MEMORANDUM REPORT BRL-MR-3609

AD-A185 295

SOME SPECIAL CASES OF
SPIN-YAW LOCK-IN DTIC
| S ELECTE

CHARLES H. MURPHY ca D

AUGUST 1987

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

US ARMY BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND



form Approved

REPORT DOCUMENTATION PAGE OMB No 07040188
Exp Date Jun 30.1986

1b RESTRI_TIVE MARKINGS

T 1a REPORT SECUR:TY CLASSIFICATION

UNCLASSIFIED
""'2, SECURITY CLASSIFICATION AUTHORITY 3 DiISTRIGUTION / AVAILABILITY OF REPORT

— T ICATION T OOWNGRADING SCHEDULE Approved for public release;
distribution unlimited.

$ MONITORING ORGANIZATION REPORT NUMBER(S)

% PERFORMING ORGANIZATION REPORT NUMBER(S)

BRL-MR-3609

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL
(if applicable)

us >
Banig‘{ic Research Laboratory SLCBR-LF
6c ADDRESS (City State, and 2iP Code)

7a. NAME OF MONITORING ORGANIZATION

7b. ADDRESS (City, State, and ZIP Code)

pberdeen Proving Ground, MD 21005-5066

8b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
(tf applicable)

SLCBR-DD-T

82 NAME OF FUNDING / SPONSORING
ORGANIZATION US Army

Ballistic Research Laboratory
g 10. SOURCE Of FUNDING NUMBERS

8¢. ADDRESS (City, State, and ZIP Code)
PROGRAM PROJECT TASK WORK uNI(1

ELEMENT NO. NO. 1L1 NO ACCESSION NO

Aberdeen Proving Ground, MD 21005-5066
61102A 61102AH43

11 TITLE (Include Secunty Classification)
SOME SPECIAL CASES OF SPIN-YAW LOCK-IN (U)

12 PERSONAL AUTHOR(S)

Murphy, Charles H.
132 TYPE QF REPORT *3b TIME COVERED 14 DATE OF RT, {Year, Month, Day) ]S PAGE COUNT
Menorandum Report FROM 10 1489 Adgﬁs'f' 34

16 SUPPLEMENTARY NOTATION
This report supersedes IMR 893 dated July 1987

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse f necessary and identify by block number)
| _FIELD GROUP SuB-GROUP Aerodynamics Ordnance
0l 0l Aeronautics Rockets
]9 07
19 ASSTRACT (Continue on reverse if necessary and identify by block number) {bJa)
N A slightly asymmetric missile Js a basically symmetric missile with a nonzero pitcﬁ

moment at zero angle of attack. In flight this moment causes a trim angle that rotates wit
the missile and has a maximum when the spin is near resonance with the missile's natural
pitch frequency. This report considers a roll moment that can be fnduced!by this trim angle
and can cause resonant lock-in spin. Simple expressions for this induced|roll moment are
given and the existence and stability conditions for equilibrium spin are derived. The
special case of the induced roll moment caused by a radial center of mass offset is con-

sidered and a
(continued)q

number of different types of possible equilibrium spin combinations are |-

'

20 DISTRIBUTION / AVAILABILITY OF ABSTRACT 21 ABSTRACT ?ECURITY CLASSIFICATION

All gther e@dLioNs are ObsO'ete -

’ UNCLASSIFIED

O unciassisieoununateo 00 save as /et 0 01:C USERS UNCLASSIFIED
228 _NANE OF RESPONSIBLE (ND'VIDUA. 22b TELEPHONE (Include Area Code) | 22¢ OFFICE SYMROL
| Charles H. Murphy (301)-278-3109 SLCBR-LF l
DD FORM 1473, 8avar 83 APR eg:t:0n May be uted unt-i exhsusted SECUMTY CLASSIEICATION OF Ters PAGE _

!

UNCLASSIFIED ﬁ f ?

o

PEEVTEL I vy

A %e®s % CHTRTETE PaP %t

Ty

RV '@ ¥

LY RN e ey

v % Y Sy

A LAY P AP Y g A P P



UNCLASSIFIED

19,  ABSTRACT {continuec;

The passitility of resonant lock-in spin in the opposfte sense tc the expecte
hown that there are induced roll moments for

< ~Shown,
If severs’

steady-state spin is indicated. It is further §
whicn the desiyn stead,-state spin will not occur udder any launch conditions.

stable equilibrium spins are possible, the one that occurs in flight can be determined by tn.
orfentation of the initial pitch angular velocity. Finally the form of an induced pitc-

b4 .

moment ¥s given and its possible effect on the angular motion s discussed. _¢

o

UNCLASSIFIED




VI,

VII.

VIII.

TABLE OF CONTENTS

Page

LIST OF FIGURES.....;..............................................
INTRODUCTION . ceceenoseccesascssscnovassccasessacsansscssscscsscscas
SLIGHTLY ASYMMETRIC MISSILE.eccsesscecscsscssvcscssosnssacesaccscne
ROLL EQUATION. cessccoesesscsescnsnnssscssosossssssssssescsscsnsosne
LOCK-IN STABILITYieeeeceesososseansscsosssccvsvsassvsscssosasssssnne
CENTER OF MASS OFFSET.ceccsceccesscsacssssscsvesscasscssssssacssces
TABLE 1. Stability Matrix Elements, ajieccscccscnsncccncnnnsansas
INDUCED PITCH MOMENT.voecosesscocvocsacssscsoscssssccscscssscssnsne
DISCUSSIOMeeseesesoscssssoanssssssssoscsscssssssssscasosscscsacscasse
TABLE 2. Illustrated Examples of Various Lock-In Case@Scesesecccens
SUMMARY . ¢« v e e s e e s eaeannnnsssesnsnnesssssnnnnessssnnnseesnns

REFERE'{CES.O....I......................C...........................

LIST OF SYMBOLS.OOOOOOOC...0‘..'00...l.l.'..'.Q.......'.'.......Q..

DISTRIBUTIOt{ LIST....l..l..'.l...‘.....'.....l'..'............'....

NTis CR
A
DTIc TAB&,
LT T xd
Jl:r!:iw,.c;u'vL

i Metiseees
. .. AL T,

-

——
s
]

~ Sy o

‘ “\L (BT IT
} ) ..<-_“__\ -.:J(.u.:,. Coes
' Aen T e
Lt Vel or

L Seay
3
;}./ﬁ' /
i )
R S

iii

v

W W N s = e

10
11
12
13
25
27
31




LIRS A U U LA LA RO G WL UV WARLIW P LW PN W I AT YR TR N Tl U PR Y 7ol 20 0 P T T ML S WP W WU W W B M W ™ m 2 M P PEY
iry

-
/

10

L1ST OF FIGURES

Page

f: versus ¢ for case 1. Design steady-state spin

and normal Yock-iN...uiieeiinnrennnrenns Ceecceveearaattactantanas 14
fi versus ¢ for case 2. Design steady-state spin

and reverse lock-in....... Cereestiansanseaverinanenes seesssraneess 15
f; versus ¢ for case 3. Design steady-state spin,

norinal lock-in, and reverse lock-in..... Craesnennas Cereraiienaeas 16
& versus 1 for case 1 with |zl = 0.1. Design steady-

state spin occurs for g = 180° whiie normal lock-in

0CCUTS TOr 8% = 07 . i iiieininernersreasnsoesaceasvsnosssonsannsas 17
$ versus T for case 2 with |¢| = 1.0. Design steady-

state spin occurs for & = 90° whiie reverse lock-in

occurs for o8 = 270°......... Cerreesracansnes P -
¢ versus v for case 3 with |z] = 3. Design steady-state

spin occurs for ¢ = 0, normal lock-in for ¢ = 90°, and

reverse 1ock-in for ¢ = 270°....vevenesnns et reseriesraennys oee 19
fi versus ¢ for case 4. Design steady-state spin and

no"‘ma] ]OCk'in........u..... ----- €6 5 80809 AEAA0 BB EEEISIITTYORORNGSGBEEOELE ST 20
fj versus $ for case 5. Design steady-state spin and

reverse ToCk-Tn. . it iverinenroennnnnenss cercesiaaa teesseaseatanns Z1
fi versus ¢ for case 6. No design steady-state spin

occurs but normal lock-in does occur..... Creeerentesesnna cirienes 22
f; versus 4 for case 7. No design steady-state spin

occurs but reverse 10Ck-1n d0eS GCCUT. teeveivsnrsenroasarencsanes 23

B T

x

('!

vy,
Pl SO

S

TASENRN (Y

®

=

LAl




T TMVERA TR TR N " M i R TRTETTefmTfe SRS T B YT a0 WYl omrt Tt T T W T T T T T T s s

I. INTRODUCTION q;

In 1953, J. D. Nicolaides introduced the concept of spin-yaw resonance of Eiﬂ
missiles having slight configurational asymmetries.l! In this paper, he showed ?'
the possibility of large trim angles when the spin rate happened to be near QE
the natural pitch frequency of the missile. Later authors considered various R
aspects of the pitching motion of the missile when its spin was near reso- bi
nance.2"5 The combination of symmetric nonlinear aerodynamic moments and a S
trim moment produced by a configuraticn asymmetry has been studied extensively E§§
for non-resonant spin and the possible existence of subharmonic response, as B

well as a variety of limit motions, has been demonstrated.® ?

- g
g g
Ll

b A

The very important question of the existence of a spin moment that farces
the spin to its resonance value was first answered by Nicolaides? when he
introduced an induced roll moment which was a function of the total angle of
attack and the roll angle between a particular fin and the plane of the total
angle of attack. (This "“induced" roll moment is induced by the non-rotation
ally symmetric flow field over a finned missile at angle of attack.) Glover!O
considered the effect on spin of mass and aerodynamic asymmetries. He showed

& s

e il B
&

R

N

that a laterally offset c.m. location introduces an induced roll moment which 2
is a function of two angles: (a) the tetal angle of attack and (b) the angle gf
between the angle-of-attack plane and the plane containing the c.m. and axis ;@
of symmetry. This analysis has been extended to sounding rockets and re-entry Q}
vehicles, 11712 e
;Cf

In this report we will consider the variety of spin lock-ins that can o
occur for 2 slightly acymmetric missile whose roliing motion is controlled by g;
the usual linear roll moments and a generalized induced roll moment. Three o
different types of lock-in are shown and conditicns on the induced roll moment Y
are given. Finally, the effect of an induced pitch and yaw moment is briefly S
considered. o
7

I1. SLIGHTLY ASYMMETRIC MISSILE -

e

A missile whose linear aerodynamic forces and moments have the same sym- 5{
metry as those for a body of revolution will be called basically symmetric. If <
this basic symmetry is disturbed so that its normal force and static moment o
are not zero at zero angles of attack and sidesiip, the missile is a "slightly L
asymmetric" missile.* This disturbance can be caused by small cant angies of QL
fin surfaces and induces a trim pitch angle that rotates with the missile and he
is a function of the spin rate. When the spin rate is near the fast preces- C
sion rate, a maximum value of the trim angle occurs and this event is called }:
spin-pitch resonance. Ei
: Aeroballistic axes pitch and yaw with the missile but have zero roll e
. rate. The 1linear aerodynamic force and moment for a slightly asymmetric L
B missile can be written in these coordinates as: o
h

i

*A slightly asymmetric missile has equal zero-spin pitch and yaw frequencies. :!
If these frequencies differ slightly, the missile is called an "almost -
symmetric" missile.!3 o
-
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gl -1 CM e (2.2)
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where
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o
R
j= %
-+

¢ = roll angle

and where CN ’ CM are non-negative,
0 0

This force and moment can be inserted in the usual differential equations
for the pitching and yawing motion: 1%

. o - i(o4oy)
E" + (H - i0¢') &' = (M + i09'T)g = - My € (2.3)

R Y R Y TR TN T T T T R e G
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where

. oSk -2
Ho= 534 [CLQ - ¢ - k(e cM:)}
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3
. pSs 2
My = - 222 [%Mo -1k (- q)¢'cuo ?

1(dy-¢m) ]
ZIt

-2
At resonance, ¢' is of order 10 and so the c"o term in My can and will be

neglected. For zero spin, the steady-state motion can be described by a
constant trim angle:

oy

To © (2.4)

£=6

where

GTO = MA/M = = CM /CM .
(o) a

The independent variable in Eq. (2.3) is dimensionless time, s. For
spin-yaw resonance, it is convenient to use a second dimensionless time, T,

which is defined to be

1 = [-M/(1-0)1172s, (2.5)

Eq. (2.3) now hecomes

- (o+oy)

€+ (H-10d) €+ (1-0 - 10} 1) £ = 65y (1-0) @ (2.6)

where
A= H [-(1-0)/M)1/2

a1 [-(1-0)/M/2

For constant spin, we assume the steady-state response to the aerodynamic trim
has the form

Eagelt TR)



s RaeamAa A RAe RARAEA T AARAEY T MAMAA TV A w PP AT G Ak S WA EFRAE SR AN AW WMAN RO LN O AT T M TN M "ot R TR

where

£ = gT is constant. e

A direct substitution of Eq. (2.7) in Eq. (2.6) yields

14y
& © 1(%+m) (2.8)
= = 6 e .
“ 1-32 + i4h T
vhere*

h=(1 - ot (H - of]

The simpie form of Eq. (2.8) is due to our use of t as the independent
variable. According to Eq. (2.8), resonance occurs at l¢l =1 and the
resonance value of the trim angle magnitude is é;p = Ihl'ldTo. The magnitude
of the trim angle grows from 6T0 to a maximum which is approximately TR

then decays to zerc. The phase angle varies from zero at zero spin to -90° at
resonance and then to -180" for infinite spin.

and

I11. ROLL EQUATION

The roll moment for a slightly asymmetric missile usually has two compo-
nents!S - a constant spin-producing moment caused by differential cant of the
fin surfaces, bes and a spin-damping moment proportional to the spin rate. If

the missile is not a body of revolutien, a rcll moment can be induced by an
angie of attack and varies with 8, the angular orientation of the angle-of-
attack plane with respect to the missile.

In the usual missile-fixed axes, the comlex angle of attack has the form

£=p+ fa=6el® (3.1)

. . . .
RN AT OW_ W W R e, AT W R T LS TN TR B W o e e B o R B gl e et g R R W R R T LA | gy S g ST g e | WO ) S Gty gy . ' SRR ey O L, eI T .

E =4 e16 = g e1¢ (3.2)
Loz g+ b (3.3)
h
*Dynamic stability near resonance requiresl® that h < Q. ¥
\
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2
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The complete roll moment including the angle-of-attack-induced component can
be written as

C,=C, 6.4C, ¢ +C, (8,6) (3.4)
£ Lé f lp 26

The Y-axis in the missile-fixed coordinates is usually taken to be in a
plane of mirror symmetry of the basically symmetric missile. If this is the
case, the induced roll moment coefficient is on odd functionl® of 8,

c£6 (6,8) = 'Cle (-6,6) (3.5)

It therefore can be expanded as a Fourier sine series in €, A rotationally
symmetric missile with n similar fins has a symmetry angle of 2n/n and thus

the induced roll moment should have this fundamental waveiength,

o0

Cf'e = Z a, sin nko (3.6)

Lo 1
~ = 1

where

In terms of the complex angle of attack

Nk k
S

-y
sin nk§ = 20— 2 (3.7)
216"k

If we make the mathematicaliy attractive assumptionl® that the roll moment is
an analytic function of o and g, the ak(d) function can be expressed as a

special power series in &,

k 3
8 = " Z by ¢ (3.8)
=0

The first term in this double series expression for the induced roll
moment coefficient is
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byg & sinne = ({bjg)/2i) (g - &), (3.9)

For all the calculations of this report, we will approximate the induced roll
moment coefficient by this term. As a further convenience, we will select the
orientation of the Y-axis in the plane of mirror symmetry so0 that blO is posi-
tive. The resulting roll equation for this roll moment is:1"

" ' \ . n -n .
o+ Kp Lo - ¢ s~ 1 Kg (g - £)] =20 (3.10)
313 2
where Kp = - P C +k°¢C
L a D
2 Ix )
$¢° Ké,Kp
3
. pSYK
KG——I— 5 cﬂ(5
X
- 2 ~1
Ke = (b10/2) [sz + ka CD]

For most finned missiles, Kp is positive. In the absence of an induced roll
moment, Eq. (3.10) predicts a stable steady-state spin of ¢.. This design
steady-state spin is set by the designer through the fin differential
deflection angle, af.

The independent variable in Eq. (3.10) can be easily changed from s to 1
and ¢ can be scaled by its value at resonance.

o+ Kp [é- b 16 ("- M3=0 (3.11)

. S - 1/2
where Kp Kp [ (} o) /M]

_ 1/2 .n
G = Ke [-(1-0)/M] SR

-1
A




The differential eguation for the scaled complex angle of attack, g, can be
obtained from Eqs. (2.6-2.7)

woa o 2 e Tan
¢+ [H+ i(2-0)¢) ¢+ {1-0){1-¢" + igh + i¢) ¢ = (1-g)|hje (3.12)

Lock-in occurs when Eqs. (3.11-3.12) have a constant steady-state equilibrium
solution

. . |
e = 05 = 1 G (g5 - gg) (3.13)

Y
cp = — € (3.14)
1~¢e + 1¢eh

Lo has a maximum amplitude of unity. Thus, if G is small compared to
&, the induced roll moment has very little effect on equilibrium spin, and
the usual steady-state spin occurs. If, however, this is not the case, %the
induced roll moment can have a large contribution for &e = t1 and the roll

rate can be locked 1in at resonant spin ($2 =1). At resonance, ©
is M - (n/2). As we shall see, lock-in can occur both for the normail case of

resonant spin in the same sense as the expected steady-state spin and for the
reverse case of resonant spin with the opposite sense.

IV, LOCK-IN STABILITY
A number of solutions to Eqs. (3.13-3.14) can exist. These may be found
graphically by pletting the curve
y=t (b)) =i6 ("~ " (4.1)

and finding its intersection with the line*

y =y (o) = ¢, - o (4.2)

*A VAX 11/780 program has been written by J.W. Bradley, Launch and Flight
Division, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground,
Maryland, to find all such intersections.
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Some of these equilibrium points, however, may be unstable and have no
engineering significance,

We will assume a small perturbation of an equilibrium solution.

&;= 5@ + nl (4-3)

c=ce+n2+in3 (4.4)
- where

nj = nj(T)-

Substitution of Eqs. (4.3-4.4) in Egs.
differential system in the n.'s. Next,

solution for these perturbation functions:

(3.11-3.12) yields a fifth-order
we assume a coupled exponential

where the nJO'S are constants,

Direct substitution gives three equations for the three njo's.
3

Z ajk njo = 0; k = 1,2,3 (4-6)
Jj=1

where the ajk's are given in TABLE 1.

The determinant of the system (4.6) must be zerc for a non-trivial
solution. This condition reduces to a fifth-order polynomial equation in a.
J.W. Bradley's VAX program inspects the coefficients of this polynomial and
uses the Routh-Hurwitz criterion to determine the presence of negative real

parts in any of the five roots. If all of the roots have negative real parts,
the equilibrium is stable.

It should be noted that the location of equilibriumn points is determined
by the parameters n, és’ G, > and h. The stability of these equilibrium

points requires values of ﬁ, K , and o in addivion to these basic five
parameters. P
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TABLE 1.  Stability Matrix Elements, ajy.

ay; = A+ ﬁp

ay = ~in ﬁp G (cg'1 - ;”’1)

a3 = nky 6 (sp7 4 )

ap; = -R {g, [(28, - ih) (1-0) - 2]}

2 . 2 .2
= A+ HA+ (1-0) (1-¢e)

a2z =
sy = -68 [(2-0) x + (1'0) h]
ag; = -1 (g, [(24, - ih) (1-0) - 1 A]}

ag, = $e [(2-0) A + (1-0) h]

833 = Az + ;l A+ (1-0) (1-&2)

V. CENTER OF MASS OFFSET

When n is three or greater, a missile has trigonal or greater rotational
symmetry and its linear force and moment coefficients have the same symmetry
as a body of revolution.l® Digonal rotational symmetry (n = 2) would occur,
for example, when a four-fin missile has pairs of fins with unequal areas.
The theory for almost symmetric missiles would apply to the motion of digonal
missiles. Although n = 1 really implies no rotational symmetry, symmetric
missiles can have induced roll moments with this value of n if their centers

of mass have a radia) offset.
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We will assume the center of mass to be radially offset by a distance of

e in the piane ¢ = 0. The normal force can then exert a roll moment with a
a EIR)
Tever arm of e sin 6.

M

X 8 FN zrc sin @

(5.1)

“ese Ve L) R &, (e- 0

1f Eq. (5.1) is compared with Egs. (3.4 and 3.9), we see that the radially
offset center of mass produces an induced roll moment with n=1, b=

re CN .
[+ 3
The of fset conter of mass can also produce a trim pitch moment since the

drag force now has the linear arm o .

YNNI 2 YR F‘.""?"i’".f'm:-'l'i’h!'_ﬂ:"l FEE. L~ l e s kgl O

. _ . i¢
(Cﬁ + i Cﬁdo =-ir, CD e (5.2)

ey = 0, Cy =1, G (5.3)

VI. INDUCED PITCH MOMENT

If an dinduced roll moment dependent on ¢ is present, the transverse
moment expansion can also have a term dependent on 8.

. . . .

{Cot i Cx) = - CMe (9,8) £ e {6.1)
For an q;gonal rotationally symmetric missile, the simpiest expression for

C is:

Mo
= n-2 ,-noi
CM =3, 6 e (6.2)
9

:f: Fora = 1, CM is a g"l and the induced pitch moment is the trim pitch moment

e 6
] of £Eq. (5.2). For n > 1, Eq. (3.12) becomes a nontinear differential equation,

10
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C+IH+ 0 (2-0) § £+ (1-0) =" +m_+ i §h+ 1 gly
- (6.3)
1o
= (1-0) [hl e "

SRERA  \LESIZL L2 {TAS 2

T
where mg = mg (e, l¢l qﬂ) = CMO/CM

The steady-state trim equation for specified spin becomes a nonlinear eguation
in gand ¢
e e

Y
G, = Il e (6.4)
1 - 52 tmg+ $ h

For My small compared with unity, it has very little effect on the real

part of the denominator but can have a significant effect on the imaginary
part. Thus, the resonance value of I;el can exceed unity. A much more impor-
tant effect of m, can be to make all solutions for Co unstable. If that is
the case, ¢ can vary through very large values. This possibility has been
denoted as catastrophic yaw by Nicolaides.?

VII. DISCUSSION

According to Egs. (3.13-3.14), the induced roli moment has maximum ampli-
tudes near resonance. For even values of n, and Ngy = tn/2, #3n/2,..., |f1|
has an absolute maximum of 2G| at & = ¥1. For odd values of n, the same
absolute maximum occurs at Ngy = 0, tn,.... Thus, resonant 1gck-in is only
possible for I¢ | <2G. 1In actuality, for specific n, occurrence of lock-in
depends on the spec1f1c values of (h, ¢ , G, ¢M) while the stab1|1ty of the
Tock-in depends on (H Kp o). Throughout this section, h = H = Kp =g =0.1
and we will only consider different values of &S, G, by .

In order to consider lock-in in more detail, we will 1imit the remainder
of this discussion to the case of n = 1, For this case of an ¢ffset center of

3
»
h
'
v
E»
3
E
:
N
L]

mass and YRR P fi has a minimum of -2G at &e = -1, and a maximum of 2G at

&e = 1. A simple analysis further shows that for by = w/¢, f1 varies from a

11
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minimm near -G at &e = -1 - h to a maximum near G at &e = -1 + h and simi-
larly varies from a maximum near G at &e = 1 - h to a minimum near -G at &e =
1 + h. Finally, fl(e) = —f1(6+n). In Figures 1 and 2, f1($e) is plotted
for by = w/2, 3n/2, respectively, for G = 5. The dotted lines in these

figures are f2($e) for &s = 3. The parameters for these figures are the first
~two entries in TABLE 2.

TABLE 2. Illustrated Examples of Various Lock-In Cases.

Case &S G by Stable &e's Type
1. 3.0 5.0 90° 1.01, 2.68 SN
2. 3.0 5.0 270° -.98, 3.11 SR
3. 0.5 1.0 180° -1.03, .52, 1.08 SNR
4, 0.5 0.5 90° .69, .97 SN
5. 0.5 2.0 270° -.98, .10 SK
6. 0.5 1.0 90° .99 N

7. 0.5 5.0 270° -.99 R

In both figures there are five equilibrium points. In Figure 1, the
slightly modified steady-state spin, éc = 2,68, and the normal resonance, &e =

1.01, are the only stable equilibrium points. This is the normal lock-in
model considered by engineers. If spin starts near zero, designers hope it
accelerates through resonance fast enough to avoid capture and reaches steady-
state spin with only a slight stimulus to its pitching motion caused by
passage thrcugh resonance.

In Figure 2, the twu stable equilibrium points are the steady-state spin
of 3.11 and the reverse resonance spin of -.98. This resonant lock-in spin in
the opposite sense to the design spin is an unexpected result. We will denote
normal resonant lock-in spin by N, steady-state spin by S, and reverse
resonant Tock-in spin by R. Then the two stable equilibriumn spins of Figure 1
could be identified by SN and the two stable equilibrium spins of Figure 2 by
SR.

If we now consider 55 less than unity, even more remarkable possibilities

appear. Five examples are given in TABLE 2. Case 3 in TABLE 2 is particu-
Tarly interesting; the corresponding equilibrium spin determination is shown

12




in Figure 3. Since hy = 180°, f; has oniy one maximum and one minimum. There
are, however, three stable equilibrium spins and this case is denoted by
SNR.  The next two entries in the Table are examples of types SN and SR for
= !&SI < 1 and are quite similar to the first two entries. The final two

entries represent new types, N and R, for which no stable steady-state spin
exists. Thus the induced roll moment can completely overpower the design
steady-state spin. (Cases 4 to 7 are shown in Figures 7 - 10.)

For the cases of two or three stable equilibrium spins, the equilibrium
that occurs in flight is determined by initial conditions. Equations (3.11-
3.12) form a fifth-order differential system. The necessary five initial con-
ditions are the initial spin rate &0, the initial complex angle (P and the

initial complex angular velocity. For simplicity, we will let &0 = g, =0 and
consider only the magnitude and orientation of &0.

s _ s ig*
G = 15,1 e (7.1)

For case 1, which was a type SN with és = 3, IEOI was set at .l and o*
was varied. As can be seen from Figure 4, steady-state cpin occurs for e* =
180° and normal lock-in spin for ¢ = 0. For case 2, which was type SR with
&S =3, Iiol was set at 1, steady~state spin occurred for ©* = 90° and reverse
lock-in spin for ¢ = 270° (Fig. 5). Finally, for case 3 which was type SNR
with &S = 5, IEOI was 3, steady-state spin occurred for 6* = 0, normal lock-
in spin for ¢ = 90° and reverse lock-in spin for ¢ = 270° (Fig. 6).
Therefore the determination of which equilibrium spin occurs in flight can be
made by the orientation of the initial angular velocity.

VIIT. SUMMARY

1. A roll moment can be induced by the missile's pitching and yawing
motion. Simple expressions for this roll moment have been given for aero-
dynamically symmetric missiles and for missiles with mass asymmetries.

2. These induced roli moments can cause the rolling motion of slightly
asymmetric missiies to have a variety of steady-state values. Examples of
normal resonant lock-in spins in the direction of spin and reverse resonant
lock-in spin in the opposite direction are shown.

3. For multiple stable equilibrium spins, the orientation of the initial
pitch angular velocity can determine which one occurs in a given flight.
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LIST OF SYMBOLS

Drag force/(1/2) pV2S, the drag force coefficient
M/ (1/2) ¥ 255 where M, is the axial aerodynamic force

Spin-damping moment coefficient [Eq. (3.4)]

Spin-preducing moment coefficient due to canted fins
(Eq. (3.4)]

Spin moment coefficient induced by the ¢ 'gle of attack
(Eq. (3.4)]

CN - CD’

Q
(M, M7)/(1/2) oV 252 where Mys M7 are the transverse
aercdynamic moments in the aeroballistic system

the 1ift force coefficient

Magnus moment coefficient [Eq. (2.2)]
Damping moment coefficient sum {Eq. (2.2)]
Asymmetry moment coefficient [Eq. (2.2)]
Static moment coefficient [Eq. (2.2)]
Induced pitch moment coefficient [Eq. (6.1)]
Asymmetry force coefficient [Eq. (2.1)]
Normal force coefficient [(Eq. (2.1)]

(Fyq F31/(1/2) oV 25 whera Fy, Fy are the transverse aerodynamic

forces in the aeroballistic system

n o _n
16 (¢ - ¢)

be = 4

Normal force due to radially offset center of mass
>N

Ko TR

(H - ) /(1 ~ o)
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LIST OF SYMBOLS (continued)

H

pS & - o2 7
__[CL Cp - k¢ (CM * CM-)]
- 2m a q o

_Axial moment of inertia

Transverse moment of inertia
i
Ix/mz

2
It/mz

3
. eSE’ C, +k2¢y |, [Eq. (3.10}]
4 p
{Eq. (3.10)]

(b0/2) [Cﬂp+ k2 cD}'l, [Eq. (3.10)]

Reference length (diameter)

Mass

Cy /Cy > [Eq. (6.3)]
0 a

Ro11 moment due to radially offset center of mass [Eq. (5.1)]

Symmetry number; the symmetry angle is 2w/n radians
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4 LIST OF SYMBOLS {continued)

N . Type designator: normal resonant lock-in
FC Radial offset of the center of mass (calibers)
R Type designator: reverse resonant 1ock-in
, , i
5 ' S (V/5) dt
0
S (1) Reference area ng2/4

(2) Type designator: steady-state spin

t Time ,,;5; '
oSk -2
T _._[cl_ + 2, ]
2m a p
o ]
v Magnitude of the velocity

™

a, Angles of attack and sideslip in the missile-fixed system

a8 Angles of attack and sideslip in the aeroballistic system
$ Absolute value of ¢ and E
6f Differential fin cant angle

6t Absolute value of &1

%R %o“hl

&ro MA/M = -CMQ/CM

a
¢ e

Complex angular velocity at © = 0.
) Orientation angle of ¢ [Eq. (3.1)]

Orientation angle of & [Eq. (3.2)]
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LIST OF SYMBOLS (continued)

gx - Orientation angle of Eo .
3

A Constant ;5/".1' [Eq. (4.5)]

£ B+ ia= 6eie, complex angle of attack in the missile-fixed
; ' system

& B+t ia= sel® » complex angle of attack in the aeroballistic

system

& Constant trim angle value of ¢ [Eq. (2.8)]

P Air density
i o I./1¢

T Wi -2 ¢

$ Roll angle

" Asymmetry moment orientation angle [Eq. (2.2)]

& Asymmetry force orientation angie [Eq. (2.1)]

og K6/Kp., steady-state spin (rad/cal)

o Tanh [ -3 /(1 - §2)] [Eq. (2.8)]

Superscripts:

) Complex conjugate

(") -1 - /M2 ()

(") d{ )/dt

() d( )/ds

Subscripts:

( e Equilibrium value

(g Steady-state value
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