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PREFACE
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COL Dwayne G. Lee, CE, is the Commander and Director of WES.

Dr. Robert W, Whalin is the Technical Director.
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prepared by Computational Mechanics Corporation, Knoxville, Tenn.,
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’&E METHODS FOR REDUCING COMPUTATIONAL COSTS OF TYPICAL

VY FINITE ELEMENT UNSTEADY HYDRODYNAMIC MODELS

N

L.

he

o PART I: INTRODUCTION

o

\‘1 1. In general, either the finite difference method or the finite ele-

‘;ﬁt ment method are employed to obtain numerical solutions of the partial differ-
%?: ential equations governing the motion of bodies of water. Historically, the
W majority of numerical hydrodynamic models have employed the finite difference
f?; method. The major reason for this is probably because the replacement of de-

:E: rivatives by divided differences is much easier for the typical engineer to

b ﬁ understand than basic ideas in variational calculus, upon which the finite

X ? element method is based. However, as will be demonstrated, the two methods
o share much common ground. In fact, most computational methods can be derived
;S from the method of weighted residuals, with the major difference in the

Bii methods determined by the selection of the weighting function to which the
U solution error is made orthogonal. Undoubtedly, the major reason the finite

{ - element method came to be applied in numerical hydrodynamic modeling is be-

) cause of its ability to resolve complex geometry in the computational domain.

? j In partiéular, the ability to resolve winding navigation channels in estuarine

gl; sedimentation studies is virtually a necessity. However, despite its ability

;% to resolve complex geometry in the physical domain, the finite element method
~j§ suffers from the fact that it is relatively more complicated and expensive to
ﬁﬁ program. In addition, most existing hydrodynamic finite element models appear
3#; to require significantly more computational effort per time-step. However,

S this may be attributed to the techniques commonly employed by finite element

‘ :j modelers in solving the resulting matrix equation system rather than the

jEﬁ method itself.

f}} 2. A good example of typical finite element hydrodynamic models is the

. set of models developed by Resource Management Associates (RMA) for the U.S.
jﬂ Army Corps of Engineers Waterways Experiment Station's Hydraulics Laboratory.
t:z Codes for laterally averaged water bodies (RMA-7), vertically averaged estu-

,|ﬁ5 aries and bays (RMA-2) and completely three-dimensional (RMA-10) have been
s developed. These codes are rather general in that non-structured grids that
:is can be composed of combinations of element types, e.g. quadrilaterals,

e
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triangles, etc. are employed. Since the governing equations are not linear-
- ized, Newton iteration is required to solve the resulting set of nonlinear

algebraic equations. At each iteration of the Newton scheme a set of linear

™, equations is solved using a form of Gaussian elimination called a frontal
;: solver.
?r 3, Such models can be efficiently applied in studies where steady state
;; solutions are desired. However, even two-dimensional computations can become
f: costly for relatively long term (many tidal cycles) simulations on relatively
: modest grids. Llong term three dimensional simulations are virtually impos-

J’ sible from an economic standpoint with such solution schemes.
8 4, The major purpose of this study was to suggest ideas for reducing

’ the computational time of typical finite element hydrodynamic models. The

:’ approach taken has been to consider "quick fix" ideas, e.g. implementation of
> explicit time integration with a diagonalized mass matrix, as well as, a more
" "permanent fix" involving a tensor product implicit solution programmed for
N parallel processing. The comprehensive permanent solution suggested has bene-
: fitted from the substantial progress made in aerodynamics computational fluid
» dynamics research over the past decade. The algorithm construction presented
(“ represents a step forward in top-down CFD algorithm/code design from theory
by ttkrough to parallel processing organizatioﬁ.

S. Before presenting ideas for increasing the computational efficiency

2f of typical finite element hydrodynamic models, features of both the finite

difference and finite element methods are discussed. This discussion focuses

N,

on the common basis of the two computational methods as well as reasons why

the finite element method can be so costly.

o
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?¢$ PART 11: SOLUTION METHODS
13

Tvpes of Numerical/Free-Surface Hydrodynamic Models

AQO
;i 6. Numerical hydrodynamic models can differ widely, depending upon such
t:ﬁ things as the solution technique applied to the goveruing differential equa-
P tions representing the physical processes, the assumptions made in the deriva-
f] tion of the governing equations, whether the phenomena are steady or time-

%g varving, and the spatial dimensionality considered.
hi 7. 1f the complete three-dimensional (3-D) equations of motion are

integrated over a cross section, one-dimensional (1-D) models result. Such
j models are commonly applied in computing river hydrodynamics, e.g., the com-

‘j putation of floods. Averaging over either the depth or the width results in
;: two-dimensional (2-D) models. Vertically averaged models are applicable for

the computation of nearly horizontal flow in relatively shallow and well-mixed

N bodies of water, whereas laterally averaged models are appropriate when deal-
ft» ing with relatively narrow and deep bodies of water experiencing vertical
‘f; stratitication of the water density.

{ 8. Even though a free surface exists on open bodies of water, some
;:{ modelers have treated the surface as a rigid lid when very little motion of
:;j the free surface occurs. The surface then becomes in essence a solid boundary
%;§ and the normal component of the velocity must be zero. In addition, the pres-—
;j sure can no longer be prescribed at the surface but rather must be computed.
';$ The pressure boundary condition then takes the form of a derivative boundary
;tﬁ condition, i.e., a Neumman condition as opposed to a Dirichlet condition in
:; the truc free-surface case. All hydrodynamic modeling discussed in this

i

report treats the surface as being free to move so that free-surface waves,

e.g., tidal waves in estuaries, are free to be computed.

o

;‘ 9. The governing hvdrodynamic equations are nonlinear partial differ-
N . . . P A
! ential equations, which in a strict mathematical sense are classified as being
of the parabolic type. However, outside the boundary layer the equations ex-
Pl hibit a strong hyperbolic or wave character due to the dominance of the con-
-
3 vective terms and thus are often considered as being of the hyperbolic type.
v
ﬂ\‘ In any case, because of the nonlinearity, analytical solutions do not gener-
' s s
v ally exist and one must resort to numerical methods to obtain an approximation
" of the continuous solution of the differential equations. Such methods
y
A 5
v,
W
L2
"
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consist primarily of the use of either finite differences or [iunite elements.

Finite Difference Method

\ 10, Iv the finite difference method, the domain of the independent
OO variables is 1eplaced bv a finite set of points, referred ro as net or mesh
points, whicl are structured, i.e., there are ordered directions in the mesh.
" One then seeks to determine approximate values for the desired solutions at

ey these points. The values at the mesh points are required to satisfy differ-

o ence equations that can be derived in several ways, although they are usually
obtained by replacing partial derivatives by Jdifference quotients. Three
Y approaches are presented below,

v ™ Polynomial fitting

;. 2 11. With the polynomial approach the dependent variables are repre-

. sented by a polynomial function with the coef{icients determined by the method
5: \ ot collocation, i.e., evaluation of the polynomial at the net points. The

ﬁg polynomial is then analytically differentiated to yield difference expressions
3&5: for various order derivatives.

( 12. Consider the representation in one dimension of a dependent vari-

4

):ﬂ able as a quadratic, i.e.

2
- f(x) = a+ bx + cx n)
Evaluating f(x) at the mesh points shown below

. .-‘)'1 Ax Ax
i-1 i i+1

AR

'y

vielde

A

[, = a - bAx + chz (2)

R

1
YAV

AW |
X

-

bAx + chZ 4

-
by
i

i
)
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from which .

T

‘ ar= fi (5)
L
f - f
T O

b= 20X (6)
h f + f - 2f
; c = i+l i-; i (7
B 28x%

Now, differentiating Equation (1) and substituting the expressions from Equa-
tions (5) - (7) yields the centered difference expressions below for first and

second order derivatives.

' af\ _ fin fiog (8)
y ox 1 248x

: a’g fip Y Eiy - 2y
v —2 = 2 (9)
. x /1 Ax

13. As will be seen later, the idea of representing the dependent vari-
: ables by piecewise continuous polynomials is basic to the finite element
method. However, unlike the approach taken above, the method of collocation

is not employed.

L)
: Integral method
\
¥ 14. In the integral method, the governing equation is approximately
\
i satisfied in an integral rather than a differential sense. Consider the
[ ID equation
d

30 3(Pu)
i ot " 9x ’ (10)
4
{
¢ with an integration over the spatial domain from (x - Ax/2) to (x + Ax/2)

{

h 7

L}
)
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x+0ox/2 . x4 Ax/2
" f ¢dx=-] 3(Pu) dx
x-0x/2 x~Ax/2 X
= 3
(Qu)x+Ax/2 (wu)x—Lx/Z an
By the mean-value theorem of calculus
x+Ax/2 . -
¢ dx = B(x) tx (1
x-0Ax/2

where x lies between (x-Ax/2) and (x+Ax/2). Using a mid point evaluation

yields

O - OW g

wi - Ax ’ (13)

which can be solved for @ wusing some time integration scheme. Note that
once zgain the replacement of the spatial derivative is the equivalent of a
centered difference expression.

15. The idea of satisfying the differential equation in an integral
sense rather than a differential sense is also basic to the finite element
method. However, in the finite element method, rather than setting the inte-~
gral of the equation over the spatial domain equal to zero, the integral of
the solution error multiplied by a non constant weighting function is set to
zerc,

Taylor series expansion

16. The most common approach taken in the finite difference method is
te use Taylor series expansions to derive difference quotients that replace
the partial derivatives in the governing equations. For example, {(x)

evaluated at x = i+l would be written

f1+1 = fi + gi Ax + 9°f Ax™ 4+ ... (14)
ax 11 21, 2
Ix i
8
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;5ﬁ and thus

e

- £ i T fy
TI = S+ o) (15)
o
f;)’ where 0(Ax) refers to additional terms with factors of size Ax . kquation 15
:’5 is referred to as a forward difference approximation to the first derivative
J&; of f(x). Expanding a Taylor series backwards to x=i-1 vyields a backwards
"Qs difference expression. A subtraction of the forward and backward e-pression
ﬁgﬁ yields the centered difference expression presented in Equation 8. Expres-

sions for higher order derivatives of various degrees of accuracy can be
;¢C% derived in a similar fashion. The finite difference approximation of the dif-
;ﬁg; ferential equation is then obtained by replacing the partial derivatives by
:th the difference quotients. Roache (1972) presents an excellent discussion of
3 the use of the finite difference method in solving partial differential

\ equations.
js X 17. All of these approaches to deriving a finite difference recursive
f‘f: algorithm can lead to the same expressions under certain conditions. However,
; ™ this is not true in general. For example, beyond the second order polynomial
g::: the exprgssions obtained are not identical to those from higher order Taylor
! tﬁ series expansions. Similar results will be demonstrated for the finite ele-
:“2 ment method. For example, the finite element method always yields the appro-
S priate order-accurate finite difference recursion relation on a uniform

ﬁs discretization in one dimension if the governing differential equation is

?5 linear and linear polynomials are employed. This is not normally true for
R§ nonlinear equations and/or nonuniform discretizations and/or multidimensional
L problems.
ﬂ?‘
? 2 Finite Element Method
.
‘5.' 1 . ; : . .

18, 1In the finite element approach, the field is divided into smaller

;?:: regions of convenient shapes, such as triangles or quadrilaterals, and the
::i: solution is approximated on each element by interpolation from nodal values on
f%?: the element. Using a variational principle for Sturm-Liouville type equa-
By tions, or a weighted-residual method for general equations, the partial dif-
~§;; ferential equations are then transformed into finite element equations
-2
3 ?
e
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: governing each isolated element. These local equations are then collected to
} form a global system of ordinary differential (in time), or algebtiraic, equa-
g ticens including a proper accounting of boundary conditions., The nedal values
" of the dependent variables are then determined from solution of this wmatrin
R equation system. Baker (1983) introduces the method in the tollowing muanner
'é "the finite-element algorithm is perhaps most easily interpieted

e as an approximate transformation of a partial differential cqua-

. tion (system) into a larger system of lower order differential

equations. The computational mesh is formed by the union (summa-

X tion) of nonoverlapping subdomains, called finite clements, and
. the mesh can be "arbitrarily" nonregular. Approximation p..lvno-
mials (of degreec k) are prescribed on a local basis within each
finite element, to represent all dependent variables and param-

eters, such as viscosity, Reynolds stress, and thermal conductiv-

. .
B SIS

ity. These approximation basis function sets are "cardinal,"

i.e., they reduce to zeroes and ones at predetermined locations,

within or on the boundary of each computational subdomain called

nodes. The boundary of the solution domain need not coincide with

e e
i

_ surfaces of a global coordinate system. Nevertheless, the
"natural" elliptic boundary condition specification, relating the
‘N dependent variable and its normal derivative, is routinely imple-
.; mented along any (all) disconnected portions of the solution domain

boundary. The ultimate algebraic equation solution matrix struc-

»

ture produced by the finite element algorithm is sparse and banded,

with band width being a function of problem dimension, the degree

oo o

of interpolation, and the discretization node numbering. The

resultant svstem is directly solvable, or an iterative procedure

i o
» x5

may be developed using tensor matrix products or other formulations.
For parent equation systems exhibiting initial value character, the

algorithm yields a system of ordinary differential equations that can

"ol ool
gl N A

be integrated using any explicit or implicit procedure,"

1%

S Variational approach

e

", 19. In contrast to the calculus of a function, the finite element

:;. method is based upon the calculus of variations. 1In general, if we wish to
[}

find functions ¢i(x,y) that are differentiable on (x,y) and satisfy fixed

o

N 10
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constraints on the boundary of the domain that minimize some integral

functional

%, 3y
1= f x,y,¢i, Yt 5;— dx dy (16)

b

the calculus of variations determines that ¢i(x,y) are the solutions of the

Euler—-lLagrange equations

of of
A BTSN o O (17)

Thus, if the problem is to determine solutions of linear partial differential
equations similar to equation 17 one can instead extremize the integral state-
ment given by equation 16 once the functional has been determined by inspec-

tion. 1Identification of the functional

f(x,y,¢i, 3¢i/ax, 3¢1/3y) (18)

is, of course, a crucial step. Construction of the finite element solution is
based upon an approximate evaluation of the integral, followed by construction
of the extremum.

20. In the evaluation of the integral, a functional form must be
assumed for Ai which contains expansion coefficients. From a review of
properties of fundamental solutions of Sturm-Liouville type equations such as
Equation 17, Baker (1983) discusses the desirable properties of orthogonality
and completeness and their relationship to the selection of the functional

form for ¢ The basic definition of these two properties are given below.

i
Two tunctions are orthogonal on the interval x, <% < x, if

nm

X2
s W) U (x) U (x) = A & (19)
1

X




TS 9 - N N,
~

PO T T OT T TV T T T O - aTvw

where 6nm is the Kronecker delta. The finite element procedure jcads to the
establishment of locally orthogonal approximation functious, i,e. Fquation 19
is satisfied with the exception that the inteyral fails to vanish on an indi-
vidual finite element, 7The orthogonality propertv is important since it ve-
sults in sparse coefficient matrices in the resulting linear algebra problen,

21, A function set Un(x) is detined as complete on xl A x.) if
tor every 8 > 0 there exists a number N > 0 such that the distince between
an arbitrary square integrable function f(x) and a series expansion in

Yn(x) can be made arbitrarily small, i.e.

2
N — " 1 - B}
f() Ln Ln(x) dx < & (20)

M=

With this property an increase in accuracy for the solution f(x) as N
increases is guaranteed.

22. The use of local polynomials as the approximating functions pro-
vides some degree of orthogonality coupled with the assurance of reducible
error as either the grid is refined or as the degree of the polynomial is
increused, i.e., as a more complete basis is utilized. Other functions could
be used; e.g., completelv orthogonal functions such as Bessel functions or
perhaps a polynemial spanning the entire spatial domain rather than an indi-
vidual element, However, as Baker (1983) notes, the use of completely ortho-
gonal functions severely constrains boundary condition flexibility, although
it does admit improved solution accuracy with the use of a more complete
basis. The use of polynomials spanning the complete domain results in no
degree of orthogonality and thus the coefficient matrix that is formed in the
tinear algebra problem becomes extremely dense and numerical error eventually
swamps the solution as higher degree polynomials are employed. The finite
element method Is synonvmous with the use of piecewise lecal interpolation
polynomials for approximating functions.

Method of weighted residuals

23, Since the equations of fluid mechanics are written in an Eulerian
frame of reference thev are nonlinear. Thus the variational approach to the
finite element method cannot be used since the functional given by Lguation 18

cannot be found. Therefore, for nonlinear equations the fiunite element method

12
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is based upon the method of weighted residuals. As a matter of fact, virtu-
ally all computational methods can be derived in this manner.

24. As discussed by Baker (1983), the fundamental concept is the con-
straint of the solution error. One deals directly with the differcutial equa-
tion L(q) and the boundary condition %(q) , where L(*) and %(°*) are
differential operators. Assuming that qh is the approximate solution, then
L(qh) and Q(qh) are statements of the error in the solution approximation.
This error is then required to be orthogonal to some set of weighting func-

tions W(x) over the domain and its boundary i.e.,

[{w&)zuqh)di - f WE) qMdo = {0} (21)
(Y] N

where
A = Arbitrary multiplier
X = X, ¥, 2
= Computational domain
92 = Boundary of domain
do = Boundary area differential

dx = Domain volume differential
There are as many scalar equations as members of the weight set {w(x)} . The
next step is to write Equation 21 as the global assembly of the equation

applied over each element, i.e,

/ {w(x)h,(qe) dx - x[(w(x)}z(qe) do | = {o} (27)
Q 3 nan
e e e
where h.- M _
q(x) - U gq e(x) (23)
e=1

and M 1is the total number of elements., The basic distinction between the
finite element method and other computational methods, e.g. finite volumes, is
the selection of the weight function basis {W(x) .

25, Baker (1983) demonstrates that in order to reproduce the cnergy

functional extremization tor the linear, steady state heat conduction problem

13




the weight function basis must employ the same basis as used in the approximi-

tion of the solution, i.e.

d, (x) = H\k(.\:)} {(gte (4
and thus

{w(x)}

il

N (x)) (15)

The comparison is exact except for a closed surface integral over the boundary

of each element. For the analeogy to be exact this integral must be zero.

This is not the case for an individual element but the assembly of the surface

integral over the complete domain does yield a zero value. However, this
implies that the derivative of a dependent variable may be discontinuous at
element intersections.

26. A finite difference algorithm can be derived by sctting the weight
functien basis {W(x)} to be a set of constants. The surface integral noted
above then becomes zero over each element since a derivative of {W(x)}
appears in the integral and the derivative of a constant is zero. Therefore,
derivatives of the dependent variables are continuous at finite differcuce
cell interfaces. This is a fundamental difference between the two methods ax
derived by the method of weighted residuals. The reason for defining the
finite element method by forcing the method of weighted residuvals to repreduce
the variaticnal problem for a linear problem is because the theoretical struc-

ture tor such linear problems guarantees an optimally accurate solution,

The Linear Algebra Problem

27. Consider, for example, the depth-averaged 2-D equations for free-
surfarcc hydrodynamic flows. A finite element (FE) algorithm for these equa-
: . . . . h
tions formally states the requirement to establish an approximation ¢ (*Y to
the solution set q(x,t) - {¢$(*), ui(‘)} where ¢ dis the water surface and
. . . . t
u, s the velocity, to be constructed on a discretization @' of the solu-

)
tion domain @ ¢ R » t &{xi: 1 <1 <2, t > to} . This approximition is

14
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constructed as the union of elemental contributions qe(xi,t) » which in turn

are defined as expansions in the kth degree polynomial cardinal basis set
{Nk(-)} and time-dependent nodal expansion coefficients {Q(t)}e . Mathemat-

ically, this statement of approximation is

h:' 2
q = g qe(xi,t) (26)

where
. T
q, = {Nk(xi)} {Q(t)}e 27

28. Since Equations 26-27 define the approximation, substitution into
the flow equations defines the associated error. The second step of a FE
algorithm is therefore a formal statement of constraint on this error. The
form of this constraint which, as previously noted, enjoys an optimal error
estimate for a linear elliptic problem statement, is the so-called Calerkin
statement, which requires the distribution of the error to be orthogonal to
the function space {Nk(-)} used to construct qh . For the more peneral
precblem statement wherein nonmsmooth solutions to hyperbolic equations are
sought, the Galerkin statement is typically augmented with an additional dis-
sipative constraint, Baker (1983). The mathematical statement of ¢rror con-

straint is thus of the form

h - c , hy _
_/;z{Nk(')} L(q ) + B _/;2V{Nk( YILT (q) = {0} (28)

-

where B 1is a parameter set that can be optimized and 1) 1ic the sub-
stantial derivative operator.

29. Upon evaluation of the integrals in Equation 28, there results an
ordinary differential equation system written on the time evolution of the

expansion coefficient set {Q(t)} in the form

[M]%?{Q]+<UHT[C]+(GDE{O} (29)

15
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where

M) mass matrix
{u}

[C] = associated (convective derivative) influence on the dependent
variable set {Q}

convection velocity field

{G} = remaining source terms

For the time-accurate solution, Equation 29 is employed to evaluate the Taylor
series

(e} = - T - :
(F} = Qg - Q) - ae o {ad 0 - oun = (O] (30)

Fquation 30 is a nonlinear algebraic equation svstem for 6 > 0 , the solution

statement for which is cast using a Newton iteration algorithm in the form

ptl _ P
(J1 {5q}j+l z - {F}j+l (31

where p is the iteration index. The solution field is defined as
Pl _ 5P 1P 49
@F = @+ Gty (32)

and the Newton Jacobian is constructed as

[+5)

[J] —%g% (33)

@

All computational models of unsteady physical conservation laws eventually
produce the algebraic equation system (Equation 30) the numerical solution ot
which (Equations 31-33) constitutes the heart of a code.

10, In the finite element method the lacobian or coefficient matrix is
a relatively sparse matrix whose bandwidth crucially impacts upon the computa-
ticnal costs of solving equation 31, The bandwidth is dependent upon the
dimensionality of the problem, the number of coupled variables being computed,

the number of elements und the degree of the approximating polynomials. Since

16
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ke .
3 the Jacobjan is independent of x , any direct solution procedure is usable.
jhz Mest existing finite element hydrodynamic models, e.g. RMA models, empluy a
o solution scheme which reduces the bandwidth before employing Gaussian elimina-
: : tion. However, the computational costs for multidimensional (especially 3D)
TE vodels can still become astronomical for time dependent problems.
28
».; Summary
3
o 31. The two major computational methods, i.e. finicte ditference and
; finite element, have been discussed. Common features as well as major differ-
" ences liave been noted. The finite element method for general equations must
:: be derived using the method of weighted residuals, with the weighting function
_:3 being the same as that u:r.ed to approximate the dependent variable. It can be
“:ﬁ shown for a linear equation that this results in the lowest possible solution
A error. However, this can not be shown for nonlinear equations and, in addi-
,:5 tion, as a result of a nonzero surface Integral on individual elements, deri-
}*2 vatives of the dependent variables are not gencrally continuous. ‘fTherefore,
{; mass continuity may not be satisfied locally in hydrodynamic models, although
{

it will be satisfied globally, i.e. over the complete domain.

¥
L,

32, Firite difference algorithms are normally derived by replacing the

-
3

derivatives tv difference quotients derived from Taylor series expansions,

;E-

-

The resulting difference equations are then evaluated at each net point., As

L -
-

demonstrated, however, there are other approaches, e.g. the use of polynomials

s

and the integral method. Each possesses features of the finite element

method. In fact, if the weighting functions are taken as constants, finite

difference type algorithms can be developed from the method of weighted resid-
uals, fn particular, setting the constants equal to one results iu what is

referred to as a finite volume algorithm. On a structured prid with uweiform

L5

grid spacing, a finite difference algorithm that would result from application

s

of the integral method results. With constants used for the weighting tunc-

A

- tions, the continuity of derivatives is assured and thus mnss consecvation is

. . ;

‘. nutisfied even on the elcment level. However, the global solution crror may
\ -

kjy be larger than when the veighting function is taken as the basis function,

,:\ 33. Finally, it has been demonstrated that regardless of the computa-

tional theory, ultimately a linear algebra problem must be solved. The manner
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putational cost in three dimensional time varying hydrodynamic models.
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‘N PART I1[: SUGGESTION FOR IMPLEMENTATION IN THE SHORT-TERM X
L~ )
" 34. The major computational costs involved in multidimensional numeri-

1

cal tydrodynamic models occur in solving the linear algebra problem given by

Equation 31. Note that even if the original system of equations are non-

s

-
-y’

linear, a linear system of the form

o

[Al{x} = {b} (34)

must be solved for each Newton iteration. Therefore, the major considera-

-

tion in attempting to reduce the computational costs inveolves the manner in

which the linear algebra problem is solved.

(g

35. As previously noted, the size or bandwidth of the coefficient

e s s w8

o uf oo

matrix A is dependent upon the problem dimensionality, the number of coupled

dependent variables, the number of finite elements, and the degree of the

interpolating polynomials. Anything that can be done to reduce the size of

A should reduce computational costs, regardless of the solution procedure
employed for the linear algebra problem.

{ 36. Depending upon the type of element shapes employed, the compiexity
of various integrals formed in the finite element method varies. If numeri-
cal quadrature is required for the evaluation of these integrals over each

element, a substantial portion of the computational costs for one and .two 1

' APTAA

dimensional hydrodynamic models can be related to construction of the coeffi-

-

_* cient matrix. Therefore, one area to consider for possible reduction of
'j computational costs is in the construction of the coefficient matrix.
s
37. Numerical hydrodynamic models are typically time dependent models
for computing flows over time periods ranging from a few tidal cycles to
b perhaps several months. In recent years most models, both finite difference
:f and finite element, have employed implicit time integration schemes. How-
;: ever, depending upon the application, explicit schemes may be more economi-
_ cal and should be considered as a solution that could be implemented in a
< ¥
iy short-term time frame.
o Linear Algebra Solvers
LR
&
b 38. Any numerical linear algebra procedure is a candidate for solving
2
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::&: Fquation 34, A key implementation aspect relates to code efficiency. Finite
3"‘ element fluid mechanics codes have gained a reputation for being less effi-
}\; cient than their finite difference counterparts. As noted earlier, this is
-?Ej not a consequence of the finite element theory itself, but instead reflects
E:j directly on implementation choices for the linear algebra statement. Based on
‘;; the finite element structural mechanics historical development of direct,
T out-of-core solvers, many (most) finite element code implementations have
EQﬁ relied on direct extension of these solver software packages to the fluid
*ﬁi mechanics problem classes. In distinction, a direct solution (of even a
al linear Poisson equation) is never attempted in a FD code, but instead a matrix
At iteration procedure is defined that uses easily formed (usually block-

V;E:i tridiagonal) approximations to the Newton algorithm Jacobian (Equation 33).
;EEE: The computer storage requirement for the approximate Jacobian is negligible in
TR comparison, as is the CPU needed to execute an LU decomposition and back sub-

,r\‘ stitution. The computational penalty is a much reduced convergence rate in
:é;: comparison to a Newton iteration, but each iteration proceeds so rapidly that
ﬁj{ the many grid sweeps required for the FD code are typically completed with
f{\ minimal expenditure of computer resources.
( ) 39. Candidate methods employed in finite difference models include

i:i point iterative methods (Jacobi, Gauss-Seidel, successive over-relaxation),
ﬁ;f line iterative methods (vertical/horizontal over-relaxation, alternating

o direction implicit, approximate factorization), conjugate gradient methods and
\:i: multi-grid techniques.,

4?: 40. The RMA models employ a direct solver called a frontal solution

i{: procedure. In the frontal method the assembly and elimination of equations is
;“:, interweaved, based on the fact that an equation can be eliminated if all the
s, elements contributing to the equations are assembled. The front is defined by
':&: all the active coefficients that are not yet eliminated. Thus, the equations
'SZE are not assembled and eliminated sequentially. New equations take up the

! {; positions of equations which have ceased to be active and the front matrix

- contains only a small number of zero coefficients., When employed in a finite
433 elerment context, the efficiency of a frontal scheme is dependent upon the

‘uis ordering of the elements, with the ordering of the nodes being immaterial

\fNI: since the equations are assembled on an element-by-element basis. A detailed
f;.; discussion of the frontal approach is given by Irons and Ahmad (1980)., Sloan
‘ ﬁ;:
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and Randolph (1983) show that an upper bound on the number of operations is

given by

4

]

. T=Nwtiuw-2 (35) '

-
.

e

oz

-
~

where W 1is the maximum front width and the rank of the coefficient matrix is

N. By comparison, Gaussian elimination operating directly on [A] involves a

. 3
total number of operations proportional to N7, ;

AL

-

Structured vs Unstructured Grids

L B 8

4
) 41. The solution cost can be directly related to the type of grid E
.% employed. A mesh or grid is said to be structured or regular if the geometric \
} domain is divided into q rows with p elements per row. With regular :
15 grids, the unknowns are ordered such that the nonzero entries of the coeffi- ;
ié cient matrix lie in a predictable pattern. A completely unstructured grid %
. implies that the non-zero entries are scattered rather haphazardly throughout j
( the matrix. Between these two types of grids are semi regular grids. With
ﬁ semi-regular grids the domain is divided into rows and columns but there may %
z be a variable number of elements per row. Figure 1 illustrates the three :
&

types of grids.
42, Usually, the more flexible and general a model is the greater are
its solution costs. Therefore, allowing for completely unstructured grids in §

the RMA codes significantly increases the matrix solution cost. The factors

i a.r

which most affect matrix solution costs are total arithmetic operations re-

quired, storage requirements and overhead due to data transmission and to

s logical operations associated +ith the solution method. The relative impor- :
;E tance is dependent upon the computer being used and the size of the problem E
': being solved. :
. 43, Many efficient direct methods exist, e.g. the frontal solution

j scheme employed in the RMA codes; however, depending upon the problem an )
'j iterative method can be more efficient, Among the factors to be considered f
:j are computer storage requirements and the number of arithmetic operations re-

’ quired. Hageman and Young (1981) state that for many problems there is a

f~ cross-over point in the number of unknowns, above which a good iterative ]
2
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method becomes more cost effective than a good direct method. In particular,

" P

they indicate that for unstructured grids the block CCSI (cyclic Chebyshev
semi-iterative) scheme, used with an algorithm to minimize bandwidth, is

worthy of consideration. A recent paper by Mavriplis and Jameson (1987)

o

demonstrates that the efficiency of a multigrid solution on unstructured tri-

s
A,

angular meshes employing Jacobi iteration is competitive with available struc~

tured mesh Euler solvers. Therefore, one measure worth considering for

.d implementation in codes such as the RMA codes is an iterative solution scheme.
N A more permanent solution to the reduction of linear algebra costs is to re-
duce the generality of the model to allow at most only semistructured grids
such that a tensor product factorization of the coefficient matrix is pos-

. sible. Through the use of grids composed of blocks, significant generality is
retained. With such an approach the finite element method becomes a viable
solution method for computing long term hydrodynamics. This approach is dis-

cussed in PART 1V.

Reduction of the Size of the Coefficient Matrix

o~

{ 44, The size, i.e., bandwidth of the coefficient matrix in the linear
algebra problem is dependent upon the number of coupled partial differential

equations to be solved, the dimension of the problem, the number and ordering

e e 2 2 a1

of the finite elements and the degree of the basis function, i.e., the approx-
imating polynomial. Thus, in order to reduce the size of the matrix one or

o, more of the above factors must be addressed. Since the problem dimension and
;: the number of finite elements employed are problem dependent these are not

: considered. However, the coupling of equations and the completeness of the

basis function are certainly areas in which modifications should be

5

considered.

L 2 T

Vs a 2 aa’s

Reduction of matrix rank

45, Typical finite element hydrodynamic codes, e.g. the RMA models, are

completely implicit in that all variables are coupled. For example, in the 3D
e RMA-10 model the coupled variables become the water surface, three velocity
components and salinity. One approach taken in numerical hydrodynamic models

that employ the finite difference method is to compute the water surface

implicitly through the derivation of a frictionally damped wave equation and

to then use the implicitly computed water surface in explicit computations for

23
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the velocity components, which are then employed in computations for the sa-

linity, i.e., the equations are uncoupled. With this approach, restrictions
on the allowable time step will occur; however, the stability criteria are
primarily related to the speed of a water particle rather than the speed of a
free surface wave, which can often be quite restrictive.

46, With this approach employed in RMA-10, five matrix equations would
need to be solved but each matrix would only be 1/5 the size of the matrix
arising from the coupled case. Since the arithmetic operations required for
solution are proportional to the rank of the matrix times the square of the
bandwidth, obviously the solution of five small problems will be much less
expensive than that of the large problem. This should be true even though the
computational time step allowed will be smaller than that for the completely
implicit case.

Bandwidth reduction

47. The second way in which the size of the coefficient matrix can be
reduced is related to the degree of the approximating polynomial. The greater
the degree of the polynomial the denser the coefficient matrix becomes since
the higher degree elements connect nodes over a larger stencil. Thus, the
bankwidth is significantly larger. Baker (1983, Ch. 3) compares the computa-
tional requirements for a potential flow solution using linear and quadratic
approximating polynomials. A discretization containing 624 nodes was solved
in both cases. The quadratic solution required approximately twice the com-

puter storage and 40 times the CPU., The two solutions were comparable in

!{fg accuracy.

::E: 48, 1In the RMA codes, the water surface is approximated with a linear
::ﬁ; basis function; whereas, the velocity components are approximated by a qua-
ﬁéi_ dratic. For a non-free surface incompressible fluid, the velocity is required
::éi to be approximated by a polynomial of one degree greater than the pressure.
i:a? However, free surface hydrodynamic computations are analogous to compressible
?»¥: flow computations in aerodynamics. For example, hydraulic jumps develop when
;_'. the water velocity become supercritical while shock waves develop in air when
j::; the Mach number exceeds one. Finite element researchers in the aerodynamics
’:sa field routinely employ the same degree basis function for the velocity and
::}: pressure. Therefore, one possible means for reducing the computational costs
o of codes such as the RMA finite element models would be to employ a linear
;ﬁﬂ* basis function for the velocity components also. Naturally this will reduce
bood
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1‘1 the theoretical accuracy of the computations for a fixed mesh size. However,
. as illustrated by the potential flow solution example above, this may be a

l;: preferred alternative. One point to consider is that rather large eddy dif-
;: fusion coefficients must often be employed in models, such as the RMA codes,
2 that employ the standard Galerkin finite element method in order to dampen

?}' dispersion error waves that are created. The use of eddy coefficients multi-
Ni plied by second derivatives, however, does not provide selective damping.

52? Therefore, the flow solution of interest is also damped with the net effect
%3& being that a lower order approximation with built in numerical diffusion might
“ as well have been used. A discussion of finite element solutions based on the
&N Taylor weak statement, which provides selective numerical damping (dampens

N primarily the short wave lengths) is presented in PART 1V,

i: Static condensation

' 49. One additional method for reducing the size of the coefficient

matrix is referred to as static condensation. This technique can only be

applied to linear equations using higher degree basis functions. The proce-

dure involves reducing out the interior nodes of a higher degree element from

v
a

the problem. The effect is an overall reduction in the rank of the coeffi-

P,

cient matrix and thus substantial potential savings in computer costs. Of

course, due to the nonlinearity of the hydrodynamic equations static conden-

LA RS

sation can not be applied unless the equations are linearized. However, this

Ll
VT
Y%ty

is often done in finite difference models where the nonlinear convective

du

';& terms, e.g. u 3% ° are handled by taking the u at the previous time step
L,

EE; or perhaps, as in the uncoupled frictionally damped wave equation approach,
:”: the complete term is lagged at the previous time step. This effectively

j: linearizes the equations at a time step and thus static condensation could be
;5 employed if higher degree basis functions are assumed.

?:i 50. One additional comment concerning the lagging of the nonlinear

E; terms at the previous time step should be made. With such an approach, the
i:j matrix equation is solved only once per time step as opposed to the iterative
N 3 Newton Raphson scheme employed in models such as the RMA codes to solve sys-
?E tems of nonlinear algebraic equations. The RMA codes commonly require 2-3
:;E iterations per time step. Lagging the nonlinear terms will immediately reduce

the computational cost by a significant factor, even if nothing else is done.

Lagging the nonlinear terms should not significantly influence the solutions
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Aéﬁ generated by codes such as the RMA models since they are normally applied for
YIS
) the computation of gradually varying phenomena, e.g. tidal circulation in

N estuaries. This would not be the case if the models were intended to compute

’::: rapidly varying surges or perhaps hydraulic jumps, i.e., highly nonlinear

At ,‘-

e phenomena.

L\

)

BV Reduction of Costs in Problem Setup

~,

D\

ﬁ}: 51. In the finite element method, integrals involving the basis func-
A tions and derivatives of the functions arise, 1If the finite elements are re-
Ky stricted to be triangles in two dimensions (N = 2) and tetrahedrons in three

e
’_:ﬁ dimensions (N = 3), all integrals can be analytically evaluated through the
!¢§§ use of the expression below
: EE
| .a

G IR T A T SR N[y [, | (36)
2o 1 2 %3 %% N N, 4NN
. N 27374
> I Q2 cR
Lo e .

.‘L

{1) for linear as well as quadratic basis functions. However, if quadrilaterals

) .

{ % and/or quadrahedrons are employed the resulting integrals can not in general

+ 5 B

}’v be evaluated analytically. Therefore, the integrals must be evaluated numeri-

1ot} cally with Gaussian quadrature commonly employed. This of course increases

;2} the computational costs involved in forming the matrix equation, with these

- 4

:tﬂ- costs being directly related to the order of the quadrature employed. Since

";i- the quadrature error is O(h)2k , where k 1is the order of the quadrature

1Y

3¥f formula and h 1is a measure of the mesh, using k=2 should be quite suffi-

s> cient for models employing quadratic basis functions. Reducing the order of

.. J’.

:Ef the numerical quadrature in finite element models to be no greater than the

Lj}i order of the basis function employed will reduce problem setup costs.

ol

<
Implicit vs Explicit Time Integration

o
e :z
-;ij 52. The finite element algorithm applied to time dependent partial dif-
N
Lot ferential equations yields a large order system of ordinary differential equa-

>

tions., In other words, the matrix equation involves unknowns that are time

X

derivatives of the nodal values of the dependent variables. Any integration

r,
.‘)
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formila can be applied to transform the system of ordinary differential equa-
tions to an algebraic system,
53. The general form of the system of ordinary differential equations

becomes

(c1 d{Q(t)} + [D] {Q(t)} = {B} (37)
dt

Employing a one step time integration algorithm yields

<[C] + Ato© [D]) {Q}n+1 +<(At(1—6)[D] - [C]> {Q}n = At {B} (38)

where ¢ controls the implicitness, e.g., 6=1 yields a completely implicit
scheme while 6=0 results in an explicit time integration scheme, i.e., the
forward Euler integration scheme., An interesting observation is that even if
6=0 , i.e., the time integration is explicit, a system of algebraic equations
remain to be solved in an implicit fashion since the matrix [C] is not a diag-
onal matrix. This, of course, is unlike the finite difference method which
yields (by delinition) a diagonal recursive relationship for the unknowns when
an explicit time integration scheme is employed.

54. Based upon the the fact that [C] is not diagonal, it would appear
foolish to employ an explicit time integration scheme with the finite element
method since essentially the same linear algebra problem remains, but with the
computational time step restricted by stability criteria. One solution is to
diagonalize [C]. As discussed by Baker (1983, Ch. 4), there are two common

approaches taken. One method is row wise summation, i.e.,

Ciy = 2. Cyy 3 (39)

whereas, the second is normalization of the diagonal elements of [C] with the
off diagonal terms then set to zero. The non-diagonalized matrix is referred
to as a consistent matrix, whereas, the diagonalized form is referred to as a
condensed matrix.

55. Baker (1983, Ch. 4) presents solutions for the one dimensional

diffusion equation (without convection) for using both the consistent and

27
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o
i
:hbk condensed forms on the same grid. The grid used was rather coarse, and dis-
fﬂ)h persion error "wiggles'" developed in the consistent solution. However, the
'i; wiggles disappeared in the condensed solution, confirming that the condensing
:}j operation yielded an artificial smoothing of the solution. 71t might be noted
;E; that the maximum allowable time step for explicit integration of the condensed
}’;\ form was about twice that of the consistent form.
A 56. To further illustrate that finite difference recursion relations
::?: can be derived from the weighted residual method used for generating the
::EE finite element method, Baker (1983, Ch. 4) shows that for a convection-
v diffusion problem in one dimension, with a linear basis function, the finite
o element method, employing the trapezoidal rule time integration algorithm,
:j; yields what is referred to as the Chapeau finite difference algorithm on a
EES uniform discretization. If the trapezoidal rule integration is employed, but
{'ﬁ the coefficient matrix multiplying the vector containing the unknown deriva-
7} tives of the nodal unknowns is diagonalized, the resultant recursion relation
-Qii becomes identical to the Crank-Nicolson finite difference scheme.
}2:5 57. 1t appears that if the hydrodynamics of a water body are to he com-

puted on an unstructured grid, an explicit time integration scheme with a con-
densed matrix should be considered for implementation. Even though the time
S step will be restricted, the linear algebra problem becomes a trivial opera-
~ tion and the computational costs may well be significantly less. This will
especially be true if the water surface is computed implicitly with all other
> variables computed explicitly using the condensed form, since the most severe
stability criterion, i.e., the free surface wave speed, will be removed from

‘:: the stability criteria,
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PART IV: LONG TERM (PERMANENT) SOLUTION APPROACH

58. The discussion up to this point has focused on ideas for reducing
computational costs that can be implemented in a relatively short period of
time. A longer term research effort following the approach outlined below
will yield not only a computationally efficient finite element model but one
with excellent stability properties. Much of the suggested approach is a re-
sult of a study of the fairly typical finite element hydrodynamic code RMA-10
which was developed by King (1982).

Problem Statement

59. The Reynolds-averaged Navier-Stokes equations, Cebeci and Smith
(1974), are considered appropriate for hydrodynamic three-dimensional flows.
The form usually considered as baseline for hydrodynamics analyses is given

by King (1982) as,

du Ju du du 3 du 3 du

pag *ougy *oevay +oover - g% T 3y Cxydy) (40
3 du )

- —— —_—) - - * =
Bz( xz9dz Ix Tx 0

v v v v é_( v ) ov

e * PuzL F oovas 4 pwr— - o nyg;) - 5;(€yy5;) (s1)
- %;( zz%g - gz -eg- =0

L LA R (43)
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ER' where X, = {x,v,z} is the cartesian coordinate system, u, = {u,v,w} is the
By corresponding velocity field expressed in cartesian components, g 1is grav-
'S ity, p 1is pressure, and ¢ 1is the water density. Further, txx , ‘xv ’
;:;i etc. are the turbulent eddy viscosity coefficients, and T; , T: , T;‘ are
6:}: the surface tractions operating on the boundaries only. Figure 2 schemati-
Ly

cally represents the water body and conventional directions for the axes and

A0

) velocities. For the RMA-10 analysis, it is assumed that the vertical momentum
'S
:;:‘ equation (42) may be reduced to the form,
2
.‘I
o b 3
pg + 3£ = 0 (44)
-
o
“
S0
v
N i.e., the pressure in the vertical (z) direction is hydrostatic.
\l
.'-" 60. RMA-10 handles both homogeneous and stratified flow problem de-~
j?f scriptions. Taking the general case, the assumption of Equation 44 yields the
o pressure gradient expressions
b 3 3 +h
P _ a
( > - 7= f g dz (45)
- z
4~
o~
O
2 22 [ g a (46)
e =
’a - y 5; z
~‘.’
S For the homogeneous flow assumption, Equations 45-46 then simplify to,
AN
.‘\'\"’
‘l\‘i
o ax - PBlax T Ok
e
.\..l
-"‘::. -?-E 2= _3.3 E—a—
Lo 3y - P8lay 5y (48)
o where the definitions h(x,y,t) and a(x,y) are noted in Figure 2. The RMA-10
f}j equation set is completed with the inclusion of an advection-diffusion equa-
(',
’:’ tion for transport of scalar fields, eg., temperature, salinity, sedi{ment, in
J‘J
:3; the form (with temperature as the example),
o
3
%
23 30
ol
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o
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velocities

bottom
elevation 2

X

and Ceometry pefinitions
1 Flow Analysis,

Figure 2.1).

Coordinate System
For 3D Hydromechanica
From King (1982,

Figure Z.

is a source-sink term and 2 state equation of the form p=p(S,T) is
r surface ared are

where es
added. For compl acting on the wate
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2 2.1/2
where V = (u” + v7) , the surface velocity magnitude and C 1is the Chezy

coefficient., These stresses are not constant and thus are incorporated into
the nonlinear solution dependent upon the local velocities (only over
surfaces).

61. As a final formulational step, the hydrostatic pressure assumption
deletes the remaining terms in Equation 42 as higher order. Thus, the con-
tinuity equation 43 becomes that governing the vertical velocity component w.

Integrating over z yields

Jo ey oy g SN Ly ety sy (52)
a 3 3y’ ¥ T @ Gz 97T TWboY.a X,y,a

At the top surface,

w(x,y,at+h) = u(x,y,a+h) EL%EEL + v(x,y,at+h) 31%521 3t (53)
While at the bottom,
w(x,y,a) = u(x,y,a) da + v(x,y,a) %% (54)
Combining Equation 52-54 yields,
%;fudz+-—-favdz+-—=0 (55)

Thus, with Equation 55 the vertical velocity appears only in the lateral (x,y)
momentum equations. RMA-10 treates only a minor coupling, computing w sepa-
rately from the basic continuity €quation 43. The pressure p can be elimi-
nated via Equations 47-48 and replaced by depth h which is a function only
of x ,y and t , as governed by Equation 55. Finally, Equation 49

32




completes the set for scalar field convection-diffusion along with p=p(S,T).
62, RMA-10 code implementation of a finite element algorithm for solu-
tion of Equations 40, 41, 43, 49 and 55 utilizes a coordinate transformation
to a '"regularized" solution domain, which in itself creates potential numeri-
cal instabilities. Contemplating the need to alter this, the first step to
long term generalization would be to re-express the governing hydrodynamic
equation system in the preferred form of a (hyperbolic) conservation law
statement. The computational aerodynamics literature has become filled with
the ohservation that this form is preferred for a variety of reasons including
truncation error control, stability and exact satisfaction of sharp solution
gradient (approximations). Thus, without loss of any generality, the first
step would be to complete the details of re-expression of Equations 40-43 and

49 in the form,

1.(p) axi(pui) o + 3y + v 0 (56)
3(001)
L(pui) = T + o (u}puj + p&ij 01]) =0 (57)
= 3p®) . 3 - -
L(p4) st t axj uipd dj + S¢ 0 (58)
L(h) = %% + 3—3— uh + EGa,h) 45 =0 (59)
i

Fquation 56 expands the summation index convention, the variables have the
same interpretation, and @ represents any scalar field.

63. The generalized stress tensor Oij is constituted of its laminar
and Reynolds averaged contributions,

= 4E,, - 'u! 60
9y 3 no 13 pu iuj (60)
and the integral of Eij = Bui/axj + auilaxi yields the surface stresses
explicitlv expressed in Equations 40-42. The Reynolds stress u;ug , as well
33
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as the diffusion flux dj in Equation 58, would be expressed in a gradient-

diffusion law statement, i.e.,

t /3u Ju
- [ [ = ___1 _._..l.(. = E-L
Uiy ij(gxk + o, )’ dy ki o, (61)

where V;k is a turbulent eddy viscosity tensor and ki' is the correspond-

ing diffusion tensor for ¢ . The terms s'S and s are the corresponding

h
source terms, and f(a,h) is a functional form to be established that contains
the differentiability required in conversion of Equation 55 to 59. Once this
is completed, the 3D hydrostatic form of the governing equation system can be

compactly stated as,

L =94+ d4s=-0 (62)

where the dependent variable set is q = (pw, pu, pv, pd, h). The exact forms
for the corresponding flux vectors fj , and source term s would be derived.
Equation 62 expresses the governing equation system in the preferred conserva-

tion law statement form.

Transformation for Variable h

64. The RMA-10 computer program employs a coordinate transformation to
regularize the solution domain and eliminate the explicit appearance of a
time-varying upper surface (h) location. Figure 3 illustrates the transfor-
mation, which is defined by King (1982) as

h(x,y,t)z' =z - a(x,y) , x" =x , y' =y (63)
Thus,
L 1 h 4
%%(x,y,z(Z')) = %ﬁT(X',y'.Z') “ & (%;2' + %%) %%T (64)
34
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,1;2 ay(x,y,z(z ) 5;T(x ARLD h (axz + ax) 9z (65)
\..:'- au ' I T 1V PSR
o Az y,2(2')) = ¢ = (x',y',2") (66)
20
B 3u 'y = 38 v v ey _ 1 3h o 3u'

k) SE(xey,2(2") = ==y ,2") - Ge2") 37 (67)
Lt
1:."

S: where u' = u'(x',y',z'h+a). Similar expressions are generated for v' and w',
SA
’.[' which when substituted into the vertically integrated continuity equation 55
A yields,
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a(zik)

oh_, , daydv's L o
(EZ + ay)BZ'} h dz

1 ,3u' 1 ,3h , 3a, ow' av'
JZ Gxm 85 G2 YR 3z t ey T

=l Y

N
0

(68)

q${ )

3 (a+h) _
ax

3(a+h)

+ U' (x' !y'!l) ay

u'(x',y',0) %% + v'(x',y',1)

xX
)\15}3

<

&f&

vt (x' v da , 3h _
vi(x',y',0) 3y ot 0

65. After integrating and proceeding through the remaining equations,
. expressing all variables in the primal system then yields the final 3D govern-

ing equation system in RMA-10 as
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U2 gty s o _
j; (5; (hu') + 5y (hv')>dz + Yol 0 (69)

Ju' du’ ou' 3u' 9h, du'
ph— + phu'— + ohv'z— + ow'7—7 - p(u'sx, + v'sy, + z' 5?)527

5t 3% 3y 3z (70)

du'

3
3'[6' Bxl—a'[e' u

uty _3_(€x'z' du’ 3p
y'ay’

3z’ h 5;7) T T ' T 0

v’ fov' v’ , ov'! , 9h, ov'

' - ' 1 on
phat + phu' > phv B + pw'z—s p(u stV Sy' + 2 Bt)EET 1)
3 v' ) v' z _
- bggleg el - bgprlegigir) - eI S0 - e, =0
oh 1, 3 ' 9 ' v o
=+ JL (v (hu") + 525 (')} dz' = 0 (12)
AT e 0T 10T 10T y oh 9T

(73)

— —_— ' ] —oINEs
hat + hu 357t hv'=—r 3" +owis—s (u s TV Sgr +z at)az’

] T ) AT
hQX'(Dx Bx') v(Dy 'a"y") - 'a";T(Dzré‘z—') - hes =0

Equations 70-73 are completed with the state equation p=p(S,T) , and after

transformation,

1
P =.[ pgh dz' (74)
z

The prime notation on the eddy diffusion coefficients indicates their approxi-
mate similarity to the original coefficients.

66. King (1982) notes that a price is paid in terms of mathematical
consistency for the domain coordinate transformation. Specifically, parallel
flow at the top or bottom of the new system transforms to flow parallel to the
surface in the original system. Thus, at slope changes in the bottom profile

there is a discontinuity in the flow trajectory and in the magnitude of the
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vertical component. For example, (see Figure 3a), the vertical velocity is
zero in the left-hand element and finite in the right-hand element. Thus, to
record velocities at nodes for output requires averages be taken and slight
inconsistencies are generated. Vertical steps (or sharp changes) in the bot-
tom profile can only be treated by approximate boundary condition specifica-
tions, and in general the approach is unable to accurately describe such a
system. Flow separation is not restricted, however, and the coordinate trans-
formation does ensure global satisfaction of continuity.

67. Definition and use of this coordinate transformation requires a
close examination, to be conducted in this second step analysis, since realis-
tic bed profiles containing fairly sharp changes in a(x,y) will destabilize a
KMA-10 computation. (Certainly to proceed to a vectorization with this in-
trinsic limitation does not make sense in the longer term.) The approach
would be to examine the generalized (body-fitted) coordinate transformation
concepts employed throughout aerodynamics (see Thompson, et al, 1985) to the
developed conservation law statement form ie., Equation 62. The functional
form is essentially identical to Equation 63, ie., x'i = x'i (xj,t) , where
the time~dependence is contained in h=h(x,y,t). The basic step is to re-
express the derivative operators in the conservation law statement into the

primed coordinate system. Quite simply, this is no more than

3g 3g ag (*%3
(5?>x' = <3c . + ax.(?t x! (75)
i j 3 i

where the bracket with subscript notation implies derivatives with the cor-
responding variable held fixed. That 1s, the left side of Equation 75 is the
time derivative in transformed space where the surface h(xi) appears fixed
(in time). The time derivative on the right is as seen in physical space, and

in the third term (9x /Bt);{i = ij is the (grid) speed of the physical coor-

3

dinate system (nodes) as seen in the fixed (x{) system. Hence, for

Equation 62

(76)

e e
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‘53: Re-exrressing the second derivative in the first line of Equation 76 in terms

b -

.ﬁuﬁ of x'i , the accounting for the variable 1id h=h(x,y,t) is then intrinsi-
.

cally embedded in the conservation law statement when rewritten as,

7 C

o

«\ L'(q) = 33 + (g% - & %-) <g—:—> +s=0 (77)
o

N 68. The specific form for Equation 77 must be derived for arbitrary
E:&; (within the validity of the hydrostatic assumption) surface forms h=h(x, t) .
; Jﬁ The net output will be the specific form for the grid velocity X503 whereupon
;f; Equations 77 and 70-73 can be exactly compared term by term. Of importance,

- fﬁ no a priori constraint is implied on variation of bed profile a(x,y) . Once
f;ﬁ established, the form of Equation 77 is ideally suited to the next two steps.
( " Body Fitted Coordinate Transformations

A

-ii% 69. This item is the significant third step upon completion of step 2.
:}j_ Finite elements have always been viewed for their geometric versatility, ie.,
:5" one can readily triangularize (or discretize into unions of tetrahedra, pen-
>;§$‘ tahedra and hexahedra in 3D) any region with geometrically-complicated bound-
’:i: ary. Figure 3 gives an elementary example. However, especially fer a moving
;_}: boundary, and in general, highly structured coding procedures are one natural
fﬁ? consequence of embedding a generalized coordinate transformation to the con-
;:i\ servation law statement before writing the finite element algorithm statement.
 :§3 Equation 77, as the successor to eqn 62, is already written in the desired
[ form which is therefore immediately applicable for use with any (body-fitted)
;353 coordinate transformation. For example, the finite element algorithm state-
AR ment for Equation 77 would be immediately applicable to analysis of Charleston
jfﬁ- Harbor, Figure 4a, or to flow past an airfoil, Figure 4b. Conversely, it
‘;ii: would also be immediately extensible to use with adaptive mesh procedures to
é - place finer griddings in regions of sharp solution gradients, Figure 4c.
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_ a) Charleston Harbor b) Aerodynamic Profile
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Figure 4. Examples of Body-Fitted Coordinate Transformations for which
Eqn. 77 is Applicable, from Thompson, et. al. (1985).
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a) Brick b) Tetrahedron ¢) Prism d) Pyramid

’ Figure 5. Finite Elements Used in the TABS-3 Computer Program,
o ( ) Denotes Node Locations, from King (1982).
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70. The formulational details of the body~fitted coordinate transforma-
tion implementation must be completed. The Galerkin weak-statement finite
element algorithm (the theoretical basis for RMA-10) form of Equation 77 1is
well known. Specifically, q 1is approximated by a projection onto functions

generated from a suitable space of trial functions Sth yielding,

1

q=q"x,0) = %:wj(xi) Q,(6) (78)

or conversely, expressed in terms of the cardinal basis {Nk(nj)} over the

union of elements of the discretization,

h

_ T
@ = U N (Y e, (79)

3

71. Figure 5 shows the elements available in the RMA-10 program, for
which the cardinal bases {Nk(nj)} are well known (and in which nj is a local

coordinate system). The Galerkin weak statement for Equation 77 is then,

se/’{nk} L(¢Mdx = {0} (80)
Q

n
cR
e

where Qe is the generic finite element domain, recall Figure 5. For k=2 ,
the quadratic basis 1s defined, as 1s utilized in RMA-1C for the two trans-
verse momentum equation, while k=1 defines the linear basis as used by
RMA-10 for the integral continuity equation. Neglecting for the moment the
grid velocity term, and using for example the scalar convection-diffusicn
equation (58), and anticipating the embedding of h, the expanded form of
Equation 80 is,

h
ox!
3(phe) 9 ?
Se[2 N W("i"h" - Ky 3%‘) (Txi> dx (81)
. j 1 i
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72. 1In Equation 81, the superscript "h" on [ ] denotes use of Equa-
tion 79, and Se is the familiar finite element assembly operator. Using the
Creen-Gauss form of the divergence theorm in Equation 81 to transport the

functional support for 3/3x3 yields the flux vector term as,

3
- Se fﬁ;- {Nk} (u .phd - kJ -5-—).' ( ) (82)
Q

e

73. The basic form of the diffusion term is immediately recognized,
where kj is the directional coefficient. One can recognize that 3{Nk}/3x'j
is a direct operation, and the key step is to use {Nk} to interpclate the
coordinate transformation on the (each) element domain Qe . Denoting the
(global) node coordinates as the arrays {X}e, {Y}e and {Z}e, ie., {XI}e, and

using Equation 79, yields the local coordinate transformation

_ T
x; = {Nk(nj)} {xI}e (83)

As detailed in Baker (1983, Ch. 5), the Jacobian of the forward transformation
on Qe is readily evaluated as a rank n square matrix. The Jacobian of the

inverse transformation can be formed analytically, thus yielding the form,

ox'
<3;i> > ———deij. <ETAJI>e (84)
i/e

where the 1 < (I,J) < n entries in the array (ETAJI)e involve distributed
differences in the entries in {Xl}e.
74. Noting that dx = det J' dx', and denoting the (contravariant)

components of the velocity field u? , that are parallel to the coordinate

3

tion 82 for a typical element becomes

coordinate system, as Gh » the first term in Equa-

3

curves of the x

ox'
[—a—{l;]-l(ohwh ;‘(#) det J'dx' = _f gim((UBARJ}T{N}>{N}T{RHPHI} dx’
Q73
e

i/e (85)
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: The integrals defined in Equations 85 are evaluable using standard techniques.

% Det J' has cancelled out. [UBARJ]e contains the nodal values of velocities
parallel to the x'j coordinate system (hence, parallel to the free surface

i and {RHPHI}e contains the nodal values of (phé)e. The diffusion term involves

i (outer) products in (ETAJI)e (ETALI)e/det J', and its evaluation is straight-
forward. This outlines the generalized coordinates formulation for

Equation 77.

iy Enhanced FE Algorithm Stability

75. The finite element algorithm upon which RMA-10 is constructed is

the Galerkin weak statement, ie., the Galerkin criteria for the weight func-

.% tions in a weighted residual statement, as expressed in Equation 80. Tt has

’5 become well verified in the last few years that the Galerkin formulation is

'- very limited in terms of stability for problem definitions with significant

‘3 fluid convection, ie., large Reynolds-Peclet number fluid-thermal flows.

:: Experience in using the RMA codes at WES for certain problem simulations,

) especially those with significant bed profiles, confirms that destabilizing

i‘ mechanisms can become evident and a problem. One "numerical cure" for this is

l; to increase the "eddy viscosity" coefficient, the essence of which is to re-

,j duce the computational Reynolds number to that required for Galerkin stabil-

;j ity. Unfortunately, this severely compromises the ability to simulate flows

‘ with realistic Reynolds numbers. One goal in the reformulation would be to

i\ moderate the stability perturbations induced by geometrically-significant bed

‘: profiles as well as the dynamic free surface. The next step of this reformu-

: lation analysis is to thus enhance algorithm stability performance in a robust

.‘ and mathematically consistent way.

‘: 76. The numerous artificial diffusion (viscosity) methods devised for

b finite difference CFD methods, as well as essentially all of the comparison

;S finite element constructs, eg., Petrov-Galerkin, Taylor-Galerkin, character-

_ istic-Galerkin, penalty-Galerkin,.., have been firmly established as belonging

jj to the family of Taylor weak statements (TWS) by Baker and Kim (1987). Rather

:3 than arbitrarily adding diffusion-type terms to the algorithm statement, Equa-
:hi tion 80, the TWS procedure generates appropriate functional expressions for

* any specific conservation law statement, e.g. Equation 77. Realizing that the

N coordinate transformation is a formulational detail, neglecting the associated

K ¢
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notat ional complication, expand the parent expression (Equation 62) in a

Taylor series,

n+l

q = q" + At q: + 1/28t2q" 1 30

ey + z At Uere + ... (86)

where subscript "t" denotes order of temporal derivative at t, and

tn+l = tn + At . Equation 62 allows restatement of the time derivatives in

Equation 86, neglecting the source term s, as

9 ~ -fx B _qux T Ahx 7
Qp, = —fxt =-f .= —(qut)x = (qux)x = (EAqt+ B Afx> ) (88)
q = -f = (-Aq )., = (AAq))_ = (AAq ), _ =¥ <A2 LI (Az) )q
ttt Xtt Xttt X Xt X tx X x|t
+ E(Az 2. (Az)x>fx ) (8%)

The matrix A is the Jacobian of the flux vector f , the coefficients ¢« ,
g , ; , and § are arbitrary, to within a convex sum constraint, and their
specification ultimately reflects choices to be made for the final functional

form. Combining Equations 86-89 and collecting terms yields,

n+l n n 2
9 -q _ _n, Atf z 8t = [ a2 23
fx + 3 o Aqt + B Afx . + 6 Y (A )x + A % qt

(90)

- 2 29 n
u((A )x+ A ax)fxer

The left side of Equation 90 expresses the discrete approximation to q

t
Assuming the limit is taken, Equation 90 can then be re-expressed as At » O

without temporal approximation (but retaining the higher order terms) as
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7.

the finite element Taylor weak statement algorithm wherein At

Equation 91 is the conservation law form desired for constructing
will not
vanish. Importantly, Equation 91 is identically satisfied by the exact solu-
tion to Equation 62 for g = E and ? = 3 upon reintroduction of the source
term.

78. Constructing the finite element weak statement for Equation 91

follows the standard Galerkin finite element procedure., The approximation

L(q;)
Letting {+} denote the global array of (Galerkin)

statements, Equation 78-79 are unchanged, and in Equation 80, is re-

placed by Lw (qh) .

weighting functions {N}, replacing fx everywhere by Aqx s and reintroducing

the source term s , the TWS algorithm replaées Equation 80 with the
expression,

[l
QcR

+ Ahqh + S

>dx + At/ {¥} ~Ah<&qh + EAhqh>dx
Q X . t X

2 ~h,2{- h -hhbh

t L{W}X(A ) (thx + A qxx>dx = {0}

The first term in Equation 92 is the classic Galerkin statement, while over a

(92)

dozen (dissipative) FD and PR algorithms are recognized (solely) by the
designer's choice for the approximation (Ah) to the Jacobian and the coeffi-
cient set a , E ’ ; y W
79.
(1987) for sample 1D hyperbolic problems of unsteady and steady-state solu-

The implicit Galerkin

in the second term, cf., Baker and Kim (1987).

Figure 6 summarizes numerical results published by Baker and Kim

tions for linear and non-linear inviscid test problems.
algorithm sets the last two terms in Equation 92 to zero (as utilized for
RMA~10), and propagates the linear unsteady sine wave with little diffusion

but significant dispersion error (trailing wake), Figure 6a. The steady
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linear wall-layer solution for Pe=180,

Fig. 6b,

persion error into the 2Ax oscillations intrinsic to Galerkin methods.

confirms cascading of the dis-

In the

non-linear stationary shock, Figure 6¢c, this basic instability cascades non-

linearly to turn the solution to trash. In distinction, the Euler-Tavlir-

Galerkin (ETG) algorithm of Donea (1984), corresponding to o=0=1 and #=l=y
in Equation 92, does an excellent job of controlling dispersion error for the
unsteady linear travelling wave, Figure 6d.
(pG) algorithm of Baker (1983), a=1/2=8

excellent job for the steady-state linear wall-layer and steady-state non-

Conversely, the penalty-Galerkin
and Y=0=y in Equation 92 does an
linear shock, Figure 6e-f.

80. This step will develop and derive the TWS finite element algorithm

for the hydromechanics conservation law restatements as derived before. The
goal is to establish a mathematically robust, highly phase-selective dissipa-
tive Galerkin algorithm and to thus identify needed modifications to the
RMA-10 algorithm (successor) to permit consistent stabilization for simula-

tions with large convection velocities and/or significant bed profiles.

The Linear Algebra Statement for Supercomputing

81. Step 4 completes the detailed derivation of the TWS finite element

algorithm form, Equation 92,
of the RMA-10 algorithm.

for recasting, extension and/or total restatement
While this involves great detail, upon completion of
the indicated integrals, Equation 92 ultimately becomes an ordinary differen-
tial equation written for the time evolution of the expansion coefficient set
{Q}, Equation 79, of the form:

d{Q} h h

L{Q}) = M—== + {Eh -E }_+ {Fh -F } + {Gh— Gh} + Sh - Ar(gh(a,B.RS
v E vn v'E

En

h n ~ 2,..h 2 N
F'(a,8,8)  + (G (a,e,A)}£n> -8 T (E (@ 8,00 4 L) (93)
The first line of terms in Equation 93 constitutes the conventional Galerkin
weak statement for the governing Equation 77, including the grid speed and
source terms, and expressed in the (£,n,z) transformed coordinates. The

second and third groups of terms constitute the Taylor weak statement
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additions for embedding stability mechanisms according to the definitions for

x, 8, vy, un and A .

d {.’l".{A"L{’.a --i } "

82. The TWS finite element algorithm is ultimately reduced to a linear

algebra statement for coding design for a supercomputer environment, For

W,
7, notational simplicity, functionally combining terms in Equation 93 yields the
|ﬁ ODE matrix statement
B - -, dlQ} 7z =
+ =
’Q M (e, v) =3¢ {r ({Q}, 8, u, {s}, A, At)} = {0} (94)
)
“ The specific construction for M(¢) and {R(-)} depends explicitly on the
'
b choice of the trial space basis ({Nk}) and the TWS parameter choices. Once
; selected, Fquation 94 permits evaluation of the time-derivative of the dis-
!
"y crete Taylor series,
@
2 @oer = W+ 2t 55 fave 9
‘;.-'
( where 1/2 < 8 < 1 for the required implicit algorithm. Substituting Equa-
V- tion 94, arranging terms and writing the resultant in homogeneous form yields
.;: the final linear algebra statement.
- {F} = M {8Q} + At (e{R}n+1 + (1 -98) {R}n> (96)
'ﬁﬁ
o
5 where {AQ} = {Q}n+l - {Q}n and subscript (n+l, n) denotes evaluation at the

S

corresponding time level. Linearizing around tn and dividing through by At

yields the Taylor weak statement computational linear algebra statement in

delta form as,

O

1 3{R}
T M+ 8 37 {aQ} = - {R}n (97)

T

A% 83. The form of Equation 97 is ideally suited to rapid determination of
the steady-state solution, as well as time-accurate predictions of the tran-
sient. The solution converges when {R(*)} = {0} , hence depends only on the

Taylor weak statement parameters é, u, and A . The rate of approach to
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steadv-state depends on a, 8, Y, ¥, At and 6, and in the limit At ~» Fqua-
tion 97 is a Newton algorithm. The choice of an implicit integration proce-
dure is crucial to the algorithm, and a wide range of choices affecting
stability and convergence rate exists within the Taylor weak statement.

84. Equation 97 ultimately resides in the (supercomputer) code, and the
matrix iterative solution procedure to be selected is crucial to overall
efficiency, hence utility of the Taylor weak statement finite element algo-
rithm. The RMA-10 code now uses a decoupled full-dimensional approximation to
the Jacobian [M/At + ...], in Equation 97, which is a candidate for replace-
ment in a supercomputer implementation. The embedded coordinate transforma-
tion has conveniently established "generalized implicit lines (GILS)", cf.,
Lin (1985), upon which an efficient factorization of the Jacobian can be con-
structed. Therefore, the appropriate procedure appears to be a tensor matrix
product approximation to the Jacobian, whereupon the left side of Equation 97

is replaced by a factored form

|1 AR | . .
J = KF M+ 8 graT JE Jﬂ JC (98)

The factors JE and Jn » spanning the transverse (horizontal) plane will be

classical constructions, i.e,,

- 3{R} - 3{R}
Jn = Mn +'65T67 n JE = ME + BETGT £ (99)

each of which is block (2k+l) diagonal, where k 1is the completeness degree
of the finite element trial space basis {Nk} . The vertical direction factor
JC can be arranged to account for the continuity equation integration, but

otherwise will be the classical formulation, i.e.,

: B{R}C
JC = K?_ MC + 0 sTaT—C (100)

85. This step completes the definitions of the Jacobian factorization,

Equations 98-100, as a function of A and a, é, ;, a and 8 of the TWS algo-

rithm statement.
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o~ Design for the Supercomputer Environment

“w

ML
o
- 86. The first five steps have lead to this critical point, which anti-
‘A
.- cipates that a major redesign of the RMA-10 linear algebra solution procedure
LN
AN is critical to an efficient supercomputer embodiment (code) of the algorithm.
&N
fﬁ [t is important to emphasize that this redesign focuses on the very internal

" workings only of the code, ie., the computationally demse DO loops over ele-
- ments that form Equation 96 and manage the (proposed) solution steps, Equa-

- tions 97-100. The entire "external" hierarchy regarding input/ocutput, the
L element library, grid generation, graphics, etc., can be retained unchanged.

) It is well understood that these portions constitute the major fraction of any
N . .

) working code and that they remain essentially intact (on the host computer)

4

{ while the intense number crunching operations are moved over to the supercom-
~

o puter environment.

A}

e 87. A second important point regarding step 5 is that the suggested use

\"I.l

of tensor matrix factorization of the linear algebra Jacobian in no way limits

the geometric generality of the finite element algorithm. Because nf the

e
v

hydrostatic assumption, leading to solution of the contiruity equation in the

o—

z-direction as an initial-value problem, there is a corresponding organization

T,
[

, to the 3D mesh, recall Figure 3. This is recognized in Equation 100, and
;;: there is no requirement that these columns contain the same number of nodes,
i;: as is the case with an approximately-factored finite difference algorithm.
' The concept of tensor matrix products and sweeping on (curvilinear) paths is
*i directly applicable to the 3D mesh equivalent of that illustrated in Fig-
tj: ure 3b, with the embedded tri-angular (ie., tetrahedron/pentahedron) elements
'52 providing required geometry transitions along the bed profile as presently
§ done in RMA-10. 1It is also important to note that the "vertical" coordinate
;- lines need not be exactly parallel and/or vertical, since the continuity equa-
(f tion algorithm redesign will become re-expressed in terms of the contra-
fz variant velocity components which are always parallel to (transformed) coordi-
nate curves. The tensor transformation law is then used to provide the
;j— required physical velocity components.
:E 88. Step 6 identifies the key matching facets of the RMA-10 algorithm H
.E: restatement with the supercomputer vector/multi-processing/parallel processing
- environment., For this, construction of Equation 96 and 97 readily generalizes
:3 on the concept of a general implicit line.
N
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The two basic loops for solution of Equations 96 and 97 therefore, are:

1. Over dependent variables on N3 grid cells, form {F}={F(3D geom,
Q) ’ ’ .--) and}

2, For an N3 grid and all variables on three general planes, form
J1=Ji (1D geom, Ui’ S

3. Solve A, B, {Q}=f (31i , data).

Thus, the linear algebra solution sequence defined by Equation 98 effectively
sub-divides an N3 problems into 3N2 problems of N length without loss of
accuracy or connectivity, making the algorithm construction highly suited for
concurrent (MIMD) parallel processing implementation.

89. In addition to parallelism derived from the factoring of Equa-
tion 97, parallelism also occurs throughout the algorithm at various levels
including:

1. Independence of {F} and Ji in the same time period, as
illustrated in Figure 7.

2. Parallel formation of J and Jz on different planes, as
illustrated in Figure 8.

3. Simultaneous formation of equation terms for the {F} and J,
arrays. The terms are position independent in each differentlal
equation.

4, Parallel and systolic methods for solving the formed system of
equations.

90, Figure 7 1is a schematic diagram of loglc and data flow for the
defined general implicit line algorithm. The processing direction is gen-
erally clock-wise beginning at the upper left. The vertical divisions (sweep
1,2,3) indicate operations performed in each sweep direction. The rectangular
boxes are the operations performed and the bracketed symbols represent inter-
mediate data temporarily retained for use in the next set of operations. 1In
each sweep direction a loop over a row of the discretized geometry builds an
equation system which is solved using Gauss elimination. At the end of sweep
direction 3, Equation 98 is complete and a time step is taken proceeding from
two to one. Closure data is evaluated at the new time step and the cycle 1is

re-initiated.

91. Upon closer examination of the serial processes in Figure 7, and
with an understanding of pipelining, it becames obvious that any serial set of
operations can be made parallel through the use of pipelining (also defined as
systolic, Kung, 1980). The simple requirement 1is that the processors involved
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i?é are synchronized such that the output from pairs of processors forms the input
,f:? to the next processor. The output can be bit, byte, word, or array sirzed,
- utilizing appropriate intermediate storage for proper synchronization. Hence,
;j? all processors are continuously busy working on the same job in different time
?f: slots of job completion,
;i; 92. Pipelining is illustrated in Figure 7. If {F} and J; are swept
wr) in planes normal to the Xy direction, the completion of the first direction
;L>3 sweep in each plane produces the data {A} required for the second direction
h:% sweep in that plane. Hence, the first and second direction sweeps, which are
) ! defined serially, can be made parallel through a processing time delay and use
i of an intermediate buffer array to hold the intermediate data.
=;:§ 93, Each dif/erential equation term in {F} and its derivative J
‘izi consists of products and sums which are position independent. This means that
;j;? the terms can be evaluated in parallel and finally combined for each gridpoint
o' on a4 sweepline. Parallelism at this level has the capability to consume large
'fij quantities of problems data. The utility of this parallelism, therefore, is
:;i strongly dependent upon memory/processor speed ratio, data communication speed
-iiz and the number of paths between memory and processors.
({" 94, Finally, parallel processing of the equation solving process is a
‘;f: consideration. Due to its broad application arena, this area has received
,:33 considefable attention by various researchers e.g., Ortega and Voight (1985).
‘32; Also, as illustrated in Figure 9, the equation solving process represents only
,:) about 157 of the work required for a tensor product factored CFD solution.
faj« The formation of the coefficients and right side (F) account for 857; there-
i&;i fore, this step concentrates on parallelism in the formation' aspects of the
}%f {F} and Ji components, and re-assembly of the data for an efficient, paral-
-vJ lel, iterative solution,
By
,iti Data organization
Y 95. Local spatial coupling of data is an extremely important character-
$;z~ istic of numerical PDE algorithms. This coupling requirement complicates the
- separation of problem data for parallel processing. This suggests the forma-
yikf tion of data in hierarchical packets with certain data repeated among the
‘;fj packets to meet the local coupling requirements. Packets at the top of the
Z:: hierarchy would contain a few large groups of data with less repetition, while
. I§ packets at the bottom of the hierarchy would be many and small and be more
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;:Q repetitious., Hence, the data would be distributed among parallel machines for
; concurrent processing.
) 96, Full categorization of parallel and concurrent processing will re-
'ﬂ; quire definition of the concurrency constraints and penalty imposed by data
ﬁi unavailability of each level of the hierarchy. Categorical subdivision of the
; data into specified problem data and partially processed data (intermediate
:._ data) provides some insight, The problem data is relatively stagnant, chang-
;E ing only occasionally toward the top of the hierarchy. Intermediate data, on
:E% the other hand, must be accumulated for portions of the algorithm at lower
‘$? hierarchal levels. At each level, progressively smaller memories or registers
‘ (buffers) serve to hold data until it can be processed. Ideally, each buffer
‘:: has a path to all processors requiring the memory data, and the data is 'used
t&s up" requiring no further transfer.
,jj 97. Since data storage and communication are increasingly important
] factors as the number of processors increases, a system for decreasing data
::E motion is beneficial for parallel processing. In a synchronous system, data
;3 must be available to the processors each cycle in order to maintain effective
;; processor use. Data manipulation and overhead are the principal culprits in

current supercomputer inability to maintain optimal speed, The need to con-

- P

~H tinually rearrange data into long vectors for efficient pipeline operationms
l./l :

5? wastes cycle time and adds a tremendous overhead burden to an algorithm.

»j 98, One method for significantly reducing this problem for parallel

7,

C

processing is through use of indirect addressing pointers. The problem data

‘tf is stored in a global set and pointers are generated for random data selection
::f from the global set. Using this method, data manipulation is minimized with
EEE low overhead penalty and ilower level packet data repetition can be minimized.
;; 99, Figure 10 illustrates an indirect addressing scheme for the {F}
lltt array problem data which uncouples the global geometry and the physics. The
iéi problem description data is represented in the lower right of Figure 10(a) as
§i; two dimensional arrays. Four types of data are required for complete physical
= descriptions. These are: 1initial values of the dependent variables (Q),

;Ei spatially distributed parameter coefficients (P), local field constants (C),
;ﬁ and differential operator arrays (M). Each of the data categories are stored
:ﬁ' in two dimensional arrays for ROW/COLUMN addressing. The row pointers are

' derived from geometric indices (10b, 10c) which are a function of geometric
19
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!:$: location (grid points). The column pointers (10d) select the differential

‘“ X equation variables,
X Hardware variables and constraints

i&;j 100. Computer hardware architectures for parallel processing are as

ﬁi; diverse as algorithm variations in CFD. Each architectural design has its
{ﬁ;: strong and weak points, each of which may be dependent upon the specific ap-
;_) plication involved. It appears, however, that there are certain design crite-
: ria which can be utilized to determine the ultimate effective speed of a

: machine.

';A 101. As computational chip speeds increase, it is becoming increasingly

s apparent that the effectiveness of a parallel architecture is ultimately mea-
:;t: sured in the ability to communicate the data from memory to processor and be-
:E; tween processors. In a parallel system, the limit of the number of processors
Aékd effectively used is determined by the ability to get the data to the processor
.', at every time cycle. The inability to do this wastes processor cycles and,
4;: therefore, compromises solution speed.

::: 102, Assuming two inputs and one output are required for each processor
“;: operating from a single memory bank, for example, the memory access speed to
i . keep six processors busy must be at least 18 times the speed of each proces-
:}: sor. If the memory access speed is only 12 times the speed of each processor,
'2;: for examﬁle, a bottleneck will result and processor cycles will be wasted

‘:;; waiting for the next data to arrive.

o 103. Some of these machine limitations, however, can be circumvented at
=;{J the algorithm level. 1In the above example, the problem might be altered to
fgﬁf allow for four of the processors to operate in parallel on data from memory
;i and the other two processors to operate on data from the output of the four

:3 processors in pipeline fashion. This would reduce the memory access require-
X i ments from 18 to 10 accesses per processor cycle, thus keeping all processors
§o$ continuously busy. The limiting factor for pipelines, however, is pipeline
ziﬁf initiation/end cost which in this case is two process cycles,

104, By knowing the hardware memory and processor speeds, together with

,kJ communication links, therefore, algorithm components may be made to keep the
fii? hardware busy. Since these relative numbers of hardware components are dif-
v;;? ferent for different machines, the resulting detailed algorithm structure will
T appear differently on each machine.

¥ - 105. Each of these precepts was independently analyzed to construct the
3
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COMSYS (TM) aerodynamics algorithm, resulting in a prototype vector/parallel
processing structure. This was then coded (in Fortran) for testing and veri-
fication runs on a serial computer, ie., a Cyber-170/835. This machine then
serves as the host for an echos simulation of the assembly language code, as
well as the actual execution on a parallel processor which in practice to date
has been a Control Data Cyberplus attached parallel processor.

106. A (each) Cyberplus machine consists of a base (integer) processor
containing 11 units, a floating point processor having 3 units, and a 512-K
word high performance memory (HPM). All processor and memory interfaces oper-
ate simultaneously on a 20-ns clock, and communicate through a fully connected
crossbar on every cycle. The HPM is used to maintain a plane of dense mesh
raw data, together with intermediate data awaiting sequential use. The inte-
ger finite element mesh connection data string is a critically important speed
feature for parallel processing that heretofore has saddled serial machine
finite element code implementations with speeds a factor of 2-4 slower than
finite difference codes. These data are transferred from the HPM to the base
processor memories and indices pointing to problem data stored in the HPM are
calculated. In the floating point processor, multiply and add units operate
on pre-selected data to form the problem solution arrays.

107. Example executions of a model 3D problem discretization using bi-
linear hexahedron elements on meshes up to 106 nodes (ie., 102 X 102 X 102)
have a Cyberplus speedup factor of 70 over host speed. The Cyber 170-835
host speed is about one Mflop, yielding a predicted operating speed on Cyber-
plus of 62 Mflop. The base and floating point processors in Cyberplus are
high performance (50 Mflop each), hence the present verification has achieved
about 607 of the available speed.

108. A host of parallel architectures (Figure 11) have recently come
into existence and are available for algorithm testing. Many of these use
standard market chips such as the Motorola Series 6800. While software is
limited for these machines, many have some Fortran capability under Unix.
This utility, together with strong assembly language capability, provides the
basis for coding and testing various aspects of algorithm parallelism as was
done on the Cyberplus.,

Example, FLEX/32 Architecture Variations

109. With the background established, algorithm/architecture variations

for real machine configurations require testing. The enhanced FLEX/32
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:'::' Y MANY ARCMHITECTURES CROWD PARALLEL-PROCESSOR MARKET '
o
!
te Company Product Price Parallelism Connectivity Memory Processor
. Accelerated Mode! 10 $88,000 4 t0 12 groves reconfig- N.A N.A.
25 Processors of 8 ALUs urable
o | | Altiant Computer | FX18 $270000 | upto20 bus obal, up to 64-bit CMOS
f 5“* Systems i megabytes gate array
2% Ametak Sysum 14 $75,000up | 16 to 256 Hypercube | local, up to 16-bit
- q - 256 megabytes 80286/80287
LW
& Bolt, Beranek & | Butterfly - $40,000up | 1t0 256 switching shared and loca! 16-bit
88 Newman . . . system MC 68000
e Deneicor HEP1 - [ Simillionto | 11016 shuttle global 64-bit ECL
o e S million/ | execution network .
o, execution modulies
b 0, module
ol ELXSI 6400 $600,000 up to 12 bus global, with local | 64-bit ECL
Ca, cache,upto - gate arrays
(' . 800 megabytes
/ Encore Computer | Multimax $114,000 up to 20 bus global, local, up 32-bit
N to 32 megabytes NS 32032
> Fiexible Computer | Fiex-32 $150,000 up | up to 20°box, bus global. local, 98° 32 bit
K .'_:» up 10 2,480 total megabytes/cabinet | NS 32032
l’,, » .
‘it Gemini Computers | Trusted - | $472.500up |1t08 bus shared, local, up | 16-bit
Lan Muttiple - to 128 megabytes | 80286
¢ 3 M
LA icrocomputer
3 intel Sc.entitic 1PSC $150.000t0 | 3210128 Hypercube | local, 16-bit
" Computers $520.000 288 megabytes 80286/80287
g Internationai 1P-1 $50.000 1 ma:ter processor, [ cross-bar- global.upto .| 32-bit
,-‘._-v" Parallel Machines up to B processors | like switch 40 megabytes
,)-'-:: Loral Datafio $65.000 up 5 10 256 data- bus shered, locat, up 16-bit
& Instrymentation Hiow processors 10 14.5 megabytes | NS 32016
e Meiko Computing $220,000t0 | up 10 128 four nearest | local, 48-K bytes’ | 32-bit inmos
= Surface $300,000 neighbors 4 processors T4 14 transputer
X Muitiflow N.A. VAX range multiple register N.A. gobal, more than | gate arrays
- g§ Systems v 1 gigabyte
1 "' Neube Neube Ten $100.000 up | 16 to0 1,024 Hypercube | local, up to 32-bit custom
o 160 megadytes VLS!
: ‘c Saxpy Computer Saxpy 1M $2 millon 32 processors parallel shared, up to 32-bit
l: systolic 512-K bytes custom
Sequent Computer | Balance BO0O0 | $60,000 up to 12 bus global, up to 32-bnt
= Systems P 28 megabytes NS 32032 i
! J-_“' Sequoia Systems Sequoia $200,000 up to 64 bus obal, up to 16-bit }
. J.'.': System P 52 megabytes MC 68010
‘ "';-.' Thinking Connection N. A, 64,000 to Hypercube | globat, 1-bit
L )‘: Machines Machine 1,000.000 500 megabytes custom
> SOUNCE ELECTAONICS
* .
. '
' j-: Figure 11, Parallel Architectures Sample
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i- parallel processor provides an ideal setting to study these phenonena. Each
v cabinet can contain up to 20 processors and 30 high speed co-processors, large
3 main memory of up to 18 megabvtes and local memories for each processor of up
: to one megabyte each. The processors and memories can be interconnected vari-
>
" ously to provide a system adaptable to the optimal configuration defined by
? the parallelism inherent in each algorithm component.
> 110. On the FLEX/32 system both parallel (MIMD) and pipelined
L
N (SYSTOLIC) algorithm configurations can be tested within the same framework.
L4
"
159 The comparative machine architectures are illustrated in Figure 12 where CCC
» and CAC represent common memory access and each C2C represents 68020-based
:5 chips in parallel with micro-code-capable computer with high speed floating
'& point processor. In Figure 12a, the global memory across the top is conveyed
"
,ﬁ to all local processor/memory systems (C2C) equally for parallel processing.
-
“ In Figure 12b, the global memory feeds a single computer and results are cas-
A caded to other computers, thus reducing common memory access speed require-
;: ments for the same number of processors. Since each of these configurations
=
150 is anticipated as optimal for portions of a candidate PDE algorithm, the
i* FLEX/32 architecture provides an ideal test bed.
.- 111. Coding of the learned CFS/parallel concepts on a FLEX/32 provides
.- the real machine environment experience which exposes the solution capability
V- .
‘}: and limitations.
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} PART V: SUMMARY AND CONCLUSIONS
E
Summary
-ti 112. Despite its ability to resolve complex geometry in computaticnal
f;i domains such as estuaries, rivers and coastal areas, the finite element
] ); mettiod, as commonly applied on unstructured grids, suffers from the fact that
';Q it requires excessive computational effort per time~step. However, this can
ﬁk be attributed more to the techniques commonly employed by finite element
,kj modelers in solving the matrix equation system than the method itself,
113. This study was conducted with three objectives in mind. The first
'2% was to provide the average reader with an increased understanding of the two
'33 computational methods most often applied in computational fluid mechanics;
fuxﬁ namely, finite differences and finite elements. Hopefully the discussion pro-
vided has amply demonstrated that the two methods share common ground. As
\:' noted, all computational methods can be cast into the form of a weighted re-
.é% sidual statement. Different methods result depending upon the selection of
i:% tte weighting functions and/or stability constraints. The second objective of
i.'1 the study was to offer suggestions or ideas that might be implemented in a re-
‘jﬁ latively short timeframe to reduce the computational costs of typical finite
i? element'hydrodynamic models. Ideas such as implementing an iterative solver |
?} for the linear algebra problem, employing an explicit time integration scheme
' with a condensed matrix, utilizing only triangular type elements to eliminate
Q‘{Q the computation time associated with numerical quadrature, and uncoupling the
t:ﬁ dependent variables should all be considered. The final objective was to
:a' present a series of steps to be accomplished over a longer time frame that
" will ultimately result in not only a computationally efficient model but also
s Y a robust one providing accurate solutions while possessing desirable stability
}b% characteristics.
r~ 114, The construction depends upon the use of a grid with some degree
L of structure, although, a completely structured grid is not required. With a
;;a: semi-structured grid, the coefficient matrix; i.e., the Jacobian, associated
-~
S with the linear algebra problem can be factored such that computational sweeps
:S along curvilinear coordinate lines can be made. With a linear basis function,
b the linear algebra problem reduces to block-tridiagonal systems in each direc-
$f: tion which can easily be solved. Of course, higher order basis functions will
‘E: 60
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result in pentadiagonal, etc., systems. Such an algorithm programmed for so-

lution in 4 parallel processing environment will result in an extrewmely effi-
cient computational model for computing free surface hydrodvnamics over long
periods of times. 1In addition, with the finite element algorithm based upon
the Tavlor weak statement, the numerical model will have stability mechaniams
embedded in the algorithm that will provide for selective dampening, resulting

in accurate solutions in high gradient regions,

Conclusions

115, The first conclusion from this effort is that completely implicit
three dimensional finite element models that are programed for solution on
completely unstructured grids cannot be considered for long term flow computa-
tions, e.g. weeks to months, 1In fact it is questionable if such models can
even be considered for studies that only involve a few tidal cycles.

116, If unstructured grids are considered essential, probablv the best
short term solution is to employ a split mode approach. The external model
would consist of implicitly solving a frictionally damped wave equation for
the water surface elevations, with the vertically averaged velocities and
salinity and/or temperature computed explicitly using the condensed matrix
concept. The internal model, which computes the deviations from the verti-
cally averaped components, would then also employ an explicit time integration
scheme with condensed matrices.

117, Perhaps the simplest approach for implementation in the short term
for an unstructured grid model to be applied over at most a few tidal cycles
would be to leave the existing finite element algorithm intact but employ an
explicit time integration scheme with a condensed matrix. Even though the
computational time step will be limited by the speed of a free surface gravity
wave, the linear algebra problem at each time step becomes a trivial opera-
tion. Therefore, the computational costs should be less than that required in
the implicit model as long as the element size does not become so ridiculously
small that extremely small time steps are required.

118. To achieve not only a computationally efficient but also a stable
3D time-accurate finite element hydrodynamic model, the tensor product algo-
rithm developed from a Taylor weak statement should be implemented. Such

factorizations require some degree of regularity for the grid; however,
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’Ej through the use of block structured grids a significant degree of generality
vy can still be achieved. In the long term, it is believed that such a model,

programed for parallel processing, offers the best hope for 3D time-varying

e 1inite element hydrodynamic computations.
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