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QUANTILE BASED UNIFIED DISTRIBUTION
OF EXTREME VALUES AND ORDER STATISTICS

Emanuel Parzen®
Texas A&M University

Abstract.” This paper presents ideas leading to unified formulas for exact and asymptotic
distributions of central and extreme order statistics of random samples and stationary
time series X (t) in terms of quantile functions Q(u), density quantile functions fQ(u),
left and right hazard quantile functions hQ(u), defined to equal respectively fQ(u)/u and
FQ(u)/(1—u), tail exponents, and the spectral density near zero frequency of a two-valued
time series ¢(X(t); u), equal to 1 — u or —u as X(t) < Q(u) or X(t) > Q(u). ~ ——

1. Introduction.

1.0. Quantile function concepts are reviewed (Section 2). Section 3 reviews important
sampling distributions. Sections 4 and 5 outline the asymptotic distribution theory of
extreme and central order statistics. The unified formula is presented in Section 6; com-
parisons of exact and approximate distributions are made numerically. Section 8 outlines
extensions to stationary time series.

1.1. A random sample X,, X,,...,X, consists of independent random variables iden-
tically distributed as a random variable X. Its order statistics, denoted X(1;n) < --- <
X(k;n) < +-- < X(n;n) are the values in the sample arranged in increasing order. The
sample minimum and maximum are respectively equal to X(1;n) and X(n;n).

1.2. Extreme value theory initially seeks to identify the distributions which can arise
as the distributions of X(1;n) and X(n;n) for large n (in the limit as n — oo0). It is
motivated by the hope that these distributions will provide models for variables observed
in reliability studies. We present the theory of extreme value distributions in a way that
broadens our understanding of the models to fit to data.

1.3. Extreme value theory does not seem to be routinely studied by statisticians. The
literature on extreme value theory is extremely large and does not seem to be easy to
apply. This paper proposes that the quantile function descriptions of probability laws can
be used to develop a unified theory of the distribution of order statistics in large samples
which is easier to apply (and even to teach in introductory courses).

1.4. In the quantile based approach a central role is played by the order statistics
U(1;n) < --- < U(n;n) of a random sample of a random variable U which is Uniform
[0,1]. Their exact and asymptotic distributions are easily found.

1.5. A philosophical note: Our interest in order statistics is motivated in part by: (1)
a conjecture that statistical inference is made possible by the fact that order statistics pos-
sess asymptotic distributions whose parameters are the quantile function and the density

! Research Sponsored by U. S. Army Research Office Project DA ALO03-87-K-0003.
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quantile function, and (2) a ‘definition’ of statistics: ‘Arithmetic done by ranking before
adding’.

How should one find the average X of X(1),---, X(n); the conventional answer is add

and divide by n: .
X= % ) x.
Our answer is: rank (form order statistics) and then add to form
X= % Zn: X(k;n).
k-1

We argue that ranking before adding to find X is better in both practice and theory. In
practice the ranked values can identify the types of distribution obeyed by the sample. In
theory, to study the asymptotic distribution of X, one has to determine the contribution
of the extreme values, and in particular if their distribution will be such as to make the
distribution of X non-normal.

1.6 The goal of this paper is to state a unified formula for distribution of extreme
and central order statistics. It can be summarized, using the notation in Table 1. For
0 < u;,, < 0.5, approximately,

1@ wemy (8) = {u“{‘f T3} e ()

x{1+

\/— 0-l( )—_} T

For 0.5 < u,., < 1, approximately,

{ n+1

1Qx (xim) (u) = el ) Q)87 (u)

_ 1 _ __1_ Sa;-2
{1+ @ (1-u) 9m1} .

The shape of the distribution of order statistics can be determined from graphs of the
appraximate formulas for their density quantile functions. To apply these results in practice
one has only to determine the values of oy, a,, my, m,. It should be noted that these
approximations are not valid in the extremes (as u tends to 0 or 1) because their tail
exponents are not exact. The scale parameters for extreme values of these approximating
distributions are the reciprocals of the hazard factors in Table 2.
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Table 1: Table of Notation

Notation Meaning

F(z) Distribution Function

f(z) = F'(z) Probability Density Function
Xiy-eey X Random Sample

X(k;n), X(n + k —1;n)

Uy, = k/(n+1)

U(k,n)

Q(v) = F~*(u), fQ(u) = £(Q(v))
Q(Beta(k,n + 1 — k))

(n + 1)U(k; n) - Gamma(k)
GammaA(m) -LGa.mma(m)

=(1+ ‘/._N(O y1) — —)s

9(z; 2) = al sA<00rA>0
= log z, A=0

9(GammaA(m); A)

X(k; n) = Q(“b:n) + W (k; n)

Asymptotic distribution of X (k;n)
W (k;n) = {hoQ(ur;n})”'g(GammaA(m,); 1 — o)

Extreme order statistic if k fixed;
central order statistic if k — oo
asn — oo and k/n = p>0

Order statistic from Uniform [0, 1]
Quantile, density quantile function
Exact Distribution of X(k;n)
Asymptotic Distribution of U(k;n)
Wilson-Hilferty Approximation

Power (Box-Cax) transformation

PowerG(A, m) distributed variable
X(k;n) estimates Q(us;)

0<uy, <05

W(k;n) = {h1Q(ur;n)}'g(GammaA(m,);1 — a,)(~1) 0.5 < up,a <1

hoQ(u) = fQ(u)/u

hQ(v) = fQ(u)/(1 - u)
fQ(u) = u®* Ly (u)

Lo(u) ~ (log u)*

QM —u)=(1-u)*L(u)
L, (u) ~ ((log(1 — u)=*)*

= (n + l)uhm/(l - u“")
= (n + l)(l - ub;n)/uh"

left hazard quantile function
right hazard quantile function
a, left tail exponent

Ly (u) slowly varying, log-like
a; right tail exponent

L, (u) slowly varying, log -like

T AT AT AR ™ T AT T VY g
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Table 2: Examples of Powers of n in Hazard Factors

1-a,1-a hoQ(1/n), k1 Q(1 — (1/n))
1 Uniform, Exponential (left tail) n
5  Weibull (left tail) n? =no*°
Q(u) = (log(1 — w)~*)?, B =05
0 Weibull (right tail) B(log n)°-*
0 Normal (2log n)°-®
0 Exponential (right tail) 1
0 One-sided stable, index .5 (left tail) 0.5(log n)?
—.5 Infinite variance Pareto (right tail) n-08
~1 Cauchy -1
—~2 One-sided stable, index .5 (right tail) (x/2)n2

Qu) ={#"'(1-2)}?

2. Quantile Functions Concepts.

2.1. The probability distribution of a random variable is usually described by the
distribution function F(z), —o0 < z < 00, defined by

F(z) = Pr{X < z].
The quantile function, denoted Q(u), 0 < u < 1,0r F~!(u), 0 < u <1, is defined by

Q(u) = F~'(u) =inf (z : F(z) > u).

2.2. Theorem: Inequality Inverse Functions. F(z) and Q(u) are inverse of each other
under inequalities, in the sense that (for any z and u)

F(z) 2 u if and only if z > Q(u).
2.3. Examples of Probability laws are:
1) Standard normal: F(z) = &(z),Q(u) = & '(u), where

#(z) = / S dy,  #lz) = —=exp(-32").

2) uniform [0,1]: F(z) =2z, 0<z<1, Qu)=u, 0<u<l.
3) Standard exponential: F(z) =1-e¢"*, z >0, and

Q(u) =—log(l—u), O0<u<l.
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4) Weibull Q(u) = {—log(1 — u)}”,
5) Cauchy: Q(u) = tanx(u — 0.5),

O<u<l.
O<u<l.

2.4 In this paper theorems on the asymptotic distribution of order statistics and

extreme values assume that F'(z) is continuous, with probability density f(z)
hazard function h(z) = f(z)/(1—F(z)). We define: g(u)
fQ(u) = f(Q(u)),density quantile function; k, Q(u) =

function; ko Q(u) = fQ(u)/u, left hazard quantile function.

= F'(z) and
= Q'(u),quantile density function;
7Q(u)/(1 —u),right hazard quantile

2.5 Tail exponents of probability laws are defined in terms of representations of density

quantile functions as regularly varying functions. We call a, the left tail exponent if
JQ(u) = u*° Lo (u)
where L, (u) is slowly varying as u — 0, in the sense that for every y > 0
Lo(yu)/Lo(u) = 1 as u — 0.
Typically, Ly (u) ~ (log u)? for some S.
We call o, the right tail exponent if
i Accession For
— ) = g NTIS GRAZT
QL —t)y =t Ly(t) DTIe Tim g
where L, (t) is slowly varying as ¢ — 0. We prefer to write this representation gﬁ?ﬂ?ﬁgif o a
fQ(u) = (1 - u)™ Ly (u) By
] _Distribution/
Typically, L, (u) ~ (—log(1 — u))? for some S. Availability Codes |
Hazard quantile functions can be represented Avail and/or
Dist Special
hoQ(u) = u®°~ " Lo (u)
mQm) = (1 - )™~ Ly (u). A-/
We call slowly varying functions L(u) log-like.
2.6 Left tails of a distribution are classified as short, medium, or long tail if ay < 1,
a; = 1, ag > 1 respectively. Right tails are classified as short, medium, or long tail if
a; <1,a; =1, a; > 1 respectively. Examples of tail classification: Normal: ap = a; = 1;
Exponential: ay = 0, @, = 1; Uniform: oy = @, = 0; Cauchy: oy = a; = 2.
2.7 Power transformations (also called Box-Cox transformations) are defined to be
following functions of z > 0:
-1
g(z; A) = o 270 |
log z, A=0 |
5
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A power transformation g(z;)) is increasing in z, and at z = 1 has value 0 and slope 1.
Note that ¢’(z;A) = z* 1.

Important classes of distributions are the power uniform and the power exponential.
A random variable X is: (1) power-uniform if for some constant A

X =g(U;A) or X = —g(U; 1)
where U is uniform [0,1]; (2) power-exponential if for some constant A
X =g(W;X) or X = —g(W;2)

where W is Exponential with mean 1.

The three types of extreme value distributions are actually an infinite family of power-
exponential distribution. The case of A = 0 is of great theoretical interest, but may not
be useful in practical model fitting.

It should be noted that Tukey A-family of distributions is defined to have quantile
functions

Q(v) = g(u; A) — 9(1 — u;2)
which are functions of 4 on 0 < ¥ < 1 which are symmetric about u = .5.

Power transformations play a central role in extreme value distribution theory be-
cause of the quantile tail properties that can be established for regularly varying quantile
functions with tail exponents o, and «,.

2.8 Quaantile Tail Value Property. Regularly varying quantile functions are power-
uniform in the tail.

For any sequences t, — 0, y, — y > 0, as n tends to oo :
go.n(Un) = 9(Vi1 = ), 91,0 (Vn) = —9(y;1 — ;)
defining the tail quantile functions
go.n (V) = hoQ(ta ) (Qtnv) — Q(2n))
01 (¥) = Q1 - 2.)(Q(1 - tay) — Q(1 - t.))

One can show that g, ,(u), 0 < u < 1, is the quantile function of the random variable
censored at the left tail

Y= th(t“){X— Q(tn)}9 X< Q(tn)

with distribution function, on —00 < z < 0,

Fy (z) = F(Q(ta)) + {(hoQ(ta} ™'z} /ta,

6
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To prove the quantile tail property one writes

hoQ(ta)(Qea) — Q) = o | " Q) 1Q(u)}du
g - / Q) 1Q(sta)}dz
- /' 2o dz + oft)

/ The rate of convergence of L, (t,)/Lo(2t,) to 1 determines the rate of convergence of the
e quantile tail property which is the most important factor affecting the rate of convergence
of extreme values to their limit distributions.

' DeHaan (1985) has shown that in order that extreme values from a distribution with
: quantile function Q(u) have limiting distributions, it is necessary and sufficient that Q(u)
' obey the above conditions (for suitable sequences a, replacing ko Q(t,)).

DeHann shows (p.33) that a distribution function F satisfies, for some choice of con-
stants a, > 0 and b,(n = 1,2,...)

(1) F"(anz +b,) — G(z),extreme value distribution,
weakly (as n tends to oo) if and only if for a positive function a(t)

¥

W L Q-ty)-Q-¢t)

N Jizm o) o(v:3)

\'1

f The proof consists of the following steps: (1) is equivalent to

:" (2) n{l — F(apnz + b,)} = — log G(z);

By

":' — log G(z) has inverse function (of y) equal to

, —-Ag(y;2) + B

o

s for some constants A > 0, B and A real since if G(z) is distribution function of —g(W; ),

¥ W exponential with mean 1,

.

G(z) = PROB[W > g~ '(—z; )]

‘f = exp(—¢™ ' (-z;})),

2 —log G(z) = g7 (= A);

i

S the inverse of y = n{1 — F(a,z + b,)} is

) 1 Yy s

,: a. {Q(l n) b }’

: 7
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(2) is equivalent to convergence of the inverse functions:

(3) Q- B - b} = —a9() + B;
subtracting (3) for y = 1, one obtains
1 ] 1 .
QU - 4 - Qu - )} - ~As(ui)

We will apply the quantile tail property with y, = (1/ta)Qu (x;n) () and y = Qg (u).
We use the following general property of convergence in distribution (called Rubin’s theo-
rem: see Fabian and Hannan (1985), p. 142).

Theorem: If g, (y,) — g(y) for every sequence y, — y, and if ¥, — Y in distribution,
then g, (Y,) — ¢(Y) in distribution.

2.9 A powerful property of quantile functions is how they behave for monotone func-
tions of random variables.

Theorem: Y = g(X) has Qy (4) = g(Qx (u)), assuming g(z) non-decreasing and
continuous from left (which is true for a quantile function Q(u)). Note that when g is non-
increasing and continuous,

Y =g(X) has Qy (u) = g(Qx (1 — u))
2.10 The quantile representation of X in terms of U is another powerful property of
quantile functions.

Theorem: Quantile Representation. Q(U) Z X where Z denotes identical distribution
(equality in distribution), and U is uniform [0, 1].

Proof. We outline two proofs of the quantile representation. From the formula for the
quantile function of a function of a random variable

Qq(v)(v) = Q(Qu (v)) = Q(v) = Qx (u).
Alternatively, Q(U) < z if and only if U < F(z). Consequently,

Pr[Q(U) < z] =Pr{U < F(z)] = F(z)

2.11 The foregoing results yield an important theorem relating the distribution of
general order statistics to uniform order statistics.

Theorem: X(k;n) Z Q(U(k;n)),

Qx (xin) (¥) = Qv (:n)) (¥)
= Q(Qv(k:n)(u))




2.12 Identification Quantile function QI(),0 < u < 1, is defined by

QI(u) = (Q(vw) - MQ)/DQ

where MQ = Q(.5) is the median, and DQ = 2(Q(.75) — Q(.25)) is the quartile deviation.

The values of QI(u) for u near 0 and 1 can be shown to provide quick diagnostics of
the tasl classification of the distribution.

2.13 Location - Scale parameter models for probability distribution are expressed in
terms of quantile functions by

Q(u) = p+0Qo(u)

where Q,(u) is a specified ‘standard quantile function.” We propose that if one always
chooses Q,(u) = QI(u), then one can more easily compare u and o corresponding to
different models.

An alternative normalization is the unitized quantile function
Q1(u) = (Q(v) — MQ)/q(0.5)
The corresponding probability density function f, (z) has the property
/1 (median) = 1.
For a normal distribution Q1(u) has probability density f,(z) = e "*
3. Beta, Gamma, Power Distributions.

3.1 Beta distribution BETA(p, q) has probability density
= _1_ -1 _ )1
fBltc(p.') (3) = B(p, q)z’ (1 3) ’ Ozl

where B(p, g) is the Beta function defined by

L(p)L'(q)

B(p,q) =/o' 27— ) e = [,

Note

B(k,n-li-l—k) ="<k:i)

3.2 Gamma distribution. Gamma(m) where m > 0, has probability density

f(lunma(m)(z) = r(;)z"'_‘e",z > 0.
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Note that Gamma(1) is the exponential distribution. We define

GammaA(m) = %Gamma(m)

3.3 PowerG(A,m) distribution, where m > 0 and —00 < A < o0, is defined by a
random variable representation:

PowerG (A, m) = g(GammaA(m); A)

For m = 1, this is the power-exponential distribution.

The quantile function of the distribution is given by

(1) QPo'erG(A,m)(“) = g(%QQ.mm.(m)(U);A)

Note that Qgamma(m) (%) does not have an analytic formula (for m not equal to 1) but is
computed numerically.

3.4 NegPowerG(A,m) distribution is defined by

NegPowerG()\,m) = —g(GammaA (m); A)
QN e:PowerG(A,m)(u) = _g((l/m)QGnmmn(m)(l - ‘IL); X)

3.5 Wilson Hilferty transformation of Gamma(m) to normal is an approximation for-
mula for quantiles

QGnmmuA(m) ("’) = %anmmu(m) (u)

) - {1 + 5%0"(1;) - %}S

Graphs of exact and approximate quantile functions indicate how well the approxi-
mation works, even for m=1; see Figure 1.

3.6 Quantile function of PowerG is approximated by substituting (2) into (1).
4. Exact and Asymptotic Distributions of Extreme Order Statistics.

4.1 The exact distribution of X(k;n) is expressed in terms of quantile function Q(u)
and the quantile function Qu (x;n) of U(k;n):

@x (kin) (") = Q(Qu(k:n) ("’))

The quantile function of U(k;n) is obtained numerically from the distribution function of
the Beta probability density.
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4.2 Theorem: U(k;n) is Beta (k,n + 1 — k):

1
fom (2) = B(k,n+1—k)

- '(1-z)""* O0<z<l
We write this fact in terms of quantile functions:

QU(&:») (u) = QB eta(k,n+1-k) (u’)

Proof: To compute the probability that U(k;n) is in (z,z+ dz), there are n ways to choose
a variable in (z,z+dz) and (:: :) to choose k —1 variables in (0, z). For specified variables
lying in these regions, probability of event is z*~*(1 — z)~*. The product of n, (J_}),
and z*-!'(1 — z)~~* is the value of the probability density.

Graphs of Beta probability densities should be examined for: n = 20,k = 1,2,...,20;
n = 100, k =1, ..., 10, 20, 30, 40, 50, 60, 70, 80, 90, 81,...,100.

4.3 The mean of U(k;n) is the expected value of the k** order statistic from a uniform
[0,1] and is given a special notation:

k
E[U(k;n)] = ntl = Ukin

The covariances also play a central role; one can show that, for 5 < k,

Cov[U(5;n),U(k;n)] =

n+ 1"':';»(1 - uk;n)

We review the proof of the formula for mean:

E[U(k;n)] = n(:: i) /0l zz*" (1 - z)""*dz

(1 (D) - 5

4.4 The asymptotic distributions of U(k;n), U(n + 1 — k;n), expressed in terms of
quantile functions, are

QnU(k;n) (u) - QOomma(k)(u)) QU(k;n)lun;-(u) - %QGomma(k)(u)’
Qn(1-U(n+ 1-k;n))(“) - QGcmmo(k)(")-

The form in which we apply these results in Theorem 4.5 is

{Un+1-kijn) —vns1-nin} — —{(1/k)Gamma(k) — 1}

| Unt+1-k;in
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These important relations follow (by general theorems) from the fact that the probability
density functions obey similar limit theorems or from representations of uniform order
statistics in terms of consecutive sums of exponential random variables. Graphical repre-
sentations of this approximation are given in Figures 2A-2B.

The proof in terms of density functions:

fnU(h;u)(y) = %fv(k:ﬂ)(y/n)

o g [

1 y
fu(l-U(u+l—h;n))(y) = ;fll(n-fl—h;n)(l - ;)

- (2ot

k—le—y

—

1
k-1)1Y

4.5 The exact distribution of X(k;n) is expressed in terms of quantile functions.

Qx (kin) (8) = Qa(v(rin)) () = Q(Q@5eta(k.n+1-1)(¥))
The asymptotic distribution of X(k;n) is obtained by defining u,,, = k/(n + 1), and
writing
X(kin) ~ Q(ur:n) = Q(U(Kin)) — Q(u;n),
The Quantile Tail Property enables us to show that

hoQ(u1:n)(@rn EE 0 (ki) - Q(u0)
— g(GammaA(k);1 — ay)

using Rubin’s theorem. One can conclude the following basic theorem on the distributions
of extreme values under suitable conditions of regular variation of the density quantile
function.

4.5 THEOREM: ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES
hoQ(ux:n ) (X (k1) — Q(ur.n)) 2 g(GammaA(k);1 — a)
= PowerG(1 — a,, k)random variable,
hiQ(1 —upn)(X(n+1-k;n) — Q(1 —uy,n))
2 —g(GammaA(k);1 - a,)
= NegPowerG(1 — a, ,k)random varsiable
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This basic theorem is proved in “one-line” from the quantile tail property, Rubin’s
theorem, and the asymptotic distributions of extreme values of uniform distribution. It is
more precisely stated in terms of quantile functions, and illustrated by graphs comparing

exact and asymptotic quantile functions of extreme and central order statistics (to be given
in the sequel).

4.6 The limit theorems that we have given for extreme values are stated in a way that
will enable us to maximize the analogies between the asymptotic distribution of extreme
and central order statistics. Our goal is to obtain unified formulas so that we will not have
to decide in practice what is the dividing line between extreme and central order statistics.
Order statistics X(k;n) are called: extreme if k is fixed; end if k/n — O or 1 (as n — oo);
and central if k/n =+ p,0<p< 1.

5. Asymptotic Normality of Central Order Statistics.

5.1 To study the distribution of central order statistics X(k;n), we introduce sample
quantile function

Q(u),0<u<1
defined by: for k=1,...,n
Q" (v) = X(k;n), —; <u<

Equivalently
Q) =F ()

where F™(z), —oo < z < oo is sample distribution function;
F(z) = E for X(k;n) < z < X(k + 1;n)

5.2 When F is continuous, a basic role is played by Bahadur representation: For
O0<ux<l
Q7 (v) - Qu) = —(F(Q(v)) —u)/fQ(u) + Rn
n®*R, 2 0asn— oo
5.3 The asymptotic distribution of central order statistics X(k;n) is obtained from

the asymptotic distribution of Q"(u) since Q"(u) = X(k;n) for (k —1)/n < u < k/n. A
value of u in this interval is denoted by u, . Typical formulas for u,., are

Upa =k/(n+1) orus, =(k-05)/n

In this paper we use the first definition.

The asymptotic distribution of the sample distribution function can be written: for
O0<p<l1

(n +1)°*{F"(Q(p) - p)) £ N(0,p(1 - p))
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From Bahadur’s representation one obtains the asymptotic distribution of the sample
quantile function which can be written,for0<p < 1,

(n+1)**FQ(P{Q"(p) — Q(p)} = N(0,p(1 - p)) ’

5.4 The asymptotic distribution of Q(p) can be expressed in terms of hazard quantile
functions.

(n+1)°*hQ(P){Q"(p) - Q(p)} = N(0,(1 - §)/p),0 < p < O5;

(n+ 1)k Q(P){Q7(p) -~ Q(p)} = N(0,p/(1 - p)),05 < p<1

To unify the theory of central and order statistics we propose an alternate approximation
which is equivalent in the limit to the above.

6. Unified formula for asymptotic distribution of extreme or central order ,
statistics X(k;n). . q
Define uy,, = k/(n + 1), '

Mo = (n+ upn /(1 —upn), m = (n+ l)(l ~ Up;n)/Unin
For 0 < u,,, <0.5, :
hoQ(ur:n){Q (4r.n) — Q(ur;n)} & g(GammaA(m,);1 — ap) .

For 0.5 <y, <1
hy Q(ur;n {Q (¢r:in) — Q(ur;a)} £ —g9(GammaA(m, );1 - o)

This formula is stated in terms of random variables. For numerical calculations it is
easiest to write it in terms of quantile functions: For 0 < u,;, = k/(n +1) <0.5

QX(k;n)(u) = Qa'(-.;.)(“) = Q(“k:») + Qo (“)v
1
)= r——— emmaA(my)il—ao
Qo (u) h,,Q(u,.;,.)Q"G A(mo)i1-ao) ()
For 0.5 < uy. =k/(n+1) <1
Qx(hm)(u) = QQ'('A;-)(“) = Q(“h;n) + @, (u)
Ql (u) = {hl Q(uk;n)}- ! {‘Qg(GumnuA(m 1)i1—a;) (1 - u)} 5
When applied to extreme order statistics (say X (k;n) for k fixed) the unified formula uses ‘
as the Gamma degrees of freedom
k

mo = k(1= 57 '
rather than k. When applied to central order statistics the unified formula uses a Pow- Ty
erGamma distribution rather than the normal distribution. !
To empirically demonstrate the practical use of the unified formula, one compares the 2.

quantile function of the exact distribution of X(k;n),
Qx (x:n) (4) = Q(Beta(k,n + 1 — k))

with the approximate distribution given by the unified formula. The examples we have
considered are n = 20,k = 1,...,10 and n = 100, k = 1, ..., 10, 20, 30, 40, 50 for
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Table 8: Distributions Used to Compare Exact and Approximate Density Quantile
Functions of Order Statistics

Uniform,a, = 0, Qu)=1u

hoQ(u) =u~!
Weibull,ap =1 -3 Q(u) = {log(1 —u)~'}*
f=1/6,2/6,3/6,4/6,5/6 hoQ(u) = 4u=* (1 — u){log(1 —u)~}*-*
Cauchy ap =2 Q(u) = tanx(u - .5)

= —cosTu/sinxu

hoQ(u) = {sin(xu)}* /xu

1) Cauchy distribution Q(u) = tan x(u — 0.5), see Figures 4A-4D;
2) exponential-type Q(u) = logu,
3) Q(u) = (logu)**

7. Approximate density quantile function of order statistics.

The density quantile function fQx (x;n)(u) of the probability distribution of X (k;n)
can be obtained from the quantile function Qx (s;n)(u) by the formulas

qx(h;n)(“) = Q'x(.;..)(“), fou;u)(“) = qx(n;.)(“)-l'

One obtains in this way the following approximate formulas. Let u,., = k/(n + 1),m, =
(n+1)upn /(1 — upn),my = (1 +1)(1 — us.n)/ain. For 0 < up,a <0.5,

IQX (hn) (u) = J"—'ohOQ(uhm )¢’— ! (u)

1 -1 1 Sep—-12
(1+3ﬁ°’ (u)—m) .

For 0.5 <y, <1

JQx (x:n) (¥) = VM A1 Q(us . ) 0@~ (u)
(1+ — ®'(1-vu)- —l—)""’.

3,/m, om,

We graph the unitised density quantile functions fQ(u)/fQ(.5), and record the value of
fQ(.5), for the cases listed in Table 3. The accuracy of the appraximation can be judged
by comparing (see Figures 3A-3B) the unitised approximate density fQx ,..)(u) of the
sample minimum with the unitised density quantile of the Weibull distribution (which is
the usual formula for the asymptotic distribution):

(1-v) -
10 = L5 gog1 - w1y
15
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8. Stationary Time Series.

When the sample X(1),...,X(n) is from a stationary time series we can represent

FRE) -p= 13 cx(®:n

t=1

defining

c(z;p)=1-p ifz<Q(p)
=-—p ifz>Q(p)

Its asymptotic distribution can be written

(n+ 1" (F(Q(p) - ) £ N(O,0(1 - 5). (i)

defining £, (w; p) to be the spectral density function of the two valued time series ¢(X (t); p).
The time series concepts are illustrated in Figures 5A-5C. The spectral density f(w), 0 <
w < 1, of a stationary time series Y (t) with correlation function p(v) = Corr[Y (t),Y (t+v)]
is defined by

fw) = E ezp(—2mivw)p(v).

The formulas for asymptotic distribution of order statistics continue to hold if we
define

Mo = {fe(%;“k;n)}—l (“ + l)uhm/(l - uhm)s

m= {foimna)} ™ (34 (1 = )/

We conjecture that these formulas continue to hold also for extreme value statistics.
If the conjecture is true, extreme value statistics of stationary time series have unimodal
distributions. We need to investigate how to compare this result with the asymptotic
distribution of extreme values (in terms of waiting times of compound Poisson processes)
found by Leadbetter and Hsing.
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FIGURE CAPTIONS

Figure 1. Exact (solid curve), and Wilson-Hilferty Approximations (dotted curve) to,
quantile functions of Gamma distributions with 1, 2, and 3 degrees of freedom.

Figures 2A, 2B. Exact beta and approximating gamma distributions of X(1;20) and
X(2;20) from uniform distribution. Graphs of density functions, identification quantile
functions, and unitized density quantile function.

Figures 3A, 3B. Exact and approximating unitised density quantile functions of X(1;100),
X (2;100), X(3;100) from Weibull Q(u) = {— log(1 — u)}?, 8 = .333 and § = .167.

Figures 4A, 4B, 4C, 4D. Exact and appraximating quantile functions and unitized density
quantile functions for X(1;100), X(2;100), X(3;100), X (4;100), X(20;100), X(30;100),
X (40;100), X(50;100) from Cauchy distribution.

Figures 5A, 5B, 5C. Time series analysis of samples of length n = 100 from AR(1) model
Y(t) - .95 Y(t - 1) = e(t) clipped at sample Q(u), u = .5 and uv = .975.
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