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PREFACE 

For decades simulations have been useful tools for designing and 
evaluating complex systems. Simulations permit the user to create 
models of many different kinds of real entities, from military strategies 
to jet engines. Often, it is preferable to manipulate a model of a real 
system than the system itself; it may be too costly, slow, or dangerous 
to work with the real system. Thus, simulations provide potentially 
powerful tools for making important decisions. 

In the past few years, there has been an interest in extending simu- 
lations from design to training. Sophisticated simulations often embed 
a considerable amount of expertise. For example, military simulations 
can embed strategic knowledge concerning how to deploy resources 
under a wide variety of circumstances. When simulations are used for 
design and evaluation, the knowledge is used to execute various 
behaviors. To use a simulation as a basis for training and learning, we 
must permit its knowledge to be inspected, as well as executed, by the 
student. 

This report describes the author's efforts to transform an object- 
oriented simulation into a useful environment for tutoring and learn- 
ing. The study was conducted for the Information Processing Tech- 
niques Office, Defense Advanced Projects Agency (DARPA), under 
RAND's National Defense Research Institute (NDRI). The NDRI is a 
Federally Funded Research and Development Center sponsored by the 
Office of the Secretary of Defense. Additional support for the study 
was provided by The RAND Corporation from its own funds. 

The project had several goals: 

• To determine the kinds of tools that must be added to a simula- 
tion system to make it a useful environment for learning and 
tutoring. 

• To implement prototype versions of these tools. 
• To examine the semantics of object-oriented languages and 

determine their shortcomings for specifying simulations. 
• To implement new simulation primitives for object-oriented 

languages to permit them to support inspectable simulations for 
tutoring and learning. 

The findings should be of interest to persons engaged in developing 
simulation languages, computer-based exploratory environments, or 
intelligent tutoring systems. 





SUMMARY 

This report describes a collection of computer-based tools and tech- 
niques we have been developing to permit complex simulations and 
expert systems to be the basis for intelligent training systems. The 
goal of our training environment is to help the naive user of such 
software to learn the sophisticated knowledge it contains. Our main 
approach is to supply the user with computer-based aids that facilitate 
learning through practice. In learning through practice, the students 
refine their knowledge of the skill by repeatedly testing it on a 
sequence of well-chosen problems. The activities students must engage 
in while learning through practice are similar across many decision- 
making skills. Hence, our learning environment embeds several gen- 
eral tools facilitating these activities, as well as an "expert system" 
capable of solving problems in the domain. 

In building these general tools for learning, our research strategy has 
been to develop them in the context of a specific complex learning 
situation. We have chosen to focus on SWIRL, a strategic war-gaming 
simulation written at RAND in ROSS—an object-oriented simulation 
language that is also a result of RAND research. Our aim is to provide 
an environment in which students who are relatively naive about both 
computers and military strategy can interactively learn to make mili- 
tary strategic decisions as well as (if not better than) the simple 
experts in SWIRL. The present report describes several of the com- 
puter tools we have implemented to aid students in learning the objects 
and strategies that compose SWIRL. These include facilities to 
interactively create scenarios, inspect simulation objects, dynamically 
modify object behaviors, and perform experiments with various military 
strategies. 

Our research has also had an important side-effect. In the course of 
reimplementing the SWIRL simulation to be suitable for tutoring, we 
discovered several conceptual problems with simulation languages and 
object-oriented programming languages. In this report, we describe the 
solutions we propose to these problems. They not only proved useful 
in implementing our tutoring system, but should also be of interest to 
those who design new and semantically cleaner object-oriented simula- 
tion languages. 
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I. INTRODUCTION AND OVERVIEW 

During the last two years we have developed an automated environ- 
ment for learning complex decisionmaking skills. Decisionmaking 
skills, such as how to solve high-school algebra problems, how to make 
effective strategic military decisions, or how to play chess, constitute 
more than just a body of factual knowledge. The expert must learn 
how to apply this knowledge to solve problems in the decisionmaking 
domain. Thus, our system focuses on learning through practice, where 
students refine their knowledge of the skill by repeatedly testing it on a 
sequence of well-chosen problems. The activities students must engage 
in while learning through practice are similar across many decision- 
making skills. Hence, our learning environment embeds several gen- 
eral tools facilitating these activities, as well as an "expert system" 
capable of solving problems in the domain. 

In building these general tools for learning, our research strategy has 
been to develop them in the context of a specific complex learning 
situation. We have chosen to focus on SWIRL, a strategic wargaming 
simulation written at RAND in ROSS—an object-oriented simulation 
language that is also a result of RAND research. Our goal is to provide 
an environment in which students who are relatively naive about both 
computers and military strategy can interactively learn to make mili- 
tary strategic decisions as well as (if not better than) the simple 
experts in SWIRL. 

In this report we describe our SWIRL environment, focusing on 
several of the tools that make it a powerful learning aid. Several 
themes will run through the report. The first theme involves the rela- 
tionship between active tutoring programs and more passive explora- 
tory environments for learning. The tools we have developed fall more 
in the latter category. The second main theme concerns the use of 
object-oriented languages, such as ROSS, to provide faithful models of 
the real-world objects and events they represent. Using any computer 
system in a tutoring context places new demands on it. The main 
demand that concerns us here is inspectability. If a system is to be a 
useful tutoring aid, not only must its output be comprehensible to stu- 
dents, but its internal reasoning and knowledge structures must be 
accessible and understandable. We will discuss the lack of inspectabil- 
ity of most object-oriented languages (including ROSS) and simula- 
tions (including SWIRL). We will also describe the way we overcame 
these shortcomings. 



Section II describes SWIRL, discussing the military knowledge that 
will be the target of learning. Section III gives an overview of the 
functional goals our tutoring tools needed to achieve in order to pro- 
mote learning the knowledge embedded in SWIRL. Section IV 
describes some of the learning facilities that ROSS already provides to 
assist in learning, noting also some of the features of ROSS that actu- 
ally inhibit the development of a tutoring environment and that had to 
be changed. Some of these changes represent a fundamental rethink- 
ing of the semantics of object-oriented programming languages as 
applied to simulation. In Section V we discuss in detail the learning 
tools we added to the modified ROSS simulation environment. Section 
VI concludes with a general discussion of some important lessons we 
have learned in our research. 



II.  SWIRL AS A LEARNING ENVIRONMENT 

SWIRL is a strategic military simulation written at RAND in 
ROSS, an object-oriented simulation language (Klahr et al., 1982). 
ROSS itself is the product of RAND research (McArthur, Klahr, and 
Narain, 1985). SWIRL has several advantages as a domain for learn- 
ing. First, it is a familiar testbed, because it was designed and imple- 
mented at RAND; second, it is a simple but rich application. The 
behaviors encoding the target strategic knowledge are well defined, on 
the one hand, but challenging to learn on the other. Finally, since 
SWIRL is written in an object-oriented language, the knowledge in 
SWIRL is already organized in a modular fashion, so it should provide 
a solid basis for a tutoring system. 

In our air-battle domain, penetrators enter an airspace with a pre- 
planned route and bombing mission. The goal of the defensive forces 
is to eliminate those penetrators. The major actors or objects in this 
setting include: 

• Penetrators. These are the primary offensive objects. They 
are assumed to enter the defensive air space with a mission 
plan and route. 

• GCIs. Ground control intercept radars detect incoming penetra- 
tors and guide fighters to intercept penetrators. 

• AW ACS.  These are airborne radars that also detect and guide. 
• SAMs. Surface-to-air missile installations have radar capabili- 

ties and fire missiles at invading penetrators. 
• Missiles.  These are objects fired by SAMs. 
• Filter Centers. They serve to integrate and interpret radar 

reports; they send their conclusions to command centers. 
• Fighter Bases. Bases are alerted by filter centers and send 

fighters out to intercept penetrators when requested to by com- 
mand centers. 

• Fighters. Fighters receive messages from their base about their 
target penetrator. They are guided to the penetrator by a radar 
that is tracking the penetrator. 

• Command Centers. These represent the top level in the 
command-and-control hierarchy. Command centers receive 
processed input about penetrators from filter centers and make 
decisions about which resource (fighter base) should be allo- 
cated to deal with a penetrator. 



•   Targets.   Targets are the objects that penetrators intend to 
eliminate. 

Figure 1 shows an example snapshot of a representative air-battle 
simulation. A complete description of the SWIRL domain can be 
found in Klahr et al. (1982). 

The objects that constitute SWIRL embed a great deal of strategic 
military knowledge in their behaviors. Behaviors are pieces of code 
associated with a particular type of object; they are invoked when an 
appropriate message is given to an object of that type. For example, 
the generic object command center has a behavior with a message pat- 
tern (penetrator monitored by >gci is hostile). The code associated 
with that pattern will be executed each time a message matching that 
pattern is given to a particular command center. A matching message 
might be (penetrator monitored by gcil is hostile), "gcil" is a particu- 
lar ground control intercept that gets "bound" to the pattern variable 

Fig. 1— A view of a typical SWIRL scenario, showing penetrators, 
GCIs, AW ACS, SAMS, filter-centers, fighter-bases, 

command-centers, and targets. 



">gci". If such a message were sent to command-centerlO, for exam- 
ple, it would invoke the strategic knowledge used to decide what action 
to take when a hostile aircraft enters its region. More generally, we 
can think of each object as a small expert system, and it is this expert 
strategic knowledge that we would like students using the tutor to 
learn. 

In the tutoring environment we developed, the students' goal is to 
learn strategic knowledge embedded in the defensive "experts" of 
SWIRL. At the very least, we expect that they will become conversant 
with the objects that compose this domain, and their capabilities. A 
second level of competence we expect from most students is that they 
become as accomplished as the experts embedded in the current 
SWIRL simulation. They should be able to make decisions that defend 
against a given configuration of incoming penetrators as effectively as 
the automated experts. We believe it is quite likely that many students 
could reach a yet higher level in our learning environment. We expect 
that they will be able to design or learn their own versions of the 
SWIRL behaviors that outperform those in the simulation. Thus, their 
learning may actually help to improve the simulation's knowledge base. 



III. DESIRED FUNCTIONALITY OF 
THE SWIRL-BASED LEARNING 

ENVIRONMENT 

In order to achieve these levels of skill our tutoring environment 
attempts to assist various processes involved in learning through prac- 
tice.  The general activities it supports include: 

• Watching SWIRL solve problems. Watching a master solve a 
decisionmaking problem is a good way to acquire some initial 
knowledge of a domain. In the context of SWIRL, a problem is 
defined as a particular scenario stipulating a configuration of 
offensive forces and defining all necessary parameters of the 
battle situation. The experts are the strategic parts of defensive 
objects such as command centers, filter centers, etc. The stu- 
dents need tools that help them quickly and accurately "see" 
what the experts are doing. Tools that help the students 
observe SWIRL in action facilitate learning by example. 

• Querying SWIRL about how it solved a problem. Watching the 
experts solve a problem becomes a much more powerful learn- 
ing tool if the students can "get inside the experts' heads" and 
see how they reasoned to an overt decision and what knowledge 
they used. To facilitate this activity, the students need tools 
that help them rapidly isolate the relevant pieces of the experts' 
knowledge.  These tools promote learning by being told. 

• Solving problems using implicit knowledge. Just looking at the 
expert's knowledge won't help the students understand how to 
apply the knowledge well. They must practice on problems of 
their own and observe the outcomes. This requires tools that 
permit the students to interface effectively with SWIRL as they 
jointly solve problems. For example, at the simplest level the 
students should be able to play the decisionmaking role of one 
or more of the SWIRL objects while the other experts remain 
automated. Tutorial facilities that assist the student in this 
activity promote learning by doing. 

• Solving problems using explicit knowledge. Students who just 
learn to play the role of the strategic decisionmakers well have 
developed good tacit or implicit knowledge of the domain, but 
learning can be more effective if the students can externalize 
their knowledge, in some symbolic formalism.   By externalizing 



their knowledge, the students simplify the processes of examin- 
ing, reasoning about, and improving their skills. In the context 
of learning military strategies, the students must be provided 
with tools that enable them to construct and test their own ver- 
sions of SWIRL behaviors that make strategic decisions. More- 
over, these tools must enable even nonprogramming students to 
write behaviors. 

• Incrementally refining knowledge. In learning through practice, 
most learning is incremental knowledge refinement. The stu- 
dents attempt to solve a sequence of problems that "stress" 
their formative knowledge. To learn from this experience the 
students then receive feedback about the consequences of their 
decisions and attempt to detect the decisions that caused the 
unacceptable results and the faulty knowledge underlying those 
decisions. Next, they should create new versions of the 
decisionmaking behaviors that try to fix the bugs in the existing 
version. They then must test these new hypotheses, repeating 
the process until they are satisfied with the performance of 
their knowledge (relative to the experts). To support these 
activities, in the context of learning military strategies, the stu- 
dents must be provided with rich graphical simulation output to 
help pinpoint particular strategic decisions that are suspect. 
They also need tools for creating and maintaining versions of 
strategic behaviors and for "going backwards" in a simulation to 
key decisionmaking points where they can try out revised ver- 
sions of behaviors. 

We view this as a guided experimental learning environment. Like 
scientists, the students are generating hypotheses (various competing 
versions of the knowledge or behavior that makes strategic decisions), 
then testing the competing hypotheses against one another (by observ- 
ing their consequences in the simulated SWIRL battlefield). This test- 
ing not only provides data by which to rank the hypotheses but may 
also suggest new hypotheses to test. Knowledge acquisition in many 
areas, not just military strategy, has this empirical generate-and-test 
character. More generally, any design activity (whether or not the 
artifact being designed is one's own knowledge) involves generate-and- 
test. Viewed one way, our environment is simply a set of tools aimed 
at supporting these common processes. 



IV.  CHANGES REQUIRED IN SWIRL AND ROSS 

In developing our automated learning environment, we expected to 
use SWIRL in several ways. We also knew we would have to add many 
of the incremental knowledge refinement tools and explanation tools 
we required for learning, but which were not needed when SWIRL was 
used just for simulation. However, we did not expect to have to change 
SWIRL; thus it came as a significant surprise when we discovered that 
not only did we have to modify SWIRL for tutoring, but that the 
changes we needed to make were to the semantic foundations of the 
ROSS object-oriented simulation language. 

In this section we describe the role of SWIRL and ROSS in contri- 
buting to the tutorial environment we developed. We begin with a dis- 
cussion of the aspects of ROSS and SWIRL that we used without 
change. Then we focus on the changes we needed to make to ROSS 
and SWIRL to make them more suitable for tutoring. It is interesting 
to note that this is not the first time tutoring has provided a "forcing 
function" causing a significant restructuring of a pre-existent expert 
system. Clancey (1982), for example, found that MYCIN, an expert 
system for medical diagnosis, had to be rewritten to provide an 
improved basis for teaching students medical diagnosis skills. We 
regard the changes we made to ROSS and SWIRL as a significant 
result of this research. We believe they are not merely useful for tutor- 
ing but should serve as a foundation for the development of improved, 
semantically more well-founded, object-oriented languages for simula- 
tion. 

WHAT SWIRL AND ROSS ALREADY PROVIDE 

SWIRL already provides some of the tools we need to support learn- 
ing through practice. First, as a simulator it provides a virtual world in 
which knowledge can be exercised and decisions made, rapidly and 
without any real, possibly dangerous, consequences. Second, the exist- 
ing SWIRL graphics, although not ideal, allow the user to obtain rela- 
tively rich descriptions of the consequences of the user's decisions, 
which can be used as a basis for diagnosing specific weaknesses in the 
user's decisionmaking. Third, because SWIRL is written in ROSS, its 
code is more modular than in other simulators. Each of the different 
real-world objects that possesses distinct decisionmaking skills is 
represented as a separate ROSS object; and the pieces of knowledge 



each uses to make different strategic decisions are in separate ROSS 
behaviors. The modularity of ROSS code has many benefits. For pur- 
poses of learning, the most important benefit is that the student will 
find it easy to make local coherent modifications to SWIRL's decision- 
making expertise. 

CHANGES IN THE ORGANIZATION OF KNOWLEDGE 
IN SWIRL 

SWIRL's representations of knowledge, while modular, do not 
reflect semantic distinctions that are critical for purposes of learning. 
Syntactically, all the parameters associated with objects are indistin- 
guishable, as are all their behaviors. However, the various object 
parameters and behaviors actually represent significantly different pro- 
perties, knowledge, and abilities of military actors. The behaviors in 
SWIRL not only include those that encode defensive decisionmaking 
expertise for achieving goals or responding to situations but also those 
that represent expertise of the opponent, those that enforce physical 
laws (e.g., the "behavior" of gravity), those that implement nonmilitary 
actions or skills (e.g., the ability to determine the Euclidian distance 
between two points on a plane), and those that implement military 
actions or skills not requiring any strategic knowledge (e.g., the ability 
of a fighter to return to base). In addition there are several SWIRL 
behaviors that are pure artifact: They are required to make the simu- 
lation run but have no interpretation in terms of any real-world object 
or behavior. 

The parameters associated with SWIRL objects have a similar diver- 
sity. In addition to those that might come under strategic decision- 
making control (e.g, the length of time a fighter should loiter before 
returning to base), there are parameters that must remain fixed 
because they reflect physical laws, or because they represent current 
technological limits, or because they are under control of the offensive 
decisionmakers alone. 

For purposes of learning, the behaviors that embed strategic 
decisionmaking knowledge in the SWIRL experts must be accessible to 
the students, and the students must be able to modify them, in order to 
create versions for those behaviors, embedding their own formative 
knowledge of how to respond to the situation described in the 
behavior's message or how to achieve the goal implied by the message. 
The students will need to "plug in" their versions in order to test their 
hypotheses and observe the consequences of their decisionmaking rules. 
Similarly, they will need to be able to modify the object parameters 
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(e.g., location) which are under their (defensive) strategic control, to be 
able to implement a full range of decisionmaking alternatives. Each 
alternative version of a piece of strategic knowledge defines a point in 
the strategy space, which the students must explore to learn military 
decisionmaking. 

By contrast certain parameters and behaviors must remain absolu- 
tely invariant; the students must not be allowed to change them, or, 
possibly, even access them. Artifactual behaviors should remain invisi- 
ble, and those that encode physical laws should not be subject to 
change. Even some behaviors for defensive objects should stay fixed; 
for example, those that encode technological limitations (e.g., the max- 
imum speed of a fighter) or those that say how nonmilitary goals 
should be accomplished (e.g., how any object would move from one 
location to another). 

Not all behaviors and parameters that may vary are strategic. In a 
powerful learning environment, in addition to creating new versions of 
behaviors, the students must test these hypotheses on a diverse set of 
problems. Good strategic knowledge is robust: It must produce accept- 
able or optimal (defensive) consequences over a wide range of initial 
configurations and offensive strategies. Thus, those behaviors and 
parameters that can vary, but are not under the control of the defen- 
sive strategists (e.g., the flight plans and possible behaviors of penetra- 
tors), must not remain fixed but should be systematically varied, either 
by the students or some tutorial component, to generate military prob- 
lems that are critical tests for the students' formative knowledge. Each 
alternative initial configuration of the world and offensive strategy 
defines a point in the problem space, which must be covered by the stu- 
dents' strategic hypotheses, to ensure their robustness. 

While both strategic and problem parameters and behaviors must 
vary, the way they are changed must be quite different. The students 
should be free to examine any point in the strategy space they wish; 
they are trying to find a best point. However, the students should not 
be free to control the selection of problems from the problem space in 
the same way. For example, they should not be allowed to consider 
only problems on which their strategies "look good." Quite the con- 
trary, selection of points from the problem space should be done by an 
"adversary" who is trying to bring out all the weakest points in the stu- 
dents' formative knowledge. An analogy with program debugging may 
be helpful. Here the goal is to design a version of a function that 
works for all possible inputs. The problem space is the set of all possi- 
ble test cases for the function. The strategy (or in this case function) 
space is the set of all possible designs for the function, most of which 
are wrong or nonoptimal.   The feedback the programmer gets is the 
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answer the current function-version gives when applied to a particular 
problem or set of inputs. To make sure his or her final version of a 
function is robust, a good programmer always makes sure that it works 
properly for special or extreme cases in the problem domain (e.g., 0, 
NIL, etc.), not just simple cases. 

In summary, the main conceptual changes we have made to the ori- 
ginal SWIRL involve differentiating several different types of 
knowledge that were originally confounded in SWIRL. When only the 
visible performance of a system is of interest, as is usually the case 
with simulations, the fidelity of its structure to the knowledge it 
models is unimportant. However, if the system is to be used for learn- 
ing, or any other purpose where the knowledge, not merely the behavior, 
of the system is to be inspected, then it is critical that the system 
represent an epistemic model of the real world, as well as a behavioral 
one. 

Reclassification of SWIRL Behaviors 

In this section we present our reclassification of the 153 SWIRL 
behaviors. Our basic strategy was to sort each behavior and parameter 
according to its "semantic" type and then to reimplement them to 
reflect this semantic analysis. The first distinction we drew was among 
behaviors that were artifacts, mundane, and strategic. Artifactual 
behaviors, which constituted a full one-third of the SWIRL code, are 
procedures needed for bookkeeping or clerical purposes, but 
corresponding to no action or computation performed by the modeled 
military objects. For example, [moving-object (check interaction of 
route from >position to >place with >radar)]J is a behavior that must 
be executed so that objects that move relative to others will be sent 
information when other objects come into their range. Of course, in 
the real world, proximity detection does not require such monitoring. 
However, proximity detection and other natural physical phenomena, 
such as the effect of gravity, cannot be modeled computationally 
without these artifactual behaviors. 

In the existing SWIRL, many artifactual behaviors were segregated 
by creating wholly artifactual objects; objects having no correspondent 
in the real world. The main such objects in SWIRL were the physicist 
(whose behaviors simulated physical phenomena such as gravity), the 
mathematician (who did complex mathematical computations), and the 
scheduler (who took care of various interobject effects).   The creation 

'In this report, behaviors of objects will be designated by the following syntax: 
[<object name> (<behavior pattern>)]. 
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of these objects was an attempt to hide artifactual behaviors. In reor- 
ganizing SWIRL, we chose a different strategy to hide them. We reas- 
sociated the artifactual behaviors with the objects that performed them 
but defined them explicitly to be artifactual. While ROSS uses a single 
form to define all behaviors, (ask <object> when receiving <message> 
<behavior specification:^, we now use several different behavior- 
definition forms, depending on the behavior's semantic type. For 
example: 

(defaux (moving-object (xheck-interaction position place radar)) 
<code>) 

is the way to define an artifactual or "auxiliary" behavior for the 
above-mentioned SWIRL behavior. By using "defaux" we communi- 
cate to the tutor that the behavior being defined is of no interest to the 
student and should never be mentioned during learning. 

In classifying the remaining SWIRL behaviors, we discovered that 
while many contained important strategic knowledge, which we wanted 
to feature during tutoring, others encoded basic skills that were 
required by the objects to perform intelligently but that did not encode 
expert military knowledge. For example [moving-object (new position 
after traveling from >position at >velocity for >time)] is a basic 
mathematical skill that any moving object, not just a military one, 
needs in order to estimate its future position, given its current state. 
We declare a behavior to be such a basic skill using "defbasic"; for 
example, 

(defbasic (moving-object (:new-position-after position velocity time)) 
<code>) 

would be the way to state that the above ability to project future loca- 
tions is a basic computational skill. When a behavior is declared as a 
basic skill, the tutor knows that the student is permitted to observe the 
behavior but is not permitted to change or experiment with the 
behavior. Basic behaviors can be further classified into two subgroups: 
those that achieve computational goals, such as the skill above, and 
those that perform actions to achieve a goal, for example, [missile 
(chase >object to >position)]. 

Finally, the remaining SWIRL behaviors each encode at least some 
important expert knowledge about military strategy. Those behaviors 
associated with defensive objects contribute to the definition of the 
strategy space. It is these behaviors that the student can change and 
experiment with to learn about military strategy. Behaviors that are 
associated  with  offensive  objects  (the  penetrator)  help  define  the 
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problem space. Like basic behaviors, true strategic behaviors also 
divide into those that accomplish computational goals (e.g., 
[command-center (determine which of >bases is nearest >penetrator)]) 
and those that perform real actions (e.g., [fighter (engage >penetra- 
tor)]). In addition, it is possible for behaviors to have both an artifac- 
tual component and a strategic or basic one. For example: 

(defbehavior (radar (:out-range penetrator)) 
"Sent by the environment when a penetrator exits a radar's coverage area. 

Only received if the radar is active, not saturated, and not ecmed by the 
penetrator.  First the radar stops tracking the penetrator, then it notifies 
its filter center that the penetrator is out of range.  Finally it tries to 
find new radars to guide each of the fighters it is currently guiding." 

(when (send self ^tracking penetrator) 
(--> self ':stop-tracking penetrator) 
(==> (send self ':filter-center) 'filter-center ':out-range self penetrator) 
(dolist (fighter (send self ':fighters-guided)) 

(—> self ':try-to-change-guider fighter penetrator)))) 

;;; When a penetrator moves out of radar range several clean up details are 
;;; necessary. First, if the penetrator was not seen by the radar (ecm, or 
;;; saturation), the penetrator must be removed from certain lists.  Second, if 
;;; the penetrator was being tracked, then the radar may no longer be saturated, 
;;; so possibly send a new in range message. This is done by foo. 
(defaux (radar (:out-range penetrator)) 

(cond ((memq penetrator (send self ':ecm-list)) 
(send self ':remove-from-ecm-list penetrator)) 
((memq penetrator (send foo ':saturation-list self)) 
(send foo ':remove-from-saturation-list penetrator)) 

(t 
(send self ':unsaturated)))) 

As the above behaviors illustrate, there is often a significant 
"cleanup" accompanying a "real" action. By permitting auxiliary 
methods to be associated with true behaviors, we provide a way of 
organizing artifactual information, without confounding it with real 
knowledge and strategy. 

Several points become apparent on examination of these messages. 
First, there is no discrete separation of these behaviors and the previ- 
ous domain-independent behaviors for accomplishing goals. Some of 
the behaviors grouped here are only weakly specific to the military 
domain (e.g., [penetrator (make a turn >n degrees >direction)]), while 
others are much more specialized (e.g., [fighter (return to base)]). 
Similarly, the behaviors grade from those that encode expertise about 
how   to   achieve   quite   mundane   military   goals   to   those   whose 
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achievement might be sufficiently complex to actually include some 
strategic decisionmaking knowledge. 

We applied an operational criterion to determine which command 
behaviors we would consider as mundane and those we would consider 
strategic. If it was possible to consider more than one way to accom- 
plish the goal (even though SWIRL embeds only one alternative) in a 
behavior's message, we classified the behavior as strategic. It is pre- 
cisely the action goals for which you can perceive alternate solution 
means that must embed important strategic knowledge, attempting to 
justify the selected alternative. Goals that appear to have only one 
acceptable means of solution, on the other hand, need not contain any 
important decisionmaking knowledge. Alternative actions, and stra- 
tegic knowledge for selecting one of the actions, go hand in hand. 

Reclassification of SWIRL Parameters 

The 102 parameters of generic SWIRL objects, like their behaviors, 
have subtly different meanings not distinguished in the original simula- 
tion. As with behaviors, these differences in semantics parallel differ- 
ences in how the parameters may change and can be manipulated in 
learning. Some must be respected as constants that cannot be changed 
across simulation runs, others are variables that may take on different 
values for different simulations, and still others will take on many 
values in a single simulation. Thus, they should be divided into several 
classes for purposes of constructing an effective learning environment. 

Like behaviors, many object parameters are purely artifactual. They 
do not represent a real property or state of a military object, rather, 
they usually are used for simulation bookkeeping. For example, 
[moving-object (time 0.0) ]2 is a parameter kept by all moving objects to 
remember when they last updated their position. But such "updating" 
is never really done by objects as they move. 

The remaining SWIRL parameters are real, but fall into several dif- 
ferent classes. First, many parameters encode technological limitations 
on the current capabilities of existing military hardware (e.g., [fighter 
(max-speed 710.0)]). Whether these should be regarded as parameters 
under control of the learner depends on how you define the learning 
task. If you want to use SWIRL to learn what the effect of a faster 
fighter might be (or a radar with a bigger range, etc.), you might desig- 
nate some of these parameters as variables, not constants. We 
regarded   technological   limitations   as   unchangeable,   hence   these 

2In this report, parameters of objects will be designated by the following syntax: 
[<object name> {<parameter name>)]. 
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parameters will be considered as constant, though this would be easy to 
change. 

A similar set of parameters describe properties of objects that are 
usually equally constant, but not because of technical limits, but 
because of historical constraints. For example, the location of a filter 
center is fixed once it is built. Determining which objects are immobile 
enough to have constant positions is not simple. For example, we 
assume, somewhat arbitrarily, that SAM sites are mobile; hence their 
property parameter is variable and subject to strategic control. 

Strategic parameters represent those properties of defensive objects 
that are both variable and under the control of strategic decisionmak- 
ing. These are the only parameters that the students are permitted to 
manipulate. They thus help define the strategy space they are explor- 
ing. Most of the strategic parameters encode decisions about how to 
configure the command and communication network for the defense by 
specifying which objects are permitted to send information to which 
others. For example, [command-center (fighter-bases)] stores a list of 
fighter bases controlled by a given command center. Other strategic 
parameters encode strategic policies that may be subject to change; for 
example, [fighter-base (alert-duration 1000)] determines how long a 
fighter-base remains alert, after being sent an alert message by its com- 
mand center. 

Again, deciding which parameters should be strategic is not straight- 
forward. We have adopted the general assumption that the defensive 
communications network is subject to some variability and that stra- 
tegic decisionmaking knowledge may be used to define specific net- 
works within this limited range of variability. Thus, for example, even 
though the location of a filter center will be regarded as fixed across 
SWIRL simulations, the particular command center associated with it 
may change between simulations, reflecting alternative command 
hierarchies. 

There is one final set of defensive parameters, which, like strategic 
parameters, may vary. We refer to these as dependent parameters, as 
they typically refer to aspects of the current state of an object (e.g., 
[fighter (position nil)]), which are changing in time as a side-effect of 
some behavior (e.g., the fighter is attempting to intercept a penetrator). 
While such parameters change in value, within a given simulation as 
well as between simulations, they are obviously not under strategic 
control. 

Examination of SWIRL's dependent parameters uncovered a whole 
class of strategic parameters that SWIRL did not make explicit. The 
[sam (missiles 6)], for example, parameter is really used for two dis- 
tinct purposes in SWIRL:  to set an initial default number of missiles 
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for any SAM site and to remember how many missiles a particular 
SAM site has left. There is a clear distinction between these two 
notions, since the initial number of missiles a SAM has could easily be 
varied strategically, while the number of missiles remaining is a depen- 
dent parameter. The modified SWIRL we use for our learning 
environment has separate parameters for both semantic roles. 

To record the different semantic role of each of the SWIRL parame- 
ters, we require that a descriptive keyword accompany the declaration 
of each object parameter declared when the object was created. Each 
parameter must be declared to be of type artifact, technological, histor- 
ical, dependent, or strategic. To illustrate, we present the full defini- 
tion of the object "fighter": 

(defclass fighter (moving-object simulation-object graphic-object) 
((max-speed 710) 
(position nil 

(:type dependent)) 
(range 10 

(:type technological 
xonstraint (lambda (x) (fixp x)))) 

(win-probability 0.0 
(:type technological 
xonstraint (lambda (x) (and (floatp x) (<= x 1.0))) 
:documentation "Probability that a fighter beats a penetrator in an 

engagement.")) 
(lose-probability 1.0 

(:type dependent 
initially (lambda (obj) (- 1.0 (send obj ':win-probability))) 
:documentation "Probability that a penetrator beats a fighter in an 

engagement.")) 
(guide-time 40 

(:type technological 
xonstraint (lambda (x) (fixp x)) 
rdocumentation "Time it takes a fighter to get a guidance request to 

its radar.")) 
(initial-amount-of-fuel 6000 

(:type technological 
xonstraint (lambda (x) (fixp x)) 
:documentation "Amount of fuel a fighter starts off with.")) 

(mpg 0.55 
(:type technological 
xonstraint (lambda (x) (fixp x)) 
:documentation "How fast a fighter uses its fuel.")) 

(base nil 
(:type historic 
xonstraint (lambda (x) (typep x 'fighter-base)) 
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:documentation "The unique fighter base associated with a fighter.")) 
(initial-number-of-missiles 6 

(:type resource 
xonstraint (lambda (x) (fixp x)) 
:documentation "The number of missiles a fighter begins with.")) 

(fuel nil 
(:type dependent 
:initially (lambda (obj) (send obj ':initial-amount-of-fuel)) 
:documentation "The amount of fuel a fighter has remaining.")) 

(missiles nil 
(:type dependent 
initially (lambda (obj) (send obj ':initial-number-of-missiles)) 
:documentation "The number of missiles the fighter currently has.")) 

(penetrators-pursued nil 
(:type dependent 
:documentation "The list of penetrators the fighter is pursuing.")) 

(gci nil 
(:type dependent 
documentation "The gci guiding the fighter.")) 

(status nil) 
(print-char "J"))) 

CHANGES IN THE SIMULATION PRIMITIVES OF ROSS 

While our first set of changes to ROSS suggest a reorganization of 
the semantics of objects' behaviors, the second set of changes imply 
even more profound conceptual alterations to the ROSS object-oriented 
language, as applied to simulations. Object-oriented languages are 
thought to be a natural formalism for expressing simulations because 
computational message transmissions have a natural interpretation in 
terms of real-world message transmissions. For example, a seemingly 
reasonable way to model a transmission of a message from a gci to its 
filter center, concerning an approaching penetrator, might be to say 
(send filter-center1':in-range penetrator3). The exact meaning of this 
message depends on the semantics of "send." In simulations, "send" 
has the following intuitive semantics: 

(send <object> <message>) The message <message> is 
given to <object> at the current simulation time, t, <object> 
does arbitrary computation (in response to the message), then 
returns a value, at time t. Then the sending object resumes 
computation, in possession of the return value, still at simula- 
tion time t. 
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In other words, "send" has the semantics of a standard lisp function 
call. 

This semantics for "send" forces an interpretation of (send filter- 
center! ':in-range penetrator3), which is suspect in several respects. 
First, the computational message transmission requires no simulation 
time, hence we must interpret the modeled physical message transmis- 
sion as requiring no real time. This may be inappropriate, since we 
may want our physical transmissions to have arbitrary costs in terms 
of time. To model this we need a computational primitive that can 
make mention of changing simulation time. Second, when a computa- 
tional message is sent by an object, it must wait for a return value, 
then proceed. However, objects sending physical messages merely send 
them, and may wait for nothing. If the object to which the message is 
sent wishes to reply, the original object may acquire information, but 
this is clearly distinct from waiting for a function call to return. For 
example, the sending object may do arbitrary computations while wait- 
ing for a reply. 

The Semantics of Physical Message Transmissions 

Since "send" may be inadequate to model physical message 
transmissions, letting it retain its traditional semantics, we defined a 
new simulation primitive with the semantics we want for sending real 
messages. The primitive "**>" has the following semantic interpreta- 
tion: 

(**> <object> <message name> <time> . <args> ) = The 
message <message name> with arguments <args> arrives at 
<object> at t, where t is the current simulation time + 
<time>. The sending object (self) is free to do arbitrary com- 
putations between the current simulation time and t. 

The time involved in such messages is usually dictated by a technologi- 
cal parameter of an object that dictates how long communications take. 
Adopting the convention that such times are accessed by the form 
(send self ':communication-time) permits us to define a derivative 
simulation operator: 

(==> <object> <message name> . <args>)   - 
(**> <object> <message name> (send self ':communication-time) . <args>) 

We typically use "==>" in preference to "**>" since it produces 
cleaner and more readable code. 
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Below we list the behavior radars execute when they learn that a 
hostile penetrator is in their radar range: 

(defbehavior (radar (:in-range penetrator)) 
"When a radar first sees a penetrator enter its range, it begins 
tracking it, notifies its filter center, and notifies its fighter- 
base.  Transmissions with these other objects requires a fixed 
communication-time." 
(send self ':start-tracking penetrator) 
(==>   (send self ':filter-center) ':in-range) 
(==>  (send self ':fighter-base) ':activate)) 

Unlike the original SWIRL version of this behavior, our version exe- 
cutes according to the natural interpretation. Simultaneous message 
transmissions (with respect to simulation time) are sent to the filter 
center and fighter base. Also at the same time, the radar will begin 
tracking the penetrator. However, as desired, the (modeled) physical 
message transmissions will not reach the (modeled) objects for a speci- 
fied amount of (modeled) time. 

Semantics of Actions and Mental Message Transmissions 

The above behavior still has a semantic anomoly, unfortunately. 
The form (send self ':start-tracking penetrator) will cause tracking to 
begin immediately. However, while initiating tracking is not an exter- 
nal message transmission that requires time to arrive, it can be 
regarded as an internal computation that may require time to execute. 
Using "send" implies it is a timeless action. Thus, in addition to "**>" 
and "==>", we introduce another new simulation primitive, "—>". 
"~~>" is intended to model the execution of actions that take time to 
accomplish, in contrast to "**>", which models actions (communica- 
tions between objects) that, for the sender, are essentially instantane- 
ous actions but take time to arrive at the receiver. The actions to 
which we refer may include any activity of an object that requires time, 
either "mental" actions (e.g., [fighter (determine which of >fighters is 
nearest >penetrator)]) or "physical" ones (e.g., [fighter (scramble some 
fighters guided by >gci to penetrator)]).   The precise semantics of 

(~~> <object> <message name> <time> . <args>) = The 
message <message> and its arguments <args> arrive at 
<object> at simulation time t, where t is <time> + the current 
simulation time. The sending object (self) is blocked from any 
other computation until t. 
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Assuming <object> is self (since —> is used to model internal 
actions, and **> is used for external message transmissions), the main 
difference between ~~> and **> is that after **>, the sending object, 
self, is free to perform other computations, while "~~>" blocks self 
from doing anything else. Internal actions must be done serially. 

The time involved in such messages is usually dictated by a techno- 
logical parameter of an object that dictates how long certain kinds of 
activities take to accomplish. Adopting the convention that such times 
are accessed by the form (send self ':<action>-required-time) permits 
us to define a derivative simulation operator: 

(—> <object> <message name> . <args>) = (—> <object> 
<message name> (send self ':<message-name>-required-time) . 
<args>) 

We generally use "-->" in preference to "—>" because it produces 
cleaner, more readable code.  Here is an example of "—>" in use: 

(defbehavior (sam (:fire-at penetrator)) 
"To fire at a penetrator, if a sam is already alert it begins 
shooting at once.  Otherwise, it must first prepare for the penetrator, 
then begin shooting." 
(if (memq penetrator (send self ':expected-penetrators)) 

then 
(-->   self ':shoot-missiles penetrator) 
else 
(—>  self ':prepare-for penetrator) 
(—>  self ':shoot-missiles penetrator))) 

In this behavior, we model major internal message transmissions that 
require time (:prepare-for, and :shoot-missiles) in terms of — >, which 
permits such delays. Note simple internal accesses (e.g., :expected- 
penetrators) are still modeled using send implying a 0 time require- 
ment. If we had used "==>" instead, both transmissions in the "else" 
clause being executed simultaneously, yet, clearly, preparation must 
precede shooting. 

In rewriting SWIRL, most uses of "send" were replaced by one of 
the new simulation primitives described above. They result in code 
that is much clearer in its semantic intent and relatively devoid of the 
ad hoc and opaque techniques that the original ROSS used to delay 
message transmissions, simulating actions that require time. We 
recommend use of the primitives in the development of any future 
object-oriented simulation language that is built on ROSS. 



V. LEARNING AND TUTORING TOOLS 

Having completed a discussion of how SWIRL and ROSS needed to 
be modified to support learning, we turn now to a discussion of the 
facilities we have added to ROSS and SWIRL. The learning that these 
tools support, at the most general level, can be considered as a 
generate-and-test cycle. The cycle divides into: (i) deciding what stra- 
tegic idea the student wants to examine or test, (ii) establishing what 
the military problem or scenario will be, (iii) producing the basic 
results using ROSS, and (iv) analyzing the results to determine inade- 
quacies of current beliefs and to provide a basis for improving them. 
Below, we discuss each of these activities and mention the kinds of 
tools our learning environment offers to support them. 

TOOLS TO HELP ESTABLISH A STRATEGIC IDEA 
TO TEST 

To generate a testable strategy, the students must select values for 
all strategic (defensive) parameters and must define all strategic 
behaviors. Then, they must combine the strategy with the constant 
defensive behaviors and parameters (the behaviors embedding artifac- 
tual, nonmilitary, or basic military knowledge, and the parameters 
encoding artifactual, technological, and historic properties). In this 
way, they form a complete defensive configuration, which specifies all 
defensive instance objects required for an executable simulation. 

Of course, it would take a prohibitively long time for the students to 
construct such configurations from scratch, even assuming that all 
parameters and behaviors that are nonstrategic are "inherited" and do 
not ever need to be mentioned by the students. Fortunately, there is 
no reason the students should have to construct configurations from 
scratch. They are usually interested only in testing out an idea that 
involves changing one or two parameters or behaviors in the whole 
configuration.  Every other parameter and behavior can stay as it was. 

The Strategy Net 

We facilitate this incremental exploration of strategies by enabling 
the students to create whole new defensive configurations by editing 
previous ones, creating alternative versions. All defensive configuration 
versions are  maintained in a strategy net.   Each node in the net 
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represents a complete defensive configuration, and an arc represents a 
successor relationship between two configurations. A node may have 
several successors, each representing a distinct variation on its prede- 
cessor. Strategy nodes and the strategy nets for encoding versions of 
behaviors and parameters bear an interesting relationship to contexts 
and layers, used to represent design alternatives in the PIE program- 
ming environment (Goldstein and Bobrow, 1980). 

Although each node specifies a complete defensive configuration—a 
value for all strategic parameters and behaviors—it does not actually 
store all this information. We need only to store the changes from its 
predecessor explicitly. When the configuration is actually used, we 
simply inherit all behaviors as needed, searching all the way back to 
the "root" configuration to find the nonstrategic parameters and 
behaviors, which need to be stored only once, for use by all strategic 
nodes. Thus while a complete defensive configuration includes a large 
amount of information, remembering a full configuration requires 
surprisingly little storage. 

To create a new defensive configuration the students simply say 
(create-strategy <predecessor strategy> <new strategy>) and then 
begin to edit the new strategy, which is now linked into the strategy 
net. The nature of the editing differs, depending on whether the stu- 
dents want to make a change in strategic parameters or behaviors. 
Changing behaviors requires some programming on the part of stu- 
dents, but the students need little experience as Lisp or ROSS pro- 
grammers, because we have replaced the notion of programming with 
that of making small, simple, and highly constrained modifications to 
parameter values and stylized, English-like, code. At most, the stu- 
dents need to write a few lines of ROSS. Even this effort may not be 
necessary to create new versions. The students are encouraged to 
"graft" from one version to another. In particular, they can take 
behavior definitions in one strategy and create a variant of another 
strategy that uses this definition but retains all other characteristics of 
the second strategy. 

To illustrate these techniques for creating and editing defensive con- 
figurations, below we show an example of a student creating two new 
defensive configurations to test out a couple of strategic ideas. (Student 
responses are in bold, system output in standard font, and comments 
are indented in italics). 

(create-strategy Fighter-loiter-strategy Vanilla-strategy) 
Fighter-loiter-strategy 

First the student establishes the new strategy.   It 
is spawned from  "Vanilla-strategy",   the default 



23 

strategy provided initially by the tutoring environ- 
ment. 

(print-strategy-behavior Fighter-loiter-strategy (fighter :engage penetrator)) 
(defbehavior (fighter (:engage penetrator)) 

"Sent by the fighter to itself.  The fighter first uses its radar to confirm the 
presence of the penetrator.  If present, it informs its radar, then engages the 
penetrator in an endgame skirmish.   If it is not there it simply returns to base.' 
(cond ((--> self ':is-in-range penetrator self) 

(==> (send self ':gci) 'gci ':sited self penetrator) 
(--> self ':endgame penetrator)) 

(t (--> self ':return-to-base)))) 
The  student  sees   that  at present   if a fighter 
doesn't see  a penetrator  when  it expects  to  it 
immediately returns to base. 

(defbehavior (fighter Oengage penetrator)) 
"Sent by the fighter to itself. The fighter first uses its radar to confirm the 

presence of the penetrator.  If present, it informs its radar, then engages the 
penetrator in an endgame skirmish.  If it is not there the fighter waits around 
for 10 minutes before it returns to base." 
(cond ((--> self ':is-in-range penetrator self) 

(==> (send self ':gci) 'gci :sited self penetrator) 
(--> self :endgame penetrator)) 

(t (--> self loiter-for 10) 
(--> self ':return-to-base)))) 

[Fighter-loiter-strategy (fighter :engage)] 
Now the student changes the behavior so that the 
fighter waits in place for ten minutes before 
returning to base, assuming the loiter behavior 
already exists. Note that the call to "defbehavior" 
isn't global; it modifies the behavior relative to the 
offensive configuration currently being defined. 

<Student tests out the Fighter-loiter-strategy^ 

(create-strategy Loiter-and-change-bases-strategy Change-bases-strategy) 
Loiter-and-change-bases-strategy 

The student begins investigating another strategy 
that is going to build on two previous ones. In a 
strategy examined earlier, the Change-bases- 
strategy, after engaging a penetrator, fighters 
returned to the nearest base, not necessarily its 
original one. Now the student wants to see the 
behavior of a compound strategy that includes that 
idea and the idea of fighters loitering. 

(defbehavior (fighter (tengage penetrator)) 
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{use Fighter-loiter-strategy}) 
[Loiter-and-change-bases-strategy (fighter :engage)] 

To combine the Fighter-loiter-strategy into the 
new strategy, all the user has to do is graft in the 
relevant behavior. No new programming is 
needed. 

Graphical Definition of Strategic Parameters 

Editing of strategic parameter values is even easier than editing 
strategic behaviors. Instead of editing through programmatic changes, 
the students edit through interactive modification of the graphical 
display of the objects in the defensive configuration. Once a defensive 
configuration has been created, it can be graphically examined by say- 
ing (display-strategy <strategy name>). This will display an image like 
that shown in Figure 2. Each of the objects in the configuration is 
represented by an appropriately placed graphical icon. The icons can 
be examined and modified several ways, and each change will be 
reflected in actual changes to the program data structures associated 
with the icon. Thus, the students program graphically. 

Several types of changes are permitted, depending on which object 
parameters are subject to strategic variation. First, mobile objects (i.e., 
objects whose position parameter is of type :strategic, not :historic) can 
be moved by clicking on their icon with the mouse, "dragging" them to 
another location, and then releasing the mouse button. Second, new 
objects can be added to the configuration by selecting an object type 
from a pop-up menu that will place a new object of the selected type at 
the current location of the mouse. Figure 2 shows an example of a stu- 
dent interactively creating an instance of a filter center in this fashion. 
Finally, the command and communication network for the configura- 
tion can be modified by changing the graphical connections among 
icons. In Figure 3, the student has created and displayed a (partial) 
communication network among the defensive objects. Connections are 
created by drawing lines between the "communication ports" of pairs of 
objects. For example, to connect a fighter base with a filter center, one 
draws a line between the "FC port" of the fighter base, and the 
"FBASES port" of the filter center. In Figure 3, the fighter base has 
been connected to the filter center to the south of it. To change the 
communication network so that the fighter base communicates with 
the filter center to the north, the student merely has to connect the 
"FC port" of the fighter base (to which the student is now pointing) to 
the appropriate port of the new filter center. 
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riLTEfrCENTW 
COMMAND-CENTER 

FIGHTER-BASE 
TARGET 

(save-uindou  Ssuirl-frane*   *suindou4.bin*)Z 

Live Uindou 3 

Fig- 2—An example of interactive scenario creation. The student is 
creating a new instance of a filter-center at the specified location. 
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(saue-uindou tsuirl-frane* 'sulndou5.bin* )■ 

Live Uindou 3 

Click 1 
is one 
Click r 
Done. 

Fig. 3—An example of interactive modification of the communication 
network. The student has displayed the current network and can 
change it by mousing on the appropriate "communication ports" 

of the objects. 
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Historical and Evaluative Information in Strategy Nodes 

The techniques we have discussed for editing configurations make 
the strategy net a powerful tool for exploring a wide variety of different 
strategic ideas. However we also annotate strategy nodes with several 
other pieces of information that make them even more valuable for 
learning. The main slots associated with each node are: 

• Wins. A list of offensive configurations and strategies that this 
defensive configuration defeated, in the judgment of the stu- 
dents. 

• Loses. A list of offensive configurations and strategies that this 
defensive configuration was defeated by, in the judgment of the 
students. 

• History. A time-ordered list of the offensive configurations and 
strategies that were tested against this offensive configuration. 

While rudimentary, these slots represent a first attempt at associat- 
ing evaluative and historical information with strategy nodes that can 
be useful in assisting the students in answering several important types 
of questions. Using these slots (and perhaps more sophisticated vari- 
ants of them) we are attempting to help the student answer questions 
like: "What is the most recently tested hypothesis (strategy)?" 
"Where did this hypothesis succeed?" "Where did it fail?" "Why did 
it fail on this problem?" "What is the best hypothesis I have con- 
sidered to date?" "What variations have I already considered on this 
hypothesis?" "Have I ever tried this hypothesis before?" "Why didn't 
I like it?" The role of these questions is not to do the learning for the 
students; rather, the questions take care of bookkeeping for them and 
reduce their cognitive load so they can concentrate solely on generating 
effective new hypotheses and understanding why old ones failed. Like 
most of the tools we propose, it is a learning aid, even though not an 
active learning guide. 

TOOLS TO HELP ESTABLISH A PROBLEM 

After the students have established a strategy to test, by invoking an 
existing one or creating a new one, the students next need to establish 
a problem to test a particular strategic behavior or idea they have. The 
goal is to learn about the effectiveness of the strategic idea by choosing 
specific problems that stress it, making it show its important negative 
and positive behavioral characteristics. Thus, picking problems at ran- 
dom is not likely to teach them anything. In addition, they must have a 
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good overall plan for picking questions. They must pick a diverse set 
of questions to test all aspects of their strategy, not just a redundant 
set that all test the same aspect. The students must perform a kind of 
sensitivity analysis to determine the robustness of their knowledge. 
Speaking generally, the students need tools both to create problems 
easily and to select problems intelligently. 

The Problem Net and Graphical Definition of Offensive 
Parameters 

In establishing a problem, the students must stipulate all behaviors 
and parameters of offensive objects (parameters) to establish a com- 
plete offensive configuration. Collectively, the problem and the strategy 
configurations compose an initial simulation state, which can be sub- 
mitted to the ROSS simulator. The task of creating an offensive confi- 
guration is simplified by the same considerations that eased the task of 
creating a defensive configuration. First, the students do not need to 
stipulate all offensive behaviors and parameters, only problem parame- 
ters and offensive strategic behaviors must be defined. Second, to 
define or modify offensive behaviors, we generalized the version editing 
facility, described above, to work for penetrators, thus defining a prob- 
lem net analogous to the strategy net. Similarly, we extended our 
graphical facility for specifying defensive parameters to permit the 
interactive stipulation of offensive parameters. The offensive parame- 
ters subject to variation include, deciding how many penetrators will 
attack, deciding their flight plans or the routes they will take, deciding 
when they will begin flying, deciding what their targets will be, and 
deciding their "payload." 

Figure 4 shows how students can specify the position of incoming 
penetrators and "draw" their flight plans on the screen. First the stu- 
dents click a mouse button on the penetrator. This causes a pop-up 
menu to be displayed. It is important to note that the items in the 
menu are not the same for each type of object; rather they are com- 
puted dynamically depending on the object type and its current state. 
For example, since the object is a penetrator, one option is to make its 
flight plan. The menu popped-up for a fighter base would not have 
this option. Once the students have selected the "Make flight plan" 
option, to define the route they merely lay down a series of points. As 
with defensive parameters, these graphical actions are translated into 
program data structures that are stored in the problem node currently 
being defined. 

We found that using the graphical interactive facility to define 
offensive   and   defensive   configurations,   students   could   construct 
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Fig. 4—An example of interactive creation of penetrator flight 
plans. The student can create a route by selecting the turning 

points with a mouse. 
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problems or defenses at least 10 times faster than they could by pro- 
gramming. One reason was that it was not only easier to construct the 
objects graphically, but that problems created graphically were much 
more likely to be just what the students wanted than those created pro- 
grammatically. For example, programmatic specifications typically did 
not locate objects in the desired locations the first time through. The 
students often had to modify the specification, then show it graphically 
several times, before it was as expected. 

Historical and Evaluative Information in the Problem Net 

Also as with strategy nodes, additional slots associated with each 
problem node help annotate it and can greatly facilitate learning. The 
slots we now support for this purpose include: 

• Wins. A list of defensive configurations and strategies that this 
offensive configuration defeated, in the judgment of the stu- 
dents. 

• Loses. A list of defensive configurations and strategies that this 
offensive configuration was defeated by, in the judgment of the 
students. 

• History. A time-ordered list of the defensive configurations and 
strategies that were tested against this defensive configuration. 

These slots, and more sophisticated versions of them, we may con- 
sider in the future are useful for answering such questions as: "What 
is the most recently used problem?" "Where (which strategies) did this 
problem beat?" "Which beat it?" "Why did it lose (or win)?" 
"What is the toughest problem I have considered to date?" "Have I 
ever posed this problem before?" 

Simple Automated Problem Selection Aids 

These facilities help the students create a variety of interesting 
problems to test their strategic ideas, but they do not help ensure that 
the problem the students establish is a good one; that is, one that will 
stress their strategic idea. While choosing good problems is, in general, 
a very difficult problem, we provide two aids that can help in this 
regard. There are some simple rules that students should adhere to, 
when testing a new strategy, to constrain the selection of problems. 
First, the strategy should be monotonic improving: It should accom- 
plish all the problems on which its immediate predecessors did well. 
Second, it should pass the critical problems at which its predecessors 
failed and were the reasons for its creation.   We provide queries that 
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will retrieve problems that fall into both of these categories. Thus, if 
the students say (find-recent-problems 10), the tutor will return the 
names of the last 10 offensive configurations tested; and if they say 
(find-killer-problems 5), it will return the last 5 problems that the stu- 
dents placed in the Loses slot of any defensive configuration. In the 
future, many more sophisticated queries of this type may be considered. 
For example, it would not be hard to get the system to pose the most 
difficult questions to the students (i.e., ones with the most strategies in 
its Wins slot or to propose a diverse set (i.e., problems with nonover- 
lapping sets of strategies in its Wins slot). 

TOOLS TO GENERATE RESULTS 

Once the students have defined a hypothesis and chosen a critical 
test for it, the test must be applied to produce some data by which to 
judge the value of the hypothesis. In the context of simulation, the 
generation of basic results is straightforward. One simply submits the 
initial simulation configuration to the simulator. The ROSS simulator 
is analogous to a theorem prover; it mechanically produces results 
given an initial set of premises. The inferences or results a simulator 
produces are of a particular kind. They are time-indexed events, where 
an event is any change of value of a dependent ROSS object parame- 
ter.1 For example, a fighter's change of direction from S to SE results 
in a change of several of its dependent variables (e.g., velocity) and 
constitutes a basic event computed by the ROSS simulator. The stu- 
dents may let the simulator continue computing results until some 
natural termination state is reached (no dependent variable changes for 
two successive time steps), or they may interrupt the simulator at any 
point to obtain more information about the simulation path than the 
simulator yields by default. 

TOOLS TO UNDERSTAND THE RESULTS 
OF A SIMULATION 

From a learner's point of view, understanding a simulation does not 
merely mean seeing what events happened, it involves a deeper 
analysis of why they happened. The need to understand why overt 
results happened is common to virtually all types of learning through 
practice.   Unfortunately, achieving such an understanding is often a 

actually, some artifactual parameters are involved too, but they should never be of 
interest to the students. 
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difficult task; hence, automated supports to aid in this activity are 
highly desirable. 

To understand why overt events occurred, the learner attempts to 
reconstruct the causes of the events. In generating a simulation, the 
students (with the assistance of the simulator) used their strategic 
knowledge to make particular decisions, which gave rise to visible 
results. In understanding the causes of the visible events, the students 
try to reverse this flow. They must infer the decisions responsible for 
the result and then attempt to determine the knowledge underlying the 
decisions. This causal understanding, alone, serves as an appropriate 
basis for incrementally modifying one's knowledge in an intelligent 
way. 

In SWIRL, graphical output provides an excellent display of all 
overt events; however, we augment these graphic capabilities with 
several tools to help analyze and remember their causes. These include 
an extended break and snapshot facility, tools for browsing and viewing 
objects and their behaviors, and a facility for remembering analyses 
and experiments. We discuss each of these in turn. 

An Extended Break and Snapshot Facility 

As the students watch a particular simulation progress graphically, 
they may see an event that was unexpected or interesting. We have 
provided a "break package" that lets them understand these events 
more completely. The break package is particularly useful because it 
permits the students to interrupt the simulation as soon as the anomo- 
lous event is detected. This is crucial because if the students have to 
wait until the simulation terminates, they will probably forget where 
they wanted to return to. 

The students will usually try to stop the simulation at the point 
where they first perceive overt events that influence their currently 
tested strategy. However, examination of that simulation state may 
convince them that the real events of interest happened in prior states. 
It would therefore be highly desirable to allow the students to back up 
the simulation to arbitrary states and allow them to apply the above 
analytic tools there. To enable such backtracking, we maintain a com- 
plete state history of the simulation. The state history records suffi- 
cient information to regenerate the simulated world at any past simula- 
tion time. 

The history comprises a series of simulation snapshots—one for each 
discrete time step in the simulation. A snapshot encodes all the 
parameter values of all simulation objects. Fortunately, storing such 
snapshots does not require as much space (and time) as one might 
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think. The simulation state at a given time is completely characterized 
by just the dependent parameter values of objects that changed during 
a given simulation time-step. All nondependent parameter values are 
completely constant and so can be garnered from the initial simulation 
state. All unchanged dependent parameter values can be inferred from 
previous simulation snapshots. 

While our snapshot facility is now operational, the backtracking 
facility based on it is still under development. Fortunately, however, 
the ability to retain simulation snapshots has proved useful in several 
additional ways that we exploit, even now. Snapshots that are 
critical—showing some undesirable consequences of a tested strategy— 
may embed problems that the students should invoke again. Assume, 
for example, that the students isolate a past state at which their 
strategy made a questionable decision. If they then modify a behavior 
to represent a new strategy, the obvious first test would be to ask: 
"Will the new version produce better results at the point where the pre- 
vious one failed? In such cases it is not cost effective to have to redo 
the simulation from the initial state, on the initial problem. Rather, it 
is better to define the new problem to be the offensive configuration at 
its current state. 

A Facility for Viewing Behaviors and Parameters 

Once the students have isolated the message transmissions causing 
an event, they may wish to view the associated behavior. We have 
developed a powerful browsing facility that enables the students to 
examine dynamically the objects that constitute a simulation, along 
with their associated behaviors and parameters. The facility takes no 
programming skill to learn and use. In Figure 5, the student is curious 
as to how the penetrator evaded his or her defenses. The student 
begins his analysis of the causes of this event by exposing the com- 
munication network around the area of interest. The student then 
proceeds to probe the state of the nearby objects, beginning with the 
filter center. Each of the objects on the screen is mouse sensitive, and 
one of the options associated with all objects is "Describe instance" 
(see the menu in Figure 4). When the student selects this option for 
the filter center of interest, a window pops up with a textual descrip- 
tion of that instance. As Figure 5 shows, items in this window are 
themselves mouse-sensitive and can be described in more detail. Here, 
the student clicks on the attribute "COMPUTING-DELAY" and 
receives documentation on the meaning of this attribute. 

The fact that virtually all items in the environment are mouse- 
sensitive permits the student to obtain arbitrarily deep descriptions of 



34 

HFILIEP-CQ1TER 14441645» 

REPORTIMC-DELRV 7a 

HLtMllNU-UELFW 68 
conrmno-CEMTER KCONHflMD-CENTER 14445323 > 
FIGHTER-BASES (ivFlCHTER-eflSe  I444l?46>) 
BW IUL 
BCIS (K6CI  144*14«*) 
PENCTRflTORS NIL 
lHlfCS-IO-00 NIL 
POSITION (2BB   .  364) 
ST MUS ACTIVE 

FILTER-CENTER 

r« « filter 6«nt«r  t*xes  to pr«o«r« to ctafand «satnat  * pen 

vtndoul   *au1r?-fr*r 

Ll»p  Ll«t«ner   2 

C'-le«   l«ft  an tr>* connun on sort  you wtan to connect 

Fig. 5—An example of the dynamic browser.  The student is inspecting 
the information associated with a specific filter-center. 

objects and to tailor the information received easily to the student's 
level of skill, interest, and current analytic goals. It is difficult to con- 
vey the full power of this dynamic facility in static text, but Figure 6 
hints at the analytic possibilities. Here, the student continues to 
browse the knowledge associated with the filter center instance, hoping 
to understand why the penetrator successfully evaded his or her 
defenses. Having examined that particular filter center, the student 
then proceeded to examine the parameters and rules associated with 
the generic filter center (in the partially hidden window above the win- 
dow describing the filter center instance). Next the student selected 
one of the behavior names associated with the generic filter center, and 
a large  window popped up  showing the  code  that a filter center 
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Fig. 6—A further example of the dynamic browser. The student has 
now examined the knowledge associated with the generic filter-center, 

including a specific behavior.  Parts of the behavior are mouse- 
sensitive and subject to further description and browsing. 

executes when told that a penetrator has entered its radar range. 
Again items in this window are mouse-sensitive and can be probed. In 
this regard, the student has already requested a textual description of 
the behavior, essential for novice programmers. The student is now 
about to the select the item ":DEFEND-AGAINST". This will cause a 
new window to pop up that shows the code associated with this 
behavior. In this way, the student can easily trace the program logic, 
examining initial behaviors, and, in turn, the behaviors called by them. 
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A Facility for Remembering Analyses 

Having invested the time to learn why a simulation yielded certain 
results, the students should be able to cache their understanding, 
minimizing the chance that they will waste time exploring this part of 
the space again in the future. An experiment history records all the 
students experiments. Each experiment in the history is an association 
between a strategy used, a problem it was tested on, and a set of 
results. The results may be described in several ways: (i) lists of 
specific simulation events the students judged to be good or bad, or, 
possibly, a snapshot of the complete simulation state embedding those 
states; (ii) an overall success or failing rating for the experiment; (iii) 
arbitrary textual comments or annotations by the learner; and (iv) a 
list of specific causes. The specific causes are pointers to the (stra- 
tegic) behavior versions that the student discovered to be the causes of 
the good/bad simulation events. 

These various tools for understanding the results of a simulation, of 
course, can be used by the students to see how the SWIRL strategic 
experts solved various problems, as well as to see why their strategies 
did or did not work. They are tools that help them understand their 
own decisions better, but they also enable them to "get inside the 
experts' heads." 



VI.  CONCLUSIONS 

This report has discussed a tutoring or learning environment using a 
modified version of an object-oriented simulation called SWIRL. In 
this final section, we review what we believe are some of the main les- 
sons we have drawn from this research. 

IMPROVING OBJECT-ORIENTED SIMULATION 
LANGUAGES 

We have found that several fundamental changes needed to be made 
both to SWIRL and the underlying ROSS language in order to produce 
a simulation that could provide a solid foundation for exploration and 
learning. The first set of changes involved a large-scale reclassification 
of SWIRL behaviors and parameters. Now, instead of one category for 
all behaviors, we have three: artifactual, basic, and true behaviors. 
Similarly, instead of one class for all parameters, we have five: artifac- 
tual, technological, historical, dependent, and strategic. 

These classifications represent more than just a refinement of exist- 
ing object-oriented programming concepts. The notion of a behavior or 
object parameter carries with it no specific semantic intent, while our 
finer classifications imply distinct meanings. Consequently, imposing 
them on an object-oriented language would be a mistake. If the 
language is not being used for specific simulation purposes, these clas- 
sifications probably would not conform to a natural semantic decompo- 
sition of the subject matter. However, if your intent is instead to 
design a special purpose language for constructing a particular class of 
simulations, then it would be reasonable to consider embedding our 
constructs directly in the language. 

We envision an environment in which users cannot define unspeci- 
fied object types, behaviors, or parameters, but instead must build 
specifications in terms of our specific kinds of behaviors and object 
properties. Such a language would have benefits beyond ensuring that 
the simulations constructed were semantically reasonable. For exam- 
ple, one problem that plagues many current military simulations is the 
issue of updating and graphical displays. Object parameters cannot be 
changed continuously, even though the real-world property they 
represent may be continuous. Thus, at a given simulation time, some 
attributes may be out of date. This becomes an issue when the state of 
the simulation is displayed (or observed in any way by the user). If the 
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graphical output routines simply display current object parameters 
values, the image produced may be inaccurate. To solve this problem, 
the users typically have to write their own special-case routines that 
update all relevant parameters just prior to graphical display. Many 
simulations written at RAND (e.g., Klahr et al., 1982; Klahr et al., 
1984) employ this technique. 

A main problem with this solution is that a new updating routine 
has to be written for every simulation, and it is thus not transparent to 
the user. However, our classification of parameter types provides the 
basis for a more elegant solution. Since not all object parameters need 
to be updated prior to display, if the simulation itself knew which 
parameters to update it could automatically take care of this task, and 
the entire procedure could be hidden from the user. Indeed, automatic 
updating for graphical updating could become a language feature. 

The current refined categorization of object parameters facilitates 
this automation. Of the five classes or parameters, only dependent 
ones (e.g., position, fuel) might need updating before graphical display. 
Technological and historical parameters remain constant across simu- 
lations, strategic parameters stay constant within a simulation, and 
artifactual ones may change but are, by definition, irrelevant to the 
display. Thus, our categorization of object parameters provides just the 
right basis for determining which parameters to access before graphical 
updating. All that remains to automate updating completely is to tell 
the system where to find procedures that compute updated values of 
each dependent parameter. Such procedures are written by users 
already. They do not have to write them just for updating purposes, 
they merely declare their names to the simulation language.1 

IMPROVED PRIMITIVES FOR OBJECT-ORIENTED 
SIMULATION LANGUAGES 

A second aspect of the current work that should influence the design 
of future object-oriented programming languages involves the new 
simulation primitives proposed in Section IV. In our work, the opera- 
tors "==>" and "-->" were essentially imposed on an existing language, 
not built into the language's foundations. Consequently, although we 
expect these primitives will prove useful in improving the semantic 
clarity of programs, we have no extensive data to substantiate this con- 
jecture. We believe that "==>" and "-->" should be examined more 

Recently, an automatic updating algorithm along these lines has been independently 
implemented at RAND by S. Cammarata, B. Gates, and J. Rothenberg. 
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thoroughly in the context of a new object-oriented simulation language 
that includes them as language primitives. 

We are not suggesting that the usual language primitives for mes- 
sage transmission (e.g., "send" in zetalisp, or "ask" or "tell" in ROSS) 
be eliminated. All the primitives should be available to the program- 
mer; however, each should be restricted to its appropriate role. To sum- 
marize the roles suggested in Section IV, "send" (or its equivalents) 
should be used to represent only those computations that are message 
transmissions in a strictly metaphorical sense. Calls to "send" do not 
properly represent any real-world activity that requires time to execute. 
In effect, "send" should not be considered as a primitive for modeling 
at all. For purposes of simulation, it has a semantics identical to that 
of a simple function call. 

If "send" is reduced to a function call, then all the burden of model- 
ing shifts to "==>" and "->". In our research, "==>" was introduced 
to model the interobject transmission of information across some com- 
munication channel, and "-->" denoted any intraobject computation or 
action. While these primitives have proved adequate for our purposes, 
it is likely that alternate and better formulations can be discovered. 

Viewed one way, we are not just constructing general programming 
operators but stipulating primitives in a theory of action. Our simple 
theory of action says that people are capable of mental actions, physi- 
cal actions, and communication actions. Are there other basic kinds of 
actions? Or, within our gross classifcations, should we make further 
conceptual distinctions and reflect them in more refined language 
primitives? We will not attempt to answer these questions here. Our 
intent is simply to point out that much more sophisticated philosophi- 
cal theories of action exist (e.g., Goldman, 1986) and that a promising 
course of research might be to extend the work we have begun here by 
consulting these sources. 

DISTRIBUTED SIMULATION AND THE TIME WARP 
MECHANISM 

To conclude this section we mention a benefit of our new language 
primitives that was unforseen when they were designed and that has 
nothing directly to do with improving the fidelity of object-oriented 
simulations. An attempt is being made at RAND (Burdorf and Marti, 
1987) to implement a general scheme for distributing object-oriented 
simulations among many processors, in order to speed up execution. 
At the heart of this research is the Time Warp mechanism (Jefferson 
and Sowizral, 1982).  This research has discovered that object-oriented 
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simulations written in traditional languages, such as ROSS or Flavors 
(Weintraub and Moon, 1982), will not run properly in a distributed 
Time Warp environment. To execute correctly and efficiently in paral- 
lel, simulations must be written in a way that clearly distinguishes true 
message passing between simulation objects from "pseudo" message 
transmissions, or instantaneous intraobject computations. It appears 
that the primitives "==>" and "-->", when differentiated from "send", 
provide just the right basis for simulations that conform to this con- 
straint. Work needs to be done to confirm this conjecture. 

PASSIVE EXPLORATORY TOOLS AND ACTIVE 
TUTORING PROGRAMS 

The system we have developed might be called a set of tools to aid 
learning rather than an automated tutor. Our aids are tools in the 
sense that they are facilities used by students when needed; they are 
not imposed by an external agent. We prefer to think of the present 
system as a bona fide tutoring environment but make the distinction 
between passive tutors, of which this is an instance, and active tutors. 

Whether a tutoring system is active or passive is more a matter of 
degree than an absolute classification. Roughly, tutoring systems are 
active to the extent that they control the tasks on which students 
work, determine the pace of interaction, and offer unsolicited feedback 
on student performance. Typical active tutors include most computer- 
aided instruction (CAI) programs (Smith, 1981), as well as some intelli- 
gent tutoring systems (e.g., Anderson 1984; Sleeman and Brown, 1982). 
A step less active are systems like GUIDON (Clancey, 1979; Clancey, 
1982), WEST (Burton and Brown, 1982), and the RAND algebra tutor 
(McArthur, Stasz, Hotta, 1987). In contrast to active tutors, the dia- 
logue in these systems is under mixed-initative control. For example, 
in the RAND algebra tutor, the tutor controls the initiative by choos- 
ing the next question for the students. On the other hand, the stu- 
dents control the interaction within a question, requesting various sorts 
of information when they want it, not when the tutor deems it neces- 
sary. 

In exploratory learning environments, virtually all the control 
resides with the learner. Generally, exploratory environments provide 
students with a "virtual world," in which models of entities can be con- 
structed, tested, and modified. For example, STEAMER (Hollan and 
Hutchins, 1982) presents the students with a world of components for 
building simple hydraulic artifacts (e.g., a pump). The students' job is 
to construct computer-models of working units and to use various 
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display facilities STEAMER provides to arrive at an understanding of 
how they work. In SOPHIE (Brown, Burton, and de Kleer, 1982), the 
students understand computer models of simple electronic circuits in 
an exploratory "lab." 

Not every computer-based virtual world is necessarily a good learn- 
ing environment. Our work underscores several general features that 
appear important in facilitating learning in exploratory environments. 
To conclude, we discuss some important properties related to the capa- 
city for model building that the environment should provide. 

First, it must be easy for the learner to construct a wide range of 
models to examine. In our tutoring environment, we permitted stu- 
dents to create easily a large number of strategic models by combining 
behaviors from different models into new ones. Of course, not all 
models can be created by combining old ones. Until now, to generate a 
full range of models, the students needed to use a general programming 
language. However, programming may be a slow and error-prone 
method of creating new models. One important area for future research 
is to devise new methods for creating models that approach the gen- 
erality of a programming language while maintaining the ease of the 
simple combination strategy we have provided here. 

Second, the models constructed must be inspectable. An inspectable 
model is one that is semantically faithful (at some level of granularity) 
to the real-world entity being modeled. They contrast with "black- 
box" models (Brown, Burton, and de Kleer, 1982), so called because 
only their gross input-output characteristics mirror the real world. 
Inspectable models are crucial to learning and tutoring in many areas, 
because they permit the students to examine model components and 
understand the reasons for the model's overall behavior. Many impor- 
tant learning and tutoring aids depend on inspectability. For example, 
explanation facilities (e.g., Davis, 1978) for systems are effective only 
to the extent that they can access detailed traces of the system's per- 
formance that represent real-world processes. Viewed in this light, our 
reorganization of object behaviors and parameters, as well as the use of 
the "==>" and "-->" primitives, are an attempt to ensure the inspecta- 
bility of models constructed using object-oriented languages. 

Finally, the learners must have tools that help them control explora- 
tion. Giving students the ability to construct a wide range of models to 
test carries a potential cost: They may explore many uninteresting 
parts of the large space of possible models. One of the attractions of 
active tutors is that the tutor circumscribes wasteful student searches. 
However, in the near future, we cannot envision intelligent tutors 
clever enough to control search in areas as complex as military strategy 
automatically. Consequently a major research goal should be to inves- 
tigate ways to help the students effectively control search themselves. 
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In our research we have begun to address this issue by providing the 
students with facilities for remembering, annotating, and easily access- 
ing past experiments (Section V). However, much more work along 
these lines remains to be done. 
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