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1. INTRODUCTION

We consider model fitting problems in which the data are crisp
vectors and the model is a fuzzy function, scalar or multi-dimensional. This
type of fuzzified model fitting is attractive in situations where data
membership functions are not available, but the model fitting problem
nevertheless is considered as fuzzy. The problem is in a sense
complementary to the case where the data are fuzzy and the fitting function is
assumed to be crisp. Problems of that type were considered by Celmins [3].
In both cases the result of the fitting is a fuzzy function.

This paper presents an efficient method for the determination of the
model function which is generally assumed to be a non-linear and implicit
vector function. The efficiency of the method is achieved by imposing
restrictions on the problem formulation. First, membership functions of fuzzy
points always are assumed to be conical functions. (These functions are
defined in Section 2). Second, the model function is assumed to be a fuzzy
set whose elements are defined in terms of a fuzzy parameter vector. Finally,
the model fitting is done in a least squares sense by minimizing the squares of
deviations from one of the fitted function’s membership values at the
observed points.

The restriction to model parameter vectors with conical membership
functions likely is of minor importance because of the general uncertainty of
the particulars of the fuzziness of the fitting function. As far as the least
squares minimization is concerned, only experience with fuzzy model fitting
may show whether other objective functions than the sum of squares yield
more desirable results.

SR Ca oe g g

The similarity of problems with fuzzy models and crisp data on one
hand and crisp models and fuzzy data on the other hand stems from the fact
that in an implicitly formulated model function F(X,t) = 0, where X is the
observable vector and t is the parameter vector, one does not need to
distinguish between "observable” and "parameter” arguments. Therefore, the
roles of these arguments formally can be interchanged, and the fitting of a
fuzzy model treated as data fitting in the space of parameters. As a
consequence, problems of both types can be handled numerically by similar
algorithms and software with only minor modifications. The interpretation of
the results is of course different in the two cases. Also, in the here
considered case with fuzzy model functions, one typically does not a priori
know the spread characteristics of the model, which are needed as input for
the solution algorithms. The determination of these characteristics therefore
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requires an iteration which is not needed in problems with fuzzy data and
crisp models.

In Section 2 the basic definitions are provided of fuzzy vector
spaces and fuzzy functions with conical membership functions. The least
squares model fitting problem is formulated in Section 3. Section 4 discusses
the determination of the spread of the fitted model. Examples are presented
in Section 5, and Section 6 contains a summary of the results and conclusions.

2. FUZZY VECTORS AND FUZZY FUNCTIONS

We define a fuzzy n-component vector A as a set of vectors with
the membership function p4. In this paper, we assume that the membership
function of a vector always is a conical function which we define as follows.

Let A be a crisp point in R,, and let P, be a positive definite
(n X n)-matrix associated with A. Let [ ‘[l 4 be the elliptic norm

IX-Alg=[(X-A)T P (X~ A)2 (2.1)

of the distance between an arbitrary X¢R, and A. Using this norm, we
define a conical membership function p 4 by

pa(X)= 1-min{ 1, I| X- All4} . (2.2)

The fuzzy vector A with the membership function (2.2) is thus specified by A
and P,:

A=:{A,pP,} . (2.3)

We call A the apex of A and P, its panderance matrix.

In Ry, the conical membership function is the triangular function
ha(x) = 1-min {1, |x=a|/s;} , (2.4)

where s, = \/P,. In Ry, p4 is a cone as shown in Figure 1. The membership
function of each component of A is a triangular function with a spread which
equals the square root of the corresponding diagonal element of P4. The
bases of the triangles are twice the spreads. The boundary of the support of
#4 and the level surfaces w4 = constant are hyperellipsoids in R,.

Now we consider a space of fuzzy vectors. The distance norm (2.1)
is not a convenient measure for the separation of two fuzzy vectors, because
in general B — Al4 # |A — Big. Therefore we introduce the concept of a
discord between two fuzzy vectors by the definition
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D(A,B) = min max{ IX - Al4, IX-Blg} . (2.5)

The discord is a symmetric function of A and B, it is positive if A# B, and it
vanishes only if A=B. However, it is not a distance in the sense of functional
analysis, because it does not satisfy the triangle inequality. We may consider
a crisp vector as the limit of a fuzzy vector when its panderance matrix
approaches a zero-matrix. The corresponding limit of the discord is the
distance (2.1), that is,

lim D(A,B)= I|A-Bljg. (2.6)
A-A

The discord D(A,B) is less than one if and only if the supports of the
membership functions of A and B intersect.

Ancther relation between two fuzzy vectors is the grade of
collocation. We define it by

¥(4,B) = max min{ ua(X), wp(X) }. 2.7)

For vectors with conical membership functions one has the following relation
between y and D

v(A,By= 1 - min{1, D(A,B)}. (2.8)

Now we consider a fuzzy r-component function F(X), and define it
as a fuzzy set of functions. In this paper, we only consider fuzzy functions
that are defined in terms of a fuzzy p-component parameter vector T, that is,

F(X)= F(X,T) (2.9)
with

-

T

AT , Pr}. (2.10)

Each element t of the fuzzy set T defines an element F(X,t) of the fuzzy
function set F. The membership value of t is according to Eq. (2.2)

pr(t) = 1-min{1,!t=-Tir }, (2.11)
where the norm it — T 'y is defined by Eq. (2.1). We assign to the element
F(X,t) of F the same membership value:

R(F(X,t)) = nr(t). (2.12)

The crisp equation F(X,T) = 0 defines in R, a (n—r)-dimensional
hypersurface. The fuzzy equation

- - - \
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F(X,T) = 0 (2.13)

has as a solution in R, a fuzzy set Xr, which may be geometrically
interpreted as a fuzzy hypersurface. The solution of fuzzy equations is
discussed in Appendix A where we introduce the concept of a separation
h(X, X;) between a crisp X €R, and X; and define it as (see Eq. (A.13))

h(X,Xp)=  min iit-Tlr. 2.14

( F) t:F(X,t)=0 I T ( )
If i; is a fuzzy point A (i.e., a fuzzy vector), then the separation h(X,/T)
equals the norm | X — All4, defined by Eq. (2.1). A generalization to solution
sets X which are not vectors yields the approximate formula (A.20)

h(x,Xp) = [ FT (F,PrEDVE ), (2.15)

where F, = 3F/3t, and the functions F and F, are evaluated at (X,T). For
non-linear F, the approximation may be used if r=1 and, with restrictions, if

r>1. The linearization on which the approximate formula is based is usually
not appropriate if r=n

The definition of a separation between crisp points and the fuzzy
set Xp, and crisp points and a fuzzy point A permits one to define, in
generalization of Eq. (2.5), the discord between Xy and A:

D(A,Xf) = min max { h(X,A), k(X Xp)}. (2.16)
€ n

If the solution f; of Eq. (2.13) is not a point, then the discord D(/T,)?;) can
be computed by an approximate formula, also derived in Appendix A. For

that approximation one first computes the separation between a particular
point X4 and A using the formula

(X4, A) = [FT (FxPaFR)PF )7, (2.17)
where Fy = 3F/3X and the functions F and Fy are evaluated at (A,T). Then
- h(Xa,A) h(AXF)

D(A,Xp) = alad iy (2.18)

h(X4,A) + B(A,X[)

The separation h(A,Xr) in Eq. (2.18) is given by Eq. (2.15). If either A or X[
approaches a crisp point, then the discord (2.16) approaches h(A, Xf) or
h(A,Xg), respectively.

Using the discord we also can compute the grade of collocation
between the fuzzy point A and the fuzzy hypersurface X :
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vy(A.Xp)= 1-min{1,D(4.Xp)}. (2.19)

This relation follq-ws from the definition (2.7) because the membership
function wr(X) of X is related to h(X, Xr) by

wr(X)= 1-min{1, (X, Xp)}. (2.20)

3. FUZZY MODEL FITTING AND SOLUTION ALGORITHM

We consider the following general type of model fitting. Let
X;€R,, i =1,.2,.,5, be a set of observation vectors, F;(X;,t)€¢R, be a
corresponding set of model functions, and W be an objective function. The
goal of the model fitting is to find a model parameter vector ¢t which
approximately satisfies the model equations F; = 0 and minimizes the
objective function W. The problem is completely defined by providing the
sets {X;,F,,W} and specifying the approximation type of the model equations
F; = 0. If at least one of the elements of the sets is fuzzy, then the solution
of the problem is a fuzzy model parameter T, and consequently, as described
in Section 2, the fitted model functions F,;(X,T) are fuzzy functions, even if
the a priori formulated model functions F;(X,t) were crisp. The case with
fuzzy X; and crisp F; was treated in Celmip} [3]. In this paper, we consider
the dual case where the observations X; are crisp, but the fitting functions F,
are fuzzy. The objective in this case is to find for each X; a particular element
from the fuzzy set F; such that the model equation is satisfied, and the
element has a high membership value.

Let
T=:{T,Pr} (3.1)

be the fuzzy parameter of the model functions. The least squares problem is
formulated as follows:

minimize
P 2
w= > |1-u(FX.,T+c)10) | ,
i=1 ’
subject to (3.2a)
F,‘(X,‘,T +¢)= 0, i= 1,2,...,8
/
and ]
m(Fi(Xi,T+¢)) > vi, i= 12,...,s (3.2b)

The latter condition (3.2b) is a minimum requirement for the quality of the
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fitting function, expressed as a required membership level of the solution.

Now we use the definition (2.12) of the membership function p (F;)
and reformulate Eq. (3.2) in terms of ur:

minimize
s
2
W= 3 [1-ur@+c)] , |
i=1

subject to (3.3a)

F,'(X,',T+C,') = 0, i= 1,2,...,5

/

and

wr(T+c¢) > ¥, i= 1,2,...,5. (3.3b)

In Egs. (3.2) and (3.3) T +¢; is a particular element of the fuzzy set T
for which the function F;¢F; satisfies the constraints at X;,. The minimization
of the objective function selects elements T +¢; with high membership values.

The solution of Eq. (3.2) or (3.3) can be found by solving the
following related problem:

\
minimize
s
W = 2 c,TP,-"lc,-
i=1 [
subject to (3.4a)
Fi(X;,T+¢;)= 0, i= 1,2,...,s
/
and

¢FP Y < (1-9)%, i= 1,2,...5. (3.4b)

Because of the definition (2.11) of wr, the solutions of (3.3) and (3.4) are
identical, but Eq. (3.4) is better suited for numerical algorithms. This is so
because the objective function W in Eq. (3.4) is well defined and differentiable
for all values of ¢c;. In Eq. (3.3), the objective function is not differentiable as
pr approaches zero, requiring special algorithms to handle this singularity.

The unknowns in Eq. (3.4) are the apex T of T and the elements
T+c; of T. A simple procedure for finding the unknowns is to solve Eq.
(3.4a), and to check the condition (3.4b) afterwards. If the condition is not
satisfied for many observed points X; (for many i ), then this is an indication
that the model functions are not compatible with the data. In this case one
may either change the model, or dilate or adapt the spread of the solution, as
described in Section 4. If the condition is not satisfied at only a few points,
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then this usually indicates outliers. The treatment of such points strongly
depends on the application of the model and, therefore, will not be discussed
here. One can of course try to enforce the condition (3.4b) by seeking a
solution for the complete system (3.4a), (3.4b). However, such a solution, if it
exists, will have undesirable properties in most cases, because it particularly
accommodates outliers. We shall, therefore, restrict our discussion in this
section to the solution of Eq. (3.4a).

L AN

»

The constrained minimization problem (3.4a) is very similar to an
ordinary least squares problem, or to a model fitting problem with fuzzy data
Q) and crisp model. The latter two cases only differ from Eq. (3.4a) in that the
" constraint equation is

X Fi(X;+¢;,T)= 0 (3.5)

instead of Fi(X;, T+c¢;) = 0, as in Eq. (3.4a). Because of this similarity, the
problem can be numerically solved using available software for least squares
problems with implicit model equations [2]. The examples in Section 5 were
solved using such a program, COLSAC, described in [1]. A special solution
algorithm for problems with the constraint (3.4a) is described in Appendix C.
The implementation of this algorithm by COLSAC does not require any
reprogramming, however, because of the general formulation of the computer
program.

2o d

0.‘“

] At the beginning of this section we pointed out that the difference

between a crisp and a fuzzy function is in the characteristics of the function

parameter T. If T is crisp, then the function F;(X,T) also is crisp, and if T is a

o fuzzy T, the Fi(X,T)is a fuzzy function F,(X). Therefore, a "fuzzy model”

means that the functions F; contain a fuzzy unknown parameter. Its

:: fuzziness is given by the panderance matrix P;. Consequently, we assumed

' in the problem formulation that Py is given, and only the apex T of T is
unknown.

Such a problem formulation may be adequate in some cases.
k However, in many other situations, one has not sufficient information on
' which to base an estimate of P;r and, therefore, needs a process by which Py
is computed concurrently with T. We propose for this purpose the following
iteration. We start with an arbitrary initial approximation Py of Pr and solve
Eq. (3.4a) obtaining a T, and the corresponding ¢,. We then calculate a
panderance matrix Pr; from the input Prjy by the panderance propagation
formula. (See Eq. (C.7) in Appendix C). Because Prpand Pr; describe the
same fuzzy vector T, one can argue that both should be equal. Therefore, at
the next iteration step we start with a panderance matrix that is proportional
to Pr;, and repeat the process. The proportionality factor is arbitrary in the

DT e
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sense that such a factor does not influence the apex T of the solution T. A
reasonable factor for the iteration process is the dilator ®, described in
Section 4. This factor is determined such that the spread of the fuzzy solution
of F;(X, T)= 0 is just large enough to cover the observation X; if Pr is
multiplied by 4’8. In general, the convergence of the process is slow, but
high accuracy of the elements of Pr usually is not needed. Because of this,
the convergence end conditions should be formulated in terms of the
components of the apex T instead of the elements of Pr. Convergence
acceleration techniques, e.g., overrelaxation also can be useful.

4. DILATION AND ADAPTATION OF THE SPREAD OF THE MODEL

The principal result of the model fitting described in Section 3 is the
fuzzy model parameter T = :{T,Pr}, which defines the fuzzy functions
Fi(X)= F,-(X,T). However, in many applications one is not interested in
these functions but in the relations between the components of X which are
defined by the equations

F,(X,T)= 0. (4.1)

The solution of Eq. (4.1) is a fuzzy set X, in R, which may be geometrically
interpreted as a fuzzy (n-r)-dimensional hypersurface in R,. Some
properties of Xy are discussed in Appendix A, where it is shown that the
apex of X; is independent of the particular form of Eq. (4.1), whereas the
spread of Xp depends on the formulation of the equation. Therefore, a
discussion of the spread always pertains to a particular formulation, for
instance to a solution of Eq. (4.1) for certain components of X. Now we
assume that a formulation adequate for applications is chosen and
represented by F(X,T)= 0. For simplicity we omit the index i. The
discussion always involves one particular F;, and it does not matter whether
all the F, = F or are different.

According to the problem formulation in Section 3 we would like
the fuzzy relation (4.1) between components of X be such that the
observations X; are compatible with the relations at least to a grade y. This
requirement is expressed by Eqs. (3.3b) or (3.4b) as constraints for the
residuals ¢; of the parameter vector. In these formulations, the constraints are
independent of the model function F = 0. Therefore, the following
discussion of the properties of the solution Xy of Eq. (4.1) is applicable not
only to the model equation, but also to any other such relation between
components of X which depends on T. In general one is of course principally
interested in the model function.
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In terms of X and X[ the condition (3.2b) means that the discord
between X; and X; should be less than 1 - -;,-, or that the grade of
collocation between X; and X should be larger than yi. Hence one may use
the grade of collocation as a measure of compatibility between data and fitted
model. We define it most conveniently in terms of the discord, which is
according to Eq. (2.15) or Eq. (A.20) approximately given by

DX;, Xp)= [FT (F,PrFH'F )7, (4.2)

where F and F, are evaluated at (X;,T). Then the grade of compatibility
between the data vector X; and the fitted function is

¥(X;, Xp)= 1-min{1,D(X;, Xp)} . (4.3)

In terms of the grade of compatibility, the condition (3.2b) simply is
v(X;,XF)> ¥;. The global grade of compatibility between data and model
equation we define as

v(tx}. Xr ) = min{vx,. X0}, 49
1

One can change the grade of compatibility by dilating the spread of
the fuzzy hypersurface Xr. The spread is governed by the parameter
panderance matrix Pr and by the form of the Eq. (4.1). We only consider the
modification of the spread by a modification of Pr. Let P be multiplied by a
factor ®2. Then the spread of T is multiplied by ®,, and so is the discord
D (X;, Xf). Hence, if one wants the grade of compatibility, Eq. (4.3), to equal
the desired grade -;,-, then the ®; must have the value

® = DX, Xp) /(-0 . (4.5)

We call ®; the model spread dilator for the data point X,. The global model
spread dilator we define by

® = max{®,;}. (4.6)
i

The dilators depend on the desired grades of compatibility y;. For y, = 0 in
Eq. (4.5) one obtains a dilator which makes the spread of X just large
enough so that the support of the membership function of X includes the
observation X;. We call the corresponding global dilator ® and have used it
in Section 3 in the iteration of the panderance matrix Pr.

The described dilation of Py by a constant factor can produce in
some parts of the model spreads which are too large to be consistent with the
actual discords between observations and model. In such cases the model
spread may be adapted by making ® a function of X, and using the sets
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{X;,®,} to design the function ®(X) such that
®X)=®;,, i= 12,...,5. (4.7)

One recognizes that the constant global dilator, Eq. (4.6), is an approximation
of the function ®(X) by a constant @,

In model fitting problems where the data are fuzzy one has three
different dilators, namely data dilators, minimal model dilators and inclusive
model dilators [3]. In the present case with crisp data, the data dilators
formally are infinite (to fuzzify the crisp data), whereas both model dilators
are equal. Therefore, one only has one dilator type if the data are crisp.

5. EXAMPLES

We present two examples of model fitting with a fuzzy model and
crisp data. The first example is a fitting of a non-linear function to data from a
terminal ballistics problem. The second example is an economics forecasting
problem, and it involves a linear model function. In the latter example we
compare our results with those obtained by Heshmaty and Kandel [4] who
used a method developed by Tanaka et al. [5], which is based on an
optimization principle that is different from ours.

Now we consider the first example. For the assessment of effects of
weapons one needs an estimate of the size of perforation that is produced by
a projectile or fragment impacting on a metal plate. The size of the
perforation depends on the material properties of the projectile and plate, on
the geometry of the projectile, and on the velocity and obliquity of the impact.
Shear and Dumer [6] have shown that in many cases the ratio of the hole area

to projectile’s presented area is an increasing function of the dimensionless
ballistic damage indicator

B= Kp/(Vpoy), (5.1)

where Kp is the kinetic energy of the projectile, Vp is its volume and o,r is
the ultimate yield stress of the target material. The relation between the ratio
Ay / Ap (crater or hole area by projectile’s presented area) and B is fuzzy for
two reasons. First, it has no firm theoretical foundations, that is, no particular
form of the model function is suggested by a theory of the mechanics of the
penetration process. Second, the observations, i.e., the measurements of the
involved quantities also are fuzzy. Particularly, the value of o  is usually
only approximately known, and can vary considerably from specimen to
specimen even in laboratory environment. The other quantities, Ay, Ap, Kp
and Vp can be more precisely measured, but often the data sources do not
contain sufficient information to estimate their distributions in the classical
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Table 1, Perforation Data

8 A /A B ! A, /A

H P ~ H™p

4,060 1.148 21.885 2.599
23,725 2.549 14.010 2.098
60.250 4.774 23.580 2.737
56.405 5.244 19.150 2.518
73.625 6.786 16.865 2.381
57.495 5.148 15.830 2.184
28.770 3.065 15.200 2.064
37.285 3.513 14.755 2.016
8.305 1.209 13.565 1.995
11.540 2.044 8.475 1.571
32.075 4.315 4.390 1.409
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sense. Hence, although it is known that the data are fuzzy, one has no
means to estimate their spread. This is a typical situation where one would
like to fit a fuzzy model to data which, for lack of better information, may be
treated as crisp.

Table 1 contains a list of typical experimental data. The list is a
subset of the data collected by Shear and Dumer [6), and is presented for
illustrative purposes only. The original set contains over 400 observation
pairs. We use the data in Table 1 to illustrate the fitting process with the
following non-linear fuzzy model function

Ay/Ap= VB]@VB + b). (5.2)

The numerical solution of the model fitting was obtained as
described in Section 3 by using the utility program COLSAC [1]. The model
equation (5.2) was formulated in the form

F= a+b/VB - Ap/Ay= 0, (5.3)

where @ and b were treated as data, and B, Ap, and Ay as index variables. In
particular, the i-th observation set (B;, Ap,, Ay;) was used in the form of the
constraint

Fi= (a+cy)+ (b+ o))/ VB - Ap/ Ay = O, (5.4)

where a and b are the apex values of the model parameters @ and b,
respectively, and a + ¢, and b + ¢;; are a set of particular parameter values
which satisfy the i-th constraint equation (5.4). The least squares algorithm
minimizes the objective function

S .
W= 2 (Cai + ) Pr} [cm ] ' (5.5)
i=1

Ch;

where Pr is the panderance matrix of the parameter vector (7,b). Because Py
was not known, an iteration was carried out as described in Section 3. The
iteration end condition was the requirement that the change of the parameter
apex values be less than 1078 times their spread. This condition was judged
to be sufficient to assure that the inaccuracy of the solution caused by the
termination of the iteration was insignificant in comparison to its fuzziness.
Convergence under this condition was achieved in 24 iteration steps. The
final results were as follows:

a= -00727, Sa= 0.0936,

b= 21008, s, = 0.4001, (5.6)
cp= —0.9766937,
13
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where c, is the concordance between @ and b. The quoted spreads s, and s,
and the concordance ¢, were used as input for the fitting program, that is, at
the final step we assumed that the fuzziness of the model parameters were
given by Eq. (5.6), and the apex values 2 and b were not known. Then the
program produced the values of a and b in Eq. (5.6) with panderances
computed by the panderance propagation formula from the input. The
spreads thus computed were, of course, smaller than the input by the factor
®, the zero-level dilator. In the present example the value of the dilator was

®, = 3.317. (5.7)

Because the input panderance matrix was iteratively determined, the
concordance c; between the fitted function parameters is equal to the input
concordance between the fuzzy model parameters, given by Eq. (5.6).

Figure 2 displays the results of the model fitting. It shows the
observed points, and the fitted curve with its spread. (The spreads in
Figure 2 were calculated using the panderance propagation formula (B.17) for
the function Ap/Ay = @ + b/ BY2. The plots show the inverse Ag/Ap of that
function with its spreads. Because the inverse is not a linear function of the
parameters, a direct computation of the spread of Ay/Ap = BY2/@BY? + b)
would give slightly different results, and be only an approximation. Ap/Ay
is, on the other hand, linear with respect to @ and b, and, therefore, the
panderance propagation and discord formulas are exact for this function).
The solid lines on both sides of the fitted curve indicate the support
boundaries of its membership function if the dilator ®g is used. Notice that
the magnitude of the dilator is determined by the observation at B = 8.3. The
support boundary passes through that observation. If one specifies instead of
zero a compatibility grade of 0.3, then the spread of the fitted function has to
be further increased such that the minimum membership value of all
observations is 0.3. The corresponding dilator is

®y3 = 4.738 . (5.8)

The support boundaries corresponding to this dilator are shown in Figure 2 as
dotted lines.

Through each observation in Figure 2 we have plotted a short
segment of that curve of the fuzzy set of solution curves which passes
through the observation and has the highest membership value. (It is given
by the parameter values a+c, and b+¢;, ).

One notices in Figure 2 that the spread of the fitted function is quite

large for larger values of B, and that this increase of the spread is not
consistent with the scatter of the observations. The increasing trend of the

14
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spread of course correctly reflects the uncertainty of the function in the region
with few data. The magnitude of the spread, that is, the dilator @ is,
however, generally determined by few outliers. Thus, in the present case an
observation at B = 8.3 is causing the large value of @, The fitted function
would change little if that observation were discarded, but the spread would
be reduced. Therefore, one easily could obtain a less fuzzy fitted model if this
observation and other outliers were discarded. Another possibility to reduce
the fuzziness of the fitted model is an adaptation of the spread, as described
in Section 4. We achieve such an adaptation by constructing a modulator
function ®.(B) instead of a constant dilator ®,. Using such a function, the
panderance matrix Prp of the parameters of the fitted function is computed by

Prr(B) = ®2(B) Pr , (5.9)

and the spread of the fitted function is computed using Prp(B) instead of the
constant Q%PT or ¢%,3 Pr, as in Figure 2. In the present example, different
functions ®;3(B) were computed for positive and negative spreads,
respectively. The form of both functions was

®(B)= max{1, a+ (B-Bp?B} . (5.10)

and the parameters, a, Bp and B were determined such that the membership
value of the fitted function (5.2) was at least 0.3 for each observation.

Figure 3 shows the result of the fitted function with the modulated
spread. The solid lines indicate the limits of the support of py ~ 0.3, where
ur is the membership function of the fitted function. The dotted lines are the
limits of the support of wr. The spread of the model is more reasonable than
in Figure 2, and consistent with the observed scatter of data.

Figure 4 illustrates the described model fitting in the parameter
space. The result of the fitting is a fuzzy vector with the components @ and b
and a panderance matrix given by Eq. (5.6). The support of the membership
function of the fuzzy model parameter is an ellipse. Figure 4 shows the
ellipse, dilated by ®( 3, as a solid line. The level line ur = 0.3 is shown in the
figure as a dotted ellipse. The figure also contains the locations of the
parameter vectors T + ¢; which correspond to each of the 22 observations.
One notices that all of the latter vectors are inside the dotted ellipse, as
required by the calculation of the dilator ®33. (The different symbols in this
and the previous figures indicate different combinations of projectile and
target materials).

Next, we present the second example with a linear fitting function

16
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i i=1

,. and data taken from Heshmaty and Kandel [4]. Table 2 gives a summary of
the data. (A detailed discussion of their sources and significance is given in

'4 [4] and will not be repeated here). The purpose of this model fitting is to

N

provide an estimate of S (a total sales value) for the years beyond 1980, for

~ projected values of the x;. A particular set of projected values for the years

N 1981-1988 which was used in [4] also is listed in Table 2.

- The fuzzy parameter vector A=:{A;, P4} of the model (5.11) was

. determined as described in Section 3, again using the least squares utility

" program COLSAC. The panderance matrix of A was determined by iteration.

’\". In this example the iteration end criterion was satisfied after 52 iteration steps,

b whereby an overrelaxation factor 1.7 was used. The resulting model

>, parameter vector A is listed in Table 3 together with the model parameter

7 vector Ayx which was found by Heshmaty and Kandel [4] using a different

- approach. The latter model with the parameter vector Ay is supposed to fit

- the data for the years 1975 through 1981 with a compatibility grade 0.5.
However, a test calculation shows that the model does not fit the data for the
year 1975. (See, e.g., Table 4 or Figure 6). Therefore, in order to have a fair

v.

.. comparison between Heshmaty and Kandel results and results by the present

- approach, we only fitted the 11 data sets for the years 1976 through 1981.

" Table 4 shows that our model also fits the data for the year 1975 with a

‘. compatibility grade 0.77, but this is coincidental. We also note in passing that

] the two data sets for the year 1975 were found to be influential for the model

% fitting, that is, their inclusion in the data base substantially changes the fitted

- model parameter A.

v Comparing our parameter vector A with the parameter vector Ak
one notices two essential differences. (See Table 3). First, the coefficient 54
of the price of microcomputers has a negative apex, whereas Ayyy is positive.
Hence our model predicts an increase albeit small of the total sales volume
(in$) if the price of microcomputers decreases. This might have some
economic significance. More important for the mathematical aspect of the
model fitting is the fact that Ak is a degenerated fuzzy vector with only one

'_ fuzzy component. This means that the estimated spread of the computed

’ sales volume Spyx = ¥ Ay, x, only is affected by x3. This seems to be a

: somewhat artificial situation, which can lead to overconfidence in the

y accuracy of the model if it is used for extrapolation in the variables x,, x,, or
x;. In contrast to this situation, all components of a least squares model

v parameter, presently of A, are fuzzy and, consequently, the estimated model

- spread increases whenever any of the arguments x; through x; are used

2
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Table 2. Economic Data

q
l'l
Year X3 X5 X3 Xy SObS :
. t
1975.0 41.37 3.0 1375.0 4100.00 585550 -
1975.5 46.34 15.5 1622.5 3600.00 6852.40 o
1976.0 51.30 28.0 1870.0 3100.00 7849.30 g
1976.5 56.68 45.5 2285.0 2893.50 8727.20 q
1977.0 62.07 63.0 2700.0 2687.30 9605.10 3
1977.5 69.52 81.5 3100.0 2522.65 | 10984.80 :
1978.0 76.97 100.0 3500.0 2358.00 | 12364.50 é
1978.5 83.13 140.0 5208.0 1847.75 | 14124.00 :
1979.0 89.29 180.0 6916.0 1337.50 | 15883.50
1979.5 94.64 407.0 7878.0 1313.15 | 17845.05
1980.0 100.00 634.4 8840.0 1288.80 | 19806.60
1980.5 110.06 832.9 9728.¢ 1191.30 | 21798.20
1981.0 120.11 1031.4 10617.0 1093.80 | 23789.80
1982.0 135.00 1390.0 12600.0 900.00 -
1983.0 150.00 1700.0 14600.0 800.00 -
1984.0 165.00 3310.0 16600.0 700.00 -
1985.0 180.00 5260.0 18600.0 600.00 -
1986.0 195.00 7890.0 20600.0 500.00 -
1987.0 210.00 11835.0 22600.0 400.00 -
1988.0 225.00 17752.0 24600.0 |  300.00 -
1

The data are taken from Heshmaty and Kandel [4].

X} = User population percent expansion

X, = Microcomputer sales, 10° §

x3 = Minicomputer sales, 10° §

X, = Price of microcomputer, $

SobS = Sales of computers and peripheral equipment, 10° §

The data (x; through x, and Sobs) for the years 1975 through 1981 are
actual observations from different sources. The values of x; through x,
for the years 1982 through 1988 are projected.
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\
\ Table 3, Economic Model Parameters
%
X Apex Coordinates and Spreads of Model Parameters
)
a ]
‘ 2
: i A4 S§ AHK; SHKi
1 127.95 11.93 130.39 0.0
" 2 2.177 0.709 4.48 0.0
: 3 0.616 0.153 0.39 0.15
4 -0.015 0.144 0.14 0.0
Q
¥ Concordance Matrix of A
f 1. 0.498100 -0.953341  -0.954782
0.498100 1. -0.720295  -0.292541
-0.953341  -0.720295 1. 0.834829
. ~-0.954762  -0.292541 0.834829 1.
The apex coordinates Apy; and spreads syg; are due to Heshmaty and
Kandel [4). The concordance matrix of Ayk is the unit matrix. The
dilator for the model A with a compatibility level of 0.5 is
¢0.5 = 3.3166.
-
-~
N
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E ' beyond the observation interval. The different behavior of both models is
evident from Table 4, which shows that the spread of § increases
substantially over that of Spyx for the years after 1984, thus warning a
potential user of the economic model about the intrinsic inaccuracies of
economic forecasts. We notice in passing that the estimated spread of S has
been calculated under the assumption that the projected values of x; are crisp.
The formalism of panderance propagation (see Appendix B) permits one also
to take into account the spreads (and concordances) of the projected x;. The

- resulting spread of S can be easily calculated and would, of course, be larger
1 if finite spreads of the x; were assumed.

8. Figures 5 and 6 show the data fitting quality of both models for the years
1975 through 1981. The grade of compatibility is 0.5 for the model A and 0.47
for the model Ay (in the latter case disregarding data from 1975). From a
practical view point, both models fit the data equally well although our model

: (Figure 5) consistently produces smaller differences between computed $ and
- observed S.

%
N The results of the fitting are shown graphically in Figures 5 through

) Figures 7 and 8 show the predicted sales S and 5y, respectively,

up to the year 1988. The curves on both sides of the predicted sales volume
: curve are the support boundaries of S and Syy, respectively. One notices a
; divergence of predictions after 1984, and also an increase of the spread of 5.
s The spread of Syx increases only moderately, as discussed above. We also
. note that the prediction Syx approximately coincides with the upper support
boundary of S, that is, Syx is close to a border solution of the fuzzy least
squares result. It appears that the increase of the estimated spread of S for
values of x; outside the region of observations is an advantage of the
panderance propagation formalism, which is used in this paper.

6. SUMMARY AND CONCLUSIONS

We have presented an efficient and flexible method for the fitting of
fuzzy model functions to crisp data. The efficiency of the method is achieved
by restricting the membership functions of vector data to a class of conical
functions, and by using a least squares objective function. A fuzzy vector
with a conical membership function is defined as a set consisting of an apex
vector and a panderance matrix which describes the spread of the fuzzy apex
N point. We have derived for functions of such vectors a panderance
N propagation formula which is exact for linear vector operations, and gives an

approximate estimate of the fuzziness of non-linear differentiable functions of
fuzzy vectors.
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Fuzzy functions we define in the present context as sets of
functions which depend on fuzzy function parameter vectors. These
parameter vectors again were assumed to have conical membership functions.
Each element of the parameter set defines an element of the function set and
we assign to both elements the same membership value. We do not assume
that the functions are scalar, thereby achieving general applicability of the
presented approach to a large variety of problems. By setting a fuzzy function
equal to zero (crisp or fuzzy) one obtains a fuzzy equation. Such an equation
defines a fuzzy hypersurface in R, (n is the dimension of the argument vector
of the function). A fuzzy point in R, is defined by a fuzzy vector and is a
special case of a fuzzy hypersurface. Hence, in fuzzy model fitting one deals
with fuzzy manifolds, points and surfaces, in R,.

We introduce a structure in the space of the described fuzzy
manifolds by defining a discord between any two elements of the space. Itis
a measure for the separation of the elements. A concept dual to the discord is
the collocation of two elements. We use the concepts of discord and
collocation to express a desired grade of compatibility between data and fitted
model by a convenient formula. The objective of the model fitting is to find
such a fuzzy hypersurface in the space of observables which has high
membership values at the observed points. In particular, we minimize the
sum of squares of the deviations of these membership values from one.
Because we formulate the model function in the form of an implicit equation,
we can interpret the problem as the fitting of a crisp model in the parameter
space. In this formulation, and because the parameter vector is assumed to
have a conical membership function, the numerical treatment can be done
using available software for general least squares problems.

We presented two examples: one involves a non-linear function of
the observables and the other uses a linear model. The latter case was
compared with results published by Heshmaty and Kandel (4], who used a
model fitting approach developed by Tanaka et al ([5]. The comparison
shows that in this particular example our method produces a model which fits
the data slightly better than the Heshmaty and Kandel model, but the
difference is not significant. A more important difference is that the method
by Tanaka et al. [5] tends to generate model parameters with some crisp and
some fuzzy components, and it does not provide estimates of the
concordances between the model parameter components. In our method the
model parameter only has fuzzy components, and the concordances are
explicitly calculated. As a result, the estimated spread of fitted model
functions typically increases as any of the observations are extrapolated. In
contrast, Tanaka et al. model spread is insensitive to extrapolations of those
observations which have crisp parameters as coefficients. It seems that our
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estimated spreads are more reasonable, because they would draw the
attention of a user of the model to the intrinsic inaccuracies of extrapolation.
In comparing our model with Heshmaty and Kandel calculations, one indeed
observes that our calculated spread does include the Heshmaty and Kandel
solution, albeit with a small membership value, but not vice versa.

We have also discussed a modulation of the spread and shown its
application in the first example. Such a modulation might provide more
realistic spread estimates than a simple application of the panderance

propagation formula, because the modulation uses more of the available
information.

In conclusion, our method has the advantage that it can be easily
implemented, using available software, and is not restricted to any special
form of the model function. The method produces estimates of model
spreads that in the example are more reasonable than those obtained by
Tanaka et al. {5]. Restrictions of our method are due to the requirement of
conical membership functions. This restriction is essential for the efficiency of
the solution algorithms.

The tools and concepts developed for the present problem also can
be used to develop solution methods for the more general problem of fitting a
fuzzy model to fuzzy data. If estimates of the spreads of model parameters
and data are available then such an extension is a straight forward application
of the present results. If, however, these spreads are to be estimated
concurrently with the model, then more development is needed, because the
simple iteration described in this paper cannot be applied to such problems.
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Appendix A.

FUZZY EQUATIONS

Let X € R, and let F(X) € R, be a continuously differentiable
function of X. The crisp equation

F(X)= 0 (A.1)

defines in R, a (n-r)-dimensional hypersurface Xy, The equation can be
fuzzified either by a fuzzification of the function F yielding

F(X)= 0, (A.2)
or by replacing the crisp right hand side by a fuzzy zero, that is,
F(X)= 0 . (A.3)

In the former case one has a set of functions equaling zero, and a
corresponding set of solutions. From these solutions one may construct a
fuzzy domain in R, which represents the fuzzy solution Xr of Eq. (A.2). In
the case of Eq. (A.3) one has a crisp function F(X) which is set equal to
different values close to zero. Each equation produces a solution X, and the
set of these solutions is the solution of Eq. (A.3). One can formally transform
the latter equation into an equation of the same type as Eq. (A.2) by defining
a fuzzy function

G(X)= F(X)-0 (A.4)
and setting
G(X)= 0 . (A.5)

We shall first discuss the more general Eq. (A.2), and later
demonstrate that the solution of Eq. (A.5) indeed is identical to the solution of
Eq. (A.3).

We define the fuzzy function F in terms of a fuzzy parameter vector
T. Because we only consider vectors with conical membership functions, T is
defined by

T =:{T,Pr}, (A.6)
where T € Rp is the apex of T and P; is its panderance matrix. ( Py is a

positive definite (p X p)-matrix). The membership function pur of T is defined
as follows
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- It-Tir = [¢-T)Y prl-1))", (A.7)
: pr(t) = 1=min{1, It=-Tlz }. (A.8)

F(X)= F(X,T)
with the membership function (A.9)
w(E(X,1)) = ur(t).

i : The fuzzy function F we define by

We also assume that F(X,t) is continuously differentiable with respect to X as
well as with respect to t. The Jacobian matrices of the derivatives we denote
by subscripts:

aF/aX = Fx , d8F[at= F,. (A.10)
Each element of the fuzzy set of equations (A.2), i.e., each crisp

equation
FiX,t)= 0 (A.11)
with fixed t defines a crisp relation between components of X. We assign to
that relation the membership value pr(¢t). On the other hand, for any fixed X

one has a set (possibly an empty set) of parameters t which satisfy Eq. (A.11).
We assign to X the highest membership value of that set:

X)= max t) . A.12
wr(X) e o wr(t) ( )

The fuzzy solution X; of Eq. (A.2) then is defined as a set in R, with the
membership function (A.12).

An equivalent but more convenient definition of uwp(X) is in terms
of a separation measure h of X from X :

h(X,Xf) = in t-T 1, A.13
S & (A.19
pe(X)= 1-min{1, (X, Xp)}. (A.14)

To be definite, we assign an infinite value to h(X, )?;) if F(X, t)=0 has no
solution ¢t for the given X.

_  Now we derive an approximate expression for the separation
h(X, Xr). To that end we reformulate Eq. (A.13) as the following constrained
minimization problem:
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minimize

W= ¢-T)Y Pri¢-T),

subject to (A.25)
F(X,t)y= 0.

To solve this problem we use a Lagrange multiplier vector k and obtain the
modified objective function

W= %(t—T)T Prle-T)- kT F(X,1). (A.16)

We obtain normal equations for the minimization problem by setting equal to
zero the derivatives of W with respect to ¢t and k. The normal equations are

Prl (¢~-T)- Fl(X,¢) k=0,
(A.17)
F(X,t)= 0 .

Eliminating k from the first equation (A.17) one obtains the equivalent set of
equations

¢-T)V Prie~T)y= (¢-T)' ] (FPrFH)'F, ¢ -T),
(A.18)
F(X,t)= 0.

(We exclude singular cases by assuming that the matrix F, Py Fl is positive
definite.) The left hand side of the first equation (A.18) is the sought for
minimum value of [t — Ti#. On the right hand side, the arguments of F, are
(X,t), and therefore, it only can be computed after a numerical solution of Eq.
(A.17) or (A.18). However, an approximate solution can be obtained by
linearizing the second equation (A.18) in the form

F(X,t)= F(X,T)+ F(X,T) ¢-T)= 0. (A.19)

Substituting this into the first Eq. (A.18) and also using the arguments (X,T)
instead of (X,t) in the product F, Pt Fl, one obtains

hXXp) = (1t=Tir Jmn= [FT (FPFDTIF]?, (A.20)

where the arguments of F and F, are (X,T). The expression (A.20) is exact if
F is a linear function of the the parameter t. (In that case, also Eq. (A.19) is
exact with F, evaluated at (X,T).) The solution X is approximately given by
Eqgs. (A.20) and (A.14).

Now we consider the fuzzy Eq. (A.3) and show that Eqs. (A.20) and
(A.14) also provide a solution to that equation. Let the right hand side of Eq.
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(A.3) be the fuzzy vector

0=:{0,Py}. (A.21)

We construct a solution of Eq. (A.3) as follows. First, we define a separation
of F(X) from the fuzzy zero by

h(F,0) = [FTPsF V2, (A.22)
and a separation of any X from the solution X ; of Eq. (A.3) by
rX. X9 = n{FX),0) = [FOOTPG FOO) )™ . (A.23)
The solution of Eq. (A.3) then is the fuzzy set with the membership function
polX)= 1=-min{1, h(X,Xq} . (A.24)

One obtains exactly the same fuzzy set as a solution of Eq. (A.5) by applying
the formula (A.20) and Eq. (A.14) to the function G (X), defined by Eq. (A.4).
Therefore, general fuzzy equations always can be assumed in the form (A.3),
i.e., with a crisp zero on the right hand side. We note that in the case (A.4)
the formula (A.20) is exact, because 5(X)=F(X)—5 is a linear function of the
fuzzy parameter 0.

We have shown that the solution of a fuzzy equation is a fuzzy set
(a fuzzy (n—r)-dimensional hypersurface in R,). Its membership function can
be computed by solving Eq. (A.13) pointwise, or by the approximate formula
(A.20). We note, however, that the membership function of the solution Xy
depends on the formulation of the function I::(X). Two algebraically
equivalent formulations of F(X) = 0, involving the same fuzzy parameter T
and having the same crisp solution X(T) of F(X,T) = 0, generally produce
different fuzzy solutions. These solutions have the same apex, namely the
(n—r)-dimensional crisp hypersurface X(T), but their spreads can be different.
The fact that the solution depends on the form of the equation is an intrinsic
property of fuzzy equations.

Now we discuss the structure of the fuzzy solution X of F(X)=0.
It is provided by Eq. (A.13) which defines a distance between an X and X;.
That distance is zero if X is a point of the apex X(T) of Xp, i.e., of the
solution of F(X,T) = 0. The corresponding membership value of X is one.
Boundaries of the regions in R, where up(X)Z+y are hypersurfaces defined by
the equation h(X,Xr)=1-y. We investigate the surfaces by using the
approximate formula (A.20).

Let Y be a point of the hypersurface X(T). Then Y satisfies the
equation F(Y,T)=0, which we expand obtaining
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F(X,T)= Fx(Y,T) (X-Y)+ ... , (A.25)

since F(Y,T) = 0. Substituting the linear term of the expansion in Eq. (A.20)
for F, one obtains for the distance between any crisp X and a fuzzy Y ¢ X

rX,¥)= [(X-Y)T Fk (F,PrFD)VFx (x-Y)17 . (A.26)

The structure of the hypersurface h(X,Y)=1-+v is determined by the (nxn)-
matrix

Pyl= FL (F,PrED"VFy . (A.27)

We recall that F € R, and r<n. The rank of the matrix Py’l is, therefore, at
most equal to r. (It equals r if the components of F are linearly independent
functions of X. We assume for simplicity that this is the case.) If r=n, then
the solution Xy is a fuzzy point in R, , and the surface h=1-v is a
hyperellipsoid. If r<n then the matrix Py ! is semi-definite and the surface is
a hypercylinder with rulings that are parallel to the hypersurface F (X,7)=0 at
X=Y. The support boundaries of ur(X)—+v are, therefore, surfaces that are

approximately parallel to the apex X(T), of the solution, at least for vy close to
one.

Eq. (A.20) provides a measure for a distance between a crisp point
X and the fuzzy set Xy. The distance between a fuzzy point A and X may
be measured by the discord between both sets. We define the discord in
analogy to Eq. (2.15) by

D(A,Xp) = min max { h(X,A), h(X,X£)} . (A.28)
CER,
In some special cases, for instance, if the funcrion F(X) is scalar, the
discord can be computed by an explicit formula which now will be derived.
Let A be a fuzzy point
A=:{A,Ps}. (A.29)
The separation of an X € R, from A we measure by h (X, A), defined by
hX A= [(X-A)T Pitx-4))" . (A.30)

The separation of X from the solution Xr of F(X) = 0 we measure by
n(X,Xp) = [FT (FPrFHTVFY? (A.31)
Because h(X, X) is a convex function and h(X, f(;) is not concave (we
assume that the approximation (A.26) is sufficiently accurate), the search for
the minimum over X in Eq. (A.28) can be restricted to the locus where
h(X, A) = constant is tangent to h(X, Xf) = constant. In the special case
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where that locus is a straight line, D(I, J?;) can be easily calculated. We
now consider that special case. First we determine the point B at which the
hypersurface F(X,T)=0 is tangent to a hyperellipsoid h(X, A) = constant.
Then we shall consider the straight line between B and A, and establish
conditions for it being the above mentioned locus.

e ol s e ge g o of

We find B by solving the problem

minimize
(B-A) P{!(B-A)
subject to (A.32)

F(B)= 0 .

Using a Lagrange multiplier vector k we obtain a modified objective function

W= 1@B-a)T-Pih(B-A)- kT F(B) , (A.33)
and the normal equations
P;l-(B-A)-Fkk= 0, l
(A.34)
F=0. Jl
Eliminating k from the first equation, one finds the relation
B-A= P,FL (FxPoFf ) 1Fyx- (B-A) (A.35)
which, using the approximation
F(B)= 0 = F(A)+ Fx  (B-A) , (A.36)
reduces to
B-A = — Py FL (FxPoFE) 1 F , (A.37)
where F and Fy are evaluated at A. The separation of B from 4 is
h(B,A) = FT (FxP4FL)'F . (A.38)

Hence, in order to approximately calculate the separation, one does not have
to actually calculate B.
Let C be a point on the straight line through A and B. Then
C-A= a(B-A). (A.39)

The tangent plane to h (X, A)=constant through C is spanned by vectors X~ C
which satisfy the equation

. > -n‘ .l' - - .V' .'- .- ‘.'."' s -.. .-’ l\ ----------- -.
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(C-A)TPIX~-C)= 0. (A.40)

Substituting Eqs. (A.39) and (A.37) in this equation one obtains the equivalent
expression

aFT (FyPAFR) " 'Fx- (X - C)= 0. (A.41)

The tangent plane to h(X, Xf) = const. through the same point C is spanned
by vectors X —C which satisfy the equation

FT(F,PrFH 'Fxy (X - C)= 0, (A.42)

see Eq. (A.26). Comparing Eqs. (A.41) and {A.42) one sees that necessary
and sufficient for both equations to define a common tangent plane is that
there exists a positive number B such that

BFPrF[ = FyP,F}. (A.43)

This condition is satisfied if F is a scalar function. A~nother case in which
(A.43) is satisfied is the function F = X—-B, that is X[ is the fuzzy point
B =:{B, Pa }, and PB = PT = BPA-

We now assume that (A.43) is satisfied along the straight line. We
have then at the point C

RC.A) = |al [(B-A)T P} (B-4A)]" =

(A.44)
‘al' h(B,A‘) ’

where h(B, A) may be computed by Eq. (A.38). For the same point C one
obtains

hC.X,) = [FCO) (FRPrFIY VL FC) ] =

(A.45)

i

la=1|- h(A,X[) ,

where h(A,X}) may be computed by Eq. (A.31). Neither of the equations
actually requires to know the value of B. Restricting the search for a
minimum in Eq. (A.28) to the straight line between A and B, that is to a
between zero and one, we first determine the value of a for which
h(C, A) = h(C, i;). The corresponding value of h is equal to the discord
(A.28). One finds after simple algebra

- h(B,A) - h(A,X)

A X = = — A.46
D(A4.Xp) h(B,A) + h(A.Xf) (A-46)

The grade of collocation between a fuzzy point A and the fuzzy
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solution X of F(X) = 0 we define in terms of the discord by
Yy(AXp)= 1-min{1, D(A,Xf)}
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Appendix B.

PANDERANCE PROPAGATION FORMULA

Let X,Z € R,, and let the linear function

Z=D X+ 2, (B.1) :

be a coordinate transformation. Let A =: { A, P, } be a fuzzy point in the X- K
coordinate system. We seek its representation B =:{B,Pg} in the
transformed Z-coordinate system. The transformeation formulas are

B= D-A+ Z, (B.2)
and g
Pg= DP,DT . (B.3) :

Eq. (B.3) may be called a panderance propagation formula. It can be readily
verified by substitution. By definition one has (see Section 2) the membership

functions 4
ma(X)= 1-min {1, [(X-4)TPs'(x~4)]"} (B.4) :

and ’
wp(2)= 1-min{1, [(Z-B)Pg'(Z-B))"} . (B.5) t

We have to show that
pe( Z(X)) = wa(X) , (B.6) K

and this is true because

(Z-B) Pgl(Z~B)=

X-AT DT [ 'piD Y ID(X~-A)=} (B.7)

(X-AY Pil(x-A) .

J

The panderance propagation formula (B.3) componentwise satisfies
the extension principle [7]. In order to show this we consider one component
of Eq. (B.1), say,
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z= dTX + z. (B.8)
Let the corresponding component of Eq. (B.2) be
b= d A+ z. (B.9)
The panderance of the fuzzy number b =: { b, P, } is, according to Eq. (8.3)
P,= d'P,d . (B.10)
and its membership function is
wp(z)= 1-ma{1,|z=-b|/\P;} . (B.11)

On the other hand, according to the extensicn priniciple one should have the
relation

we(z) = max walX) . (B.12)
X dTX ~z9= 2

We find the maximum on the right hand side of eq. (B.12) by solving the
minimization problem

minimize
(X -A)F Pt (X -A)
subject to (B.13)
dl (X-A)-z2+b= 0 .
Using the Lagrange multiplier k we obtain a modified objective function
W = ;-(x-A)TP,;l(x—A)-k[dT(x—A)-z+b] (B.14)
and the normal equations
Pi'(X-A)-kd= 0,
(B.15)

d(X-A)—z+b= 0.
Eliminating k from the first equation, one obtains
Pil(X-A)= a4 - [dT(X-A))/ @' P,d) . (B.16)

Multiplying from left by (X — A)Y and using the second Eq. (B.15) one
obtains from (B.16)

[(X-A) PIUX-A)lmn= @=B)*/ P, , (B.17)

the square root of which is equal to the expression in Eq. (B.11).
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Hence we have shown that the panderance propagation formula
(B.3) is consistent with the extension principle for any linear function, even if
the matrix D in Eq. (B.1) is not a (n X n)-matrix, or is singular. If Pg turns out
to be singular, then the corresponding support of ug is a degenerated
hyperellipsoid.

If the function Z(X) is non-linear, then one may obtain an
approximate Pz by linearizing the function. In particular one then obtains

3

YA
Z(X-A)= Z(A)+ Sy X-A)~ ...,

B= Z(A), L (B.18)

FY AR

Y-
Pp= x5 Pal3y)

where 3Z /3X is the Jacobian matrix of the function Z(X), evaluated at X= A.

As was shown above, the spread of a component of a fuzzy vector
equals the square root of the corresponding diagonal element of the
panderance matrix. A convenient representation of the panderance matrix in
terms of the component spreads is by the formula

PA = SACASAI (Blg)

where S, is a diagonal matrix with the spreads of components of A as
diagonal elements. The matrix C,4 is dimensionless, has ones in the diagonal
and, if P4 is positive definite, the off-diagonal elements of C4 have absolute
values less than one. We .all C4 the concordance matrix of A, and its elements
¢x the concordances between components 4; and a; of A. Componentwise
the relation (B.19) is for, for j,k = 1, ..., n,

P,k = 5jCkSkk - (B.20)
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Appendix C.

NORMAL EQUATIONS AND PANDERANCE OF MODEL PARAMETERS

We consider the constrained minimization problem (3.4a) for a
fuzzy model and crisp data, viz.,

minimize

subject to (C.1)
F(X;,T+¢)= 0, i= 12, ...,s5

In Eq. (C.1) the ¢; and T are p-dimensional vectors, and each F, is an r,-
dimensional function of the observation vector X, and the model parameter
t =T + ¢;. However, since the X; are crisp and not subject to adjustment,
they can be included in the definitions of the F,, which then may be
considered as functions of the parameter ¢ only. We assume that these
functions are twice differentiable with respect to all components of t. Using

Lagrange multiplier vectors k, one obtains the following system of normal
equations for the problem (C.1):

3

r
at[k,T~F,(T+q)]} =0,i=12,...,s,

Px—lcx - {

S
> %[k,T'F,(T-é’c,)] =0, | (C.2)

1=1

F(T+¢)= 0, i= 12,...,s

)

A solution of Eq. (C.2) consists of the model parameter vector T, the s
correction vectors (residuals) ¢,, and the s Lagrange multiplier vectors k,. The
solution of the minimization problem (C.1) is among the solutions of Eq.
(C.2). Now we shall discuss the numerical solution of the latter equation.

Eq. (C.2) is non-linear with respect to the unknowns T and c,.
Therefore, its numerical solution in general requires an iteration, and we
present iteration formulas based on Newton-Raphson approach. The
formulas are obtained by an expansion of Eq. (C.2) at points {c k, T},
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i=1,...,s, which represent an approximation to the solution. Let corrections
to the approximate residuals be ¢, corrections to the approximate Lagrange
multipliers be x;, and corrections to the approximate model parameter be +.
Then the linear terms of the expansion yield the following system of linear

equations for the corrections

[1-P; K[Fdu) & = P (DT (ki+w)) = P ([F)u 7= =c,

i=12,..,,
s ]
i(k.’ﬂ». ¢+ O FE) +x)+ O (kTF)r= 0,
=1 1 =1 1=1
(Fi)e & + (F)r= —-F ,
i=1,2,...,5 .

+ (C.3)

)

In Eq. (C.3) we have used the subscript t to indicate the derivative 3/4¢ and
the subscript # to indicate the second derivative 32/3t%. The equation system
may be rearranged by algebraic manipulations to obtain more convenient
iteration equations. Now we formulate such a set of equations, and define to

that end the following matrices for eachi =1, 2,..., s

)
G = (FPFD™!,
A= PFIGE, -1,
D= P 'APKTF), .
r= [1+pPD]7},
E= TI[Ac-PFIGF] ,
N = FIGF,~ DT A
The rearranged set of equations is
42
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i{(ﬂ'){cx‘ [(Finei - Fi] - D;E}

(=] =]

M-
z

Ko
+

Kol
]

G [(Finei— F )+ Gy (F)ll + P; (kTF))y) - *

- G; (F)P; (kTF)ues . (€.5)

E, - (TA; + )1, i= 1,2,..,8

J

Numerical experiments show that the convergence of the iteration is
enhanced if Eq. (C.5) is used in a sub-iteration mode, iterating alternately
and k+x (with fixed ¢;), and k+x and e (with fixed T), respectively. One

obtains a Gauss-Newton 1teranon scheme from Eq. (C.5) by dropping all
second order derivative terms (kT F)y.

The panderance matrix Pr of the solution vector T can be obtained
in terms of the input panderances P, by using the linearized panderance
propagation formula (Appendix B ). We obtain the formula by first expanding
Eq. (C.2) at the solution in terms of v, x; and ¢;, and eliminating the x,. The
result is

Es:N, T= iN,e, , (C.6)

1=1 1=]1

giving a linear relation between changes of ¢, and T. Applying the
panderance propagation formula (B.3) or (B.18) to this relation one obtains

(EN)TENPND[EN)TY] (C.7)

One notices that the linearized formula (C.7) contains the second order
derivatives (k F,);; of the model functions F,. This is due to the fact that the
normal equations (C.2) already contain first order derivatives of F,. Their
linear expansion, therefore, includes second order derivatives.

The formulas (C.3) through (C.7) describing the solution algorithm
of the problem (C.2) are somewhat simpler than the corresponding formulas
for a general least squares model fitting problem (2], because the F, do not
depend on the X, in the present case. However, the simplifications are not of
such an extent that a special computer program would be much more efficient
than a general program. One may, therefore, solve the problem (C.1) with
any computer program for least squares model fitting with implicit constraint
equations, for instance the COLSAC program described in [1].
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