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ABSTRACT
I

This thesis will investigate several issues relating to the objective of improving the disturbance

3 rejection of a Large Space Structure (LSS) type system. Due to properties of LSS systems, the

design of the controller must address three main issues: 1) improving of the disturbance rejection

properties of the system. 2) insuring that the the controller is robust to modeling uncertaintyand

3 3) implementing the design as a low order output feedback controller. ,

The disturbance rejection of the system will be quantified using the H/norm. An arbitrary

Ilevel of disturbance rejection will then be achieved through a Linear Quadratic (LQ) minimization.

This LQ solution produces a state feedback controller which is robust to modeling uncertainty. In

order to realize this design. a low order output feedback controller will be designed based on the

LQ solution using projective controls.

The method described in this thesis will then be applied to a 40th order LSS example. Using a

decentralized approach. a controller will be designed which satisfies the issues discussed above.
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1. INTRODUCTION

3This thesis investigates the problem of disturbance rejection for a class of problems commonly

known as Large Space Structures (LSS). A solution method will be developed herein which reduces

the effect of the disturbance on the system while accounting for uncertainties present in the prob-

lem. The method will employ H. concepts. LQ minimization, and projective controls in achieving

this goal.

Certain characteristic properties of Large Space Structures pose particularly difficult problems

for system designers. Typically. the systems themselves are of infinite order and are modeled as

high order systems. Because of this, models of LSS systems tend to have uncertain parameter

values. The modes of the system tend also to be very lightly damped and thus easily go unstable.

Also, the number of inputs and outputs. while being multiple, are small compared to the ordei of

the system. In some cases, decentralized controllers are necessary due to physical constraints: in

other cases. the structure of the system suggests that a decentralized controller is appropriate.

Because of the small number of outputs available and the large order of the system. high

order observers are often necessary to implement state feedback controllers obtained by optimiza-

tion methods such as LQG. However, observers of such high order are not practical and for-

tunately are not often necessary. Thus an important design problem becomes one of designing con-

trollers of low order.

One approach to the low order controller design problem is to use a low order design model.

This will result in a low order observer. In such a case, the choice of the design system becomes

5 very important. Because of the low damping of the system. the effects of spillover on the dynamics

not included in the design model can be very undesirable. Model reduction, however. may have toI
1 1
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be undertaken since design computations may be impossible for large order systems.

Another approach is to design a high order controller based on the full order model of the sys-

tem and then reduce the order of the controller using open loop techniques. This also can cause sta-

bility problems since no account is taken of the system in making the reduction. If. however, the

full order model is used in finding the reduced order controller, problems with spillover can be

avoided at the design stage.

This is the approach that will be used in this thesis. First a full-state (high-order) controller

will be designed which possesses the desired robustness and disturbance rejection properties. A

low-order controller will then be designed based on the full-state solution using projective con-

trols. The projective controls approach allows one to retain properties of the full-state solution. In

addition, the parameters of the controller can be adjusted to improve the non-retained dynamics

directly. This. in a sense, integrates the synthesis of the low-order controller with the evaluation

of the "unmodeled" dynamics.

This approach will be applied to an example which exhibits LSS properties. Tharp (1987.

Tharp. et al., 1987) recently studied this example in the context of improving the damping of the

system. This was essentially a time domain approach which improved the response of the system to

initial conditions. Tharp's method did, however, use a frequency domain approach to the robust-

ness issue.

In this work, the response of the system to an external disturbance will be improved. A

method of solution will be developed that takes into account both the uncertainty in the form of

the disturbance and in the parameters of the system itself. The former is handled through use of an

H.-norm as a *worst-case" analysis of the effect of a class of disturbances. The latter is handled

through the robustness properties of a linear-quadratic (LQ) minimization. Projective controls are

then used to retain properties of the LQ solution for an output feedback solution of the problem.

2
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2. THE DISTURBANCE REJECTION PROBLEM

2.1. Problem Definition.

The problem of disturbance rejection is a common one for system designers. It arises when the

system to be regulated possesses an external input which disturbs the systems from its desired

state. In order to reduce the effect of this disturbance input on the system's output, control can be

applied. Since the disturbance cannot be measured directly, an output feedback controller can be

useful in reducing the sensitivity of the system to the disturbance provided the controller also sta-

bilizes the system. This. essentially, is the disturbance rejection problem. Note that the term "dis-

turbance rejection" is used to mean reduced sensitivity to disturbances. not the complete elimina-

tion of the effect of the disturbance as other methods seek to accomplish.

-'_ H - Y

Figure 2.1. The Disturbance Rejection Problem.

Fig. 2.1 illustrates the general problem where w(t) is the disturbance input. u(t) is the con-

trolled input, z(t) is the controlled output and y(t) is the measured output. The goal is to choose

the feedback. K:y-u so that the system response to the disturbance. H:w-*z is sufficiently small in

some sense. This can be seen as a regulator problem with z being the regulated output.

In order to define what is meant by a small response to a disturbance. a measure of the size of

the response will be defined. As noted by Chang and Pearson (1984). the type of norm used is

93
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dependent upon what is known about the disturbance. If the form of the disturbance is known pre-

U cisely. either deterministically or stochastically, then a quadratic norm can be applied and an LQG

solution obtained. However, if little is known about the disturbance. i.e.. only the class of signals

to which the disturbance belongs is known. then a so-called worst-case measure of the disturbance

3may be more appropriate. Using such a measure, a system can be designed so that the worst possi-

ble disturbance in a given class of disturbances has a satisfactory response.

The "worst-case" effect of a disturbance belonging to a class of signals. C on a system can be

specified using the following definitions.

Definition 2.1. Let x:[O.oo)-uIR n be a square-integrable function. Then the L2-norm of x

is {-f }1/2
{x1l2  fx(tTx(t)dt (2.1)

0

Definition 2.2. Given a system, H:w-'z and a class of signals, C, define the gain of H

with respect to C as

A I112
g(H.C) A sup - : wEC. w;dO (2.2)

1 I1w112

where w is square-integrable.

Consider a class of signals defined by the L2-norm of the signal, i.e..

SP - I x: Il1112 <P }. (2.3)

Note that the L2-norm of a signal is equivalent to the "energy" of the signal. Thus the class S. con-

sists of all signals with "energy" less than a prescribed level p. Since this may be all that is known

about a signal. this can be a very useful class of signals.

These definitions will now be used to quantify the amount of disturbance rejection possessed

by a system.

4
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3 Definition 2.3. Given a system, H:w-z and a class of distw-bances, S., then, H has dis-

turbance rejection -y provided H is stable and

g(H.S,) < y. (2.4)

3 Consider a system with disturbance rejection y. Then for any disturbance w(t) in the class

S.. the resulting signal at the output z(t) belongs to the class S.. i.e.. if IIw(t)112 <p then

llz(t)112 < Py.

2.2. Linear Systems Case.

3If only finite-dimensional linear time-invariant (FDLTI) systems and controllers are con-

sidered, then the system, H and the controller. K can be expressed in terms of rational transfer

functions H(s) and K(s) respectively. i.e.,

z(s) = H(s)w(s) (2.5a)

u(s) = K(s)y(s) (2.5b)

where u E IRm is the controlled input. w E IRq is the disturbance input, y EIRt is the measured output.

and zEIRs is the controlled output.

P FDLTI systems can also be expressed in state space. For the system H. a minimal order state

space representation of the system is of the form

i = Ax + Bu + Dw (2.6a)

y = Cx (2.6b)

z = Ex (2.6c)

where x E IRn is the state vector. A minimal order state space representation of the controller is

v, = Hox + Du (2.7a)

u = -NdV - Kdy (2.7b)

where v EIRP is the state vector. The connection between the two representations is given by the

following expressions.

* 5
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Iz(s) 1 Il- D jw(s)B
y(s) -

=  (sAlu(s)

u(s) = -[Nd(sI-H.)-'D. + Kd]Y(S). (2.8b)

For linear systems. the gain" of the system is independent of the 'energy* of the disturbance. p

3 and can be expressed in terms of the H.-norm of the system.

Definition 2.4. Let H(s) be a stable, proper, MIMO transfer function. Then the H.-norm
I of H(s) is

IIH(s)II. = sup (H(jo)) 
(2.9)

where E denotes the maximum singular value.

Theorem 2.1. Let H(s) be a stable, proper, MIMO transfer function. Then H(s) has dis-

turbance rejection ), iff

IIH(s)II 4v. (2.10)

Proof : By Theorem 2. Chapter 2 (Francis. 1986). g(H.Sp) = IIH(s)II.. Thus. (2.3) and (2.10) are

equivalent for linear systems. 13U
2.3. Solutions of the Disturbance Rejection Problem.

A number of methods are available to solve the disturbance rejection problem. One method is

disturbance decoupling (Wonham. 1979). This method uses geometric concepts to decouple the out-

put from the disturbance (i.e.. achieve y-O) and results in a state feedback controller. However.

solutions to this problem exist only under relatively severe conditions usually not satisfied in

many systems.

When the above existence conditions cannot be met. the problem can be approached as an H.

minimization problem (Zames. 1979). (An overview of solution techniques can be found in

Safonov. et al.. 1987.) This method produces a stabilizing controller which minimizes y. The

6
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resulting controller is a dynamic output feedback of relatively high order. generally higher than

i the order of the system. Peterson (1987) has developed a method which uses the ARE to asymptoti-

cally achieve the H. minimum for a state feedback controller.

It may not always be necessary to achieve the minimum y. In other cases it may not be possi-

3 ble to apply the control authority necessary to implement the above controllers. Also. robustness

issues must be addressed in order to deal with uncertain systems such as LSS systems. For these

Ireasons. LQ based solutions that bound the disturbance rejection are attractive. One such method is

given by Imai. et al. (1986) based on a frequency weighted LQ minimization. The state weightings

are chosen to frequency-shape the return difference matrix. This can then be used to solve the dis-

turbance rejection problem. However. the method requires R {D}cR {B) where R M denotes range

space. Furthermore, the method produces a dynamic state feedback controller as the solution to

the disturbance rejection problem.

The method proposed in the next section is related to the results due to Imai in the sense that

it also requires R (DIQR (B) and yields a state feedback. but does not resort to the frequency-

weighted LQ approach. Therefore, since the controller type is the same. methods used to imple-

ment the resulting state feedback are valid for the method of Imai as well.

2.4 LQ Diaturbance Rejection.

In this section. the properties of the LQ method will be used to establish disturbance rejection

p properties. In addition, since the solution is the result of an LQ minimization. certain robustness

properties are guaranteed. As shown in Lehtomaki. et al. (1981). minimum gain margins are 1/2,ao

U and minimum phase margins are ±60 degrees.

Theorem 2.2. Given a system (2.6) such that R (DIQR 1B, let a ElRmxp where D=EBa.

Let uf-Kx where

K =,j- 2aDTP (2.11)

and P be such that

!'.
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ATP + PA + E E- y-PDDTp = 0. (2.12)

then the system has disturbance rejection y.

Proof: Since R DCR 1B}. D=Ba. Let

U K=R-lBTP (2.13)

be a state feedback gain matrix where P solves the ARE

ATP + PA + Q - PBR-BTP = 0 (2.14)

I with Q>0 and R>O. Let F=A-BK and Q= ETE. Then (2.14) becomes

FTP + PF + ETE + PBR-IBTp = 0. (2.15)

Then by Willems (1971). Lemma 1.

[E(jwI-F)-B]*[E(jI-F)-'B] 4 R (2.16)

where * denotes complex conjugate transpose. Premultiplying (2.16) by a T and postmultiplying by

a yields

[E(iWI-F)-'D][E(jwaI-F)-'D] < aTRa. (2.17)

Thus. if R is chosen such that

then from (2.17) 
aTRa 4 -y21P. 

(2.19)

Hg) X ,.[H(jw)f[H(jwa)] }  X.(i,, 21p = -Y2 . (2.19)

Thus. since H(s)-E(sI-F)-'D.

I IIH(s). _ &[E(jwlF)-'D] 4 y (2.20)

and the system has disturbance rejection y.U2 -T -1
If m=p. let Rfy C1 a . Substituting R and Q into (2.14) gives (2.12). However. if m>p. any R

3 that satisfies (2.18) can be chosen. Introduce a transformation of inputs. u - TG where TEIR ' xm.

Then.

i B=BT (2.21)

I
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and (2.14) becomes 
TRT (2.22)

ATP + PA + Q -PBk-R FP - 0 (2.23)

Let T - [a -] where v is defined so that T is nonsingular. Then

-[D B-y]. T R= T R (2.24)
rI T Ra TyT

Let a TRa-- 2-, Ip. Then. as T Ry-oo

_ 0 (2.25)

Substituting (2.24) and (2.25) into (2.23) and (2.13) yields (2.12) and (2.11) respectively proving

the result. 0

Thus. by the methods of this chapter. a system's disturbance rejection properties can be

5 characterized by a "worst-case" measure, the H,.-norm. Furthermore. an arbitrary level of distur-

bance rejection can be achieved through an LQ minimization which also provides good robustnes

I characteristics. In the coming chapters. methods will be developed which use projective controls to

implement the state feedback controller with low order output feedback controllers.

19
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U 3. PROJECTiVE CONTROLS

I
3.1. Problem Dacriptom.

When designing controllers with optimization methods such as LQ minimization, a state feed-

3 back results which achieves the optimum. However. in order to implement this design. an output

controller must be used. The state feedback system can be viewed as a reference system which

poms properties to be retained by the output feedback system. Often this is done is by design-

Sing a full-order observer and then. if necesary. reducing the controller order by either directly

approximating the controller with a lower order controller. or by reducing the system order before

I the observer is designed.

Projective controls. as developed by Medanic (1978. 1979). offers a method of implementing

an output feedback controller which retains a subeet of the reference system's eigenvaluss and

eigenvectors. The controller can be either static or dynamic. In the dynamic controller case the

order is determined by the designer to meet design objectives. The retained egenstructure is arbi-

trary and can be chosen to retain certain properties of the reference system deemed to be important.

In addition, it will be seen that design freedoms in the dynamic controller cass can be used to

shape the dynamics of the residual (non-retained) dynamics. In this chapter. basic features of the

I projective controls approach will be reviewed. These are essentially Lime domain properties. In

Chapter 4. frequency domain properties of systems with projective controllers will be developed

and applied to the disturbance rejection problem.

3The basic problem is the following. Given a system

I
1 10" . .. : ..- -I . .. " " " 1



i=Ax + Bu (3.1a)

y W Cx. (3.1b)

where xEIO. uEIR . yEIRr and a state feedback control.

u = -Kx (3.2)

which defines the desired characteristics of the closed loop system. the resulting reference dynamics

are

i-Fx. F-A-BK (3.3)

It's eigenstructure is characterized by

FX-XA (3.4)

where F is the reference system matrix. X is the eigenvector matrix and A is a diagonal matrix of

the eigenvalues of F. X(F). The goal of projective controls is to design a feedback using only the

outputs of the systm which retains a subset of the reference dynamics. 'I he following is a review

of results found in Hopkins. et al. (191I) and Medanic. et al. (1985). Discrete-time results are

given in Medanic and Uskokovic (1983).

3.2. Static Projective Controls.

The static projective controller is determined by applying a projection of the state feedback

matrix. K into the space spanned by the output matrix. C such that a r-dimensional subspectrum

A1Q. X(F) is retained. If P='X,(CX,)-tC is the projection matrix where X, is the matrix of eigenvec-

tors associated with X.. then KP is the desired projection. The resulting closed loop system matrix

is

Ac - A - BKP (3.5)

As a result of the projection, the control can be implemented in terms of available outputs. i.e..

u - -Ky (3.6)

where

Ia



V.K, -KX,(CX,4Y 1 . (3.7)

In order to determire the spectrum of A. define a transformation TEIRnx where

T-[X, Y1. T-' - rLi (3.8)

and CYO0. The transformed closed loop system matrix is

ic = T-1ACT UAY1 393 A~-T 1 AT- IVAYI
Thus. the spectrum of the projective system is

XA)- X, U \(A,) (3.10)

IA, 9VAY. (3.11)
Therefore. the dynamics of the closed-loop system consist of a subset of the reference dynamics. X,

and the residual dynamics. X.(A).

Explicit expresions for U. V. and Y can be derived by assuming that the output structure is

I of the form C[I, 01. Subdividing the matrices compatible with C yields

1 1~ ~I 1Cj rB2X 13 Thus. the parameters of T can be found to be

5Y- U u=(XrIj 0]. V [-No 1] (3.13)

where.

No -1 2XII (3.14)

This gives us explicit expressions for A, and K.:

A, -A22- NA 12  (3.15)

K =K1 + KAN. (3.16)

One should note that there is no guarantee of stability in this method as with any static con-

troller. The residual dynamics determine the stability of the system. However. if the number of

12



outputs is sufficient to capture the desired properties and the residual dynamics are satisfactory.

then a static projective controller may be sufficient to meet the design goals of the system.

3.3. Dynamic Projective Controls.

If a static controller is not sufficient to meet the design goals. a dynamic projective controller

may be necessary. Consider a p-dimensional controller with a state space representation of the

3 form

z = Hz + Dy (3.17a)

u = -Kdy - Ndz. (3.17b)

I where zEIRp is the state vector. Appending the dynamics of the system (3.1) to the dynamics of

the controller (3.17). an extended system can be defined:

= Ax. + B.u (3. 18a)

y. = C.x' (3.18b)

where,

I z1:. y. 1. A* 11. Cl. e c= 11 0l. (3.19)

The reference system matrix in the extended system is F,-A-BK, where

K=IO0KI . F. =Ir() D (3.20)

Since there are r outputs from the system and p outputs from the compensator. an r-dimensional

subspectrum X)QX(F) and a p-dimensional subspectrum XkpX(F) can be retained. In the extended

system. this can be expressed

FX.Xs. =XCJ% (3.21)
where,

13I
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I x. K WI. ,.= A 1. (3.22)

In the extended system. the controller can be represented as u=-Ky,. where

K, - INd KdJ. (3.23)

3 The form of this extended system is identical to the static case. Thus, the previous results for static

projective controllers (3.7) and (3.11) can be applied. i.e..

I K, = K.X1,.(C.Xr,) -  (3.24)

Are = VAY,. (3.25)

Assuming C=[4 0] and subdividing as in (3.12). it can be shown that

=Wr WP 
(

L~2Xp2l-

Sus"= 1 -x ,,P-'xw <,,-Px,,- . v.- [-BOW;'1 (Bo'-No)I1 (3.27)

' where

BO--- Xp2 - NoXT1 (3.28)

L A Wp-tWr (3.29)

P. 1A L(Xrl-xp L ) - ' . (3.30)

The closed-loop spectrum of the extended system is thus

X (A.) k' . U \p U X(Ar,) (3.31 )

! where.

Are A,+B.P.A12- (3.32)

~WP can be seen to represent a similarity transformation of the controller parameters (Medanic. et

al., 1985). Letting WP=(I+PoXp,), the controller parsameters are then

SH =AP + PoF12B, (3.33a)

14
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D = P0 F,-HP (3.33b)

Kd - K - K2oP (3.33c)

Nd - K2B, (3.33d)

where F,,-AI-BIK2 and F,-A 11-BIKI+F 2No. Since W, is arbitrary. PoEIRpxr parameterizes all

controllers of the form (3.17) which retain the modes associated with X. and X .

34. Strictly Proper Dynamic Controller

In many cases it may be desirable to design a projective controller that is strictly proper.

3 Since controllers of this type rollof at high frequencies. such a controller has improved robustness

properties at high frequencies. A strictly proper controller is obtained if only compensator states

I are used in the feedback. The following is a summary of results presented by Tharp (1987).

Consider a p-dimensional strictly proper controller with a state space representation of the

form

I= Hz + Dy (3.34a)

u = -KOz (3.34b)
where zEIRp is the state vector. The extended system is given by (3.18) where

y-I * . 0 A1 B

The reference dynamics are given by F,=A.-BK. where

K= 0 KI . F.= Io . (3.36)

Since the extended system now has p outputs. only a p-dimensional subspectrum. XP of the refer-

ence dynamics. X,(F) can be retained. Thus.

F.X. = X.,A (3.37)

where.

1
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x1 - C. A.-Ap. (3.38)

The controller (3.34) can be represented as u=-Kmy, where

Ks = Ko . (3.39)

Applying (3.7) and (3.11) as before yields

K. = KeXr,(CeXr,) -1  (3.40)

Are = V.A.Y. (3.41)

Let T be a transformation as in (3.8). Then

ye= U6. = IWP -1 j. ve= 1X iJ- 1. (3.42)

The spectrum of the closed-loop system is then

X(Ac.) = XP U X(Are) (3.43)

j where

A,, = A - XpDoC. (3.44)

Letting Wp-I. the controller parameters are

3 H, = AP - DOCX p  (3.45a)

KO = KXp (3.45b)

where DoEIRPxr is a free parameter. Thus. Do parameterizes all controllers of the form (3.34)

which retain the modes associated with X,

The methods of this chapter present a method by which low order output feedback controll-

ers can be designed which retain modes of a state feedback system. Results are presented for three

controller configurations: static controllers, proper dynamic controllers, and strictly proper

dynamic controllers. In the case of static controllers, the selection of modes to be retained com-

pletely specifies the controller. However, in both dynamic controller cases, a parameterization of

all controllers which retain the specified modes is obtained. Since this design freedom affects the

1
16
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residual dynamics. the overall system performance can be affected by the chosen parameters. Thus.

in the next chapter. frequency properties of projective controllers will be studied for application to

the disturbance rejection problem.

I

I
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4. FREQUENCY PROPERTIES OF PROJECT1VE CONTROLLERS

4.1. Frequency Properties in the Generalized Case.

The previous chapter details a method for retaining properties of a state feedback with an

output feedback through use of a projective controller. Since the system's disturbance rejection

properties are based on a frequency domain measure. i.e.. the H. norm, it would be useful to have

an expression relating the frequency domain properties of a system with a state feedback controller

to the frequency domain properties of a system with a projective controller.

Given a system with a disturbance (2.6) and a reference state feedback control u=-Kx. the

response of the system Zr(s) to the disturbance w(s) is

Zr(S) = E(sl - F)-'Dw(s) = W(s)w(s) (4.1a)

where F=A-BK. If the system has a projective controller which retains Xr' then u=-Ksy where K.

is given by (3.7). The corresponding response zp(s) is

Zp(S) - E(sI - A)-'Dw(s) A W(s)w(s) (4.1b)

where Ac=A-BKC.

Theorem 4.1. Let W(s) and W(s) be defned above. Then W(s) = W(s)+W(s)M(s) where

M(s) = KY(sI-VAY)- VD (4.2)

W(s) = E(sI-F)-'B. (4.3)

Before proving this theorem, it will be useful to establish the following lemma.

Lemma 4.1. Let R(s)=I+FY(sI-VFY)-'V where F=A-BK and let

P(s)-I+AY(sI-VAY)-'V. Then P(s)=R(s)(I+BKY(sI-VAY)-V).

18I



Proof: Since F=A-BK.

P(s) = 1 + BKY(sI-VAY)-'V + FY(sI-VAY)-'V. (4.4)

Applying the Matrix Inversion Lemma to the third term of the above expression yields

FY(sI-VAY)-V = FY(sI-VFY)-'V[I+(I-BKY(sI-VFY)-'V)-BKY(sI-VFY)-V]. (4.5)

Using a form of the Matrix Inversion Lemma. (I-M)-M=(I-M)-I-1 one obtains

(I-BKY(sI-VFY)-V)-BKY(sI-VFY)-V = (I - BKY(sI-VFY)-V)-'-I. (4.6)

Also by the Matrix Inversion Lemma. I+C(sI-A)-'B = [I-C(s-A+BC)-'B]- '. Thus.

(I - BKY(sI-VFY)-V)-I-I = BKY(sI-VAY)-V (4.7)

Then.

P(s) = I + BKY(sI-VAY)-V + FY(sl-VFY)-T'V + FY(sl-VFY)-VBKY(sI-VAY)-,V. (4.8)

Factoring yields

P(s) = [I+FY(sI-VFY)-'VI[I+BKY(sI-VAY)-V]. (4.9)

j Thus. P(s)=R(s)(I+BKY(sI-VAY)-'V) proving the lemma. 0

Using the results of Lemma 4.1. Theorem 4.1 will now be proven.

Proof: Transforming W(s) and W(s) by T. yields

W(s) = ET(sI-T-Fr)-1 T-'D (4.10a)

W(s) = ET(s-T- 1AT)-'T-'D. (4.lOb)

Let T be the transformation given in (3.8). Then

W(s) = EXr(sI-Xr)- 1U[I+FY(sI-VFY)-'V]D (4.11a)

W(s) = EXr(sl-Xr)-U[I+AY(sI-VAY)-'V]D. (4.11b)

By definition of R(s) and P(s).

W(s) = EXr(sl-xr)-UR(s)D (4.12a)

W(s) = EXr(sI-,r)-'UP(s)D. (4.12b)

Then by Lemma 4.1.

5 '9
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W(s) = EXr(sI-,rf)-'UR(s)[I+BKY(sI-VAY)-TV]D. (4.13)

Thus. W(s) = W(s)+W(s)M(s) where

W(s) = EXr(sI-,\,Y-UR(s)B. (4.14)

Transforming by T- 1 yields (4.3). 0

3The error caused by use of the projective controller can now be characterized in frequency

domain as

E(s) = W(s) - W(s) = W(s)M(s). (4.15)

This expression can be used as both an analysis tool and as a synthesis tool for designing projective

controllers. Note that W(s) is independent of the choice of projective controller.

4.2. Static Controller Case.

For the case of static projective controllers of Section 3.2. an e'plicit expression for M(s) can

be obtained by assuming C-[I, 0]. Recall from (3.13) that

Yi[j V=[-No 1]. (4.16)

Thus. (4.2) becomes

M(s) = K2(sI-Ar)-'D, (4.17)

where

Dr =D 2-NDl. (4.18)
Note that M(s) depends only on the choice of X . Thus it has use as an analysis method for choosing

X'r"

4.3. Dynamic Controller Case.

In the case of dynamic projective controllers of Section 3.3. the above results for static projec-

tive controllers can be applied by considering the extended system of (3.18). Recall from (3.26-

3.27) that

20
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Y.=U . V, =[-B. (B.P0-N.) 1]. (4.19)

3 Thus. (4.2) becomes

M(s)=K2(si-A-BPAI2 F1( D,+ 80P0DI). (4.20)U Since E.=[0 El and B. and F. are given by (3.19) and (3.21) respectively, then

* (s) = E.(sl-F6 T-'B, = E(sl-FF-'B. (4.21)
Thus, the effect of P0 on E(s) is given by M(s). Wks) is simply a weighting matrix dependent only

on the reference system. This allows P0 to be chosen so that E(s) is minimized in some sense.

4.4. Strictly Proper Controller Cawe-

For the case of strictly proper projective controllers of Section 3.4. from the extended system

(3.35) recall

Ie VeIi v=[X PWP- 1]. (4.22)

T u .M (s) K (s-A + X D0 C Y D . (4.23)I Likewise E,40[ El and B. and F, are given by (3.35) and (3.37). Thus

W(s) = E,(sI-F*F-'B, E(sl-FY-'3. (4.24)
The effect of the choice of the projective controller is completely specified by W~s). D. can thus be

chosen in order to minimize M(s).

4-5. Minimizing the Error Function.

An H. approach to the problem of selecting P. to minimize the error function is to solve

=min It E(s) 11.0 (4.25)
P0

where P. is a constant pXr matrix. This would imply that
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IW(jWl -W(jW) it (M VcaElR (4.26)

3 A similar approach can be taken in the strictly proper dynamic controller case to select D. Unfor-

tunately. solutions to such minimization problems are unknown at present (Anderson and Lin.

1987). Thus. this problem formulation will not be pursued any further.

4.6. State Space Representation of M(s).

In this section the problem of minimizing M(s) is cast into the state space domain. This is

done in order to apply methods which rely on state space representation such as LQ optimization

and projective controls.

3 Recall that for the case of dynamic controllers.

M(s)=K 2(sl-A-BoPoA12)-(D,+BoP0Dl). (4.27)

Defining a system input. wEIR and a system output. zrEIR such that z,(s)*M(s)wr(s). then M(s)

has the state space representation

ir = (Ar+BoPoAl 2 )Ir + (D,+BPOD)w r  (4.28a)

zr = K2x, (4.28b)

where x EIR - is the state vector. Define u.EIRp to be an input and YrEIR r to be an output such

that

IA

Yr A 2xr + Dwr (4.29a)

Ur = Pyr (4.29b)

Then (4.28) becomes

'r = Arxr + Bou + Drwr (4.30a)

zr = K2 x1 . (4.30b)

This has the form of a disturbance rejection problem where wrEIR is the disturbance input and

ZrEIR is the output to be minimized. From (4.29b). P. is seen to be the static gain from the out-

puts. yE IRr to the inputs. uEIRP.Note. however, that the controller is strictly limited to r outputs

with which to implement the controller. Also. Yr contains direct feedthrough of the disturbance

22
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which makes it unsuitable for applying projective controls.

These difficulties can be avoided by noting that for single input systems. M(s) is a scalar

transfer function. Thus. M(s)=M(s) T and an equivalent state space representation is

xr = (Art +A 12 P0 TBoT)i, + K2TWr (4.31a)NT T TT_
Zr = D, + D, P0 B, xr (4.3 1b)

where irEIR(n ) is the state vector. Let 5rEIR r be an input and 5rE R P be an output such that

S BTIr (4.32a)

Ur p 0pT. • (4.32b)

then a state space representation of M(s) is

Xr = AtT r + AI 2 T 5 + K2 TWr (4.33a)

zr = DrTFr + DiT'r . (4.33b)

j This is now a disturbance rejection problem where the measurement. .VEIRp is a simply a

linear combination of the states of the system. Also. as the dimension of the compensator is

increased, the number of outputs available for feedback increases. Thus. a p-(n-r) dimension cora-

3 pensator is able to implement a full state solution to this disturbance rejection problem. Note.

however. that zr now contains direct feedthrough of the control ii, Thus, the methods of Chapter 2

can not be directly applied. This problem will be addressed in the next chapter.

4.7. Selection of the Free Parameter P0.

In the representation of M(s) given by (4.33). the problem of choosing P0 is cast as one of

solving a disturbance rejection problem for a static output feedback with p outputs. In order to

choose P. an I Q minimization problem will be solved. The performance criteria is chosen to be

J = f zzr, + UrTRi, ldt (4.34)

where R>O. The solution of this LQ problem yields a state feedback U,=-Ki.. If p<(n-r). then
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a static projective controller ir"-Kn5 will be computed Then from (4.32b). P,--K T . The choice

of performance criteria (4.34) is made in order to minimize z, However. the size of the gains used

in the minimization must be limited since large gains can cause stability problems for projective

controllers. Thus. for "small" R. zr will be "smalle. For "large R. K. will be *small*. Thus. the goal

is to choose R to make zr small and to retain that property in the projective system.

Once Po has been selected. the dynamic projective controller is determined. Also M(s) deter-

mines the frequency properties of the closed-loop system through Theorem 4.1. Thus. the dynamic

projective controller design is complete.

In summary. this chapter develops methods to analyze the effect of the choice of projective

controller parameters on the frequency response of the system. In the case of the dynamic projec-

tive controller, a method is developed to assist in the choice of free parameter P.. This completes

the design of the projective controller.
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5. THE CRUCIFORM MODEL

35. 1. Description of the System.

The methods of the previous three chapters form a design procedure for disturbance rejection

in which an arbitrary amount of disturbance rejection Ls achieved by a state feedback anod imple-

mented using projective controls. These methods will now be applied to achieve disturbance rejec-

tion in a cruciform structure. The cruciform is a 45 foot lattice-type, flexible beam which is

- iattached at its base. but is free at its tip. It is light-weight (5 Ibs.) and as a result. exhibits LSS

characteristics. For a complete description, see Jones (1986). The system was modeled using a finite

element analysis which was reduced to 20 modes. The resulting model has the form

+ j2JL +D17 2 71 - BLu(t) + DLw(t) (5.1)

where IEIR 2 is the modal coordinate. uEIR3 is the control input, and wEIR2 is the disturbance

input. The model parameters are located in Appendix A.

5The control consists of torques applied at the base of the structure. The three controls apply

torques about the three axes. The disturbance is generated by a hydraulically actuated table to

which the base is mounted. The table is capable of translational motion in the x-y plane where the

z-axis is taken to be the axis of the cruciform.

A number of measurements of the system are available for use in the control of the system.

These measurements are obtained from 3-axis gyro and accelerometer sensors located at the tip and

base of the structure. In terms of the modal coordinate.

Yr --- Cr7 YEIR' (5 2a)

y. = C.ii y. E IR (52b)
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The controlled output is the output which will be regulated through the use of control. The

position measurement at the location of the accelerometers has been chosen as the outputs to be

V regulated. In terms of the modal coordinate this is

zC=5CO zEb (5.3)

I A description of each of the system inputs and outputs is located in Tables A.1 and A.2

respectively located in Appendix A.

5.2. State Space Representation of the System.

The 2nd order matrix differential equation can be represented as a 40th order state space sys-

3 tern of the form

x=Ax + Bu + Dw (5.4a)

y =Cx + Gu + Hw (5.4b)

z =Ex (5.4c)

w here.

I fB,1  (5.5

ACL 1. C; j 0 DOH= (5.6)

jE =()C. 1  (5.8)

By examining the eigenvalues of the cruciform system in Table 5 1. it can be seen that this

structure exhibits LSS properties. The model is of high order and the low frequency modes of the

system are lightly damped and closely packed
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It should be observed that due to the structure of the system. the control is only able to affect

the position of the structure relative to the base. Also. the available measurements do not contain

information about the absolute position of the structure. i.e.. the rigid body modes are uncontroll-

able and unobservable. For this reason, we will not consider the rigid body modes in this analysis.

Thus. they will be removed from subsequent models of the system.

The frequency response of the cruciform system (neglecting the rigid body modes) from each

disturbance to the controlled outputs is given in Fig. 5.1. Since the response of both z3 and z2 to

each of the disturbances is less than -100 dB. these outputs will not be used in the disturbance

rejection analysis. Also. since the u3 (z-axis) control acts on the torsional modes of the system. this

input will be not used for disturbance rejection.

P'. In addition. the design model will neglect the direct feedthrough terms of the control and dis-

turbance in the measurement. These terms are observed to be small and thus are neglected.

Table 5.1. Cruciform System Modes.

Mode Frequency Damping Description
Number (rad/sec) Factor

1 .00001 .000 rigid body y
2 .00025 .000 rigid body x
3 .00083 .000 rigid body torsion
4 .84942 .005 Ist bending x
5 .87782 .020 Ist bending y
6 2.2420 .005 1st torsion
7 7.0290 .005 cruciform bending y
8 7.2100 .005 cruciform bending x
9 7.3299 .005 cruciform bending x

10 7.6227 .005 cruciform bending y
11 7.7327 .005 cruciform bending y
12 7.9790 .020 cruciform bending x
13 8.0682 .050 cruciform bending y
14 8.5012 .016 2nd bending x
15 10.460 .019 2nd bending y
16 19.910 .020 3rd bending x
17 20.380 .005 2nd torsion
18 25.930 .020 3rd bending y
19 42.760 .011 4th bending x
20 46.100 018 4th bending y
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53. Generalized Hemenberg Representation.

The Generalized Hessenberg Representation (GHR) is a state-space realization of a linear sys-

tem such that its input/output structure is made explicit (Tse. et al.. 1978. Lindner and Perkins.

1982). It involves putting the system in a triangular form so that the interonnection of the sys-

tem is made apparent. In this way. the strongly controllable (or observable) part of the system is

.separated from the weakly controllable (or observable) part of the system. More precisely, a sys-

tem with state space representation (A.B.C) is transformed to a representation (FG.H) where F, G

and H have the following form.

F11  F 12  0 0 ... 0 0 G1

F21  F22  F23  0 • 0 0 G2

F 3 1  F 3 2  F 3 3  • ... 0 0 G3

F- F4 1  F42  F43  F4 ... 0 0 G G4  (5.9)

Fit-,., Fk-1.2 Fk-t11 Fk-1.4 ... Fk=-l[-j Fk-l.k Gk--I

Fk I  Fk*2  Ft.3  Ft.4  • • • Fkjt_ !  Fkk Gk

3H=j 1 00o o o
rixri

where F,.1 E IR r,>r1r..1 . and rj=r. Numerical issues associated with performing this transforma-

tion are found in Tharp (1983).

Let the system (F 1,Gj.H1) represent a subsystem of (F.G.H) called the i-th subsystem. then

each F1j block represents the connection from the j-th to the i-th subsystem. Due to the form of

the GHR. if Fl-=O then the 1st to (i-l)-th subsystems (hereafter called the upper subsystem) are

N simply cascaded into the i-th to k-th subsystems (hereafter called the lower subsystem). Since the

output involves only states from the 1st subsystem. the lower subsystem is unobservable. In such

a case, the modes of the upper subsystem are the observable modes of the system and the modes of

the lower subsystem are the unobservable modes of the system.



I

If Fi- 1*. is not zero. but "small'. then there exists a weak coupling between the upper and

U lower subsystems. In this case. the modes of the upper subsystem are the strongly observable

modes of the system and the modes of the lower subsystem are the weakly observable modes of

the system.

Since this division of modes by observability occurs for each Fi-j block, the modes of each

respective upper subsystem include progressively less observable modes. In this way. the modes of

the system can be ordered by observability.

The system can also be transformed into a representation that displays the controllability of

the system. In this case

F11  F 12  F1 3  -. Flk_. Fik G i

F21  F22  F23  ' F -k-1 F2k 0

0 F32 F33  F3 .- F3 .k 0

F= 0 0 F43  F 4 .k_1  F 4 A. G= 0 (5.10)

0 0 0 ... Fk-,.kl Fk-...1 0

0 0 0 ... Fk.k-1 F.k 0

H=H11 H. H3  Hk_, H.. I

where Fl.,EIR . mimi . and m1=m.

Here. F,.,- 1 provides the coupling between the upper and lower subsystems. If F,,- =O. then

the modes of the lower subsystem are uncontrollable. If F,,- 1 is not zero. but *smallo. then the

modes of the upper subsystem are the strongly controllable modes and the modes of the lower sub-

system are the weakly controllable modes.

Using these properties. the GHR can be used as a method of determining reduced order. decen-

tralized models for the system. The decentralization comes about as a result of the ability of the

GHR to show weak interconnection between subsystems. Small F,.,-, blocks indicate a weak
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coupling of the upper and lower subsystems. Thus. the GHR has the ability to identify strongly

coupled modes as part of a decentralized model. By applying the GHR to each input and output

separately. an indication of the modes strongly coupled to each input and output is obtained. The

decentralized model can be obtained by identifying groups of modes which are coupled to a group

of inputs and outputs.

The GHR can also be used as a tool for model reduction. When performing model reduction, it

becomes important to retain both the most controllable and most observable modes of the system.

This is particularly true in LSS where the modes will easily go unstable.

In this way. model reduction and decentralization can be accomplished in one step. This is

now done for the cruciform model.

p.
5.4. Cruciform Decentralization Results.

In order to expose the input/output structure of the cruciform model, the GHR was applied to

the system. Each input and output was used separately as the aggregation vector. The resulting

transformed models were then analyzed for decoupling between subsystems. However, a difficulty

parises in determining when two subsystems are weakly coupled. The norm of the F,,- 1 can be used.

However. it is not apparent that this is the best measure of subsystem coupling. Tharp (1987) has

recently proposed that the coupling can be evaluated by the extent of the deviation of the modes

resulting from assuming F,.i-.=O. The smaller the deviation, the smaller the coupling. For details.

see Tharp (1987).

An additional consideration is that the resulting decentralized models should include all

modes important in determining disturbance rejection. Using Tharp's eigenvalue method, the cruci-

4form system was analyzed. The results were very similar for each aggregation vector. In each case.

two points of decoupling were noted. The first. denoted S1. possessed an upper subsystem of 2-3

modes. The other, denoted S2. possessed an upper subsystem of 9-10 modes. Table 5.2 gives the

identifiable modes of the upper subsystem for both decoupling points.

31



Table 5.2. Subsystem Modes of GHR ModeL

Vector Si S2
us  201815 20 19 18 17 16 15 4
u 2  1916 20 19 18 17 16 14 12 9 5
wi  1916 20 19 18 17 16 14 12952

w2  201815 20 19 18 17 16 15 131141

Yi 201815 20 19 18 17 16 15 13 11 7 4
Y2 1916 201918 1716 14121195
Y3 176
Y4  201815 20 19 18 17 16 15 13 11 7 4
Ys 1916 201918 1716 14 12 1195
Y6 176
Y7 1916 20 19 18 17 16 14 1295
Y8 201815 2019 18 17 16 15 13 1174
Y9 201918 16 201918 1716 15
Yio 1916 201918 17 1614 12 1195
Y1 1 201815 20 19 18 17 16 15 4
Y12 20 20 19 18 16
z I  1916 2019 18 17 16 14 1252
Z2  201815 201918 17 16 1541
Z3  1916 20191817161412952
z' 201815 20 19 18 17 16 1541

Using these results, it is possible to develop decentralized models for the system. Since it is neces-

sary to include the low frequency modes in the system model for disturbance rejection a model

decentralization corresponding to S2 is considered. By grouping inputs and outputs by modes, a

decentralized model is obtained. For the cruciform model, the resulting decentralized models are

found in Table 5.3.

Table 5.3 GHR Decentralized Model Results.

Model Inputs Outputs Modes
CRX u,.w, z2.zi.y1 .y 4.yA.yll 4 7 11 13 15 16 17 18 19 20
CRY u2.wl z1'z4.y2.ys.y .yIo 5 8 11 12 14 16 17 18 19 20

The frequency response of each of these models from disturbance to controlled output is given

in Fig. 5.2. It can be seen that these models retain dominant features of the full model.

a In summary, a model exhibiting LSS characteristics has been decomposed into two decentral-

ized models using the GHR. These decentralized models form the design models for solving the
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disturbance rejection problem for this system. Note that the amount of model reduction performed

on the system is small. The model reduction which has been done on the system is mostly that

which resulted from the decentralization. The reason for keeping a large design model is that it is

desirable to keep any modes in the model that may be made unstable by the controller. The projec-

tive controls method allows one to keep a large order model without requiring a large order con-

troller. Thus. a low order controller can be designed that accounts for all the modes present in the

model and thus avoids spillover problems.
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6. DISTURBANCE REJECTION FOR THE CRUCIFORM MODEL

6.1. Design Objectives.

In this chapter. an output feedback controller will be designed to improve the disturbance

rejection properties of the cruciform model given in Chapter 5. Using the results of the previous

chapter. the design will take a decentralized approach. i.e.. a separate controller will be designed for

each of the decentralized models and then combined to produce the overall controller. Fig. 6.1

shows the decentralized structure by which the group of outputs yl are fed back to the controls ul

through K 1 and likewise for y2 and u2. Each of the decentralized controllers will be designed in

two steps. First. a state feedback solution will be computed for the decentralized model using the

results of Chapter 2. Then, an output feedback solution will be calculated using the projective con-

trols techniques of Chapter 3. The frequency properties of projective controllers established in

Chapter 4 will then be used to choose the free parameters in the projective controllers. Both static

and projective controls will be used in this example. Strictly proper projective controls will not be

employed in this example. but could also be used to solve the problem.

Before proceeding with the design. the design criteria must be established. From Fig. 6.2. the

nominal system has disturbance rejection of -y= -15 dB. This example will attempt to improve this

to y= -40 dB. In addition to the disturbance rejection goals. a design will be sought that is robust to

parameter uncertainty and of low order.

Since the design of the controller is a decentralized one. the design goals of each system must

be specified. From Fig. 6.3 it can be seen that the decentralized systems. CRX and CRY have a

nominal disturbance rejection of y--15 dB and y-- 2 5 dB respectively. In order to obtain the

system-wide goals and compensate for approximations made in the decentralization, disturbance
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I

g rejection of y - -45 dB will be sought in each channel.

6.2. Full State Solution of the Disturbance Rejection Problem.

To solve the disturbance rejection problem for each model. Theorem 2.2 will be applied. This

will yield a full-state solution to the problem. However. in order to apply the theorem, it is neces-

sary that R ID)R {B). This is not true for either of the decentralized systems. but as will be seen.

it is close enough to make an approximation. Consider another disturbance matrix. ID=Ba where a

= 0.34 for the CRX system and a - 0.56 for the CRY system. These values are chosen as the ratio

of IIE(sI-A)- 1DII to IIE(sl-A)-'BII. Theorem 2.2 can now be applied to each system using D' and

= -45 dB to yield a state feedback controller. The eigenvalues of the resulting closed loop system

system. X(F) are given in Table 6.1.

In order to verify the disturbance properties of the actual system. this controller is applied to

the system with the actual disturbance matrix. The disturbance rejection in this case is seen from

Fig. 6.4 to be y - -45 dB. Also. the system has gain margins of 0,o and phase margins of ±-85".

Thus. this state feedback system solves the disturbance rejection problem and forms the reference

* system which will be approximated by a low order output feedback controller. Note that modes a.

and ay are well damped by the applied control in order to achieve disturbance rejection.

Table 6.1a. Spectrum of CRX Reference System, X(F)

Mode Real Imaginary Frequency Damping

a. -1.2378e-01 ± 8.5697e-01 8.6586e-O1 1.4296e-01
bX  -3.5163e-02 ± 7 .0290e+O0 7.0290e+O0 5.0025e-03
S-3.8689e-02 ± 7 .7327e+00 7.7328e+00 5.0033e-03
dX  -4.0341e-01 ± 8.0581e+00 8.0682e+00 5.0000e-02
e. -2.118le-O1 ± 1.0459e+01 1.046 le+OI 2.0248e-02
fx -3.9820e-01 ± 1.9906e+01 1.9910e+01 2.000Ke-02
gX -1.0190e-01 ± 2.0380e+01 2.0380e+01 5.0000e-03
hx  -5.2138e-01 ± 2.5925e+01 2.5930e+01 2.0107e-2
ix  -4.7036e-01 ± 4 .2757e+01 4.2760e+01 1. 1OOOe-02
i. -8.3005e-01 ± 4.6092e+OI 4.6100e+Ol 1 .8006e-02
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'3 Table &1b. Spectrum of CRY Reference System. AMF

Mode Real Imaginary Frequency Damping

ay -1.7315"-1 *.8.9 171e-O1 9.0936e-01 1.9062e-01
by -3.6119e-02 :t .2 100e+00 7.2 10 1e+00 5.0 095e-03
cy -3.9668e-02 * 7. 7326e+O0 7.7327e-.00 5.0006e-03
dy -1.6282e-01 :t7.9796e+00 7.9812e+00 2.0 40le-02Iey -1.4766.-Ol aS.4982+00 8.4994e+0 173e2

gy -1.0191e-O1 ±2. 0 380e.01 2.0380e+01 5.0003e-03
hy -5.1860e-01 a2.S925e+'0I 2.5930e+O1 2.0000e-02
a,, -4.7048"1O *42757-+Ol 4.2760e+0I 1. 1003e-023 -__,8.2980e-01 * 4 .6 092e+Ol 4.6100e-+0l 1.8000e--02

6-3. Static Projective Controls Solution.

First. static projective controls will be applied to the disturbance rejection problem. Since the

cruciform system has r= 4 outputs. 2 modes can be retained in the projective system. As noted ear-

lier, modes a,, and a., are the dominant modes which affect disturbance rejection. Thus. these modes

I will be retained in the respective models. The choice of the other mode for retention is lea clear.

Thus, a projective controls solution will be calculated for each of the other modes. The results are

found in Table 6.2 along with a calculation of the resulting systems gapin margin g. and phase

margin 0,. For a particular choice of retained modes, these results may be satisfactory for some

applications. However. improvement will be sought using dynamic projective controls.

Table 6.2a. CRX Static Projective Controls Results

X,, Disturbance Rejection- m O
1a1.b1) *y - -42 dB 30 dB 90e
1a1.c11 y - -42 dB 30 dB 90O
Ia,.d1, h unstable - -

1a1.e11 j unstable - -

la,.fj, h unstable - -

l a1 .g.) h unstable - -
lax.h.) -y - -30 dB -0 dB '-0*
(a1.i1 ) j unstable - -

(a..i,) -- 42 dB 16 dB 80*
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S Table 6.2b. CRY Static Projective Controls Results

X, Disturbance Rejection gm
{ay.by} i unstable - -

ay.Cy i unstable - -

ay.dy d unstable -
{ay.ey} b. d. i unstable --
layJf y} -y -I0 dB -- 0 dB -0"
I{ay~gy} I, =y -30 dlB -0O dB -0O*
lay.hy} f unstable - -

lay.i} ,- - -42 dB 5 dB 50"
a .I y - -42 dB 5 dB 50"

6.4. Dynamic Projective Controls Solution.

I In order to improve upon the static design. a dynamic projective controller will now be con-

sidered. The order of the controller will be taken to be p-2. If this is found to be insufficient, the

order of the controller may be increased.

i In the design of the dynamic projective controller, there are two main design freedoms: the

choice of the retained spectra Ar and Xp and the choice of the design parameter Po. The choice of X,

and Ap is made to retain disturbance rejection properties and stability margins as much as possible.

The modes a. and ay are retained in their respective systems as before in order to preserve the

damping of these mode for disturbance rejection. The other two modes were chosen to improve and

simplify the minimization of M(s). Thus the following modes will be retained.

CRX: r = {ex.hx} Xp = Ia.)

CRY: Ar =Idy.fy) p -- lay)

The nominal value of M(s) (i.e. P 0-O) is given in Fig. 6.5. To choose P.. the method of Chapter 4 is

applied. R is taken to be of the form R-pf. The value of p is then varied to achieve stability and

disturbance rejection properties. A value of p-O.1 and p-0.05 is chosen for the CRX and CRY

models for this design problem. A static projective controller retained the lowest frequency modes

of the system of (4.33). The resulting choice of Po is given in Appendix B. Table B.1 and yields

IIM(s)1I,.<-lO dB as seen in Fig. 6.6.
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The dynamic controllers associated with this choice of Po are given in Appendix B. Table B.2.

The frequency responses of these controllers are given in Fig. 6.7. Both controllers can be seen to be

essentially low-pass filters although this was not explicitly specified.

The closed-loop spectrum of the decentralized models for the above controllers is given in

Table 6.3. Fig. 6.8 shows these controllers achieve disturbance rejection of -y<-4 0 dB.

Stability margins for this design are g,= 30 dB and =m70 ° for each system. It may be

observed, however, that a combined gain shift of 10 dB and phase shift of 30 ° will destabilize the

system. This is not apparent from the stability margins and points to a need for better robustness

Table 6.3a. Spectrum of Dynamic Projective CRX System, X(Ace)

Real Imaginary Frequency Damping

-1.9565e-01 8.2765e-01 ± 8.5046e-01 2.3005e-01
-1.2378e-01 8.5697e-01 ± 8.6586e-01 1.4296e-01
-3.5019e-02 7.0255e+00) ± 7.0256e+00 4.9845e-03
-3.8596e-02 7.7297e+00 ± 7.7298e+00 4.9931e-03
-4.0340e-01 8.0572e+00 ± 8.06 7 3e+00 5.0005e-02
-2.118Ie-01 1.0459e+01 ± 1.0461e+01 2.0248e-02
-3.982le-01 1.9906e+01 ± 1.9910e+O1 2.OOOOe-02
-1.0190e-01 2.0380e+01 ± 2.0380e+01 5.00OOe-03
-5.2138e-01 2.5925e+01 ± 2.5930e+01 2.0107e-02
-4. 7 036e-01 4.2757e+01 ± 4.2760e+O1 1. lOOOe-02
-8.6824e-01 4.6660e+01 ± 4.6668e+01 1.8605e-02

Table 6.3b. Spectrum of Dynamic Projective CRY System, X(Ac,)

Real Imaginary Frequency Damping

-3.7758e-01 7.9909e-01 ± 8.8381e-01 4.2722e-01
-1.7315e-01 8.9171e-01 ± 9.0836e-01 1.9062e-01
-3.5383e-02 i.1954e+00 ± 7.1955e+00 4.9174e-03
-3.86 74e-02 7.7324e+00 ± 7.7325e+00 5.0015e-03
-1.6282e-01 7.9796e+00 ± 7.9812e+00 2.0401e-02
-1.5646e-01 8.6035e+00 ± 8.6049e+00 1.8183e-02
-4.0103e-01 1.9906e+01 ± 1.9910e+O1 2.0142e-02
-1.0195e-01 2.0380e+01 ± 2.0380e+01 5.0023e-03
-5.1860e-01 2.q925e+01 ± 2.5930e+01 2.00OOe-02
-4.9020e-01 4.3306e+O1 ±4.3309e+O1 1.1319e-02
-8.2980e-01 4.6092e+01 ±4.6100e+O1 1.800oe-02
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measures.

Thus, each of the closed-loop decentralized systems possesses at least a modest amount of

robustness. In addition, due to the low-pass nature of the dynamic controllers, less control energy

is applied at high frequencies where uncertainty is the greatest. than in the static projective con-

troller case.

6.5. Centralized Analysis of Decentralized Design.

The next step is to evaluate the design by applying the two decentralized controllers to the

full system. The stability of the resulting closed loop system is shown in Table 6.4. The distur-

bance rejection of the full system is y = -40 dB as seen in Fig. 6.9. Thus. the disturbance rejection

goals of the design have been met. The stability margins of the system are g.= 70 dB and O'm= 8O'.

If these stability margins are-not large enough. a higher order compensator or a different choice of

retained spectrum may be considered.

Table 6.4. Spectrum of Closed Loop CRUC System.

Real Imaginary Frequency Damping
-1.1239e-01 ± 8.4748e-01 8.5490e-01 1.1147e-01
-2.1821e-01 ± 8.4124e-01 8.6908e-01 2.51OSe-01
-1.6552e-01 ±8.8479e-01 9.0014e-01 1.8389e-01
-4.0343e-01 ±8.0633e-01 9.0163e-01 4.4745e-01
-1.121le-02 ± 2.2420e+00 2.2420e+00 5.0004e-03
-3.5007e-02 ± 7.0254e+00 7.0255e+00 4.9828e-03
-3.5147e-02 ± 7.1939e+00 7.1940e+00 4.8856e-03
-3.5896e-02 ± 7.3209e+00 7.321Oe+00 4.9032e-03
-3.8220e-02 ± 7.6179e+00 7.6180e+00 5.0171e-03
-3.8602e-02 ± 7.7295e+00 7.7296e+00 4.994 1e-03
-1.6281e-01 ± 7.9793e+00 7.9809e+O0 2.0399e-02
-4.0385e-01 ± 8.0584e+00 8.0685e+00 5.0053e-02
-1.5713e-01 ± 8.6032e+00 8.6047e+00 1.8261e-02
-2.1 189e-01 ± 1.0459e+Ol 1.0461e+Ol 2.0256e-02
-4.0106e-01 t1.9906e+O1 1.9910e+O1 2.0143e-02E±
-1.0195e-01 ± 2.0380e+O1 2.0380e+O1 5.0024e-03
-5.2140e-O1 ± 2.5925e+Ol 2.5930e+01 2.010&e-02
-4.9087e-01 ± 4.3311 e+O1 4.3314e+Ol 1.1333e-02

-8.6879e-0I ± 4.6664e+O1 4.6672e+01 1.8615e-02
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I

In order to demonstrate the disturbance rejection achieved by this design, the time response of

the system to a disturbance is computed. The disturbance considered is that of an impulse. i.e..

w(t) = 100 t(6.1)

where 8(t) is the unit impulse function. The open loop response is given in Fig. 6.10. Note the low

damping of the low frequency mode. For the system controlled by the design given above, the

response is given in Fig. 6.11. In this case. the damping on the low frequency mode has increased

dramatically. However. the high frequency dynamics are essentially unchanged. This is due to the

fact that the design identified the low frequency mode as most affecting the response to the distur-

bance.

Thus. the design of this chapter reduces the response of the system to disturbances to a

prescribed level. However, this level of disturbance rejection is achieved using a low order, robust

controller as specified in the design goals.
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7. CONCLUSIONS

This thesis has presented a design methodology for improving the disturbance rejection of a

system belonging to a class of systems called Large Space Structures. Properties of this class have

been seen to include low modal damping and parameter uncertainty. Design problems associated

with these properties have also been noted previously. The method of this thesis was constructed to

deal with these difficulties in the context of the disturbance rejection problem.

Since the form of the disturbance is not precisely known, methods were used which accounted

for this uncertainty. Through use of the Ho,-norm. given a knowledge of the "energy* (L 2-norm) of

the disturbance, the "energy" of the system's response to the disturbance can be bounded. By

applying control to the system, this bound can be reduced to a prescribed level using a state feed-

back controller.

The parameter uncertainty of the system prescribed a need for a robust controller. By using

an LQ minimization approach, large stability margins are guaranteed. Thus. a state feedback con-

troller is found which has desirable disturbance rejection and robustness properties.

Projective controls were then applied to the problem to design a low order compensator from

the state feedback controller. In order to retain disturbance rejection properties. frequency domain

properties of projective controllers were then developed. These properties were then used to select

the free parameters of the projective controller.

This method was then applied to an example exhibiting LSS properties. The controller was

determined in a decentralized manner using structural properties made apparent using the GHR.

Using the method aescribed above, a 25 dB improvement in the disturbance rejection of a 40th

order LSS system was achieved using two decentralized second order controllers. In addition, a
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degree of robustness was recovered from the state feedback controller.

I Extensions to these concepts could be made for the case where frequency domain information

is known about the disturbance. In such a case. frequency-weighting of the H.-norm and of the

performance criteria of an LQ minimization may be applied. This would result in an extended

state feedback controller. However, the projective controls techniques of this thesis could be

applied without modification.

Thus. a design method for disturbance rejection of LSS systems has been shown. A design

example has shown the application of this method for a system exhibiting LSS properties and pro-

duced a low order. robust controller solving the disturbance rejection problem.
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APPENDIX AI
Table AL1. Cruciform Model Parameters.

2.513e-04 .000
1.3910e-05 .000
8.2850e-04 .000
8.4942e-01 .005
8.7782e-01 .020
2.2420e-00 .005
7.0290e-00 .005
7.2100e-0 .005
7.3300e-00 .005
7.6228e-00 005
7.7327e-=diag .005
7.9790e-0 .020
8.0682e-0 .005
8.501 le40 .016
1.0460e+01 .019

1.9910e+01 .020
2.0380e+01 .005
2.5930e+01 .020
4.2760e+01 .011
4.6100e+01 .018

7.144e-07 8.829e-13 -3.946e-05 1.417e-09 3.503e-02
-6.267e-14 -2.170e-08 -4.200e-05 3.807e-02 -6.824e-1I
-1.65le-li 1.380e-1I 2.224e-01 -3.549e-07 -1.698e-O8
-1.564e-02 2.570e-07 -2.994e-04 -1.522e-07 -6.110e-03
3.654e-07 1.385e-02 -3.112e-04 -7.738e-03 1.342e-07
1.043e-04 -1.007e-04 -6.333e-02 1.393e-05 7.851e-06
1.770e-02 4.871e-04 5.976e-06 -3.123e-05 4.292e-04

-2.549e-03 -3.550e-02 3.897e-04 2.258e-03 -5.985e-05
-2.355e-03 3.588e-02 1.220e-04 -2.273e-03 -5.487e-05
1.184e-02 -2.322e-02 3.809e-04 DL 1.449e-03 2.707e-04

-1.925e-02 -7.041e-03 2.500e-05 4.377e-04 -4.396e-04

-5.141e-03 -7.797e-02 -2.456e-04 4.806e-03 -1.141e-04
1.080e-02 -2.006e-02 3.140e-04 1.234e-03 2.386e-04

-5.175e-04 1.243e-01 3.521e-05 -7.523e-03 -1.114e-05
-1.916e-01 -2.810e-05 3.690e-05 1.616e-06 -3.771e-03
-7.178e-05 1.127e-01 -1.329e-04 -5.869e-03 -1.181e-06
-1.459e-03 -5.674e-03 -2.518e-03 2.946e-04 -2.389e-05
2.716e-01 -2.096e-06 -9.656e-06 1.052e-07 4.242e-03

-9.120e-06 -4.698e-02 7.325e-06 2.175e-03 -1.293e-07
-1.770e.-01 2.299e-06 -9.101e-06 -1.050O-07 -2.473-03
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Table A.1 (cont.)I
7.144e-07 0.000e+O0 -3.946e-05 9.562e-07 0.O00e+O0 -3.949e-05
0.O00e+O0 -2.170e-08 -4.200e-05 O.O00e+0 -5.435e-08 -4.200e-05
O.O0e+00 0.000e+O0 2.224e-01 0.000e+00 0.O00e+O0 2.224e-01

-1.564e-02 2.570e-07 -2.994e-.04 -1.710e-02 3.323e-07 2.358e-04
3.654e-07 1.385e-02 -3.112e-04 3.967e-07 1.778e-02 2.829e-04
1.043e-04 -1.007e-04 -6.333e-02 5.561e-05 -6.235e-05 7.231e-01

-" 1.770e-02 4.871e-04 5.976e-06 -2.657e-02 -4.646e-04 -7.021e-04
-2.549e-03 -3.550e-02 3.897e-04 2.387e-03 3.479e-02 -4.811e-02
-2.355e-03 3.588e-02 1.220e-04 2.399e.-03 -3.917e-02 -1.555e-02

C T 1.184e-02 -2.322e-02 3.809e-04 -1.353e-02 1.884e-02 -5.238e-02
-1.925e-02 -7.041e-03 2.500e-05 2.752e-02 5.873e-03 -3.534e-03

-5.141e-03 -7.797e-02 -2.456e-04 4.962e-03 6.735e-02 3.689e-02
1.080e-02 -2.006e-02 3.140e-04 -1.078e-02 1.835e-02 -4.819e-02

-5.175e-04 1.243e-01 3.521e-05 5.377e-04 -8.600e-02 -5.972e-03
-1.916e-O -2.801e-05 3.690e-05 1.823e-01 7.747e-06 -9.256e-03
-7.178-O5 1.127e-0I -1.329e-04 -3.891e-05 2.829e-01 9.886e-02
-1.459e-03 -5.674e-03 -2.518e-03 -8.886e-04 -1.464e-02 1.937e+00
2.716e-01 -2.096e-06 -9.656e-06 2.962e-01 -5.066e-06 9.887e-03

N Ce -9.120e-06 -4.698e-02 7.325e-06 1.022e-05 3.637e-01 -6.133e-03
' -1.770e-01 2.299e-06 -9.101e-06 3.388e-01 -2.373e-05 5.256e-03

1.417e-09 3.503e-02 3.468--23 1.432e-09 3.502e-02 4.663e-17
3.807e-02 O.000e+O0 -1.463e-24 3.807e-02 0.000e+O0 -2.187e-18

-3.549e-07 -1.698e-08 -1.329e-26 -3.546e-07 -1.673e-08 1.440e-21
-1.522e-07 -6.110e-03 2.384e-15 4 .119e-06 2.222e-01 3.055e-09
-7.738e-03 1.342e-07 -2.582e-15 2.218e-01 -5.184e-06 -3.3 1Oe-09

.. 1.393e-05 7.851e-06 4.611e-18 -1.267e-03 -1.195e-03 5.910e-12
- -3.123e-05 4.292e-04 1.387e-10 7.993e-05 1.406e-02 1.778e-04

2.258e-03 -5.985e-05 -3.414e-I 7.045e-03 4.497e-03 -4.376e-05
-2.273e-03 -5.487e-05 1.290e-10 -3.180e-02 3.039e-03 1.653e-04
1.449e-03 2.707e-04 9.995e-12 -1. 190e-03 -6.003e-03 1.274e-05S7-04 -4.396e.-04 2 -10 1.456e-03 -1.779e-02 2.588e-04
4.806e-03 -I.14le-04 1.740e-0 5.317e-02 5.608e-03 2.230e-04

" 1.234e-03 2.386e-04 8.846e- I1 2.096e-02 -9.427e-03 1. 134e-04
-7.523e-03 - 1.1 14e-05 9.249e- I1 -7.424e-02 1.910e-04 1.185e-04
1.616e-06 -3.77le-03 -1.110e-i 4.036e-05 -1.311e-01 -1.423e-05

-5.869e-03 -1.18le-06 -7.828e-12 1.680e-01 -2.11 le-05 - 1.002e-05
2.946e-04 -2.389e-05 4.332e-13 -9.449e-03 -3.073e-04 5.543e-07
1.052e-07 4.242e-03 -1.050e-i1 -6.058e-06 -1.686e-01 -1.343e-05
2.175e-03 -1.293e-07 -5.344e- I 1.906e-01 -3.141e-06 -6.801e-05

-1.050e-07 -2.473e-03 -8.27 1e- I I -1.476e-05 -1.763e-O1 -1 .051 e-04
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Table A.2. Cruciform System Inputs. Table A-3. Cruciform System Outputs.

3Input Axis Description Output Axis Description
U1  x control zix base displacement
U2  y control Z2y base displacement
U3  z control Z3 2 base displacement

W1x di0sturbance 24 x tip displacement
W7y disturbance Z5y tip displacement

Z6 z tip displacement
Yi x base gyro
Y2 y base gyro

Y3z base gyro
Y4x tip gyro
Ysy tip gyro
Az tip gyro
Y7x base acceleration

YB Y base acceleration
Y9z base acceleration

Y10o tip acceleration
Y1y tip acceleration
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APPENDIX B

Table B-la. Free Parameter P, for CRX Model.

= 1.0376e-03 1.2024e-03 -1.7464e-04 7.1238e-03
PO 1.0895e-03 5.1881e-04 6.1253e-04 -2.4600e-02

Table B.lb. Free Parameter P. for CRY Model.

= 1.9482e-03 4.8337e-03 -6.8981e-O5 4.7694e-04
po 3.8132e-03 1.1677e-03 -2.9062e-03 7.3579e-02

Table B.2a. Parameters, of Dynamic Projective Controller for CRX Model.

-3.2864e-01 8.1786e-01 3.3326e-01 5.2116e-01 1.3658e-01 2.6865e-02
-8. 1786e-01 -3.2864e-01 .-5.8299e+00 -9.0933e+00 -3.7198e-01 1.5239e-02
6.8014e+00 -2.4218e+Ol 4.4350e-01 -3.042le-O1 -2.766&e-02 -9.2901e-Ol

Table B.2b. Parameters of Dynamic Projective Controller for CRY Model.

-5.6284e-01 7.530ge-Ol -6.6506e+00 -1.0454e+O1 1.3841e-O1 -7.0794e-02
-7.5308e-01 -5.6284e-01 -1.2762e+O1 -2.0077e+O1 4.0370e-01 3.7376e-02
-1.5604e+00O -3.1599e+O1 1.0855e+00 -1. 1585e-01 9.2273e-01 3.4965e+00
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