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I. INTRODUCTION

In prediction, data generated by some stochastic process are deduced from
bast observations. Given a well-known such process, the optimal mean-squared
predictor is the conditional mean, which is generally a complicated function
of the past observations. Linear prediction operations are then widely used,
due to their simplicity, and the classical theory of linear prediction for
weakly stationary discrete-time processes is mainly due to Wiener, [19], and
Kolmogorov, [11],{12]. However, such linear operations are not;riously un-
stable in the presence of contaminations due to data outliers, (see Huder, (9],
and Hampel, (7]), while the occurence of such outliers is a phenomenon frequently
observed in practice. In this paper, we develop and analyze a sequence of
outlier resistant prediction operations. Our presentation combines the
theories of saddle point games and qualitative robustness, (for the latter see
Boénte et al, [1], Cox [2], Hampel, [7]), Papantoni-Kazakos and Gray [13], and
Papantoni-Kazakos, [14], (15], [16],). Similar approach was used by Tsaknakis,
(18], for the development of outlier resistant filtering and smoothing operations.

Considerable effort has been dedicated to the development of minimax
linear prodictors, in cases when the spectral density of the process is not well
defined, but is instead a member of some compact class, (see Franke, [3], Franke
and Poor, [4], Hosoya, (8], Kassam and Poor, [10}, and Tsaknakis et al, [17]).

Such predictors are highly sensitive to data outliers, however.

In this paper, one-step prediction 1is considered, and the organization is
as follows: In section II, we present formalization of the problem and we de- N
fine important performance criteria for outlier resistant operations. In section

I1I, we develop outlier resistant prediction operations and we study their asymptotic

]
<

performance. In section IV, we examine the special case of first order autoregressive

o,
L™

LA

nominal processes. In section V, we draw some conclusions.
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I1. PRELIMINARIES

Let R be the real line, and let B be the usual Borel 0-field on R. Let R
be the one-gsided sequence space, and let B°° be the Borel o-field on R that is
generated by the product topology on R.. We consider a real-valued discrete-
time process, {xn. L§p<w}. whose measure M, is known and is defined on B°. we

name {X , 1<n<=} the nominal process, and we denote by {x , l<n<w} data realiza-

tions generated by it. Let X = X x*>"1
n n 1
n-

squared prediction operation, given the sequence realization X, 14 {xL, Lg(in-l},

) denote the optimal one-step mean-

when {xn. 1:p<°} is generated by the nominal process. Then if 8, = gn(x?-l)

denotes some scalar real-valued function on the sequence x? , we have:

en(uo.ﬁn) = inf en(uo.gn) (1)

&n

n~1 n-1
& (x," ) = Euo{xnlxl } 2)

; where Eu { } denotes expectation with respect to the measure T where
o
x; 8 x,, 1<f<n}, and where,

2
n-1
e (ug8,) & By (X8, 071 ) (3)

The expression in (3) is called the one-step prediction error induced by

g at uo. Let Ln denote the class of all the scalar real-valued linear functions

n
L, n-1

defined on R". Let then ik = ﬁn(x1 ) be such that:

L L
en(uo.ﬁﬁ) = 1:f en(uo.sn)
gncL

n-1

~

L
Then, x is called the optimal linear one-step mean squared predictor at

M. given the sequence realization X

1 and generally,




e (u,2) < e (u &) (s)

If the measure uo is Gaussian, then ﬁ“(xz-l) Q ﬁ:(xg-l), ¥n, and (5) is

Fhen satisfied with equality for all n. If v is non Gaussian, then (5) is
generally a strict inequality.

The above summary corresponds to parametric one-step prediction; that is,
it corresponds to the case where the measure uo that generates the data sequences
is known. 1In this paper, we are concerned with the outlier model. Then, the
observation process {Yn, 1<n<~} is generated by three mutually independent processes,
the nominal process {xn, 1<n<»} and two i.i.d. processes {Vn, 1<n<®} and

{z , 1<n<=}, as follows:

Y, - (l-Vn)xn +v Z n=1,2,... (6)
; where the common distribution of the variables Zn’ 1<n, is unknown, and
where {Vn‘ 1<n<=} {is a binary process. In particular, for some given €: 0<e<l,

the latter process is such that:

P(vk = Q) = 1l-¢

n
P(Vk = 1) = ¢

In the outlier model in (6), {Zn. 1§p<w} is called the contaminating process,

and {Vn. 1<n<w} determines the contamination law. In the presence of the latter

model, the objective is predicition of the nominal datum X given the observation
sequence yT—l, for all n, and the problem formalization is then clearly non-

parametric. Let U denote the measure of the observation process, and let {gn}l<n<m

denote a sequence of one-step predictors, where &, = gn(yg_l). Let us then define,
A n-1 2
e (u,g) = Eu{[Xn-gn(Yl )]} (8)

. , s DR » - ALY
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In (8), en(u.gn) is the mean-squared error induced by the predictor 8, when the AL
measure of the observation process {Yn, 1<n<=} is p, and where X 1is generated bg?
ol
150
by the nominal process whose measure is M. Clearly, en(uo,gn) is then as in (3), kwr
0,0,
(e
and it represents the mean-squared performance of the predictor g, at the nominal ?35
gk
measure H _, (that is, when outliers are absent). .asa
."l

P
| Our objective is to design a sequence {gn}1<n<w of predictors whose mean- iﬁﬁ
al R
squared performance is stable in the presence of variations in the measure y of ' ;J‘J
o
the observation process {Yn, L§p<°}. This stability corresponds to qualitative :f%&
robustness, and is defined as follows: ;) A
Wil
"

Given n>0, there exists §>0, such that: ' ,%ﬁ
ﬁ'c(
< - L4 . g

Hp(uo.u) § implies Ien(uo,gn) en(u.gn)l n; ¥ :
)
O
In the above definition, ﬂp denotes Prohorov distance with an appropriate =
.
distortion measure p on data sequences, and sequences {gn} of operations that :5
' 4

satisfy this stability are called qualitatively robust at the measure u,- As N
found first in [13), and later in [1], [14], and [16], for the sequence {gn} to e
]
be qualitatively robust, pointwise continuity and asymptotic continuity in | '
conjuction with boundness, are sufficjent. In particular, it is sufficient that bl
- .'
gn is bounded for all n, and: T
A,
(A) Given finite n, given n>0, given x;, there exists §>0, such that, &\S

n n n, 4 -1 n n .-

H = - < - <n. "o

Y, Yn(xl’yl) n 1Ellxi yi| 8 implies |gn+1(x.) gn+1(y1)i n s

by
(B) Given uo stationary, given >0, n>0, there exist integers n,, m, oéa
o
® ¢
some 6>0, and for each n>no some A"eR™ with uo(An)>1—n. such that for :ﬁ Q
l..:
each x"eA" and yn such that inf {a: #[1 : Ym(xi+m-l, yi+m-1)>a]§pa}<5 ﬁ&ﬁ:

n n

- < 2
it is implied that |gn+1(x1) gn+1(y1)| L. E}E

:\‘}:
G
N
RS,
. b
&
N
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Given a sequence {gn} of predictors which is qualitatively robust at the
nominal measure uo, its important quantitative performance criteria are: (1) Its
asymptotic mean-squared performance at the nominal measure, li: sup en(uo,gn)
(2) Its breakdown point. (3) Its influence function. The b:eakdown point and
the influence function represent measures of resistance to outliers, and their
definitions are given below.

Consider the model in (6), and let then {Zn} be a deterministic process
with amplitude w; that is, P(Zn-w)=1. Let then He o be the measure of the

»

observation process {Yﬁ}. Given a sequence {gn} of predictors, we then define:

Influence Function of the sequence {gn}:

e(lls ,W’ 8) - e(uo ’g)

RORR (9
& €+0 €
;s where,
e(u,g) g lim sup e (M,8.) (10)
<o n n
Breakdown point of the sequence {gn}:
* A 2
€ =sup { €: e(u ,8) < lim sup E_ {X"}} an
g €, = e M,

; where e(y,g) is gefined as in (10).

We note that the breakdown poiht is the maximum frequency of independent,
infinite-amplitude outliers that the prediction sequence can tolerate asymptotically,
without becoming useless, (that is, before the observation sequences provide no
information about the next process datum). The influence function represents
the slope of the function e(ue.".g) - e(no,g) 4 Fc’g(w), at the £€=0 point. Fe’g(w)
corresponds to the asymptotic mean-squared error increase induced by the prediction

sequence {gn}. when from absence of outliers the environment shifts to e-frequency

and wv-amplitude outlier occurence.
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'
The outlier model in (6) can be generalized to i.i.d. sequences of m-size e
o
blocks of outliers, as follows: 'E&ﬂ
nh
km km km Lol O
Yo-Dot = VX0 et ¥ 2ae-Dmrr 5 K12 (12) :i::::
l.l‘l'.
; where the sequence {Vn} is as in (7), and where the vector random variables :£Qf
&. 1
{Z(k-l)m+1} are i.i.d. with unknown distribution. Let ue’w’ denote the measure : .3
of the observation process {Yn}. when the model in (12) is present, and when 4 éuﬁ
P(Zn-w)=l. Then, given a sequence {gn} of predictors, and defining e(u,g) as g~%
* \,(' .
in (10), the breakdown point, eg g and the influence function, Ig m(w), that gi;
] 1) » !
L
correspond to the outlier model in (12) are defined as follows: i}ﬁ
* A 2 o
€ = su €: e < 1lim sup E_ {X°}} 13 P
g.m - SUP { (ue.u,'m,g) < ln s p u_a (13) ;::,
e(u »8) - ey ,g) e
I _(w) & 1ap 2B 0 (14) Bt
gs €0 . s

III. OUTLIER RESISTANT PREDICTION OPERATIONS

We consider a stationary, zero mean, real~valued process {Xn,L§p<m}, with

measure Y _, and Eu {Xi} = 02<w. We also consider the outlier model in (12) for

the observation prgcess {Yn,1§p<w}. We concentrate on the design of qualitatively
robust and outlier resistant sequences {gn} of one-step predictors for the process
{Xn,l§g<m}. Our methodology involves two steps: (1) A saddle-point game formal-
ization and solution for the predictors g, 2<n<m+l. (2) A qualitatively robust
generalization of the solutions in step 1, for the predictors 8, ° n>m+l.

In the sequel, we will assume that both the nominal and the contaminating
processes are absolutely continuous. We will then denote by fo(x?) the density
function induced by the nominal process at the vector point x?; we will denote
by f(y?) the density function induced by the observation process at the vector
point Y?' We not~ that then, for n : 2<n<m+l, the class, Fn' of density functions

induced by the model in (12) is as follows:




i'l.'.
Y
:...:
; I
n.':‘:
7 A
l'.
‘::!;f
. . / g
Fale:fy" Y-a1-e)f %Y > o3 y" Ler™ L, £(y" yay" a1} s
n 1 0’1 - 1 1 1 0]
Rn-l .k
(15) oy
Construction of Prediction Operations - Step 1 '::t
o,
Let us consider the model in (12) and one-step prediction based on observation 'f
L]
n-], l.'l.
sequences Yy s with n : 2<n<mtl. Given such an n, we consider the following
) )
T
saddle point game, where Fn is as in (15): ::
U
_ * % W,
Find a pair, (f ,gn), of an observation density function and an one-step 'é:::
o Y
* .
predictor, such that f EFn, and: =
Y
t::'i ]
* x * Sy
v . < . -
fan : en(f,gn) < en(f .gn) < en(f ,gn) ; ¥g (16) :*
1A
rad
In (16), the errors en(f,g“) are as in (8), where the measure, u, has been NN
"\-. .
substituted by the corresponding density function, f. ::'\'- :
o
~ Consider a pair, (f',g;‘), of an observation density and a prediction operation, ‘::‘
such that: ,.v,'
2
. RSN
- - . - -~ R
(f ,gn) : en(f ,g_n)= sup inf en(f,gn) an j_#f(
feF_ g ol
n °n "¢ ]
itou the results in [15] we then conclude that if the operation g'=g;(y;—1) is - ﬁ.
. n "
g,
I3 rd L * .
pointwise continuous and bounded, then (f ,gn) = (f ,g:), and the pair is a unique ;':',::
n\_\N
solution of the game in (16). We now present a theorem whose proof is in the Appendix. :“:':ﬁ‘.
e
f"»:.\
Theorem 1 N
n":«" ‘
Let the nominal process be zero mean Gaussian. Let then Pn denote the ;:,i \
',
_ T -1 ;
n-dimensional autocovariance matrix of this process, and let mo(yrll 1) = Bn_lyr{ <
-',.-: ]
denote the optimal at the Gaussian nominal process one-step predictor, when the ';::-_
A
Uy
observation sequence is y‘;-l. Let n:2<n<m+l. Then, the pair (f’,g;) in (17) is as ‘-r\::
L
follows: A
“
)
e
See
*:.




8
T -1/2
apon=1 n-1, n-1 -1 n-1
8,(yy ) =m (y; D win(@,A {Gy; D Py, ) (18)
T 1/2
-, n-1 - _ n-1. -1 n-1 -1 a-1
f (yl ) = (1 E)fo(y1 ) max(l,ln «Yl ) P 1Y } )
(19)
; where An is unique, and such that:
A s -, n=1, . n-1 -
n /n-l f (yl )dy:l 1 (20)

R
Since the operation in (18) is pointwise continuous and bounded, (f’,g')E(f*,g*),
n n

and the pair is a unique solution of the game in (16).

When the nominal process is non Gaussian, the operation g; in (17) is
genetaily not pointwise continuous; thus, there is no guarantee then that it will
satisfy the game in (16), and it is generally qualitatively nonrobust. However,
drawing from linear prediction in the absence of outliers, we will adopt the
operations in Theorem 1, for non Gaussian nominal processes as well. Specifically:

Let the nominal process be stationary and zero mean, with n-dimensional

n~-1 T n-1
1 =By

nominal process linear one-step predictor when the observation sequence

autocovariance matrix Pn' Let mo(y denote the optimal at the

is y;-l. Let fG denote densities of the Gaussian process whose power spectral
density is the same as that of the nominal process, and whose mean is zero.
Then, in the presence of the outlier model in (12), and for n : 2<n<mtl, we
adopt the following one-step prediction operation:
n-1 -1 n—l}

*o" Y = m ™Y min( {( “‘1)TP
ga\Y 1 mintd, Azt n-171

-1/2
)

) (21)
T 1/2

- - - -1 n- -
An: /n-lfc(y? 1)' max(l’Anl{(y? 1) Pn_lyr{ 1} ) = (1-€) 1
R

*
We note that for €=0, the value of An is infinity and the operation 8, becomes
identical to the optimal at the nominal linear one~step predictor. As ¢ increases,

Xn decreases monotonically, becoming zero at €=1.

e T
n’v"t';$ "
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Construction of Prediction Operations - Step 2 ::;:~
[ b W]
[N}
In this part, we are concerned with the construction of qualitatively robust o"‘.'
i |."
prediction operations, for large dimensionalities of observation sequences. We -
[y
point out that the operations in (21) are qualitatively robust for finite such K )
" 4
dimensionalities only. Indeed, theysatisfy condition (A) in section Il and are \",
LA
bounded, but they do not satisfy condition (B). At the same time, the outlier

model in (12) does not allow for the formalization of a saddle point game for r:g
ol
arbitrary data dimensionalities, even when the nominal process is Gaussian. We ;._J;
will thus adopt an adhoc approach. E.
. NN

(n) -:35?

[ }"

Let {a } 1<5<n denote the one-step prediction coefficients of the nominal '}-:.'
f'".'

process, when n observation data are available. That is, if mo(y[;) denotes the ™
j . . P,
optimal at the nominal linear one-step predictor when the observation sequence is AR
n p e
yl, then: ::'_
n %
AWMU

n, ()

mo(yl) - Z aj yJ. (22) o

] .-"-

= e

Let g i . -
et gn be as in (21). Then, we propose the following sequence, {G }, of one- .:{
step predictors: hAY,
A

SN
* . n-1 * n-1 i
G{yy ) =8 (y; ) ; for 2<n<ml. s

.:-_\..

.
m * j * j- 1 .

cry™ Ly = Za(n-l) 841 0D By41(0syy 1) N7

n1 (i) R

j:l aj i:"-;

(23) “n

n-1 j j-1 —_

+ Y At gm+1(yj 1) gm+1(°'y +1’ o
J (m) 3 for nd>m+l o
j=m+l m :"{:'

L4

i where (0,y, ) denotes the se 2
8 sequence {yelYC+1"",yZ+n,0}.

* . o
We observe that the sequence {Cn} in (23) degenerates to the sequence of :i\t

N
the optimal at the nominal linear predictors, when in the model in (12), =0 :":
e

9 o

- ° 5" PR TR L e N ot LR Sl . LS wove N et {.
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R ,‘;,ﬂ
(design in the absence of outliers). In addition, using a similar proof as in ﬂhs
B8 et
* X
[15] ,we can easily show that the sequence {Gn} is qualitatively robust, is
'c‘
p‘_'r'

(satisfying condition (B) in section II), if:
k !
* ( ’;l‘
sup Z Ia(k)l < ¢ <= (24) "::":c‘
k i - 'l':.t'

j=1

Asymptotic Performance at the Nominal Process &

In this part, we focus on the asymptotic mean-squared error induced by

*
the sequence {Gn} in (23), at the nominal process. 1In particular, we wish to

evaluate e(uo,G), where,

{

Mse
N
RYLY
*y = 1 (1 _,G) (25) b
e(uo,G ) = lim sup e uo, n 3;“
n>e® A
s
Let eo denote the asymptotic mean-squared error induced by the optimal at v{ »
. !".' '
the nominal linear mean-squared predictor, when the observations are generated -:}
A
by the nominal process; that is, ﬁt.
n 2 P
A .. - (n)
e, = lim sup Eu {[Xn+l :Z: aj Yj] } (26)
n-o o .
j=1
Let us also define,
k
*
a* 2 1im sup 3 lal) 27
koo i=1 3
* m * m-1 2
Dm = Eu Ym - @ (28)
o a,

Then, we can express the following theorem, whose proof is in the Appendix.

Theorem 2
* >
Let the nominal process be zero mean and stationary, with d <w, h;ti
m ) A
lim sup 2: [agk)[ = 0, and Eu (X2}<w. Then, Q%E
ko §=1 1 o ',;ﬁ-
et .6 < E (X} (29) £
Mo FASN|
oy o
1/2 * 1/2 LI (30) o
le” ", ,6) -~ e 7| <dD ﬁ:*_'
’

P OO e P W Wil € oV oy
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We note that Dm decreases to zero, when the parameter Am in (21) goes }M&
g
* O\l
to infinity. Then, the asymptotic mean-squared error, e(uo, G ), becomes {&k
identical to the optimal at the nominal linear mean-squared error, eo. Also, u-?
t
* 2 [
Dm is bounded from above by E;/Z{Ym}, for every Xm value. ¢$¢
o hnt.
Xad
- ‘.‘e‘s'
Qutlier Resistance 3
In this part, we are focusing on the properties of the breakdown point and ):f
* 0
the influence function induced by the one-step prediction sequence {Gn} in (23). $*'
|' t
We note that, as well known, the breakdown point of the optimal at the nominal ~
3,
linear one-step prediction sequence is zero, and its influence function, I(w), is *
b
quadratic; thus unbounded, (see [18]). We now state the following theorem, whose thw
byt
'l Yt
proof is in the Appendix. =
=
Theorem 3 o
Theoren 3 oo
Let the nominal process be stationary and zero mean, with f::’
k m &5
* . "
d g lim sup }E: |a€k)‘<m, E {X2}<“, and lim sup :E:iagk)\ =0, for every given =
ko J Hs Iow J o
j’l j'_'l . E\‘-
%* ")
finite m. Let Am in (21) be bounded. Then, the sequence {Gn} in (23) has strictly ;ﬁé
"2
positive breakdown point, and bounded influence function. v ft
b
IV. GAUSSIAN AUTOREGRESSIVE NOMINAL PROCESS .'_
N
In this section, we consider a first-order autoregressive and Gaussian nominal §; ;
* L]
* K}
process, and we study then the performance of the sequence, {Gn}’ in (23), in Ll
it
detail. In particular, let the nominal process {Xn,1§n<w} be such that: el
v
RoS
"
= + '
X, soX ,+W (31) By
; where a<0.5 and where the variables {wn} are i.i.d. and zero-mean, g';:
PRy
ANAL
unit-variance Gaussian. The process {Xn,linjm} is then zero mean, and asymptotically }3}\
o~
-1 oy
stationary with lim sup ElJ {Xi] = (l—uz) . 5!
n-+e o
Considering the above nominal process, Theorem 1 applies, and the operations .:-!.\
1 .. I
. % N
{gn} = {gn} in (18) and (23) take here the following asvmptotic form: \%:
11 .
.\j:

....---'-'.""'.-.' '
* ﬂsisﬁifﬂfjf_J.f W T
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For j==, gw._l(y';_ml) - cxyj-min(l.)\u{yj_m_l + (1-a) Z (yi~ay, ) } )
i=j-m+2
(32)
; where,
n 1/2 - -1
-1,.2 2 2 . 2, 2772
Xm: {max(l,'\m {yl +(1-a )z(yi—ayi_l) }oo)e(2m (1)
RP i=2
" 2
cexp{- __l—_i— [yi +(1-a2):£: (yi-ayi_l) ]}dyli'-(l-s:)"1
2(1-a%) =2
(33)
o 01y * n-1
For me, G (y, ) gmﬂ(yn_m) (34)

From the above expressions, we easily find the following expressions,
where ®(x) and ¢(x) denote respectively the distribution and the density

functions of the zero-mean and unit-variance Gaussian variable, at the point x.
A

1y

A Nrwe. A
A1:24>(—1-T) - 142 i'“ b—L - a-e! (36)

Ny 1 J1a?

For jow, g;(yj) = ayj min(l, ) (35)

* 2 2 2 -1/2
For j-+=, g3(yj,yj_1) = oy, min(l.?\zfyj_l*'(l—a )(yj-ﬁyj_l) | D BN & 7))

A Jie2
A /E‘N( 2 )1 42 V10 2 y Lo (1)t (38)
2" N7 | ) 2

2 1o

The functinns that determine the Xl and Xz values, in (36) and (38)
respectively, are both motonically decreasing with increasing A; from » to 1;

thus, for €<1, both Xl and Xz are unique. In addition, it can be easily seen that
>A. .
AZ Al
We will study the operations in (34), for m=1 and wm=2. That is, we will

analyze the operations in (35) and (37), in terms of performance at the nominal,

breakdown point, and influence function.
12

- - o LR o i s ] ¥ ", W = “‘l'n‘-" -,’ .-'. P, '-"'_" ‘. M
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Case m=1

Then, from (35) and (34) and for Xl as in (36), we obtain:

A

For n+*= C*(y“-l) = ay . °min(1 ) (39)
e D | n-1 i

lyn-l

Then, we easily find:

2
x 2 * n-1 *  n-1
e(uo.c ) = 11:*:up (Euo{xn} - ZEuo{ann(Yl )} o+ Euo{[Gn(Y1 )I'H

-1
- -oh 0tizenn [1-a) ci2e’ a-dni-en ) 1)

- 202 1—02 Xl ¢(A1 1-02)} (40)
2 2 M 2,7t 2 2
I () = a’w emin(l, 5) + (1-a) a™{{26(2, ([1-a)-1] -
G v
o 4
2,,2 2 2 2 S
- 2a-adnlu-en J1ahi v 2 TR a0, 1)) 2
(41)
e, = 1-a-a"n2ta-tn? + 200 J1-ah -1 -
G
-1
2,2 2
- 20-ahHf1-00, ,/1-a2)1 +2 J1a? a 00, J1ah)
(42)

; where the expressions in (40), (41), and (42) provide respectively, the
mean-squared error at the nominal, the influence function, and the breakdown
point induced by the operation in (39), when the nominal process is as in (31).

* *
The mean-squared error e(uo,c ) in (40), and the breakdown point e in (42)

G
are both convex functions of Al. In Figure 1, we plot them against Xl. In Figure

*

2, we plot the influence function I _(w) against jw].
G

Case m=2

Then, from (37) and (34), and for XZ as in (39, we obtain:

2 -1/2
For n+e C*(yn-l) = ay . *min(l,)\ {yz +(y -y L) (1412)} )
' ntll n-1 *72 'n=2 n-1 n-2
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Then, we find,

-1 A A
" 2 2 2 2
e ,6) = (1) f{1- \IZN @ —F=; [1-¢C*—F==3)l
o 1—02 l-a

+ [¢( ) -$(0)1} (44)
12
2
22 Ay
1, (w=av min(l, 3 5 3 ) +
G ,2 wo[1+(1-a%) (1-a) 7]
21 A
+ o taeh T —25 =7 (10— ) 4000 - o)
,/ -1 J l1-a
(145)
* 22 2.2 2 2 71 2 A2
e, =l Az{u Xz + 2n a [(1-a”) +(1-a)7] 2 M-¢(———— 2
G2 [
-1 A -1

v ddia<e®h  + 11600 - e
Vi<’
(46)

In (45) and (46), size-two blocks of independent outlier vectors have been
considered, as in (12) with m=2. As functions of XZ' the mean-squared error
in (44) and the breakdown point in (46) behave respectively as those in Figure
1. Also, the influence function in (45) behaves similarly to that in Figure 2.
We note, that in the m=1 case, the found breakdown point and influence function
are identical when size € blocks of outlier vectors are considered, and for

every £>1.

Comgarisons

Let us compare the operations derived for cases m=1 and m=2., Since the
frequency of the outliers in a given system are at most anproximately known,
the thresholds /\1 and \2 in the above operations are sclectod dhoely,  Let us

_\
thus select: r‘ﬁ
<




v
i
N
15 o‘,:n:
A ,‘::'53
ay min(l, ) ; for the m=1 case o
n-1 1-02 ] ' ..'l'
v Ya-1 32!
RS
* n-1
For nv®, G (y, ') = 7n x
n’1 4 ?
A "
ay, .1 min(1, yz 172 ) ; for the m=2 case é
2 n-2 )
((yn-l-uyn-Z) + 1 2} b“
-
e:
!
Let us denote by Im(w); m=1,2, the influence functions induced by the ﬁ:g
N
operations in (47), for the cases m=1 and m=2 respectively, when the nominal 4t
process is as in (31). Let us denote by e, m=1,2, the corresponding mean- E::
RN
squared errors induced by the operations at the nominal in (31) process. Then, f;.
L
modifying the thresholds appropriately in expressions (40), (41), (44), and (45), b_~
we find after some tedious but straight forward manipulations: f::
1 Y
e -e, = a’(1-a®) F(V) (48) B
1 72 g
2, 2,71 .
Il(u) - Iz(w) = - (1-a") F(A) + "
-!f
Lo
2 2 A2 \2 o
+ a"w {min(1, ———E—~§-) - min(1l, 71 3 2)} '“k
(1-a%)w [(1-a™) * + (1-0) " Jw -
(49) L
o
; where, 'ﬁz'
A y2 ‘
F(A) = [2)7 + 2m A + 2][1-%(X) ] - [2) + ,{2n]¢(k) (50) N
0
Y
The function F(A) 1is nonpositive for all positive A values, while the e
N
expression in the brackets of (49) is nonnegative for all X and w. Thus, N
e, > e, and Il(w) > Iz(w) 7 Bw, VA (51) :’
The inequalitfies in (51) express a tradeoff. Indeed, the operation for ,ﬂ
.‘.-,.
m=2 in (47) provides uniformly better protection against outliers than the .
.-;
operation for m=l, but the former induces a uniformly higher mean-squared error {f

Ll l.l"

s s e

F N

at the nominal process than the latter does. Cenerally, siven cach of the operations




mmm" T RPEEwTRIRER e e

16

separately, as ) increases, the mean-squared error at the nominal process decreases,
but the breakdown point decreases as well, and the influence function increases
uniformly. Thus, the selection of one operation among those in (47) and the
choice of the threshold A in it, depend on the desired tradeoff between performance
at the nominal and protection against outliers.
V. CONCLUSIONS

We derived a class of outlier resistant prediction operations. Those operations
are nonlinear functions of the observed data sequences and combine good performance
in the absence of outliers with protection against data outliers. The class in-
volves a threshcld parameter and a data block size used as a basis in the construc-
tion. The two parameters are involved in a performance at the nominal process
versus outlier resistance tradeoff. The selection of the threshold parameter is

also based on a similar tradeoff. The operations in our class are qualitatively

robust.
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Figure 1

Autoregressive Gaussian Nominal Process and m=1
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Autoregressive Gaussian Nominal Process and m=| ;;!
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APPENDIX

Proof of Theorem 1

We easily find that,

2

2 2 -1, n-1 n-1 n-1 n-1

inf en(f.gn) Eu {xn} - (1-¢) /f (y1 )[fo(yl )mo(yl )] dy,
gn ° Rn—l

So,

sup inf e (f,g ) corresponds to:
fEFn gn n n

o4t
5’5

‘.4‘ L4

5
'.J

2
inf B A TN e PR VI (A.1)
feF 1

XX

R

R
f{‘,

[ 4
$I

Applying calculus of variation on (A.l), subject to the constraints

n-1 n-1 n-1 n-1 n-1_n-1 \
f(yl )dyl = 1 and f(y1 ) - (1-€) fo(yl ) >0, ¥ y1 €R , we find
Rn—l

LY
"

LR

N
N

X

the solution in the Theorem.

DY
redLl S

AN g
H &

Proof of Theorem 2

L ¢

el
h )
Vv ¢

Expression (29) is obvious, and is attained with equality iff An=0 in (21).

l‘5‘

)
y)
Regarding expression (30), applying the Schwartz inequality and using (22), we :J:
N
I"‘I
obtain, v
.‘.’-v
e (.6h = £ (X -a (" Jelm (" Hoct @™ ) N
n‘¥o*Vn My n o1 Mot n 1 NN
2 2 i,
n-1 n-1 * n-1 AN
= - -G )
Euo“xn m (Y, D)) } o+ E{{m (Y, ") G (Y, s
- - * -
+2E {((X-m " Hjm o™ h - o™ (A.2)
My n o 1 o 1 n 1
; where,
18
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n-1 n-1, * —n-1 X
IE, (X -0, (™D 1m0y ™H-6 0 ™H1] < o

2 1/2 2 : 1&
1/2 n-1, % n-1 Phelt
£y (X -a_(137H1 ) B, {lm (Y76 (Y7 )] } A

(A.3)

R

From (A.2) and (A.3) re obtain:

a8 A' ’
20, q

2 1/2 2
1/2 1/2 n-1 n-1, * n-1
le {Ix-m (1,71} < B, {lm (¥;" -6 (¥ "H1}

o o

(u C)

(A.4)

s

4

Also,

"
P4
%

g

51/2{[m

o

Prs
A

2
@ h-c i Hy -

e,

“w e
¢

’2

h
L4
Yoy

Y adygt o,vi!
1/2 {(E (n-l)[ Ejjl 1 ‘gj+1 ' )]
RS

~
»

X

2
(vd YJ -1

* *
. :E: (n-l)[ 81 Yo 8 (O m+1)] ) : <

~
-~

(m)
j=uwtl %n

Aty
s

by

w e s

PO L

2

j-1,.2
RECSY 1/2$ _i+1<Y )- §j+1(°'Y1 )
E 2y

o .
: J

+

SN S
v

LR

-
L 4

J

P A
l‘l'"

7,

MO IR A U R SR I
. :E: (n-1) 1/2 _ Bt o)’ B 0 Y |
' |

(m)
j-m+1 o ) amm

s5
2. m e

IZ (n-1)

* 3y * i-1,
[Y By (Y1)-8440 (0,73 ]
3

* -
< Dm Z laj(n l)l + max 51/2 )
m+ a5

1<j<m Yo

1/2 1,2 1/2 -
n'
11: sup Euo {[Xn-—mo(Y1 )] } = e (A.6)




Applying (A.5) to (A.4), and taking limits, we obtain (30). N

Proof of Theorem 3

'l
Let us define, .‘l""

= (k) '§ l'
a, lim sup a;

; ) ko :

Then, we easily find, e,

* * NN

e(ue w’c ) - e(uo,G ) r
I ,(w) = lim * c < F"
G e+0 . ""F

2\ )
< - e(uo,G*) + E‘J {Xz} +[ (:)] Zaz + Ny
o a
m

2

‘n o]
+ 8 [—a(m)} Iz aia:i - 4[———a(m) z Xaiaj .J:u.*
m J i3 m Y ifj o

3 72 gkt
I (x?} ¢ ..
L4 T (d) + E“o X'F+ eu ,6) <m, NG
m

since e(uo,G) is bounded via Theorem 2.

* * .
It can be easily found that e(ue «*G ) equals e(uo,c ) at €=0, and that it is NN
’

* 2 O

monotonically increasing with increasing €. 1In addition, e(uo,G )<Eu {x°}. Thus, Il
* o ~

the breakdown point € 5 1s positive. dal
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