent variables should all be considered. The final objective was to

present a series of steps to be accomplished over a longer time frame that

will ultimately result in not only a computationally efficient model but also

a robust one providing accurate solutions while possessing desirable stability

characteristics.

114. The construction depends upon the use of a grid with some degree

of structure, although, a completely structured grid is not required. With a

semi-structured grid, the coefficient matrix; i.e., the Jacobian, associated

with the linear algebra problem can be factored such that computational sweeps

along curvilinear coordinate lines can be made. With a linear basis function,
the linear algebra problem reduces to block-tridiagonal systems in each direc-

tion which can easily be solved. Of course, higher order basis functions will

b"%
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- lution in a ,aral lel processing environment will result in an extritle1v effi-

cient computational model for computing free surface hydrodynamics over long

4.. periods of times. In addition, with the finite element algorithm t,:ised upon

the Taylor weak statement, the numerical model will have stability mechanisms

embedded in the algorithm that will provide for selective dampening, resulting

in accurate solittions in high gradient regions.

a. Conclusions

115. The first conclusion from this effort is that completely implicit

three dimensional finite element models that are programed for solution on

completely unstructured grids cannot be considered for long term flow computa-

tions, e.g. weeks to months. In fact it is questionable if such models can

* even be considered for studies that only involve a few tidal cycles.

116. If unstructured grids are considered essential, probably the best

short term solution is to employ a split mode approach. The external model

would consist of implicitly solving a frictionally damped wave equation for

the water surface elevations, with the vertically averaged velocities and

salinity and/or temperature computed explicitly using the condensed matrix

-. concept. The internal model, which computes the deviations from the verti-

cally averaged components, would then also employ an explicit time integration

scheme with condensed matrices.

117. Perhaps the simplest approach for implementation in the short term

for an unstructured grid model to be applied over at most a few tidal cycles

would be to leave the existing finite element algorithm intact but employ an

explicit time integration scheme with a condensed matrix. Even though the

computational time step will be limited by the speed of a free surface gravity

wave, the linear algebra problem at each time step becomes a trivial opera-

1 4.tion. Therefore, the computational costs should be less than that required In

the implicit model as long as the element size does not become so ridiculously

small that extremely small time steps are required.

118. To achieve not only a computationally efficient but also a stable

3D time-accurate finite element hydrodynamic model, the tensor product algo-

rithm developed from a Taylor weak statement should be implemented. Such

factorizations require some degree of regularity for the grid; however,
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through the use of block structured grids a significant degree of generality

can still be achieved. In the long term, it is believed that such a model,

programed for parallel processing, offers the best hope for 3D time-varylng

I ite element hydrodynamic computations.
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