NUMERICAL METHODS FOR REACTION-DIFFUSION PROBLEMS WITH NON-DIFFERENTIABLE (U) MARYLAND UNIV BALTIMORE COUNTY Catonsville DEPT OF MATHEMATICS, A K AZIZ ET AL.

UNCLASSIFIED 07 NOV 86 UMBC-MRR-86-2 AFOSR-TR-87-1036 F/G 12/1 NL
Title
Numerical Methods for Reaction-Diffusion-Problems with Non-Differentiable Kinetics (Unclassified)

Author(s)
A. K. Aziz, A. B. Stephens, M. Suri

Report Summary
We consider a class of steady-state semilinear reaction-diffusion problems with non-differentiable kinetics. The analytical properties of these problems have received considerable attention in the literature. We take a first step in analyzing their numerical approximation. We present a finite element method and establish error bounds which are optimal for some of the problems. In addition, we also discuss a finite difference approach. Numerical experiments for one- and two-dimensional problems are reported.
NUMERICAL METHODS FOR REACTION-DIFFUSION PROBLEMS
WITH NON-DIFFERENTIABLE KINETICS

A. K. Aziz1,2
A. E. Stephens2
Manil Suri2,3

Dedicated to Ivo Babuska on his sixtieth birthday

Mathematics Research Report #86-2

Department of Mathematics

UNIVERSITY OF MARYLAND
BALTIMORE COUNTY

Catonsville, Maryland 21228
NUMERICAL METHODS FOR REACTION-DIFFUSION PROBLEMS
WITH NON-DIFFERENTIABLE KINETICS

A. K. Aziz¹,²
A. B. Stephens²
Manil Suri²,³

Dedicated to Ivo Babuška on his sixtieth birthday

¹Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.

²University of Maryland, Baltimore County, Catonsville, MD 21228.

³Research partially supported by the Air Force Office of Scientific Research, Air Force Systems Command, USAF under Grant Number AFOSR 85-0322.
Abstract

We consider a class of steady-state semilinear reaction-diffusion problems with non-differentiable kinetics. The analytical properties of these problems have received considerable attention in the literature. We take a first step in analyzing their numerical approximation. We present a finite element method and establish error bounds which are optimal for some of the problems. In addition, we also discuss a finite difference approach. Numerical experiments for one- and two-dimensional problems are reported.
1. Introduction

The problem we consider is that of an irreversible steady-state reaction taking place in a bounded domain Ω in \mathbb{R}^n ($n = 1, 2, 3$) with smooth boundary $\partial \Omega$. The reason a steady-state occurs is that the reactant used up in the reaction in Ω is replenished by diffusion from the surrounding region. In [1], it is shown that the problem may be modeled by a scalar equation for the concentration alone:

\begin{equation}
\Delta u = \lambda f(u(x)), \quad x \in \Omega \quad (u \geq 0 \text{ in } \Omega)
\end{equation}

\begin{equation}
\begin{aligned}
u &= 1 & x \in \partial \Omega
\end{aligned}
\end{equation}

where λ is a positive constant that measures the ratio of reaction to diffusion rates. The function f measures the ratio of the reaction rate at concentration u to that at concentration unity. We assume that the function f satisfies the following conditions:

\begin{equation}
f(t) = 0 \text{ if } t \leq 0, \quad f(1) = 1 \tag{1.2}
\end{equation}

\begin{equation}
f(t) = tf_0(t) \text{ for } 0 \leq t < 1, \quad 0 < m \leq f_0(t) \leq M < \infty
\end{equation}

\begin{equation}
|f_0''(t)| \leq K, \quad 0 < p < 1 \tag{1.3}
\end{equation}

\begin{equation}
f'(t) + \frac{f(t)}{1-t} > 0 \text{ for } 0 < t \leq 1. \tag{1.4}
\end{equation}

For the case of a non-isothermal reaction, we may obtain the temperature v of the reactant from the relation

\begin{equation}
v = \beta(1-u) + 1 \tag{1.5}
\end{equation}

where $\beta > 0$ if the reaction is exothermic and $\beta < 0$ if it is endothermic. We will primarily be interested in the isothermal case ($\beta = 0$),
when \(v \) remains identically unity [\(u \) and \(v \) are nondimensional variables].

The problem (1.1) has been discussed in an analytical framework in [1] and [3]. An interesting feature analyzed in these papers is the existence of a "dead core," i.e., a region in \(\Omega \) where \(u \) identically vanishes, for \(p < 1 \) and \(\lambda \) large enough. Physically, this means that the rate of reaction is so high that the reactant is being consumed in the dead core faster than it can be replaced through diffusion across the boundary \(\partial \Omega \).

The goal of this paper is to take a first step in approximating (1.1) numerically. We will analyze numerical schemes only for the case of \(p \)th order isothermal reactions, for the case \(0 < p < 1 \), where \(f \) is explicitly given by:

\[
(1.6) \quad f(t) = \begin{cases}
 t^p & \text{for } t > 0 \\
 0 & \text{for } t \leq 0.
\end{cases}
\]

It can be seen that this function satisfies (1.2) - (1.4)

For \(p \geq 1 \), this nonlinear problem may be approximated by several methods (for e.g. [2], [4]). However, when \(p < 1 \), \(f \) is not differentiable at the origin (and if \(p = 0 \), it is not even continuous there). Hence, the convergence theorems in the above papers fail and a different analysis is required for the case of non-differentiable kinetics.

The plan of the paper is as follows. In Section 2, we list existence, uniqueness and regularity results from [1] and [3] that will be needed. In Section 3, we present a finite element method for (1.1) and obtain an error estimate for its convergence. In Section 4, we discuss a finite
difference scheme for the problem. Section 5 contains the results of numerical experiments using our schemes.

2. Existence, Uniqueness and Regularity Theorems

The following theorem is proved in [3].

Theorem 2.1. Let f satisfy (1.2) - (1.4). Let Ω have a C^2,α_0 boundary $\partial \Omega$. Then there exists a unique solution of (1.1) belonging to $C^2,\alpha(\bar{\Omega})$ where $\alpha = \min(p,\alpha_0)$.

Since the function f given by (1.6) satisfies (1.2) - (1.4), the above theorem holds for this function. In [1], an alternate proof of existence and uniqueness is provided, where conditions (1.3) - (1.4) are replaced by the requirement that f is positive, continuously differentiable and monotone increasing on $(0,\infty)$. This provides results for the function f in (1.6) for all $p > 0$.

By the maximum principle, it follows readily that $u \leq 1$ in Ω. Moreover, the condition (1.2) ensures that $u \geq 0$ in Ω, which is essential in terms of physical considerations.

For a convex two-dimensional domain, the dead-core, if it exists, will be convex. The existence of the dead core depends on the parameter λ, as expressed in the following theorem, a slightly modified version of which is proved in [1].

Theorem 2.2. Let f satisfy (1.3). Then there exists a number $\lambda_0 > 0$ such that (1.1) has a dead core for all $\lambda \geq \lambda_0$.

If λ is small enough or if $p \geq 1$, then no dead core will exist. For the case of a p^{th} order isothermal reaction in a slab, where $\bar{\Omega}$ -
[-d,d] (d is the width of the slab) and \(f \) is given by (1.6), the dead core appears only if

\[
(2.1) \quad \sqrt{\lambda} > \frac{A}{d} \quad \text{where} \quad A = \frac{\sqrt{2} \sqrt{p+1}}{1-p} \quad (0 \leq p < 1).
\]

Moreover, the size of the dead core \(D_0 = [-Y,Y] \) is determined by

\[
(2.2) \quad Y = d - \frac{A}{\sqrt{\lambda}}.
\]

Similarly, for a \(p^{th} \) order isothermal reaction in a ball, there is a critical value \(\lambda_0 \) such that a dead core appears if and only if \(\lambda \geq \lambda_0 \). The above facts are proved in [1], where several other theorems for the existence and non-existence of a dead core are provided.

Finally, it is shown in [3] that asymptotically, as \(\lambda \to \infty \), the boundary of the dead core approaches a smooth surface parallel to \(\partial \Omega \) at distance \(\frac{\delta}{\sqrt{\lambda}} + O\left(\frac{1}{\lambda}\right) \), \(\delta \) constant.

3. A Finite Element Approximation

For convenience, we make the substitution \(v = 1 - u \) in (1.1), (1.6). This yields the problem

\[
(3.1) \quad -\Delta v = \lambda g(v) \quad \text{in} \quad \Omega
\]

\[
\quad v = 0 \quad \text{on} \quad \partial \Omega
\]

where

\[
(3.2) \quad g(v) = (1-v)^p \quad \text{for} \quad v \leq 1, \quad p \in (0,1)
\]

\[
\quad = 0 \quad \text{for} \quad v > 1
\]
We know that (3.1) has a unique solution $v \in H^2(\Omega)$, $0 \leq v \leq 1$ where the region $G = \{x \mid v(x) = 1\}$ corresponds to the dead core. The equivalent weak formulation of (3.1) is given by:

Find $v \in H^1_0(\Omega)$ satisfying

$$(3.3) \quad (\nabla v, \nabla w) = \lambda(g(v), w) \quad \text{for all } w \in H^1_0(\Omega)$$

where (\cdot, \cdot) denotes the usual $L^2(\Omega)$ inner product.

Let now S^h be a finite dimensional subspace of $H^1_0(\Omega)$ with the property

$$(3.4) \quad \inf_{\chi \in S^h} \{ |v - x|_0 + h |v - x|_1 \} \leq Ch^s |v|_s \quad \text{for } 1 \leq s \leq r + 1.$$

Here r denotes the degree of piecewise polynomials used. Since our solution is only known to lie in $H^2(\Omega)$, we restrict attention to the case $r = 1$ so that S^h consists simply of piecewise linear functions.

We say that $v^h \in S^h$ is an approximate solution of (3.1) if

$$(3.5) \quad (\nabla v^h, \nabla w^h) = \lambda(g(v^h), w^h) \quad \forall w^h \in S^h.$$

Theorem 3.1. Let g be given by (3.2). Then there exists a function $v^h \in S^h$ satisfying (3.5).

The proof of Theorem 3.1 requires the following lemmas:

Lemma 3.1. Let M_n be a finite dimensional space and let $T : M_n \rightarrow M_n$ be continuous. Suppose there exists a sphere S_ρ with radius ρ and center at the origin such that $(Tx, x) \geq 0$ for x on S_ρ. Then there exists an x_0 such that $Tx_0 = 0$ and $|x_0| \leq \rho$.
Proof: See, for example, [7].

Lemma 3.2. Let \(g \) be given by (3.2). Then for any \(v_1, v_2 \in \mathbb{R} \),

\[
|g(v_1) - g(v_2)| \leq |v_1 - v_2|^p. \tag{3.6}
\]

Proof. We may assume without loss of generality that \(v_1 > v_2 \). [If \(v_1 = v_2 \), (3.6) holds trivially.] If \(v_1 > 1 \), then we see that

\[
|g(v_1) - g(v_2)| \leq |g(v_2)| \leq |1 - v_2|^p \leq |v_1 - v_2|^p.
\]

If \(v_1 < 1 \), then

\[
0 \leq 1 - v_1 < 1 - v_2
\]

so that

\[
0 \leq \frac{1-v_1}{1-v_2} = a < 1.
\]

Hence, \(1 - a^p \leq 1 - a \leq (1-a)^p \), since \(0 < p < 1 \). This gives

\[
(1-v_2)^p - (1-v_1)^p \leq (v_1-v_2)^p
\]

and (3.6) is proven.

Lemma 3.3. Let \(0 < p < 1 \). Then for \(v \geq 0 \), \(v, w \in L^2(\Omega) \),

\[
|(v^p, w)| \leq C |v|^p_0 |w|_0. \tag{3.7}
\]

Proof. Using the Schwarz inequality, we have

\[
|(v^p, w)| \leq c \left(\int_\Omega (v^p)^2 dx \right)^{1/2} |w|_0.
\]

Now by Hölder's inequality with \(q = \frac{1}{p} \) and \(\frac{1}{r} + \frac{1}{q} = 1 \),
\[
\int_{\Omega} v^{2p} dx \leq \left(\int_{\Omega} (v^{2p})^q dx \right)^{1/q} \left(\int_{\Omega} r dx \right)^{1/r} \\
\leq C \left(\int_{\Omega} v^2 dx \right)^{1/q}
\]

from which (3.7) follows.

Proof of Theorem 3.1.

Define an operator \(T : \mathcal{S}^h \to \mathcal{S}^h \) as follows:

\[
(Tv^h, w^h) = (Vv^h, Vw^h) - \lambda(g(v^h), w^h) \quad \text{for all } w^h \in \mathcal{S}^h.
\]

Clearly \(T \) is continuous. Moreover, using (3.7),

\[
(Tv^h, v^h) \geq C\|v^h\|_0^2 - C\|l - v^h\|_0 - \lambda A[v^h, v^h]_1 \\
\geq C(\|v^h\|_1^2 - \lambda A[v^h, v^h]_1)
\]

where \(A = \text{measure of } \Omega \). Hence, for \(\|v^h\|_1 = \rho \) sufficiently large, we have

\[
(Tv^h, v^h) \geq 0.
\]

Applying Lemma 3.1 yields the theorem.

Theorem 3.2. (3.5) has a unique solution. Moreover, for \(\mathcal{S}^h \) consisting of piecewise linear functions, the solution \(v^h \geq 0 \) on \(\Omega \).

Proof. We first prove uniqueness. Let \(v^h_1 \) and \(v^h_2 \) be two solutions of (3.5) and let \(w^h = v^h_2 - v^h_1 \). Then, from (3.5) we have:
\[(\varphi_h, \varphi_h) = \lambda(g(v^h_2) - g(v^h_1), v^h_1 - v^h_2).\]

Since \(g(v)\) is decreasing in \(v\), it follows that

\[|\varphi_h|^2 \leq 0.\]

Since \(\varphi^h = 0\) on \(\partial\Omega\), this implies \(\varphi^h = 0\), that is \(v^h_1 = v^h_2\).

Let now \(v^h\), the solution of (3.5) satisfy

\[v^h(N_i) < 0\]

for some nodal point \(N_i\) in the grid on \(\Omega\). Then there exists a nodal point \(N_0\) such that

(3.8a) \(v^h(N_0) \leq v^h(x)\) for all \(x \in \Omega\).

(3.8b) \(v^h(N_0) < 0\)

(3.8c) \(v^h(N_0) < v^h(N_j)\) for at least one node \(N_j\) adjacent to \(N_0\) (since \(v^h = 0\) on \(\partial\Omega\)).

Now, let \(\psi_0\) be the linear basis function that is 1 at the point \(N_0\) and 0 at all other nodal points, and let \(\varphi_0\) be its support. Then, by (3.8a), \(\varphi^h\) is of the opposite sign as \(\psi_0\) on \(\varphi_0\) and by (3.8c), \(\varphi^h\) is not identically zero on \(\varphi_0\). Hence, substituting \(\varphi^h = \psi_0\) in (3.5), we obtain

\[\varphi^h, \psi_0 = \int_{\varphi_0} \varphi^h \cdot \psi_0 dx = \lambda(g^h, \psi_0).\]

The left side is strictly negative while the right side is non-negative, a contradiction.
Remark. The non-negativity proof above is essentially the discrete maximum principle (using linear functions) for the non-linear problem (3.1) with non-negative forcing function \(g \).

We now deal with the question of convergence of \(v^h \) to \(v \).

Theorem 3.3. Let \(v^h \) be the solution of (3.5) and \(v \) the solution of (3.3). Then

\[
|v - v^h|_1 \leq C h \quad \text{if } \frac{1}{2} \leq p < 1
\]

\[
\leq C h^{2p} \quad \text{if } 0 < p < \frac{1}{2}
\]

where the constant \(C \) is independent of \(h \) but depends on \(u, \lambda, p \) and \(\Omega \).

Proof. Let \(\chi \) be as in (3.4) and \(w^h \in S^h \). Then, by (3.3), (3.5), we have

(3.9) \[
(V(v^h - \chi) + Vw^h) + (g(\chi) - g(v^h), w^h)
\]

\[
= (V(v - \chi) + Vw^h) + (g(\chi) - g(v), w^h). \]

Taking \(w^h = v^h - \chi \) in (3.9) gives

(3.10) \[
|V(v^h - \chi)|_0^2 + (g(\chi) - g(v^h), v^h - \chi)
\]

\[
= (V(v - \chi), V(v^h - \chi)) + (g(\chi) - g(v), v^h - \chi). \]

Since \(g(v) \) is decreasing for \(v \leq 1 \) and zero for \(v > 1 \), it follows that

\[
(g(\chi) - g(v^h), v^h - \chi) \geq 0. \]
Hence, we may obtain from (3.10):

\[|W(v^h - x)|_0^2 \leq |W(v - x)|_0 |W(v^h - x)|_0 + (g(x) - g(v), v^h - x). \]

Using (3.6), (3.7) and the Poincaré inequality gives

\[|v^h - x|_1 \leq |v - x|_1 + C \sqrt{h} |v - x|_0^2. \]

Using the approximation property (3.4) together with the triangle inequality yields

\[(3.11) \quad |v - v^h|_1 \leq C(h^2 + \sqrt{h} 2^p |v|_2). \]

from which the assertion of the theorem follows.

Remark. The estimate given in Theorem 3.3 for the case \(p < \frac{1}{2} \) is pessimistic. The numerical experiments in Section 5 suggest that one gets \(O(h) \) convergence for any \(p \).

4. A Finite Difference Approach

In this section, we present a finite difference scheme for (1.1), (1.6) and analyze its numerical properties.

For the sake of our discussion, we take \(\Omega \) to be the unit square \(0 \leq x \leq 1, \ 0 \leq y \leq 1 \).

Let \(\Omega_h \) be a uniform \(n \times n \) finite difference mesh with mesh spacing \(h \) and boundary \(\partial \Omega_h \). \(u_{i,j} \) will indicate an approximate value of the solution of (1.1), (1.6) at \((x_i, y_j) = (ih, jh) \) for \(0 \leq i, j \leq N \).

\(\hat{u}_h \) will denote the vector with components \(u_{i,j}, \quad 1 \leq i, j \leq N - 1, \)

listed row by row.
Let Δ_h be the usual five-point discrete Laplacian and consider the scheme

$$(4.1) \quad \Delta_h q_h = \lambda q_h \text{ on } \Omega_h, \quad q_h = 1 \text{ on } \partial \Omega_h.$$

Let $m = (N-1)^2$ and let $\mathbb{R}^m_+ = \{ x \mid 0 \leq x_i, \; i = 1, \ldots, m \}$. Then (4.1) may be expressed as a non-linear system of m equations in m unknowns:

$$(4.2) \quad \bar{F}(q_h) = (F_{ij}(q_h)) = \bar{b}$$

where F_{ij} is defined on \mathbb{R}^m_+ for $2 \leq i, j \leq N-2$ by

$$(4.3) \quad F_{ij}(q_h) = -u_{i+1,j} - u_{i-1,j} - u_{i,j+1} - u_{i,j-1} + 4u_{i,j} + \lambda h^2 u_{i,j}.$$

For other values of i, j, F_{ij} is defined once again by (4.3) except that the contributions from $u_{i,j}$ on $\partial \Omega_h$ are taken on the right hand side to comprise the vector \bar{b}. Notice that all entries in \bar{b} will be non-negative. In what follows, we will assume for simplicity that the components of \bar{F} and \bar{Q}_h are given by $\{F_i\}$ and $\{u_i\}$ respectively, $i = 1, 2, \ldots, m$. We will be using the terminology from [5] and [6] to define terms like inverse isotone, off-diagonally antitone and M-function.

The continuous mapping $\tilde{F} : \mathbb{R}^m_+ \to \mathbb{R}^m$ turns out to be an M-function, yielding the following result.

Theorem 4.1. The difference scheme (4.1) has a unique solution $0 \leq q_h \leq 1$. Moreover, let $q_0^0, q_0^1 \in \mathbb{R}^m_+$ be vectors with all components 0 and 1, respectively. For any $\omega \in (0, 1]$ define the (SOR) iterates q_k^k by
Then the iterates \(\{u^k\} \) starting from \(u^0 \) and \(u^1 \) are uniquely defined, non-negative and converge monotonically to \(A_h \) from below and above, respectively.

Proof. We first show that \(F \) is an M-function. By Def. 2.8 of [6], we must show that \(F \) is inverse isotone and off-diagonally antitone.

Define \(\phi : R^m \to R^m \) by

\[
\phi_i(A_h) = \lambda h^2 u_i, \quad 1 \leq i \leq m.
\]

Then it is immediately seen that \(\phi : R^m \to R^m \) is a continuous, isotone, diagonal mapping. Moreover, (4.3), (4.5) may be used to obtain the following splitting for \(F \):

\[
F(A_h) = A_0 + \phi(A_h).
\]

The \(m \times m \) matrix \(A \) is irreducibly diagonally dominant with \(a_{i,j} \leq 0 \) for \(i \neq j \) and \(a_{i,i} > 0 \) for \(i = 1, \ldots, n \). From this, it follows that \(F \) is off-diagonally antitone. In addition, by 2.4.14, p. 55 of [5], \(A \) is an M-matrix. The fact that \(F \) is inverse isotone now follows easily by the proof of 13.5.6, p. 467 of [5].

By Theorem 2.10 of [6], \(F \) is strictly diagonally isotone. We now note that taking \(x_0, y_0 \in R^m \) consisting of all 0's and all 1's, respectively, yields

\[
x_0 \leq y_0
\]
\[F(x_0) \leq b \leq F(y_0) \]

and

\[J = \{ x \in \mathbb{R}^n \mid x^0 \leq x \leq y^0 \} \subset \mathbb{R}^n. \]

By Theorem 3.1 of [6], we find that for any \(\omega \in (0,1] \), the Gauss-Seide iterates \(\{ y_k \} \) and \(\{ x_k \} \) given by (4.4) and starting from \(y_0 \) and \(x_0 \), respectively, are uniquely defined and satisfy \(x_k + x^*, y_k + y^* \), \(F(x^*) = F(y^*) = b \), where the monotonicity of the convergence insures \(0 \leq x_i y_j \leq 1, \ i = 1,2,..., m \). Finally, the fact that \(x^* = y^* = 0_h \) follows from the inverse isotonicity of \(F \), so that \(0_h \) is unique and \(0 \leq 0_h \leq 1 \).

Remark: It is obvious that Theorem 4.1 will be true for any sub and super solutions \(0^0 \) and \(0^0 \), respectively, for (4.2).

(4.4) therefore provides us with an iterative scheme to solve (4.1) which has been used successfully by us in computations. It is of interest to note that the solution \(0_h \) of (4.1) does not have a discrete dead core in the sense that \(u_{i,j} \neq 0 \) at any point of the mesh. For, if \(u_{i,j} = 0 \) at a mesh point, then by (4.3) we obtain

\[u_{i-1,j} + u_{i+1,j} + u_{i-1,j} + u_{i,j+1} = 0 \]

so that by non-negativity of the solution,

\[u_{i-1,j} = u_{i+1,j} = u_{i-1,j} = u_{i,j+1} = 0. \]

This in turn implies that \(0_h = 0 \) at all interior mesh points, a consequence that obviously contradicts (4.1) adjacent to \(0_h \).

Numerical experiments show that the above difference scheme yields
O(h) convergence in the discrete H^1 norm of the error. As for many difference schemes, a higher convergence rate is obtained if it is measured at the nodes alone. The following difference scheme for the one-dimensional problem is interesting in this respect.

$$u_{i+1} - 2u_i + u_{i-1} = \lambda h^2 \left(\frac{u_{i+1}^p + 10u_i^p + u_{i-1}^p}{12} \right).$$

For the case when $\lambda = 12$ and $p = \frac{1}{2}$, (4.5) reproduces the true solution $u = x^4$ exactly at the mesh points, so that the error is zero at these points.

5. Numerical Experiments

In this section we look at results obtained using the finite element method. In the one-dimensional case, the width of the dead core for (1.1), (1.6) can be analytically determined by (2.1), (2.2). Moreover, when $\Omega = [-1, +1]$, $p = 0.5$ and $\lambda = 12$, the exact solution is given by $u = x^4$, which has a one-point dead core at the origin. In this case, the error in the computations below can be measured exactly. In other cases, the true solution is replaced by an approximation using a sufficiently small mesh size [number of sub-intervals, $N = 64$]. The mesh size h is given by $2/N$.
The above experiments show the errors obtained with linear elements. It is observed that the rate of convergence in the H^1 norm is $O(h)$ in all cases. This corresponds with the estimates for $p > 0.5$ in Theorem 3.3 but exceeds the rate of $O(h^{2p})$ predicted for $p < 0.5$.

The two-dimensional results show exactly the same orders of convergence. In this case, experiments are first performed over a square using linear piecewise polynomials on a uniform triangular mesh. The next set of experiments involve bilinear functions on a uniform rectangular mesh. Both these finite element spaces satisfy (3.4). N now represents the number of sub-divisions on each side of the square and the mesh size h is once again $2/N$. Some sample results are presented below.

<table>
<thead>
<tr>
<th>p</th>
<th>λ</th>
<th>N</th>
<th>H^1 error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>12</td>
<td>4</td>
<td>1.0438</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>0.5450</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>0.3610</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>0.2735</td>
</tr>
<tr>
<td>0.5</td>
<td>20</td>
<td>4</td>
<td>1.4404</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>0.7923</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>0.5387</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>0.3957</td>
</tr>
<tr>
<td>0.1</td>
<td>20</td>
<td>4</td>
<td>1.9429</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>1.0071</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>0.6827</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>0.5035</td>
</tr>
</tbody>
</table>
Linear Functions

<table>
<thead>
<tr>
<th>(p)</th>
<th>(\lambda)</th>
<th>(N)</th>
<th>(H^1) error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>4</td>
<td>4</td>
<td>0.5485</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>0.2845</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>0.1910</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>0.1407</td>
</tr>
<tr>
<td>24</td>
<td>4</td>
<td>4</td>
<td>2.1017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>1.1250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>0.9330</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>0.5676</td>
</tr>
<tr>
<td>48</td>
<td>4</td>
<td>4</td>
<td>3.0907</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>1.8063</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>1.1848</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>0.9130</td>
</tr>
<tr>
<td>0.1</td>
<td>4</td>
<td>4</td>
<td>0.6155</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>0.3177</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>0.2140</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>0.1569</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>4</td>
<td>1.5497</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>0.8694</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>0.6600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>0.5393</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>4</td>
<td>2.3220</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>1.2086</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>0.8128</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>0.6024</td>
</tr>
</tbody>
</table>
Bilinear Functions

<table>
<thead>
<tr>
<th>p</th>
<th>λ</th>
<th>N</th>
<th>H^1 error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>4</td>
<td>4</td>
<td>0.4022</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>0.2030</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>0.1352</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>0.0995</td>
</tr>
<tr>
<td>24</td>
<td>4</td>
<td>4</td>
<td>1.7751</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>0.9312</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>0.6149</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>0.4596</td>
</tr>
<tr>
<td>48</td>
<td>4</td>
<td>4</td>
<td>2.8526</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>1.6228</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>1.0570</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>0.8051</td>
</tr>
<tr>
<td>0.1</td>
<td>4</td>
<td>4</td>
<td>0.4382</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>0.2200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>0.1468</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>0.1077</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>4</td>
<td>1.1021</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>0.5718</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>0.4046</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>0.3145</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>4</td>
<td>1.9706</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>0.9848</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>0.6559</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>0.4815</td>
</tr>
</tbody>
</table>

Remarks:

(a) **Dependence on λ.** It is observed that for large λ, the increase in the error for the same p and N is proportional to $\sqrt{\lambda}$, as predicted by (3.11).

(b) **L^2 errors.** For some of our calculations, the L^2 errors converged at the rate of $O(h^2)$. In other cases, the convergence rate was lower. We have not yet determined conclusively either by means of computation or analysis what the correct rate should be.
(c) **The case** $p = 0$. Although Theorem 3.3 does not predict convergence in this case, computationally, we once again observed $O(h)$ convergence in experiments similar to the above.

(d) **Finite Difference Calculations.** Computations based on the difference scheme (4.1) are not reproduced here. They showed similar magnitudes of error and identical rates of convergence as the finite element case, both in the one- and two-dimensional case.

(e) **Boundedness of Approximate Solutions.** In all our calculations, we observed that the approximate solution always satisfied $0 \leq u_h \leq 1$. For the finite difference case, this is justified by Theorem 4.1. For the finite element case, the discrete maximum principle justifies $u_h \leq 1$, as shown in Theorem 3.2. We have not, however, been able to prove that $u_h \geq 0$.

(f) **Existence of the Dead Core.** In the one-dimensional case, it was observed computationally that Theorem 2.2 was satisfied with $\lambda_0 = 12$ when $p = 0.5$. Similar critical values of λ were observed for the two-dimensional case. In the two-dimensional examples presented, for $\lambda = 4$ there was no dead core, while for other values of λ, a dead core was observed.
References

END

11-87

DTIC