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1. INTRODUCTION

The vast literature that addresses turbulent boundary layers developing

under significant longitudinal (favorable or adverse) pressure gradients attests

to their (practical and fundamental) Importance. Much Is known about these

flows from the experimental, theoretical, and computational studies of the past

30 years, yet no satisfactory theory exists for turbulent boundary layers with

strong pressure gradients. The fundamental difficulty, to be sure, stems from

the general closure problem for the time-averaged equations. The recog ition of

this difficulty has led to the development of semiempirIcal model equations of

the turbulence and computation thereof, especially since the publication of the

two-volume proceedings of the 1968 AFOSR-IFP Stanford Conference (Kline et al.

1969; Coles & Hirst 1969) and the increasing availability of larger and faster

computing resources. This effort apart, the theoretical approaches resting on

firmer grounds for addressing pressure-gradient boundary layers have been

twofold. The first is based upon similarity analyses and dimensional arguments "

(see, e.g., Yaglom 1979). The second is based upon a systematic treatment by '"

the method of matched asymptotic expansions (see, e.g., Van Dyke 1975; Kevorkian

& Cole 1981). The present paper is concerned with exploiting this latter

approach, In the limit of large (turbulent) Reynolds number, to study a

turbulent boundary layer under a strong adverse pressure gradient In a steady, '

two-dimensional, incompressible flow past a smooth, nonporous wall.

The general adverse-pressure-gradient problem, In equilibrium or self-

similar form, initially conjectured by Clauser (1954), from an analogy with the

zero-pressure-gradient case, has been analyzed in detail by Townsend (1956a.b,

1960, 1961a,b) and Rotta (1962). Stratford (1959a.b) first studied, both

theoretically and experimentally, boundary layers held at Incipient separation,

the limiting or strong adverse-pressure-gradient case for equilibrium layers.

Further discussions of the theoretical and experimental results and their

implications for this limiting-case problem are summarized In Clauser (1956).

Mellor & Gibson (1968), Mellor (1966), Townsend (1976). Kader & Yaglom (1978),

Schofield (1981), and Afzal (1983). among others. Indeed, the results of this

paper are compared with those of Kader & Yaglom, obtained from similarity and

, tip, A



I
dimensional arguments, and with those of Afzal, obtained from asymptotic

analysis, as well as with the original results of Stratford.

The asymptotic analysis herein for the "sharply rising pressure" case of 1

Stratford is based upon the Reynolds time-averaged equations for steady two-

dimensional flow. For this case, as seen In figure 1, in addition to the

exterior (or inviscid-flow) region, there Is the interior (or turbulent

boundary-layer-flow) region that consists of two principal layers. The first

principal layer Is the relatively thick nondefect outer layer, characterized, to

leading order of approximation, by a convection--pressure-gradient--turbulent- U
stress momentum balance. The second principal layer Is the relatively thin

inner layer, in which, to leading order of approximation, the pressure gradient

and the turbulent and viscous stresses constitute the momentum balance.

In Section 2. the steady, two-dimensional equations of continuity and mean "

transfer of x- and y- momentum and the complementary boundary conditions for the

problem are presented (see YaJnik 1970; Nellor 1972). In Sections 3 and 4, the

asymptotic analyses for the flow In the exterior invlscld and interior viscous

(or boundary-layer) regions are presented, once the ordering* of the pertinent

parameters are identified.

For the boundary-layer region, the postulated characterizations of the flow

variables in the outer and inner layers are presented In Sections 4.1 and 4.2.

respectively. When It Is taken that the streamise velocity has a square-root

variation with respect to the normal coordinate In an arbitrary "overlap" region

intermediate to the outer and inner layers, and that the Reynolds stress has a

corresponding linear variation, as is observed experimentally (see. e.g.,

Stratford 1959ab). the matching of the postulated zeroth-order outer-layer and

Inner-layer solutions for these flow quantitites is demonstrated (see Section

4.3). Indeed, this matching provides the Inner-edge boundary conditions for the

higher-order outer-layer boundary-value problems and the outer-edge boundary

conditions for the higher-order inner-layer boundary-value problems. In the

analysis of Section 4.1, a model of the turbulent lpngth-scale function,

consistent with the experimentally deteraired nearfield behavior of the outer-

layer flow field and with the mixing-length hypothesis (for the eddy

(2]
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diffusivity), Is developed. as Is a model for the eddy viscosity in the farfield

of the outer layer (see, e.g., Clauser 1956; Nellor & Gibson 1966; Mellor 1966).

In Sections 5.1 and 5.2, respectively, similarity formulations for the

zeroth-order approximations of the asymptotic representations for the outer and

inner layers are presented. For previous work on such zeroth-order similarity

formulations for both the outer and the inner layers, see, e.g., Townsend

(1976), Nellor & Gibson (1966), Mellor (1966), and Afzal (1983).

For the zeroth-order approximation for the outer layer, subject to the

Introduction of the aforementioned model closure, which incorporates the

experimentally observed nearfleld and farfleld behaviors of the streanutse

velocity and Reynolds stress, the similarity boundary-value problem becomes an

eigenvalue problem for the determination of Hot the (constant) leading-order

shape factor, where this shape factor, Ho, Is related to the leading-order

stremnwise-pressure distribution, p0 (x), by

H W ({(1-2p0(x))(p o (xl)-2(-p0 (x))-41 - const.0

Thus, the similarity formulation holds for only m specific pressure

distribution, po(x), and/or outer-edge streamise-velocity distribution. uoW,

I.e.,

() .1 2 -2/( and/or

uo(x) - (1 - 2po(x))1/2 u(x - xo )-0/(Ho 2.

This velocity relation was first obtained by Townsend (1960). The normal-length

function, h (x). is (classically) linear In x, i.e., .,:, ,

ho(x) - (1 - 2po(x)Hp0 (x)) ( 1  - xo).

(3] I
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N
As to the derivatives of this pressure distribution, similarity requires

*2
p() uo0 ( )H 0 +4)/(%o+2) , -

0 (Ho+; 2) (x - x O0

PO W -i+) (x - O)-2(Ho+3)/(Ho+2) < 0.

(H0  2)2 (

With pO (x) < 0, the present similarity formulation holds for a decreasing

adverse pressure gradient, rather than an increasing one, as studied by Samuel &
0"

Joubert (1974). Further, p (x) < 0 violates the movinf-eaullbrium assumption

(Kader & Yaglom 1978; Yaglom 1979). wherein it is taken that p 0 (x) varies only

slowly with x.

The inner-layer zeroth-order-approximation similarity formulation follows

without the adoption of a closure hypothesis, in that only normal derivatives of

unknown functions appear explicitly in the zeroth-order problem of Section 4.2.

However, this similarity formulation Is based upon a square-root variation of

the streamwise velocity (with respect to the appropriately scaled normal

coordinate) and a linear one of the Reynolds stress at the outer edge of this

inner layer. These variations are consistent with the asymptotic behavior of an

Inner-layer mixing-length-hypothesis closure. To display the detailed farfield

and nearfleld behaviors of the flow quantities, here, an inner-layer

dissipation-factor closure model (see, e.g., Van Driest 1956; Patankar A

Spalding 1970; Szablewski 1970) Is adopted. From the present formulation, the

characteristic streamwIse-velocity and normal-length functions for this inner

layer are, respectively.

u(X) (p (x) 1/3 (x - 0 ) -(Ho+4)/3(Ho
+2) ,

hW(X) (p *(x)) - 1/3  (x - xO )(H0+4)/3(H0+2)

Since the matching of the zeroth-order outer- and inner-layer solutions is

established (in Section 4.3) without the requirement of similarity, the matching

[41



also holds upon the introduction of similarity. In the analyses of Townsend .'

(1976). Nellor & Gibson (1966), and Mellor (1966), the corresponding outer- and
3

inner-layer similarity solutions are patched (at a point of assumed common

validity), rather than matched. In the analysis of Afzal (1983), the zeroth-

order Inner-layer similarity boundary-value problem Is essentially correct;

however, because the matching requirement for the streamwise velocity is not

correctly formulated, the given complementary outer-layer similarity boundary-

value problem is subject to Incorrect inner-edge boundary conditions. Afzal

matches the (appropriately scaled) normal derivative of the inner-edge limit of 
k

the outer-layer streamwise-velocity solution and that of the outer-edge limit of

the inner-layer streamwise-velocity solution. The correct procedure (see, e.g.,

Kevorkian & Cole 1981) requires the direct matching of the inner-edge limit of

the outer-layer streauwise-velocity solution and the outer-edge limit of the

inner-layer streamwise-veloclty solution In an arbitrary intermediate layer.

The same procedure Is required for the matching of the corresponding Reynolds-

stress solutions. In the present case, the introduction of Stratford's

empirical results and/or the specification of the mixing-length-hypothesis

closure provides the limiting behaviors of the outer- and inner-layer solutions,

and the zeroth-order matching is accomplished. In turn, it Is possible to

determine the appropriate higher-order terms In the outer- and inner-layer

asymptotic expansions. These expansions are introduced In Section 4; their

correctness is confirmed In Section 6.

From the analyses of Sections 4.1 and 4.2, the equations of motion for the

higher-order approximations for both the outer and the inner layers of the

Interior viscous region are obtained. From matching with the exterior-inviscid-

region solutions, the boundary conditions at the outer edge of the outer layer

are obtained; the boundary conditions at the inner edge of the inner layer

(I.e. the wall) follow directly from the original boundary-value problem; and

the higher-order-approximation boundary conditions at the inner edge of the

outer layer follow from matching with the outer-edge solutions of the zeroth-

order approximation for the inner layer, just as the higher-order-approximation

boundary conditions at the outer edge of the inner layer follow from matching

with the inner-edge solutions of the zeroth-order approximation for the outer

layer. With this Information and that obtained from the zeroth-order outer- and

[51 A ;
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Inner-layer similarity boundary-value problems, it Is possible to develop a

sequence of higher-order similarity boundary-value problems for both the outer

and the Inner layers. The details of this development are presented in Section

6. It Is shown that the outer-layer solutions for the streanwise-velocity and I
Reynolds-stress functions are of the following forms:

df 1/2 df1  df2  3/2 df3

__ - :-2 + A - + A - + A -+.

u*- di) * d dn d

V #0 / A! /2 + A.#2 + A!/23 +

Here, u - u(x,y) and r -r(x,y) are the (nondimensional) streamnwse velocity and

turbulent shear stress in the outer layer, respectively; u0 - u0 (x) -

(1 - 2p*0 x)]1/ 2 is the zeroth-order outer-edge stresawise velocity; n = y/h* is0 0
the outer-layer similarity coordinate, where y Is the appropriately scaled

outer-layer normal coordinate and h0 - ho(x) - [(1 - 2p0 (x))(p0 (x))
- 1] is the

normal-length function for this layer; fk =  (n and #k - #() are kth-

approximation similarity streamfunction and Reynolds stress, respectively; and

A* - A,(x;8) - 8[{1 - o(x))
0 (Ho+1l/(Ho+2)1-2/3

8[(H 0 + 2) u00(x - xO )  ,

where 8 (8/c) - (u c/)-2/7ts the nondimensional thickness of this outer

layer. It Is also shown that the corresponding Inner-layer solutions for the

streanwise-velocity and Reynolds-stress functions are of the following forms:

-'- + A ...+

u P dC dC

r = +, .... +
* 0  2 +.urA

[8]



Here, u - u(x,r) and v - r(xr) are the (nondimensional) streamwise velocity and

turbulent shear stress In the inner layer, respectively; u $ Upo (x;8) -1/ ' 1/3 p-

a /2(p (xl) is the (so-called) pressure velocity, the characteristic zeroth-
order streamawise velocity of the Inner layer; C - r/hpo is the Inner-layer

similarity coordinate, where r - y/d Is the inner-layer normal coordinate and

ho ho (x) - is the normal-length function for this layer; and

gk g k (C) and ak - k(C) are the kth-approximation similarity streamfunction

and Reynolds stress, respectively.

Two important results are obtained from the similarity formulations of

Section 6: (1) the similarity coordinates, n and {, respectively, are related,

through the expansion parameter, A., by P

- AC and/or C = A* );

and (2), the characteristic streanwise velocitites, u0 and u are also

related, through the expansion parameter, A., by .,

A!/2 u* and/or uo - 1/ u 0

In Section 7, the solutions for the streamwise velocity and the Reynolds

stress are presented for the distinguished similarity intermediate layer, the

existence of which Is suggested by the Inner-edge behaviors of the outer-layer

expansions and/or the outer-edge behaviors of the Inner-layer expansions, found

In Section 6. For this intermediate layer, the similarity normal coordinate Is

1/2 -1/2 1/2
W) A A,

For a discussion of three-layer, or Intermediate-layer, theory, within the ''.'

framework of (classical) two-layer theory for turbulent pipe/channel and

favorable-pressure-gradient boundary-layer flows, see, e.g., Afzal (1982); Afzal

& Bush (1985).

[71
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and the appropriate speed function is

ulO (u u )1/2 .1/4 -1/4 *u10 M (u U0 - A* p

In turn, the Intermediate-layer solutions for the streanwise-velocity and the

Reynolds-stress functions are I
u + 1/2 1/4 +
*-- 0 01 + s[Po]

1/2[+ 3/2 + -1/2 /4[ + ++ A5  ( 03 z + a21x z + A [ 1 2z + a3 2z J

r + 1/2+ 2 + !/4[o+ 3/2 + -1/2
2 L[ 02

] + * [L 0 4X + 0 20
]  * (€ 1 3X +A 3 1z +

U 1 0

where ak' +Jk' and *;k' Aik are consts., whose values depend upon the outer-

and Inner-layer closures employed. Consistent with Stratford's data and the

mixing-length-hypothesis closure,

+ 2/z (x 4.9 for c = 0.41).

The representations of Kader & Yaglom (1978). Afzal (1983), and Stratford

(1959b) for the experimental data on the streamwise velocity In the Intermediate

layer are re-cast In the form of the aformentioned intermediate-layer

streamwise-velocity solutions. The results Indicate that predictions based on

the three-layer theory are better than those based on the (classical) two-layer

theory.

(8W
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2. EQUATIONS OF MW NOTION

Consider the steady two-dimensional fully developed turbulent flow of in

incompressible fluid of constant density and (kinematic) viscosity (p. V =

consts.) past a smooth flat surface (cf. Yajnik 1970; Mellor 1972). Let

X- c X and Y = c Y represent the coordinates tangential and normal to the

surface, respectively, with c a characteristic body length. The mean velocity

components in the X- and Y-directions, respectively, and the mean pressure are U

-U, V uV P - p, + pu. P. with u and p. being the velocity and pressure

In the undisturbed region far from the surface. The laminar stress tensor

components are S ij- pu (u /u)Si (1 or J - X, Y and/or X, Y), with
SJ - a IU /aX and uI - O/c, a characteristic "laminar velocity"; the turbulent
stress tensor components are ij- (u t/u.) (i or J - X, V and/or X, Y),

with ut a characteristic "turbulent velocity." In the analysis that follows, it

is taken that the turbulent and laminar velocity parameters, s - (ut/u)

and p = (u2/u) = (;/u.c) - R- 1 , respectively, go to zero.

In the domain X > XO, 0 < Y < -, the (nondimensional) equations of mean

motion for this flow are:

a~u ay af aV

ax o U -. ,v. - -L ; (2.1)

au au aP 2 aTXX aTxy a2u A2
1!1+ )I + -m (- 4--- 1--- (.-aj+ aj) (2.2a) .

(av av +aP__ 2ayx+T (a2v aav)( % j) x -( - a ( . ) ( 2 .2 b )

ay y a 2 a y

The surface boundary conditions are:

SU. V 0, Tij - 0 as Y - 0 (X > x0 ); (2.3a)

the freestream boundary conditions are:

U * 1, V * 0, P * 0, T *Ij 0 as Y - * (X > X0). (2.3b)

i"%
L PS



5.

The upstream boundary conditions are taken to be

U, V, P, T1 . fncs(Y) as X - X0 (0 < Y < '). (2.3c)

In the present analysis, the existence of an exterior (or inviscid-flow)

region and an Interior (or turbulent boundary-layer-flow) region Is stipulated.

Further, it is taken that this boundary-layer region consists of two principal

layers. By means of limit-process-expansion techniques, the solutions for the

flow quantities in the exterior region are studied for

X. Y fixed as e, g, and 6(a,u) - 0; (2.4)

those in the two principal layers of the interior region, respectively, are

studied for

x, y fixed, with x = X, y = Y/6. as s, g, and 6(e,u) - 0; (2.5a)

x, r fixed, with x - X, r = Y182. as s, g, and d(e,g) - 0. (2.5b)

Here, (a,j) is the effective-thickness parameter of the Interior region, as

well as that of the outer layer of this region; a2(e,g) is the effective-

thickness parameter of the inner layer of this interior region.

In this study, it is determined that e and g are not independent

parameters; rather, it is determined that a = s(u), and, in turn, a(a,p) = 8(A).

The following analysis requires that

a(S) = 81/2and p(a) 7 (2.6a)

that is.

S(p) = U 1 7  and a(p) p2/7 (2.6b)

[101
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3. TU 33I31 R1011

For X, Y fixed, with a, g - 0. the exterior-region expansions for the mean-

velocity components, U, V, and the pressure, P, are In Integral powers of the

boundary-layer-thickness parameter. 8 - 6(ep), namely:

G(X, Y; e, p) - G(X, Y; 8) c G0(X, Y) + *Ol(X, Y) + 2 G2 (X. Y) + ... (3.1)

where G - U. V. P. With the stipulation that there is no exterior-region N

turbulence and that the Interior-region turbulence decays exponentially as the

exterior region is approached, It is taken that the exterior-region expansions

for the turbulent-stress components are In transcendentally small powers of 8,

such that

Tij(X, Y; P, u) = TIj(X, Y; 8) -0. (3.2)

Substitution of the expansions of (3.1) and (3.2) into (2.1) and (2.2)

yields equations for the successive exterior-region approximations. The

equations for the zeroth-, first-, and second-order approximations, .

respectively, are .'

aU0  av0  avo a 0O
"- +  = : U - ' V0 - (3.3a)

au au aP
(U 0 0) + 0 (3.3b) .-

0oaX- V0 T-) ax

av 0  avo ap0  .

(U0  +- 0; (3.3c)

au av a1 __1 1 awl aIax + -"o: u1  a'v' vt ax (3.4a) ,'.

aux aaI  au0  au0  ap,

(Uo a -" + VO au + au -ul + !u V1) + !aT = 0 , (3.4b)
0oax 0 ay ax I a'v I1  ax 0,3.b

av1  av1  av0  av0  aP1
(U 0 -+ vI + 0 u1 + j- V ) + a - 0"; (3.4c)

(11]
0 x +

fill
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2L + -v 82 a2
T- -0 : U 2 - -'- (3.5a)

au2  aU 2 aU0  au0  aP2  au au
(U0 8 1 4 v0 8  X u2 + V2 ) + - (U " + -:a) , (3.5b)

aV2  aV2  aV 0  av 0  !P 2  avl av1 ,
(U0 ix + V0 aT + T U2 +  7Y_ v2 + aY- , - (U1 :A +  Vl (-

") 3.3C)
-0 -U 2 .- 1 ax 1 T-

For these equations, the freestream boundary conditions are

U0 " 1. V0 0 PO * O, U1  Vl. P " 0. U2  V2  P2 ' 0 as Y -; (3.6a)

the (only relevant) surface boundary condition Is

Vo -. 0 as Y -. o. (3.6b)

In turn, It is possible to construct first Integrals of (3.3) - (3.5). Here,

the first integrals for the total pressure and the vorticity are

[,P + .1 (U2 + V2 )] . BO(,O), (3.7a)

aV aU0
a- (::-, - :-) - - B;(9o); (3.7b)

U31 a [PI + (UoUI + V0Vl)] - [91B;(V0 ) + Bi(V)]. (3.8a)

j a (jlj1 - !) IVB"( ) + Bjl(o)]; (3.8b)

a - [P2  2 (UoU VoV2 ) .(u2 + V2 )]

- [V2By o ) + a (Vo)] + Vi[4 1B( lVo ) + Bi(o). (3.9a)
UY 2 U 2 -1 ,

a2 (TX- - 2 - -, (Vo)] - ,[-s o ,(%) + Bj(%)]. (3.9b)

With the freestre"a taken to be independent of d(e, p) [cf. (3.a)l, it is

consistent to take the higher-order Bernoulli functions to be zero, that Is,

[12)
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Blo), Vo) ... - 0. (3.1Oa)

Further. if the exterior-region flow is irrotatlonal (i.e., ak - o. k = o, 1,

2. ...), it follows that

B ( .1, and B(O), B() .... 0. (3.10b)

Subject to the constraints of (3.10). the equations for the exterior region

can be written as

avk  auk a 2W a2Wk
-a- a-- k 0 (k 0, 1. 2. ); (3.11a)

P 0 O 25( 1 2

S (I ( ) +(7x)"-) M..
o 2 a oPoo "w av tl-a(- (-, [ ,

p +

ax ax a 0 a 1  a

LW - 0V LWLV)+ L 2 aw 1 2
P 2 - ax ay y { 1 + (-) M] (3.11b)

It Is taken that the solutions to the differential equations, either in the

forms given by (3.3) - (3.5) or In those given by (3.11), are analytic as Y - 0.

Thus, near the surface (Y * 0). the exterior-region-flow quantities, G - U, V,

P, can be written as

G~+ (0" +L y '(
ay 1

2 o 0 8*2

NJ 2
+ a (0 Y1  + Y  + [G +" Y

O 01 20021Y

( I  (f-) .. ] (.......] + ..

02 .... ]+... (3.12)
2

'. ,4.. '
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with Gk , Gk, - fncs(X). The surface speed U0 arises from the basic Inviscid

flow [of (3.3)]; the surface boundary condition (of (3.6b)] for this basic

Inviscid flow gives V0 - 0. Based upon these equations of notion, It Is 1
deterained that

2I

d dU; dY
U01 U0 2  - ... . dX (3.13a)

Vol d o  0 dU

1 *2S

V01 - '- 02 = O , Vl1 = - - .... ; 13.13b1 Q

P0  (1-U , Po1 - 0 ...01 -0- u0 U 1 0 ... (3.13c) 1

5

(14)



4. THE TURIULEIIT DOUDARY LAYE=

For the turbulent boundary layer, the coordinates are

x - X. y - Y/S. with 8 .0 0; (4.1)

the flow quantities are

U u. V - v. P. ,T j I (4.2)

Here. 8 d (g,p); G G(X,Y; 6,p) - G(XY; 8). with G - U, V, P. TJ

g - g(x,y; 8). with g- u, v, p. Vrj. Introduction of these boundary-layer

variables Into (2.1) and (2.2) yields

CBu av a*.a

x +y Tyx y 0:T u2 ay2  axx 43

Vu -U +va 2 ar ar 2 u
+(f 'y _j.A (4.4a).a1i.!ax aya ax '2a a2 5x

The surface boundary conditions are

U. v -0. Vi - 0as y -O. (4.5a)

The interior-region--exterior-region matching conditions are lb

u - U. v - V/8, p P. T - 0 as y , Y 0. (4.5b)
ii Ii

4.1 The Outer Layer C

The analysis of the boundary layer is Initiated with the consideration of

an outer layer, defined by x, y fixed. with, a. p and 6(e,Mi) 0. For this

(15]
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outer layer. It is taken that, to leading order of approximation, the outer-

layer x-momentum equation, (4.4a), is characterized by a convection--pressure-

gradlent--turbulent-stres8 balance (with the viscous stress negligible).

Specifically, it is taken that the outer-layer thickness parameter is equal to

the square of the turbulent-velocity parameter, that is,

d(s.e ) - S1W1IM a 2 ) 0: 1) 6 - 1/2 . o, (4.6)

with S) - a 7/2 . 0 ( to be Justified in Section 4.2), such that 1X/d21 -

a3 /2 , 0. For these orderlngs of the parameters, (4.4a) and 4.4b). employing

the thickness parameter, 8, throughout, take the forms

(u~ ~~~~~~8 " L)+I tx 0a x 3/2 A-+a232uW I(-x1 a ax 1a 2 a,.,

+ + + . (4.4b)

ax ay -ay - aI(y + 6 ax ay 2 ax2

In turn, from an examination of (4.4)', it Is taken that the outer-layer

expansions for the dependent variables are of the form

g(xY;S) n- gO(x.y) + 1/1a1(xy) + g 2(x.y) + a3/2 g31x.y) + (4.7)

where g.- u. v. p. r

Thus. the leading-order approximations for the outer layer are

ou av a# aoby -- v0  8-.
I 0 

u~x o y )  -0=O

au au ap at ap0
0  x + y ax ay (4.a-c)

*a*, a*1Lu I +v t -_:Ua v

ax ay U ay ' ax

au au au au ap 8: a
(u +V 1 0 +- v U 0, .L 0; (4.9a-c)o ax 0 ay ax ay I ax ay ay

(161
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0: u 2v 80 02
ax ax ay ' 2

au  au au au a .
(u0 -: v 0 ++P2 0(0Gix +o a ax" 2 + v) x ay

arxo ( aul + aul

ax1 1ia

a- y 
(4.10a-c)

au3 0. u *3 *3

X + oy 3 ay '  
3  ax -

')u au u OOp r
(u C 3 u+ 0U+N v)+!3 xy
08 ix O ay ax 3 ay 3 ax ay

)2a0 C xxI !u2  !u2  -ulO2 ax Ox lay Ox 2 ay 2'

ap- 3 arYVs 
(4. 1a-c)Oy Oy

In what follows, the notation -xy YX  ., and xyk = V k

k - 0, 1. 2. 3. .... is employed.

In this paper, for specificity, the mixing-length-theory closure is adopted S,'

for the nearfield behavior of the outer layer. That Is, the turbulent length- r

scale function, t, Is taken to be

I - /2 (Oy * x as y - 0, with x -von Karman const. (4.12) .- 7 .j

In terms of the outer-layer expansions, this nearfleld behavior (y - 0) can be

expressed as

0 ay -y:

a y O2-u) 2 (4.8d)
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'Firm
2 r 0 au I /ay

To - 2a0, au I . (4.d
ay ayel + 2x 2 y2 8u0 8 1 , (4. Od) '

T au /ay au /ay
C~V 1~ 0:

2' r 0 lauo/ay) 2 ,(auo/ay) -o

Tm -2x 2:y 2 ( ",-! 1-2] (4.1Od)
2 ~ ay ay 2 ay'

I&1r3 au3/ay auI/ay au2 /ay fuI/aY 3 0:

- aUo/ay - auo/ayauo/ay + u/y

au au3 au au2 au 1 au 3 (4.11d)3 YT-+ T. 5. -S- a

In the same spirit, the farfield behavior of the outer-layer eddy

viscosity. e , Is taken to be

e -1- k asy.- . (4.13) ,

with k - fnc(x) (to be specified). In terms of the outer-layer expansions, this

farfield behavior (y * -) can be expressed as

auo
r kj-; (4.9e) -

1i k u (4. 9e)
~'

r 2  k T- 2 (4.10e)

8u3  ,

r k- .u (4.12e)3 y

.% ,
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Thus. the zeroth-order approximiation for the outer layer is

ao 0v "*0 8*0o
-i-+-a .0: uO ayv 0 i (4. i4a)

80 ay 0 ay 0 ayx'

The outer-edge (y -. a)boundary conditions are

* du:

where u0 and p0 are the externally applied streanwise velocity and pressure,

respectively. Based on an external flow that Is irrotational (cf. Section 3),

It follows that, to leading order of approximation. p0  1 (1-u ). such thatN

(dp /dx) u (du /dx) >0fo'! the adverse-pressure-gradient case under

consideration here. The (only relevant) surface (y *0) boundary condition Is

vo- 0. (4.16)

Directly. It Is seen. from (4.14c). that pp fnc(x). In turn, (4.14b)

become

8u8u dp0  ar
(u + ---- +0. (4.1b''08ax 0ay 19x ay

Based upon the preceding, the following integral relations are developed:

v d(u 0 a0 )(41a
0 dx(.1a

+ 02 dO 0du 0 (40b

*2 0 u1. 0 ,e.~
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for r0  r 0 as y 0, with

• U" U• u0  u 0

:(1 dy, %-f dy, (4.18a,b)
0 u0  U0  u0

GF
the zeroth-order defect and momentum thicknesses, respectively.

Based on the results of Stratford (1959a), It is anticipated that. as

y - O, u0u 4,1/2 0 and rOK y - 0. Specifically, the solutions of (4.14a) and

(4.14b)', as y 0 0, taking Into account the nearfield closure hypothesis of

(4.8d), are

2 dp0 1 / 2 1/2  1 dp*l d 4
) 1 2 [I + -0) y + 0 0 (4.19a)0 x dx: 9x2 x2

dp 0 -1/2 d2P; 3/2
0  2- [1 + ... ] 0, (4.19b)

adP 0 1/2y_/ dp0 I-d 2p

a0 1 0 1 + 1_ 2
y X 3iiU2 dx2  " + (

" * 2 "Sdp 0  1 2 1dp/ 1 d p

80  (1 y [1') ]j(- -- y + .J .,i

0 2 d" Y . .. (4.19d)
U2 dx: dx2

These Inner-edge (y,1 - 0) results may be expressed as

U o 2 1/2 A +
u (" - )-j i . (4.20a) .u0 X9x 2

v 2A 3/2 (4.20b)

au 0 _ (u0/u0 ) - I -1/2 1- A( 
14.20c)a(y/h0 ) K 2

(20]
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= (2 2 2 n +  (4.20d)

Here, u0  (1-2) 1/2. and

S* dp0 -1
- (---. with h; - [(1-2p:)(x-) I . (4.21)

dx

ho

•dp 0 -2 d 2POA -[(1-2po)(-) H-i-). (4.22)

Further, the outer-edge (y.n - .) results may now be expressed as

UO * 1, (4.23a)

d(UohA ) A
o 1 + * dx ,with A 0 1 (- (4.23b)
u0  h0

au 0
5-'- - 0 .ro 0  O:

- au0 -1 5.

T (L-,--) K g%, for k - Kuo 0 , with K = Clauser const. (4.23c,d)

4.2 The Inner Layer

The results of (4.19) and (4.20) indicate that the outer-layer flow

variables u0 and r_ - 0 and (8u0/ay) - - in the limit of y - 0, 0 - 0; however,

It Is seen that uo/8 and r0/S are fixed for r = y/d fixed. Based on these

results, it is appropriate to introduce a layer Interior to the outer layer. It

is in this inner layer that the surface boundary conditions are satisfied

uniformly. Based on the aforementioned results, this inner layer is defined by

(211



x - X, r - y/S - Y16 2, with 6 - 0, (4.24)

with the flow quantities given by

U u=5 1 2ma, V=O v - 5 /2 n, P -p -q. T jati (4.25)

Here, G =G(X,Y;6), with G -U, V, P,. I g = g(x,y;6). with g =u, v, p, ?ij

f - f(x,r;6), with f - a. n. q, t. In terms of the Inner-layer variables, the

equations of motion are

amE an 0:a- a#, (4 .6

TX-T ar* = ax .6

am asm6 at at ) 2 12
6(- + n if xr 2txx + am , 42a

x r) + a ar ax 67/2 'ar 2 ax2(47a

65( an an) +g P 2 atrr +a2 atrx + 4 (4-.:1 (a 2n + 6 
4 a 2n) (.2b

a (a ax : 4.nir ar (a -+ + a 7/2  ar 2  ax 2 47b

In order that, to leading order of approximation, the viscous-stress
contribution be of the same order of magnitude as the turbulent-stress and

pressure-gradient contributions in the x-amusntum equation, (4.27a), it is

necessary that

7/2(42) .

u()6 0Oan 6 0, (.8

1/2 -
as well as 6() 0 (see (4.6)]. Thus, since p R ,where R (U= ucIM

is the reference Reynolds number, it is determined that the present analysis

holds for

-2/7 -1/7
O(R) - R *0. s(R) - R 0 as R - .(4.29a~b)

For this ordering of the parameters, (4.27a,b) can be written asC

(mas n §q axr 2 axx am 4a~m
a( x + i7) + ax + 6 + +- (- 6 j (4.27a)'

[22]



5 n n an) + .2 rrt 52 atrx ~4 a2n 4 5 a 2n (4.27b)'ax + " (a- -- a - -TO +  ar ax 2

From an examination of (4.26) and (4.27)', the Inner-layer expansions for the

dependent variables are

_ 1/2 3/2
f(x,r;8) -_ fo(x,r) + f1/2(xr) + 6f2 (x,r) + 3 f3 (x,r) + ... (4.30)

where f - a. n, q, t.

The resulting equatioyhs for the leading-order approximation for this inner

layer are

ax~ 0 0 ao 00
ax ar 0 ar ' "0  ax'

2atxrO a2m. aq0  aq-
O-r- + x , - 0; (4.3la-c)_ i r ar2 ax ar .

= - a m a n a o _ a So; .
an 0:1 a~

ax Or O r 'a ax'

txrl 1 1 0 0;
I + ar 2 x , ar (4.32a-c)

I 4-

a 2  an2  2 2
-4-w : n --

ax ar 2 ar' 2  ax'

at a 2 a am !
r 2 -- 2 + -- !0-0 0 u, _-- _ .O (4.33a-c)
r 2 ax 0 ax 0 a 0

-3  O 3 a-3 - , n

ax ar 0 3 r n3 -- ax

m at a a• aq_ 88, a n am^

axr3  a
2.3  3 1  8 1  0 a 0:% x+ (m + n .:,,

ar 2 x 0 ax 0 8r Ox 1 r 1Or

aq3
i0 .(4.34a-c)

[23]
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In what follows, the notation txr W trx a t and txrk 0 trx m tk,

k - 0. 1, 2. 3..... Is employed.

Thus, the equations for the zeroth-order approximation are

0S n 0 8 0-a- a- - 0: - - - a (4.35) -
ax_ ar 0 ar' 0 ax

at0  a2O 8qo0  0 8qo
-- 2 8 O, = 0 (4.36ab)

The surface (r - 0) boundary conditions are

no , no * 0, t0 - 0. (4.37)

In this approximation, from (4.36b), the pressure Is found to be

0F
o qo fnc(x) (4.38)

Directly, the first Integral of the x-momentum equation, (4.36a). is determined

to be

am0  dq 0 i0 0
tO + 0 0 r - (a'r) = fnc(x) (4.39)

For the inner layer, the appropriate turbulent length-scale function Is A,

defined by

1/2 a -1

0to (r) + (4.40) ft

At the outer edge (r - -) of the Inner layer, the mixing-length-theory closure

of A0  x r - - holds. This behavior is consistent with the previously adopted

inner-edge behavior of the outer-layer length-scale function [i.e., 4 ~ y * 0

(241



r-NuW

as y - 0]. For Ao/r - 1 (exponentially) as r - -, from (4.39) and (4.40), It
+ 0 0 Om/rO

follows that, with +qo and to = (as/ar)

dqo + am 1/2 am0 -1

or) (T-) - 1 (exponentially) (4.41)

From this relation, It is determined that, in this limit,

no_ 1/dq 1 1 2  1 dq0 -1/2 -3/2 1 -2

- -( ) r + - dx r - + 0. (4.42a)

Integration produces

2 dqo 1/2 1/2 + -

0 - ( ) r + m0

+ -1/2
1 + -1/2 1 -1-7- o r + , (4.42b) P.

where m, ... - fncs(x) (to be determined). In turn,

dqO+ + I dq0 )1/2 -1/2%

t r + t o - r- +1...12 *. (4.43) %o dx: 0 X dx

These outer-edge results may also be expressed as

- -0+1/3 +2 1/2 + -1/2 1 -m0 0 mo (-_) C + T - M C + -+ . (4.44a)
dx K 22

- 0 -2/3 +. 1 -1/2
tO = to (dx) C + - + .(4.44b)

- dql/3
0  0 (d-- -  " g (1 + ... 1 , (4.44c)

2%%-
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where

S dq 1/3 (4.45a)

dqo -1/3 dq; -2/3r+  + 0 + ,e +
a 0*;) .. d. ( (4.45b)

4.3 Matching of Zeroth-Order Solutions

A comparison of (4.19), (4.20), and (4.42), (4.43) indicates that the

zeroth-order outer-layer and inner-layer solutions for the streamwise velocity+ • 1 02)1/2 ,
and Reynolds stress match If qo - PO = (l-u , that is P

p 2 ~(- 0  ,ta

S

dpo 1/21/2

1/2 ((2 (--)1/2 r1/2 +~* +~.. (4.48) A

- dp 0  ~ . -8 dp 0 ry + + ... - r + .. (4.47)

Further consideration of the matching of the outer-layer and inner-layer

solutions yields

a2
dPo1/2 dp 1/2 d1 2 0[1/ 2 + 2'- y3.. 2. )4/2 +

x (dx 3 dx 2
• * o

01/2 .1 2 dp -1/2 1/2 ,

+ ~ [-a- ( +- + t+ ( -(y) +. .) -

+ 83/2 1 _ I+-1 + (4.48a)+82 ....... *

(28]
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dP0  2 dP 0 2~( -- y + - +

3C2  (dx ) y ...

+8 [...] + 8 [t + ... ]b

0

+a3/2 1 dpo 1/2 Y-1/2
+a d---(x- y +.j.. (4.48b)

2 aO 1 /2  y-1p -1/2
3  [ -- - --r 1/2 + .- .+ 14.+1/ + 1r r 1

2d 2

1//r/2 dp/ 1/2 dp-0 3/2
+1 o, +8 [. 2 + (4.49a)

dp 0  + 1 dp 0 1/2 -1/2

1/2 [ + a 2 'O,2 + *(4.49b)

3_ , dx 2

[-

%* %

dp 0  - /2 d p 3/ 
"* -, a

t '- - o - "- - -



5. ZIROT--ODER-APPROXIMATION SIMILARITY FORMULATION

5.1 The Zeroth-Order Approximation for the Outer Layer

The results of (4.20) - (4.23) suggest that a similarity formulation for

this zeroth-order approximation exists. For this similarity formulation, with*)1/2] * -1
u; - [(1-2p0 2 h; - [(1-2po)(dpo/dx) ], the independent variables are

* -1 dPo
(x,n), with n (x y) -....s._ [(1_2p0*)_ -- dp y (5.1)

and the dependent variables are

3/2 dp0 -1
*o(x,y) - (X)ho(x)fo(n) = [(1-2p) (d__) ) fo(7):

80 =/2 df0  ( 1/2 df 0

0 ,1/ dfo _ U 0

v *- 0= (l-2p0 1 [(A-2)n d - (A-3)f0 ] , (5.2a) .

*2*r0(x y) = u (x)00() = (1-2p l)'ol (5.2b) '

From the nearfield mixing-length hypothesis, similarity requires

dp0 -2 d2p
A - [(1-2P0)(-- )  (-)-dx const. (5.3)

This requirement with respect to A indicates that similarity holds only for a "-a

specific class of applied pressure distributions, po(X. More will be said

about this later.

Introduction of these similarity variables into the equations of motion for

this zeroth approximation produces

[.se)

(28]
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0 0Io 2 0 0

a- - (1 - (1 -) I - (A-3) o  . (5.4)d73

The farfield boundary conditions are

dt &1. , - KA0  d2 . 0 as n *- (5.5)

the nearfield boundary conditions are

df0o 2 1/2 A73 (1- j73 ... ] " 0,
d7l 9 x

dKt

- r73 LfO)2 -2A n+ *.1 0 as n3 0. (5.6)
"'", -. 2 2di) 3a

Integration of (5.4) over the domain of n, subject to (5.5) and (5.6), yields

A - (A-4) * - 0: A = (io + 4) , (5.7a) F

where

14 in 7)d) M df0

h h

00 0 0

No (5.7b)
Thus, fo • .

Thu, orthis similarity formulation, the shape factor, Ro Is related to the

applied pressure distribution, p 0. by

- *dp -2 d p
Vo [(1-po)(-) (- --0) - 41 const. (5.8)

[29]
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The solution of this equation for pO is

P0 = lo- [C + (H + 2 )lx]- 2 /(Ho 2 )) , (59) \

where B and C are constants of Integration. Quantities associated with this

solution are I"
* 1/2 / +2)

u0 u (1-2pO) - [C + (H + 2)Bxl0/(Ho+2  (5 .Oa)

dppdP0  B[C + (H0 + 2 )Bx-(H0 +4)/(Ho0
+2) (5.10b)- - " [ , ( No b

. ._'
dp - 1

ho - ((1-2pol(;--) ] - ( (C + (H0 + 2)BxJ . (5.10c1 ')

With the appropriate choice of the constants B and C, the results of (5.10) can '

be written as ./

ho = (H0 + 2)(x - ), (5.11a)

XI-1/(H +2)u0 -Uo 0 (X- 0 , (x0b)

dp *2 -
d uo0 (x - x)-(H 0 +4)/(H0

+2 )  
( ic)d-" (Ho0+21 051c ' '

In terms of H0 . rather than A. the similarity boundary-value problem for

the zeroth-order approximation for the outer layer Is b..

d#O  dfo 2 d2f 0
- (1 - (-1 I - (H0 + 1) rO (5.12)

dfo d 2fo 
..df? 1 d * -" 0 as n) -( , 15.13a) ..

df0 _ 1/2 + 3/2 + 5/2

d ~ + +0' 103' +o~ . 0,

(301
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t 2 ( O+4 ) + (H0+4)(9H0+4)0lt 91 0--' 3 .3 05os ,5
Ox 675w5

0 002h1+ 041 *613 +
4) 0 "e, *02 Oe . .O

ith 2 (H0+4) . 8(H0 +4)(3H0+8)
it 02 " ' 043U 2 ' ,06 " 135x 4

as n - 0. (5.13b)

5.2 The Zeroth-Order Approximation for the Inner Layer

A similarity formulation for this approximation exists. Based on (4.44)

and (4.45). for this similarity formulation, the Independent variables are

r dp 1/3
(x.). with C = C(x.r) - - r .,(5.14)

h, 0 (x) dx

and the dependent variables are

*0 (x.r) - g0(;):

40 dp0 1/3 dg0

-- 0 dpo J -1 dp0 2/3 1 dgo
n- ("0) ](1-2pO  I --1 I (H0 + 4)C L-- (5.15a)•N

dp 0 2/3 .'"" .

**J
t 0(x.r) - (-)C) (5.15b)

SJ

In terms of these new variables, with qo(x.r) - q(x) - pO. the zeroth-

order inner-layer boundary-value problem becomes

*0 + de - ' (5.)
dC#

d(31)'(311] 'l



,a.=

I

gc- 0 w0 - 0 as C - 0. (5.17a)

,gO + 1/2 + + -1/2 1

+ 2 + a + a + 1withb 0 1  00 bOO - , a01 2 , 02  .

+ O + + . +

with * ,1 .. - _ . as C * -. (5.17b) "

mere, ="

d2 0 0 dp -2/3

0 " (- ) - t (-) - const., 15.18a1 !

dg0 + i+ dp -1/3
00 dC [ 0  •

With respect to the similarity length-scale function, 00 -
0 0

0' ( d o 90 / the following asymptotic behaviors hold:

/2 o -1
o " (' ) 1/(2 0 ."") (" as C ('1 ") .

-

0 1/2 d 2g- 0 *

0 -
with s. oo ... - conets. (5.19b)

These behaviors suggest the following approximate closure:

0 1 20 (d 0) XCElM ...1

with E - I- exp{-C(.i+ + C) 1/2/Z)], Z - const. (5.20)

(32] '-V
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I
For this closure, 0 * xC(1 + ...) as C * -, and 0 - 0 (1 + ...) as C - 0, to0

0 0 1/2 0 O0
with a - 2. 00 0 02 (as /Z). For this closure hypothesis, (5.16) takes
the form

d2 g2 2 2 d2 g0 2 d. 0  (.1d2 (-j-) - (. ) -0o. (5.21)

Thus.

d2g0of.
4  +

- 2&C (5.22a)
dc2 1 4x2C21S+ OE2}1/2 + 1-

dg0  J( 2(.+  + z) ds 5.22b)

-c I 22+ 422z210 + z 2)1/2 +(..,b

For C - 0, the asymptotic behaviors of (dg0/d ) and so are now determined to be

dg0  1 2 +3 +3/2 +3/

C - W + - -)  +  (5.23a)

2 +3 +3/2
0 a 3Z 1 +  

(5.23b)0 z 
2  + "'"

For C --. the asymptotic behaviors of (dgo/d) and a0 in this limit, as given

In (5.17b), hold.

Note that, for the closure of (5.20).

+ 20 + + C) 1 -
(1/2 ]  d (5.24) ..*.-21 2 4 , ( + 2 ( ) 2 1 / 2 1 ..d

4. -%'
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S. BIG=UK-O -APMOXINATIO SIMILARITY PORNULATIOIIS

6.1 Higher-Order Approximations for the Outer Layer

The equations of motion for gl(xy), with g a U1 1 vl. Pl rjl, have been

given previously (see (4.9)1. From consideration of the matching with the

exterior layer.

U1. P1' r -. 0 as y * -. (6.1)

*_

Thus, p1 = p - fnc(x) = 0. From matching of the outer layer with the inner

layer (see (4.48)],

+ + dp 0 1/3

u- m0 = r (p -) , , - 0 as y - 0. (6.2)

Recall that T = const. and (dpo/dx) - fnc(x;H O ) are introduced in the zeroth-

order outer- and inner-layer similarity formulations.

For the first-order outer-layer similarity formulation, the independent

variables are transformed from (x,y) to (x,n), where n(xy) is defined in (5.1).

The first-order dependent variables are

* dp0 -2/3
* 1 (x.y) 0 1(x,) = [((-2p 0)(-) I fl(n): .

dp 1/3 df -0 1
,,

dpo 1/3 df
vI  -[ ][(H0 + 2)1 dil 3 (H0 + 1)f1 1 ( 16.3a)

S1/2 dPo 1/3

Vl(X~y) - r1 (xn) - [11-2p O) (-1 0 1 (7) (6.3b) ;.

(341



Introduction of (6.3) and (5.2) into (4.9), subject to (6.1) and (6.2). produces

ddf df2 d 2f
a-- (H0 + 7) (H 1 +1 + 2 0 f (6.4)

d 3 0 d7 d ( 0  [f0 d2 3 di2

dfI  d2fl
-. 0, # I (KA) -2 0 as - , (6.5a)

2 2

df d d2fo d 2fl
df1  T +, 1 2 2 2 d 02 df11 0 as n1 - 0. (6.5b)

From (6.4) and (6.5). the inner-edge (n? * 0) behaviors of the velocity and

stress functions are

d +- + + + +

--- 6.6edn 1 12 1~0, ,I

with 0 bOO T , 012 95k; (6.6a)

01 0 3 /2 + 0

By 6 + (H 0 +4 )

with #3= - 9I ..... (8.6b)
13 9x

dhe equations of motion for g2(x,y), with g2 " u2 ' v2' P2' riJ2' are

presented in (4.10). Since p2 P2 
= P1 fnc(x), and ryyO 0 as y

Integration of (4.10c) yields

p + Tyy (8.7)• ., .-:
P2 " 2 yyO "1.) ., ..'

In turn, (4.lOb) becomes

a8U 8u 8U 0 dp2 _r2

( u :92 0 +l o ax 1 ax 1 vay 0 Rdx .-

1 u1

(+ y 0 xxO yy"13s] , S..
'o....-



Matching with the exterior layer [see (3.13)] produces

d(p2 + U0u 2 ) , • • •
dx= 0: P2 + UoU2 u P1  = const. - 0,

udU: W2d

* ( dp 2/3 2/39
1; P: 2 [(-&p), , dp0 2/3P2 "p ul -W 2 (-) " (6.9) J

Similarly. matching with the inner layer [see (4.48) and (5.18)] produces

1 + dP.-1/2 Y -1/2 a+ .... *.-1/2 dP0  2/3 1/2
U2  X o -dx y =-_-[( 2p0) (-1 ]K -1/2

dp 2/3 -

V2  *to (2-) as y, n 0 0. (6.10) .

For the second-order outer-layer similarity formulation, the Independent

variables are transformed from (xy) to (xn), and the dependent variables are
-':

dp0 -1/3

2 (x.y ) - 2 (x ,n ) = [(1-2p ) ( ] f2(1/) 0-. , :

* P

-1/2 dp0 2/3 df2u2  [(1-2p0 ) ( -) 1 -

,

• -1/2 dpo 2/3 df2  1 ,. ..

v [(1-2pO 1/2 ( I ((H0 + 2)h 2 1 (Ho 1) f2
]  (6.11a) *:

dp0 2/3
r2(x.y) T2(xi) - [(j-) I 02() (6.11b)

dpo 2/3
ro(X.Y) = ?o(X,7) - [(-) 0 (7) (6.11c)

[36]



* 2/3 2/3
(Note that. with p(X.) - 2y(X,) ((dP/dX) Ix2(n)3] 2(d dx) ,

Vx(X,y) - V (x,n) - [(dPo/dx)2 /3 1 W + 2 . W2V -

2/3."

(dpo/dx) 23 0"1) .
,,

The following boundary-value problem results:

dt2fo f

2 2 r2 df 1.

d (H O + 4) [W2  d - ] - (H o + 1 ) [fr +

1 dr1 2 + ) d2fl 1

dq di 2

df -1/

ilHo + 4)1 -9(H + 1) f 2
d)?V

dO0

(H + 21 1  +(H) + 410 6.12)

df d . 2
With (KA2 + 0 as n 2 2 + . (6.13a)

do 2 1 2J

dr 2 W +-1/2 2 2 2f0d2f2 1 24

"n - -'2 2 --d - d2  +- 2 l-(-d 2 w+0 as n --0. (6.13b)

The Inner-edge (n7 - 0) behaviors for the velocity and stress functions are

dr 2 _+ -1/2 + 1/2i::'

d 21 + + ..

+ + +2

with.+ a.+ 1 - 2 (W + 5. --- ) +.. ... .. .wh 21 " 01 =  2 3x 2 2x 2 2 0

+ +2",

i 1 + + 2 (W 20 + +2)(HO 4)1 (614)
with 0+0 to0 0 2 3(2' - -- I' .•. ll,

[371 ":



In determining these behaviors, it has been taken that #0 ~ .021 + .. as 1 0. 0 .,

The equations of motion for g3 (xy), with g3 = u3, v3' P3 rlJ3 ' are

presented In (4.11). From consideration of the matching with the exterior

layer,

u3 ' P3. r 3J3 - 0 as y (6.15)

Based on (6.15), Integration of (4.11c) yields V.

P3 yyl (8.18)

In turn, (4.11b) becomes

au au au au ar(uo 3 3 -0 0v) - -3
ouTx+ 0  " -au 13  a ay

au r1  au2  eu2  au 1 1.'a2 + a-- (u a l+ v +!u2 u auv).
ay 2aa

with rI = (rxxI - ryyl). (8.17)

Matching with the inner layer produces

1 -1 dpo -1
u ' =-1  [(1-2p0)3 2z2  2x2 dx

1/2 -1/2 1 [ -1/2 dP0  -1/23 o [(1-2po) as y, n . 0. (6.18)

For the third-order outer-layer similarity formulation, with x, n as the

independent variables, the dependent variables are

0 3 (x,y) - *3(x,n) Y O) :'

[38]
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u ((12P* -1 dp 0 1dt3
3 (1p 0) di);

v3 a [(1-2p) -ij J(H0  2hi~ = 1 (6. 19a)

3 -1/ d77

T (x.y) - 3(X,n) [ (1-2p )_ 1/2 ]p 0 3 (6.19b)

* 12dp 0
r 1 (X.y) -= ?(X, 17) - ((1-2P) -1/ ]x 0 N) .(6.19c)

With p (x.Y) - P (X.17) - [--P*_1/2 (P*/xl 7) 0

303 0 0

V (jc.y) - r (x,n) = ((l-2P *)-/ (dp */dx)]x (nj) =0. and
yyi yyl 0 0 3

e 1 (Xc.Y) - V 1 (x.n) - [(1-2p OF 1 /2 (dP */dx)J (#"(n)) + x(17))

* 1/2
1 (1-2p 0 ) OdP 0 /d.X)J* 1 07).

The following boundary-value problem results:

.3

do 3  df 0

0) 33t

df 0dt2 3 d f d!
-(H + 3) - (H + 1)f - - - t]0 Zd7 di7 0 1y 2 2 2 2

d#~

+ (H 0 +. 2)Y) +-. (H0 + * 0 (6.20)

2
df3  3

di)

df 3 _1 -1

(391



MF V

2 22 2 2 2 f,1d2f3
22 0 3 f1 2 1 1L )

3 dui2  di72  d7 2  d - di) d1
1 -1/2
I -1/2as - 0. 

(6.21b)

The inner-edge (n - 0) behaviors for the velocity and stress functions are

df3  + + 4
d 3  2 - a ..7. +with a + a +

3232 a02 2....

+ -1/2 3/

A3 " 1 + ... with A3 z (8.22)

Here, it is suggested that 0 1 13il + ... as 7 ) 0.

To summarize the results obtained for the outer-layer similarity

formulations, it Is convenient to introduce the quantity

*

dp0 2/3
A* a U( 2p;)- )

6 H+2 u*(- (HO0+1)/Ho0+2 ) ]-2/3 (-.23)
-6[(H 0 4. 2) Uoo(X-Xl O"~'~",(6.23) . .

such that A* 0(6) << 1 for x fixed. In turn, the outer-layer streamwise-

velocity and Reynolds-stress functions take the following forms:

u 0 1/2 1 3/2 3

%V 0 + A8 * + A* 2 + A 03 " (6.24b)
02 2 31 o-/H+ ""U 

0

-(1-2PoI " * -
Recall that u ( 0 - Uoo(x - x ) 1/(H 0+2) The inner-edge (n 0)
behaviors for these velocity and stress functions are ;:,

".,

[40]
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1/2.. + e 3/2 + 5/2 1/2 + +.s~

.%__. Cei/+ Ao, 7/ + 0, ,1/ + ..]+ "A! [ o + 17 , +..

01 ~ 03 ~ * 05  10 .12 A ~
u0

../ 3/ 2 + . .. ... ; (6.25a)
+ + + ] + A* [$ 32 +(

2 + 3 + + A1/2 + 3 / 2 +
2 0204

0

+ A* to+ + + A3/2[A+ -1/2+(62b
*A 20 22n 9( 3 , + .. 30 .(2b

With the Introduction of A^, the outer-layer coordinate, v. and the inner-

layer coordinate, C, are related by
-1.

7) = A*C and/or C a A* n (6.26)

For consideration of the corresponding Inner-layer velocity and stress

functions, it Is convenient to introduce

* 1/2 dpo 1/3

1/2 (Ho+4)/(H +2) -/3 (6.27)a u 0 ((H0  2)uoo(x xO )0 (6.27)

From (6.25)-(6.27), It is determined that the outer-edge (C -) behaviors of

the Inner-layer velocity and stress functions are

1/2 + +-1/2 + -1

0

2 A3 0 "+5/2 (6.28a)

[41 ] .'.'
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- 0~+ + A + 1/2
UpO

+ 2 + 3/2 + 40
+ A,[ 0 4 C + 13 + 0 22J +

2  (3 + 3 + 5/2
++ '] + .. . (6.28b)

6.2 Higher-Order Approximations for the Inner Layer

The equations of motion for the first-, second-, and third-order

approximations for the inner layer are presented in (4.32) to (4.34).

For the first-order approximation, the first integrals of the momentum

equations, when the surface boundary conditions are taken into account, are,

0 S
q, " q, - fnc(x), (6.29a)

m1  dq0 am 0
t + r - r - ) - fnc(x). (6.29b)

From matching with the outer layer [see (6.28)], It follows that

0,- 0, t I  0, ql I ql . 0 as r -. (6.30)

Thus, the first-order inner-layer solutions are

0
m1(x,r) - 0. t(x,r) - 0, q(x,r) = qlIlX) - 0. (6.31a-c)

For the second-order approximation, the first integrals of the momentum

equations are

0
q - q2  fnc(x), (6.32a)

am2  0 r m 0  am amo

a dq2 0
t + r - (mo --- + no -) dr1 = (i--a) = fnc(x). (6.32b)

o1
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Hatching with the outer layer produces

28
2 dpo.-1/2 d P0  3/2 2(H0 +4) * -1 dpo 3/2

m2 9S 3 (d--d-2 r - [(1-2po) ft9x3  dx 93 0

2 dp 0  2 2(H0 +4) * 1 dpo 4 /3  2
- - r 2 0 2 ((1-2po) (I--! 32
32  dx2  3x2 0 d

0 dp 0 2/3, .

q2 ' q2  V -W 2 (-) as r, C (6.33)

Here. It Is taken that

• 1 1 d p 0  2 / 3. - '
* 2 (x.r) - *2 (x,) [(1-2p - 0  2

2 2 -2 0) ( xg2)

)-1 dpo dg2  .'.3,a

dp0 4/3
t2 (x,r) - t2 (x-) = ((1-2p0 ) (d_.) 2(0 (6.34b)

dp0 2/3 -
q2(x,r) = q2(x) = - V2 (--) (6.34c)

• * • -4/3 0

With w2 = [(1-2p)(dP/dX (am/ar) = const., the second-order inner-layer

boundary-value problem Is

0' '(H 0 + 4)[(W C " 1 1) dC;1 1 + w,2  d- (6.35).,2 -3 0  2 dC2  (.5

dg
2

d- 0, v2 0 as C -. 0, (6.36a)

dg2  2(H0+4) 3/2 2(H+4) as (6.36b)

d - 93 ' 3x2 a.,_

(431



The outer-edge 1 * -) behaviors for the velocity and stress functions are

dg 2 + 3/2 + 1/2

23' b2 2+ 2 1  6

+ + 2(H 0 +4) + + 4y+(H+ 4)

wih____b2 0 La.
23 03 93 ' 2 12 9x 2

+ +2 ' 'i
+ + So
21 "21 "3x (W2 +  2- 2 02x

2 24 2 + W 23 +"3/2 + 22 +

.

+ 2(H0 +4) + + 8y+(HO+4) ?wit w+ + + +

24 04 3 2 '23 13 9X

+ +2
+ + 2 22 " HO'

a 2 ( + - 2( + 4) (6.37) ,

022 022 ~ 3( 2  2- 2~(H 0
K>

With m1, nI - 0, the first integrals of the momentum equations for the ,

third-order approximation are

0 "
q - q0 fnc(x), (6.388)

am3  dq am 0 '0 ano

t3 + - - - r = (-) = fnc(x) (6.38b)

From matching with the outer layer, it is seen that

0,30 t 3-.0, q3-q30 a (6.39)

Thus, the third-order Inner-layer solutions are

m3 (x,r) = 0, t3 (x.r) = 0. q3(xr) - q0(x) - 0. (6.40a-c)

In summary, then, the results for the streamwise-velocity and Reynolds-

stress functions, from the inner-layer similarity formulations, can be expressed 41

as

(44]



dg 0  d 2Ud 0 _ g2
uCd +  A + "(6.40a)Upo

e . .

-- + A +  .(6 .4 0b )

The outer-edge ( 'in) behaviors for these velocity and stress functions are

u + 1/2 + + -1/2 + -I
-j- 0 [ 01  +b 0 0  0 1 +" 0 2  + .. "J

u

pO

+ 32 33/ + 1/2 '

+ 3/ 2 2 + . + . .. . (6.41b)

In (6.25) and (6.41). '

40..

2V + 2 + + + a -+ + 1/"2""01 2 1  01 0' 32 a02 2+ 4 P. ...
u~ PO

4.2104 47 1 - (H O4 4) ... ,,.. 6,.a

+ 2 + 3/

+ + 2 + +2 .+"-+
I 2 b 1 2 0-' bW 0 a- I H a 41 .. .a 4 a

22 00

22x

2(H 4.4)4r+( +)

0 '. 4.1o4

+ + 2104 + + 0TIo4  -

b b

04 24 3 13 I 2

+ +2

+ 2 - ".22 +  
_ L (H + 4 ) ... .... (6.42b )..-_

Y w2 3s 2 2 2 0

Kq
(41 JYO I

+ ,, 2, 0 . +. + . ., ,, (H , - ,



7. SOLUTIONS FOR TE DISTINGUISHID INTEMDIATE LAYR

In Section 6, for the streamwise-velocity and Reynolds-stress functions,

the inner-edge behaviors for the outer-layer solutions and the outer-edge

behaviors for the inner-layer solutions are given. An examination of (6.25) and

(6.41) suggests that a distinguished intermediate layer exists. For the

distinguished similarity intermediate layer, the Independent-variable

transformation is (x,y) - (xx). where

1/2 -1/2 1/2x ?7) =A* ~1 A! L

* dpo -4/3 1/2= [(l2o(_.1 ]- (y/8l2 !

3
(0-22 Wal /

O -4/3 -1/2 (7.1)=[11-2p H 0. ( 7.1) ,

The appropriate speed function for this intermediate layer is

S (u • 1/2 A1/4 * -4/4U10 " UA= u0 -A UpO:

a1/4 dp o 2/3 1/4
1/4111-P01 "

a 61/4 *•+2)u( x (H0 +7)/(H 0+2) -1/6] (7.21) 2,
U0 0 [(H 0 + 2) u00 lx - 0  (.

Introduction of X - A* 7) Into

(u I/4  * / 2) 1/2 2

(u/Uo). (r/u A* ( /u

1/2_
and/or X - A! / into

W1/4 W *2 A-1/2 V 2(U/Up0) -10 (U/Ulo). (r/uO 0)

(46)



as given In (6.25) and/or (6.41), produces

u + 1 / 2 . .! / 4 o _

o +A" 10

1/2._ 3/2 + -1/2 3/4 + + -1+ A . [ a + 4 2 X + A * , [ / X +  a z 2 +  . . ;( 7 .3 a ), .

+ 2 + 3/4,+ 3/2 + -1/29d [1#021 Z)+ A /,# + '2 ] + A X + A3X/*2 2i0 4 3 + .... (7.3b)
U 0

The results of Kader & Yaglom (1978) can be compared with those of the

present paper. The notation of Kader & Yaglom in terms of the present notation

Is Ziven by

2
dP u dpo 0.(a KY  p (1 )KY dx ' -} , _.

(5) .ch = B ~dpo -1(6)KY 0cao  ca [(1-2p 0)(-) J..

• *
= r1/2 ~ /2 dpo 1/3(uz)KY "P'-KY "-u 60+1  

) d...

2 "
u* dp0 2/3 ,0 +, 0; ,"'

(T6) Y d *0-p 0 0 ( A* 0O;

" . 1/2 - dP o 1/2 *s 1/2
(Y) KY y KY u x  y) uU o

.*...% ',

(U)KY u u. (7.4)

In turn, the Kader-Yaglom representation for the streauwise velocity may be

expressed as 
.

(471
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[U N((ay)1/ 2 + NIlKY

U 1 0 "--;-- [4.5 (1 + lO(-+^,))}l/2 x1/2lP

/ + 1/2 log r -15 r-1/2 -1
+A! ((40+) (2.44 io r1 -15re

-1/3 + 3/2
where r = 6( a) (7.5)

5(1 + l0(&+A))

The results of Afzal (1983) also can be compared to the present ones. The

notation of Afzal in terms of the present notation is

up 1/3 - 7/6 dPo1/3 ~ .2,3
a ) u 2/u . t

(Up)A (--A uP8 Acx) u* O .'p

IS

-- * dPo-l
MA ch0 - cO [(1-2p01:

a
U a (4/3 1 dp0 2/3] 8 1 / 3A 1

(Rpl ( [(1-2p ) _

4 r d+ -i dp0 2/3 + 0.
(A) (p A * 8.+[(-2P0) 1-) 3 + "'0,

(AR p A -1/3 + -", .

cy :/6 O 1/2(2/3-1/4 /2
_Y y~ A-a z-/ °o" / /x/(Y A j c : (-' A ' .x

u -2/3,J-1/4u(u) uu : (Z- - A 6 - A */ . (7 .6 ) "
p U

10

In Afzal's analysis, It is taken that (A) - 0. (R ) A , and (ARP)A 0(1).2 4 A pA' "

Note that (u./dS)KY. (A) A = A ^A 0.
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1 if

Afzal's inner-layer representation for the streanwise velocity and Its

expression In the present intermediate-layer notation are

U y 1/2
3.5 (1 + 5.4A) ( P, + 2.5 (AR)IA

- + I1/2 ^1/41 5(1/3 1(77
U w [35 (1 + 5.4 (.A*))x 1 + AA (2.5(.0 1/ . (7.7)

U io 
,,.

The representation of Stratford (1959b) for the streamwise velocity In the

Intermediate layer is %

[u M 2 (1 R)1/2yl/2 + C (g Ax)"/3JS with C = const.x p dx p dx

u [a ZI/2 1 /. A 2/3].;,,* X 1/2 + A! tC a (7.8) .,,

Thus the intermediate-layer streamwise-velocity representations of Kader &

Yaglom, Afzal, and Stratford, i.e.. (7.5), (7.7), and (7.8). respectively, are

compared to the present one, (7.3a). The comparison indicates that the three-

layer theory provides an improved characterization of the overlap domain over

that provided by the (classical) two-layer theory.

•. ", .
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Figure 1. Schematic diagram of the asymptotic structure of

the boundary layer.
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