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- ABSTRACT

This project is a muitidisciplinary effort between 3 Departments and Principal Investigators. It
intends to combine: pattern recognition, image understanding and artificial intel{igence techniques
for space-based image processing as well as: optical and digital processing methods. Optical feature
extraction and sub-pixel target detection and tracking results are sununarzied. Scene representation
and modeling work using: probabilistic graph matching, muitiple resolution rotation-invariant
operators and texture analysis are detailed. Image understanding techniques for 3D scene
interpretation discussed include 2D image-level methods (using features such as edges. lines and
corners) and 30 scene-level methods. New dynamic programming, stereo image and model building
results are included. )

KEY WORDS

3D scene interpretation, anmc:al intelligence, feature extraction, hybnd processors, image
understanding, muitiple resolution rotation invariance, optical/digital processing, probabalistic graph
matching, space-based imagery, sub-pixel targets, texture analysis, time-change imagery.
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1. INTRQRUCTION

1.1 OVERVIEW

This project is a multidisciplinary effort intended to combine methodologies for image analysis and

interpretation, and evaluate the application of this integrated approach to problems of space-based
imagery. The project has brought together research teams from within the Departments of Electrical
and Computer Engineering, Computer Science, Robotics. and Bicmedical Engineering of CMU.

We have chosen time-varying space-based imagery as the applications domain in which to evaluate
our integrated approach. The two aspects of this domain are described below:

o Space-based imagery involves large amounts of information and incorporates both
structural and textural properties of a scene. Efficient detection and representation of
information in the scene are essential not only to interpretation but aiso to the storage
and trangmission of information. Scenes are predominantly two-dimensional aithough

light and shadows affect imaging of both structures and texture, and interpretation of
scenes at increasingly high optical resolution will require three-dimensional models.

o Interpretatida of time-varying data is a primary goal of space-based image analysis and
adds an additional dimension of complexity to the problem. We have chasen to look at
three time-frame scenarios which require somewhat dilterent analysis tools. High speed
tracking is viewed as primarily a feature extraction probliem and has been approached
using optical methods. Medium and long-term time change detection must be based on a
more abstract description of the scene and methods of representation and model-based
interpretation must be brought to bear.

Within the context of the applications domain, we have addressed the following methodological
o Optical feature extraction and detection
o Structural and textural representation and matching
o Modei-based image interpretation
o Hybrid digital/optical computer architectures
These issues are fundamental to implementation and performance of analysis tools which could

imbed the inherently fast and parailel preprocessing power of optical techniques into a system which
develops and tests hypotheses abou! scene representations and scene models.

In Chapter 1 of this report, we provice a1 mc-e Cetailed overview of the conceptual framework of our
proposed hybrid optical/digital sysitem ze'ne :he space-based image processing problem, and
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discuss the impgrtagce of this work to Air Force technology and to related Air Force programs.
Section 1.5 provides a summary of our research up to this year. Section 1.6 provides a summary of
our current year of research, with details in Chapters 2-5.

1.2 CONCEPTUAL FRAMEWORK FOR HYBRID
OPTICAL/DIGITAL IMAGE PROCESSING

In Figure 1-1, we show the general structure for our proposed hybrid optical/diyital system using
multipie methodologies for understanding space-based ilmages. As shown in Figure 1-1, input images
are preprocessed and then fed to parailel opiical and digital channels in which muitiple features are

-extracted. A parallel image modeling system is also shown which extracts structural descriptions of

the image. These data pius image registration and target detection information obtained from an
optical correlator channei are then used by an Al/IU system to modify the parailel input processing
channeis, to assembie and interpret a time-history track file on objects of interest in the image and to
provide the necessary textural and graphic output reports.

1.3 PROBLEM DEFINITION

Advanced space-based sensor systems will provide us with high-resolution real-time multisensor
data acquisition in the near future. This will totally pollute present processors uniess we address how
to inuﬂiéontlv and timely process and handle the projected data rates. NASA and others have already
verified that the United States is capable of coilecting more data than we can intelligently process
(less than 1% of all NASA data has even been looked at {Witson and Silverman, 1979)).

The key issue in Space-Based image Understanding (SBIU) is not to transmit every frame of data
(with SO00 x S000 sensor elements in three bands with ten bits of data per pixel, and a 30 frame/sec
rate, this is a data collection rate of over 10'? bits/sec). No existing technology can accommodate
such a high data collection rate. Therefore, attention should be given to the aigorithms required to
achieve this. But first, here are several facts about SBIU problems:

1.In space-based image acquisition, we are monitoring certain areas and regions for
diverse weil-defined missions. We are only concerned with changes and do not need to
know that nothing new has occurred in the image being looked at. When we trarsmit
only the associated cnange .nformation, we achieve a quite significant bandwidth
reduction. Thus, we shouid process the data from space-based sensors on-board the
platforms, determine image cnangas on.line, interpret the results and transmit only
textural and graphic output reports.

2. We know rather well where the sateilite 's and where it is looking and we know that the
scene being imaged correlates ~itn *he prior image frame or with our stored reference.
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The problem is thus different from the often dJiscusscd unbounded and unsupervised
target recognition problem. We can and must utilize this a prior mformation that the
frame we are investigating correlates with & previous one in our processing algorithing.

3. To provide better image registration accuracy and to (aciiitate pointing of secondary
sensors at given areas of interest. it is often necessary 0 /ocate key landmarks in the
image. This is aiso useful in determining geometrical corrections needed.

4. 1t is also useful and necessary to register two successive image frames for inter.frame
integration to decrease the variance of the noise and to improve the image quality. This
is essential to accommodate platform variations with time and backyround drit. Often,
sub-pixel image registration is necessary. '

- w9

S. It is obviously essential to subtrac! succassive frames since this provides the necessary
change detection or time-varying target data.

>

P e

6. However, in most cases, the image registration in (4) is sub-pixel and thus before
performing (S), we must interpolate the images.

7. Once time-history track tiles of candidate objects of interest in the field-of-view of the !
sensors have been obtained, a multitude of discrimination analysis techniques, Al, IU, :
pattern recognition and human perception algorithms are necessary to classify, 3
understand and interpret the time-change activity noted. X

8. in advanced sengor systems, 3-D information on the scenes will be available fram stereo X
salellites or other techniques. In such cases, we can fully capitalize on the available
image information only by the use of advanced 3-0 scene modeling and interpretation. N
The key point is the extraction of scene information (3-0) from time-histories of 2-D ’
images. :

9. To detect and describe detailed changes in the 3-D structure of scenes, it is useful to first
generste 3-O scene descriptions from the 2-D images, and then to compare the
descriptions for changes. Conventional 2.0 change detection approaches are not as
useful for high resolution images of compiex scenes since they do not take into account - v
factors such as different viewpoints and different lighting conditions for the different
images of the scene. In order to detect changes over successive images of a given scene -
obtained over time. it is useful to maintain a 3-D model of the scene and automatically
update the model as changes occur. This requires the ability to match the model with
each new view of the scene. Maiching in 3-0 is more desirable than matching in 2-0
since the 3-D information is represented in a manner that is independent of viewpoint and
lighting conditions.

-
-
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-

10. The 3-0 scene mode/ is a useful central component for many aspects of the change
detection task. Not only is it useful for determining whether changes have occurred, but
it also permits model-based interpretation of new images and serves as a central
representation for accumulating 3-D scene information from various low-level experts.
Our new research addresses these aspects of time-history 3-0 scene information.

P S-S At SN

items 1-8 address the high throughput signal processing aspects of SBIU, whereas items 7-10
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address the advancgd image understanding aspects of this problem. Table 1-1 summarized
objectives which must be attained to achieve the overall goal of SBIU. In Table 1.2, techniques
required to attain these objectives are listed, and Table 1-3 lists the disciplines which will contribute to
the achievement of our goals. As well as image processing per se, we must study the importance of
efficient database organization and manipulation since storage or transmission of a very large
database will be required for SBIU.

To properly address understanding of time:varying space-based images. we feel that. three different
SBiU time-varying image processing scenarios (Table 1-4) must be separately addressed. We
propose to study each of these during the course of our research. We distinguish the three cases by
the change rate and the domain of analysis. In the first case (rapid time-variations), we can consider
a missile launch. In this application, the objective is to track the time-history of the missile and to
transmit the information that a missile has been launched (from subsequent sensors, the missile's
trajectory etc. can be obtained from our system techniques and aigorithms). The second case
(medium time-variations) can concern monitoring of key sites such as airports, railroads and harbors
and know areas of anticipated concentrations of troops or armor. in this case, troop or armor
movement and ai';.ﬁand and sea activity can be obtained from time-varying image data. This second
scenario is typical of 8 case in which extensive Al and IU techniques are appropriate (i.e., the use of
infoMon on the locations of hangers, runways, railroad tracks, tefminals. switching yards, harbor
. channels, docks, piers, etc.). This also requires the locations and registration of these items in
sequential image frames. The third case (slow time-variations) addresses urban development and
agricultural or land use activity (as in Landsat and ERTS case-studies).

Table 1-1: Objectives of Space-Based Image Processing

@ Detection of image changes

@ Uss of & priont knowiedge

© Location of key landmarks

@ Time-history track file acquisition
© interpretation of time-history data
© 3-D scene nterpretation

© Elficient storage and retneval of information fror: dembase

The three scenarios noted in Table 1 -4 constitute our definition of the SBIU problem. All cases
require the techniques and disciptines ~oted n Tables 1-2 and 1-3. The first case (rapid time-




I—am 1.2: Image Processing Techniques Required for SBIU

© Image enhancement and preprocessing
© Image registration (sub-pixel) tor frame integration
O image subtraction for time-history extraction
0 Image interpolahon tor image subtraction
©® Image segmentation
® Feature oxtraction
® Image modeling -
@ 3-0 scene modeling and interpretation
® Hisrarchical 'dltlbm design

Table 1-3: Disciplines Required to Achieve Real-Time Space-Based Image Processing

© Pattern recognition
olmmm N
© Human perception

© Artificial Inteligence

@ Optical Processing

; © Digital Processing

Table 1-4: Time-Change Scenarios

‘ TIME CHANGE EXAMPLES DOMAIN OF ANALYSIS
: Rapid Migsile Launch Image Pixels
Medium Rgilroad, Airport, Harbor, Troops, Armor Scene Structure
Slow Agricuitural, Land-use. Urban Development Statistical Image Modeling

variations) requires primarily sub-pixel image registration, frame integration, frame interpolation, and
image differencing. The second case requires techniques involving image interpretation, 3-D scene
modeling, 3-D matching and comparison, pius knowledge-based geometric reasoning. The third case

e OIS ' 5. O T " LN " vy c
O o S R AR B g o R e SR 2 B

£



WEXEE
- g

P

”<

= nd® el

- pet g e K
o w8 >

- -

N
L)
%

needs more statistical technigues and statistical image models, more so than do the others. All cases
- O

require object and scene modeling. image preprocessing and enhancement plus segmentation.
feature extraction and classification. Figure 1-1 depicts these aspects and the interactive multi-

disciplinary feedback required to solve these SBIU problems.

1.4 BENEFIT TO AIR FORCE TECHNOLOGY

With our three scenario problem definition (Table 1-4), we now consider the myriad of Air Force
programs and technology that can benefit from our proposed research. First. we note that our
research is directed toward the development of new algorithms and their realization in a hybrid
optical/digital architecture. However, devices and architectures being developed in related Air Force
programs in VHSIC and VLS|, systolic array processors, Josephson junction devices. etc. can also be
used for implementation of these algorithms. Our work wiil thus provide problem definition and
direction regarding aigorithms for such parailel processor architectures and technology programs.
Large data storage requirements and studies of what constitutes a valid database are aiso integral
parts of this program. Similar Air Force efforts toward data storage and database acquisition are thus
of direct concers to this program. The Air Force programs in: intelligent sensors, intelligent task
automation, automated manufacturing, image understanding, human perception and visual
péychophysics will directly benefit from the inter-disciplinary nature of our research. The large Air
Force effort in optical data processing will directly benefit since real-time spatial light modulators and
holographic optical elements will be needed for implamentation of our algorithms in real-time. The Air
Force programs in missile guidance require a new set of algorithms and attention to the database
requirements and performance measures used and thus they will likewise benefit extensively from this
program. Darpa/AF programs such as HALQO and'HlCAMP will clearly benefit from our chosen
time-varying S8IU tasks. '

The monitoring of changes and developments at cultural sites, such as urban areas and military
bases, is a very usefui application of space-based sensors. The techniques we develop will aid in
detecting and describing both large-scale and detailed changes. Furthermore. the techniques
dealiing with 3-D matching and comparison, and knowledge-based geometric reasoning will enhance
Air Force programs in sensing and robotics.
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1.5 SUMMARY OF RESEARCH DONE IN YEAR ONE

In our first year of research, we focused on the developiment and evaluation of methods which yeid
representations of structural and textural information in an image. and relate these representaticns to
abject and surface contour properties of the scene. The techniques studied included Probabilistic
Graph Maltching, Multiple Resoiution Structural Basis Functions, and Textural Surtace Modeis. The
structural basis function and texture models were found to be particularly well suited to parallel or
optical processor impiementation. Two digital processing facilities for use in this prdgram were also
assembled: the RAPIDbus architecture, and an Optical Data Processing. Digital Processing and
Simulation Facility.

We also achieved a major effort on the extraction of time-varying sub-pixel targets in noise. This
time-change scenario concerns applications such as the detection of missile launchas or aircraft in
flight. In the first year, we successfully démonstrated the conceptual ability to detect and track
sut;-pixel targets.

in the 3D change detection task, we achieved resuits in two aspects: the low-level problem of
analyzing images and the high-level problem of representing, constructing, and updating the scene
model. We developed techniques for extracting buildihg structures from high resolution aerial

images of urban scenes, inciuding lines not originaily found but predicted by the model!. Image lines

were classified as building boundaries or other lines which arise from texture and shadow
boundaries. We also experimented with efficient methods of searching a line image in order to form
junctions which can then be used for stereo matching.

At the higher level of processing, we developed techniques for repfesenting. constructing, and
updating the scene model, using task-specilic knowledge.

1.6 RESEARCH PROGRESS IN YEARTWO

1.6.1 Optical Feature Extraction and Sub-pixel Tracking

The optical feature extraction phase of this project has been terminated except for a small synthetic
discriminant function (SDF) effort we still report upon (for aircraft) in our 1985-86 report. This was
necessary because of the reduction in ECE funding for year 3 to gne-third of our prior year 2 level.
Cur year 2 progress and the proposed tasks for year 3 work included in the new task list are all
addressed herein and terminated (except for the one SDF effort noted above). Cur final report on

these is contained in chapter 2, appencix A1 and the appendices of our proposal referenced in
chapter 2.
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This effort included attention to moment. chord and other ogptically-generated feature spaces.
Architectures for 8ach of these methods were devised and initial results were obtamed. These
showed : the ability to optically implement various feature extractors: the architecture for a hybrid
optical/digital moment processor, successful initial tests of this architecture on ‘a ship image data
base and a robotic pipe part data base: new results on the accuracy of distortion parameter
estimation with this processor, an advanced correlation SDF synthesis method and most successful
initial test results of it on ATR vehicles.

Our time change detection work has achieved various significant resuits and demonstrations of the
ability to detect sub-pixel target. rearrangement of our software to insure proper statistical
characteristics of the generated scenes; the development of new single differencing methods that
prove promising for clutter suppression; the initial formulation of general space/time filtering tor

target enhancement and.-background suppression; the investigation of detector limitation effects.

with high correlation coefficients. This problem is overcome by appropriate modifications to our
software. Our soffware is also rearranged to provide a more unified control of the various parameters
characterizing the synthetic image. We have ohserved that while the exponential sub-pixel shift
esiimaxor performs better than the parabolic estimator for the .';ynthelic data, the reverse is true for
LFM signals. Thi..'. indicates the need to consider both sub-pixel estimators in the future. Qur efforts
have also pointed towards more sophisticated space/time processing methods for better ciutter
suppression.

1.6.2 Algorithms for Hybrid Digital/Optical Representation and Matching

This phase of the project has focussed on the development and evaluation of methods which yield
representations of structural and textural information in an image, and may be used for matching
images t0 scene modeis. The principal resuits achieved in this research include:

e Probabilistic Graph Matching - Attributed graph structures are used as models of
structural and statistical information in the image. Matching of these graph structures
using probabilistic similarity methods poses a number of interesting problems in the
mathematical formalism, in the computational matching algorithms, and in the application
of these methods to real images. We have investigated methods of subgraph
decompasition which permit branch-and-bound search of the matching tree and provide
efficient pruning of the possibie matches.

® Mulitiple Resoiution Rotation-Invariant Operators - The MR! (Multiresolution Rotation
Iinvariant) operator and the MRD (Muitiresolution Difference) transform have been
introduced to extract structural and textural features of images for use in matching and
interpretation phases of analysis. The MRI is a compiex operator derived from derivative

Our investigations have revealed a potential nonzero mean problem in the correlated hoise images l
}
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expansions of Gaussian kernels and will have magnitude of response independent of
feature orientation and phase angle of response which provides information about
orienlation.'The’spatial and frequency doman properties of these operators have been
studied and an approximate MRI operator which uses ditference of shifted Gaussian
kernels has been dernved and shown to be computationaily elficient due to the scaling
and shift properties of the Gaussian kernel. The MRI! operators have been applied to
aerial images of objects and textures.

o Taxture Andlysis - The MRI operators described above have been used to characterize
and classity textures from aerial images. This set of muitiresolution operators permits
classification of texture independent of the size and orientation of the texture pattern
useif. The staustical distnibution of the magnitude responses is analyzed across the set of
overators for regions of the image. Correlation with the corresponding magnitucie range
and the corresponding phase disiribution provides information on the relative scale and
the relative orientation. Experiments on textures from aerial images and textures from
simple patterns have been carried out and compared to previous texture energy
operators.

.The alﬁorithms studied in this section reflect the interdisciplinary nature of the project. The MRI
operators and associated texture measures are particularly well-suited to parailel or optical processor
implementation. They will be implemented and evaiuated on the array processor with RAP/IDbus host.
Our formulation ofzthe recursive modei-matching algorithms is also intended for implementation on
this type of arclftitecturo with extensions .which may integrate symbolic and numerical processing.
The interactive use of parallel and optical preprocessing with hypothesis formation and adaptive
search strategies will be natural continuation of the work compieted. -

1.6.3 Image Understanding Techniques for 3D Scene interpretation

The problem of detecting three-dimensional changes in a complex urban scene is a very difficuit
one, particularly since any information extracted from the complex images is highly incomplete and
contains many errors. Therefore, we have thus far concentrated mainly on the problems of extracting
information from such images and accumulating the information in a 3D séene model.

In this report, we describe results in two aspects of these problems: low level image analysis and
high-level model maintenance. The goal of low-level image analysis is to determine a set of 3-
dimensional line segments in the scene which correspond to building boundaries. The first step in
such a process is to map the two-dimensional image into a 3-dimensional scene. One method of
doing this is to perform stereo matching on a pair of images and use triangulation to determine the
third dimension.

We have developed a stereo algcrithm using he technique of dynamic programming. The stereo
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matching problem. i.e. obtaining a correspondence between right and left images. can be cast as a
search problem. VWWen a pair of stereo images is rectified. pairs of corresponding points can be
searched for within the same scanlines. We call this search intra-scaniine search. This intra-scanline
search can be treated as the probilem of finding a matching path on a 2D search plane whose axes
are the right and left scanlines. Vertically connected edges in the images provide consistency
constraints across the 20 search planes. Inter-scaniine search in a 3D search space. which is a stack
of the 2D search planes, is needed to utilize this constraint.

Our stereo matching algorithm uses edge-delimited intervais as elements to be matched, and
employs the above-mentioned two searches: inter-scanline search for possible correspondences of
‘connected edges in the right and left images, and intra-scanline search for correspondences of
edge-delimited intervals on each scanline pair. Dynamic programming is used for both searches
which proceed simultaneously at two leveis: The former supplies the consistency constraints to the
latter, while the latter supplies the matching score to the former. An interval-based similarity metric is
used to compute the score.

In order to pursuecthe probiem of high-level model maintenance independent of the current state of
the low-level image analysis research, we have chosen to investigate mode! building using
rangefinder data, which is already three dimensiunal. Specifically, we have developed techniques for
extracting detailed, complete descriptions of poiyhedral objects from light-stripe rangefinder data.
The descriptions are in the form of 3D faces, edges. vertices, and their topology and geometry. A
range image is first segmented into edge points. A line drawing is then obtained by fitting linear
segments to the points in the image, and refining the segments to eiiminate gaps. Faces are then
generated from the line drawing. Interestingly, aithough the final description is in 3D, most of the
processing is done in the 2D image space. This work will be applied towards the goal of obtaining a
full symbolic description of a scene from range data obtained from multiple viewpoints. Our 3D model
ouiiding and updating resuits are detailed in Chapter S.
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2. GENERAL 3-D FEATUREEXTRACTORS AND
CORRELATORS

This ECE project phase has been terminated because of the significant reduction in funds for
1985-1986. Because of the lack of future support possibility, contingency funds avaitable from cther
sources were not spent to continue this project.

The intent of this task was to employ feature extraction and correlation techriiquci to locate, track
and identity large targets in 3-0 in severe clutter. These output track files on candidate targets would
then be processed by the IU/Al portion of the system.

21 TARGET GENERATION

Moving targets and aircraft imagery were emphasized. For such a scenario, we pfoposod a quite
novel image generation software package for aircraft imagery. This routine (Figure 2 1) consists of 3
stages. The final output is a 2-D image of the aircraft as seen from any user specilied orientation
angie @ and for any object-centered rotations §,, 4 and 4, and at any scale and resolution. The
aircraft data base consists of Soviet and U.S. military aircraft as well as commercial aircraft. Figure
2-2 shows typical images of several of these aircraft at different orientations. A most attractive aspect
of this routine is the efficiency of Step 3. Specifically, our initiat calculations indicate that the required
matrix transform operations can be computed (for all target vertices, to determine the 2-D projections
of the image to be seen) within 150usec using a quite modest array processor. This has significant
importance for PR since one can now realistically assume that any necessary reference image (for
correiation or feature extraction purposes) can be computed on-line. We aiso began initial efforts to
modify thig aigorithm to enable range images to be processed (with pixel values proportional to the
range of that portion of the target). Th:s satisfies our promised research on the proposed Task 2 item
for 1985.1088.
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(1)
- ¢————OBJECT DESCRIPTION
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POLYGON LIST
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—¥ OF VERTICES
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- @———SCALE AND
IMAGE
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Figure 2-1: 3.D Model-Based Object Recognition
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2.2 TARGET DETECTION

For moving target acquisition of such objects. we simply generate two image frames with a standard
background and with an aircralt target from our routine in Figure 2-1 inserted in each. with a
displacement of the target between two successive frames (Figures 2-3a2 and 2-3b). A simpie
differencing of these two frames results in extraction of the target (Figure 2-3¢). More advanced
(higher level, etc.) image differencing methods are required for other cases. A time-sequence of such
output imagery provides information for a target track file and for input to an optical Ralman filter for
state estimation and trajectory estimation. At this point, a high-resolution adjunct sensor can be
activated to track the object. Alternalively, a laser radar providing range data can be activated.
-Figure 2-4 shows typical range images of the aircraft generated on our routine in Figure 2-1.

2.3 MOMENT FEATURE SPACE

The moments of an object can be optically computed [Casasent et al, 1982]. In Appendix A of our
proposal, we fully detailed our proposed moment processor for aircraft classification. This
hierarchical system employs two first-level estimators (one for aspect and one for the object class)
and a second-level Bayesian classifier (requiring a nonlinear iterative technique to achieve class and
information parameter estimation). In recent work, this algorithm has been fully encoded, but due to
lack of funds, we were unable to test it on our aircraft image data base. Initial tests showed that it
providli quite accurate object crientation estimates. For sufficiently separated classps, it was found
to have surprisingly good noise immunity. The major attraction of this system is its theoretical basis.
We have now showed that moment features are jointly Gaussian random variables for input plane
translation, scale and rotation distortions. A Bayesian classifier is possible and optima! (however,
each object class and object aspect view must now be treated as a different image class). The
tirst-lavel estimators achieve a reduction in the aspect views and classes that the second-level systeh

must search. The class estimator in this first-level of the processor uses unique organized
hierarchical tree structure methods for synthesis of the tree. The node selection and discrimination

function per node in the tree are selected automatically using a two-level Fisher classifier (following
the first-level multi-class Fisher classifier, employed to achieve organized hierarchical structure for
the tree). The resuitant node structure is thus not ad hoc, as is generally done. [Casasent and
Cheatham, 1985] detail the most recent and our expected performance of this algorithm (Appendix
A).
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Figure 2.4: Exampies of synthetically generated range images
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2.4 CHORD FEATUREEXTRACTION
- =
Our work on this feature extractor was summarized in Appendix B of our proposal. This technigue

appears most attractive for range imagery with reliable gray scale, and in this case it appears
preferable to other realization schemes. No further work on this powerful optical technique to
generate these distortion-invariant features in parallel has been performed.

2.5 SDF CORRELATORS

This novel class of correlator that promises distortion-invariant object identification was fully
swnmarized in Appendix C of our proposal. It is thus not documented further here. Initial tests of this
technique on aircraft will be included in our 1985-1986 research as our proposed Task 7 research for
1585-19868.

2.6 HISTOGRAM PROCESSING

Only initial work on this proposed (1985-1986) task item was advanced. We developed routines to
compute and display histograms. We then generated range imagery of selected aircraft and
investigated fhgir hi;tograms and their potential use in distortion-invariant object classification.
Figure 2-5 shows the histogram of an F15 with in-plane rotations about the z axis by 0°. 30°, 80° and
90°. As saen, all histograms are essentially identical. This verifies that histograms are inv_ariant to
in-plane rotations. Figure 2-6 shows the histograms for the same object in Figure 2-5 scaled in range
by a factor a. Comparing Figures 2.5 and 2-6, we note that the shapes are the same for both patterns,
but that one pattern axis is shilted. This verifies the invariance of the shape of the histogram
distribution with object scaie and the ability to determine object scale or target range from such data.
Figure 2-7 shows histogram piots for similar object rotations for an MIG. The numbers 1-3 denote
different portions of the aircraft (wings, fuselage, tail assembly). A comparison of Figure 2.7 with
Figures 2.5 and 2.6 shows that the shape of the histogram can provide aircraft discrimination. This
concludes our report for 1985-1986 on our proposed Task 1 and Task 6 research.
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Figure 2-5: Range histogram of an F15 (64 x 64 pixels).
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3.SUB-PIXEL TARGET DETECTION AND
TRACKING

In our year 2 effort, we investigated severai issues concerned with the detéction and tracking of
sub-pixel targets. These issues include improved database generation, selection of optimal sub-pixe!
location estimators and interpolators and guantification of detector limitations. In this chapter, we
present the various resuits obtained in these efforts. '

EN !

Our year 1 report fully outlined the software needed for the generation of synthetic imagery being
used for simulation.‘The staring sensor image I{x,y) consists of three separate images : a sub-pixel (of
extent less than 1 pixel in the detected image) target with a constant vaiue, Gaussian correlated noise
(CN) image with prescribed mean, variance and correlation coefficients to siniulate‘ the clutter
background and uncorrelated white Gaussian noise (UCN) image of zero mean .and p}escribod
variance to simuiate the instrumentation noise. These ¢an be generated as below.

Let g(x,y) denote a NxN array of white, Gaussian random numbers of zero mean and unit variance.
Such an array can be obtained from the IMSL software package [IMSL1982]. Then a zero mean CN
image f(x,y) with variance a2 and correlation coefficients p, and p, can be obtained by the following
Z-U digitai infinite impuise Response (ilR} filtering.

fixy) = =p p flx=1ly=1)+p flx=1y)+p fixy=D+a(l=p, ~p +p,p )/ 'g(x)
(3.1

These CN images are used to simulate clouds at various heights. Different cloud levels are
characterized by different means, variances and correlation coefficients. Because of the small time
interval between successive image ‘rames. we assume that the CN images are cohlerent between
successive frames{Rauch 1981]. Tius orcperty 1s easily accomplished in our software by maintaining
the seed value for the random number gererator (RNG) to be the same. On the other hand the UCN
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unage 1s used to model instrumentation noise and it is independent from frame to frame. UCN can be
eusily generated by muitiplying the g¢(.1) of eq.(3.1) (obtained with different seeds) by proper
constants. The sub-pixel point target is modeled as zero outside a constant square region {whose

dimensions are less than 1 detector image pixel) in the high resolution image.

The CN, UCN and target images are combined to yield a high resolution (532x532 pixel) image.
Overlapping blocks of approximate size 8x8 are then coinbined with the help of a biur function to yield
the detector image J(x.1) of size 64x64 pixels. The blur function is constant in the interior of a 8x8
region and has Gaussian tads at the boarclers. Sub-pixel motion of the target can now be easily

simulated by mmoving the taiget by integer pixels in the high resglution imagery.

While the above procedure of generating a staring sensor image by combining CN, UCN and shb-
pixel targets at high resolution and blurring them seems satisfactory, we observed that the detected
images had a significant non zero mean. To detect the source of this discrepancy, we conducted an
investigation of the statistical parameters yielded by the IMSL programs.

The mean of the random array g(x.y) of size NxN is obtained as

b= NiZ 5 s(e9). (32)

=] y=m]
it can be easily shown [Papoulis] that this mean estimator is unbiased and has a standard deviation of
(a/N) where o? is the variance of the noise g(x.y). For the images of interest, ¢ = 1 and N aw 500
yielding an expected standard deviation of 0.002 in the estimated mean. In Table 3-1, we show the
estimated means and variances as well as the theoretical standard deviation in this estimated mean as
a function of the image size N. 1t can be seen from this table that the estimated means are well within
(one o) their expected statistical fluctuations. Thus the RNG being used seems satisfactory.

For a 512x512 UCN image g(x.y), the estimated mean ﬁg is of the order 0.002. When this UCN image
is input to the 2D digital IIR filter of eq.(3.1), we can show that the resuiting CN image f(x.y) has
following estimated mean.

((1+p)<1+p,)1"’
T e

(3.3)

In our simulation ¢ = land p, = p = 0.95. Thus, M is about 40 times a3 arge as ﬁ‘. Thus a

variation of almost 0.08 can be seen in the CH image mean as a result of variation of 0.002 in the UCN
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SIZEN ~ “Mean Estimate p St.Dev{n} Variance Estimate ¢°
10 0.00218 (1/10) 0.9488
£0 -0.01724 (1/50) 1.0018
64 -0.00181 (1/64) 0.9843
128 0.00548 (1/128) 0.9947
256 0.00252 (1/256) 0.9961
512 0.00055 (1/512) 1.0028

Table 3-1: Measured estimated statistical parameters for UCN data
withy = 0,0 =1
mean. This amplification factor increases as p and P, values approaches 1. As an example, ﬁ. r is
about 200 times as large as ﬁ‘ torp, = p, = 0.99. This problem is illustrated in Table 3-2 where we
show the astimated means of a CN image for various p = p,=p values.

. P,=P,=p Estimated Mean ﬁ,
0.0 -0.0004
05 -0.0014
0.78 -0.0034 -
0.80 -0.0099
0.95 -0.0217
0.97 -0.0388
0.99 -0.0683

Table 3-2: Measured mean estimates for a CN image of size 532x532

To overcome this problem of non-zerc mcan amplification due to digital IR filtering, «we forced the
dats arrays 10 be of zero mean at all points n the processing. This is accomplished by estimating the
mean veiues 4 at various stages and then simply subtracting them from the data. This process
resuited in a8 mean value of -3.3x10°7 (close to computer precision) for the CN image whereas it was
.2.18x10'? pefore this processing. This :mpcrtant check is now incorporated into our image
generation software.

Once the high resolution (532x532! /mage zantaiming CN, UCN and sub-pixel target is obtained, it is
converted 10 a sensor image (64xE4) using 3 Siur tunction b(x.»). This function b(x.y) has a constant
value 1 in the center and decreases —cnr«:cr.caily .n a Gaussian error function manner towards the
edges. Such a blur function model accsu~'; ':v * ~.1e 3perture effects in many imaging systems[Hall].
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For simplicity ol anallsns. we yse a rectangular blur function modet instead of the correct Gaussian -
function. 1.e. we assume b(v.1) to be 1 inside a square reqion of dimensions PxP and zero outside. $
t
Then the detector image ./( 1.1 ) 1s obtamed from the high resotution image /( \ 1 ) as below. ':
l'
N .
dxpy= =3 3" fUu+Pa=1)+ My=1) (34)
PYRFY §
Al
Since the operation in eq.(3.4) is linear.d(x.;) is also Gaussian and can be characterized using only '
\J
first and second order moments. Since /(1)) is of zero mean. so 1s J(x). It is instructive to :.:
analytically denive the second order statistics of J(.a.y). .
E{d(xy)ydix+Lx.y+ Ay)} Y
4
LA N ‘,:f
= S 3 3T 3T E+ Plx= Dt PO= D) Ak + Px+ Bx=1).1+ Py+Dy-1)} A
1=l =l k=] /=i 4
LA A, b
= — Z Z Z Z[az_plequ-k-l' .p’|f y#l-/'l By
P =] yml k=) [=) :
{ p IPAx.k-,l} {Z ‘\:p |POy+i=13 ' (3.5) N
=1 k=] =1 =1 : :
- “
-
by
To determine the variance of the detector image, we use Ax = 0 = Ay in eq.(3.5) along with the fact ‘
the terms inside the doubie sums depend only on the difference in the indices to obtain the following. ::
.'.
k x e
varldtt= "3 Z a-2he e Z -t 3
km=p km=p s
] » 1 [ 4 '.‘
o Al=p)=2l=p) HMl=p)=2p(l-p) N
= —5{ : }-{ } 3.6 K.
P (1=-p,) =) 3
?
This expression is used in Table 3-3 to show how the variance of the detector image changes as a ,
function of detector size P and original CN image correlation coefficients. We see from this table that "
the variance decreases as the blur function size increases and as the original CN image becomes h
uncorrelated. We see that for p = 0.95 with /=8, the detector image has a variance of 0.771 instead of >
one. This discrepancy is taken into account in evaluating the performance of our various algorithms o
for sub-pixel target detection and tracking. These analytical results were compared with [\
ﬁ
!
N
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calculated/measured estimates of variance ol synthetic inages and very good agreement (only 2%)
error was observed™ <~

Correlation Detector Size P

Coefficient p 2 4 8 12
0.0 0.250 0.063 0.01€ 0.007
0.5 0.563 0.266 0.098 0.049
0.78 0.766 0.525 0.289 0.178
0.90 0.903 0.776 0.598 0.471
0.95 0.951 0.882 0.771 " 0679
0.97 0.970 0.927 0.855 0.791

0.99 0.990 0.975 0.949 0.924

Table 3-3: Theoretical detector image variance as a function of detector size
P and CN image correlation coefficient p = Py P,

Finally, analytical resuits are derived for the correlation coefficients p,’ and p" of the detector
image Jd(x.y). This is achieved by using (&x = 1. Ay = 0)and(Ax = 0. Ly = 1) separately in q.(3.5).

After tedious, but straight forward algebra, we obtain -
y J
p(1=0p)
b, =

Pl - p:,) ~2.(1~- P:)

and

P,
p(1=p)
= z 2 %))

P(L=-p)=2(0-ph

’
y

P

The analytical relations in €q.(3.7) are used in Table 3-4 to show how the correlation coefficients of
the detector image d(x)) are affected by p and P. This clearly shows that the increasing P or
decreasing the p vaiue of original CN image leads to decrease in the detector image p values.

While the above theoretical analysis was carried out with the assumption of rectangular blur

X

functions, experimental results indicate no significant differences in the estimates for Gaussian biur
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‘ - -

! Blur Size P

| P =P, =P 2 4 8 12
0.80 0.720 0.563 0.3s8 0.245
0.85 0.786 0.653 0.458 0.334
0.90 0.855 0.755 0.590 0.469
0.9S 0.926 0.870 0.766 0.676
097 0.955 0.920 0.852 0.789
0.99 0.985 0.973 0.948 0.923

Table 3-4: Theoretical correlation coefficients in the detector image as a
function of biur size # and original CN correlation coefficient p

functions. The various observations noted in this section are incorporated in our software to provided
a unified framework for image synthesis.

3.2SUB-PIXEL SHIFTESTIMATION

An important aspect of our image sequence processing is the estimation of sub-pixel shift in the
background CN images between successive frames. This 3hift is then used along with all interpolators
to produce two aligned images. These two properly aligned images are then subtra.cted ffom each
other to enhance the target and suppress the background. in our year 1 report, we investigated the
use of 4 sub-pixel estimators, namely (i) gradient-based estimator, (ii) exponential model estimator,
(iii) parabolic mode! estimator, (iv) Least Mean Squared (LMS) estimator. At that time, we showed
through simulation that the exponentiali mode! based sub-pixel sstimator performs best as this model
matches precisely with the correlation function of the CN data. In tﬁis section, we present our result
on the use of the two non-parametric methods (parapolic and exponential) on a more general data
sequence.

Because of the ease with which we can control its bandwidth, duration and time bandwidth product,
we have chosen a linear frequency modulation (LFM) signal for our investigation. The puise
compression ratio (PCR) of this LFM sequence is defined as the ratio of the uncompressed pulse

width to the compressed pulse width. or the product of the pulse spectral bandwidth B and the

4 uncompressed puise width T. Thus. PCR 1s equal to the time bandwidth product. The sub-pixel delay
estimates obtained for 3 different PCR values and 3 dilferent sequence lengths are shown in Table

3s. '
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PCR Seqﬁnc: Estimator Estimated Delay
Length 0.1 0.2 04
15 300 Parabolic 0.071 0.142 0.284
Exponential 0.062 0.132 0.306
900 Parabolic 0.088 0.178 0.352
Exponential 0.068 0.145 0.342
1500 Parabolic 0.092 0.184 0.369
Exponential 0.069 0.148 0.350
225 300 Parabolic 0.091 0.181 0.364
Exponential 0.068 0.147 0.349
800 Parabolic 0.096 0.192 0.3868
Exponential  0.069 0.150 0.3%8
1500 Parabolic  0.087 0.194 0.391
Exponential 0.070 0.1851 0.358
378 aoo‘ Parabolic 0.094 0.188 0.381
Exponential  0.067 0.148 0.356 L
800 Parabolic 0.096 0.183 0.391
, | Exponential  0.067 0.147 0.387
1500 Parabolic 0.096 0.183 0.383
Exponential 0.087 0.147 0.358

Table 3-5: Sub-pixe! delay estimates for the LFM signal

One can see from Tabie 3-5 that increasing sequence length improves the estimation accuracy in
general and increasing the PCR also improves the estimation accuracy. In general, the parabolic
estimator seems to outperform the exponential estimator. The exponentiai estimutor sewms 1o
pertorm better for large sub-pixel delays, short sequences and low PCRs. As will be seen in the next
section, use of LFM signais enables us to cbserve the effect ot estimator inaccuracies on the process
performance without worrying about the interpolators. This is because, once the sub-pixel shift is
estimated, it can be used in the analytical expression for LFM signal to obtain an ideally interpolated
signal. With this analytically interpolated image, we cbsarved background suppression of aimost 50
dB (far better than observed with the synthetic images).

The estimated sub-pixel shifts for the synthetic images are shown in Table 3-6. We see from this
tabie that the exponential estimator outperforms the parabolic one in all cases. This is because the
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synthetic images being generated have exponential corrclation functions. Since such correlation
-— -
structure can not always be guaranteed. it 1s deciied 10 pursue both estimators in future.

Estimated Shifts

Exact Shift Parabolic Exponential

(0.25.-0.29) (0.184.-0.174) (0.227.-0.237)
(0.25.0.25) (0.186.0.174) {0.232, 0.233)
(-0.25.-0.25) (-0.184.-0.173) (-0.219.-0.238)

(-0.25. 0.29) (-0.181.0.171) (-0.234. 0.239)

Table 3-6: Sub-pixel shift estimates for the synthetic CN imagery

3.3 INTERPOLATOR SELECTION

After the sub-pixel shift between two successive frames is estimated, we hav§ to interpolate one of
the two image frames to align it with other. We will denote the two detector image frames by
dl(x. y)and da“‘" y) and we denote the interpolated image 1 by flx(x. y). Then the periormance of the
interpolation is estimated by the following measure known as the Background Suppression Ratio
(BSR) )

Vaf{dz(x. »} -

BSR=10-| T
9 Var{d(x.y)= d (x. )}

(3.8)

This BSR measure is useful in evaluating the performance of the estimators and interpolators
separately.

The objective of the interpoiators is to produce 5’1 (x.y) which is a shifted version of d(x. y). namely
dx(x.y) = dl(x+Ax.y+Ay) (3.9)
where & xand Ay denote the shifts in x and y directions. We consider several interpolator schemes to
be discussed beiow.

The 2-0 linear interpolator estimates the vaiue d“(x+ Ox, y+ Ly) from its 4 nearest neighbors as
below.
d (x)=(1=8x) 1=y (x )= Zx(l=Apd(xy+ 1)+

Ay(i=L e~ _-.)-AxAyd;(x-k-l.y-Fl) (3.10)
where Ox 2 DandAy20. The correci~e«s st eq (3.10) can be easily seen by using Ax=0= Ay
which yields d (x.y)=d, (x.y).
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The 2-D quadratic interpolator uses a 3 x 1 array of values in «I; (+.3') as below to yieid the estimate

:/!(\._l'). p—
d oo =[Y][AG][X]
where
(X]=[05Ax(Ax=1) (1=Ax) 05auac+ D)
[Y]=[05A5(Ar=1) (1=2)) 058)Ay+1)]
and

[ d(x=13=1) d(x=1y) dix=Ly+1)

[A(x.y)] = d (x.y=1) d,(x.) d(x.y+1)

| d(x+1y=1) d(x+1y) dGx+1y+1) ] (3.11)

The cubic spline interpolators are discussed thoroughly eisewhere [Hou aﬁd Andrew] and it is
probably sufficient ';o point out the fact these are based on local piecewise polynomial fit to the
available data. We carry ou! this cubic spline interpolation by using IMSL software. One can easily see
that the computational compiexity of the interpolators increases as we go from linear interpolation to
quadratic method to cubic spline based method. B ‘

We can anaiytically predict the BSR to be observed. The numerator of €q.(3.8), namely,
Var {d,_ (x.3)} is given by o’ whereas the denominator of q.(3.8) is as below. We make the assumption
of perfect interpolation. Then,

Var{d, (x.y)=d,(x.y) = 20°=2-Cov {d (x.)). d,(x. )}

220'=2E{d(x.y)d(x+Ax y+Ay)} (3.12)

For the detector image d(x. y), the required covariance can be shown to be given as




Cov {d(x.y). .I_(—r -%.\'.)'-f- 41}

AP AN =p)=2p AN I By =B
=0
P1=p)=2p (1=p])
(P+ 0y (1=p}) = 2p 17804 (P BY g =0
‘. . ' . . . (3.13)
PU=p)=2p (1=p)
“
vy " The anaiytically derived cross covariances for ¢ = | (equivalent to detector image correlation
;:‘ coefficients) are shown in Table 3-7 for P = 8 and Py=p,= 0.95. Note from this table that the
o correlation coefficient of the covariance value (not p) changes from a maximum of 1.0 (when the two
: images are perfectly aligned) to a minimum of 0.784 (when one image is shifted by 0.5 pixels in each
:i direction with respect to the other).
!
" Vertical- ) Horizontal Sub-pixe! shift .
:: -0.500 0375 -0.250 -0.125 0.000 0.125 0.250 0.37§ 0.500
) .0.500 0850 0879 0902 0917 0822 0917 0898 0866 0817
"E 0375 0879 0809 0932 0948 0953 0948 00929 0895 0844
-0.250 0.902 0.832 0958 0972 0978 0972 0.953 0918  0.868
Fx -0.128 0917 0.948  0.972 0988 0.994 0988  0.968 0933 0.880
A 0000 0922 0853 0978 0994 1.000 0994 0974 0939 0888
3 0.125 0.917 0.948 0.972 0.988 0.994 0.988 0.968 0.933 0.880
* 0250 0898 0929 0953 0968 0974 0968 0949 0914  0.863
:g 0375 0866 0895 0918 0933 0839 0933 0914 0881 0831
:" 0500 0817 0844  0.866 0.880 0.886 0.880 0.863 0.831 0.784
f: Table 3-7: Correlation coefficient of Cov (not p) comparison between
two detector images with difterent sub-pixel shifts
K
,:: For a sub-pixel shift of (0.25,-0.25). Table 3.7 indicates that the two image frames have a correlation
“.E; coefficient of 0.953 yieiding a variance in 'he difference image of 0.069 according to ¢q.(3.12). The
h experimentally observed vanance of the <:fterence image is 0.061 agreeing well with our theoretical
: resuits. Then the limit on BSR achievatie seems tc be more fundamental than the simple interpolation
N problems. Based on this, the simple 2 O near nterpolator seems to be our best choice as it needs the
minimum comout;nional compiexity.
n
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3.4 DETCCTOR LIMITATIOMS

Our previous simulations do not take into account the fact that the correlation plane deteclor

needed for sub-pixel shift estimation suffer from nomdealities such as limited dypamic range (DR),
detector noise and detector area. Vijaya Kumar et.al. [Kumar] have previously investigated the effects
of finitc detector area on parabolic sub-pixel shift estimators and have shown that these introduce
small biases in the estimated shilts. These sub-pixel shilt estimators use the central 5x5 region of the
corraiation plane anct the acceptable DR limitations on the detector (about 30-50 dB) seem to pose no
problems n accurately datecting these correlation values. This is because of the large correlation

coellicionts of the CN part of the image.

To observe the effect of detector noise on sub-pixe! shift estimators, we added uniformly distributed
random numbers to the central 5xS region correlation plane values. The variance of this uniformly
distributed nurnbers is chosen such that signal to noise ratios (SNRs) of 20, 30, 40 and 50 dB are
obtained in the detector plane. The sub-pixel shift estimates for various SNRs aré shown in Table 3-8.

Ny Estimated Shifts
Correct Shift SNR(dB) Parabolic Exponential
(0.25.-0.25) 20 (0.183,-0.173) (0.226,-0.235)
30 (0.184,.0.173) (0.226,-0.236)
40 (0.184,-0.174) (0.227,-0.237)
50 (0.184,-0.174) (0.227,-0.237)
{ 0.25, 0.25) 20 (0.186, 0.172) (0.231, 0.233)
30 (0.186, 0.171) (0.232, 0.233)
40 (0.186,0.171) (0.232, 0.233)
50 (0.186, 0.171) (0.232, 0.233)
(-0.25,-0.25) 20 (-0.183,-0.171) (-0.222,-0.236)
30 (-0.182,-0.173) (-0.220,-0.238)
40 (-0.182,-0.173) (-0.219,-0.238)
S0 (-0.182,-0.173) (-0.219,-0.238)

Comparing Tabies 3-6 and 3-8, we see ‘hat SNRs higher than 40 dB have very little effect on the

Table 3-8: Sub-pixel shift estimates for various detector plane SNRs

estimated sub-pixel shifts. Thus SNRs of 4C 18 are required in the correlation plane.
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3.5 DOUBLE DIFFERENCING : -

The approach to background suppression discussed so far has been to estimnte the sub-pixel shift K
followed by a first difference operation. in this section. we present some preliininary results indicating
the role of double differencing for target detection and tracking.

Let 4/I (x.3). dz(.\-. J) and :I}(x. y) represent three successive image frames in which the target and the
background are moving at different velocities. The single difference image is given by -
dix.y) = Idl(x.y)-dz(x.y)l (3.14) .
whereas the double differencing yields

x.y) = 1054 (x.9)=d (x.5)+0.5d (x.)| | (3.15) \

In Fig. 3-1, we show the'results obtained by these processes on three images. The top thrée images
in the figure are three detector images dl. dz andd,. The CN background in dz is shifted by (0.25,0.25)
with respect to the background in dx' and the CN background in d, is shilted by {0.25,0.25) with
respect to the background in dz. The target in all three detector images is of sizc equal to one
detector plane pixel and is of uniform intensity of 2, while the variance of CN background is
approximately one. The target is moving at a constant velocity with a harizontal shift of 3 detector
pixels and a vertical shift of 2 detector pixels betweén each adjacent frames. We see from the two
single difference images in the second row of this figure that the background is_not suppressed
completely. On the other hand, double differencing result shown in the last row of this figure displays
a clear track of the target movement. One shouid keep in mind that the images in Fig. 3-1 are
thresholded optimally and thus may not convey the complicated nature of the processing.
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The resuits presented in this section are only preliminary. Some year 3 etfort will be devoted to -
analyzing the capabilities of this double differencing. The relevant issues include the BSR achievable,
the quantization effects, the resuiting frequency responses and the need or lack of need for
interpolation. Fruitful research in this direction is anticipated for year 3.

3.6 SPACE/TIME FILTERING

The singie differencing and double differencing approaches discussed earlier represent two special

cases of a more general philosophy of target detection and tra-.'~i7g known as “.pace/time fiitering".

To understand this. we consider the various image frames availabie as samples of a 3-0 function
Ax.y.1). The sampling intervals & x and A) denote the spatial sampling according to the detector

N
size. This 3-D function can be modeled as :
Axyt) = s(xy )+ CN(x.y. 1)~ LCN(x. 1) (3.16) -:

A
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Figure 3-1: Single difference and double difference images of
an image sequence

P LN . e e
P - f et et e ATt - e . - L. R .
" A’ st Y LR - - - .t e

e NN 3 '-:-'-.""'-' e A" "'A'- “.-’ - el -~ ..‘ T U S St s .-' . Py . PR - I-' .'...>' R -'q
}MI- :‘frf:fLIL{LfL’L’L’LfL(JL'L' P TP P SR U N T TR S SR TR S V-l O ¥ S S S W VTR S L SRR, L. Y. S ¥




mm&m.m AT TS N RS

37

where s(a. 1) denote's the sub-pixel target.('\ (1 1.7) denotes the correlated noise and ("N (v.y. /)
denotes the uncorrelated noise. The goal of the space/time filtering 1s to process the sampled 3-D

function to enhance the target s(1.1. 1) while suppressing the remaining terms in eq.(3.16).

The target stx.y.7) can be modeled as a thin straight line in the 3-D space with the dimensions of
this line in x and y axis being sub-pixel in nature. The ('V(a.3.1) varies slowly in x and y and shows
linear shift in ¢. On the other hand. the uncorrelated noise U( V(x.y.7) is completely random and is
characterized by high frequencies. By observing the 3-D spectra of the three components n eq.(3.16).
we plan to denve an optimal space/time filiering scheme for the 3.0 sequence f(1.1.7). !33ues to be
rescived in this connection are sampling effects, ‘optimal’ filters, computation complexities and

computationally efficient (sub-optimal) filters.

2.7 FUTURE WOR

Our year 3 effort will focus on better understanding of the general techniques presented here. In
addition to this, we will improve our image generation software to incorporate multi-region image
generation. We wil_l also explore the optical interpolation methods. Other advanced sub-pixe! shift
estimators such as maximum-likelihood and maximum a pasteriori will be considered.
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4. MODEL-BASED ALGORITHMS FOR HYBRID
DIGITAL/OPTICAL PROCESSING

4.1 SUMMARY

The objective of this research effort is to develop algorithms for representation and interpretation of
space-based images which are well-suited to hybrid digital/optical implementation.

In the first phase of this program we have developed a muitiresolution rotation- inveriant (MRI)
operator which may be used to extract structural features as well as charactcrize textures using
statistical measures. Experiments in texture classification have shown that the MRI operator is a
useful representation of texture properties and provides classification independent of rotation ahd
ccale. Probabilistic graph matching was used to demonstrate matching between attributed graph
representation of structural image elements. The operators we have described are well-suited for
optical implementation, and the matching of representations derived from these operators is suited
for impiementation on a hybrid digital/optical system. Evaluation of these algorithms and their hybrid
system implementation will be carried out through simulation on the RAPIDbus Il system. Further

re'ﬁnements of the high-speed RAPIDbus architecture would support a hybiid digital/ optical interface
when available.

These approaches may be integrated into a recognition framework based on r-ecursi\;e model
matching in which composite MRI kernels are generated adaptively based on hypothesis formation in
a model-based setting. Recursive model matching is intended to explore the capabilities of a highly
interactive hybrid digital/optical system which utilizes digital hardware to generate hypotheses in a
knowledge- based environment and uses optical hardv;/are to explore and validate hypotheses using
convolution-based adaptive feature extraction mechanisms.

4.2 RAPIDEUS ARCHITECTURE

One important aspect of the integrated image analysis system sought by this project is the hardware
and programming environment. Contemporary environments were not designed to coup!a a high
bandwidth electro-optic processor with digital processors doing numeric and symbolic calculation.
The RapidBus !l prototype, being developed for this project, provides both a near-term exaecution
environment, and a longer term opportunity to develop new architectural concepts oriented toward
the neceds of an integrated image analysis system.,

The RapidBus !l prototype is currently in the assembly and testing stage. Design documentation is
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being completed using our enhanced SCALD Il CAD system. Many components and subassemblies

|
b
have arrived and ar?wz'ﬁung for integration and test. Over the coming few months we anticipate
testing to progress through a two. six, and finally twelve processor stage. Through the donation of a
PCB design system from IBM, our CAD system i1s being enhanced to carry the design through multi-
' layer PCB film.
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Figure 4-1: RapidBus Il prototype muitiprocessor configuration.

Software development is proceeding in parallel with hardware development using both a muitiple
processor Versabus system, and a stand-alone RapidBus Ii node (IBM CS.9000). The host
development system is functional for C and assembly code. The target operating system is operating

FTT WX

on a single node, and will soon be expanded to a dual-processor Versabus system. An outside group

is doing parallel development of a multiple-processor Franz-Lisp system in return for a duplicate
RapidBus II.

Design concepts for an advanced machine are emerging from the RapidBus Il effort. Under the
system name RapidGraph, a new high speed interchange, multi-programmed processor, and object
support node have been developed. The interchange provides message passing at multi-gigabyte /
sec rates using a small number of bipolar VLS! devices. The processor is designed to handle digital
! computation using an "object-flow" model to integrate both symbolic and numeric computation. The
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object support n_o'de_simpliﬁes the design of large, highly parallel software systems through the
encapsulation of objects at the memory rather than through the processor instruction stream.

4.3 Probabilistic Graph Matching .

in a vanety of image processing problems. the Jdata contains stereotyped subpatterns which are
well-described by symbolic representations. Such symbolic representations include graph, grammar,
and automata models. While these models are very useful when subpatterns are highly invariant to
image vanability, symbolic search and manipulation techniques become very compiex when symboi
correspendence becomes uncertain. Symbolic representations may be enhanced in two respects
which incraase their applicability to real data. First, stochastic structures may .be used to associate
outcome probabilities with structural relations of the model. Second, attributed structures ofter a rich
class of modeis where subpatterns or symbois have associated features or attribute values. Such
attributed structural modeis pose many difficuit methodological issues for implementation. In this
study we have addressed problems of the dichotomy between symbolic and statistical information
and its effect on the choice of symbol primitives, issues of structural observability, structural
matching, assumptions of component independence, and identification of structural transformations.
These issues will be discussed in papers and reports now in preparation.

~

An attributed random graph model consists of a 4-tupie R = (V,a,E.(3) where:

1. the random vertex setV = { V,i = 1,...,n}, where each V is a random variable called the
random vertex.

2. the random edge set E = { E,i=1..n j=1,.n}in V XV where each E is a random
variable called the random edge.

3. the random vertex attribute set a = {a,i = 1...n} where each a is a random variable
with possibie outcomes {a}.

4. the random edge attribute set i = {B,.i = 1..n,) = 1..n} where each 3 is a random
variabie with possibie outcomes {b}.

S. Each outcome of R = (V.a.E.f3) is an attributed graph H = (v,a.e,b) with probability P(H)
s Prob {Vsv,asaE=ep =b} suchthat

e P(H) = OforallH.e.T,

) er(H) = 1, where [ is 'he range of R.
P(H) is the probability distr.bucn of R.

The autributed randnm graph moce: zefireq 3pove provides a basis for the definition of likelihood
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tunctions over the ob-serxed outcomes from the class of graphs and the attribute set A. The likelihood
of an observed outcome may be used as a basis for the matching and recognition of patterns in the
image. n this application the structural elements of the image are associated with vertex and edge
symbols of the model, and both structural relatons and guantitative properties of the elements are
retained in the model. Image components such as vertices. edges. regions, or intensity peaks may be
used as structural elements. In the resulting probabilistic model. each element has some outcome
probability. some observation probability, and some probabulity density of attribute vaiues.

A sunple example of a graph representation derived from a gray level image of a polyhedron is
shown in figure 4-2. A line drawing of the criginal image is shown in figure 4-2a. The graph structure
extracted frcm a single observation is shown in figure 4-2b where graph vertices have been attached
to structural corner elements of the original image anc graph edges have been attached to edge
elements of the original image. An ensemble of observations such as that in figure 4-2b is used to
derive a probabilistic graph model such as that shown in figure 4-2¢. In figure 4-2¢, the probability
distribution of positions of the vertices vare indicated by circies. The probability distribution of vertex
angie attributes is indicated by p(4).

Probabilistiq graph matching may be used for matching of images and recognitior; of objects in
images using likelihood criteria as a basis for search correspondence trees. The likelihood of any
observed graph, subgraph, or structural element may be computed and used for estimation or
decision making. Such problems incorporate three phases: (1) correspondence matching of graph
elements, (2) rigid graph pose estimation, and (3) likelihood caiculation. The probabilistic graph
model uses pose independent likelihoods to hypothesize correspondence, then estimate poss. The
use of attributes to guide correspondence matching, and the use of observation probabnhtles to
structure the search resuits in simplified and reliable algorithms.

We have applied the probabilistic grach matching approach to two types of image represantation.
Graphs which are derived from edge, corner, and junction components of gray level images are
useful for description and matching of objects. In this case, attributes include lengths, angles, and
positions of elements. The resulting graph models have been used to classity objects, inspect
objects, and determine orientation of objects in scenes where adge information is a reliable clue. An
example of matching likelihoods between a mcdel graph and various distorted observation graphs
including partiai views is shown in figure 4.3. The likelihood is a measure ¢! the correspondence
between the two structures in each case. A sunilar approach may be used to track movement of the
model object by matching successive view.s and computing the pose changes between views. Such
an example is shown in figure 4-4 for the sarme cbiect used in the previous examples.
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Figure 4-2:

Probabilistic graph derived from an ensembie of gray-level images.
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Figure 4-3: Matching graphs between a model and distorted observations with
- . .
associated likelihoods.

Loglikelihood = 33.2

Logiikelihood = 79.8
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Figure 4_-:: ’Trackmg movement of an object using successive ikelihood matches
with a probabuistic graph model.
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As 3 second example. we have used probabilistic graph models for matching of multiresolution tree
structures derived from g’ray-level images. The derivation of such a multiresolution tree using the
difference of low-pass transform is described in the next section. In this case. the matching aigorithm
18 formulated as a hierarchical tree search using likelihoods to guide correspondence matching at
each level of the trce. Results of this approach are described in [Crowiey and Sanderson 84].

A Probabilistic graph models provide a general approach to many practical matching gnd recognition
problems where a training set of images of é prion knowiedge of the probabrlity structure 1s assumed.
v In thig way. object inodel-based information may be incorporated using a priort probabuity structures.
Many previous approaches to matching and pose estimation may be considered subsets of the
KD "probabilistic matching approach in which edge or region attributes cf images are retated by heuristic
N similanty measures rather than likelihoods.

4.4 MRI Operators for Shape Representation

M Description ol gray-scaie shape in images is complex because shapes are often defined by some
i combination of regioo information and edge information. From the point of view of image processing,
region information is often contained in the lower spatial frequency components of the image, while
edge information is contained in the higher spatial frequency components. A complete description is
Ry difficult to achieve therefore from extraction of structural elements at one resolution level. A number
W, of techniques have been proposed which transform the two-dimensional gray-level image to a three-.
space representation in (x,y k) space, where k is the parameter of the resolution space. Such a
representation has the advantage that peak structures in the (x,y.k) space shift uniformly along the k
axis under scale transformations, and therefore objects of different size may be recognized in a
N representation with the same structural relationships. In this section we describe an extension of the
multiple resolution tree which incorporates structural basis functions at each level in order to provide
s, a more complete description at each level and include onentation specific structural components at
each resolution level.

R Our prefiminary work on representaton and probabilistic matching of muitiple resolution structures
has been carried out using a reversible transform called the "difference of low-pass™ or DOLP
transform developed by Crowley [Crowley 31 Crowley and Stern 84, Crowley and Parker 84]. The
DOLP transtorm expands a single gray ‘ever mage f(x y) into a set of bandpass images b(x.y.k), where

-
-

k is the index of the multiple resoiution ree £.:.ch bandpass image is obtained by convolution of the
B original image with an approprate Tarcrass .mpulse response function h(x,yk). In the
M) implementation of this transform by T-oa 2. “-cwley 81], the bandpass impulse responses are
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constructed out of difference of Gaussian kerneis. The most efficient implementation utlizes
properties of the a'aus.smn kernel tunction which permits resampling and cascaded convoiution with
expansion and reduces the sequential computation of this transform from O(N.) multiphes and
additions to O(N).

The DOLP transform set itselt is not a very efficient representation of the image since it requires
expanded storage space in a normal digital representation. However. it is possible 10 extract a
symbhotlic representation of important information from the DOLP transform using peaks of the
transiorm arrays as key structural elements of the image. In[Crowiey and Sanderson 84, we
introduced twe levels of symbolic ropresentation. The first level is composed of symbols derived
directly from the DOLP images based on local positive maxima or negative minima in one, two, or
three dimensions of the DOLP space representation. The second level of symbols utilize the
connectivity among peaks and ridges to form peak paths and ridge paths. These symbol structures
are defined in detail in [Crowiey and Sanderson 84).

The advantage of the muitiresolution representation techniques is the ability to describe both high
resolution and low resolution structural image features in the same representation. The
disadvantages of the bandpass filter approach are the difficuity in describing compiex shapes,
particularly'.those involving oriented coinponenis and the current demands of the computation to
compute such extensive filtering operations. In order to enrich the capabilities of the multipie
resolution transform, we have introduced a set of basis functions at each resolution level which
includes oriented two-dimensional basis functions. This set of structural basis functions provides a
much more complete description- of the image at each level, at the expense of redundant information
and increased computational load. In the context of this project we propose to explore the
implementation of such techniques using parallel and optical processors. In this context the basis

function tree provides a richer source of information for matching and interpretation which may be
searched interactively rather than exhaustiveiy computed. r

!’..... ..
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Multiresolution representations provide a basis for searching an image database with respect to size
independent features. Cur experience with the DOLP transform described in section 4.2.4 has
suggested that conligurations of DOLP peaks are in fact good descriptors of image structures, but
that as the resolution is increased such configurations become exceedingly complex. In addition,
lighting conditions, shadows, and bachyround variations may cause significant distortions of tha
DOLP representation which are ditticult to interpret due to the lack of more specific orientation and

structure information in the DOLP transform itself. The transtorm itself accentuates symmetrical

A

contrasting regions und is useful for locating regions of interest, but may not be very efficient in
describing complex structures.
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We have introduceq, the MRI (multiresolution rotation invariant) operator and the MRD
(multiresolution difference) transiorm in order to derive a more efficient representation of complex
structure as well as texture. The MRI operator of order n and resolution k is defined by:

- (n)

B (r,0) = hy (o) 09, (1)
(n) @ -r2/2ko?

by (0 =57 ¢ (2)

where (r,¢) are palar coordinates of the operator space. The MR! operator is rotation invariant in
the sense that the magnitude of the response is independent of the orientation of a directional
component of the input image.

The significance of the MRI operators may be seen by axamining their projection p(x) along any
single radial axis. These operators of order n have the following interpretation:

e n = 0: Point Detector

e n = 1: Edge Detector

e n = 2: Line Detector

e n>2: Higher order ripple detectors

Each of the compiex operators defined in this manner will have magnitude of response related to

the magnitude of that feature, and angle of the response related to the orientation of that feature. In
addition, the detector masks for different orders are orthogonal, and therefore energy is distributed
independently among the features. The Fourier spectra of these MR! operators show that n=0

corresponds to a low-pass filter. white operators of increasingly higher order n correspond to band-
pass filters of decreasing bandwidth.

The MRD transform is defined by:

-------------------
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Based on this definition the MRD of order 0 is just DOLP transform. The MRD terms ot higher order
also provide a reversible decompaosition of the gradient image of order n. That 1S, the MRD transform
of order n of an image is sufficient to reconstruct the nth order gradient of the same image, but not
necessarily the original image itseif.

The MRI operators provide a basis for multiresolution decompasition of an image. The resulting
muitiresolution repr‘esen.tation may then be interpreted as the response of a set of orthogonal feature
Cetectors and searched for significant response regions which will characterize the structure in the
image. Unlike peak.s in the DOLP transform space which do not carry orientatiop information,
magni(udé peaks in the MR! space may be associated with the angle response to provide important
structural clues. In the proposed research program we will implement and evaluate the MRI operators
as tools for the representation and detection of structural features in aerial images Bf airpbrts and
harbors.

The interpretation of the MR1 operators in the Fourier spectrum may be related to the performanée
of the texture energy measures reviewed above. The texture energy measures provide statistical
information about the sampled local two-dimansional spectrum of the image at some resolution level.
Statistical summary information from the MRI operator space includes dis.ribution estimates of
orientation from multiple operators as well as magnitude information. In the proposed research we
will implement and evaluate the MRI operators as tools for the description and segmentation of
textured regions in aerial images of airports and harbors.

YTE

A number of extensions to the MRI operators and MRD transform have been investigated. The

shifted- Gaussian MR! operator seems to provide significant computational advantages for digital
implementation although it is an approximation to the rotational invariance property of the MR itself.

The aerial imagery being examined is often cbtained in a multispectral format, and spectral contrast

2 e UL

is often a useful clue to structural and textural features. Extensions of the MR! operators in which the
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phase space is mapped into a spectrat domain seems to be a feasibie extension of the concepts to

-— . ]
provide representation of color features. Initaily. application of the SG-MRI operator with contrasting
color coordinates for the component Gaussians will be examined.

.

The SG-MRI operator aiso has a direct extension to the detection of temporai shilt of structural
teatures. By associating Gaussian components with different time frames. magnitude and orientation
of time shifts between frames can be obtained. Initially. we propose to develop these ¢oncepts in a
space-time frequency domain framework and study the tuning of operators to various types of feature

shilts.

The operators and extensions described above are all well-suited to optical implementation, but for
our studies this functionality will be simulated using the RAPIDbus Il architecture. This
implementation provides the basis to examine the use of these operators in a system where
interactive search and adaptive tuning of the masks is a significant property of th,e algorithms,

The recursive model matching strategy described in the section 3.6 requires interactive tuning of
correlation masks. FThe masks used in those studies will be derived from the set described here and
their extensions. A great many possible composite MRI operators could be defined based on the
primary set, and these could play a usoful role in the recursive strategy.

Figures 4-5-4-8 show the effects of changing one parameter at a time on the mask shabes of the
MRI operators of the real and imaginary planes and their corresponding magnitude and phase planes.

Fig. 4.5 demonstrates the effect of changing the size of the mask. It is important that the mask size
chosen be large enough so that the values at the edges of the mask are near zerq. Failure to do this
will mean that the mask is not symmetric and the property of rotational invariance will no longer be
valid. As can be seen, changing the size of the mask does nothing to the generated kernel itself; it
only affects the extent of the kernel that will be included in the mask,

Fig. 4.6 shows the effect of varying the order ¢f the masks created while keeping the remaining
parameters the same. The value of n is equal to half the number of zero-¢crossings encountered in
either the real or the irnaginary planes as a contour at a fixed radius R > 0 is followed for 2# radians. n
= 0is a low-pass filter, n = 1 is an edge detector, n = 2 is a line detector, n = 3,4,5,... are higher
order ripple detectors. Note that the radius of the maximum magnituce of the mask pair increases
linearly as n increases. This holds true only when ¢°k is a constant.

Figs. 4-7 & 4.8 show the effects of varying o and k respectively. These two parameters always



FRPORIT TS ST IPTIRTY % W% M SO e -V ) B0 B gt a8 8070 00,00 0" 4 2% avh 8 ke & RN RN AN KRN XKL [WEN LN Ki

52

appear together inthe ®guation above. Together. they form the term o'k which can be considered to
be the "variance” of the gaussian filter. Increasing either will make the spread of the gaussian larger.
The resolution parameter, k can be regarded as "fine resolution” since increasing by a small amount
will change the spread of the gaussian far less than will the same change in g, the “"coarse
resolution”. Therefore. in the two figures we see that there is very little difference in the plots in which
k was increased b we see a mmuch larger difterence in the plots in which ¢ was increased.

The following 1s an example of the results obtained by applying different masks to a single image.

4.5 Texture Classification Using MRI Operators

Texture occurs in images due to either irregular surface topography or to nonuniform surface
reflectance. There have been a number of approaches to the modeling of texture in images [Haralick
70, Laws 79, Harwood et al 83]. Most of these rely on the modeling of local correlation properties of
the gray-level image using either direct statistical measures or using the response to specific masks.
in particular, [Laws 79] described a set of texture energy measures in terms of the response to linear
3 x 3 or 5 x 5 masks. These masks are chosen to reflect combinations of center-weighting, edge
detection, and spot detection templates. The distribution of the outputs of these masks averaged
across a oxtured region was shown to be uséful for the discrimination of texture types. Harwood
[Harwood et al 83} extended this idea and studied the use of rank correlation statistics as a basis for
discrimination.

Texture modeis such as those described above summarize descriptions of the variations in image
intensity, but do not relate image properties to either surface topography or surface reflectance. An
alternative model of image texture has been proposed using fractal geometries to model image
texture and relate image texture to surface topography. Fractal geometry was introduced by
(Mandelbrot 77. Mundelbrot 82] to describe certain classes of irregular edges or surfaces including
coastlines and mountain profiles. More recently, [Pentland 83a, Pentland 83b] proposed the use of
the fractal dimension to characterize images of natural scenes and perform texture segmentation.

The fractal dimension D is the dimension of a measurement space cxpressed relative to the
topological dimension E. If the parameter H = D . E is used to characterize the roughness of the
observed texture, then H = 0 corresponds to a flat plane, while H = 1 corresponds to an array of spikes

covering the plane. In terms of H, the cumulative distribution function of the fractal Brownian function
B(t) is:
Any=Pr[ B+ A= B())/1Ad<n),
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Fgure 4-5: Masks Generated By Varying the Parameter gize
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Figure 4-6: Masks Generated By Varying the Parameter n
size = 31x31.0 = 4.k = 1
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where if Ha1/2 and it F(n) is a zero-mean, unit varnance Gaussian. the B(t) defines a classical
Brownian maotion prc?Ees; The fractai dimension in this sense is a compact parametnc¢ description of
a homogyencous. tsotropic random process which has advantages since it is invariant to scale.
Pentland [Pentland 83a. Pentland 83b] related the image texiure model to a natlral surface model
and showed that if the surface topology is fractal then the image ntensity is also fractal if the surface
obeys Lambertian assumptions. This result for fractal models is suggestive of more powerful results
which might be achieved by relating image texture to more general random models of surface
topography.

Studies of random surface topography suggest four piincipal contributions to.the resulting textured
image:
o Local edges of the surface elements
¢ Shading due to surface gradient and reflectance

o Shadows due to disparities between light incidence and viewing angles

¢ Local edges of one surface element occluding another.

These mechanisms are associated with surface topography and not with reflectance changes due, for
example, t0 curface markings. The abserved image texture varies in predictabie ways with angle of
view and lighting directions, and we would like to identify image texture measures which provide
consistent measures of such changes. |

Work in this area has centered around the use of texture energy measures as described in [Laws
79]. Both real and simulated images have been used to demonstrate the efficacy of this technique in
distinguishing difterent 2-dimensional textures. Extension of this method to 3-dimensional texture
analysis is currently being studied. Such analysis will aid in understanding the relationship between
surface contours and image texture.

Simple one- and two-dimensional masks form the basis for texture energy measures. The
distribution of the outputs of the different masks averaged over a textured region is useful in texture
discrimination. These masks are chosen to reflect combinations of level, edge, and spot templates.
The one-dimensional vector masks arz we'ghted towards the center and all are either symmetric or
antisymmetric and all but one are zero-sum Five length vectors are generated by convalving two
three-length vectors. One-dimensicnal +ector masks can be run both horizontally and vertically
across an image. The two-dimensional musks are formed by convolving a horizontal vector with a
vertical vector of the same length. Figure 4 3 shcws a number of the macks that are usad in texture
energy measurements.
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Eight of the 3x3 masks and all one-dimensional vector masks except for the I3 and IS level vectors

-—
are zero-sum. Convolved over a region with uniform pixel intensity (i.e.--no texture). a zero-sum mask

3

Fd

will produce an outpui that is identically zero. "Texture Energy” refers to non-zero values resulting

from convolutions with zero-sum masks. A Textured region is first histogram equalized to ensure that

T -

every region starts with the same average intensity. The various masks are convolved over the region

P4

separately. creating a number of “texture planes”. one for each mask. The average pixel intensity for
each resulting plane is then taken as a texture energy measure and collectively they form a feature

"

vector that can be used in textura classification.

Fourier analysis of the various kernels reveal that these texture energy masks serve as bandpass
filters in the frequency domain. Alone. the 3-length vector masks 13, s3 and e3 correspond to low-
pass, high-pass and band-pass filters respectively. The 5.length vector masks also operate as filters,
though each mask peaks in a narrower frequency range. The two-dimensional masks work as
bandpass filters in the 2-d frequency plane. Each of the nine 3x3 masks is found to peak in a
predictable manner in each quadrant of this plane as shown in figure 4-10. Each 5x5 and 7x7 mask
also has a unique peak in the 2-d frequency piane. The set of all masks of size NxN covers the entire

frequency plane.
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An image with a n_umger of simulated textures (4-11) was generated and texture energy measures
were determined for each of those textures. The first row of textures is column.oniented. The first
block alternates dark and light columns; the second biock aiternates two dark and two light columns;
the third block aiternates four dark and four light columns; and the fourth biock of the first row
repeats the sequence of (...light.medium.dark. medium..) columns. The second row of textures is row
oriented. It is identical to the first row except that the textures have been rotated 90 degrees. The
first block of the third row has a checkerbbard pattern. Each square of the checkerboard is one pixel
in size. The second biock of third row has alternating light and dark chagonal lines that are two pixels
wide. Imntially. all texture patterns have the same average intensity. Random noise was introduced
into the imagye before processing. The texture measures for this simuiated image uare tabulated below
in Table 4-1. Because the row- and column-oriented textures are obviously linear, 3- and S-length
linear vector masks were used in addition to the 3x3 masks. The values obtained indicate that the
difterent textures do indeed result in unique texture energy measures and that these measures could
be used to dictinguish between textures.

The aerial image shown in figure 4-12 was used in applying texture energy masks to a real image.
Four textured sections containing dirt, grass, and two different sections of water were taken from the
original image and each was histogram equalized. The 3x3 masks were then used to generate the
textural planes and from them the texture energy measures were obtained. Two of the sections were
images of water, one section was a grassy field and the other an uneven area of dirt & Vegetation.
The results ol‘v this texture analysis are tabulated in Table 4.2. The two sections of water had, as
expected, very similar energy measures. The measures for the section with the grassy field and the
section with the dirt both differ significantly from the water-containing sections but differ from each
other (by > 10) only in the e3e3, €313, and s3!3 masks. However, using just these three masks, they

" can be scparated.

Resuits here show that texture energy measures can be appiied to aeriai images which have sizable
textured regions. Information gained from macroscopic texture analysis can aid in understanding
changes in land usage and local scene analysis.

The primary objective of texture classification is to identify textured regions within the image. If itis
known where the texture boundaries are, classification of the different regions can be done with
reiutive euse. In such a segmented unage, lhe task is one of delermining a number of texture
measures for the large areas and then classifying those areas into one of severai known ciasses.
However, when no a priori.information 1s known about the texture boundaries, the task becomes

harder. Texture measures must be calculated for each pixel and the pixels then classified. The
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Figure 4-10: Fourier Domain of Texture Energy Masks
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mask | (1.1)
orig. | 128
eleld | 8
eld13 | 16 -
e3sd | 9
13e¢3 | 10
13s3 | 126
s313 | 30
s3s3 | 15
sdcol | 9
s3row | 127
s5col | 9
sSrow | 9
e3col | 5
eldrow | 4
e5¢col | 12
eSrow | 12
r5col | 32
rSrow | 125
|
!

computational cost.
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Figure 4-11: Simulated Texture image

(1 2) (1,3) (1.4) (2.1) (2.2) (2.3) (2.4) (3 1} (3.2)
128 128 128 128 128 128 128 _ 128 128
7 ] 8 7 9 7 7 7 126
16 17 17 21 127 73 71 17 125
8 8 8 10 11 9 8 10 128
126 68 G1] 11 13 12 12 11 126
128 70 69 18 17 16 15 18 127
30 30 29 126 127 79 76 a1 126
15 14 14 17 17 15 15 128 126
9 9 9 127 95 53 52 127 96
96 50 51 6 6 6 6 126 96
10 10 9 10 127 96 69 11 127
127 94 a7 8 9 9 8 8 127
5 5 5 6 96 50 50 5 94
96 50 49 5 5 5 5 4 95
11 11 12 14 128 112 68 11 125
127 111 67 13 14 14 13 13 125
31 31 31 127 126 108 77 127 126
127 111 72 19 20 20 19 125 127
12 12 12 13 126 95 89 13 126
127 96 65 8 9 9 8 8 126
Table 4-1: Texture Measures for the Simulated Image

challenge here is 10 develop an algorithm that will accuratcly classily pixels without incurring a great

This invoives fincd.ng the sinallest possible fcature vector that will offer
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Figure 4-12:

mask | dirt field waterl water2
orig. | 128 130 128 128
e3eld | 23 43 84 84
€13 | 90 118 184 187
e3sd | 33 43 84 84
13e3 | 102 102 141 138
1213 | 123 129 125 123
1383 | 102 102 141 13§
sled | 33 4 84 84
$313 | 90 1.8 184 187
s3sd | 33 43 84 84

Table 4-2: Texture £~crgy Measures for Real Images

reasonably good inter-class separation

A5 te<:- ped below. the MRI cpearator was found to be very.

effective in classifying textures oixel by pir o
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Training M

The [Brodatz 68]-tex::re album contains photographs of many textures. Four stucturally similar
“cellular™ textures, aluminum wire. cotton canvas, raffia and oriental straw cloth were chosen for this )
work. These textures were chosen because of their similarity in cell size and cell shape. They may be :':
considered to form a "worst case” set in the sense that they are very similar to each other and .

therefore may be hard to tell apart.

Fig 4-13 shows the compasite image that was used as the training image. 128x128 samples each of
the four textures were used tor this purpese. Each sample was individually hnstodram equalized to
eliminate first order differences. Tnis ensures that differences in brightness between samples after
processing with the MRI operator are caused by the convolution operation and are not due to I‘__
cditferences in the initial brightnesses of the samples. Training involved the use of 28 different MRI
operators and each time the following process was carried out: '

1. convolution of the composite image with the operator in the frequency domain and
conversion of the result back into a complex image in the spatial domain.

LN

2. conversion of the complex image into a normalized 8-bit integer image giving the gray-
level magnituBe for each pixel.

§ s

-

3. an 11x11 average smoothing of the 8-bit integer image

4. calculating average gray-ievel intensity and standard deviation measures for 100x100 N
internal regions of each of the four samples. The internal regions were used rather than
the whole 128x128 section to avoid including edge pixels in the average and standard
deviation measures.

L oy ¢

The results of performing this set of steps with each operator is summarized in Table 4-3.

This was followed by determining which masks gave the greatest between-class separations. To do

M, LA

thig, the “inter-class ratio” was determined for each pair of classes for every mask. Brietly stated, the
inter-class ratio is the difference in averages between two classes divided by the sum of their
standard deviations at a particular mask. For mask m and any two classes i and j, the inter-class ratio y
R: is defined as:

R = [ Avg(m )= Avg(my)| X
YT (Stdmi)+ Stdmy)|

The inter-class ratios calculated from the entries in Table 4-3 are given in Table 4-4.
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MRI MASK

straw cloth

raffia
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cotton can

std

PSS S e I L I I i IO A IR R A I I

n0sif.
n0s2f.
n0s3f.
n0s4af.
n0s5f.
n0s6f.
.M
ntslf.
nls2f.
nl1sif.
nlsaf.
nlss5f.
n1s6f.
nis7f,
n2sif.
n2s2f.
n2s3f.
n2saf.
n2s5f.
n2s6f.
n2s’7f.
n3sif.
nds2f.
n3saf.
n3sdf.
n3ss5f.
n3s6f.
n3s7f.

nQs7f

3533333333335 333333353

50.
40.
3.
33.
a3.

Table 4-3: average & std dev for each class for each MRI operator
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17.
21.
25.
30.
1.
32.
1.

9.
11.
18.
e5.
27.
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7.
10.
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19.
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avg std

90.2 t14.2
64.8 16.1
58.9 27.3
71.7 39.3
8.8 46.8
94.1 52.8
96.9 54.5
81.7 10.8
76.8 9.7
5.4 8.4
35.1 7.3
24.7 9.2
28.8 12.2
36.7 15.0
67.0 9.7
77.4 10.3
71.4 8.7
53.6 7.7
27.2 5.3
16.4 5.7
16.2 8.5
5§7.5 8.9
73.6 11.3
73.3 8.9
68.2 9.3
38;5 6.0
19.1 4.5
15.7 6.2
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MASK CLASS PAIR '
-— -
cloth ¢loth cloth raffia raffia cotcan t
raffia cotcan aluwir cotcan aluwir aluwir e,
...................................................................... v
' b
n0slf.m 0.766 0.119 0.439 0.715 0.302 0.443
n0s2f.m 1.050 0.370 0.906 0.464 0.251 0.290
n0s3f.m 0.657 0.545 0.587 0.036 0.036 0.002 :
n0s4f.m 0.453 0.599 0.555 0.188 0.148 0.035 )
nus5f.m 0.336 0.623 0.583 0.325 0.290 0.028 )
n0s6f.m 0.242 0.638 0.608 0.424 0.398 0.017 ' )
n0s?f.m 0.166 0.647 0.628 0.497 0.481 0.006 .
nisif.m 1.269 0.462 1.223 0.853 0.034 0.835
nls2f.m 1.771 1.18% 1.184 2.278 0.529 1.823 a!
nlsdf.m 1.964 0.906 1.598 2.090 0.394 1.888 >
nisd4f.m 1.358 0.154 0.188 1.211 1.230 0.272 .
n1s5f.m 1.105 0.191 0.288 0.767 1.170 0.359 4
nis6f.m 1.000 0.459 0.039 0.461 0.879 0.380 N
nis7f.m 0.910 0.664 0.363 0.196 0.589 0.359 -
n2sif.m *2.797 0.167 1.850 2.288 0.511 1.509 - : <
n2s2f.m 0.033 0.984 0.299 0.667 0.200 0.429 f
n2s3f.m 2.545 *1.786 *2.225 *3.080 0.492 *2.908 )
n2s4f.m 1.946 1.000 1.341 2.220 1.119 1.928 . -
n2s5f.m 1.463 0.581 0.459 1.676 1.719 0.227 o
n2s6f.m 1.7249 0.389 1.091 . 1.410 1.821 0.570 M
n2s7f.m 1.143 0.119 0.724 1.156 1.545% 0.532 i
n3sif.m 2.767 0.427 1.098 2.614 0.940 1.231 ’ﬁ
n3s2f.m. 1.652 1.333 1.630 0.587 0.075 0.637 ]
n3s3f.m 2.099 1.773 1.662 2.806 0.435 2.503 l
n3sd4f.m 2.727 1.431 2.124 2.990 0.852 2.590 &)
n3s5f.m 1.917 0.822 0.491 2.148 1.637 1.180 £
n3s6f.m 1.464 0.805 1.368 1.751 *2.045 0.325
n3s7f.m 1.246 0.656 1.343 1.494 1.835 0.524 :
4
Table 4-4: Inter-class Ratios. Those marked with a'*' are the maximum for :;
that pair of classes ; 3

For classification. it is important to use masks that give the greatest inter-class separation. It is also

important to limit the number of masks used in the interest of minimizing the amount of computation

L an 2 A AN 4

required. Therefore, for classification purposes, it is best to choose that minimum set of MR! masks
that will give us maximum separation between any pair of classes. From Tabie 4-4 it is evident that
one of the masks: n2s1, n2s3 or n3s6 will give the maximum inter-ciass separation between any pair

of the four textures. Therefore, only these three masks need to be used for classification of textures S
known to belong to this set of four. '\
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Classification Res.ults

A second compo:ne image similar to the first was created. Different portions of the same
photographs used in the training image were used to make this second image. Each of the three
masks was convolved with the composite image, creating three feature planes. The gray-level values
provided by these planes at each pixel served as a feature vector of length three which was then used
to classify that pixel. A minimum distance classifier, using the averages found for each class and for
each mask from the training image, was employed to perform the classification. Results show that 95

% of pixels in the interior regions of the different sections can be classified accurately while in the

entire composite image €8 % of the pixels are correctly classified. Fig. 4-14 shows the composite

image used for classification and 4-15 shows the resulting pixel-by-pixel segmentation.

Tables 4-5 & 4-6 give a detailed evaluation of how the classifier worked including numbers and
percentages of correctly classified and mis-classified pixels in both internal regions and in the
compaosite image.

Classified - Belonging to Class
As -
straw cloth raffia cot canvas alu. wire
straw cloth 9429( 94.3) 138( 1.4) 237( 2.4) 0( 0.0)
raffia 1( 0.0) 8902( 89.0) o( 0.0) _ 0 0.0)
cot canvas 444( 4.4) o( 0.0) 9763( 97.6) 0( 0.0)
alu. wire 126( 1.3) 960( 9.8) 0( 0.0) 10000(100.0)
Table 4-5: Classification Accuracy of 100 x 100 Interior regions
Qverall accuracy 95 %
Classified Belonging to Class
As
straw cloth raffia cot canvas alu. wire
straw cloth 14570( 88.9) 208( 1.3) 2444( 14.9) 789( 4.8) :
raffia 464( 2.8) 14203( 86.7) 6( 0.0) 1267( 7.7) )
Cot canvas 1130( 6.9) 0( 0.0) 13931( 85.0) o( 0.0) "
alu. wire 220( 1.3) 1373( 12.0) 3( 0.0) 14328( 87.5)

Table 4-6: Classificat.ar Accuracy of Entire Composite Image
Overall accuracy 87%
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Figure 4-13: Texture sampies used for training
top left: straw cloth, top right: raffia
bot left: cotton canvas, bot right: aiuminum wire
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Figure 4-15: Segmentution of Above image
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4.6 Structural Analysis Using MRI Operators

The MRI operator is also useful for the early processing of structural i/mages. Both the order and
standard dewviation of the operator can be tuned to different image features. A single correlation
between image and compiex MRI! kernel determines both the strength of the feature and it's
ortentation (for higher than zero order operators). The following four figures ilustrate different
kernels applied to the same input image of an aircraft on a runway. Notice for the first order
operators. a standard deviation of six effectively traces most of the aircraft outline. Once the aircraft
1S located. operators with a lower standard dewviaton help to locate features such as the engines.
Region operators. with a second order kernel, help to locate the center line of the airframe and engine

cowhlings respectively.
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Figure 4-168: Result of applying the MRI edge detecting
operator (N = 1] with a standard deviation
of two pixels. [A] is the original image,
[B] is the magnitude of the transform, and
(C] the transform phase.
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Figure 4.17: Result of applying the MRI edge detecting
operator [N = 1] with a standard deviation
of six pixels. [A] is the original image,
[B] is the magnitude of the transtorm, and
[C] the transform chase.
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Figure 4-18: Resuit of applying the MRI region detecting
operator [N = 2] with a standard deviation
of three pixels. [A]is the original image, 9
[B] is the magnitude of the transform, and
{C] the transform phase.
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Figure 4-19: Result of applying the MRI region detecting
operator [N = 2] with a standard deviation
of six pixels. [A] is the original image,
(B] 1s the magnitude of the transform, and
[C] the transform phase.
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4.7 Recursive Model Matching Algorithms

Recursive model malching allows a broad range of feature extractors to be interactively appheg to
an incoming image under guidance from a library of hierarchically structured modg!s. At each sten in
the recursive analysis of a frame, an ensemble of hypotheses are active suggesting objects and
textures present in the image. Evaluation of each madel based hypothasis will suggest additional.
specific features which might be extracted from the image in order to lend support or disprove the
hypothesis. As additional features which support a particuiar hypothesis become known to the
evaluation process. more narrowly defined models may be invoked as ncw hypotheses Ultimately
each mgh level hypothesis must be resolved down to either highly grobabile terminal models or
determinations of an unfounded hypothesis. .

The strengths of both electro-optic and digital multiprocessor technology are symbiotically paired
by the recursive model matching structure. Processors such as a real-time. optical correlator
[Casasent 78] allow a reference kernel function to be applied in parallel to an entire grey level image,
limited only by the rate at which data can be digitally scanned in and out of the device. Decision
intensive steps, in which the detected features are evaluated in the context of specific object modeis,
map well onto a dig.ital multiple instruction stream, multiple data stream processor. Associated work
in computer architecture (RAPIDBUS & RAPIDGRAPH) is providing a basis for the simulation and
implementation, respectively, of such a tightiy coupled system.

4.7.1 Feature Space

Evaluation of actual high aititude or space based imagery, such as that shown in figure 4-20,
underscores the wealth of different kinds of features which need to be identitied and cataloged in
order to match e:vnsting model data. Througn the integration of data trom diverse features. ambiguity
caused by lighting, partial object occlusion, and sampling noise can trequently be resolved. Several

chfterent classes of feature extractors have been identified as being potentially useful:

e The multiresolution, rotationaily invariant operator. described earlinr in this report. assists
in the detection of points, edges. and lines within a single brightness or spectral plane.
Evaluation of an image by the MR! gperator yieids a list of cancidate features described
by an x.y location and magnitude for n = 0O at each of k resoiution levels. For higher
order operators (n = 1. n = 2), adirechon 1s assigned to each teature point.

o Texture energy measures provice an useful means of identitying, characterizing, and
segrmenting "background” regions. & set of N xernel funchions are used as a basis set,
characterizing a sample texture \n =2 N dimensional feature space Dy the “nearest”
reference texture point. Bourczar 2 2! a particutar texture region can de detected
through gradients in the texture ecar5, medsure assigned 10 1ocal windows.
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‘ e Boundaries not readily evident as a change in brightness are often visible as a change in
the reflected speetrum. Adding an additional dimension, spectral frequency, often
! sampled by discrete channels such as Rix.y). G(x.Y). and B(x.y), can provide information
on the magnitude and direction of spectral "edges” or "regions”. As models generate
increasingly detailed questions about the image. reporting criteria can be narrowed 0
inguiry about shifts from a specific spectral reference, or in specific image regions.

e Temporal changes between frames. or motion features. can be extracted using a variety
of techniques. We are interested in exploring the extension of gaussian cperators to the
tempaoral dimension in analoegy to spectral and temporal operators. Temporal information
assists in both object/background separation and object identification’.

e Macro-operators., suggested by detailed object modeis. may ¢ombine several of the

" above possibilities. Questions about the angle at which a wing meets the aircraft body
may be resolved by an operator tuned to a particular angle described in terms of the
spectral/textural properties of the aircraft and background. As very narrow hypotheses
are formed, features searches may be required which could not practically be anticipated
a priori.

N W TR e TEaee— e -

The computational expense of many interesting operators, and the number of possible parameter
) combinations suggests a feature extraction task ideally suited to an electro-optic processor. Yet even
assuming for a moment that each feature possibility could be extracted instantaneously, any digital
representation of the complete feature space would fesut& in tremendous organizational and storage
difficulties in an effort to make the features available in usable form. When the number of possible
operatars. combinations of parameters, and substantial kernei sizes are taken into accouﬁt. the scan-

in/scan-out limitations of {oreseeabie devices makes a priori computation of all potentially interesting
features unappealing. Recursive evaluation of the feature space provides an aiternative to a prion
pruning of the feature space.

4.7.1.1 Recursive, Goal Driven Image Exploration

Recursive, goal driven image exploration allows a developing description of the visual environment,
described in terms of an object and texture data base, to select the particular regions of the feature
space which are evaluated in an interactive fashion. Depending on the diversity of objects in tha
image. and the amount of prior knowledge coming from other frames, several hundred cycies may be
recuired to converge on an adequate frame analysis. Each cycle consists of a feature extraction
operation pipelined into a digital analysis by a multitude of processes, cach investigating a particular
hypothesis somewhere in the image.
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Figure 4-21: Recursive image analysis system using texture and structure.

The proposed iterative structure is shown in figure 4.21 such that structure and texture analysis are
unfolded into separate iterative ioops sharing the same image frame descriptors (center of diagram).

In an actual implementation, these might be folded together into common hardware and software
mechanisms.

in the laboratory, incoming images are received aiready sampled in space (x,y). spectral frequency
(A\). and time (t). Additional camera parameters describing camera altitude, angle, cloud cover,
latitude. and longitude are supplied to the internal image frame descriptors.

The proposed electro-optic feature extractors, simulated in the laboratory by array processors,
provide the only access the system has to image pixels. Early boot processes are used to initiate
extraction of simple edge and region information in order to initiate the formation of image
hypotheses. Texture analysis has an acditional segmentation step in which the extracted texture
features are clustered into proposed regions. again iteratively,

Both structural and textural infcrmanc~ s summarized within image frame descriptors. These
aclive processes maintain internai ‘'ezt.re -nzresentations in order to service questions from

cooperative hypcthesis evaluatior z-27ac7nc »- 7~ may be indexed ty one of numerous regionai or
feature space keys.
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The dynamic pool of hypothesis evaluation processes are built upon specific models pulled from a
hierarchical object .a'nd.texture data base. Vahd scheduling requests inside the pool include
activation of processes for the same model at different locations within the image (high level),
spawning of subprocesses investigating specific possibilities down the object model hierarchy (lower
level), or termination of hypotheses which cannot be supported relative to competing hypotheses tor
the same structure. All communication between processes investigating hypotheses occurs through

the image frame descriptor processes or the process scheduler.

Questions which arise in the course of trying to support or deny a hypothesis are collected,
condensed. and format prior 1o triggering feature evaluation. Reguests from nuimerous evaluation
'processes must be condensed into a serial stream of feature requests such that the expectation value
for feature evalyation is. perhaps suboptimally, minimized. The proper feature operator and
parameters must then be prepared prior tc the queuing of an evaluation request.

Two important functions are intentionally not shown in the diagrams. Data base information must
somehnw be acquired by the system, either through structured learning or direct data entry. Image
analysis reports mugt be generated to provide system output based on the image frame descriptors.
The reporting system may include filters to forward very limited kinds of data. Central research issues
tied to recursive matching can be explored without these functions. directing limited manpower
resources to tasks where basic research issues can be addressed.

4.7.1.2 An Example

The recursive matching structure can be illustrated by a simple example describing the detection
and identification of a parked aircralt, as illustrated in figure 4-22 through 4-25. Initial feature
extractors, such as low frequency MRI operators will help to locate candidate regions of interest.
Numerous high level object hypotheses may arise from these operators. Although this example
describes a structural analysis. similar operations might be used to describe a texture region.

Shown in figure 4-22, high ievel analysis, perhaps corresponding to MRl levels k = 9, and k = 10
respectively identify three candidate regions that might describe an aircraft, truck, building or other
¢biject. £ach high level hypothesas will in turn activate a process built arcund the appropriate high
level abject model. Object mode! evaluation by s~k nrocess will result in numerous guestions which

help to support or deny the hypothesis. Reguests uy cne evaluaton process can be.expected to

provide clues to other hypothesis evaluation processes since each kernel function is run on the entire
image.
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Figure 4-22: Initial region operators locate a structure sugyesting an
aircraft, truck, or building.

Either by direct request, or through the request of another process. additional detaii describing the
object will become available. perhaps describing the outline of the ﬁose. tail. and horizontal
stabiiizers. No one feéture sesults in an absolute identification, each merely adds or subtracts
support for a given hypothesis. A narrow featura request by this process migﬁt pin down a spect}al

. angle defined by the proposed wings and aircraft body. The resulting estimate, shown in figure 4-24
. may lend enough substance to aircraft subclasses two and three that additional processes are
activated, expioring these hypotheses.

EDGES ?

a

A“Gif,:J ANGLE ?
INVESTIGATION OF AIRCRAFT HYPOTHESIS

: C:::::::;7 FIRES HYPOTHESES OF CLASS 2 OR 3.

(SOME FORM OF MEDIUM SIZE TRANSPORT)
/ U
EDGES ? /\/

EDGES

EDGES ?

S/

Fiqure 4-23: Following the aircraft hypothesis, one process examines
the hypothesized wing angie, nose, tail, and horizontal stabilizer
structure.

As intermediate hypotheses are posted along with relative certainty of identification, processes
—ase 2n ncorrect hypotheses anc high level hypotheses which have been replaced by low level

- .- mses should d2activate, freeing resources {or active pathways.

« v ~coming teatures by precescss expioring arrcralt classes two and three may in turn
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Figure 4-24: Forinstance, the estimated wing angle lends support to ;
aircraft class 3. s
result in the class two process deactivating, and the class three process spawning processes )
exploring the possibility of a DC-8 or L-1011 aircraft based on engine cowling location and wing
features. Shown in figure 4.25, this hierarchical processing would continue until reporting terminais
were reached. e
uery L:c;\;]/\ very Locates :
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Figure 4-25: Within the process investigating the class tiiree hypolhesis,
search for the engine and wing length estimates triggers
investigation uf the possibility that the aircraft may be a DC.10 or
L-1011
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5. IMAGE UMDERSTAMDING TZCHNIQUES FOR 3D
TERPRETA TION

5.1 INTRODUCTION

In this chapter. we present results n two aspects of the 2D change ¢t :tection task: the low-level
problem at analyzing images. and the tugh-level problem of representing, constructing and updating
ihe 20 scene model. For the low-level nrdce';smg we cleseribe a new inethod of 'comcutmg the
sler2o corresponcences which can he used to dsternine the 3D positions of pomnts from a pair of
agnal mnages. Tor the bigh-level processing, we describe methods of represantng and cansiruating
sT2ne modcels from multiple views. using rangefinder data. The use of rangefinder data allowss us to

Jecaouple the higih-level processing problem from the low-level problem. for more efficient research
into the high-level problems.

5.2 STEREO BY TWO-LEVEL DYNAMIC PROGRAMMING

5.2.1 Introduction -

Sleren is a useful method of obtaining depth information. The key prublem in stereo is a search
praci>m which finds the correspondence points betwean the left and rignt images. so that, given the
camcra medel (ie., the relationship between the right and left cameras of the stereo pair), the cdepth
can o2 computed by triangulation. In ecge based steren techniques, ¢ziges in the images are used as
the elements whose correspondences to be fourd [Grimson and Marr 79, Baker and Binfurd
81, Baker 82, Bornard and Fischler 82]. Even though a general problem cf finding correspondences
between images involves the search within thg whole image, the knowledge of the camera model
simplifies this image-to-image correspondence problem into a set of scaniine-to-scaniine
correcpondence nroblems. That is, once a pair of ster2o images is rectilicd so that the apipolar lines
are horizontal scanlines, a pair of corresponding edges in the right and left images should be
cearched far only within the same horizontal scaniines. We call this search intra-scaniine search.
This intra-scanline search can be treated as the problem of finding a matching nath ¢n a two-
dimensinnal (2N) search plane whose vertical and harizontal axes are the right and left scanlines. A
dynamic programming technique can hancla this search efficieitly [Baker and Binford 81, Baker 82].

However, if there is an edge extending across scanlines, the correspondences in one ~canline have

strong deperndency on the correspondencas n the neighboring scanlings. because if twe points are

“on avenically cennected edg: in the left ro 12 Uinn sgreezgonding points Shauld, most likely, lie an
g y
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a verticully connected edge i the nght image. The mtra scanline search alone coes not take wito
-
account thus mutual dependency between scanhnes. Theretore. another searchi is necessary wiiuch

tries to lind the consistency among the scuanhines. which we call inter scaniine search.

.

By considering both intra- and inter-scanline searches. the correspondence problem n stereo can

be cast as that of hnding i a three-dunensional (3D) search space an optimal matctung surface that

maost satisties the intra-ccanline matches and inter-scanline consistency. Here. a matching surface is

defined by staciung 20 mutching paths. where the 2D matching paths are found in a 20 search plane

whose axes are left image column posiion and nght-image column pasition. and tive stacking s done

in the direct.en of the rew (scantine) nuinher of the images. The zost of the :natchung surface s

defined as the sum of the costs of the intra-scanline matches on the 2D search planes, while vertically

connected edgas provide the consistency constraint across the 2D search planes and thus penalize

those intra-scanline -matches which are not consistent across the scanlines. Our stereo matching

uses dynamic programming tor performing both the intra-scanline and the inter-scanline searches,

| and both searches proceed simultaneously. This method reduces the computation to a feasible
L amount. ‘

§.2.2 Use of Inter-scanline Constraints

As mentioned above, for a pair of rectified stereo images, matching edges within the same scanline
(ie., the intra-scanline search) should be sufticient in principle. However. in practice, there is much
ambiguity in finding correspondences solely by the intra-scaniine search. To resolve the ambiguity,
we can exploit the consistency constraints that vertically connected edges acrass the scanlines
provide . Suppose a point on a connected edge u in the right image matches with a point on a
connected edge v in the left image on scanline r. Then, other points on these cdges should also
match on other scanlines. If edges « and v do not match on scanline (. they should not match on
other scanlines, either. We call this property inter-scanline consistency constraint. Thus, our
problem is to search for a set of matching paths which gives the optimal correspondence of edges
within scanlines under the inter-scanline consistency constraint,

A few methods have been used to combine the inter-scanline search with the intra-scanline search.

Henderson [Henderson, et al. 79] sequentially processed each pair of scanlines and used the result of

one scaniine to guide the scarch in the next scanline. However, this method suffers in that the errors

made i the eurlier scanlines significantly wifect the total results.
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N
Bakor [Baker 82] hirst processed cach pair of scanhines independently  After ail the intra scanline Y
- -

malching was done. he used a cooperative process to detect and correct the matching results whicn ,
’.
violate the consistency constraints.  Since this method. however. does not use the inter scantine .-
constraints cirectly in the search. the result from the cooperatve process 'S not guaranteed to be
\]
optimal. Baker suggested the nacessity of a search which finds an optimal result satstying the !
consmtency constramts in a 30 search space. but o feasible method was left as an open problem. n

A suaghtforward way to achieve a matching which satishies the inter-scanline constraints 1s o
conater all matchings petween connected ecdgeas in the nght and left images. Hdwever gince the ;
tincal number of Connected 2y e @ a tew to srevaral hundred i each image:. thic brute forc: method 3
[ ]
is usually mieasible. .
’
r
r
hi f :
matching o dynamic R
connected edges programming '
‘constraint score(cost) :
matching of .
. dynamic¢ . .
. . .
edoe-delimited intervals prograiing :
on scanline pair :

Figure 5-1: Two searches involved in stereo matching

We pronose to use dynamic programming. which is used for the intra-scanline search, also for the
inter-scanline search. These two searches are combined as shown in figure 5-1. One is for the !
correspondence of all connected edges in the right and left images. and the other is for the X

correspnndence of edyges (actually, intervals delimited by edgus) on right and left scanlines under the
constraint given by the former. The scheme to use dynamic programming in two levels was first !
employed in the recognition of connected spoked words [Sakoe 79). They used one search for the -

poscible segmentation at word boundaries and the other for the time-warping word matching under
the conctraint given hy the former. In connected word racognition, however, the pattern to be
processed is a single 10 vector. In our case. a connected edqge crocses ovér multiple scanlings (ie.,

10 vectors). This means that we nced a 2D zearch space which in a stack of 2D search plines for

intra-scanline matching,
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Dynamic programmuny (Aho. Hopcroft and Ullman 74] solves an \.stage decision process as v

[
single-stage processe-s' This reduces the computational complexity to the logarnthm of the onginal

combinatonial one. In order 1o apply dynamc programming. however. the onginal decision process

.

must satisfy the following two requirements. First. the decision stages must be ordered so that all the

stages whose results are needed at a given stage have been proccssed before then. Second. the

decision process should be Markovian: that is, at any stage the behavior of the process depends
solely on the current state and does not depend on the previous history. It 1s not wbvious whether

these proporties exist in the problem of hading correspondences betwenen connected 2dyges in stereo

W T T B

images. but we clanfly them m the lollowing sactions.

5.2.3 Correspondence Search Using Dynamic Programming

A R

5.2.3.1Intra-scanline search on 2D plane

The problem of obtaining correspondences between edges on the right and left epipolar scanlines
can be solved as a path finding problem on a 2D plane. Figure 5.2 iltustrates this 2D search plane.
The verticul lines show the positions of cdges on the left scanline and the horizontal ones show those

i R e

on the right scanline, We refzr to the intersections of those lines as nodes. Nodes in this plane
correspond to the stages in dynamic programming where a decision chould be made to select an
optimal path to that node. In the intra-scanline search, the stages must te qrdered as follows: When
we examine the conespondénce of two edges, one on the right and one on the left scanline, the
b edges which are on the left of these edges on each scaniine must already be processcd. For this
purpose, we give indices for edges in leit-to-right order on each scaniine: [0:1/] on the right and {0:.V}
on the left. Both ends of a scanline are aiso treated as edges for convenience. It is obvious that the
condition above is satistied it we process the nodes with smaller indices first. Legal paths which must
be considered are sequences of straight line segmems‘ from node (0.0) at the upper left corner to
node (1/..V) at the lower right corner on a 2D array [0:1/.0:.V]. They must go from the upper left to the
lower right corners mongtonically aue to the above-mentioned concition on ordenng. This Is
equivalent (o the non-reversal constiaint 1n edge correspondence: that is, the grder of matched
edges has to be preserved in the right and left scanlines. This constraint excludes from analysis thin
objects such as wires and poles which may result in positional reversails in the image. A path has a
vertex at node m=(m.n) when right edge n and left edge i are matched.

Tne cost of a path is defined as follows Let Dtm k) be the minimal cost of the partial path from
node k to node m. We denote /Xm Jk1as . m when ks (0.0). Dim)is the cost of the optimal path to
node m from Lhe origin (DU). The cost .f 12> 5 the =um of thase of its primitive paths. A primitive

path is a pa:tial path which containg o ..-1 2 3¢ ard stz ropresented hy 2 straight ing segnmient as
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lefr mronsitu prejile

ALa)

(m.n)

l I =)

c)

Mjosd

AHSUIINY Iy

< Figure 5-2: 20 search plane for intra-scanline search.
Intensity profiles are shown along each axis.
_ The horizortal axis corresponds to the left scan:ne and the vertical one
- corresponds !0 the rignt scanline. Vertical and hcrizontal lines are the edge
positions and path selection is done at their intersections.

shown in figure 5-2. It should be noted that a primitive path actually corresponds ta matching the
intervais delimited by edges at the start and end nodes rather than edges themselves. Let d(m.k) be
the cost of the primitive path from node k to node m. Obviously, d(m k) 2 D(m k) and on an optimal

path d(m k) = D(m k).

Now, D (m.k) can be defined racursively as:
Dmk)y=min {dimm~i)- oim~ik)}

{f}
DxKk)=0 (5.1)
where m=0nn). 1=(x)). i=(i)),
Osism=k 0<jcn=" = 0.
Vector i represents a primitive z2* - - -~ ~3 ¢ ~~de m. When i=0, the primitive path is horizontal, as

(9

shown at (a) in figure 5-2. It cz--: 2 .-

occluded in the right image. i - = ~eomve path is vertical, as shown at (b). When > ]

LN I}
}l‘}-’\:-':‘-

-

N

s !z "2 case in which a visible part in the left image is
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ard/or ;> . the prinutive path skips or ignores beyond « — 1 and/or ;=1 edges on the righi and/or left
scanlines as shown as{c)en the figure Such a path corresponds o the cace where some edyes have

no corresponding ones on the other scaniine because of noise.

The path with cost D(M.0) yives the optimal correspond=nce between a parr of scanlines.

5.2.4Inter-scanline search in 3D space

The pretlom of abtaining a correspondence hetween edges under the inter-scanhne consistency
canstraints can be viewnsd as the prablem of fuiding a set of gaths in a 2D space which s 2 5tack ot 2D
plianes forintra-scanhine cearsh Figure 5-3 illustrates thus 20D space  The sige tuces ¢f thus space
correspond to the night and ‘eft unages of a stereo pair. The cost of a s¢t af paths 1s dehined as the
sum of the costs of the individual paths in the set. We want to obtain an optunal (ie.. (he minimmal cost)
set of paths satistying the inter-scanline constraints. A pair of connected edges in the night and left
images make a set of 20 nades in the 3D space when they share scanline pairs. We refer to this set of
2D nodes as a single 2D node. The optimal path on a 20 plane is obtained by iterating the selection of
an optimal path at each 2D node. Similarly. the optimal set of paths in a 3D space is obtained by
iterating the selectiont of an optimal set of paths at each 3D node. Connected edges, 3D nodes, and
sets of paths between 3D nodes are illustrated in figure 5-3.

As described in section 5.2.2, the decision stages must be ordered in dynamic programming. In the
intra-scaniine search, their ordering was straightforward; it was done by orcering edgss from left to
right on @ach scanline. A similar consideration must be given to the inter-scanline search in 3D space
where the decision stages are the 3D nodes. A 3D node is actually a set of 2D nodes, and the cost at
a 3D node is computed based on the cost obtained by the intra-scanline search on each 2D ;earch
plane. This leads to the following condition: When we examine the correspondcnce of two
connected edges, one in the right and one in the left image, the connected edges which are on the

left of these connected edges in each image must already be processed.

A connected edge u, is said to be on the left of u, if all the edges in uon the scanlines which u and
u, share are on the left of those in u,. The "left-of" relationship is transitive; if there is a connected
edge «, and u_is on the left of u, and u 1s on the left of u,. then u is on the left of u, (it u and u, share
any scanlines). The order of two connectad adges which do not satisty both of these relations may be
arbitrarily specified. We assign an orgering index from left to nght for every connected edge in an

image. This ordering is possible without contradiction when a connected edge never crosses a

scanlin? more than once and when twn connected edges never interseat each other. Cur edge-

|

|

liniiing process which will be explained in 5 :chon 415 Jevised so that it does not produce such cases. \
|
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Figure 5-3: 3D search space for intra- and inter-scanline search.

This may be viewed as a rectangular solid seen from above. B

The side faces correspond to the right and left stereo images. Connected ,

edges in each image form sets of intersections (nodes) in this space. Each set .
is called a 30 rnocae. Sclcction of a sct of pathsis dore a3t every 3D nede. )
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Now we will present how the cost ¢f a 3D path i1s defined. Suppose we assign ndices [0 (] to

-
connected cdges m the night unage. and |11 | n the left. The left and nght ends of an wnuge are
treated as connected edges for converience: the left ends are assigned index ('s. Let u=(u ) be a

3D node made by a connected edge « in the right image and a connected edge  in the left image. Let
( {u) be the cost of the optimal set of paths which reach to the 30 node u. The cost ((u) s

computed as follows:

el

({u) = nun Z

1)

Dy Hu=iay.n)y+ Clu=ignn)
{r}

(5.0
((0)=0. ie. C(0:)=0 forall ¢
where u=(uv). i(D=((N.j(0). 0s()su 0<j(Ngv. ()+ /()70
Here, C(u:1) is the cast of the path on scanline ¢ in the cptimal set; that is, C(u)= Etm C(uu), and

r=s(u)
Dim.k:.1) is the cost of the optimal 3D primitive path from node k to node m on the 2D plane for

scanline (. A 3D prifhitive path is a partial path between two 3D nodes on a 20 search plane and it has
no vertices at the nodes belonging to a 3D noqe. So a 3D primitive path is a chain of 2D primitive
paths and an intra-scanline search is necessary to obtain the optimal 3D primitive path on a 20 plane
between two given 30 nodes. The function /(u:r) gives the index of a 20 node belonging to the 3D
node u on the 2D plane for scanline /. The numbers s(u) and e(u) specify respectively the starting
and ending scanlines between which the 3D node u exists. The cost C(u) 1s minimized on the
function i(1). A 3D node u-i(!) gives the start node of the 3D primitive path on scaniine «. The
inter-scanline constraint is represented by i(7). For example, if i(1) 1s independent of i(1—1), there
are no constraints between scanlines and the search representec by equation {{5.2)) becomes
equivalent to a set of intra-scanline searches which are performed independently cn each scanline.
Intuitively, i(1) must be equalto i(t—1) in order to keep the consistency constraint.

The iteration starts at v =(0.0) and computes C(u) for each 3D node v in ascending order of u. At
each 3D node the i(t)'s which give the minimum are recorded. The sequence of 2D primitive paths

_\§
'

which forms the 30 primitive path is also recorded on each scanline. The set of paths which gives
C(U) at the 30 node U=(L.V) (which 13 the 3D cur: «ormed by the nignt ends of stereo images) is
cbtained as the optimal set.

It should be noted that when there arn no ccnnected 2dges excent for the night and left sides of the

CTEEA A % et S R e S
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imaycs. the algonttun ((5.2)) works as a sat of inlra-scaniine searches repeatod on cach scaniine
-— -

independently. In this sense. the 20D algorithm completely cont:uns the 20 one.

5.2.4.1 Consistency constraints in inter-scanline

Usng the term 3D node defined in the previous section, we can descrihe the inter-canhine
consistenCy constraints as follows:  For any 30 node. eitrer all corescorc.ng 2D nodes are the
vertices 0n the set of paths in the 30 seircn space. or none of them are the vertices on t set of
cates We noed to represent this constraimt as the relation between (/) and jt— i) in equaton (S 2).
To do tus. let us consider the examph: in figure 54 Suppose we are tt g to ontam a et of 2D
primutive paths which reach to node u. In orcer to sausfy the consistency constraints above., all the
starting points of these paths should be the same 30 node; that s i(/)=i(/—1). The cases when the
starting point is a different 3D node are shown as case 2 and case 3 in the figure. In case 2. a new 20
node appears at scanline ¢ and the starting goint changes to the new one. Cfcourse, it is possibie
that the starting point does not change to the new 3D node. This will happen if the cos: of the paths
having vert:ices on the 3D node is higher than the cost of the paths not having vertices on it. In case 3,
the 30 node u—i(/="1) disappears on scaniine [ ai.d the starung point s forced to move elsewhere.

1D nede 30 nodo u

path

> t-1

/

t

case 1

_____ ’7 t
30 node //

. case 2 case 3

30 node 30 noge U 10 node 30 noge 30 node
L path \/l- 1

Figure 5-3: Three casas lor consistency constraint,
g
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Lot us denaote the 30D noda u=ii7), from winch the 30 prunitive path starts and reaches to the 3D

-— - . g
node u on scanline 1. by mttu:r). Then the follnwing rules should be satisfied in each case.

cnels oy == 1)
cases Gy ) = oyl = 1) (5.3

e froai) = gz = 1) =1)

The rules in case 2 and casva 3 reqgure that the decismion at 3D node u depend on decisions at

ni:cecing 30 nodes.  Unfortunately. a decisicn system with such a property 1S aot Markovian as

! descrived in section 5.2.2. and thwretore there 1s no guaiantee of sLtaning an eptumal cotution by
using dynamic programmung. Tius means if we search for a solution using dynamic programming

with those ruies. the resuit might be poorer than that of the 2D algorithm.

In order to assure optimality in dynamic grogramming, we modify the rules in ((5.3)) as follows.

casel: frmrut)=fim(u.l=1)
casc: frodui) 2 frn(uii=1) (5.4)

cased: frmfu;t) 2 fmiuil=1)

The new rule for case 2 reqguires that the new 2D node on scanline 1 ba on the night of the 3C ncce
that is the sturting point on scanline (= 1. For case 3, the new starting node on scanhna “srouic Te
on the left of that on scanline (=1. It should be noted that though the new ruies are alwa,s sal:s* o
wnen the rules in equation ((5.3)) are salisfied. the converse is not true. Thus. uncer =2 ~ea - =«

the consistency constraint might not be sausfied at all places. In cther wcras e

represented by the rules in cquation ((5.4)) are weaker than those of equaticn £ 2 -
we can cxpoct to ebtain an cptimial seluticn in dynanus programming, w2 1In evoe

the 3D search algonthm than by the 20 searc algorithm.

5.2.5 Experiments

Implementation of the stereo algcrithm +ric™ has been preserter
edges and linking them, and a czhnt o~ 0 Lonoart, me Lol rec

details of the method ot detecting e~ ~ . - R

The computation of cost in our 2 .- -

cearch plane. Ve define the cozr o
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by edges in the right und left images on the same scanline. If welet v ...« and b ... b be the
- o '
intensity values of the pixels which comprise the two intervals, then the mean and variance of all
pixels in the two intervals are computed as:
1
ms=s( Z a +-Z b)

‘=: -Z(u—nl) +-Z(b —m) )

In the definition above. both intervals give the same contribution to the mean » and variance o°

(5.5)

even when thair lengths are ditferent. The cost of the primitive path which matches these intervals is
defined as follows:

Cp=c' A+ (5.6)

We have applied our stereo algorithm to images from various domains including synthesized
iméges: urban aerial images, and block scenes. Only the results of urban aerial images are presented
here.

The stereo pairs uled here are aerial photographs of the Washington, D.C. area. The first stereo
pair is "white house" and the second one is "pentagon”. They have been rectified usirig the camera
models which was computed by Gennery's program [Gennery 79] using manually selected point
pairs.

Figures -5, 5-6. and 5-7 show the original stereo pair, edges and connected edges, for the “white
house” scene, respectively. The image size is 388x388 pixels and the intensity resolution is 8 bits.
This example is an interesting and difficuit one because it includes both buildings and highly textured
trees. Many connected edges are obtained around the building while few are obtained in the textural
part. The disparity maps abtained by the 20 and 3D search algorithms are shown in figure 5-8. Since
the maps are registered in the right image coordinates, the disparity values for pixels on the right wall
of the central building, which is visible in the right image but occluded in the leit, are undetermined.
Considerable improvements can be observed at the boundaries of buildings. In the texturai part, the
two algorithms provide approximately the same results.

We counted the number of pasitions where the consistz gy constraint, described in section 5.2.4.1
is not satistied. It is 436 in the 2D search and 32 in the 3D search. These numbers quantitatively show
a significant improvement achieved hy the 3D search aigorithm, The reason tha inconsistency is not

completely removed in the 3D case 's that we uscd "weaker” rules for the constraint as described
earlier.
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right image

Czrrpcizd el '
ges obtained from tiqure 5-6
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(b) result of 30 ssarch

Figure 8-8: Diaparity map obtained for the "white house” stereo pair
(figurs S-9).
Both are reyisiered in the right image coo:dinalcs.
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Figure 5-9: Tr> “pentagcn” stereo pair ol urban aerial images.
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"pontagon” stereo pair (figure 3-9).

Figure 8-10: Disparity map obtained for the
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5.3 GENERATING DETAILED SCENE DESCRIPTIONS FROM
RANGE IMAGES

5.3.1 Introduction

An important problem for robotics vision is that of generating a 3D description of an unknown scene
trom range data. The range data themselves. a set of 3D surface points. are often not useful for tasks
such as model-based recognition and localization, model-bused inspection and verification. and
change detection.

The result of our research is a method to extract a compact, symbolic, three-dimensional
description of polyhedral objects in a scene. importantly. the descriptions are quitz complete, that is,
most of the visible faces, edges, and vertices are represented. Most previous attempts at range data
analysis did not result in such complete descriptions [Agin 72, Duda, Nitzan, and Barrett 79, Oshima
and Shirai 79, Smith and Kanade 84, Tomita and Kanade 84)]. (An exception is the work of Sugihara
(Sugihara 79).)

5.3.2 Approach - )

The overall goal of this research is to obtain a full symbolic description of a scene from range data
obtained Irém multipie views. In our appro;ich, each view is processed in sequence, and the 3D
information obtained from each view is used to incrementally construct a model of the scene
environment.

The main steps followed by the overall system are the following. A description of the scene, in terms
of faces, edges, and vertices, is obtained from each view. Descriptions from separate views are then
matched to obtain corresponding eclemants and to obtain the global coordinate transformation. This
permits the separate descriptions to be merged, resulting in a more complete overall description of
the scene. The matching and merging algorithms are described eisewhere [Herman 85). Here, we will
oxplain how the initial descriptions are obtained.

Two general approaches for segmenting range images are edge/line axtraction [Smith and Kanade
84, Tomita and Kanade 84, Sugihara 79] and region extraction [Faugeras and Hebert 83, Duda,
Nitzan, and Barrett 79, Oshima and Shirar 79]. Our method is based primarily on edge and line
extraction because we are attempting to obtain complete, detailed descriptions of the faces, edges,
and vertices in the scene. Furthermore. our matching algorithm assumes such complete descriptions.

Such descriptions are more dilficult to obtain when region segmentation mcthods are primarily used.
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Our method involves the following steps: (1) acquire the range images using a light-stripe
rangefinder. (2) find_edgs points in the image. (3) fit linear segments to the edge points using the
Hough transtorm. (4) connect the segments by extending. shortening, or shifting them. (5) convert the
lines and junclions in the image to 3D edges and vertices. (6) generate faces from the edges in the
scene.

It is interesting to note that although we are working with 3D data, most of the steps in the algorithm
are pertormed in the 2D image space. This .is because algorithms for 2D are often simpler and more
efficient. in both space and tume. than those for 3D. One example s finding lines with the Hough
transform. The 3D version of the algonthm i3 much moare expensive and complicatad than the 20

version.

5.3.3 Range Data Acquisition

The range data we use are obtained with the White Scanner light-stripe rangefinder. The illuminator
is a laser which projects a vertical plane of light into the scene. The intersection of the plane of light
with an object surface results in a light stripe, which is imaged by a camera lying to the lelt of the
illuminator. The furtiver a surface point on the stripe is from the illuminator, the further to the left it will
be seen in the camera image. The rangefinder determines the position of the stripe at each camera

"scan line, and triangulation is used to obtain the 3D coordinates at these positions. The result is

represented as a column vector. When the illuminator is swept across the field of view, we obtain a
sequence of such column vectors, one for each stripe. The sequence of columns forms a range
image (actually a set of images, one each for a binary mask and for x, y, and z values).

Fig. 5-11a shows the mask image for a polyhedral object. Each column in the image corresponds to
a column of light. The rows in the image correspond to camera scan lines. This is called a “mixed
registration™ [Smith and Kanade 84]. The geometry in this image cannot be treated as in a camera
)mage, since it 18 formed dilferently. However, the outline of the abjects in this image are very nearly
the same a3 would be seen if the eye were placed at the illuminator. The object as seen from the
camera is reconstructed in Fig. S-11b.

8.3.4 Threo-dimensional Edge Detection

This section describes how points in the range image tt..: . -ise from real scene edges are found.
We consider three kinds of edge points ccc wcing, convex, and concave. Occluding edge points are
located where there is a discontinuity 'n :22'n e  the difference in z values between adjacent pixels
exceeqs a threshold) or where there 1s 3 ©. . 2ary detween data and no data regions.
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Figure 5-11: (a) Mask image in mixed registration. (b) Camera-reconstructed image. ')
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Convex and concave edge peints are found by examining, in turn, each column in the range image.
and calculating the 30 cufvature at each point. If the curvature is a local maximum or mimmum and
exceeds a threshold. the point is @ concave or convex edge point, depending on whether the
curvature is positive or negative. The resuits of this process are shown in Fig. 5-12 for two range
images. where convex points are signilied by “ + ". concave points by “-", and occlucling points by
"*" These are the nuxed registration images.

Notice that many occluding points have concave or convex points very near them. We believe that
ttus is nherently due to tha thickness of the light stripes [Yoshida 84]. Fig. S-13a shows i vertical light
stripe lying on a face with iagonal bounclaries, as seen from the camera. As described above, at
each scan line. the rangefinder chooses a point (which is probably near the center of the stripe
thickness) to represcnt the position of the stripe. Since the stripe’'s appearance is beveled near the
face boundaries, the center of the stripe is shifted. Since points on a stﬁpe that are further to the left
in the camera image are assumed to arise lrom scene points further from the illuminator, and vice
v¢:sa, the measured light stripe in Fig. 5-13a results in a slight concavity near the top of the stripe,
and a slight convexity near the bottom. In Fig. 5-13b. the results are just the oppaosite, with a
convexity near the top of the stripe and a concavity near the bottom. in Fig. 5-12, this phenomenon
occurs primarily on faces that are highly obliqbe with respect to the iiluminator, since the stripes
appear thicker when viewed from the camera. . ' )

8.3.5 Fitting Linear Segments

Once the cdge points have been found, we want to fit linear segments to them. The Hough
transform [Duda and Hart 72] is used here. However, the straight-forward method of choosing all cells
in the Hough accumulator whose values exceed a threshold was not successful because clusters
tend to cover several cells and they nveriap. resulting in several extracted lines for each cluster. To
get around this probiem, as soon as a line is extracted. the effects on the accumulator of all the edge
points corresponding to the line are eliminated. The algorithm we use is the following.

1. Transform each point in the edge mage to a sinusocidal curve in the r-8 accumulator
space.

2. Choose the accumulator cell (r, ¢) with the largest value. |f the value is less than a
threshold, exit.

3. Find linear clusters of points in the 2cdqge image that represent line segments along the
line (r. 8). This is done by searching for points in the edge image vathin some thicknass ¢
of the line (r, ), and dctermining ~hich of these pomnts cluster together. Each resulting

line segment is defined by its 20 enc naints. its 3D end points, and ita 31 line paramcters,

()
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Figure 5-13: Camera viewpoint of vertical stripes lying on faces with diagonal
boundaries. The measured stripe pcsit:on results in a concavity or convexity
near its top and bottom.
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4. Climinate the effgct on the accumulator of the points lying on the line (r. 0). An efficient -
way to accomphish this is to decrement each accumulator cell lying on the sinusoidal N
curve corresponcing to each point. o

5. Go back to step 2. p)

Each class of «lge points (i.e.. convex, concave. and occluding) is treated separately and
independently. In this way. the resulting line segments can be given the same class labels. Alsg, the !
direction cf the occluding arrow for each occlugding line is determined as a unit vector in the image X
olane. (The occluding surface is on the right sicie of the arrovs.) This is done by comparing the
average z values of points cn aither side of the line segment thai are very near ihe segment. The :
resuits of the line fitting are shown in Fig. 5-14. where occluding lines are reprcsented by solid lines,
concave lines by dashed lines, and convex lines by dot-dash lines. 2

As explained earlier, some convex or concave edge points may lie near occluding edge points. This
may result in convex or concave line segments near occiuding line segments. These segments should
be eliminated since they do not correspond to real scene features; they are an artifact of the range 1

- .
ISl

finding process. Fig. 5-14 actually shows the result after such segments have been deleted.

5.3.6 Connect Lines and Form Junctions :
Although the basic line segments forming the edges of the object have now beea extracted, as '
shown in Fig. 5-14, there are still many gaps and inaccuracies near the junctions of the object. Qur .
next step is therefare to fill in these gaps and form junctions where necessary. This is done in three o,
steps. First, segments that are close and almost collinear are connected. Second, (extended) .
segments that intersect and are ciose are connected. Third, if a segment has a danyling (i.e., i':
unccnnected) end point, an attempt is made to connect it with other segments as in the second step, :_‘;
but using a larger threshold than in this step. w
o,
In the first step, if two segments are alincst ¢ollinear and have close end peints (e.g.. segments L1 c,::
and L2 in Fig. 5-14), a junction is formed at the point midway between these end points to connect the ,:::
two segments. 2N
>

In the second step, intersecting pairs of (extenced) line segments are connected if the intersection y

point lics within a given threshold dictanca ¢f the ond points of the segments. We consider five cases 3
here. In case 1, the intersection paint es zutsic2 the two segments (Fig. 5-154). Both are extended -~
and a junction is formed. In cace 2, 'he ne-222:. 27 point lies inside both segmaents (Fig. 3-15b). Both ::

are chortenced and a junction is formnec 'm zi<2 2 the intersection point lies outside one seyment but i
N
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Figure 5-14: Resuit of fitting line segments to the ecge image in Fig.
5-12b.Solid lines are occluding,
dashed lines are concave, and dot-dash lines are convex,

inside the other (Fig. 5-15¢). The former is extended, the latter is shortened, and a junction is formed.
In case 4, the intersection point lies inside both segments (Fig. 5-15d). but is beyond the threshoid
distance from each end point of oné of the segments. The other segment is therefore shortened, but a
junction is not formed connecting the two segments. Case 5 is the same as case 4, except the
intersection goint lies outside one segment but :nside the other (Fig. 5-150).
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_Figure5-15:  Connecting intersecting pairs of (extended) line segments.

v

The thresholds used in the first two steps just described are conservative and are only meant to
connect segments that are quite close to each other. If liberal thresholds were usedT connections
would be established between segments that should not be connected. The result after these first two
steps is shown in Fig. 5-16. Note that the two end points P1 and P2 in the figure seem to be
"dangling.” In the third step, iherefore. a top-down type of process is initiated. We assume that a
dangling end of a segment should probably be extended or shortened by a farger amount than the
previously specified thresholds. Intersections between such an (extended) segment and other
segments are obtained, and the same tests and procedures as described in the second step are
pertormed, except that larger thresholds are used.

As a result of this process, all gaps are eliminated. However, lines that should form a single junction
often do not intersect at a single point, resulting in separate junctions. To merge such junctions, a
rectanqguiar window is placed at each junction point in the image, and all junctions within the window
are replaced by a new junction defined by the averag 2 casition of all the junctions. The result of this
step is shown in Fig. S-17. At this point, partially occluded segments are labeled as such. These are
found by checking how many segments Inrm each junction. If a junction is tormed by only one

segment, the segment is marked as incompiete. In Fig. 5-17, segments L1 through L5 are incompleote.




Figure $-16: Resuit of connecting segments in Fig. 5-14 with
conservative threshoid. -

§.3.7 Convert to 30

Thus far, all of the processing has been in 20, in the mixed registration image. In the next step. all
the junctions and ssgments in the image are converted into 30D vertices and edges. Afterward, the 30
faces in the scene will be obtained.

The cbvicus maethod for getting tha 20 pcsition of some point in the image is to mercly extract ils
x.7.2 coordinates from the x.y.z range images. The problem with this method is that it can resuitin a
large depth error even if thare is a small error in the 2D position of the point. To see why, consider Fig.
5.18. Suppose that the position of a junction determined by the methods described above is at point
8. but the true position of the junction is at point b. If we obtain the 3D coordinates of point a by
extracting them from the x.y.z range images. we would really be extracting the coordinates of a point
that lies significantly inside face A. resulting in a large error in the z coorainate. The more oblique
face A is, the greater the error.

To overcome this problem. we use the known 3.space positions of the lincs that werc initially
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Figure 5-17. Resuit of extending danjling ends and merging ',

junctions in Fig. 5-16. ,

extracted from the edge image (Fig. 5-14). To obtain the 3D pasition of a point in the image known to :f
lie on & given line in 3 space, we calculate the intersection of the line with the plane of illumination

'

corresponding to the column C in which the point lies (see Fig. 5-19). §

U

Each junclion in Fig. 8-17 has a pointer to a list of all the initially exiracted segments (Fig. S-14) that !
ultimately led to the junction. Fig. S-20 provides an exampie of how the 3D coordinates uf a junction J

are dJdetcrmined. Suppose J was imitially ciitained by averaging the 3 intersection points of the N

segments L1. L2, and L3. To getits 20 zoziicn. Jis hrst projected, in 20. onto each of its segments,

-----

4 5 s R R Ny K TR ST
.‘!';'.‘_‘0..‘5 LI . S' JQ. a ! { 4*. o« ’ (v




112

<

Figure S-18: Locating the 3D position of a vertex directly from range data
cometimes results in a large depth error

Figure $-19: Calculating the intorsection of a ling in 3-space with the plane of lumination
resuiling in the prujecled points p?. p2. and o3 Assuming that each of these points lies on its
respective line in J-cpace, thair 3D pocitiors are obtuined as described chove. The 2D position of the
vartex corresponding to J i3 then obtainew &, averaymg the 3D positions ot p1. p2, and p3.

Alter oach junction hag been converte ¢ res 3 20 suriec il is simple to outain the 3D line parametors
of the edyes connecting these vertices
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Figure 3-20: Deterimining the 3D coordinates of junction J

5.3.0 Cenarato 3D Faces

The next step is t0 extract the 3D faces in the scene. Since a face may be defined by the edges that
bound it. faces are found by foliowing (or traversing) their chaing of edges. The edge traversal is
aroitrarily chosen to be clockwise and 13 two-dimensional. that is. it occurs in the plane of the image.

Becausc an occiuding e3ge belongs to one visible face. such edges must be traversed exactly
once, snd ony in the direction of the occluuing arrow Because conc.ave and convex cdges beiong
10 two visible faces, such edges must he traversed twicc, ONCE In each direction. Fig 5-01 3nnws now
the fzces of an object may bo recoverad by traversing the edges. We distinguish two incces of faces,
those with all their edges visibie (e.g.. tace A in Fig. 5.21) and those with partially or tctally occluded
edges (0.0.. face B in Fiy. 5-21). Faces 'n the firat class are found by 2 complete traversal of their
edyes. The traversal cun therefore bey «ith any adge on the face. Since faces in the second class
are found by a partial traversil of thuir cCges we must make certain that the adge with which a

traversal bheging will permit all vigible ec. .o~ tc Le includnd.

A (ace lruversal occurs as follows F ot 2 = 5o callcd the “seed” | .ge. 18 chusvn lonyg with g




Fijure 8-21: Recovering the faces by traversing their edges.

traversal direction along that edge. The method of choosing the edge and direction will be described
shortly. To obtan the naxt edge in the traversal. a smpie test is used 0 determine the next most
clockwigse edge in the traversal direction. In Fig. 5-21, for example, if the edge FG is The seed edge
and the traversal direction g from F to G, then the next most clockwise edge 18 GH, and its traverssl
direction is from G to H. Successive edges are chosen in this manner until one of the following
conditions is met: (1) an edge which has previously been traversed in the same direction is reached
(e.g.. a ceed edge will be reached again for a totally visible face), (2) an incompiete (i.e.. partially
orcluded) edge is reached (.., edge Gl in Fig. 5-21), (3) an occluding edge whose occluding arrow
'3 OppPOosit to the traversal direction is reached. When one of these conditions is met, the traversal 18
terrmunated and all the traversed edges are assumed 10 belong to a single face.

Seed eciyes are chosen 30 that all faccs with some occluded edges are processud before faces with
no occluded edges. The aigorithm proceeds as lollows. First, incompiete occluding edges whose
occtuding arrows point away from the incompiete portion of the edge (¢ g.. edge AB in Fig. 5-22a) are
found. Eazh of these edyes is used as a seed. and the traversal direction 13 that of the occluding
arrow. In Fig. §-22a, the clockwise truversal results in the edges AB, BC. and CD. which are used 1o
form face F. Next, each incompiete conver and concave edge (e.g.. edqges AG and EF in Fig. 5-22b) 18

uSed as a 30ed. and the iraversal directicn 5 *oin the ncomplete to the compicte portion of the edge.




Figure 8-22: Finding seed edges t0 use in traversing faces.

Then, for each occluding edge in the scene (¢.g.. edge AB in Fig. 5-22c). find the next most clockwise
ecge as if traversing the occluding edge in the direction opposite to its occluding arrow. If this next
cdge is concave or convex (v.g.. edge BC in Fig. 5.22c), it 1s used as a seed, and the traversal
direction 13 the sume direction used 10 find the edge.

At this point, the algorithm processes faces with no occluded edges. First, each complete occluding
edge that has not yet been traversed (e g.. AB in Fig. 5-22d) is used as a seed, with the traversal
direction the same as that of the occluding arrow. Finally, each compiete concave or convex edge
that hus not been traversed n Loth directions ie 3 . CA in FFiy. 3-22e) is used as a seed. traversing in
the direction(s) not yet traversed.

Each saet of traversed edges s usec ¢ ‘cr'm 1 single face. and the 3D posilinns of the vertices
connecting these edges are used 1o ctia ‘e ziane equation of the face. Although our current
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techniques will find inner edge chains (e.g.. those that bound a hole in a face) as weil as outer ones.
the two scts of cham?wolr not be associated together as belonging to a single tace. Fig. 523 shows a
perspective view of the final 3D description generated from the line drawing of Fig. 5-17.

.

Figure 5-23: Perspective view of final 3D description generated from Fig.
- $-17.

5.3.9 Muitiple Views

The processing resuit for the edge image in Fig. 5-12a is shown in Fig. 5-5( The final 3D
reconstruction ig shown in Fig. 5-25. The two sets of range images discussed in this paper are two
views of the same object. The next step in the processing will involve matching the two 3D moctels and
merging them so as (0 generate a more complete rﬁodel. The matching algorithm matches vertices in
the two Jdescriptions. and propagates constraints through the edges and faces. This 1s one reason
why it has been important to recover aimost all vertices, edges, and taces in the scene.

5.4 SUMMARY

This chapter has presented results :n both low-level and high-level aspects cf the 3D change
detection task. For low-level processing, a new method of determining stereo correspondences
which are used in the computation of depth for 3 pair of aerial images was described. For high-level
processing, we have described our methocs of representation and construction scene models from
muitiple views. We have bypassed the low-ievel praoblemns by using rangefinder Juta as our input for
the high-level processing.
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Figure $-24: Final line druwing obtained from the edge image in Fig.
S-12a. '
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Figure 5-28: Perspective view of “inal 3D description generated from Fig.
5-24.
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A 2D vision System: Generating and Matching Shape Descriptions in Range

The First Conlcrence on Artilicial Intelhigence Applications . December, 1984.
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7.SUMM

In Chapters 2-5. we have descnbed our progress towards achieving 1 commination of pattern
r2cagmtion. umage understunding. and wuhicial inteligence techmgues for wbace-based image
processing. using both optical and digital processing methads. We have aclueved results in the areas
of optical leature e<traction and sub-pixel tuget detection. hybnid digital/optical representation and
matciung, and model-based three-dimensional scene interpretation.  The remainder of ths chapter

Tnmuaanzes the resutts achieved over the past year.

TAOPTICAL FEATUREEXTRALCTION S 1D SUB-PIAEL TARGET

DETZCTIOMN HIGHLIGHTS
The highight!s cf optical feature extraction vsork include :

e A new optical processor for detection of in-plane distortion parameters from optically
generated chord distributions.

¢ A new optical/digital moment processor concept.
e A new hierarchical non-ad-hoc tree structure formulation.
e Suzcesztul initial tests of the moment processor on ship and pipe part data bases

e Promising initial quantifications of the accuracy to which the distortion parameters of the
object can h2 produced in the hybnd moment processor.

o Development of new correlation SOFs.

e Promising initilal ATR test results on carrelation SOFs.

The highlights of cur sub-pix<! fast ime change detection/recognition effort include :

+ A mcre unilicd and accurite imaqe ¢2neration sofiware tor producing detector images
contaning sub-pixel moving targets, correlated noise and uncorrelited noise.

o Detailed quantitative resuits of the pertcrmance of sub-pixel shift cstimators.
o Detailed quantitative results of the performance of various interpolation schemes.

e Introduction of a new uand better owtformance measure for the characterization of
background suppression.

e Analytical and experiniental inve~:, .hon of the use of double difterencing for
buckground suppression.

e Initial forinukiiion of the more ;o - . nucea/simo hiltering” to ~=nhance the sub-pixel
terget ndd Luptiress the huckgrouna
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e Investigation of the elfects of detector himitations such as hmited dynamic range and
detector nois®z =

o Imtial efforts of multi-r2gion iImage generation.

7.2 ALGORITHMS FORHYBRID DIGITAL/OPTICAL
REPREGENTATION AND MATCHING

This phase of the project has focussed on the development and evaluation of methods which yield
reprecentations of structural and textural information 1 an image. and nay be used for matching

unanes to scene models. The principal resuits achieved in this research include:

e Probabilisic Graph Matching - Attnbuted graph structures are used as mocels of
structural and stausticul intormation in the /mage. Matching of these graph structures
using probatrlistic sunianty methods poses a number of interesung problems in the
mathematical formalism. in the computational matching algorithms. and in the application
of these methods o real images. We have investigated methods of subgraph
decomposition which permit branch-and-bound search of the matching tree and provide ,
efiicient pruning of the possible matches. Y

e Multiple Resoiution Rotation-invariant Operators - The MRI (Multiresolution Rotation
Invariant) opdrator and the MRD (Multiresolution Difference) transform have been
introduced to extract structural and textural leatures of images for use in matching and
intcrpretation phases of analysis. The MR! 1s a compiex operator derived trom dorivative
expansions of Gaussian kerneis and will have magnitude of response independent of
feature orientation and phase angle of responsa which proviies information about
orientation. The spatial and frequency domain properties of these operators have been
studied and an approximate MR! operator which uses difference of shitted Gaussian
kerneis has been derived and shown to be computationally efficient due to the scaling
and shift properties of the Gaussian kernel. The MRI operators have been applied to
aerial images of objects and textures.

e Texturs Analysis - The MR! goperators described above have been used to characterize py

and classily textures from aenal images. This set of multiresolution operators permits
classification of texture independent of the size and onentation of the texture pattern
itseil. The statistical distribution of the magnitude responses is analyzed across the set of
operators for regions of the image. Carrelation with the correspending magnitude range
and the corresponding phase distribution provides inforination on the relative scale and
the relative orientation. Experiments on textures from aenial images and textures from
simpie patierns have been carried out and compared to previous texture energy
operators.

The algorithms studied in this section retact the interdisciplinary nature of the project. The MRI
operators and ascociated texture measures are sarticularly well-suited ‘o paraliel or optical processor
implementation. They will be implementec 1! 2valyated on the array processor with RAPIDbus host.

Our formulation of the recursive moage: .- - ~3 aigorithms i also intended for implcinentation on
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this type of urchitecture with extensions winch may inteyrate symbolic and numencal processing
- o
The interactive use ot paraliel and optical preprocessing with hypothesis formation anat daptive '

s@arch strategins wiil he natural continuanon of the work conmpleted. !

7.3 IMAGE UNDERSTANDING TECHNIQUES FOR 3D SCENE
INTERBIETATION

Cur ettort this year has resulted 1 techmigues deaiing with two levels of processing requiresd tor the
e ot desertang 2D scenes e 20 imaqge iavel deteclng fedtures nneh as edges hnes and ¥
comen S, 1 images. and the I scene level. reprecenting, constructing. and undatng the 2D scene

-mgael. Qur prncipal results includa: ¢

e Sicreuv Correspondence using Dynannc Programmming (2D Imane Level) - We have .
descrnbed a method to match the empolar line pairs n a stereo par and determine a ‘
rathar dense depth map of the scene. using intra- and inter-scanhne search.
Intra-scanting search determines the correspondence between edges n the same
scaniine of the left and nght images. This search can be treated as the probiem of finding
a matching path on a 20 search plane whose axes are the nght and left scaniines.
Vertically connected edqges in the imaqges provide consistency constraints across the 20
search planeg. /nter-scaniine search «n a 30 ssarch space, which i1s a 3tack of the 2D by
search planes, finds the vertically connected edges and applies the constraints. By
considening both intra- and inter-scanhine scarches, the correscondence problem can be
cast as that of finding in a three-dimensiunal search space the matching surface that has
the best match scores from intra-scanhine search and also satisfies the consistency
constraints from inter-scanine search. This prubiem s solved usmg- dynamic
programming for both searches.

e o o o 8 o @

e Three-Dimensional Model Buiainy angd Maintenance (3D Scene Level) - We have
investigated model building using rangefinder data. which is aiready three dimensional, :
bypassing the problem.of nenerating a 2D description from 20 cata. We have developed
techniques for representing, constructing, and updating the scene model The moclel is
in the form af 2D faces. eddgns. vert:ces. and their topology and geomctry A ranqe image .
18 segmenizd into edqge ponts to which linear seqments are Wt The ongmmal line
cegments 2re retined to clurinnta asne Focaeg ara then fit to the ne draeang. The hienl .
mcedel 1S reprosented as < gronh in t2rms of the symbolic pnimitives unce. ‘ace. ed;e. and .
vertex.  Although the final deccrninton s three-dimensional, most of the proces.ung 13
done in the two-dimensionul :maqge spuce Future work will combine made! information
to vbtain a full symbolic descriction ¢t a scene from range data obtaned trom muitiple
viewpoints.

In the future, we will continue our «~or- zn heth high-level and low-ievel image processing that is

requircd for the 2D scene analywis tuse  Zor sitcret will focus on analyaing and extracting 20 repetitive
taatural f2atures from images. mirm A sur -icreo algorithm, and reprccscenting and matching 30
scone models.

-
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o Texiure - Aenal images of urban scenes contain 4 iaije amount of texiures made of
repetiive paiterng™ such as windows on the budding fces. The abubty to hnd and
charactlernze such texturcs 1S essenhal 10 analyze complex mmages of man made
structures. ‘We will study the problem ol detecting und segmenting the regions made of
regulir arrdys ol repedted patteriis in Nayes by using the analysis of varaton.

e Sicreo  Stereo 1S one of the most unportant ways of artracting 3D features from nnaqes.
A fust robust stereo cupability would yreatly enhance ary 3D scenc interpretahiun
system. and would result 1n a signihcant step towards an effective change detection
system. We espec! 10 continue work on the stereo aigorthm based on the cynamic
MOgramiming techmque Jdeicriped m this r@port 10 iNCrease its speed and unprove the
guatl, of its matching results Our next step will Le to ncorporate mulli-recolution
techiuquies it hus atgenthen This shou !t improve maictung quahty bhecause it 1S easier
and more 1:noble to maic!: at Icwer-rasolution (SMallor) inages and the results can Le
propayited to highnr rasolulion (larger) inages. Speed should aiso be improved. since
resuits from smuller images can be used to limit the range of search in iarger images.

® 30 Moae! Acquisition and Maiching - Once 3D features have been extracted from the
images. they must be accumuiated into a coherent inodel and matched with previous
modeis l0 determine whether changes in the structure of the scene have occurred.
Matching 18 also necessary when merging two scene descriptions of the same scene,
pernaps ohtained from different iewpoints. into a single consistent descrption, or when
dentitying the-same 3D objects. such as moving objects. in different scanes. Wa will
continue our Nvestigation into this problem of reconstructing and matching 30D
dascrintions from a dense depth map which will be obtained either from stereo or from
direct range finding sensors.
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Appendix A.Hierarchical Feature-Based Object
~ “ldentification

Dawd Casasent and R. Lec Cheatham*
Carnegie-Mellon University
Department of Ciectrical and Computer Engineering
Pittsburgh. Pennsyivama 15213

*Present Acciress: Battelle Morthwest. Computers & Information Systems
Section. Richliand. Washington 99352

ABSTRACT A multi-level classifier for multi-class 3-D distortion-invariant recognition is descnbed.
New real iinagery and distortion parameter estimation accuracy data are presented.

1 INTROQUCTION
A feature space processor for muiti-class distortion-invariant pattern recognition is detailed in
Saection 2. A moment feature vector space is considered. Test data (! 2] on a robotic database are
summanzed in Section 3. Resu!'s on 2 ship Jdatabase. using real input imagery with references from
modeis is presented with attention to preprocessing, distortion parameter estimation, and class

identification ure advanced in Section 4.
2. PROCESSOR

A moment feature space is easily generated opticaily [3.4,5] or digitaily {6]. its outputs can easily be
corrected for processing errofs in post-processing [3). Moments are jointly Gaussian random
varigbivs (2] due to sampling with respect to in-plane distortions. Thus. they allow use o! a Bayesian
clacsifier and thus can minimize I’e. To determine the class / (object class ¢ and aspect view @) and
the object’'s distortions (described by a distortion parameter b) for each computed input moment
vector 5, we calculate

g = (m-a, (D) 2™ (- (D)
with g calculated iteratively (k is the iteration index) using
Ot g WY TN E = 0
The ciags i that minimizes (1) defines ¢ and the out-ci-plane rotation angle (aspect) ¢ of the input,

whareas [ provides estimates of transiations, ccales, and in-plane rotations. The number of iterations
k can be reducad 10 4-8, 3 = / can be uscd in (1) and (), and /in (2) calculated as 2n update [1.2].
Thig significantly reduces the computational fcad per class/aspect .
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The major proble 15 the large number of aspect-classes: that need potentially be searched.
To rclicve this. we ug® twh first-level estimators [1.2] to estimate the aspect (thus 1s achieved by

I'= 4 /p,) and class (a hrerarciical tree 1s used for this. with the node structure chosen from a
muiti-class Fisher projection and with a two-class Fisher discrinunant vector used per node). As we
show 1n Section 3. thws reduces the number of aspect-classes | to be searched and thus makes the
processor very comgutationally efficient. A block ciagram of the system 1s shown in Figure A-1.

o : Class
INPUT MOMENT FISHER | Estimate |
IMAGE COMPUTER CLASSIFIER REFERENCE

Aspect
Estimate

P
DATABASE

ASPECT
ESIMTATOR |

. ITERATIVE NONLINEAR
CLASS (1) LSM CLASS/ASPECT/DISTORTION
ORIENTATION (b)@==——x PARAMETER
CONF IDENCE

Figure A-1: Block diagram of a multi-level moment feature-space classifier

| ART

Nine different pipe parts (4 classes) viewed from a s0° depression angle were digiti;ed (1é8 x 128
pixels) with 36 images per part (one image every 10° in aspect) and used as our test database. Test
resuits are summarized in Table 1. They show: 9 out of 36 references are adcquate (Test 1). Use of
the first-level estimator reduces the number of i to be searched in (1) to 10 (Test 2). The number of
iterations k in (2) is only 6 over a large Ag range (Test 3) and & = [in(1) and (2) is adequate (Test 4).
As seen in Table A.1, the system of Figure A-1 can correctly classify over 97% of the 324 images
(using only 9 x 4 = 26 references).

4, DISTORTION PARAMETER ESTIMATION ACCURACY

Related tasts on another database [2.7] showed comparable performance and similar operational
parameters. In this database. the reference objects were obtained from models ang in tests against
real-world IR images. excellent recognition was obtained. The preprocessing required [7] used only
simpie 10 and 2D histogram operations and thresholding (to maintain low computational overhead).

We now consider the class c. aspect ¢. scale a and transiation x,, estimation accuracy of the system
tor a second five-class database (26 mages at 10° aspect intervals per class) using only four
referencas per class. The true object was the 80’ aspect view of the class 1 unage. A real IR ingut
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TEST - PERCENT
NUMBER CONDITIONS CORRECT REMARKS
(OUT OF 324)
: 9 Aspect Refs each 40° Used
1 No Aspect Estimator 97.5% 24 View-Class (Avg) Passed
2 Full First-Level Estimator 97.5% 10 View-Class (Avg) Passed
3 ag; = 107% to 107! 98.25 ore 6 Iterations k
4 Different T 90-93.9% Z = 1 (90%) Adequate

Table A-1:

Representative Pipe Part Data (Different Test Conditions)

image (vs. references obtained trom models) at a depression angle 10° dilferent from that of the

refarence set was used with real IR noise present in the input.
class and aspect classification for Ag’ =10"~-10"

The tests (Table A-2) show perfect
‘(tor Ag, = 0.5, errors resulted as expected) and
excellent shift ("o in pixels) and scale factor {a) distortion parameter estimation.

All distortion

parameters were est:imated within 5% accuracy, due to the input resolution, noise, etc. factors.

TEST ‘”ﬁféﬁgﬁFE a/x) CLASS/ASPECT
N e ESTIMATE ESTIMATE | _
] 1.0/0 | ._1.0/0_ 1 . 1/80°
2 ). 1.0/15 ) 1.016/14.22 1 1/80° ...
o3 L 10728 ) 1.023/23.22 ) ] 1/80° __.
L B 0.5/0 __1.. 0.499/0.1 1 ____ 1/80° ...
IR T 0.75/0___1.0.750/0.07 1 __. 1/80° __.

6 0.9/0 0.90/0.03 1/80°

Table A-2: Results of Class and Distortion Estia;nanon Tests
(True Class 1. Aspect 80 )
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