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Abstract : This paper presents a method for solving a stochastic version of the dynamic

traffic assignment problem. It shows that a globally optimal solution may be obtained by a

sequence of linear optimizations. A decomposition algorithm for this procedure is presented

that efficiently solves large-scale problems. Solution examples with up to sixty-six thousand

variables are described.
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1. Introduction

The problem of determining flows in a network to optimize an objective or satisfy

equilibrium conditions has been studied in a variety of frameworks. The static problem has

been extensively studied (see, for example, Dafermos and Sparrow [3] and Potts and Oliver

[7]), but the dynamic problem has received less attention. Merchant and Nemhauser [5]

gave a mathematical programming formulation of this dynamic traffic assignment problem.

They showed that the resulting nonlinear, nonconvex program has a piecewise linear version

such that a feasible, globally optimal solution exists among the set of linear program optima.

Ho [4] showed that a global optimum could be obtained by solving a sequence of linear

programs. The number of such programs is at most N + 1 where N is the number of

0periods.

The previous studies have all assumed that the exogenous flows into nodes are known

for all periods. This assumption is not generally true. Instead, the flows are unknown

and represent random rates of arrivals into the system. The stochastic dynamic traffic

assignment problem is then to determine flows along the arcs to minimize a convex function

of traffic congestion. Flow decisions in one period depend on the realization of inputs from

previous periods. The decisions seek to minimize expected costs over future periods.

In this paper, we formulate a piecewise linear version of the stochastic dynamic traffic

assignment problem. This representation is analogous to those given by Ho and Merchant

and Nemhauser. In this multistage model, uncertainties are resolved period by period

as time progresses. We show that a successive linearization procedure, similar to Ho's,

yields a globally optimal solution. We also present an algorithm based on the multistage

decomposition method of Birge [1] to implement this procedure. Experimental results for

this algorithm on problems with up to sixty-six thousand variables are given.

2.i



2. Multistage Stochastic Program Formulation

The multistage stochastic program assumes that decisions taken in period i depend

on outcomes and decision made in periods 1, ... ,i - 1. Period i decisions cannot, however,

depend explicitly on future outcomes (i.e., they are nonanticipative). In every period i, a

finite number Li of scenarios represent different sets of inputs. Each scenario li has an asso-

ciated probability pl,. For every scenario li in period i(i > 0), there corresponds a scenario

a(l,) in period i - 1 which is the immediate ancestor scenario of l. Each l, also has a set

A(l) of ancestor scenarios (one in each period i' < i) that is defined recursively as the set of

currently defined ancestor scenarios and their immediate ancestors. There also exists a set

of immediate descendant scenarios D,+ 1 (1j) c {1,...,Lj+j 1}, in period i + 1 for every i. The

descendant scenarios partition {1,..L+ so that Ut, {1 ....L,) +1 () = { 1,. .. , L,+

and D+ 1 (i) n D+I(j) = 0 if i 0 j. We let D(1j) be the set of descendant scenarios consist-

ing of immediate descendant scenarios of i and all future (recursively defined) immediate

descendants up to the planning horizon.

The flow decisions are x-ii for arc j in period i and scenario 1. Other notation is

consistent with Ho with decision variables A', representing weights on grid points c' such

that

K(j)

k=1

For period i = 0, we define Lo = land let zoj and A', be interchangeable with x0 j and

The notation includes:
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G = (M, e) a directed graph;

M = set of nodes of G;

e = set of arcs (directed edges) of G;

N = planning horizon;

i = index of time period;

= index of arc in e;j 1,

q = index of node of M;q =1 ... ,n;

n = index of destination node;

A(q) = {j E e I arc j leaves iode q};

B(q) = {j E e arc j enters node q);

Fil (q) = external input at node q under scenario 1;
K(j)

h~j(z1 j,) cost of xoi h -A A;
k=l

d~ji = amount of traffic admitted to arc j in period i under scenario 1;

gi(zlj) = amount of traffic to exit from arc j in period i under scenario I
K(j)

k=I

We make the following assumptions as in Ho[4].

(Al) The arcs are not explicitly capacitated.

(A2) Saturation occurs for large enough x, i.e., gK(j) = 0.

(A3) The nonnegative slope of the piecewise linear approximation to gi is strictly

decreasing.

(A4) The cost functions are structured so that
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(a) 0 _5 h,. < ht + for all i,j and k;

(b) If j2 is closer to the sink than jL along any simple path, then hK( (j2) <h . for all
432 - 3

I.

We add an assumption from Merchant and Nemhauser [5]:

(A5) 0 <- gi (x) < x.

The stochastic dynamic traffic assignment problem (SDTAP) is then formulated as:

mi- _ 2 hoA - _ ..{j. ,,} = GN+(A) SDTAP.O

subject to
E'K(Y) Cj:k EK (j(ik _g

k-, =1c'Al3,, = I (c ! - g=)A1 +do,j =,...,a;= 1,...,L; SDTAP.1

- A -,,=, K (j) (c, - g1)A + dt, i= N - 1;

j=1,...,a;l' E P,+1(l); =1,...,L,; SDTAP.2

--K(A) kAh Vq n SDTAP.3

FZjEA(q) diii Fi F1 (q) + ZijEEB(q) k=j1) g$3'1  Li;

i =1,...,N;VqA n; SDTAP.4

k=1 0i. = R.,j = 1.,a; SDTAP.5

{doj >_O,d%., > O, i=l..Nj=l..al=l..L;

i_ O, = .a,k = K();
Ak > i= 1,...,N,j =1,..,a, SDTAP.6

1= 1,...,L,,k =1,.K(;

k= - 1, K(i }lA,. = 1;i = 1, ...N,j = 1,...,a;l = 1,...,Li; SDTAP.7

I Xk, > 0 for at most two consecutive k,
Ap > 0 for at most two consecutive k.

SDTAP is a multistage stochastic program with recourse (see Wets [8]). Decisions A'

and dq, are made knowing Fiq for i' < i with certainty but without knowing the realizations

of future inflows Fq for i' > i. The future inflows represent the discrete realizations of the
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random external input.

The ordered solution property constraint (OSP) makes SDTAP a nonconvex program.

Additional optimization must, therefore, be performed to solve it. In Ho [4], it is shown that

an optimal solution can be found for the deterministic problem by successively optimizing

at most N + 1 objective functions for the linear programming part of SDTAP. We show

that a similar successive optimization approach yields a globally optimal soultion for the

stochastic problem.

The difference between the procedure followed below and Ho's procedure is our order

of optimization and choice of objectives. These objectives are used on individual scenarios

to maintain the form of the stochastic program. We first state a result from Lemmae A,B,C

of Ho and Lemma 1 of Merchant and Nemhauser.

Lemma 1. Let y = {A .,,dqj} be a feasible solution of SDTAP.1-7 that violates OSP for

= , j = s, and I = t. There exists a feasible solution, j - {A4.1,d.}, to SDTAP.1-7

that differs from y only for j = s when i = r and I = t, and for arcs j on paths from s to n

for i > r and I E Di(t). The solution for A in (1), x,,t = Y,,t, the solution given by A. The

solution V satisfies OSP for i = r and j = s and:

a.) For all q E X1, i = 0,...,N, I = 1,...,Li, the total flow reaching q on or before i is at

least as great for p as for y.

b.) For any scenario I E LN, the scenario I objective value,

N a K(j)

G'N+()=Z, F, F Gj+ AN
i=O, EA() =1 k=I

c.) The solution {A,, ',} ,1 is the same for any value of {.\,,,I d,., }, i' > i.

Proof: Applying Lemma 1 of Merchant and Nemhauser on each scenario I = 1,..., LN and
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its ancestor scenarios, A(1), directly yields the results above except for the nonanticipativity

requirement in SDTAP. We, therefore, need to obtain the same A and d .,for all I E D (I').

By the construction in Merchant and Nemhauser, (c) above holds so that nonanticipativity

is maintained.@

The following corollary is the basis for the successive optimization procedure.

Corollary 1. Consider a feasible solution =of SDTAP.1-7. Suppose y

{A"*, di*j} is an optimal solution of

mx-K(() A '  (SUB - i'l')
max =e I,, (A),: ,= ;,

subject to (SDTAP.1 - SDTAP.7)

i ,> ,,ID(1'), Vi;

< = ...,L,,.

Then, y* has no OSP violations in period i' and scenario 1'.

Proof: Suppose an OSP violation occurs in y" in period i', scenario 1', arc j'. By Lemma

1, there exists a solution " = {A, d} that satisfies OSP on arc j' in scenario 1' at period i'

and that satisfies the constraints in (SUB-i'l'). By strict concavity in Assumption A3,

K(j') KU'). k E -k g'~ ' '  (2)

j '-:,,k= t k= I

Hence, Gi, (A) > Gi,1, (A*), a contradictions of A 's optimality.u

This corollary can be applied repeatedly from period 1 to N for each scenario to obtain

a full OSP solution. The repeated direct solution of the full multistage problem using stan-

dard linear programming procedures may, however, be too computationally burdensome

to implement. The structure of SDTAP can, however, be exploited. In [1], a multistage
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nested Benders' decomposition method (NDSP) is described that significantly reduced solu-

tion times from simplex method solutions on a set of practical test problems. NDSP applies

directly to SDTAP.1-7. Obtaining an OSP solution using objectives G,v requires, however,

the addition of the intertemporal constraints, G'+ x(A) _ G5+ 1(A). These constraints are

not directly compatible in the decompostion procedure. The development below shows how

to incorporate these constraints into a procedure to obtain OSP.

To simplify notation in the following development, let y,, = {A dip}, let SDTAP.1

be
N LS

GN+(Y=Z pithiytl, (3)
i=O 1=1

*! let the constraints, SDTAP.1,3, and 5, be

Aoyo = bo, (4)

let the constraints, SDTAP.2 and 4, be

Bi-lyi-_,1, + A..yi~ = eil,Vl E P(l'),i = l,...,N;l' =l.,L_;(5)

* and note that below we use j and k as general indices that are not restricted to denoting

arcs and linear segments.

The basic (i,l)-subproblem solved in NDSP, given some solution, -ia(l), is then

Qi, = min hy, +0i (NDS - 1)

subject to Ay. = , - Bi l i-l,a(l); (NDS - 2)

Dr%, > ,,r = 1,.. ,Il; (NDS - 3)

Ei',y,, +Oil > ,s = 1,.. ,Sit; (NDS - 4)

i > 0. (NDS - 5)
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Constraints (NDS-3) are feasibility cuts to maintain a feasible solution in descendant sce-

narios 1. The (NDS-4) constraints are optimaliti, cuts on Oil. They represent an outer

linearization of GN+1 restricted to descendants oft1. NDSP repeatedly solves subproblemns

NDS to obtain (gil, G)until the optimnality condition,

pLilo il j piivii~'ii) (6)

is achieved for all sil. (Note that pit XEEA(L) pi+',i'.)

For the algorithm below, we also define

N

p,",)=E E p1''h', it, (7)

as the contribution to the objective of I and its descendant scenarios. The following algo-

rithm obtains OSP in all i and 1.

Nested Decomposition of Stochastic Traffic Assignment Problem (NDSTAP)

0. Intitialization. Use NDSP to obtain j, a solution to SDTAP.1-7. Let i -1, 1 = 0. Let

Lo = i.

1. Check for OSP. Let I = I + 1. If i > N, stop; j is a full OSP solution.

If 1 > Li, let i = i + 1, 1 = 0, return to 1.

Else, check OSP in Oi. If OSP is satisfied, return to 1.

Else, go to 2.

2 . Setup for OS? at (i,l1). Let jia, be as in the NDSP solution for all i' = i+ 1,. .. ,N

and l' E D(l). For each such subproblem (i', I'), let the NDS-3 and NDS-4 constraints be

those defined at the end of Step 0. Let Ki, 0Ofor all i' =i +1,..N; I' E D(l). Go to 3.

........



S. Maximize flow at i,1I. Solve the subproblem:

max Gil (yij) (8.0)

subject to A, yia Bi-Iq..l,.(g); (8.1)

= - 1 EjO
2 EA(L) hj~p; (8.2)

+Ua <G+Oil < G" (8.3)

D'-dir,r = 1),...,Ri; (8.4)

-iy, +i ei', 8 = 1,. Sill (8.5)

>l0; (8.7)

to obtain (pt i) Let i' = i+ 1. Go to 4.

4. Check feasibility at i'. If i' > N, go to 1. Else, for all P' E D (1) at it, solve

min hol OI (9.0)

subject to Ayi, =i - Bi'...I~~i,d(') (9.1)

hi 1,.. 1,R ,ZI 1) (9.3)

i'~y l d3,' z,> k =1,.. ,Ki,'g'i' < N; (9.5a)

-G". ~)i N; (9.5b)

>il 0, (9.6)

to obtain a new gv

If all subproblemns (9) at i are feasible, let i' = i' + 1, return to 4.

Else, for (9) infeasible at (i',I1'), add a feasibility cut, (9.5a), to (i' - 1, a(!')), where

& rB~.. 1  (10.1)
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'di, -,,_a.(,,) = w2; (10.2)

4-1,0(') = + ? + 2re, 1  + ff5W ; (10.3)

w = d,,, if i' < N; w = -GN+(1) if i' =N, k= KIa(,,L) + 1, and ir 'j 1,...,5, are

the multipliers corresponding to constraints (9.j), j = 1,..., 5, respectively, that obtained

the infeasibility condition. Update Kit _-,a(l,) for each infeasible (i', I') subproblem (9). Let

i' =i' - If i'=s, go to 3. Else, return to 4.

The NDSTAP steps 1 to 4 differ from NDSP iterations in the use of the linking con-

S. straints (8.2) and (9.2). NDSTAP also does not add any optimality cuts (8.5) and (9.4)

because (9.5b) guarantees optimality.

* Other strategies can also be used in proceeding between periods. The above strategy

, solves all problems at one period proceeding to the next period. An alternative is to solve

all descendant subproblems for the current scenario at i' before proceeding to the next i'

scenario. The above implementation required few iterations, however, and was used for the

computational tests. Convergence of the NDSTAP iterations to an OSP solution is given

in the following theorem.

Theorem 1. NDSTAP terminates in a finite number of iterations of Steps 1 to 4 with a

solution {Y } that satisfies OSP for all i and I.

Proof: OSP is obtained for i = 0 if Steps 2 to 4 terminate for i = 0, according to Corollary

1. Given OSP at i = 0, Corollary 1 and induction establish OSP for all i and I if Steps 2

to 4 terminate finitely for each non-OSP solution found.

To show that Steps 2 to 4 terminate finitely, note that, because the constraints (8.3-

5) and (9.3-4) are outer linearizations, any feasible solution {y,} such that GN +1(Y) <

"" 11
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GN +I(jl) must satisfy (8.3-5) and (9.3-4) for all i and 1. These constraints, therefore, do

not exclude any solutions y that satisfy

, ~ G+,(y ) <5 GN1+I (g) for all 1= 1,. .. ,LN. (I

Since (8.2) and (9.2) are always satisfiable, we must establish that

1. there exists y, and {y,, I i' > i,1' E D(1)} that are feasible for (8.1-5) and (9.1-4,5b)

for all s', i';

2. Constraints (8.6) and (9.5a) do not exclude any feasible y that satisfies (11);

3. Only a finite number of constraints (8.6) and (9.7) are generated.

The first condition is guaranteed by Corollary 1 as stated above. Condition 2 is true by

,1, induction. Assume that v = _N-i,(,), u = ZNv-i(L,) is input to subproblem (9) for (N,I').

Then, there exist multipliers x', ... , 2r5 (?r3 
= ir= 0 since (9.3) and (9.4) are vacuous for

i = N), such that

r'AN +7r2 hN 0,

_ K.2 _ ,5 0 ,

WS > 0, (12)

and

SN,__1BNtJ __ x2 
- 5G .+(0) > 0. (13)

In order for v and u to be feasible, therefore, we require

'-

2r BN-IV + 7'2u > Ir IN&, - ?r5G"+() (14)

Constraint 14 is the feasibility cut (9.5a) as defined in (10). Hence, no constraints (9.5a)

for i' = N - 1 exclude any feasible y. By induction, the same argument applies for all

constraints (8.6) and (9.5a), establishing Condition 2.

12
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Condition 3 is true by induction also. For i = N, only extreme solutions of (12) need

be considered. Therefore, only a finite number of cuts (14) are generated. Hence, only a

finite number of constraints (9.5) are added to subproblems for i' = N - 1. By induction,

this is true for all i'.0

3. Computational Results

The algorithm NDSTAP was coded in FORTRAN as an extension of the NDSP code

([11). The code applies to problems with up to three periods (N = 2) with multiple de-

scendants in each period. Scenarios with single immediate descendants can be grouped

together, however, to solve problems with N > 2 and L 2 = "- - LN. This situation corre-

sponds, in practice, to the ability to predict future inflows with certainty given observation

of the first three periods of inflows.

The NDSTAP code takes advantage of single-descendant scenarios in the last period

by combining periods 2 to N into a single subproblem:

min GN_.k(y21,... ,yN) (15.0)

subject to A 2y21 = C21 - Bijia(l); (15.1)

Bity,, +Aj+,,Iyi+,, = ep,j = 2,... ,N - 1; (15.2)

Nj2 hilyi, G5 (. h, 0o(, - hoqoa(a(1)); (15.3)

GN,.(y2,,...,yN,) _N- a,s-= 0,...,k- 1( if k > 0); (15.4)

YI 0O," 2,. .., N; (15.5)

where GN.-(Y2a, YNI) = 2 g y is the total flow from each arc in periods 2 to N-s,

and GN -. is the value of GN_. obtained for subproblem (15) when solved with objective

G,,,_,. Subproblem (15) is solved instead of (8) for increasing values of k (starting at k = 0)

until an OSP solution is obtained for (Y21,. . . , YN). This is the successive optimization

13



procedure in Ho, which again achieves OSP finitely. Its advantage over solving (8) and

(9) repeatedly is that a single solution of (15) may obtain OSP for all yjJ, i 2 ,..., N,

* whereas several subproblems (8) may be required. The use of a similar objective with several

descendant scenarios (i.e., when Li < L1+1), however, still requires several optimizations

and is not advantageous over (8) and (9). The strategy in NDSTAP requires only one

additional optimization to obtain OSP in period 0, which may be the only decision actually

implemented before another problem is solved.

NDSTAP takes further advantage of the structure of (15) by checking for an OSP basis,

i.e., a basis of (15) such that A ,is basic for at most two consecutive k. When an OSP

basis is found, we need only check its feasibility in other subproblems (15) for different I to

find an asp solution for these scenarios. In practice, this quickly produces OSP solutions

for all scenarios.

The test problems were generated with the same structure as Ho's test problems in

[4], using Ho's TAPGEN generator to create a deterministic problem and the STG EN

A generator used in [1] to create the stochastic problem. All examples use the network in [4]

with seven nodes and twelve arcs. They also have five periods (N = 4).

The test problems include varying numbers of scenarios and different period 0 input

flows. The scenario numbers (L2 = L3 = L4 ) range from six to eighty-one. The period

0 inputs are characterized as "high," "medium" or "low." Each test problem has three

period-one scenarios (Li = 3). The input flows are summarized in Table 1. The period-

two scenarios are constructed from combinations of the period-two values in Table 1 for

nodes four, five and six.

14



Table I. Input Flows

NODE PERIOD
0 1

Input Level Scenario

High J Medium Low 1 2 3
1 10 30 50 10 15 30
2 10 30 50 20 30 30
3 10 30 50 5 10 30
4 10 30 50 0 30 30
5 10 30 50 0 30 30
6 10 30 50 0 30 30
NODE PERIOD

2 3 4
1 30 20 5
2 70 40 30
3 20 10 5
4 (10,20,30) 30 40
5 (15,25,35) 60 50
6 (0,15,30) 10 20

The size characteristics of the linear programs (SDTAP. 1-7) for each test problem are

given in Table 2. That table gives the number of period-two scenarios, the number of

constraints and the number of variables for each SDTAP solved.

Table 2. Test Problem Characteristics

Problem Numbers Scenarios Constraints Variables
1-3 6 720 5,952
4-6 12 1,296 10,800
7-9 24 2,448 20,496
10-12 81 7,920 66,552

The test problems were solved on the IBM 3033/4381 Computer Network at the Naval

15



Postgraduate School, Monterey, California, using the VS FORTRAN compiler under the

VM/CMS operating system. The results from solving each problem are given in Table

3. The number of NDSP "major iterations" refers to the number of subproblems, (NDS),

solved (excluding multiple solutions of last period subproblems with the same ancestor

input). NDSTAP "major iterations" refer to the number of subproblems (8), (9) and

(15) solved. "Simplex iterations" refer to the number of simplex iterations performed on

subproblems NDS, (8), (9) and (15). The CPU second times (CPUs) do not include initial

input and final output times but do include time for iteration logging.

The number of OSP violations found for each test problem in Step 1 of NDSTAP are

given in Table 4 by period (with periods 2 to 4 grouped together). Whenever an OSP

feasible basis in (15) was found for some scenario 1, the corresponding OSP solution was

used for that scenario so that no OSP violations were recorded for I.

16
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Table 3. Test Problem Iterations and Times

Problem _____ ___ ___ NDSP

Period 0 Major Simplex CPUs
S Input Iterations Iterations

1 High 46 326 0.104
2 Medium 62 346 0.124
3 Low 42 353 0.172
4 High 46 402 0.192
5 Medium 62 449 0.316
6 Low 40 364 0.253
7 High 46 468 0.443
8 Medium 62 535 0.597
9 Low 40 480 0.587
10 High 52 656 1.640
11 Medium 68 1,024 3.636
12 Low 50 729 2.160
Pro blem NDS TA P _____

Period 0 Major Simplex CPUs
S Input Iterations Iterations

1 High 7 177 0.066
2 Medium 7 151 0.059
3 Low 7 171 0.075
4 High 7 228 0.103
5 Medium 8 190 0.128
6 Low 6 231 0.162

",7 High 7 229 0.140
8 Medium 7 247 0.188
9 Low 7 297 0.290
10 High 7 245 0.204
11 Medium 7 339 0.944
12 Low 6 557 1.234

17



Table 4. OSP Violations

Problem Period Total

__0 1 2,3,4

1 2 15 19 36
2 1 12 16 29
3 0 6 20 26
4 1 13 22 36
5 1 15 18 34
6 0 7 18 25
7 1 14 20 35
8 1 15 23 39
9 0 7 31 38
10 1 12 19 32
11 1 16 25 42
12 0 4 34 38

e"

Nate that higher input flows generally produce more OSP violations (Table 4). Ho

also observed this in deterministic problems. Observe in Table 3, however, that higher

input flow problems are generally easier to solve. This may be due to a reduced number of

feasible bases for higher input flows leading to fewer iterations.

The results in Tables 3 and 4 indicate that NDSTAP can efficiently produce OSP

solutions for large-scale linear programs SDTAP. The test problems were not solved by a

direct simplex method implementation because time and memory requirements exceeded

the VM/CMS limitations.* The true advantage of NDSTAP is, indeed, for problems that

* To give some comparison, however, a smaller SDTAP problem (without OSP) with

the same network, 511 constraints, and 1318 variables was solved in [1]. NDSP solved this

problem in 0.76 CPU seconds on an Amdahl V8 with 35 major iterations and 92 simplex

iterations. MINOS (Murtagh and Saunders [6]) solved the same problem on the same

machine in 10.37 CPU seconds with 337 simplex iterations.

18



cannot be solved by a direct simplex method implementation. We demonstrate here that

OSP solutions can efficiently be obtained for examples of these difficult problems.

4. Conclusion

This paper presented a formulation of a stochastic dynamic traffic assignment problem

with uncertain input flows and dynamic decisions given knowledge of previous inputs. A

successive optimization procedure to obtain a globally optimal solution was then developed

and shown to converge. The efficiency of this nested decomposition procedure, NDSTAP,

was demonstrated on a set of test problems with up to almost eight thousand linear pro-

gramming constraints and over sixty-six thousand variables. An NDSTAP implementa-

tion solved all problems in under five CPU seconds on an IBM 3033/4381. These results

demonstrate the practicality of decompostion approaches for stochastic traffic assignment

problems and other general multistage stochastic linear programs.
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