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ABSTRACT

This project is a multidisciplinary eflort between 3 Departments and Principal Investigators. It
intends to combine: pattern recognition, image understanding and artificial intell igef ice techniques
for space-based image processing as well as: optical and digital processing methods. Optical feature

* extraction and wub.pixel target detection and tracking results are summiarzied. Scene representation

and modeling work Using: probabilistic graph matching, multiple resolution rotation- invariant
operators and texture analysis are detailed. Image understanding techniques for 3D scene

* interpretation discussed include 20 image-level methods (using features such as edges. lines and
corners) and 3D scene-level methods. New dynamic programming, stereo image and model building
results are included.

30 scene interpretation, artificial intelligence, feature extraction, hybrid processors, image
understanding, multiple resolution rotation invariance. optical/digital processing, probabalistic graph
matching, space-based imagery, sub-pixel targets, texture analysis, time-change imagery.
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1. INTRQ.WJCTION

1.1 OVERVIEW

This project is a multidisciplinary effort intended to combine methodologies for image analysis and
interpretation, and evaluate the application of this integrated approach to problems of space-based

imagery. The project has brought together research teams from within the Departments of Electrical

and Computer Engineering, Computer Science. Robotics. and Bicmedical Engineering of CMU.

We have chosen time-varying space-based imagery as the applications domain in which to evaluate

our integrated approach. The two aspects of this domain are described below:

" Space-based imagery involves large amounts of information and incorporates both
structural and textural properties of a scene. Efficient detection and representation of
information in the scene are essential not only to interpretation but also to the storage
and transmission of information. Scenes are predominantly two-dimensional although
light and shadows affect imaging of both structures and texture, and interpretation of
scenes at increasingly high optical resolution will require three-dimensional models.

* Intepetatt a of time-varying data is a primary goal of space-based image analysis and
adds an additional dimension of complexity to the problem. We have chosen to look at
three time-frame scenarios which require somewhat different analysis tools. High speed
tracking is viewed as primarily a feature extraction proolem and has been approached
using optical methods. Medium and long-term time change detection must be based on a
more abstract description of the scene and methods of representation and model-based
interpretation must be brought to bear.

Within the context of the applications domain, we have addressed the following methodological

research issues:

* Optical feature extraction and detection

* Structural and textural representation and matching

" Model-based image interpretation

" Hybrid digital/optcal computer architectures

These issues are fundamental to implementation and performance of analysis tools which could
imbed the inherently fast and parallel oreprocessing power of optical techniques into a system which

develops and tests hypotheses about scene representations and scene models.

In Chapter 1 of this report, we provice a rc-e detailed overview of the conceptual framework of our

proposed hybrid optical/digital sys:e' e'n. 'he space-based image processing problem, and

I V WY"
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discuss the impgrtage of this work to Air Force technology and to related Air Force programs.

Section 1.5 provides a summary of our research up to this year. Section 1.6 provides a summary of

our current year of research, with details in Chapters 2-5.

1.2 CONCEPTUAL FRAMEWORK FOR HYBRID
OPTICAL/DIGITAL IMAGE PROCESSING

In Figure 1-1. we show the general structure for our proposed hybrid optical/diyitAl system using

multiple methodologies for understanding space-based images. As shown in Figure I- 1, input images

are preprocessed and then fed to parallel optical and digital channels in which multiple features are
.extracted. A parallel image modeling system is also shown which extracts structural descriptions of

the image. These data plus image registration and target detection information obtained from an

optical correlator channel are then used by an AI/IU system to modify the parallel input processing

channels, to assemble and interpret a time-history track file on objects of interest in the image and to

provide the necessary textural and graphic output reports.

1.3 PROBLEM DEFINITION

Advanced space-based sensor systems will provide us with high-resolution real-tine mulisensor

data acquisition in the near future. This will totally pollute present processors uniess we address how

to intelligently and timely process and handle the projected data rates. NASA and others have already

verified that the United States is capable of collecting more data than we can intelligently process

(less than 1% of all NASA data has even been looked at (Wilson and Silverman, 19791).

The key issue in Space-Based Image Understanding (SBIU) Is not to transmit every frame of data

(with 5000 x 5000 sensor elements in three bands with ten bits of data per pixel, and a 30 frame/sec

rate, this is a data collection rate of over 1010 bits/sec). No existing technology can accommodate

such a high data collection rate. Therefore, attention should be given to the algorithms required to

achieve this. But first, heme are several facts about SSIUI problems:

1. In spce-based image acquisition, we are monitoring certain areas and regions for
diverse well-defined missions. We are only concerned with changes and do not need to
know that nothing new has occurred in the image being looked at. When we transmit
only the associated cnange ;nformarion, we achieve a quite significant bandwidth
reduction. Thus, we should process the data from space-based sensors on-board the
platforms, determine image cranges on-line, interpret the results and transmit only
textural and graphic output reports.

2. We know rather well where the satellite is and where it is looking and we know that the
scene being imaged correlates -,tl 'he prior image frame or with our stored reference.

. p
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The problem is thus different from the often discussod unbounded and unsupervised
target recognition problem. We can and must utilize this a'riuri information that the
frame we are investigating correlates wiilt a previous one im our proces.ift iyltjorithns.

3. To provide better image registration accuracy and to facilitate pointing of secondary
sensors at given areas of interest, it is often necessary to locate key landmarks in the
image. This is also useful in determining geometrical corrections needed.

4. It is also useful and necessary to register two successive image frames for inter-frame
integration to decrease the variance of the noise and to improve the image quality. This
is essential to accommodate platform variations with time and backjround drift. Often.
sub-pixel image registration is necessary.

5. It is obviously essential to subtract succsssive frames since this prov.des the necessary
change detection or time-varying target data.

G. However, in most cases, the image registration in (4) is sub-pixel and thus before
performing (5), we must interpolate the images.

7. Once time.-history track files of candidate objects of interest in the field-of-view of the
sensors have been obtained, a multitude of discrimination analysis techniques Al. IU,
pattern recognition and human perception algorithms are necessary to classify,
understand and interpret the time-change activity noted.

IL In advanced sensor systems, 3-D information on the scenes will be available from stereo
satlites or other techniques. In such cases, we can fully capitalize on the available
image Information only by the use of advanced 3-0 scene modeling and interpretation.
The key point is the extraction of scene information (3-0) from time-historles of 2.0
imag&

9. To detect and describe detailed changes in the 3-0 structure of scenes, it is useful to first
generate 3-0 scene descriptions from the 2.0 images, and then to compare the
descriptions for changes. Conventional 2.0 change detection approaches are not as
useful for high resolution images of complex scenes since they do not take into account
factors such as different viewpoints and different lighting conditions for the different
images of the scene. In order to detect changes over successive images of a given scene
obtained over time. it is useful to maintain a 3-0 model of the scene and automatically
update the model as changes occur. This requires the ability to match the model with
each new view of the scene. Matching in 3-0 is more desirable than matching in 2.0
since the 3-0 Information is represented in a manner that is independent of viewpoint and
fighting conditlons.

10. The 3-0 scene model is a useful central component for many aspects of the change
detection task. Not only is it useful for determining whether changes have occurred, but
it also permits model-based interpretation of new images and serves as a central
representation for accumulating 3.0 scene information from various low-level experts.
Our new research addresses these aspects of time-history 3.0 scene information.

items 1-6 address the high throughput signal processing aspects of SBIU, whereas items 7.10

71
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address tie advanc~d image understanding aspects of this problem. Table 1-1 summarized

objectives which must be attained to achieve the overall goal of SBIU. In Table 1.2. techniques

required to attain these objectives are listed. and Table 1-3 lists the disciplines which will contribute to

the achievement of our goals. As well as image processing per se, we must study the importance of

efficient database organization and manipulation since storage or transmission of a very large

database will be required for SBIU.

To properly address understanding of time-varying space-based images. we feel that three different

SBIU time-varying image processing scenarios (Table 1.4) must be separately addressed. We

propose to study each of these during the course of our research. We distinguish the three cases by

the change rate and the domain of analysis. In the first case (rapid time.variations), we can consider

a missile launch. In this application, the objective is to track the time-history of the missile and to

transmit the information that a missile has been launched (from subsequent sensors, the missile's

trajectory etc. can be obtained from our system techniques and algorithms). The second case

(medium time-variations) can concern monitoring of key sites such as airports, railroads and harbors

and know area of anticipated concentrations of troops or armor. In this case, troop or armor

movement and arr,land and sea activity can be obtained from time-varying image data. This second

scenario is typical of a case in which extensive Al and IU techniques are appropriate (i.e.. the use of

information on the locations of hangers, runways, railroad tracks, terminals, switching yards, harbor

channels, docks, piers, etc.). This also requires the locations and registration of these items in

sequential image frames. The third case (slow time-variations) addresses urban development and

agricultural or land use activity (as in Landsat and ERTS case-studies).

Table 1-1: Objectives of Space-Based Image Processing

* Oelmction of image c*hangea

* urn ea Ogi knOWldg

* Locad of key landmarls

* Time-hietory track file acquiiUn"

* inilfrpetation of time.hislory data

0 3.0 scene tnterwetaton

0 Efficient storage a,a 'etneval of information frot. deuMase

The three scenarios noted in Table 1.4 constitute our definition of the SBIU problem. All cases

require the techniques and disciplines toted in Tables 1-2 and 1-3. The first case (rapid time-

[I
i
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TLab* 1-2: Image Processing Techniques Required for SBIU

" Image enhanceament and Wr~wocASWifg

" Image rgistation (sub-pio) for frame integration

" Image subtraction for time-history extraction

" image interpolationi for image subtraction

" image segmentation

" Feature extraction

" limage modeling

* 3-0 scene modeling and interpretation

" Hierarchlca deltass deegn

Table 1-3: Disciplines Required to Achieve Real-Time Space-Based Image Processing

* Pattio recognitilon

* limage understanding

* Arificil Intelgence

" Optica Procening

Table 1.4: Time-Change Scenarios

TiME OANGE EXAMPLES DOMAIN OF ANALYSIS

111pitI Mlnft Launch Inmage Pixels

Mediumn Railroad, Airport. Harbor, Troop&, Armor Sene Structure

slow Agricultural, Land-use. Urban Development Statistcal Image Modeling

variations) requires primarily sub-pixel image registration, frame integration, frame interpolation, and

image differencing. The second case requires techniques involving image interpretation, 3-0 scene

modeling, 3-0 matching and comparison, plus knowledge-based geometric reasoning. The third case
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needs more statistical techniques and statistical image models. more so than do the others. All cases

require object anrd scene modeling. image preprocessing and enhancement plus segmentation.

feature extraction and classification. Figure 1. 1 depicts these aspects and the interactive multi-

disciplinary feedback required to solve these SBIU problems.

1.4 BENEFIT TO AI R FORCE TECHNOLOGY

With our three scenario problem definition (Table 1.4), we now consider the myriad of Air Force

programs and technology that can benefit from our proposed research. First. we note that our

research is directed toward the development of new algorithms and their realization in a hybrid

optical/digital architecture. However, devices and architectures being developed in related Air Force

programs in VHSIC and VLSI. systolic array processors, Josephson junction devices, etc. can also be

used for implementation of these algorithms. Our work will thus provide problem definition and

direction regarding algorithms for such parallel processor architectures and technology programs.

Large data storage requirements and studies of what constitutes a valid database are also integral

parts of this program. Similar Air Force efforts toward data storage and database acquisition are thus

of direct concerft to this program. The Air Force programs in: intelligent sensors, intelligent task

automation, automated manufacturing, image understanding, human perception and visual

psychophysics will directly benefit from the inter-disciplinary nature of our research. The large Air

Force effort in optical data processing will directly benefit since real-time spatial light modulators and

holographic optical elements will be needed for implementation of our algorithms in real-time. The Air

Force programs in missile guidance require a new set of algorithms and attention to the database

requirements and performance measures used and thus they will likewise benefit extensively from this

program. Darpa/AF programs such as HALO and HICAMP will clearly benefit from our chosen

time-varying SBIU tasks.

The monitoring of changes and developments at cultural sites, such as urban areas and military

bases, is a very useful application of space-based sensors. The techniques we develop will aid in

detecting and describing both large-scale and detailed changes. Furthermore, the techniques

dealing with 3-0 matching and comparison, and knowledge-based geometric reasoning will enhance

Air Force programs in sensing and robotics.

=,v
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1.5 SUMMARY OF RESEARCH DONE IN YEAR ONE

In our first year of research, we focused on the development and evaluation of methods which yield

representations of structural and textural information in an image. and relate these representntions to

object and surface contour properties of the scene. The techniques studied included Probabilistic

Graph Matching, Multiple Resolution Structural Basis Functions. and Textural Suiface Modeis. The

structural basis function and texture models were found to be particularly well suited to parallel or ,

optical processor implementation. Two digital processing facilities for use in this program were also

assembled: the RAPIDbus architecture, and an Optical Data Processing. Digital Processing and

Simulation Facility.

We also achieved a major effort on the extraction of time-varying sub-pixel targets in noise. This

time-change scenario concerns applications such as the detection of missile launches or aircraft in

flight. In the first year, we successfully demonstrated the conceptual ability to detect and track

sub-pixel targets.

In the 30 change detection task, we achieved results in two aspects: the low-level problem of

analyzing images imd the high-level problem of representing, constructing, and updating the scene

model. We developed techniques for extracting building structures from high resolution aerial

images of urban scenes, including lines not originaily found but predicted by the model. Image lines

were classified as building boundaries or other lines which arise from texture and shadow

boundaries. We also experimented with efficient methods of searching a line image in order to form

junctions which can then be used for stereo matching.

At the higher level of processing, we developed techniques for representing, constructing, and

updating the scene model, using task-specific knowledge.

1.6 RESEARCH PROGRESS IN YEAR TWO

1.6.1 Optical Feature Extraction and Sub-pixel Tracking

The optical feature extraction phase of this project has been terminated except for a small synthetic

discriminant function (SDF) effort we still report upon (for aircraft) in our 1985-86 report. This was

necessary because of the reduction in ECE funding for year 3 to one.third of our prior year 2 level.

Our year 2 progress and the proposed tasks for year 3 work included in the new task list are ll

addressed herein and terminated (except for the one SDF effort noted above). Our final report on %

these is contained in chapter 2. appendix Al and the appendices of our proposal referenced in %

chapter 2. %

" ,.
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This effort included attention to moment. chord and other optically-generated feature spaces.

Architectures for'eacl of these methods were devised and initial results were obtained. These

showed : the ability to optically implement various feature extractors: the architecture for a hybrid

optical/digital moment processor, successful initial tests of this architecture on a ship image data

base and a robotic pipe part data base: new results on the accuracy of distortion parameter

estimation with this processor, an advanced correlation SOF synthesis method and most successful

initial test results of it on ATR vehicles.

Our time change detection work has achieved various significant results and demonstrations of the

ability to detect sub-pixel target: rearrangement of our software to insture proper statistical

characteristics of the generated scenes; the development of new single differencing methods that

prove promising for clutter suppression; the initial formulation of general space/time filtering for

target enhancement and. background suppression; the investigation of detector limitation effects.

Our investigations have revealed a potential nonzero mean problem in the correlated noise images

with high correlation coefficients. This problem is overcome by appropriate modifications to our

software. Our software is also rearranged to provide a more unified control of the various parameters

characterizing the synthetic image. We have observed that while the exponential sub-pixel shift

estimator performs better than the pardbolic estimator for the synthetic data, the reverse is true for

LFM signals. This indicates the need to consider both sub-pixel estimators in the future. Our efforts

have also pointed towards more sophisticated space/time processing methods for better clutter

suppression.

1.6.2 Algorithms for Hybrid Digital/Optical Representation and Matching

This phase of the project has focussed on the development and evaluation of methods which yield

representations of structural and textural information in an image, and may be used for matching

images to scene model. The principal results achieved in this research include:

e Probabilistic Graph Matching - Attributed graph structures are used as models of
structural and statistical information in the image. Matching of these graph structures
using probabilistic similarity methods poses a number of interesting problems in the
mathematical formalism, in the computational matching algorithms, and in the application
of these methods to real images. We have investigated methods of subgraph
decomposition which permit branch .and.bound search of the matching tree and provide

efficient pruning of the possible matches.

*Multiple Resolution Rotation-invariant Operators - The MAI (Multiresolution Rotation
Invariant) operator and the MRO (Multiresolution Difference) transform have been
introduced to extract structural and textural features of images for use in matching and
interpretation phases of analysis. The MRI is a complex operator dorived from derivative

i
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expansions of Gaussian kernels and will have magnitude of response independent of
feature orientation and phase angle of response which provides information about
orientation.Tho'spatial and frec iency domain properties of these operators have been
studied and an approximate MRI operator which uses difference of shifted Gaussian
kernels has been derived and shown to be computalonally efficient due to the scaling
and shift properties of the Gaussian kernel. The MRI operators have been applied to
aerial images of objects and textures.

* Texture Analysis- The MRI operators described above have been used to characterize
and classify textures front aerial images. This set of multirecolution operators permits
classification of texture independent of the size and orientation of the texture pattern
itself. The statistical distribution of the magnitude responses is analyzed across the set of
operators for regions of the image. Correlation with the corresponding magnitude range
and the corresponding phaze distribution provides information on the relative scale and
the relative orientation. Experiments on textures from aerial images and textures from
simple patterns have been carried out and compared to previous texture energy
operators.

.The algorithms studied in this section reflect the interdisciplinary nature of the project. The MRI
operators and associated texture measures are particularly well-suited to parallel or optical processor
implementation. They will be implemented and evaluated on the array processor with RAPIObus hosL
Our formulation ofzthe recursive model-matching algorithms is also intended for implementation on
this type of architecture with extensions which may integrate symbolic and numerica processing.
The interactive use of parallel and optical preprocessing with hypothesis formation and adaptive
search strategies will be natural continuation of the work completed.

1.6.3 Image Understanding Techniques for 3D Scene Interpretation

The problem of detecting three-dimensional changes in a complex urban scene is a very difficult
one, particularly since any information extracted from the complex images is highly incomplete and
contains many errors. Therefore, we have thus far concentrated mainly on the problems of extracting
information from such images and accumulating the information in a 3D scene model.

In this report, we describe results in two aspects of these problems: low level image analysis and
high-level model maintenance. The goal of low-level image analysis is to determine a set of 3-
dimensional line segments in the scene which correspond to building boundaries. The first step in
such a process is to map the two-dimensional image into a 3-dimensional scene. One method of
doing this is to perform stereo matching on a pair of images and use triangulation to determine the
third dimension.

We have developed a stereo algc::th' .,sing 'he technique of dynamic programming. The stereo



12

matching problem. i.e. obtaining a correspondence between right and left images. can be cast as a

search problem. Wmer"a pair of stereo images is rectified. pairs of corresponding points" can be

searched for within the same scanlines. We call this search intra-scanline search. This intra-scanline

search can be treated as the problem of finding a matching path on a 2D search plane whose axes

are the right and left scanlines. Vertically connected odges in the images provide consistency

constraints across the 20 search planes. Inter.-scanline search in a 30 search space. which is a stack

of the 20 search planes. is needed to utilize this constraint.

Our stereo matching algorithm uses edge-delimited intervals as elements to be matched, and

employs the above-mentioned two searches: inter-scanline search for possible correspondences of

connected edges in the right and left images, and intra-scanline search for correspondences of

edge-delimited intervals on each scanline pair. Dynamic programming is used for both searches

which proceed simultaneously at two levels: The former supplies the consistency constraints to the

latter, while the latter supplies the matching score to the former. An interval-based similarity metric is

used to compute the score.

In order to oursuehe problem of high-level model maintenance independent of the current state of

the lowlevel Image analysis research, we have choen to investigate mode building using

rangefinder data, which is already three dimensiunal. Specifically, we have developed techniques for

extracting detailed, complete descriptions of polyhedral objects from light-stripe rangefinder data.

The descriptions are in the form of 30 faces, edges, vertices, and their topology and geometry. A

range image is first segmented into edge points. A line drawing is then obtained by fitting linear

segments to the points in the image, and refining the segments to eliminate gaps. Faces are then

generated from the line drawing. Interestingly, although the final description is in 3D, most of the

processing is done in the 2D image space. This work will be applied towards the goal of obtaining a

full symbolic description of a scene from range data obtained from multiple viewpoints. Our 3D model

building and updating results are detailed in Chapter 5.
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2. GENERAL 3-D FEATURE EXTRACTORS AND
CORRELATORS

This ECE project phase has been terminated because of the significant reduction in funds for

1985.198. Because of the lack of future support possibility, contingency funds available from cther

sources were not sWent to continue this project.

The intent of this task was to employ feature extraction and correlation techniques to locate, track

and identity large targets in 3-0 in severe clutter. These output track files on candidate targets would

then be processed by the lU/Al portion of the system.

2.1 TARGET GENERATION

Moving targets and aircraft imagery were emphasized. For such a scenario, we proposed a quite

novel image generation software package for aircraft imagery. This routine (Figure 2-1) consists of 3

stages. The final output is a 2-D image of the aircraft as seen from any user specified orientation

angle i and for any object-centered rotations 0 , 9 and 09 and at any scale and resolution. The

aircraft data bas. consists of Soviet and U.S. military aircraft as well as commercial aircraft. Figure

2.2 shows typical images of several of these aircraft at different orientations. A most attractive aspect

of this routine is the efficiency of Step 3. Specifically, our initial calculations indicate that the required

matrix transform operations can be computed (for all target vertices, to determine the 2.0 prujvwtions

of the image to be seen) within 150sec using a quite modest array processor. This has significant

importance for PR since one can now realistically assume that any necessary reference image (for

correlation or feature extraction purposes) can be computed on-line. We also began initial efforts to

modify this algorithm to enable range images to be processed (with pixel values proportional to the

range of that portion of the target). This satisfies our promised research on the proposed Task 2 item

for 1985.196.
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2.2 TA RGET DETECTION

For moving target acquisition of such objects, we simply generate two image frames with a standard

background and with an aircraft target from our rotitine in Figure 2-1 inserted in each. with a

displacement of the target between two successive frames (Figures 2-3a and 2-3b). A simple

differencing of these two frames results in extraction of the target (Figure 2-3c). More advanced

(higher level. etc.) image differencing methods are required for other cases. A time-sequence of such

output imagery provides information for a target track file and for input to an optical Kalman filter for

state estimation and trajectory estimation. At this point, a high-resolution adjunct sensor can be

activated to track the object. Alternatively, a laser radar providing range data can be activated.

-Figure 2-4 shows typical range images of the aircraft generated on our routine in Figure 2.1.

2.3 MOMENT FEATURE SPACE

The moments of an object can be optically computed [Casasent et al, 1982]. In Appendix A of our

proposal, we fully detailed our proposed moment processor for aircraft classification. This

hierarchical system employs two first-level estimators (one for aspect and one for the object class)

and a second-level Bayesian classfier (requiring a nonlinear iterative technique to achieve class and

information parameter estimation). In recent work, this algorithm has been fully encoded, but due to

lack of funds, we were unable to test It on our aircraft image data base. Initial tests showed that it

provides quite accurate object orientation estimates. For sufficiently separated classes, it was found

to have surprisingly good noise immunity. The major attraction of this system is its theoretical basis.

We have now showed that moment features are jointly Gaussian random variables for input plane

translation, scale and rotation distortions. A Bayesian classifier is possible and optimal (however,

each object class and object aspect view must now be treated as a different image class). The

fir3t-level estimators achieve a reduction in the aspect views and classes that the second-level system

must search. The class estimator in this first-level of the processor uses unique organized

hierarchical tree structure methods for synthesis of the tree. The node selection and discrimination

function per node in the tres are selected automatically using a two-level Fisher classifier (following

the first-level multi-class Fisher classifier, employed to achieve organized hierarchical structure for

the bee). The resultant node structure is thus not ad hoc, as is generally done. [Casasent and

Cheatham, 1985] detail the most recent and our expected performance of this algorithm (Appendix

A).

p * 1 P. [
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Figure 2-4: E-xamplesof syntheticallygeneratedrne images
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2.4 CHORD FEATURE EXTRACTION

Our work on this feature extractor was summarized in Appendix B of our proposal. This technique

appears most attractive for range imagery with reliable gray scale, and in this case it appears

preferable to other realization schemes. No further work on this powerful optical technique to

generate these distortion.invariant features in parallel has been performed.

2.5 SDF CORRELATORS

This novel class of correlator that promises distortion-invariant object identification was fully

summarized in Appendix C of our proposa. It is thus not documented further here. Initial tests of this

technique on aircraft will be included in o.ir 1985-1986 research as our proposed Task 7 research for

1985.1986.

2.6 HISTOGRAM PROCESSING

Only initial work on this proposed (1985-198) task item was advanced. We developed routines to

compute and display histograms. We then generated range imagery of selected aircraft and

investigated their histograms and their potential use in distortion-invariant object classification.
Figure 2-5 shows the histogram of an F15 with in-plane rotations about the z axis by 0". 30, 600 and

90 . As seen, all histograms are essentially identical. This verifies that histograms are invariant to
in-plane rotations. Figure 2-6 shows the histograms for the same object in Figure 2.5 scaled in range

by a factor az. Comparing Figures 2-5 and 2-6. we note that the shapes are the same for both patterns,

but that one pattern axis is shifted. This verifies the invariance of the shape of the histogram

distribution with object scale and the ability to determine object scale or target range from such data.
Figure 2.7 shows histogram plots for similar object rotations for an MIG. The numbers 1.3 denote

different portions of the aircraft (wings, fuselage, tail assembly). A comparison of Figure 2.7 with
Figulres 2.5 and 2.6 shnwt that the shape nf the histogram can provide aircraft discrimination. This

concludes our report for 1985-1986 on our proposed Task 1 and Task 6 research.

kiP
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3. SUB-PIXEL TARGET DETECTION AND
TRACKLIG

In our year 2 effort, we investigated several issues concerned with the detection and tracking of

stb.rpixel targets. These issues include improved database generation, selection of optimal sub.pixel

location estimators and interpolators and quantification of detector limitations. In this chapter, we

oresent the various results obtained in these efforts.

3.1 IMAGE GENERATION

Our year 1 report fully outlined the software needed for the generation of synthetic imagery being

used for simulation. The staring sensor image I(x,y) consists of three separate images: a sub.pixel (of

extent less than 1 pixel in the detected image) target with a constant value, Gaussian correlated noise

(CN) image with prescribed mean, variance and correlation coefficients to simulate* the clutter

background and uncorrelated white Gaussian noire (UCN) image of zero mean and prescribed

variance to simulate the instrumentation noise. These can be generated as below.

Let g(x,y) denote a NxN array of white, Gaussian random numbers of zero mean and unit variance.
Such an array can be obtained from the IMSL software package [IMSL1982]. Then a zero mean CN
image f(x,y) with variance a2 and correlation coefficients p. and p can be obtained by the following

2.D digital infinite impulse Response (lR) filtering.

flx.y) = l-y- 1)p/x-ty)+-p,/tx.y- 1) +0G_( - p. - + pxp> &A~y
(3.1) '

These CN images are used to simulate clouds at various heights. Different cloud levels are

characterized by different means, variances and correlation coefficients. Because of the small time
interval between successive image Irames. we assume that tho CN images are coherent between

successive frames(Rauch 1981]. This orco, rjy is easily accomplished in our software by maintaining
the seed value for the random number ;eeator PING) to be the same. On the other hand the UCN

V
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image is used to model instrumentation noise and it is independent from frame to frame. UCN can be
A-

eatsily genernted by multiplying the .4( .r) of eq.(3.I) (obtained with different seeds) by proper

constants. The sub-pixel point target is modeled as zero outside a con tant square region (whose

dimensions are less than 1 detector image pixel) in the high resolution image.

The CN, UCN and target images are combined to yield a high resolution (532x532 pixel) image.

Overlapping blocks of approximate size 8x8 are then combined with the help of a blur function to yield

the detector image d(x. . ) of size 64x64 pixels. The blur function is constant in the interior of a 8x8

reyion and has Gaussian tails at the bourders. Sub-pixel motion of the target can now be easily

simulated by moving the tai get by integer pixels in the high resolution imagery.

While the above procedure of generating a staring sensor image by combining CN, UCN and sub-

pixel targets at high resolution and blurring them seems satisfactory, we observed that the detected

images had a significant non zero mean. To detect the source of this discrepancy, we conducted an

investigation of the statistical parameters yielded by the IMSL programs.

The mean of the random array g(x,y) of size NxN is obtained as

1 (xy). (3.2)

It can be easily shown [Papoulis] that this mean estimator is unbiased and has a standard deviation of

( /,) where v2 is the variance of the noise g(xy). For the images of interest, a a I and N M 500

yielding an expected standard deviation of 0.002 in the estimated mean. In Table 3-1, we show the

estimated means and variances as well as the theoretical standard deviation in this estimated mean as

a function of the image size N. It can be seen from this table that the estimated means are well within

(one o) their expected statistical fluctuations. Thus the RNG being used seems satisfactory.

For a 512x512 UCN image g(xy), the estimated mean At is of the order 0.002. When this UCN image

is input to the 2D digital IIR filter of eq.(3.1), we can show that the resulting CN image f(x,y) has

following estimated mean.

[(I + p.X1 + P11
[(1+p(1+p) 1 1 2 a(3.3)

f= 0 IL;, .-

In our simulation o = l and p = P= 0.95. Thus. Aris about 40 times a3 large as ,t" Thus a

variation of almost 0.08 can be seen in the CN image mean as a result of vam iation of 0.002 in the UCN

N"
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SIZE N Mean Estimate A St.Dev(,I1 Variance Estimate a

10 0.00218 (1/10) 0.9488

so -0.01724 (1/50) 1.0018

64 .0.00181 (1/64) 0.9843

128 0.00548 (1/128) 0.9947

256 0.00252 (1/256) 0.9961

512 0.00055 (1/512) 1.0025

Table 3.1: Measured estimated statistical parameters for UCN data
with it a 0. a1

mean. This amplification factor increases as p Xand p ,values approaches 1. As an example, )kI is

about 200 times as large as AS for pX= p Y = 0.99 . This problem is illustrated'in Table 3-2 where we

show the estimated means of a CN image for various p p Y = p values.

- X p= P Estimated Meanp

0.0 -0.0004

0.5 .0.0014

0.75 -0.0034

0.90 -0-0099

0.95 .0.0217

0.97 -o006

0.99 .00613

Tablel3.2: Measured mean estimates for a CN image Of siZe 532x532

To overcome this problem of non-zero mcan -ipification due to digital IPR filtering, we forced the

data arrays to be of zero mean at all points in the processing. This is accomplished by estimating thes

me~ values ; at various stages and then simply subtracting them from the data. This process

risue~ ina meam value of -3.3x10'? (close to computer precision) for the CN image whereas it was

-2.lblO0* before this procssig. This imocrtant check is now incorporated into our image

generation software.

Once the high resolution (532x5321 image :ontaining CN, UCN and sub-pixel target is obtained, it is

convearted to a sensor image (84484) US'111 3 tiuf functionl b(x.y,). This function b(x,)y) has a constant

value I in the center and decreases rcr.7%:r.caoy n a Gaiussian error function manner towards the

edges. Such a blur function model accz.-.--,: :' -.te aoerture effects in many imaging systems[Hall].
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For simplicity of ana!rsis. we use a rectangular blur function model instead of the correct Gaussian

function. ie. we assume b.) ) to be 1 inside a square region of dimensions PxP and zero outside.

Then the detector image ( % ) is obtained from the high resolution inagef( kj ) as below.

P P
d(..l) = I , P - 1) /- P(-I)) (3.4)

Since the operation in eq.(3.4) is linear.,(..y) is also Gaussian and can be characterived using only

first and second order moments. Since f(. y) is of zero mean. so is d(x.) ). It is instructive to

analytically derive the second order statistics of J(..y).

E{jd(x.y)-d(x + Ax.y+ &y))

,P P P P

=L : Z : Efli+,P(x- 1).j+ P(y- ,Ik+ P(x+ &x-I). 1+ 1y+ ay- 1)))
P A ji Jul k-l I=I

SP P P /,P'l Jul kui /I

4~JPx~ ~uI.{Z ,IA~.-A~(3.5)
P ul kni Jul 1-i

To determine the variance of the detector image, we use Ax = 0 = Ly in eq.(3.5) along with the fact

the terms inside the double sums depend only on the difference in the indices to obtain the following.

a _ Ikilki
Varfd(x.y)}= -{P. 2: _i-) }{ L--

P ku-P ku-P !
I P I

02 JM- a)- 2pZI- 1 III - P)2p(1- pp)
PI. (I- )I 1 Y } (3.6)Pa (1-p)1  (1- pr)'

This expression is used in Table 3-3 to show how the variance of the detector image changes as a

function of detector size P and original CN image correlation coefficients. We see from this table that

the variance decreases as the blur function size increases and as the original CN image becomes

uncorrelated. We see that for p = 0.95 with P= 8, the detector image has a variance of 0.771 instead of
one. This discrepancy is taken into account in evaluating the p~erformance of our various algorithms

for sub-pixel target detection and trackmng. These analyticat results were compared with

,,
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calculated/mieasured estimates of variance of synthetic imnages and very good agreement (only 2%)
error Was observed

Correlation Detector Size P

Coefficient p 2 4 8 12
0.0 0.250 0.063 0.016 0.007
0.5 0.563 0.266 0.098 0.049
0.75 0.766 0.525 0.289 0.178
0.90 0.903 0.776 0.596 0.471
0.95 0.951 0.882 0.771 0.679
0.97 0.970 0.927 0.855 0.791
0.99 0.990 0.975 0.949 0.924

Table 3-3: Theor etical detector image variance as a function of detector size
P and CN image correlation coefficient p a *

Finally, analytical results are derived for the correlation coefficients p~'andp Y ' of the detector
image dA).This is achieved by using (Lx = 1. ay -- 0) and (Ax =0, -^y a1) separately in eq.(3.5).

After tedious, but straight forward algebra, we obtain

z P

P(G - p - 2Px(1 p-

and

P P
p,(1Z - - (3.)
3P

The analytical relations in eq.(3.7) are used in Table 3-4 to show how the correlation coefficients of

the detector image d(x.y,) are affected by p and P. This clearly shows that the increasing P or
decreasig the p value of original CN image leads to decrease in the detector image p values.

While the above theoretical analysis was carried out with the assumption of rectangular blur
functions. experimental resuts indicate no significant differences in the estimates for Gaussian blur

.0
14
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Blur Size P

p4 Zpayp 2 4 8 12

0.80 0.720 0.563 0.358 0.245

0.85 0.786 0.653 0.458 0.334

0.90 0.855 0.755 0.590 0.469

0.95 0.926 0.870 0.766 0.676

0.97 0.955 0.920 0.852 0.789

0.99 0.985 0.973 0.948 0.923

Table 3-4: Theoretical correlation coefficients in the detector image as a
function of blur size P and original CN correlation coefficient p

functions. The various observations noted in this section are incorporated in our software to provided

a unified framework for image synthesis.

3.2 SUB-PIXEL SHIFT ESTIMATION

An important aspect of our image sequence processing is the estimation of sub-pixel shift in the

background CN images between successive frames. This 3hift is then used along with all interpolators

to produce two aligned images. These two property aligned images are then subtracted from each

other to enhance the target and suppress the background. In our year 1 report, we investigated the

use of 4 sub-pixel estimators, namely (i) gradient.based estimator, (ii) exponential model estimator,

(iii) parabolic model estimator, (iv) Least Mean Squared (LMS) estimator. At that time, we showed

through simulation that the exponential model based sub-pixel estimator performs best as this model

matches precisely with the correlation function of the CN data. In this section, we present our result

on the use of the two non.parametric methods (parabolic and exponential) on a more general data

sequence.

Because of the ease with which we can control its bandwidth, duration and time bandwidth product,

we have chosen a linear frequency modulation (LFM) signal for our investigation. The pulse

compression ratio (PCR) of this LFM sequence is defined as the ratio of the uncompressed pulse

width to the compressed pulse width. or the product of the pulse spectral bandwidth B and the

uncompressed pulse width T. Thus. PCP is equal to the time bandwidth product. The sub-pixel delay

estimates obtained for 3 different PCR values and 3 different sequence lengths are shown in Table

3-5.

N ~ */~ , , , ~ -. ~~2
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PCR Sequence Estimator Estimated Delay

Length 0.1 0.2 0.4

15 300 Parabolic 0.071 0.142 0.284

Exponential 0.062 0.132 0.306

900 Parabolic 0.088 0.175 0.352

Exponential 0.068 0.145 0.-342

1500 Parabolic 0.092 0.184 0.369

Exponential 0.069 0.148 0.350

.22.5 300 Parabolic 0.091 0.181 0.364

Exponential 0.068 0.147 0.349

900 Parabolic 0.096 0.192 0.386

Exponential 0.069 0.150 0.358

1500 Parabolic 0.097 0.194 0.391

Exponential 0.070 0.151 0.359

37.5 300 Parabolic 0.094 0.188 0.381
J.

Exponential 0.061 0.146 0.356

900 Parabolic 0.096 0.193 0.391

Exponential O.061 0.147 0.367

1500 Parabolic 0.096 0.193 0.393

Exponential 0.067 0.147 0.358

Table 3.5: Sub-pixel delay estimates for the LFM signal

One can s from Table 3.5 that increasing sequence length improves the estimation accuracy in

general and increasing the PCR also improves the estimation accuracy. In general, the parabolic

estimator seems to outperform the exponential estimator. The exponential Ustiniwtor 3"evni to

perform better for large sub-pixel delays, short sequences and low PCRs. As will be seen in tho next

section, use of LFM signals enables us to observe the effect of estimator inaccuracies on the process

performance without worrying about the interpolators. This is because, once the sub-pixel shift is

estimated, it can be used in the analytical expression for LFM signal to obtain an ideally interpolated

signal. With this analytically interpolated image, we observed background suppression of almost 50

dB (far better than observed with the synthetic images).

The estimated sub-pixel shifts for the synthetic images aro shown in Table 3-6. We see from this

table that the exponential estimator outmerforms the parabolic one in all cases. This is because the
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synthetic images. being generated have exponential corrolation functions. Since such Correlation

structure can not always be guaranteed. it is decided to pursue both estimators in future.

Estimated Shifts

Exact Shift Parabolic Exponential

(0.25,402n) ( 0.184.-0.174) (0.227,-0.237)

( 0.25. 0.25) ( 0.186. 0.174) (0.232. 0.233)

(-0.25.-0.25) (-0,184.-0.173) (-0.219.-0.238)

(-0.25. 0.25) (.0 181. 0.171) (-0.2,14. 0.239)

Table 3-6: Sub-pixel shift estimates for the synthetic CN imagery

3.3 INTERPOLATOR SELECTION

After the sub-pixel shift between two successive frames is estimated, we have to interpolate one of

the two image frames to align it with other. We will denote the two detector image frames by

di xY)and da(x.y)aind we denote the interpolated image I by d1 (xy). Then the performance of the
interpolation is estimated by the following measure known as the Background Suppression Ratio
(BSA)

Var{d.(x.y)l
BSR - 10- log V((x lxy (3.8)

This USA measure is useful in evaluating the performance of the estimators and interpolators

separately.

The oblective of the interpolators is to produce d1 (x. y) which is a shifted version of d(x, y), namely
al (xY) = d (x + 46x, .&Y ) (3.9)

where &x and ay denote the shifts in x and y directions. We consider several interpolator schemes to

be discussed below.

The 2.0 linear interpolator estimates the value d. (x + &x, y+ Ay) from its 4 nearest neighbors as

below.

Ay(-..,r- )-x~yd(x+1y+I) (3.10)

where 46x 2: Oand~y?.O. The cor-v-e,.s -,f eq (3 10) can be easily seen by using ax =0 = y

which yields d,(x.yA=d, (x.y)A
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rle 2-0 quadratic interpolator uses a 3 x . array of values in , t. .') as below to yield the estimate

d. 
1

where

LxJ=[0.SZ.x(Ax- I) (I -A,) .SA ,(Ar+ I)j

(I=[0.St.(Aj.- I) (I -,",.;: .S,' 1/ y+ 1)1

and

d, (x- 1)- 1) d (x- I.y) d (x- ..y+ 1)

[A,(.x.y)] di( . y-l) d(x.y) d,(x.y+ 1)

Ld (x+ 1. - 1) d,(x+ 1..) d,(X+ I..+ I) j(3.11)

The cubic spline interpolators are discussed thoroughly elsewhere (Hou and Andrew] and it is

probably sufficient to point out the fact these are based on local piecewise polynomial fit to the

available data. We carry out this cubic spline interpolation by using IMSL software. One can easily see

that the computational complexity of the interpolators increases as we go from linear interpolation to

quadratic method to cubic spline based method.

We can analytically predi,;t the BSR to be observed. The numerator of eq.(3.8). namely,

Var {d. (x.),)) is given by a& whereas the denominator of eq.(3.8) is as below. We make the assumption

of perfect interpolation. Then,

Var {d (x.y)- a,(x.y) a 20-2-Cov [d (x.y). a, (x.y))

U 2V' - 2.E (d(x.,).d(x+ Ax.y+ &y)) (3.12)

For the detector image d(x. y), the required covanance can be shown to be given as

p3

JI1
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Coy rd a..0 I;4X.y+ 6.)

P+,...I -p:)-p I-A,)-- Ip,' (P + )

/(0 - pA )- 2 p, (0 - PP)
6-+ W+ 0 y -6

(/'+)) 0 - -A.. '.t)( A..+ -Ay
(3.13)

/10l-p )-2p O-p is)

The analytically derived cross covariances for u - 1 (equivalent to detector image correlation

coefficients) are shown in Table 3.7 for P = 8 and p. = p = 0.95. Note from this table that the

correlation coefficient of the covariance value (not p) changes from a maximum of 1.0 (when the two

images are perfectly aligned) to a minimum of 0.784 (when one image is shifted by 0.5 pixets in each

direction with respect to the other).

Vertical. Horizontal Sub-pixel shift

-0.500 -0.375 -0.250 -0.125 0.000 0.125 0.250 0.375 0.500

.0.500 0.850 0.879 0.902 0.917 0.922 0.917 0.898 0.866 0.817

-0.375 0.879 0.909 0.932 0.948 0.953 0.948 0.929 0.895 0.844

-0.250 0.902 0.932 0.956 0.972 0.978 0.972 0.953 0.918 0.866

-0.125 0.917 0.948 0.972 0.988 0.994 0.988 0.968 0.933 0.880

0.000 0.922 0.953 0.978 0.994 1.000 0.994 0.974 0.939 0.886

0.125 0.917 0.948 0.972 0.988 0.994 0.988 0.968 0.033 0.880

0.250 0.898 0.929 0.953 0.968 0.974 0.968 0.949 0.914 0.863

0.375 0.866 0.895 0.918 0.933 0.939 0.933 0.914 0.881 0.831

0.500 0.817 0.844 0.866 0.880 0.886 0.880 0.863 0.831 0.784

Table 3-7: Correlation coefficient of Coy (not p) comparison between
two detector images with different sub. pixel shifts

For a sub.pixel shift of (0.25,.0.25). Table 3.7 indicates that the two image frames have a correlation

coefficient of 0.953 yielding a variance in !rie difference image of 0.069 according to .,q.(3.12). The

experimentally observed variance of the Cifference image is 0.061 agreeing well with our theoretical

results. Then the limit on BSR achievale seems to be more fundamental than the simple interpol3tion

problems. Based on this. the simple 2 0 ,neaf nierpolator seems to be our best choice as it needs the

minimum computational complexity.
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3.4 DETECTOR LIMITATIONS

Our previous simul atioils do not taKe into account the fact that the correlation plane detector
needed for sub-pixel shift estimation suffer from nonidealities such is limited dynamic range (DR),

detector noose and detector area. Vijayu Kumar et.al. [Kumar] have previously investigated the effects
of finie detector area on parabolic sub-pixel shift estimators and have shown that these introduce
small biases in the estimated shifts. These sub-pixel shift estimators use the central 5x5 region of the
correlation plane and the acceptable DR limitations on the detector (about 30.50 dB) seem to pose no

problems in accurately chotecting these correlation values. This is because of the large correlation
coefticient.. of the CN part of the image.

To observe the effect of detector noise on sub- pixel shift estimators, we added uniformly distributed
random numbers to the central 5x5 region correlation plane values. The variance of this uniformly

distributed numbers is chosent such that signal to noise ratios (SNRs) of 20, 30, 40 and 50 d8 are
obtained in the detector plane. The sub-pixel shift estimates for various SNRs are shown in Table 3-8.

Estimated Shifts

Correct Shift SNR(dB) Parabolic Exponential

(0.25.-0.25) 20 (0.183,-0.173) (0.226,.0.235)

30 (0.184,-0.173) (0.226,40236)

40 (0.184,-0.174) (0.227,.0.237)

50 (0.184,.0.174) (0.227,.0.237)
(0.25, 0.25) 20 (0.186, 0.172) (0.231, 0.233)

30 (0.186. 0.171) (0.232. 0233)
40 (0.186, 0.171) (0.232,0.233)

50 (0.186, 0.171) (0.232,0.233)
(.0.25,.0.25) 20 (-0.1 83,-0. 171) (-0.222,-0.236)

30 (-0.182.-0.173) (.0.220,-0.238)

40 (-0.1 82,-0. 173) (-0.219,-0.238)
50 (.0.182,-0.173) (-0.219,.238)

Table 3-8: Sub-pixel shift estimates for various detector plane SNRs

Comparing Tables 3-6 and 3-8, we see *h~at SNRs higher than 40 dB have very little effect on the
estimated sub- pixel shifts. Thus SNRs of .10 ,B are required in the correlation plane.

%
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3.5 DOUBLE DIFFERENCING

The approach to background suppression discussed so far has been to estimnte the sub-pixel shift

followed by a first difference operation. In this section. we present some preliminary results indicating

the role of double differencing for target detection and tracking.

Let d (xy). d(x . ) ) and d(x.y) represent three successive image frames in which the target and the

background are moving at different velocities. The single difference image is given by -

d(x..) .-., (..Y)-,(x.y) I (3.14)

whereas the double differencing yields

)= 10. (x.y)- d ( x ,) + 0.5d3(x.y) I (3.15)

In Fig. 3-1, we show the results obtained by these processes on three images. The top three images

in the figure are three detector images di, d, and d,. The CN background in d, is shifted by (0.25,0.25)

with respect to the background in di, and the CN background in d, is shifted by (0.25,0.25) with

respect to the background in d,. The target in all three detector images is of sizo equal to one

detector plane pixel and is of uniform intensity of 2, while the variance of CN background is

approximately one. The target is moving at a constant velocity with a horizontal shift of 3 detector

pixels and a vertical shift of 2 detector pixels between each adjacent frames. We see from the two

single difference images in the second row of this figure that the background is not suppressed

completely. On the other hand, double differencing result shown in the last row of this figure displays

a clear track of the target movement. One should keep in mind that the images in Fig. 3-1 are

thresholded optimally and thus may not convey the complicated nature of the processing.

The results presented in this section are only preliminary. Some year 3 effort will be devoted to

analyzing the capabilities of this double differencing. The relevant issues include the BSR achievable,

the quantization effects, the resulting frequency responses and the need or lack of need for

interpolation. Fruitful research in this direction is anticipated for year 3.

3.6 SPACE/TIME FILTERING

The single differencing and double differencing approaches discussed earlier represent two special

cases of a more general philosophy of target detection and tra,.'-:.. known as "..pace/time filtering".

To understand this. we consider the various image frames available as samples of a 3.0 function

fix.y. t). The sampling intervals Ax and LJ denote the spatial sampling according to the detector

size. This 3D function can be modeled as

flx.y .,) = s(x.Y t) + C.V(x.y, I) - UC.V(x.y, t) (3.16)

U,,

I,
%~ % *~'~ **'* - \ ~* % % ~ .
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a..w

Figure 3-1: Single difference and double difference images of
an image sequence
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where 1v.,) denotes the sub-pixel target.( \(0.i,') denotes the correlated noise and I (1 N. v i)

denotes the uncorrelated noise. The goal of the space/time filtering is to process the sampled 3-D

function to enhance the target ( %.i. /) while suppressing the remaining terms in eq.(3.16).

The target .txv.i. ) can be modeled as a thin straight line in the 3-D space with the dimensions of

this line in x and y axis being sub-pixel in nature. The (N,1. 0 varies slowly in x and y and shows A

linear shift in i. On the other hand. the uncorrelated noise Vi/( N (x.)i) is completely random and is

characterized by high frequencies. By observing the 3-0 spectra of the three components in eq.(3.16),

we plan to derive an optimal spuace/time filtering scheme for the 3-0 sequence !(.' v. i). !ssues to be

rcsolved in this connection are sampling effects, 'optimal' filters, computation complexities and

coMnputationally efficient (sub-optimal) filters.

3.7 FUTURE WORK

Our year 3 effort will focus on better understanding of the general techniques presented here. In

addition to this, we will improve our image generation software to incorporate multi-region image

generation. We will also explore the optical interpolation methods. Other advanced sub-pixel shift

estimators such as maximum-likelihood and maximum a posteriori will be considered.

'.

'S
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4. MODEL-BASED ALGORITHMS FOR HYBRID
DIGITAT70PTICAL PROCESSING

4.1 SUMMARY

The objective of this research effort is to develop algorithms for representation and interpretation of

space-based images which are well-suited to hybrid digital/optical implementation.

In the first phase of this prograim we have developed a multiresolution rotation- invcriant (MRI)

operator which may be used to extract Structural features as well as characterize t.xtures using

statistical measures. Experiments in texture classification have shown that the MRI operator is a

useful representation of texture properties and provides classification independent of rotation and

scale. Probabilistic graph matching was used to demonstrate matching between attributed graph

representation of structural image elements. The operators we have described are well-suited for

optical implementation, and the matching of representations derived from these operators is suited

for implementation on a hybrid digital/optical system. Evaluation of these algorithms and their hybrid

system implementation will be carried out through simulation on the RAPIDbus II system. Further

refinements of the high-speed RAPIDbus architecture would support a hybi id digital/ optical interface

when available.

These approaches may be integrated into a recognition framework based on recursive model

matching in which composite MRI kernels are generated adaptively based on hypothesis formation in

a model-based setting. Recursive model matching is intended to explore the capabilities of a highly

interactive hybrid digital/optical system which utilizes digital hardware to generate hypotheses in a

knowledge- based environment and uses optical hardware to explore and validate hypotheses using

convolution-based adaptive feature extraction mechanisms.

4.2 RAPIDEUS ARCHITECTURE

One important aspect of the integrated image analysis system sought by this project is the hardware

and programming environment. Contemporary environments were not designed to coupla a high

bandwidth electro-optic processor with digital processors doing numeric and symbolic calculation.

The RapidBus II prototype, being developed for this project, provides both a near-term execution

environment, and a longer term opportunity to develop new architectural concepts oriented toward

the needs of an integrated image analysis system.

The Rapidus II prototype is currently in the assembly and testing stage. Design documentation is
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being completed using our enhanced SCALD II CAD system. Many components and subassemblies

have arrived and arTwating for integration and test. Over the coming few months we anticipate

testing to progress through a two. six, and finally twelve processor stage. Through the donation of a

PCB design system from IBM, our CAD system is being enhanced to carry the design through multi.

layer PCB film.

VAX 760
*CHU-Ii-FAS*50 UJILTIPL r

l~V I V 10PUvt 5CHIST(
1PITC o DiSK UiNITS

UIT/S1C ITHieI[T N

I'TNFNF DIIr lSKml

hST §|la0 SYSTEMS maiuG Wos OEATIN STSTt CONTROL ONT1O1
ALL VAX SYSTEMS UIIG UCi 4.1 UIX

"a0 1001110040 68000 0000 66000 6600000Foc igue 041 SpIs PROprtotype mutpocS co tion.OCISSO
WI TH OUAt DUNDUL vl# AL UtI IUNi WIl D~ TTH IrJAL WIT"I WVl ITH DUAL.

[POT MIMOPTI PONIT NINNY~t PURT llORTI POT lNI Y 11POlN NT P OT 01401111 POT of aOtv "AT 1111110111

I_ 11 1 i - .J
w eIpnipcd i hrwe 1 NYT uSing oTA tiCpNle[00,o h,1r11 iP,,, 1,

XIqo SSON IIl~a ISPLAY

Figure 4-1: RapidBus 11 prototype multip~rocessor configuration.

Software develop~ment is poroceeding in parallel with hardware develop3ment using both a multiple

processor Versabus system, and a stand-alone RapidBus II node (IBM CS-9000). The host

development system is functional for C and assembly code. The target operating system is operating

on a single node, and will soon be expanded to a dual-processor Versabus system. An outside group

is doing parallel development of a multiple-processor Franz-Lisp system in return for a duplicate

RapidBus II.

Design concepts for an advanced machine are emerging from the RapidBus II effort. Under the

system name RapidGraph, a new high speed interchange, multi-programmed processor, and object

support node have been developed. The interchange provides message passing at multi-gigabyte /

sec rates using a small number of bipolar VLSI devices. The processor is designed to handle digital

computation using an "object-flow" model to integrate both symbolic and numeric computation. The
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object support nodeimplifies the design of large. highly parallel software systems through the

encapsulation of objects at the memory rather than through the processor instruction stream.

4.3 Probabilistic Graph Matching

In a variety of image processing problems, the data contains stereotyped subpatterns which are

well.described by symbolic representations. Such symbolic representations include graph, grammar.

and automata models. While these models are very useful when subpatterns are highly invariant to

image variability, symbolic search and manipulation techniques become very complex when symbol

correspondence becomes uncertain. Symbolic representations may be enhanced in two respects

which increase their applicability to real data. First, stochastic structures may be used to associate

outcome probabilities with structural relations of the model. Second, attributed structures offer a rich

class of models where subpatterns or symbols have associated features or attribute values. Such

attributed structural models pose many difficult methodological issues for implementation. In this

study we have addressed problems of the dichotomy between symbolic and statistical information

and its effect on the choice of symbol primitives, issues of structural observability, structural

matching, assump~ons of component independence, and identification of structural transformations.

These issues will be discussed in papers and reports now in preparation.

An attributed random graph model consists of a 4-tuple R - (V,a,E.4) where:

1. the random vertex set V z V, i = 1,...,n), where each V is a random variable called the
random vertex.

2. the random edge set E a { E, il ... ,n, j-1,...,n) in VX V where each Eisa random
variable called the random edge.

3. the random vertex attribute set a a (ai, i 1.n) where each a is a random variable
with possible outcomes {a).

4. the random edge attribute set j - {J3., i a 1.n, - 1,...,n) where eac 3 is a random
variable with possible outcomes (b}.

5. Each outcome of R a (V.a.E.3) is an attributed graph H a (v,a.e,b) with probability P(H)

a Prob {V - vun a,E u e.f/ - b) such that

* P(H) a0 for all H.s.r,

" ZrP(H) - 1, where r is :e ,ange of R.

P(H) is the probability distrtb,,,c" of R.

The attributed rRndom graph moce, ze',-ec aoive provides a basis for the definition of likelihood

- ' .-,.i. -
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functions over the observed outcomes from the class of graphs and the ,jttribute set A. The likelihood

of an observed outcome may be used as a basis for the matching and recognition of patterns in the

image. In this application the structural elements of the image are associated with vertex and edge

symbols of the model, and both structural relations and quantitative properties of the elements are

retained in the model. Image components such as vertices, edges, regions. or intensity peaks may be

used as structural elements. In the resulting probabilistic model, each element has some outcome

probability, some observation probability, and some probability density of attribute values.

A simple example of a graph representation derived from a gray level image of a polyhedron is

shown in figure 4.2. A line drawing of the criginal image is shown in figure 4-2a. The graph structure

extracted from a single observation is shown in figure 4-2b where graph vertices have been attached

to structural corner elements of the original image and graph edges have been attached to edge

elements of the original image. An ensemble of observations such as that in figure 4-2b is used to

derive a probabilistic graph model such as that shown in figure 4-2c. In figure 4-2c, the probability

distribution of positions of the vertices vare indicated by circles. The probability distribution of vertex

angle attributes is indicated by p(O).

Probabilistic graph matching may be* used for matching of images and recognition of objects in

images using likelihood criteria as a basis for bearch correspondence tiees. The likelihood of any

observed graph, subgraph, or structural element may be computed and used for estimation or

decision making. Such problems incorporate three phases: (1) correspondence matching of graph

elements, (2) rigid graph pose estimation, and (3) likelihood calculation. The probabilistic graph

model uses pose independent likelihoods to hypothesize correspondence, then estimate pose. The

use of attributes to guide correspondence matching, and the use of observation probabilities to

structure the search results in simplified and reliable algorithms.

We have applied the probabilistic graph matching approach to two types of image representation.

Graphs which are derived from edge, corner, and junction components of gray level images are

useful for description and matching of objects. In this case, attributes include lengths, angles, and

positions of elements. The resulting graph models have been used to classify objects, inspect

objects, and determine orientation of objects in scenes where edge information is a reliable clue. An

example of matching likelihoods between a model graph and various distorted observation graphs

including partial views is shown in figurL .- 3. The likelihood is a measure of the correspondence

between the two structures in each case. A similar approach may be used to track movement of the

model object by matching successive viev.s .ind computing !he pose changes between views. Such

an example is shown in figure 4.4 for the s.r~e cbject used in the previou3 examples.

N'- % NN
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Figure 4-2: Probabilistic graph derived from an ensemble of gray-level images.
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Figure 4.3: Matching graphs between a model and distorted observations with
associated likelihoods.
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Figure 4.4: Tracking movement of an object using successive likelihood matches

with a probabilastic graph model.

%.o
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As a second example, we have used probabilistic graph models for matching of multiresolulion tree

structures derived frm ay-level images. The derivation of such a multiresolution tree using the

difference of low-pass transform is described in the next section. In this case. the matching algorithm

is formulated as a hierarchical tree search using likelihOodS to guide correspondence matching at

each level of the tree. Results of this approach are described in (Crowley and Sanderson 84].

Probabilistic graph models provide a general approach to many practical matching and recognition

problems where a training set of images of a priori knowledge of the probability structure is assumed.

in thi. way. object miodel-based information may be incorporated using a priori probability structures.

Many previous approaches to matching and pose estimation may be considered subsets of the

Drobabilistic matching approach in which edge or region attributes of images are related by heuristic

similarity measures rather than likelihoods.

4.4 MRI Operators for Shape Representation

Description of gray-scale shape in images is complex because shapes are often defined by some

combination of regioc information and edge information. From the point of view of image processing,

region information is often contained in the lower spatial frequency components of the image. while

edge information is contained in the higher spatial frequency components. A complete description is

difficult to achieve therefore 4rom extraction of structural elements at one resolution level. A number

of techniques have been proposed which transform the two-dimensional gray-level image to a three.

space representation in (x.y,k) space, where k is the parameter of the resolution space. Such a

representation has the advantage that peak structures in the (xy,k) space shift uniformly along the k

axis under scale transformations, and therefore objects of different size may be recognized in a

rpresentation with the same structural relationships, In this section we describe an extension of the

multiple resolution tree which incorporates structural basis functions at each level in order to provide

a more complete descnption at each level and include orientation specific structural components at

each resolution level.

Our preliminary work on representation and probabilistic matching of multiple resolution structures

has been carried out using a reversible transform called the "difference of low-pass" or DOLP

transform developed by Crowley [Crowle, 81 Crowley and Stern 84, Crowley and Parker 841. The

DOLP transform expands a single gray eve, mage f(x y) into a set of bandpass images b(xy,k), where

k is the index of the multiple resolution tee E.:;c tbandpass image is obtained by convolution of the

original image with an appropriate 3 a.=Ss ,npulse response function h(x,yk). In the

implementation of this transform by C - o,. "o .vley 81], the bandpass impulse responses are
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constructed out of difference of Gaussian kernels. The most efficient implementation utilizes

properties of the Gaussian kernel function which permits resampling and cascaded convolution with

expansion and reduces the sequential computation of this transform from O(N..) multiplies and

additions to O(N).

The DOLP transform set itself is not a very efficient representation of the image since it requires

expanded storage space in a normal digital representation. However, it is possible to extract a

symbolic reprosentation of important information from the DOLP transform using peaks of the

transform arrays as key structural elements of the image. In [Crowley and Sanderson 84], we

introduced two le,,els of symbolic rcpresentation. The first level is composed of symbols derived

directly from the DOLP images based on local positive maxima or negative minima in one, two, or

three dimensions of the DOLP space representation. The second level of symbols utilize the
connectivity among peaks and ridges to form peak paths and ridge paths. These symbol structures

are defined in detail in [Crowley and Sanderson 84].

The advantage of the multiresolution representation techniques is the ability to describe both high

resolution and low resolution structural image features in the same representation. The

disadvantages of the bandpass fitter approach are the difficulty in describing complex shapes,

particularly those involving oriented componenis and the current demands of the computation to

compute such extensive filtering operations. In order to enrich the capabilities. of the multiple

resolution transform, we have introduced a set of basis functions at each resolution level which

includes oriented two-dimensional basis functions. This set of structural basis functions provides a

much more complete description. of the image at each level, at the expense of redundant information

and increased computational load. In the context of this project we propose to explore the

implementation of such techniques using parallel and optical processors. In this context the basis

function tree provides a richer source of information for matching and interpretation which may be

searched interactively rather than exhauzitiveiy computed.

Multiresolution representations provide a basis for searching an image database with respect to size

independent features. Our experience with the DOLP transform described in section 4.2.4 has

suggested that configurations of DOLP peaks are in fact good descriptors of image structures, but

that as the resolution is increased such configurations become exceedingly complex. In addition,

lighting conditions, shadows, and backyround variations may cause significant distortions of the

DOLP representation which are difficult to interpret due to the lack of more specific orientation and

structure information in the DOLP transform itself. The transform itself accentuates symmetrical

contrasting regions and is useful for Iocating regions of interest, Lut may not be very efficient in

describing complex structur.s.

-,
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We have introduceO. the MRI (multiresoltition rotation invariant) operator and the MRD

(multiresolution difference) transform in order to derive a more efficient representation' of complex

structure as well as texture. The MRI operator of order n and resolution k is defined by:

-( U) (n)
k (r) •J . (1)

(a) . -r2 /2k 2  (2)
(?k 2wka7

where (r,,) are polar coordinates of the operator space. The MRI operator is rotation invariant in

the sense that the magnitude of the response is independent of the orientation of a directional

component of the input image.

The significance of the MRI operators may be seen by examining their projection p(x) along any

single radial axis. These operators of order n have the following interpretation:

* n a 0: Point Detector

* n , 1: Edge Detector

* n a 2: Line Detector

* n2: Higher order ripple detectors

Each of the complex operators defined in this manner will have magnitude of response ielated to

the magnitude of that feature, and angle of the response related to the orientation of that feature. In
addition, the detector masks for different orders are orthogonal, and therefore energy is distributed

independently among the features. The Fourier spectra of these MRI operators show that n -0

corresponds to a low-pass filter, while operator. of increasingly higher order n correspond to band-

pass filters of decreasing bandwidth.

The MRD transform is defined by:
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W ()- , k-1, ... , (6)

r"I -r2/2ka2  "r2/2(k*l)o 2 -a *n (7)

" [ L - k + 1(

Based on this definition the MRD of order 0 is just DOLP transform. The MRD terms of higher order

.also provide a reversible decomposition of the gradient image of order n. That is. the MRD transform

of order n of an image is sufficient to reconstruct the nth order gradient of the same image, but not

necessarily the original image itself.

The MRI operators provide a basis for multiresolution decomposition of an image. The resulting

multiresolution representation may then be interpreted as the response of a set of orthogonal feature

detectors and searched for significant response regions which will characterize the structure in the

image. Unlike peaks in the DOLP transform space which do not carry orientation information,

magnitude peaks in the MRI space may be associated with the angle response to provide important

structural clues. In the proposed research program we will implement and evaluate the MRI operators

as tools for the representation and detection of structural features in aerial images of airports and

harbors.

The interpretation of the MRI operators in the Fourier spectrum may be related to the performance

of the texture energy measures reviewed above. The texture energy measures provide statistical

information about the sampled local two.dimensional spectrum of the image at some resolution level.

Statistical summary information from the MRI operator space includes disribution estimates of

orientation from multiple operators as well as magnitude information. In the proposed research we

will implement and evaluate the MRI operators as tools for the description and segmentation of

textured regions in aerial images of airports and harbors.

A number of extensions to the MRI operators and MRD transform have been investigated. The

shifted Gaussian MRI operator seems to provide significant computational advantages for digital

implementation although it is an approximation to the rotational invariance property of the MRI itself.

The aerial imagery being examined is often cotained in a multispoctral format, and spectral contrast

is often a useful clue to structural and textural features. Extensions of the MRI operators in which the
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phase space is mapped into a spectral domain seems to be a feasible extension of the concepts to

provide representation of color features. Initially. application of tile SG-MRI operator with contrasting

color coordinates for the component Gaussians will be examined.

The SG-MRI operator also has a direct extension to the detection of temporal shift of structural

features. By associating Gaussian components with different time frames, magnitude and orientation

of time shifts between frames can be obtained. Initially. we propose to develop these concepts in a

space-time frequency domain framework and study the tuning of operators to various types of feature

shifts.

The operators and extensions described above are all well-suited to optical implementation, but for

our studies this functionality will be simulated using the RAPIDbus II architecture. This

implementation provides the basis to examine the use of these operators in a system where

interactive search and adaptive tuning of the masks is a significant property of the algorithms.

The recursive model matching strategy described in the section 3.6 requires interactive tuning of

correlation masks. .jhe masks used in those studies will be derived from the set described here and

their extensions. A great many possible composite MRI operators could be defined based on the

primary set, and these could play a useful role in the recursive strategy.

Figures 4-5-4-8 show the effects of changing one parameter at a time on the mask shapes of the

MRI operators of the real and imaginary planes and their corresponding magnitude and phase planes.

Fig. 4-5 demonstrates the effect of changing the size of the mask. It is important that the mask size

chosen be large enough so that the values at the edges of the mask are near zero. Failure to do this

wil mean that the mask is not symmetric and the property of rotational invariance will no longer be

valid. As can be seen, changing the size of the mask does nothing to the generated kernel itself; it

only affects the extent of the kernel that will be included in the mask.

Fig. 4-6 shows the effect of varying the order of the masks created while keeping the remaining

parameters the same. The value of n is equal to half the number of zero-crossings encountered in

either the real or the imaginary planes as a contour at a fixed radius R > 0 is followed for 2v radians. n

a 0 is a low-pass filter, n s 1 is an edge detector, n 2 2 is a line detector, n = 3,4,5,... are higher

order ripple detectors. Note that the radius of the maximum magnitude of the mask pair increases

linearly as n increases. This holds true only when a:k is a constant.

n%
Figs. 4-7 & 4-8 show the effects of varying a and k respectively. These two parameters always
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appear togetlher inthe luation above. Together. they form the term a'k which can be considered to

be the "variance" of the gaussian filter. Increasing either will make the spread of the gaussian larger.

The resolution parameter, k can be regarded as "fine resolution" since increasing by a small amount

will change the spread of the gaussian far less than will the same change in a, the "coarse

resolution". Therefore, in the two figures we see that there is very little difference in the plots in which

k was increased bot we see a much larger difference in the plots in which a was increased.

The following is an example of the results obtained by applying different masks to a single image.

4.5 Texture Classification Using MRI Operators

Texture occurs in images due to either irregular surface topography or to nonuniform surface

reflectance. There have been a number of approaches to the modeling of texture in images (Haralick

70, Laws 79, Harwood et al 83]. Most of these rely on the modeling of local correlation properties of

the gray-level image using either direct statistical measures or using the response to specific masks.

In particular, [Laws 79] described a set of texture energy measures in terms of the response to linear

3 x 3 or 5 x 5 masis. These masks are chosen to reflect combinations of center.weighting, edge

detection, and spot detection templates. The distribution of the Outputs of these masks averaged

across a textured region was shown to be useful for the discrimination of texture types. Harwood

(Harwood et al 83] extended this idea and studied the use of rank correlation statistigs as a basis for

discrimination.

Texture models such as those described above summarize descriptions of the variations in image

intensity, but do not relate image properties to either surface topography or surface reflectance. An

alternative model of image texture has been proposed using fractal geometries to model image

texture and relate image texture to surface topography. Fractal geometry was introduced by

(Mandelbrot 77. Mundelbrot 82] to describe certain classes of irregular edges or surfaces including

coastlines and mountain profiles. More recently, [Pentland 83a, Pentland 83b] proposed the use of

the fractal dimension to characterize images of natural scenes and perform texture segmentation.

The fractal dimension D is the dimension of a measurement spaco expresSd relative to the

topological dimension E. If the parameter H n 0 • E is used to characterize the roughness of the

observed texture, then H a 0 corresponds to a flat plane, while H a 1 corresponds to an array of spikes

covering the plane. In terms of H, the cumulative distribution function of the fractal Brownian function

B(t) is:

% %
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"~uft 4-5: Masks Generated By Varying the Parameter=
n =2. a 3. ku1
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..,Figure 4-6: Masks Generated By Varying the Parameter n
size. =3x3l.a = 4,k 1
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-Figure 4.7: Mask~s Generated By Varying the Parameter a
size 31 x3l. n 2k 1
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Figure 4-8: Masks Generated By Varying the Parameter k
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where itf H 1/2 and if F(n) is a zero-mean, unit variance Gaussian. the 8(t) defines a classical

Brownian motion process. The fractal dimension in this sense is a compact parametric description of

a homogeneous. isotropic ranidom process which has advantages since it is invariant to scale.

Pentland (Pentland 83a. Pentlantd 83b1 related the image texture model to a nattural surface model

and showed that if the surface topology is frictal then the image intensity is also fractal if the surface

obeys Lambertian assumptions. This result for fractal models is suggestive of more powerful results

which might be achieved by relating image texture to more general random models of surface

topography.

Studies of random surface topography suggest four p;zncipal contributions to.the resulting textured

image:

" Local edges of the surface elements

" Shading due to surface gradient and reflectance

* Shadows due to disparities between light incidence and viewing angles

" Local edges of one surface element occluding another.

These mechanisms are associated with surface topography and not with reflectance changes due, for

example, to :urface markings. The observed image texture varies in predictable ways with angle of

view and lighting directions, and we would like to identify image texture measures which provide

consistent measures of such changes. p]S

Work in this area has centered around the use of texture energy measures as described in [Laws

79]. Both real and simulated images have been used to demonstrate the efficacy of this technique in
distinguishing different 2-dimensional textures. Extension of this method to 3-dimensional texture

anaJysis is currently being studied. Such analysis will aid in understanding the relationship between

surface contours and image texture.

Simple one- and two-dimensional masks form the basis for texture energy measures. The

distribution of the outputs of the different masks averaged over a textured region is useful in texture

discrinination. These masks are chosen to reflect combinations of level, edge, and spot templates.

The one-dimensional vector masks ara we,g ted towards the center and all are either symmetric or

antisymmetric and all but one are zero-sum Five length vectors are generated by convolving two

three-length vectors. One.dimensicnal wactor masks can be run both horizontally and vertically

across an image. The two.dimensional rnasxs are formed by convolving a horizontal vector with a

vertical vector of the same length Figure -1 9 onews a number of the masks that aje used in texture

energy measurements.

7-r.



58

Eight of the 3x3 masks and all one-dimensional vector masks except for the 13 and 15 level vectors

are zero-sum. Convolved over a region with uniform pixel intensity (i.e.--no texture). a zero-sum mask

will produce an output that is identically zero. "Texture Energy" refers to non-zero values resulting

from convolutions with zero-sum masks. A Textured region is first histogram equalized to ensure that

every region starts with the same average intensity. The various masks are convolved over the region

separately. creating a number of "texture planes". one for each mask. The average pixel intensity for

each resulting plane is then taken as a texture energy measure and collectively they form a feature

vector that can be used in texture classification.

Fourier analysis of the various kernels reveal that these texture energy masks serve as bandpass

filters in the frequency domain. Alone, the 3-length vector masks 13, s3 and e3 correspond to low-

pass, high-pass and band-pass filters respectively. The 5-length vector masks also operate as filters.

though each mask peaks in a narrower frequency range. The two-dimensional masks work as

bandpass filters in the 2-d frequency plane. Each of the nine 3x3 masks is found to peak in a

predictable manner in each quadrant of this plane as shown in figure 4-10. Each 5x5 and 7x7 mask

also has a unique peak in the 2-d frequency plane. The set of all masks of size NxN covers the entire

frequency plane. a

4



59

ripple r 5 - C 1 -4 6 -4 1]
wave w5 x (:-I 2 0 -2 1]

spot S7 awt1 *2 -1] spot s5 a [-1 0 2 0 -1]
edge e3 -I- 0 1] edge e5 - [-1 -2 0 2 1]
level 13 a [1 2 1] level 15 - C 1 4 6 4 1]

3-length vectors 5-length vectors

1 2 1 -1 0 1 -1 Z ~1
2 4 2 -2 0 2 -2 4 -2
1 2 1 -1 0 1 -l 2 -1

L3L3 L3E3 L3S3

-1 -2 -1 1 0 -1 1 -2 1
0 0 0 0 0 0 0 0 0
1 2 1 -1 0 1 - -2 -1

E3L3 E3E E3S3

0

-1 -2 -1 1 0 -1 1 -2 1
Z 4 2 -2 0 2 -2 4 -2

*-1 -2 -1 1 0 -1 1 -2 1

*S3L3 S3E S3S3-

-1 -4 -6 -4 -1 1 -4 8 -4 1
-z -z -12 -8 -2 -4 16 -24 16 -4
0 0 0 0 0 6 -24 36 -24 6
2 8 12 8 2 -4 16 -24 16 -4
1 4 6 4 1 1 -4 6 -4 1

E5L5 R5 R5

Figure 4-9: Texture Energy Masks
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An image with a number of simulated textures (4.11) was generated and texture energy measures

were determined for each of those textures. The first row of textures is column-oriented. The first

block alternates dark and light columns: the second block alternates two dark and two light Columns:

the third block alternates four dark and four light columns: and the fourth block of the first row

repeats the sequence of (...light.medium.dark. medium..) columns. The second row of textures is row

oriented. It is identical to the first row except that the textures have been rotated 90 degrees. The

first block of the third row has a checkerboard pattern. Each square of the checkerboard is one pixel

in size. The second block of third row has alternating light and dark diagonal lines that are two pixels

wide. Initially. all texture patterns have the saine average intensity. Random noiae was introduced

into the image before processing. The texture measures for this simulated image are tabulated below

in Table 4.1. Because the row- and column-oriented textures are obviously linear, 3 and 5-length

linear vector masks were used in addition to the 3x3 masks. The values obtained indicate that the

different textures do indeed result in unique texture energy measures and that these measures could

be used to distinguish. between textures.

The aerial image shown in figure 4.12 was used in applying texture energy masks to a real image.

Four textured sections containing dirt, grass, and two different sections of water were taken from the

original image and each was histogram equalized. The 3x3 masks were then used to generate the

textural planes and from them the texture energy measures were obtained. Two of the sections were

images of water, one section was a grassy field and the other an uneven area of dirt & vegetation.

The results of this texture analysis are tabulated in Table 4.2. The two sections of water had, as

expected, very similar energy measures. The measures for the section with the grassy field and the

section with the dirt both differ significantly from the water.containing sections but differ from each

other (by > 10) only in the e3e3, e313, and s313 masks. However, using just these three masks, they

can be separated.

Results here show that texture energy measures can be applied to aeriai images which have tikable

textured regions. Information gained from macroscopic texture analysis can aid in under.tanding

changes in land usage and local scene analysis.

The primary objective of texture classification is to identify textured regions within the image. If it is

known where the texture boundaries are, classification of the different regions can be done with

relative ease. In such a segmented image, the task is one of determining a number of texture

measures for the large areas and then ciassifying those areas into one of several known classes.

However, when no a priori.information is known about the texture boundaries, the task becomes

harder. Texture measures must be c3lculated for each pixel and the pixels then classified. The
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Figure 4.10: Fourier Domain of Texture Energy Mask~s
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Flgu re 4-11: Simulated Texture Image

mask (1.1) (1.2) (1:.3) (1,4) (2,1) (2.2)' (2.3) (2.4) (3,1) (3,2)
--- ---------------------------------------------------- a------- ----------

orig. 128 128 128 128 128 128 128 128 - 128 128

e3e3 6 7 6 6 7 9 7 7 7 126

9313 I1 16 17 17 21 127 73 71 17 125

e3s3 9 8 8 a 10 11 9 8 10 126

13e3 10 126 68 66 11 13 12 12 11 126

13s3 126 126 70 69 16 17 16 15 16 127

s313 30 30 30 29 126 127 79 76 31 126

s3s3 15 15 14 14 17 17 15 15 126 126

s3col 9 9 9 9 127 95 53 52 127 96

s3row 127 96 50 51 6 6 6 6 126 96

s5col 9 10 10 9 10 127 96 69 11 127

s5row 9 127 94 67 8 9 9 8 8 127

e3col 5 5 5 5 6 96 50 50 5 94

e3row 4 96 50 49 5 5 5 5 4 95

ecol 12 11 11 12 14 128 112 68 11 125

e~row 12 127 111 67 13 14 14 13 13 125

r5col 32 31 31 31 127 126 108 77 127 126

r5row 125 127 111 72 19 20 20 19 128 127

w5col 13 12 12 12 13 126 95 69 13 126

w5row 8 127 96 65 8 9 9 8 8 126

Table 4.1: Texture Measures for the Simulated Image

challenge here is to develop an algorithm that will accurately classify pixels without incurring a great

computational cost. This involves findig the smallest possible fcature vector that will offer

~ ,e /ftf~ %



Figure 4-12: Aerial Image used for Analysis with Texture Energy Ma.sks

mask Idirt field wateri waterZ

orig.1 128 130 128 128
*3.3 23 43 84 84
e313 j 90 118 184 187
@3s3 33 43 84 84
13@3 102 102 141 135
1313 123 129 125 123a
13s3 102 102 141 135
s3*3 I 33 43 84 84
s313 90 28 184 187
s3s3 I 33 43 84 84

Table 4-2: Texure Ec~,Measures for Real images ,

reasonably good into-!r-clas3 separation As :o. - tue' below. th~e MRI operator was found to be very.

effeoctive in classifying textures PIXCl t-
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N

Training

The [Brodatz 68] texture album contains photographs of many textures. Four stucturally similar

cellular" textures, aluminum wire. cotton canvas, raffia and oriental straw c:oth were chosen for this

work. These textures were chosen because ol their similarity in cell size and cell shape. They may be

considered to form a "worst case" set in the sense that they are very similar to each other and

therefore may be hard to tell apart.

Fig 4.13 shows the composite image that was used as the training image. 128x 128 samples each of

the four textures ,vere used for this purpcse. Edch sample was individually hi3togram equalized to

eliminate first order differences. This ensures that differences in brightness between samples after

processing with the MRI operator are caused by the convolution operation and are not due.to

differences in the initial brightnesses of the samples. Training involved the use of 28 different MRI

operators and each time the following process was carried out:

1. convolution of the composite image with the operator in the frequency domain and
conversion of the result back into a complex image in the spatial domain.

2. conversion of the complex image into a normalized 8-bit integer image giving the gray-
level magnitude for each pixel.

3. an 11 xl 1 average smoothing of the 8.bit integer image

4. calculating average gray-level intensity and standard deviation measures for 100x1O,
internal regions of each of the four samples. The internal regions were used rather than
the whole 128x128 section to avoid including edge pixels in the average and standard
deviation measures.

The results of performing this set of steps with each operator is summarized in Table 4-3.

This was followed by determining which masks gave the greatest between.class separations. To do

this. the "inter-class ratio" was determined for each pair of classes for ever/ mar. Briefly stated, the

inter-class ratio is the difference in averages between two classes divided by the sum of their

standard deviations at a particular mask. For mask m and any two classes i and j, the inter.cl=as ratio
Rm is defined as:

.Av(miA- A ,g(nij)!

S t(A n.O-t- SL ,nj)l

The interclass ratios calculated from the entries in Table 4.3 are given in Table 4.4.

iU
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MRI MASK straw cloth raffia cotton can alu wire
avg - std avg std avg std avg std

------------------------------------------------------------------------------------

nOslf.in 80.8 7.2 99.8 17.0 78.5 12.2 90.2 14.2
nOsZf.m 40.7 10.5 74.2 21.4 53.3 23.6 64.8 16.1

nOs3f.m 33.6 15.8 60.8 25.6 58.8 30.4 58.9 27.3
n0s4f.in 38.1 21.2 61.4 30.2 74.5 39.6 71.7 39.3
n0s5f.in 42.4 24.2 61. 1 31.5 86.4 46.4 83.8 46.8
n0s6f.m 46.0 26.3 60.2 32.3 95.9 51.9 94.1 52.8
n0s7f.m 46.0 26.6 55.6 31.3 97.6 53.2 96:9 54.5
IIlslf.In 103.6 7.1 82.4 9.6 96.9 7.4 81.7 10.8
nls2F.in 60.1 4.4 87.9 11.3 46.9 6.7 76.8 9.7
nts3f.m 39.1 4.3 83.1 18.1 27.5 8.5 5c.4 8.4
nls4f.m 32.6 6.0 75.8 25.8 29.8 12.2 35.1 7.3
•nls5f.m 29.4 7.1 67.4 27.3 33.9 16.4 24.7 9.2
nts6f.m 28.0 8.2 63.8 27.6 41.4 21.0 28.8 12.2
nls7f.m 27.7 9.8 61.9 27.8 51.4 25.9 36.7 15.0
nZslf.m 95.3 5.6 58.1 7.7 93.1 7.6 67.0 9.7
n2s2f.m 82.0 5.1 81.5 10.2 69.9 7.2 77.4 10.3
n2s3f.m 44.7 3.3 81.1 11.0 27.2 6.5 71.4 8.7
n2s4f.m 36.7 4.9 83.8 19.3 24.3 7.5 53.6 7.7
nZs5f.m 32.8 6.9 80.5 25.7 24.2 7.9 27.2 5.3
n2s6f.m 32.0 8.6 77.6 27.9 25.0 9.4 16.4 5.7
n2s7f.m 29.8 10.0 74.3 29.1 27.0 11.8 16.2 8.5
n3slf.m 72.0 4.3 43.5 6.0 76.7 6.7 57.5 8.9
n3s2f.m 101.8 6.0 75.2 10.1 85.0 6.6 73.6 11.3
n3s3f.m 50.7 3.7 82.6 11.5 33.5 6.0 73.3 9.9
n3s4f.m 40.8 3.6 87.7 13.6 25.2 7.3 68.2 9.3
n3s5f.m 33.1 5.0 81.4 20.2 23.4 6.8 38.5 6.0
n3s6f.m 33.6 6.1 78.4 24.5 22.9 7.2 19.1 4.5
n3s7f.m 33.7 7.2 75.7 26.5 23.4 8.5 15.7 6.2

Table 4-3: average & std dev for each class for each MRI operator

*VMMv
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MASK CLASS PAIR

cloth cloth cloth raffia raffia cotcan
raffia cotcan aluwir cotcan aluwir aluwir

nOslf.m 0.766 0.119 0.439 0.715 0.302 0.443
nOs2f.m 1.050 0.370 0.906 0.464 0.251 0.290
n0s3f.m 0.657 0.545 0.587 0.036 0.036 0.002
n0s4f.m 0.453 0.599 0.555 0.188 0.148 0.035
10s5f.m 0.336 0.623 0.583 0.325 0.290 0.028
nOs6f.n 0.242 0.638 0.608 0.424 0.398 0.017
n0s7f.ai 0.166 0.647 0.628 0.497 0.481 0.006
,1Islf.m 1.269 0.462 1.223 0.853 0.034 0.835
nls2f.m 1.771 1.189 1.184 2.278 0.529 1.823
nls3f.m 1.964 0.906 1.598 2.090 0.394 1.888
nls4f.m 1.358 0.154 0.188 1.211 1.230 0.272 A

nts5f.m 1.105 0.191 0.288 0.767 1.170 0.359
nls6f.m 1.000 0.459 0.039 0.461 0.879 0.380
nls7f.m 0.910 0.664 0.363 0.196 0.589 0.359
nZslf.m "2.797 0.167 1.850 2.288 0.511 1.509
n2s2f.m 0.033 0.984 0.299 0.667 0.200 0.429
n2s3f.m 2.545 01.786 "2.225 03.080 0.492 02.908
n2s4f.m 1.946 1.000 1.341 2.220 1.119 1.928
n2s5f.m 1 463 0.581 0.459 1.676 1.719 0.227
nZs6f.m 1.7249 0.389 1.091 1.410 1.821 0.570
n2s7f.m 1.143 0.119 0.724 1.156 1.545 0.532
n3slf.m 2.767 0.427 1.098 2.614 0.940 1.231
n3s2f.m. 1.652 1.333 1.630 0.587 0.075 0.637
n3s3f .m 2.099 1.773 1.662 2.806 0.435 2..503
n3s4f.m 2.727 1.431 2.124 2.990 0.852 2.590
n3s5f.m 1.917 0.822 0.491 2.148 1.637 1.180
n3s6f.m 1.464 0.805 1.368 1.751 '2.045 0.325
n3s7f.m 1.246 0.656 1.343 1.494 1.835 0.524

Table 4-4: Inter-class Ratios. Those marked with a '' are the maximum for
that pair of classes

For classification. it is important to use masks that give the greatest inter-class separation. It is also

important to limit the number of masks used in the interest of minimizing the amount of computation

required. Therefore, for classification purposes, it is best to choose that minimum set of MRI masks

that will give us maximum separation between any pair of classes. From Table 4.4 it is evident that

one of the masks: n2sl, n2s3 or n3s6 will give the maximum inter-ciass separation between any pair

of the four textures. Therefore, only these three masks need to be used for classification of textures

known to belong to this set of four.

Jw%
~ t =
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Classification Results

A second composite image similar to the first was created. Different portions of the same

photographs used in the training image were used to make this second image. Each of the three

masks was convolved with the composite image, creating three feature planes. The gray-level values

provided by these planes at each pixel served as a feature vector of length three which was then used

to classify that pixel. A minimum distance classifier, using the averages found for each class and for

each mask from the training image, was employed to perform the classification. Results show that 95

% of pix ls in the interior regions of the different sections can be classified accurately while in the

entire composite image 88 % of the pixels are correctly classified. Fig. 4-14 shows the composite

image used for classification and 4.15 shows the resulting pixel.by-pixel segmentation.

Tables 4.5 & 4-6 give a detailed evaluation of how the classifier worked including numbers and

percentages of correctly classified and mis.classified pixels in both internal regions and in the

composite image.

Classified Belonging to Class
As -

straw cloth raffia cot canvas alu. wire
-----------------------------------------------------------------------------

* straw" cloth 9429( 94.3) 138( 1.4) 237( 2.4) 0( 0.0)
raffia 1( 0.0) 8902( 89.0) 0( 0.0) 0( 0.0)
cot canvas 444( 4.4) 0( 0.0) 9763( 97.6) 0( 0.0)
alu. wire 126( 1.3) 960( 9.8) 0( 0.0) 10000(100.0)

Table 4-5: Classification Accuracy of 100 x 100 Interior regions
Overall accuracy 95 %

Classified Belonging to Class
As

straw cloth raffia cot canvas alu. wire
-----------------------------------------------------------------------------
stram cloth 14570( 88.9) 208( 1.3) 2444( 14.9) 789( 4.8)
raffia 464( 2.8) 14203( 86.7) 6( 0.0) 1267( 7.7)
cot canvas 1130( 6.9) 0( 0.0) 13931( 85.0) 0( 0.0)
alu. wire 220( 1.3) :373( 12.0) 3( 0.0) 14328( 87.5)

Table 4-6: Classfca-.r Accuracy of Entire Composite Image
Overall accuracy 87%
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Figure 4-14: Composite image used for pixel -by. pixel classification

1v

Figure 4.15: Segmentution of Above Image
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4.6 Structural Analysis Using MRI Operators
dw

The MRI operator is also useful for the early processing of structural images. Both the order and

standard deviation of the operator can be tuned to different image features. A single correlation

between image and complex MRI kernel determines both the strength of the feature and it's

orientation (for higher than zero order operators). The following four figures illustrate different

kernels applied to the same input image of an aircraft on a runway. Notice for the first order

operators. a standard deviation of six effectively traces most of the aircraft outline. Once the aircraft

is !ocated operators with a lower standard deviation help to locate features such as the engines.

Region oper.tors, with a second order kernel, help to locate the center line of the airframe and engine

cowlings respectively.

Sf
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Figure 4.16: Result of applying the MRI edge detecting
operator [N - 1 ]with a standard deviation

of two pixels. (A] is the original image,
(8] is the magnitude of the transform, and

(C] the transform phase.

P. Y L.4A
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Figure 4-17: Result of applying the MRI edge detecting
operator (N a 1] with a standard deviation

of six pixels. (A] is the original image,
[B] is the magnitude of the transform, and

[C] the transform phase.
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Figure 4-18: Result of applying the MRI region detecting
operator (N - 2] with a standard deviation
of three pixels. (A] is the original image,

[B] is the magnitude of the transform, and
(C] the transform phase.
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(A)

Figure 4.19: Result of applying the MRI region detecting
operator (N = 2] with a standard deviation

of six pixels. [A] is the original image,
[B] is thie magnitude of the transform, and

[C) the transform phase.

'J -. F %
1. ,- ,
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4.7 Recursive Model Matching Algorithms

Recursive model matching allows a broad range of feature extractors to be interactively appliec to

an incoming image under guidance from a library of hierarchically structured models. At each ster) in

the recursive analysis of a frame, an ensemble of hypotheses are active suggesting objects and

textures present in the image. Evaluation of each model based hypothesis will suggest additional.

specific features which might be extracted from the image in order to lend support or disprove the

hypothesis. As additional features which support a particuiar hypothesis become known to the

evalhation process, more narrowly defined models may be invoked as new hypotheses Ultimately

each high level hypothesis must be resolved down to either highly probable terminal models or

determinations of an unfounded hypothesis.

The strengths of both electro optic and digital multiprocessor technology are symbiotically paired

by the recursive model matcJhing structure. Processors such as a real-time. optical correlator

[Casasent 78] allow a. reference kernel function to be applied in parallel to an entire grey level image,

limited only by the rate at which data can be digitally scanned in and out of the device. Decision

intensive steps, in which the detected features are evaluated in the context of specific object models,

map well onto a digital multiple instruction stream, multiple data stream processor. Associated work

in computer architecture (RAPIDBUS & RAPIOGRAPH) is providing a basis for the simulation and

implementation, respectively, of such a tightly coupled system.

4.7.1 Feature Space

Evaluation of actual high altitude or space based imagery, such as that shown in figure 4-20,

underscores the wealth of different kinds of features which need to be identified and cataloged in

order to match existing model data. Througn !he integration of data from diverse features. ambiguity

caused by lighting, partial object occlusion, and sampling noise can frequently be resolved. Several

diffftrent classes of feature extractors have been identified as being potentially useful:

The multiresolution, rotationally invariant operator. desrribod earlnr in this report. asists
in tie detection of points. edges. and lines within a single brighitness or spectral plane.
Evaluation= of an image by the MRI Operator yields a list of candidate features described
by an x.y location and magnitude for n 1 0 at each of k resolution levels. For higher
order operators (n = 1. n a 2), a direction is assigned to each feature point.

" Texture energy measures proviCe an useful means of identifying, characterizing, and

segmlenting "background" reicri= s et of N Kernel functions are used as a basis set,
characterizing a sample texture in - N dimensional feature :;pace oy the "nearest"
reference texture point. Eourd.2r 37,f ,a particular texture region can Z3e detected
through gradients in the texture , "ed ,ire assirijned to local windows.

*,'-.'.*'.'...'.' ','.'. ". ' i.v **..-,. *- .. .%-.. .-. , ,-'. .- . .. .. . . . . • .•- . .... .•• . -, .-,-,- .- - .- .-• .••-•-•---
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e Boundaries not readily evident as a change in brightness are often visible as a change in
the reflected ,peOrum. Adding an additional dimension, spectral frequency, often
sampled by discrete channels such as R(x.y). G(x,Y). and B(x.y), can provide information
on the magnitude and direction of spectral "edges" or "regions". As models generate
increasingly detailed questions about the image, reporting criteria can be narrowed Io
inquiry about shifts from a specific spectral reference, or in specific image regions.

Temporal changes between frames. or motion features. can be extracted using a variety
of techniques. We are interested in exploring the extension of gaussian operators to the
temporal dimension in analogy to spectral and temporal operators. Temporal information
assists in both object/background separation and object identification1 .

Macro-operators. suggested by detailed object models. may combine several of the
above possibilities. Questions about the angle at which a wing meets the aircraft body
may be resolved by an operator tuned to a particular angle described in terms of the
soectral/textural properties of the aircraft and background. As very narrow hypotheses
are formed, features searches may be required which could not practically be anticipated
a priori.

The computational expense of many interesting operators, and the number of possible parameter

combinations suggests a feature extraction task ideally suited to an electro-optic processor. Yet even

assuming for a monMnt that each feature possibility could be extracted instantaneously, any digital

representation of the complete feature space would result in tremendous orgahizationa and storage

difficulties in an effort to make the features available in usable form. When the number of possible

operators, combinations of parameters, and substantial kernel sizes are taken into account, the scan-

in/scan-out limitations of foreseeable devices makes a priori computation of all potentially interesting

features unappealing. Recursive evaluation of the feature space provides an alternative to a prion

pruning of the feature space.

4.7.11 Recursive, Goal Driven Image Exploration

Recursive, goal driven image exploration allows a developing description of the visual environment,

de3cribcd in terms of an object and teuture data basee, to select the pmrticular ,eg!crs of the feature

space which are evaluated in an interactive fashion. Depending on the diversity of oblects in the

image, and the amount of prior knowledge coming from other frames, several hundred cycles may be

recuired to converge on an adequate frame analysis. Each cycle consists of a feature extraction

operation pipelined into a digital analysis by a multitude of processes, each investigating a particular

hypothesis somewhere in the image.

Obtect motiOn rtmlO lend siujooofl , 'he "vrC"'i I "V ' -. vq ObIOCt wS a ,ei,cc ,n oreferenc, to a buildirg The

vmiociiy. t3zicr in COnltxi. provoes turPh escr .e :-e '.e" :3: c' *i tAIM OOjcI.
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EXTRACTORS SEGMENTAT ION EX TRACTORS
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Figure 4-21: Recursive image analysis system using texture and structure.

The proposed iterative structure is shown in figure 4.21 such that structure and texture analysis are

unfolded into separate iterative loops sharing the same image frame descriptors (center of diagram).

In an actual implementation, these might be folded together into common hardware and software

mechanisms.

In the laboratory, incoming images are received already sampled in space (x,y), spectral frequency

(X), and t:me (t). Additional camera parameters describing camera altitude, angle, cloud cover,

latitude. and longitude are supplied to the internal image frame descriptors.

The proposed electro-optic feature extracors, simulated in the laboratory by array processors,

provide the only access the system has to image pixels. Early boot processes are used to initiate

extraction of simple edge and region information in order to initiate the formation of image

hypotheses. Texture analysis has an 3dditional segmentation step in which the extracted texture

features are clustered into proposed regions. i ian iteratively.

Both structural and textural infcrr-a: c- s summarized within image frame descriptors. These

active processes maintain internra 'ecz.-re "ecresentations in order to service questions from

cooperative hypcthesis evalu.tio,- . ,- - ray be indexed by one of numerous regional or

feature space keys.

. .% ,%. %-o.'. .% - *,* o o% . *. . • ,. .. .Y ,. .. . * . S.. ,.
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The dynamic pool of hypothesis evaluation processes are built upon specific models pulled from a

hierarchical object and texture data base. Valid scheduling requests inside the pool include

activation of processes for the same model at different locations within the image (high level).

spawning of suoprocesses investigating specific possibilities down the oblect model hierarchy (lower
level), or termination of hypotheses which cannot be supported relative to competing hypotheses for

the same structure. All communication between processes investigating hypotheses occurs through

the image frame descriptor processes or the process scheduler.

Questions which arise in the course of trying to support or deny a hypothesis are collected,

condensed, and format prior to triggering feature evaluation, Requests from numerous evaluation

processes must be condensed into a serial stream of feature requests such that the expectation value

for feature evaluation is, perhaps suboptimally, minimized. The proper feature operator and

parameters must then be prepared prior to the queuing of an evaluation request.

Two important functions are intentionally not shown in the diagrams. Data base information must

somehow be acquired by the system, either through structured learning or direct data entry. Image

analysis reports mul be generated to provide system output based on the image frame descriptors.

The reporting system may include filters to forward very limited kinds of data. Central research issues

tied to recursive matching can be explored without these functions, directing limited manpower

resources to tasks where basic research issues can be addressed.

4.7.1.2 An Example

The recursive matching structure can be illustrated by a simple example describing the detection

and identification of a parked aircraft, as illustrated in figure 4-22 through 4-25. Initial feature

extractors, such as low frequency MRI operators will help to locate candidate regions of interest.

Numerous high level oblect hypotheses may arise from these operators. Although this example

describes a structural analysis, similar ooerations might be used to describe a texture region.

Shown in figure 4-22, high level analysis, perhaps corresponding to MRI levels k a 9, and k a 10

respectively identify three candidate regions that might describe an aircraft, truck, building or other

object. Each high level hypotheses will in turn activate a process built around the appropriate high

level object model. Object model evaluation by a&' . Process will result in numerous questions which

help to support or deny the hypothesis. PeQ,.ests oy one evaluation process can be.expected to

provide clues to other hypothesis evaluation processes since each kernel function is run on the entire

image.
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. HYPOTHESES: AIRCRAFT,TRUCK. BUIDLING, ETC.

Figure 4-22: Initial region operators locate a structure suggesting an
aircraft, truck, or building.

Either by direct request, or through the request of another process, additional detail describing the

object will become available, perhaps describing the outline of the nose, tail, and horizontal

stabilizers. No one feature results in an absolute identification, each merely adds or subtracts

support for a given hypothesis. A narrow featura request by this process might pin down a spectral

angle defined by the proposed wings and aircraft body. The resulting estimate, shown in figure 4-24

may lend enough substance to aircraft subclasses two and three that additional processes are

activated, exploring these hypotheses.

EDGES ?

ANGLE [ ANGLE?
JG IINVESTIGATION OF AIRCRAFT HYPOTHESIS

FIRES HYPOTHESES OF CLASS 2 OR 3.7- (SOME FORM OF MEDIUM SIZE TRANSPORT)

EDGES 7 \ , EDGES

EDGES

Figure 4-23: Following the aircraft hypothesis, one process examines

the hypothesized wing angle, nose, tail, and horizontal stabilizer
structure.

A.s intermediate hypotheses are posted along with relative certainty of identification, processes

:a-e- :n ncorrect hypotheses and mgIh level hypotheses which have been replaced by low level

eses sh ould deactivate, freeing rescurces for active pathways.

-, 2mlng features by rccs:--s exoloring aircraft classes two and three may in turn
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Figure 4-24: For instance, the estimated wing angle lends support to
aircraft class 3.

result in the class two process deactivating, and te class three process spawning processes

exploring the possibility of a DC-8 or L-1011 aircraft based on engine cowling location and wing

features. Shown in figure 4-25, this hierarchical processing would continue until reporting terminals

were reached.

A
uley LCat.tS ery L*ocates

Ir HYPOTHESES FIRED FOR OC-8
OR L-1011 AIRCRAFT.

Query Locates Query Locatas
wing "rTs . w'g Tips

Figure 4-25: Within the process investigating tie class three hIyputhesis,
search for the engine and wing length estimates triggers

investigation of the possibility that the aircraft may be a DC-I or
L-1011

I.
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5. IM~AGE- U D'AE"" T A ilD I TECHNIQUES FO;-1 3D

5.1 INTRODUCTION

In this chapter. we present results in two aspects of the 3D change d !.tection task tlic low-level

problem of analyzing images, and the high-level problem Of representing, conrtructing and updating

,!i 3D !-c(ene muodel. For the low-level proceossinc we di'scribe a new inethod Of CompLuting the

s~'ocurreslpondences which can be U30~d to dleterwine tlii- 3D poviions of pointS froni a pair of

r l nages. 7or th., higjh-levtl ocr.nwe describe mezthods of iejr, s, nting and cnn u-rting

sc. n.- modcls troin multiple Views, Using rancjefinirer data. The ucie of rancjefinder data allow, us to

Jecouole the hiuh-eveI processing problem from the low-level problem. for more efficient research

into the high-levtl problems.

5.2 STEREO BY TWO-LEVEL DYNAMIC PROGRAMM111ING

5.2.1 Introduction-

Stereo is a u5,eful method of obtaining depth information. The key prrtblem in stereo is a search

prnclpm which finds the correspondence points between the left and rig-mt images. Su that, yiven the

cam~cta model (ie., the relationolhip between the right and left cameras of the stereo pair), the depth

can be computed by triangulation. In edge based stereo techniques, eoqes in the iniages are used as

the elements whose correspondences to be fournd [Grimson and Marr 79. Baker and einlford

81, Baker 82. Bornard and Fischler 82]. Even though a general problem of finding correspondences

between imnages involves the search Within the whole image, the knowledgo of thp cainera mnodl

simplifies this image-to-image correspondence problem into a set of scanlino-to-scanline

corre!;ponnd(nce problems. That is, once a pair of stereo imiges is rectificd so that the a3pipolar lines3

are horizontal scanlines, a pair of corresponding edges in the right and left images Cohould be

searched for only within the same horizontal scanlines. We call this search intra-:xanlife search.

This ititra-scanline search can be treated as the problem of finding a matching rpath onl a two-

cliniensiinal (211) search plane whose verlicnl and horirontril axes are the- right and left scinlines. A

dynamic progrumming technique can handin this search efficirtly [Baker and Binford 831, Baker S2].

strong dependency on the corres- ond ence ,; n !!ie rieijhloring scanlin,3. beeause if two points are

on a v !rtically connected edrj~e in tl'.e I~F H,r ic' rre- ponding pu11110hul most likely, lie. on
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a vertically connected edge in the right image. The intra scanlinc %earch alo'ie Cdoes, not take into

accont hismutul nduency between scanlines. Thierefore. another search is nessiry which

tries to fiiid the consistcncy inmong (tie z-canlines. whichi we call ',iw' scoonn search.

By considering both intra- and inter- scanline searches. the correspondence problem n stereo can

be cast aZ that uf finding in a three-dimensional (3D) search space an opitimnal inatkmIing surface that
most satirties the intra-scanline mnatches and inter-scanline consistency. Here. a matching surface is

deohnoxf by stacming 20 matching paths. where the 2D matching paths are found in n 20 search Dlane

whooe ix.s aro left image column position and right-image column position. and time staicking is dlone

in the direct-o1 of the rcw (scannin*e) number of the images. The cosit of the mutching surface is

definedi as the Sum of the costs of the intra-scanline matches on the 20 search planes. while vertically

connected edges provide the consistency constraint across the 20 search planes and thus penalize
those intra-scanline-matches which are not consistent across the scanhines. Our stereo matching

uses dynamic programming tor performing both the intra-scanline and the inter-scanline searches,
and both searches proceed simultaneously. This method reduces the computation to a feasible

amount.

5.2.2 Use of Iiiter-stantine Constraints

As mentioncd above, for a pair of rectified stereo images, matching edges within the same scanline
(Ie., the intra-scanhine search) should be sufficient in principle. However, in practice, there is much

ambiguity in finding correspondences solely by the intra-scanline search. To resolve the ambiguity,

we can exploit the consistency constraints that vertically connected edges across the scanhines
provide . Suppose a point on a connected edge u in the right imiage matches with a point on a
connected edge v in the left image on scanline t. Then, other points on these edges should also
match on other scanlines. If edges u~ and v do not mnatch on scanline 1. they should not match on

other scanlines, either. We call this property inter-scanline consistency constraint. Thus, our
problem is to search for a set of matching paths which gives the optimal correspondence of edges

within scan lines under the inter. scanlirie consistency constraint.

A few methods have been used to combine the inter-3canline search with the intra-scanline search.

Henderson [Henderson, et al. 79] sequentinlly processed each pair of scanlines and use(] the result of
one scanline to guide the scarch in the next scanline. However, this method suffers in that the errors
made in' the earlier scanlines significantly ' ~ he total results.
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C.l'~or 1BSikef 821 first processed eich p~air of ,caiines indcrc-ndently Aftor all the intri scanine

matching was done. he uised a coooefitive process to detect and correct the mitching results vwhicn

viol~itt the Consistojncy conStr3ints. Since this method. however. does not use the inter scanline

conzitrdiflts directly in the search. the result from the cooperitive process is not yuaranteed to Ue

optinial. Baker Stigjestcd the necessity of a search which finds an optimal iesult satisf/ing the

corsi:t,.ncy contutraints in a 3D search space. biit i feasible rntthocl was left a-, in open problem.

A sraljlitforvardl .vj:iy to achiev. a wi'.tihing which sa:~sfies the inter-scanline constraints is to

c. rall iiatcTiwgs between ccnnected egsin t,1h, rigtit and left irnages. However zsinre the

ii~ nuimber Of --I f2%e xi~ '/ to Ivrl hundred in each inagt,. thic brUte forc. method

is UsubLt1Y wieiasible.

matching ofdyac

connected edoes progranining

:conStrain Score(cost)

matching of

edoe-del ini ted intervals dynaiin g

on scanline pair

Figure 5-1: Two searches involved in stereo matching

We propose to usc dynamic programming. which is used for the intra-scanline search, also for the

nter-scanlinie search. These two searches are combined as shown in figure 5-1. One is for the

correspondence of all connected edges in the right and left images, and the other is for the

correspondence of edges (actually, intervals delimited by edgtes) on right and left scanlines under the

constraint given by the former. The scheme to use dynamic programming in two levels was first

employed in the recognition of connected spoked words (Sakoe 791. They used one search for the

poszsible segmentation at word boundaries and !thc other for the time-warping .-ord matching under

the constraint given by the former. In connected word recognition, however, the pattern to be

proccsscd is a single 10 vector. In our case, a connected edge croeases over multiple sconlincs (le.,

ID vecctors). This ineans that we ncc,. a 20 zerch space which in a stick of 20D search ritines for

intra-sc:.inline matching.
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Dynamic programimny [Aho. Hopcroft and UlIman 74] solves an %-stage decision process as

single-stage processes This reduces the computational complexity to the logarithm of tle original

combinatorial one. In order to apply dynamic programming. however, the oiginal decision process

must satisfy tle following two requirements. First. the decision stages must be ordered so that all the

stages whose results are needed at a given stage have been proCiCs.ed before then. Second. the

decision process should be Markovianr that is. at any stage the behavior of the process depends

solely on the current state and does not depend on the previous history. It is not ubvious whether

these prope7rties exist in the problem of finding correspondences betw,'en connectedl oJges in stereo

nlmcles. but we clarify them in the following t;,ictions.

5.2.3 Correspondence Search Usin U Dynamic Programming

5.2.3.1 Intra-scanline search on 20 plane

The problem of obtaining correspondences between edges on the right and left epipolar scanlines

can be solved as a path finding problem on a 20 plane. Figure 5.2 illustrates this 20 search plane.

The vertical lines show the positions of edges on the left scanline and tihe horizontal ones show those

on the right scanline; We refer to the intersections of those lines as nodes. Nodes in this plane

correspond to the stages in dynamic programming where a decision should be made to select an

optimal path to that node. In the intra-scanline search, the stages must te ordered as follows: When

we examine the correspondence of two edges, one on the right and one on the left scanline, the

edges which are on the left of these edges on each scan/ine must already be processcd. For this

purpose, we give indices for edges in left.to.right order on each scaniine: [0:1/1 on the right and [0:.V1

on the left. Both ends of a scanline are also treated as edges for convenience. It is obvious that the

condition above is satisfied if we process the nodes with smaller indices first. Legal paths which must

be considered are sequences of straight line segments from node (0.0) at the upper left corner to

node ,t.,V) at the lower right corner on a 2D array [0:.I/IO:,V. They must go from the upper left to the

lower right corners monotonically due to the above.mentioned concition on ordering. This is

equivalent i, the non-reversal constairit in edge currespondence: that is, the order of matched

edges has to be preserved in the right and left scanlines. This constraint excludes from analysis thin

objects such as wires and poles which may result in positional reversals in the image. A path has a

vortex at node m=(mn) when right edge ,)a and left edge n are matched.

Tne cost of a path is defined as follows Let /Dini k) be the minimal cost of the partial path from

node k to node m. We denote I)(m k 3s tr, ..,1-en ks:, (0.0). 1)(m) is the cost of thn optimal path to

node m from the origin (1.0). The cost ,'f i '" 3 the ".uin of those of it:, primitive poths. A primitive

path is a pi: tiil path which contuins io ,: _. jrd t is rerosented ny ." straight line segment as
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Figure 5.2: 20 search plane for intra-scanline search.
Intensity profi/s are shown along fach axis.

The horizotrjil :!xis coiresponds to thie left scar-,,e and thp vertical one
corresponds to the rigt scanline. Vertical and hc.'zontal lines are the edge

positions and path selection is done at their intersections.

shown in figure 5-2. It should be noted that a primitive path actually corresponds to matching the

intervals delimited by edges at the start and end nodes rather than edges themselves. Let d(m.k) be

the cost of the primitive path from node kto node m. Obviously, d(m.k) > D(mk) and on an optimal

path d(m.k) = D(m,k).

Now, D(m.k) can be defined recursively as:
D( m~k) = minz {d( rr - i) - z m - i.k) }

{i)

O(k. k) =0 (5.1)

where m=(n.n,). i .( . i=(i.A,

O~ i<,~n-k. 0 :5_)<,- -. 0.''

Vector i represents a primitive 2 • .. "-'-de m. When i=O, the primitive path is horizontal, as

shown at (a) in figure 5-2. It . -': . s -e case in which a visible port in the left image is

occluded in the right image. ','4 . - ,ive path is vertical, as shown at (b). When i> I
%'.

,'.

ft ' '~ ~ ~ : :& * t. ~ 'Si
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and/or I. the primitive path skips or inores beyond - I and/or / - o n the ri(-,: and/or lft

scanlines as shown a4c)di the figure Such a p:ith corrosp)onds to the c.ne where some edyes have

no corresponding ones on the other scanhne because of noise.

The path with cost D(M.O) gives the optimal correspondence between a pair of scanlines.

5.2.4 Inter-scanline search in 3D space

The problorn of obtaining a correspondience between edges under the inter-scanhlie ":onsistency

conctraintz cain be wiewid as the problem uf finding a sut of paths in a 30 space which is :1 31,CK of 2D

plaines for it ,-cascnhn c rcti Ftgure 5-3 illustrates this 20 space The soce laces of this space

correspond to the right andi left images of a stereo pair. The cost of a s't of paths is dcfhned as the

sum of the costs of the individual paths in the set. We want to obtain an optimal (ie.. he minimal cost)

set of paths satisfying the mnter-scanline constraints. A pair of connected edges in the right and left

images make a set of 2D nodes in the 30 space when they share scanline pairs. We refer to this set of

20 nodes as a single 3D node. The optimal path on a 20 plane is obtained by iterating the selection of

an optimal path at each 2D node. Similarly. the optimal set of paths in a 30 space is obtained by

iterating the selection of an optimal set of paths at each 3D node. Connected edges, 3D nodes, and

sets of p aths between 3D nodes are illustrated in figure 5-3.

As described in section 5.2.2, the decision stages must be ordered in dynamic programming. In the

intra-scanline search, their ordering was straightforward; it was done by ordering edges from left to

right on each scanline. A similar consideration must be given to the inter-scanline search in 30 space

where the decision stages are the 3D nodes. A 3D node is actually a set of 20 nodes, and the cost at

a 3D node is computed based on the cost obtained by the intra-scanline search on each 2D search

plane. This leads to the following condition: When we examine the correspondence of two

connected edges, one in the right and one in the left image. the connected edges which are on the

left of these connected edges in each image must already be processed.

A connected edge u1 is said to be on the left of u,. if all the edges in u, on the scanlines which u and

u, share are on the left of those in u,. The "left-of" relationship is transitive; if there is a connected

edge i, and is is on the left of i, and u is on the left of u,. then u, is on the loft of u2 (if uI and u share

any scanlines). The order of two connected edges which do not satisfy both of these relations may be

arbitrarily specified. We assign an ordenng index from left to right for every connected edge in an

image. This ordering is possible without contradiction when a connected edge never crosses a

scanline more than once and when two :onnected edges never intoroct each other. Our edge.

11n:ng process which will be explainc~ .n - :, 4 is dowsCd so that it does not produco a.uci cases.
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Figure 5.3: 30 search space for intra. and inter-scanline search.
This may be viewed as a rectangular solid seer from above.

The side laces roriesoond to the riylht and lcft stereo images. Connected
edges in each imrage form sets of intersections (nodes) in this -Oace. Each set

is called a 30 noc. Sclc.-tion of a sct of puath's is dore 3t every 30 tiode.
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Now we will present flow the cost of a 3D path is defined. Suppose we assigjn indices 10 / I to

connected edges in the iight image. and If) I in the left. The left ind right end- of an imje are

treated as connected edges for convenience: the left ends are assiyned index ('s. Let u =(i.) be a

3D node made by a connected edge it in the right image and a connected edge, in tile left Image. Lot

( (u) be the cost of the optimal set of paths which reach to the 30 node u. The cost ( i uS

computed as follows:
'( U)

(U)=m

II (5.2)

((O) = 0. i.e.. (0:t)=O for all i

where u=(O.L), i()=(i( 1.1(1)). Oi(i) u. 0 _j(i)_5u, i(I) -j(I)3'0.

Here, C(u:t) is the cost of the path on scantine t in the optimal set; that is, C(u)=--. tes(u) . ut), and

D(m.k:t) is the cost of the optimal 3D primitive path from node k to node m on the 20 plane for

scanline t. A 3D prirfiitive path is a partial path between two 3D nodes on a 2D search plane and it has

no vertices at the nodes belonging to a 3D node. So a 3D primitive path is a chain of 20 primitive

paths and an intra-scanline search is necessary to obtain the optimal 3D primitive path on a 2D plane

between two given 3D nodes. The function 1(u:t) gives the index of a 20 node belonging to the 3D

node u on the 2D plane for scanline i. The numbers s(u) and e(u) specify respectively the starting

and ending scanlines between which the 3D node u exists. The cost C(u) is minimized on the

function (z). A 3D node u-i(t) gives the 3tart node of the 3D primitive path on scanline 1. The

inter.scanline constraint is represented by i(t). For example, if i(t) is independent of i0-1), there

are no constraints between scanlines and the search represented by equation ((5.2)) becomes

equivalent to a set of intra-scanline searches which are performed independently cn each scanline.

Intuitively, i(t) must be equal to i(t- 1) in order to keep the consistency constraint.

The iteration starts at u =(0.0) and computes C(u) for each 3D node u in ascending order of u. At

each 3D node the it0)'s which give the minimum are recorded. The sequence of 20 primitive paths

which forms the 30 primitive path is also recorded on each scanline. The set of paths which gives

C(U) at the 3D node U=(L.f') (which i3 the 3D ,,;,,: ,rmed by the rignt ends of stereo images) is

obtained as the optimal set.

It should be noted that when there are no tonnected e .gcs excert for the right ',nd left sides of the

.4h
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n11ijos.. thle algorithin ((5.2)) works IS ai Set of lnwra scanline searches re:,)Cj[Cdj on each scinhine
ndo'pcndently. In this sense. the MD algo.rithm completely cont:iins the 20 one.

5.2.4.1 Consistoncy constraints in inter-scanline

Using the termn 3D node defined in the prcVIOuIs section, we can de ;cilhc the inter ,ranline
consistceicy constraints as folows: 1-or aniy 3D nocde. ett'er all cortesorju-,j 2D nloe irc Ith

'.Lrmt~ts c,,i rtho sr of fpaths in the .3D ;Otrct1 stoac. or (lon~e of tretn ate 1!c: .'rtfco; r' su o

Wt:1~ / n':,td to iefjresent this Constraint as the ~ieation betwvecn it! andI it tin er-uation (5 2).
To do tiis. let us coiisider the e~awittl in figure -- 4 SUPPOSe we are ti yrarJ to o~tain a 2;ct of 3D
primiitivn- padhs which reach to node U. In order to satisfy the consistency constraints allove, all the
starting points of thiese paths should be the sarne 3D node; that is il)= i(1- 1). Thle cases when the
starting point is a different 30 node are shown as case 2 and case 3 in the figure. In case 2. a new 3D0
node appears at scanline tand the starting point changes to the new one. Cf course, it is possible
that the starting point does not Change to the new 3D node. This will happen if the cos'. of tht: paths
having vert'ces on the 3D node is higher than the cost of the paths not having vertices on it. In case 3,
the 3D node u - i-)disappears on scanline iaid the starting point is forced to move elsewhere.

30 node 30 node

oath t

case1

30 node 3D node u 30 nod n o os 30 node

r( pt~t- 2- Itn S

t 2 t
- 30 node

case Z case 3 '

Figure 5.4: Three cases for consistoency constraint.
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Lot us denote the 3D nod-e u - iu I from which the 30 piiinitive path -,tarts and reaches to the 3D

node U On ilin01e fby :87m u :v) Then the following rullesi should be satisfied in each case.

The rules in cac 2 and cabe 3 tCqire that the decision at 3D nodto u depend oni ripcisions at

p ra.cedting 30 nudies. Unfortunately. a Otcisicn systeifl with such a oronerty is not Mirkov',an as

Lu,.cribped in ser;tiun 5.2.2. andc liiur(-lore there is no guiiantee of olUtainiiij an optin".I !:olution 1)y

usring dynamic programming. This me~ans if we search for a solution using dynamic programming

with those rules. the result might be poorer than that of the 20 algorithm.

In order to assure optimality in dynamic Programming, we modify the rules in ((5.3)) as follows.

casel: frm~u-.)=fi-m(u:!-1)

c=s2: frut(u-.t) fnn(u:-1) (5.4)

case3: frrn(u;1)<-ftrn(u;1- 1)

The new rulp for case 2 requircs that the new 30 node on scanline t' be on the right of the 3C nce

that is the .,tarting point cn scanline 1- 1. For case 3. the new starting node on scanOire sncsc e

on the left of that on scanline 1- 1. It should be noted that though the new rules are alwa~s sa,!S A,

wnien the rules in equation ((5.3)) are satisfied, the converse is not true. Thus. under :e - e

the consistency constraint might not be satisfied at all places. in ctluer .Vcr :s

represented by the rules in equation ((5.4)) are weaker than those of eclL2'1Cn S

-C c: xp-C, I ts ll an~ cptina :n~~' riyna-mz: programnrr~rg, %.,e '?

the 3D se-arch algorithm than by the 20 seqrr:-i ,.Ihjorithm.

5.2.5 Experiments

Implementation of the stereo algcritthm ', "~ as been~ :reser,,e-

edges and linking them, andi a d~r''Ir t. 'r

detais ot thenmethod of detecunrg e;~-~

The% computation of cost in our:.

search plane. We define !h,-
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by edges in the right and left images on the same scanline. If we let a,... ,a and t . b/be the
intensity values of the pixels which comprise the two intervals, then the mean and variance of all

pixels ii the two intervals are computed as:
i k  I

2 (55)

)-In)'+ -)(b-n/f
lI /Ml

In the definition above, both intervals give the same contribution to the moai In and variance a:

even when th.ir lengths are different. The cost of the primitive path which matches these intervals is

.defined as follows:

C = : Vk"+' (5.6)
p

We have applied our stereo algorithm to images from various domains including synthesized

images, urban aerial images, and block scenes. Only the results of urban aerial images are presented

here.

The stereo pairs uied here are aerial photographs of the Washington, D.C. area. The first stereo

pair is "white house" and the second one is "pentagon". They have been rectified using the camera

models which was computed by Gennery's program (Gennery 79] using manually selected point

pairs.

Figures 5-5, 5-6. and 5.7 show the original stereo pair, edges and connected edges, for the "white

house" scene, respectively. The image size is 388x388 pixels and the intensity resolution is 8 bits.

This example is an interesting and difficult one because it includes both buildings and highly textured

trees. Many connected edges are obtained around the building while few are obtained in the textural

part. The disparity maps obtained by the 20 and 3D search algorithms are shown in figure 5-8. Since

the maps are registered in the right image coordinates, the disparity values for pixels on the right wall

of the central building, which is visible in the right image but occluded in the left, are undetermined.

Considerable improvements can be observed at the boundaries of buildings. In the textural pat, the

two algorithms provide approximately the same results.

We counted the number of positions where the co'sist's'-cv constraint, described in section 5.2.4.1

is not satisfied. It is 436 in the 20 search and 32 in the 30 search. These numbers quantitatively show

a significant improvement achieved by the 30 search algorithm. The reason thu inconsistency is not

completely removed in the 30 case ,s that we uscd "weaker" rules for the constraint as described

earlier.
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FlIgUMS 10: O13aaft ma obtained for the "pontagon" stereo "ar (figure59)
Thia is regihte red in the left image coordinates.

Notice that tho detailed Structures of the building root
aft the bridge over the hoghway (upper left corner) have "oen recovered.
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5.3 GENERA*TING DETAILED SCENE DESCRIPTIONS FROM
RANGE IMAGES

5.3.1 Introduction

An important problem for robotics vision is that of generating a 30 description of an unknown scene

front range data. The range data themselves. a set of 3D surface points, are often not usefui for tasks

such as model.based recognition and localization, model.based inspection and verification, and

change detection.

The result of our research is a method to extract a compact, symbolic, throe-dimensional

description of polyhedral objects in a scene. Importantly. the descriptions are quite complete, that is,

most of the visible faces, edges, and vertices are represented. Most previous attempts at range data

analysis did not result in such complete descriptions (Agin 72, Duda, Nitzan, and Barrett 79, Oshima

and Shirai 79, Smith and Kanade 84, Tomita and Kanade 84]. (An exception is the work of Sugihara

(Sugihsmr 79].)

5.3.2 Approach

The overall goal of this research is to obtain a full symbolic description of a scener from range data

obtained from multiple views. In our approach, each view is processed in sequence, and the 30

information obtained from each view is used to incrementally construct a model of the scene

environment.

The main step followed by the overall system are the following. A description of the scene, in terms

of faces, edges, and vertices, is obtained from each view. Descriptions from separate views are then

matched to obtain corresponding elements and to obtain the global coordinate transformation. This

permits the separate descriptions to be merged, resulting in a more complete overall description of

the scene. The matching and merging algonthms are described elsewhere [Herman 85]. Here, we will

explain how the initial descriptions are obtained.

Two general approaches for segmenting range images are edge/line extraction [Smith and Kanade

84, Tomita and Kanade 84, Sugihara 791 and region extraction [Faugeras and Hebert 83, Duds,

Nltzan, and Barrett 79, Oshima and Shirai 79). Our method is based primarily on edge and line

extraction because we are attempting to obtain complete, detailed descriptions of the faces, edges,

and vertices in the o,,cene. Furthermore. our matching algorithm assumes such complete descriptions.

Such descriptins are more difficult to obtain when region segmentation methods are primarily used.

S -',R , . * - V ., ". -~ . . . * • *** -
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Our method involves the following steps: (1) acquire the range images using a light-stripe

rangefinder. (2) find..edgi points in the image. (3) fit linear segments to the edge points using the

Hough transform. (4) connect the segments by extending. shortening, or shifting them, (5) convert the

lines and junctions in the image to 3D edges and vertices, (6) generate faces from the edges in the

scene.

It is interesting to note that although we are working with 3D data, most of the steps in the algorithm

are performed in the 2D image space. This is because algorithms for 2D are often simpler and more

efficient. in both space and time, than those for 30. One example is finding lines with the Hough

transform. The 30 version of the qlortlim is much more expensive and complicatcd than the 20

version.

5.3.3 Range Data Acquisition

The range data we use are obtained with the White Scanner light-stripe rangefinder. The illuminator

is a laser which p~rojects a vertical plane of light into the scene. The intersection of the plane of light

with an object surface results in a light stripe, which is imaged by a camera lying to the left of the

illuminator. The furtlIer a surface point on the stripe is from the illuminator, the further to the left it will

be seen in the camera image. The rangefinder determines the position of the stripe at each camera

scan line, and triangulation is used to obtain the 30 coordinates at these positions. The result is
represented as a column vector. When the illuminator is swept across the field of view, we obtain a

sequence of such column vectors, one for each stripe. The sequence of columns forms a range

image (actually a set of images, one each for a binary mask and for x, y, and z values).

Fig. 5-11 a shows the mask image for a polyhedral object. Each column in the image corresponds to

a column of light. The rows in the image correspond to camera scan lines. This is called a "mixed

registration" (Smith and Kanade 84]. The geometry in this image cannot be treated as in a camera

image, since it is formed differently. However, the outline of the objects in this image re very nearly

the saivie as would be seen if the eye were placed at the illuminator. The object as seen from the

camera is reconstructed in Fig. 5.11 b.

5.3.4 Threo-dimensional Edge Detection

This section describes how points in the range image tt.:...ise from real scene edges are found.

We consider three kinds of edge points cc: , .ing. convex, and concave. Occluding edge points are

located where there is a discontinuit yr : ii e. the difference in z values between adjacent pixels

exceeds a threshold) or where there is . e.,.r- 3ctwcCn dati and no data regions.

%* -;Z
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IIJ. 1 I l h'

Cb)
Figure 5-.11: (a) Mask image in mixed registration. (b) Camera- reconstructed image.
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Convex muicI concave edge pcint:3 are found by examining, in turn, each column in the range image.

and calculating the 30 cLfvature at each point. If the curvature is a local maximum or minimum and

exceeds a threshold. thi' point is a concave or convex edge point, depending on whether the

curvature is positive or negative. The results of this process are shown in Fig. 5.12 for two range

images. where convex points are signified by "+ ". concave points by "- ", and occluding points by

* ". These are the mixed ruuistration images.

Notice that many occluding points have concave or convex points very near them. We believe that

this is inherently due to the thiCkneSS of tile light stripes [Yoshida 841 Fig. 5-13a shows a ve.rtical light

stripe lying onl a face with d-igonal bouiiclareZ. as seen from the camera. As described above, at

each scan line. the rangefinder chooses a point (which is probably near the center of the stripe

thickness) to represcnt the position of the stripe. Since the stripe's appearance is beveled near the

face boundaries, the center of the stripe is shifted. Since points on a stripe that are further to the left

in the camera image are assumed to arise from scene points further from the illuminator, and vice

vez'sa, the measured light stripe in Fig. 5.13a results in a slight concavity near the top of the stripe,

and a slight convexity near the bottom. In Fig. 5.13b, the results are just the opposite, with a

convexity near the toi) of the stripe and a concaviti near the bottom. In Fig. 5.12, this phenomenon

occurs primarily on faces that are highly oblique with respect to the illuminator, since the stripes

appear thicker when viewed from the camera.

5.3.5 Fitting Linear Segments

Once the edge points have been found, we want to fit linear segments to them. The Hough

transform [Duda and Hart 72] is used here. However, the straight.forward method of choosing all cells

in the Hough accumulator whose values exceed a threshold was not successful because clusters

tend to cover several cells and they nverlap. resulting in several extracted lines for each cluster. To

get around this problem, as soon as a line is extracted, the effects on the accumulator of all the edge

points corresponding to the line are eliminated. The algorithm we use is the following.

1. Transform each point in the edge image to a sinusoidal curve in the r-8 accumulator

space.

2. Choose the accumulator cell (r, 0) with the largest value. If the value is less than a
threshold, exit.

3. Find linear clusters of points in !he -O-ge image that represent line segments alongj the
line (r. 0). This is done by searchinrj for Ooints in the edge image within some thickness t
of the line (r, 0), and dotermininj '';ich of these points cluster together. Each resulting
line segment is defined by its 20 ec ints. tS 30 end points, and it, 31) line parameters.
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.6 emn tine
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(b)

Figure 5.13: Camera viewpoint of vertical stripes lying on faces with diagonal
boundaries. The measured Stripe pcs~ton results in a concavity or convexity

near its top and bottom.
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4. Eliminate the efff t on the aiccumulator of the points lying on the line (r. 0). An efficient
way to accomp lhs this is to decrement each accumulator cell lying on the sinusoidal
curve corresponding to each point.

5. Go back to step 2.

Each class of edje points (i.e.. convex, concave, and occluding) is treated separately and

independently. In this way. the resulting line segments can be given the same class labels. Also, the

direction cf the occluding arrow for each occluding line is determined as a unit vector in the image

olane. (The occluding surface is on the right side of the arrow.) This is clone by comparing the

average z values of points on either side of the line segment that are vefy inuar the segment. Thi

results of the line fitting are shown in Fig. 5-14. where occluding lines are reprcsented by solid lines,

conrave lines by dashcd lines, and convex lines by dot-dash lines.

As explained earlier, some convex or concave edge points may lie near occluding edge points. This

may result in convex or concave line segments near occluding line segments. These segments should

be eliminated since they do not correspond to real scene features; they are an artifact of the range

finding process. Fig. 5-14 actually shows the result after such segments have been deleted.

5.3.6 Connect Lines and Form Junctions

Although the basic line segments forming the edges of the object have now bee, extracted, as

shown in Fig. 5-14, there are still many gaps and inaccuracies near the junctions of the object. Our

ncxt stcp is therefore to fill in these gaps and form junctions where necessary. This is done in three

steps. First, segments that are close and almost collinear are connected. Second, (extended)

segments that intersect and are close are connected. Third, if a segment has a dangling (i.e.,

unconnected) end point, an attempt is made to connect it with other segments as in the second step,

but using a larger threshold than in this step.

In the first step, if two segments are alncst collinear and have close end points (e.g., segments Li

and L2 in Fig. 5-14), a junction is formed at the point midway between these end points to connect the

two segments.

In the second step, intersecting pairs of (extended) line segments are connected if the intersection

point lies within a given threshold dianc" c' the cnd points of the segments. We consider five cases

hete. In case 1, the intersection point 'Cs :Lts ?. the two segments (Fig. 5.15a). Both are extended
and a junction is formed. In case 2. :tiie Lne:n coint lies inside both segments (Fig. 5-15b). Both

are shortenud and a junction is forrne.; 'r, 2 m'e intersection point lies outside one segment but

/ I # ,p *' '' -
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Figure5.515:. Connecting intersecting pairs of (extended) line segments.

The thresholds used in the first two steps just described are conservative and are only meant to

connect segments that are quite close to each other. If liberal thresholds were used' connectiors

would b estllished between segments that should not be connected. The result after these first two

steps is shown in Fig. 5-16. Note that the two end points P1 and P2 in the figure seem to be

"dangling." In the third step, therefore, a top-down type of process is initiated. We assume that a

dangling and of a segment should probably be extended or shortened by a larger amount than the
previously specified thresholds. Intersections between such an (extended) segment and other

segments are obtained, and the same tests and procedures as described in the second step are

performed, except that larger thresholds are used.

As a result of this process, all gaps are eliminated. However, lines that should form a single junction

often do not intersect at a single point, resulting in separate junctions. To merge such junctions, a

rectangular window is placed at each junction point in the image, and all junctions within the window

are replaced by a new junction defined by the averarz onostion of all the junctions. The result of this

step is shown in Fig. 5-17. At this point, partially occluded segments are labeled as such. These are

found by checking how many segments form each iun.ction. If a junction is formed by only one

segment, the segment is marked as incompIte. In Fig. 5-17, secjnvints Li throujh L5 are incumplete.
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Figurel5-16: Result ot connecting segments in Fig. 5-14 with
conservative threshold.

5.3.7 Convert to 3D

Thus tar, all of the processing has been in 20, in the mixed registration image. In the next step, all

the junctions and segments in the image are converted into 3D vertices and edges. Afterward, the 30

faces in the scene will be obtained.

The obvious method for getting *,he 30 P03ition of some point in the image ;,z to mcr,;Jy cxtract itO

x.-/.z coordinates from the x,y.z range images. The problem with this method is that it can result in a

large depth error even if there is a small error in the 2D position of the point. To see why, consider Fig.

5-.18. Suppose that the position of a junction determined by ft methods described above is at point

a. but the true position of the junction is at point b. If we obtain the 30 coordinates ot point a by

extracting them from the x,y~z range images. we would really be extracting the coordinates of a point

that lies significantly inside face A. resulting in a large error in fth z cooroinate. The more oblique

face A is. "aei.the greater the error. To O.I
To overcome this problem. we use the known 3-space pooitions of the lines that were initially

-- -- --
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Figure 5.17: Result of extending dangJling ends and merging
junctions in Fig. 5- 16.

extracted from the edge image (Fig. 5.14). To obtain the 3D position of a point in the image known to
lie on a given line in 3 space, we calculate the intersection of the line with the plane of illumination
corresponding to the column C in which the point lies (see Fig. 5. 19).

Eaqh junction in Fig. 5-17 has a pointer to a list of all the initially extracted segments (Fig. 5-.14) that
ultimately led to the junction. Fig. 5.20 Provides an example of how the 30 coordinates uf a junction J
are detcormined. Suppose J was inlitially uit3'fled hy averaging the 3 intersectioni points Of the
segment" Ll. L2, and L3. To gct its .'C poz.:cn. J is first projected, an 20. onto cacli of its segmnents,
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b

Figure 5.101: Locatinjy the 30 powioii of a vertex directly from range data
cometimes results in a large dapth error

Figured5.10: Calculating the int~rsac tion of a linej in 3-space willh the plane of illumination

rewitinrj ina the pruivctgiJ points o1, p2. and D3 Assumning that each of these points lies on its
respective line in 3-cpnce, their 30 Position-s are obt.jimed as described above. The "O Position of the

v~rex corror~ponding to J is theii obtaine,- t f veray r iq the 30 positions of 0 1, P2, and P3.

After onch junction Nis~ been converc. c r'. itZ is siniplu to ubtain the 3D line paramet.-is

of the tdye connecting these vertices
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Flgure 5.-20: Determining the 30 coordinates of junction J

5.3.0 Ceneral.o 30 Faces

The next stop is to extract the 3D face.- in the scene. Since a face may be defined by the edges that

bound it. faces awe found by following (or traversing) their chains &f eJges. The edge traversal is

arbitrarily chosen to be clockwse and is two-dimensional, that is. it occurs in the plane of the image.

Secauso an occluding edge belongs to one visible face. such edges must be traversed exactly

once, and onily in the direction of the occludling arrow Because concave and convex edges belong

to two viie faces, such edges mu-4t te trajversed twice, once in each dJirection. Fig 5- 21 sno~ws how

the fcc- of -in object may beo recovered by traiversing the edges. We rlistinguisli two -.l&'eses of faces,

thriao with all their edges visible (e.g.. face A in Fig. 5-21) and thoSe with partially or ltaly ot.cluded

edges (e.g.. face B in Fig. 5-21). Faces in the first class are found by .1 completc traversal of their

edges. Tie traversal can thierafore beyjtri .ith any 3dge on the face. Since faces in the second class

wre found by a parial traversuil of tfi-.tr ci:ges. c intist make certain that the e~dge with which a

travoraal tIeins wufl permnit all visible e>I c Le inc'udr~d.

A fiice truversa occurs ais follows r,-,: ;r' :4-! c ilcd the -S~ed" ge is ctni,'#-11 liiny with a

~ ~'J
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F A

Ff~urel1.21: Recovering the faces by traverising their edges.

traversal direction along that edge. The method of choosing the edge and direction will be described
shortly. To obtain tie next edge in the traversal. a simple test is used to determirne the next moast
clockwise edge in the traversal direction. In Fig. 5.21. for example, if thle edge FG is DIe seed edge
and the traverAl direction is from F to G, then the next most clockwise edge is GM, and its traversal
direction is from G to H. Successive edges are chosen in this manner until one of the following
conditions is met (1) an edge which has previously been traversed in the same direction is reached
(e.g.. a teed edge will be reached again for a totally visible face). (2) an incomplete (i.e., partially

o'ncluded) edge is reached (e.g.. edge GI in Fig. 5-21), (3) an occluding edge whose occluding arrow
IS opposite to die traversal direction is reached. When one of these conditions is met, the traveradl is
term~inated and all the traverse edges are assumed to belong to a single face.

Seed ec'ges we chose so that all faces with some occluded edges are processud before faces with
no occluded edges. The algorithm proceeds as follows. First, incomplete occluding edges whose

occluding arows point away from the incomplete portion of the edge (* g., edge AB in Fig. 5-22a) wre V
found. Each of these edges is used as a seed, and the traversal direction is that of the occluding
arrow. In ig. 5-22a. lthe clockwise tr.ivefsal reSults in the edges AB, SC. and CO. which are used to
form face F. Next, each incompleete ctunvew atid concave edge (e.g.. edgres AD iuid EF in Fig. 5-22b) is

UUc S Seed, and the traversaldirec,cn L~ inn h~complete to the coinpicto portion of the edge.
IN
I.
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Piu1g 522: Finding seed edges to use in traversing faces.

Then. for each occluding edge in the scene (e g., edge AS in Fig. 5-22c), find the next most clockwise
edge as if traversing the occluding edge in the direction opposite to its occluding arrow. If this next
edge is concavej or convex (e.g., edge BC in Fig. 5-22c), itis used as a seed. and the traversal

direction is the some direction used to find the edge.

At this point, the algorithm processes faces with no occluded edges. First. each complete occluding

edge that Nas not yet been' traversed (e g., AS in Fig. 5-22d) is used as a seed, with the traversal

direction the same as that of the occluding arrow. Finally, each complete concave or convex edge
that has not been traversed in Uoth directions ie g .CA in rlt4. S-22e) is used as a seed, traversing in

the direction(s) not yet traversed.

Each set of traversed edges is used ~c lc''- i single laice. and the 30 Posiionrs of the vertices
connecting these edges are used to oc:.!i: ::~ 'are eQUation of the face. Although our current
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techniques will find inner edge chains (e.g.. those that bound a hole in a face) as well as outer ones.

the two sots of chaiiiwetnot be associated together as belonging to a single face. Fig. 5-23 shows a

perspective view of the final 30 description generated from tle line drawing of Fig. 5- 17.

Figure .- 23: Perspective view of final 30 description generated from Fig.
5-17.

5.3.9 Multiple Views

The processing result for the edge image in Fig. 5-12a is shown in Fig. 5-2C The final 30

reconstruction is shown in Fig. 5-25. The two sets of range images discussed in this paper are two

views of the same obiect. The next step in the processing will involve matching the two 30 models and

merging them so as to generate a more complete model. The matching algorithm matches vertices in

the two descriptions, and propagates constraints through the edges and faces. This is one reason

why it has been important to recover almost all vertices, edges, and faces in the scene.

5.4 SUMMARY

This chapter has presented results in both low-level and high-level aspects of the 30 change

detection task. For low-level processing, a new method of determining stereo correspondences

which are used in the computation of depth for a pair of aerial images was described. For high-level

processing, we have described our methocs of representation and construction sc(cne models from

multiple view. We have bypassed thie low.evef proUlesin by using ranyefindier data as our input for

the high-level processing.
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Figure S*24: Final line drawing obtained from the edge image in Fig.
5-1 2a.

Figure 5*25: Perspective view of final 30 description generated from Fig.
5-24.
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7.SU'*'1ARY
lit Chapters 2-5. we have dlescribed our progress towards achieviitl :t coinhinationi of pattern

r~coginitloii smige underst.ning. and W tificil inteligenlce technicjue-s for -Vace-based Image

proceu~inq. usOnq both optical and digital procin.Sfg ntIChoils. We have achieved result, in the areas

of op~tical leatuic v~traction ind sub-pixel tlirjct detection, hybrid diyjil/optical representation1 and

"'atching. anti niod'ol-based tlhret--dinionsional scene interpretation. The remaindler of this chapter

-iiiiiierizeb thii results aichieved over tile past yeir.

7 ~ O LF!'AT! I "P E "I =TON ~D SIUG3QI ,L TA lGET

DE1-Z .C7I CN HIGHLIGHTS

The highlighln, cf optical feawure extraction work include:

" A n'ww optical processcor for detection of in-plane disitortion parameters from optically

generated chord distributions.

" A n#;w optical/dligital momeont processor concept.

* A new hierarchical non-ad-hoc tree structure formulation.

" Succezr~ful initial tcsts of the moment processor on ship and pipe pant data bases

" Promising initial quantifications of the accu~racy to which the distortion, parameters of the
ob~ject c--ri ta producoci in the hybrid moment processor.

" Development of new correlation SOFs.

e Promising initial ATR test results on correlation SDFs.

The highliqhts of our sub-pixM. fast time change detectioan/ recognition effort include:

* A mo~re, unified and acciurate imacie rJ-neration sofiware for orodiUcinwi detector images
containing sub-pixel movinq targets, correlated noise and uncorreizttvd noise.

* Detal4d quantitative result,% of the pertcrmance of sub-pixel shift cstimators.

* Detailed quantitative results of the uci-formance of various interpolation schemes.

* Introduction of a new and better -tfformance ineasure for the characterization of
backgroutid suppression.

* Analytical and experimental inyc-?! ;,,,on of the use of double clifferencing for
backgrniwidsuppressinii.

* Initial forintilaiiion of the mar"- . r. ./in failriny" to -!hac the tiub-pixel

-. S A A M r- 5 s- MA~f.)~ S At X %19L
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* investigation of the effects of detector limititiofls such as limited dynamic range and
detector nois '

* initial off orts of multi -ro.%jinn imagtt generation.

7.2 ALG ORITHMS FOR HYBRID DIGITAL/OPTICAL
REPRESENTATION AND MATCHING

This phase of thai project has focussed on'the development and evaluation of methods which yield
repreerentntionn of struCtur-1I nd textural information in dfn image. and mnay be used for matching
imnoaet. to sce*ne models. Trhe principal results 3chieved in this research include:

P Irobabilistic Graoh Murtching - Attributed graph structures are used as models of
structural and statistical information in the image. Matching of these graph structures
using ptobabilistic similarity methods poses a number of interesting problems in the
mathematical formalism, in the computational matching algorithms, and in the application
of thes, methods to real images. We have investigated methods of subgraph
decomposition which permit branch -and- bound search of the matching tree and provide
efficient pruning of the possible matches.

" Multiple Resolution Rotation -invariant Ovorators -The MRI (Multiresolution Rotation
Invariant) opirator and the MRO (Multiresolution Difference) transform have been
introduced to extract structural and textural features of images for use in matching and
intc.rpretation phases of analysis. The MR! is a complex operator derived from dcrivative
expansions of Gaussian kernels and will have magnitude of response independent of
feature orientation and phase angle of response which provides information about
orientation. The spatial and frequency domain properties of these operators have been
studied and an approximate MRI operator which uses difference of shifted Gaussian
kernels has beew derived and shown to be computationally efficient due to the scaling
and shift properties of the Gaussian kernel. The MRI operators have been applied to
aerial images of objects and textures.

" Texture A nalysis - The MRI operators described above have been used to characterize
and classify textures from aerial images. This set of multiresolution operators permits
classification of texture independent of the size and orientation of the texture pattern
itself. The statistical distribution of the magnitude responses is analyzed across the set of
operators for regions of the image. Correlation with the corresponding magnitude range
and the corresponding phase distribution provides information on the relative scale and
the relative orientation. Experiments on textures from aerial images and textures from
simple patterns have been carried out anid compared to previous texture energy
operators.

The algorithmns studied in this section Pet1.eC? 'e i wrd iic ipli nary nature of the project. The MRI

operators and astociated texture measures oire oarticularly well-suited to parallel or optical processor
implementation. They will be implemenie-c a-! 2valuated on the array processor with RAP10bus host.
Our formulation of the recursive muoe ".- ; aor'IPnrn' is also inltv?fidcd for implcmaintation on
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tis tYPo Of ai'chitecture with e~tensior.j which miay inteyrfate symbolic aiid numerical processing

Tho interactive use of parallel 'ind optical prcproceSainq with liypotthei~ formnation 311r' lda)tive

SearCh strategies will he njtural cuitinuation of the work conpleted.

7.3 IMAGE UNDERSTANDING TECHNIQUES FOR1 3D SCENE
INTER P':'ETATION

Otir effort th~is , ear has resultedt in techniqjues clealing with two levels of wrocusing reflUired for the

o f flk :crilinj 20 scenet !!ia 2U iniacle lnvel dt~i fC~tujrcs. ml ; edgu; loies and

cumii~s. in imaj;. and the0 3D scene level. ra;piecontirig. coiistrutinq, ; ii Litd31ig thic N) scc'ne

nicd.'I. Uir principal results inchiide:

* Siefeu CorrCSDoncdcnce LjsIii 0vnaniic Programi~ming (20 Imaene Lev'el) -We have
described a mnethod to match the ipuiar line pairs in a stereo pair and determne a
rather dense depth mnp of the scene, using intra- and inter-scanline search.
I,'rra-scantine search determines the correspondence between edges in the same
scanline of the left and right images. This search can be treated a the problemn of finding
a matching path on a 20 search plane whose axes are the right and left scanlines.
Vertically connected edges in the imarleo. orovido con~istency constraints across the 20
search planel. lnher-sconline search in a 30 search space, which is a stack of the 20
search planes, finds the vertically connected edges and applies the constraints. By
considering both intra- and inter-scatnline scarches, the correspondetice problem can be
cast as that of finding in a three- dirniensiui ial search space the matching surface that has
the best match scores from ifltra-scaline search and also satisfies the consistency
constraints from inter-scrinline search. This problem is slved using dynamic
programming for both searches.

*Threo-0imensional Model Ouiding and Maintenance (30 Scene Lev~el) -We have
investigated model building using rangefinder data. which is already three dimensional,
bypassing this problem of rienerating a 20 description from 20 data. We have developed
techniques for representingj, construlCin~j, and updating the scene model The model is
in the formi of 3D0 faces. edg'~s. verticen. and their topology and geomctry A ranq.; image
is segmeni.J into edgje points to vihicli linear segments are fit. The original line
-erjmentr, irc rceinF~d to ohiyirinil r F.'ri ia rrn !hen fit to th. 'n(% ilrn.,vn9. Thoa firril
model is represented as a cjrz'h inl t~rrns of the symbolic primitives wic. '.jce. en1;e. and
vertcrx. Although the final de~x-'ntior is three-dimensional. mo ..t of the proce.-:.ing 13
done in the two-dimensioral imacie space Future work will Cominie innidel informaition
to obtain a full symbolic desi.,r'plion cf a scene from range data obtained from muiltiple
viewpoints.

In the future, w-e will continue our .vor- :n Icih highluvel and low-level imragc procco-sing that is

requircd for the Z0 3cene analya.i -zwd ouco fllsn and extracting 20 repetitive

tr. tural featurist from images. rr- -~ :u, -,-eo algorithm, and reprcscriting and mitching 3D

sc !nc models.

% % %
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*rebil 1,,. Aeriatl images of tirban scenes contain .1 'i.x(e ainount of textures made of
repetitive ~atr~Such is windows orn the building ices. Tile abiiely to find and
cliziracterize such textufen is e5~flhiil to lflnyzc, comlex 'rnaJes of man niade
structures 14V will studyV the~ nroblem of deLtectinig andc seglililte regions ",,lie of
reguilar array-4 of repes.teU pttems i) 1'may65, by usmng tile analysis 0f vaijtion.

*.Sic'en Stereo is one of thit.i ost infortant ways of eytraving 30 featueres from liniges.
A fa*st. fohist sterqO cjjpbility wiould Vjreatly enhatice an~y 30 Scenic inter~pretaliun
systwem. and would result inl a significanet step towards anl effective change detection
System. We eApect to CoilinUe work on the stereo algorithm basmi on tile dyna~mic
Iliogr:-iningj IL-ctiniqkie dO:zcribed oil this repofl to inCrease its sp"I ii I improve [lie
qJuoh~ly of its 11iia1Chieic !C~ilt-, Otir next stcp will Lie to inr~orlornl#-' iultilrecolution
tectictivi ?itio 'Ms aegcrllhn Thi3 S1110I.-I improve maictimeuj qualityi Ncaue it is easier
am.! niorte i :isi~.le to mrigci at Iower-.'soiuiori t(rmillcr) images Gind the re-ltM call Li

p prowjalJedc to hecjhnr rosiition (target) iinyeS. Spe.ed Should also be imp~roved, Since
results from sma.ller imag~es can be used to limit the range of search in larger images.

*30 Model Acquusition and Matching -Once 30 features have been~ extracted from the
images. they must be accumulated into & Coherent mnodel and matched with previous
models to determine whether Changes in the structure of the scene have occurred.
Matching is also necessary when merging two scene descriptions of the same scene.
perhaps obtained from different viewpoints, into a Single consistent desocription, or when
identifying theli-same 3D oblieicts. such as moving objects. in different scenes. We will
continue our investigation into this problem of reconstructing and matching 30
descriptions from a dense depth map which well be obtained either from stereo or from
direct range fending sersm.

%I
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Appendix A. Hierarchical Feature-Based Object
Identification

David Casasent and R. Lee Cheatham
Carnegie- Mellon University

Department of lectrical and Computer Engineering
Pittsburgh. Pennsylvania 15213

*PreSent Adcilres.: Battelle Northwest. Computers & Information Systems
Section. Riclland. Wi.hington 99352

AB5.IACT. A multi-level classifier for multiclas 3-D distortion-invariant recognition is described.

New real imagery and distortion parameter estimation accuracy data are presented.

1. INTROOUCTION

A feature space p ocessor for multi-class distortion.invariant pattern recognition is detailed in

Section 2. A moment feature vector space is considered. Test data 11 21 on a robotic database are

summanzed in Section 3. ResL;is on a ship database. using real input imagery with ra'ferences from

models is presented with attontion to preprocessing, distortion parameter estimation, and class

identification are xdvanced in Section 4.

2. PROCESSOR

A moment feature space is easily generated optically (3.4,51 or digitally [6]. Its outputs can easily be

corrected for processing errors in postprocessing [3). Moments are jointly Gaussian random

variables 121 due to sampling with respect to i-plane distortions. Thus. they allow use of a Bayesian

classifier and thus can minimize P. To determine the class' (object class c and aspect view op) and

the Obect's distortions (described by a distortion parameter k) for each computed input moment

vector :, we calculle
- L (kif lrz "' hw ( i,

with k calcuated iteratively (k is the iteration index) using

* = + i(IA)r.kl" lh)T '; -+

The cihnssS that minimizes (1) defines c and the out-0fplane rotation angle (asoect) 7 of the input.

whereas pprovides estimates of translations. scales. and in-plane rotations. The number of iterations

k can be reduced to 4-6, 2 = / can be u. Cd in (1) and (1), and I in (2) calculated az an update [1,2).

This significanlly reduces the computational Icad per cla.t/aspect i.
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The major probleum it; the large number of aspect-classes tthat need potentially be searched.

To rcliv ve this. we ual tw~ffirst- level e~stimators[ 1. 21 to estimate the aspect (this is achieved by

I ~j, and class (a hierarchical tree is used for this. with the node struicture chosen fromi a

multi-class Fisher projection and with a two-class Fisher discriimnant vector used3 per node). As we

show inl Section 3. this reduces the number of aspect-classesi1to be searched and thus makes the

proccssor very cuniputitioflally efficient. A block diagram of the system is shown ifl Figure A-i1

IMAGE- COMPUTERP LSIIR EEEC

3 I PIP P ATO EST ESULT

Asseen iTabe A-, telc syste m of iur A-i c- cee oet clau-spfaoer 97%of te34iae

4.~ ~ 3 PITR IP PARTE ESIMASUTS C.E.

Relaedffeenpe ate (4abses v27iewed omarabldeprerfioranle aeredimiilar op1r8tion2l

pirxers. In igs per pase.(the refeeer10 bisect roband from mos rii test aainTst

reaultword sRuimaes.edxcellentere.ognition was outained-Theerepcessing rqued [7es 1.useol

thslee 0ast2 iatora opduertion nde todig (to ainedinn(1 low compTstio.enalmoerhead)

Asse in consierA1 the lsstect of scaure A Ian treslo classimaioe accura of the steme

fRelate seon anve-cles database (67 imogedato10'raspe inervorace cass) usingla onlyatfour

references per class. The true object was the 80" aspect view of the class 1 image. A real IR input
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-ES PER ENT
NUMET C0'N0ITIONS CORRECT REMARKS

NUMBR ______________________ (OUT OF 324) _____________

1 NoAspet Etimaor 9.5%9 Aspect Refs each 400 Used
1 NoAspct Etimtor 75~24 View-Class (Avg) Passed

2 Full First-Level Estimator 97.5% 10 View-Class (Avg) Pissed
------------------------------------------------- ------ m------------

3 Agi - 1-4 to1-1 mr3 g~0 oO98.211 rf 6 Iterations k
--------------- --------------------- aaaam----------------- ;- -

4 Different 90-93.9% 1 (90%) Adequate

ar.
Table A-1: Representative Pipe Part Data (Different Test Conditions)

image (%is. references obtained from models) at a depression angle 10" diUererit from that of the

reference set was used with real IR noise present in the input. The tests (Table A-2) show perfect

class and aspect classification for Ag1 10-4 - 10-* (for AS, = 0.5. errors resulted as expected) and

excellent shift (r. in pixels) and scale factor (a) distortion parameter estimation. All distortion

parameters were estimated within 5% accuracy, due to the input resolution, noise, etc. factors.

TEST TRESA7 /Xn CLASS/ASPECT
NUMBER cS/PIF'yEo ESTIMATE ESTIMATE

1 1.0/0 1.0/0 1/800
2 1-0/15 _.1.016/14.22 1/80

3 1.0/25 10/2.21/800

4--t_ 0. 5/0 -.- 0.499/0.1 1m --- /800__
5 0.75/0 0.750/0.07 1/800

6 0.9/0 0.90/0.03 1/800

Table A-2: Results of Class and Distortion Estimation Tests
(True Class 1, Aspect 800)

A!KNQWLEQG.-AfMT. The suipport cf thts research by the Air Force Office or Scientific Research

(Grants AFOSR-70-0091 and F40C20 &302100) are gratefully acknowledejed.I
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