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9 Target Strength: An Overview of Some Recent Theoretical Developments

a Leopold B. Felsen
Department of Electrical Engineering and Computer Science/Weber Research Institute

Polytechnic University, Route 110, Farmingdale, MY 11735 UqA

I. Introduction

With the increasing availability of short pulse sources of electromagnetic energy, targets can be sub-

1jected to broadband illumination, which gives rise in the returned signal to a rich variety of phenomena

not encountered under time-harmonic or narrow-hand conditions. Some recent theoretical developments that

seek to cope with, and take advantage of, the resulting enhanced flexibility for target assessment and
classification are sumarized here. Basically, the techniques to be described seek to manipulate wave
spectra in such a manner as to yield compact observable spectral objects with significant physical content.
These compact spectral objects are then employed to interpret synthetic or real transient scattering re-

turns and relate distinctive features in these returns to distinctive features of the target giving rise
to them. Depending on whether the structural information content is local or global, the respective wave

o.4bj ects characterizing them are (Progressing) wavefroots and (oscillatory) resonances, rhe transient ana-
og of ray fields and modal fields under time-harmonic conditions Evanescent spectra, which are trans-
ported along complex rays, are often found to be important in this \ocess and should he included in the
catalog of relevant spectral events. Having learned bow to interpret classify, and thereby parameterioe.

scattering data from known structures, one may attempt to use such a p~raneterization for reconstruction
of unknown target features from given scattering data.

Emphasis will be on phenomena at high and moderate frequencies, for which the relevant wavelengths
are much smaller than or comparable with, but not appreciably larger than, characteristic length scales in
the scatterer. It is in these parametric regions where wave transport phenomena play an essential role.
High frequency waves can be localized around the ray trajectories of the gemoetrical theory of diffraction
(CTD), which thereby serves to chart and classify the progression of wavefronts. The reader is assumed to
be familiar with 1, TD and its uniform refinements to account for transtti, aol effects in various diffrac-

tion environments; a compilation of representative articles may be found in til, and the techniques have
been included In a number of texts [21 and handbooks [31 dealing with high freauencv wave principles and
applications. The oscillatory modal and resonance fields are global descriptors of a propagation or
scattering environment, and thereby organize the overall wave process in an entirely different was. In
the transient domain, the resonance formulation has become known within the framework of the Singularity
Expansion Method (SEM) (for a representative set of articles see [4,51). The connection between these two
fundamental and physically meaningful building blocks for wave field synthesis in progressine or oscili-
tory form [61 has recently been elucidated in a bilateral and quantitative manner 7R1, thus orantine,
insight into how these compact spectral objects are generated by alternative spectral contractions from .
wave spectral continuum. These aspects will be covered in subsequent lectures in this series. lhe pre-

sentation below begins with the wavefront-resonance interplay. and then passes on to appliatios and ex-

amples illustrating various aspects of the theery.

II. Wavefront-Resonance Description

1hen the high-frequency methodology of CTTD is transformed Into tie time domain [9], each r.tv des-

cribes the trajectory of a wavefront, and the time domain analog of the rav field vielids the trans ent
field at and near the wavefront arrival time. k'hile these results are adequate for the transient res-
ponse within a narrow time window surrounding each wavefront arrival, they fail when the received sio nal
is monitored over a longer time interval that includes late observation times for earls arrivals. F-.o if
the field associated with each wavefront were described correctly for all subsequent time%, the multipli-
city of arrivals makes resolution of individual events nonfeasible, and thereby defeats the virtue of using

these arrivals as identifiers of distinct scattering centers. It is then mere appropriate to seek an aI-
terotive description that deals with the multiple wavefronts in a collective manner. This is provided hv
ths target resonances of SEM which express the free oscillations of the entire structure. In fact. texical
synthetic or actually measured broadband signatures of targets reveal fairly distinct replicas of the in-
put pulse in the early time nortion but more smoothed out oscillations at later times, Indicative of the

predominance of wavefronts and resonances, respectively.

The wavefront-resonance complementarity and duality has been expressed In a ystematitc and self-on-
sistent format the provides flexibility of interpretation of direct scattering data [71 and efficient
parameterization of such data for inversion to extract target characteristics 110,1. A dist tl ton is
made between early (intrinsic) wavefront events that cannot he phenomenological Is, absorhed within the
resonance structure (although a purely formal but physically awkward scheme of such incorporation can be
implementdd [12,131). and subsequent (nonintrinsic) wavefront events that can bL embedded within the res-
onances In a physically meaningful manner. The intrinsic events arise from the first scattered response
before the incident signal has had time to traverse the entire scattering object: because these responses
contain no knowledge of the actual total target shape, their incorporation Into descriptors, like resonances,
that do depend on the total shape is nonphysical and mav lead to errors. . itla the SP' format, the
intrinsic wavefronts can be identified with the "intrinsic entire function" 171. The nonintrinsic events
correspond to subsequent arrivals after the entire object has been excited. While these wavefronts con
be treated meaningfully in collective form, it may he more efficient and physically incisive to retain the
first few intact and only convert into resonances those that remain 14,151: see also 161. Delaving the
onset of the resonance description weakens the strength of the resonances and pushes their regime to lower

frequencies, thereby limiting their significantly contributing number. Where to switch poses a tradeoff
that is problem dependent but it is important to observe that by the self-consistent wavefront-resonance
scheme (7.14,151, all combinations are correct although they may have different convergence properties.
Typically, for low-O scatterers, the resonances are highly damped and may actually he avoided altogether

because all the essential signature features can be explained with a few wavefronts. For high-() scatter-

ers, especially those with penetrable low-loss interior, the resonances can he distinct, strong, and play
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a major role at later times: here, it may even be desirable to revert to the resonance description after

isolating the intrinsic wavefroats only.

To illustrate these observations, we consider electromagnetic plane pulse scattering by the perfectly

conducting flat strip in Fig. l(a) [17,181, which, even for H-polarization, represents a low-Q target.

The GTD generated results for Impulsive plane wave scattering are shown in Figs. l(b)-l(d). Evidently,

the failure of ,TD at later times (low frequency spectral components) makes the method inapplicable for

this type of Input pulse but the results reveal nevertheless the internal consistency of the wavefront-

resonance algorithm, including its hybrid form (Fig. 1(d)). When the chosen pulse spectrum is bandlimited

with a low frequency cutoff, the high-frequency algorithm does become quantitatively accurate 1181

(Fig. 1(e)). The resonances are now weakened substantially and the enrtre "resonant" structure can, in

fact, be duplicated by only a few savefront events, as indicated. For E-polarization (acoustically soft

case), the resonance contributicon is so small in this case [181 as to mitigate altogether against its util-

ity as a descriptor of target responses.

It has been mentioned earlier that GTD generated transient fields are applicable only for short time

intervals after arrival of the wavefront transported along a particular ray. However, it is noteworthy

that the complex resonance frequencies generated by collective treatment of the ITD arrivals (Fig. I(f))

are remarkably accurate (Fig. l(g)), even at the low frequency end, which is most relevant for late obser-

vation times. This feature has been confirmed in a number of other investigations of simple target

shapes (19,201. Thus, it is suggestive that the CITD machinery can be exploited to determine the resonance

frequency map also for more complicated shapes, although the resonant fields may be strongly in error.

TII. Concave-Convex Boundary Shapes: Complex Spectra

Ray fields incident on the concave portion of a convex-concave exterior boundary of a target are gen-

erally focused after reflection. When the scattered field is observed on the shadow side of the caustic

confining this focused ray family, the corresponding evanescent fields have usually been ignored. Yet,

numerical experiments on plane wave scattering from perfectly reflecting shapes of this kind have revealed

certain features in the scattered signal shape that appear to originate near the concave-to-convex inflec-

tion point 1211 and, yet, are neither conventional specularly reflected nor diffracted events (diffraction
would require a point of non-analyticity on the surface contour but the postulated surface function is com-
pletely analytic). Analysis shows that the anomalous features can be attributed to specular reflection of
complex incident r fields from the com e analtic extension of the obstacle boundary [221 (Fig. 2).
Thus, specular reflection, when generalized to include both real and complex rays, can explain signatures
arising from the illuminated portion of smooth targets of arbitrary shape. Creeping waves, which account
for contributions from the nonilluminated portion, may also undergo complex reflection when encountering
convex-concave surface deviations [231 (Fig. 2).

IV. fxterior-lnterior Coupling

When a target is penetrable or grants access through an opening to an interior that can trap ener.v,
the reradiation from the enhanced interior fields at their resonance frequencies can strongly affect the
scattered signal. For idealized models such as plane stratified layers and radially stratified dielctri,
cylinders and spheres, an exact analysis can be performed by separation of variables, and the sointion :st
In .a form, from which one man extract the various ran-optical and resonant wave coostituents that are use-
fill for interpretation and classification in the high and mid-freyilency range [24,241. In some of thes,
configurations, the layers may possess elastic properties (26,271. Open-ended semi-infinite or terminatcd
thin-walled waveuides in plane parallel, circular or elliptic geometry likewise form useful prototypes
for testing hypotheses pertaining to edge diffraction coupline Into, and snbsequent radiation from, an
elongated enclosure 128). By expressing the results obtained from these canonical building blocks in in-
variant form tailored to a particular wave event, one may Invoke the principle of locality, which Is oper-
ative at high freqencies, to construct approximate theories applicable under more general conditions. In
this endeavor, it is important to effect the modification in terms of wave phenomena that remain stable
under perturbation from an idealized shape. For ran events. the analysis can be based on the general
machinery of CT) and its uniformized modifications. for resonant and strongiy guided fields, one man em-
ploy modal ray procedures [R], local (adiabatic) modes 1291, intrinsic modes 130), boundary laver [311.
parabolic equat ion 1321, and perttirbat ion methods to describe body modes and resonances occupying essen-
tially the entire volume, whispering gallery modes and resonances confined to a layer near a concave bound-
are surface, or beam-type modes and resonances trapped ho focusing between opposite concave boundarv seg-
ments. Studies of configuratIons even with small pertnirhations frim an ideal i-ed model are isefil becauu
wave type degeneracies that usualiv occur in sttinglv svmetric prottves re hroken thereb . Under-
standing wavefront and resonance behavior individually, one may then attempt to combine them within tile
hybrid format as for impenetrable structures. So far, this has been accomplishel only for the simplest
prototpeAs.

Perturhing structures in the interior of smooth enclostires cagils conpl ing tetween the empty cavity
wave fields, in addition to introducing signatures of their own. Here, hybrid approaches combining ray
(wavefront) and mode (resonance) descriptions can be expected to he partictularln useful to characterize
the mtltipliciltv of interaction mechanisms, which are predicted hy numerical exneriment ;a in [3I,
In a physically transparent and nimerically tractable manner. Numerical modelite for a compact interior
scatterer, combined with a boundary integral equation approach, provides another type of hybrid option for
coupline the wavefields due to a confined striucture to the global configurotion of the enclosine shell.
Evidently, the "best" approach is problem dependent, and mich carefulIv posed analvtical and numerical
modeling is required to sort out even the dominant effects that influence the signnal scattered from a
composite target with interior struicture. When certain parts of an interior are highly disorganized, they
may be better treated as a statistical ensemble. This requires combining statistical measures (averages)
of a random wave field with deterministic guiding and scattering events 134,251, a discipline that is only
beginning to be explored at present. For an interior of moderate complexitn that permits construction of

numerical programs for multiple reflected, refracted and diffracted ran traiectorties, ray shooting algor-
Ithms, which cover the interior with rays, can provide much insight concerning the strong field (dense ravs
near caustics) and weak field domains. Ray shooting is widely used in seismic exploration j3b) and, by
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associating it with dynamic ray tracing and Gaussian beam methods 1371, can provide some quantitative in-formation about field strengths, although much remains to be done to render these methods truly predictive.
Some attempts have already been made to transfer this approach to electromagnetics and underwater acoustics134,351.

Figure 3 provides a numerical generated set of data [331 that illustrate how the interior of a high-C-cavity backed aperture influences the target signature. For analytical modeling, one may employ conventional(including edge diffracted) ray tracing or ray-mode coupling introduced by the edge discontinuities, Theray-to-mode coupling can be calculated either by collective treatment of multiple reflected and diffractedrays, or (often more conveniently) by establishing on the obstacle surface or cavity aperture an initialphysical optics distribution determined from the incident signal, and evaluating the modal excitation co-efficients from this prescribed excitation. This requires knowledge of the complete mode structure, i.e.,
the Green's function, of the interior. Examples may be found in [40,411. Typically, the most stronglyexcited modes or resonances in a highly overmoded system are those whose modal ray congruences have direc-tions near the ones produced by the incident ray family. Radiation due to the resonant modal fields, ormodal fields reflected from the cavity end and(or) interior structures, can be treated by considerationsof reciprocity. These considerations may also help toward an understanding of anomalous phenomena ex-
hibited by the computed data in Fig. 3.

V. Matching the Interrogating Signal to the Target

Having gained an understanding of the wave mechanisms that are instrumental in producing the scatteredfield from a target of given size, shape and composition, an important question is whether input signalscan be constructed that Interrogate this target in such a manner as to produce a unique response for class-
ification and identification. Evidently. such a scheme will have to depend on the manner in which thetarget signature is parametrized, i.e., on the basic waveforms that are assumed to synthesize the response.One approach, based on the resonance spectrum, seeks to shape an input pulse so as to eliminate severalor all of the complex resonances from the late time response [42,43). Since each target has, in principle,
a unique aspect-independent set of resonances, illumination by its own matched input signal will producepredetermined features in the response that distinguish it from a "wrong" target. Some model analytical,numerical and physical experIments, which have been conducted, reveal that this scheme may merit furtherexploratinn. The late-time restriction is imposed to assure that the resonances (and not the wavefronts)do indeed dominate the scattered response, and that the number of resonances is not excessively large.However, the delayed onset of observations reduces the excitation strengths of the resonances, therebyleaving inadequate information content for low-() structures. This limitation is removed for high-structures if the incident signal level is sufficiently high to produce a distinctive response. The latetime regime also deemphasizes the high-frequency resonances, thereby blurring local target features infavor of global structural effects. Local features are best identified by wavefronts whose arrival times,if they can be resolved, give a firm indication of where on the scatterer the response originates. Thisis the early time regime which, generally, also contains most of the pulse energy. It may be conjecturedthat the most effective interrogation will utilize both the early and late time returns parametrized,respectively, in terms of wavefronts and resonances, which may be embodied self-consistently, in any com-
bination, via the hybrid wavefront-resonance formalism.

VT. 'Summarv

This brief review, has focused on some recent developments and trends in the theorv of t.trget scatter-
in- and classification, with the Intent of setting the tone for the presentatiions tiat follow. Sub-
sequent talks deal with foundations of the theory and with applications.
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Fig. 1 Far zone transient plane wave scattering by a perfectly reflecting flat strip of width d [17. Ii].
All numerical results are for electromagnetic H-polarization (acoustically rigid), incidence anole
* 0 = 450, observation angle 0- -45,d =20m, observation distance -3km.

a) Physical configuration, ray trajectories, and ray species. o and are cylindrical coordinates
centered at an edge. Relevant rays are specularly reflected (OR, shaded region) and edge
diffracted (PA B, existing everywhere). SBi,r are incident and reflected ray shadow boun-
daries. Ray species j =1 to 4 group diffracted wave processes according to their excitation
(downgoing ray) and emission (upgoing ray) points.

b) Diffracted wave front contributions Ul n(t) in ray species j = (excitation and departure at
edge A), for impulsive plane wave inciAence. N denotes the number of edge interactions as
depicted below each arrow, which locates the diffracted wavefront arrival time at the ob-
server. Other ray species behave similarly. -- : individual GTD diffracted wave fields:
_: sum of all diffracted wave fields (note the predominance of the n = I contribution and

the successive weakening of the others): A : sum of SEM resonances (for this low-O struc-
ture, the resonances furnish only a small slowly convergent correction whose inclusion, how-
ever, restores complete agreement with the ray field sum): ,: continuous spectrum (arises
for two-dimensional (infinitely extended) scatterers, but not for three-dimensional spatially
confined targets: this spectrum Is almost entirely equivalent to the diffracted ray sin):
x: ( -+A). The numbers next to A show how many resonances had to he included to stabilize
their sum to within 1% error. Due to the low-frequency inadequacy of CTD, the results divcre
at later times. Nevertheless, the formulations by either wavefronts or resonances plus on-
tinuous spectrum agree.

c) Total scattered field (all species 1= to 4 plus primary diffracted (intrinsic) cntrihuti-s
01.3 arising from single scattering at edges A and B, respectively). Same low frequency de-
fects as in Fig. l(b). Legend as in Fig. l(b). Crosses denote sum of resonances plus con-
tinuous spectrum.

d) Hybrid wavefront-resonance formulation (species j =1). where Ul I is kept intact and where
the collective treatment is initiated at n =2 with 111,2. LegenJ as in Fig. 1(b) and 1(c).
SEM contributions are now much weaker but more rapidly convergent.

e) Incident plane wave with band-limited raised cosine time dependence Instead of the impulse.
All other parameters and notations as in Fig. 1(b) except that diffracted wave fields are
denoted by U

1
[n and 11 , and the observation distance Is lkn. Low frequency cutoff of puse

spectrum now repairs 3efects of lTD analysis, and the total ITD results shown [18] agree cr--
pletely with the solution from an exact eigenfunction expansion [441. The resonances are
weakened substantially, and the entire "resonant" structure can, in fact, be duplicated bv
only a few wavefront events, as indicated. For E-polarization, the resonance contribution is
so small as to mitigate altogether against Its utility as a descriptor of target response.

f) Resonance generation mechanism by self-consistent closure of multiple edge diffracted fields
[451. Resonance condition requires equality of fully established diffracted fields after each
full cycle around the object. Ray closure condition: PID BPD AP0 = I(PIDBPDA) where Pa =0-5,
are propagation functions, and DA.DIB signify edge diffraction: C is an arbitrary reference
point. Possible partial closure paths: P2P5 :PP3:P1sPy:P3P 5. Each such path generates a
corresponding partial resonance condition. For a strip, there is multiple degeneracy. and
P 2 P= 5 PqIP,1 ,P3P1 ,With DA = DB= D. For example. P2P9 , accounts for partial resonances due to
the lower surtace contour between the cdges Ill.

g) Dominant (first layer) complex resonance frequencies (OEM poles) ym In complex V =kd plane.
A symmetrical set In the third quadrant Is not shown. x: CTD construction [451. .:
numerical, by method of moments [461, Agreement is excellent, even for the lowest fre-
quency resonance y2 . For higher order layers, see [45]. There is also a continuous spectrum
along the negative imaginary axis, due to the two-dimenslonality of the problem. The
corresponding branch cut is not shown.

Fig. 2 Plane wave far field back-scattering by a perfectly reflecting deformed cylinder with surface sin-
usoidal contour r() -a(l-O.2cosf), where P and n are cylindrical coordinates. Incidence and ob-
servation angle a -1) - r/3. Numerical results are for electromagnetic H-polarization [21,221.

a) Physical configuration, ray trajectories and reflection points for backscattering. SR and
(SR)c denote real and complex specular reflection points, respectively, for the incident field.
They can be found either from direct complex ray tracing or from a physical optics analysis
with subsequent stationary phase evaluation of the surface integral containing the physical
optics induced surface fields over the directly illuminated portion. Real and complex sta-
tionary phase points locate real and complex ray reflection points, respectively. Real inci-
dent and reflected ray trajectories are shown solid, while complex ray trajectories are shown
shaded. The complex rays are reflected specularly from the complex extension of the
scatterer surface. The depiction of the complex ray trajecotres and reflection points should
be regarded as symbolic, located in a complex coordinate space. Diffraction effects are des-
cribed by creeping waves which circumnavigate the obstacle along trajectories marked C. Like
the incident rays, creeping rays can be reflected from complex reflection points RI. The
creeping rays progress In both directions around the obstacle, Only the counterclockwise
creeping ray C is shown: the clockwise arrow accounts for the reflection from RC.

b) Real incident rays reflected specularly from the concave portion between inflections points.
A two-branched caustic is formed by these rays which do not reach the observer in the back-
scatterer direction of Fig. 2(a). Such an observer, who is situated In the shadow region of
this system, is reached by an evsnesent wave "tunneled" across the caustic. The tunneled ray
can alternatively be regarded as a complex ray reflected specularly from the complex extension
of the obstacle. Its contribution as in Fig. 2(a) becomes weaker as the observer moves further
into the shadow.
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Time-harmonic transfer function (normalized back-scattering cross section) H(ka) con-
tributed by directly illuminated portion of the scatterer, as a function of frequency 1221.
k = w/c is the incident wavenumber, exp(-iaWt) is the suppressed time dependence, and c is

the wave propagation speed in the medium. Dashed curve: numerical integration of physical

optics (PO) integral over illuminated portion: this serves as the reference solution. Solid

curve: ray solution with real and complex contributions from the specular points (SR) and

(SR), given by

H(ka) IsR = O.741exp(-i2.21 ka)

H(ka)(R =0.608-iO.250exp(-il.24ka-.125 ka)

Their sum, through interference, generates the oscillations in the transfer function. The
transfer function for the unperturbed cylinder r= a is constant. The ray solution is seen

to agree well with the reference solution for ka >2.

d) Pulsed plane wave used f r transient calculation. Pulse shape: g(t) =d Dd
3
f(t)/dt),

f(t) = (-t/ro)l/
2
exp[-(6t/o)l, r 

2
a/c. D is a normalization constant. The pulse spectrum

deemphasizes low frequencies, thereby making ray theory applicable.

e) Back-scattered transient response obtained by frequency inversion of time-harmonic solution
in Fig. 

2
(c) convolved with the pulse spectrum in Fig. 2(d), with inclusion of creeping wave

effects 123). Arrival times of various ray field contributions along the trajectories de-
picted in Fig. 2(a) have been identified by arrows, with (t/T) =0 for the lB (central zero

crossing) chosen as a reference. Each arrival is seen to contribute an identifiable feature

(zero or maximum) to the signal shape. The insert shows a fourfold mangification of the

weak C and BC portion. Dashed curve: reference solution by numerical integration of coupled

mode code. Solid curve: real and complex ray contributions.

Fig. 3 Time-harmonic normalized electromagnetic back-scattering cross section for perfectly reflecting

thin-walled open sphere with radius a 
=
1 perforated by a circular aperture with polar angle

oap = 10%. without and with interior loading by a concentric dielectric sphere having dielectric
constant , =3 and radius b =0.3 [331. The incident field is a plane wave along the axis of

symmetry. The closed sphere exterior resonance response (not shown) is a smooth curve with de-
creasing oscillations around ka 1. For kal)3, the solid curve for the perforated sphere, as

plotted in the figure, agrees essentially with that for the closed sphere. At higher (ka) values,
access to the interior produces some background distortion and superimposes a series of spikes,

whose (ka) locations are slightly lower than those corresponding to the interior resonances of
the closed empty sphere. Addtn% the concentric dielectrTit sphere (dashed curve) does not sub-
stantially affect the empty sphere response over the plotted (ka) interval but shifts the
resonance spikes. Thus, the spikes contain information about the interior configuration.
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Keller's geometrical theory of diffraction (GTn) represents a major breakthrough in solving a wide
c variety of electromagnetic (EM) radiation and scattering problems at high frequencies. In particular, the

GT is an extension of geometrical optics to include a class of diffracted rays via a generalization of
Fermat's principle. These diffracted rays are initiated, for example, from geometrical and electrical
discontinuities in a scatterer, or from points of grazing incidence on smooth convex parts of the
scattering surface. However, being a purely ray optical theory, the original Gil fails within the
transition regions adjacent to geometric optical shadow boundaries where the diffracted field generally
assumes its largest value. This limitation of the GTO is overcome via the uniform version of the GIT)

TD(i.e., Ji) which requires the diffracted field to make the total high frequency field continuous across
the optical shadow boundaries. The IITO solutions for the diffraction by edges and smooth connvex surfaces
are reviewed in detail after introducing the basic concepts of GTO. Results based on a few additional IM)
solutions are also presented together with a few selected applications of these [ITO solutions to predict
the EM radiation and scattering from complex structures. I-

I. INTROOUCTION

An efficient analysis of the radiation and scattering of waves by objects which are large in terms of
the wavelength can be performed via high frequency techniques, foe of the most versatile and useful high
frequency (HF) techniques is Keller's geometrical theory of diffraction (GT) F1,?.31 which was developed
in the early 195Os. The GIT constitutes a significant extension of geometrical optics (GO) in which a
class of diffracted rays are introduced to exist in addition to the usual rays of GO. These diffracted
rays are postulated via a generalization of Fermat's principle with the knowledge that at high frequencies

diffraction, like reflection, is a hirhly local phenomenon. lust as reflected rays originate from points
of specular reflection on an illuminated surface, the diffracted rays likewise originate from certain
localized parts on the surface; e.g., from geometrical and electrical discontinuities, and from points of
grazing incidence on a smooth convex surface as shown in Figure 1.

The shadow boundaries divide the space surrounding an illuminated hody into a lit region where the GO
incident, reflected and refracted rays are present, and into a shadow region where these GO rays are

absent. Thus, the GO approach is seriously in error within the shadow region where it predicts a zero
field; this limitation of GO is overcome by the GT since the diffracted rays penetrate into the GO shadow
zone to entirely account for the field therein. Furthermore. the diffracted rays can also enter into the
lit region and thereby provide an improvement to GO in the lit region. The total GT field is a

superposition of the field of all the GO incident, reflected and refracted rays together with the fiell of

all the diffracted rays which pass through the ohservation point. The initial values of the diffracted
ray fields are given in terms of the diffraction coefficients just as the initial amplitudes of the GO
reflected and refracted rays are given in terms of the reflection and transmission coefficients.

r
Sue to the local satire of diffraction at high frequencies, the diffraction coefficients can hP fuint

from the appropriate solutions to simpler canonical problems which model the qpnemtrical and elpctrical
properties in the neighborhood of the point of diffraction as in the original problem.- ronsplontly, t'e
GTO provides an efficient high freqency snlutinn to problems that cannot be soleVi riqorouslo. ThuS, a

GTG analysis of the radiatinn/scattering from complex shapes can he developed hy simulatinq these

structires with simpler shapes that locally provide a sufficiently accuratp description o' the dominant
reflection and diffraction effects. The GT9 Can also he oseful in providing Information on woos to
control the radiation/scattering from different parts of the Structure. It is interpsinq that even
though GTI is a high frequency method, it is often found to w)rk for objects nearly as small as a
wavelength in size. Although GTO is not a rigorous miethod, it generallv yields *he leading t-rms i th

asymptotic high freguency soluitions of diffraction pr)hlms.

Since the GTt is a purely ray optical theory, It fails within the 'ransii-in rpqioins dilarent I ) Sh

GO shadow boundaries where the HF field generally underqoPs a rapid1 transition across thp shAiw Simbare
from one ray optical form in the lit region to another ray optical fnrm in tne shadow region.

Consequently, the HF field departs from a strictly ray optical rharacter within the GO shaiow bomndary
transition regions. This failure of the original GT can he ovPrco,,e v

y niform versions of tee c
T
n

) 
Such

as the IT F4,51 and the 'AT r61. In the present develnpment, the focus will he on the ITO. hasirallV.
the 1ITr remains valid within the GO shadow hnundary transition regions where the orlinary Gil fails, and
secondly. it reduces to the GTO outside these transition reqions where tP lattpr is in,'.'t vi!.

the GTl and ts onform versions 'To;i tl fail wi
t
hin the reigins of G(O a-d diffractPd raycaustics.

Ray caustics or foci occur whenever a family 9f rays i ,e, ray conglripenrPs1 rmtre or ntprsP,t to form i
focal surface, or a focal line or a focal point. The field near .;ffracted ray caustics cam he descr;hed
with the help of the equivalent current method (tCM) rT,v.Q in w;ch the GT) indirectly provles the
strengths of these equivalent currents that radiate fields at and near the caustics. Away from the
caustics, the fCM usually reduces to the GT. The tCM can in general he used provided the GO shadow
boundaries and caustics do not overlap. In the latter situation, riM could in some cases still he uSed

hut only after significant modification; alternatively, the phvsiral theory of diffraction (PT) can he
employed. The PT was introduced by fimtsev inl in the Soviet 1lninn it about the same time as Keller's
GTl was introduced in the 1i.S. The PT rpquires an integration of the asymptotic HF currents on the
radiating/scattering body. If the PT integrals can he evaluated asymptotically outside the confluenre of

.O shadow boundary and caustic regions, then it generally reduces to the GT. However. in Some spwcial
instances. the Gil can he made to work without resorting to FIM or nT despite a presence of a confluencP
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of caustic and GO shadow boundary transition regions. Away from the special regions where it may he
necessary to use ECM or PTO, it is natural to employ the more efficient GTD/UTD which unlike the FCM and
PTD requires no integration Ili].

These notes will deal mostly with the diffraction by perfectly-conducting surfaces in free space.
The GTO formulation is presented after briefly introducing the concept of wavefronts, rays
and GO in Section II. Next, the UTO is discussed and UTO expressions are given for the two main
diffraction mechanisms; namely, for edge diffraction and diffraction at a smooth convex surface. Other
UTD solutions are not included due to space limitations. Finally, a few examples illsutrating the utility
of UTD to analyze radiation and scattering problems are given in Section III. An eJut time dependence is
assumed and suppressed in the following development.

1I. THE GDl AND ITS UNIFORM VERSION -- THE UTO

The basic ideas of wavefronts, rays and GO are briefly reviewed at first. Oiffracted rays which
exist in addition to the GO rays are discussed subsequently.

A. Navefroats and Rays

A wavefront is an equiphase surface. The connection between wavefronts and rays can he made in
several ways. One such procedure which is based on the method of stationary phase is described below.
Let r(F') and (r') refer to the electric and majnetic field intensities at any point T' on an equiphase
(or wavefront) surface S. The electric field r(r) at a point P ahead of the wavefront is provided hy the
equivalence theorem as:

jkZo e
jk

E(F) = fl ds' (ill[. fl)~U +Y 5 ) r
in which the equivalent electric and magnetic surface current sources Js and hi

5
, respectively on S ire

J,() = n' x H(r) ; Ms(r') = E(P) x n-. *s)

The quantity Z. denotes the impedance of free space, and YO=(Z)'I. Also, k represents the waw nueomer of
free space. The vector R and the unit normal vector n' to the surface s at P are shown in Figure 2.

Consider a rectangular coordinate system chosen for convenience so that the x and y axes are tangent

to the wavefront at 0, and OP zfPJ as in Figure 2. It is noted that n=z at 0. It is generally true

that there is at least one point n on S so that OP = n' PJ; however, for the present development it is
assumed that there is only one such point 0. If there are more points on S with the above property such

that the n' directions from those points intersect at P. then P is said to he a focal or caustic point.

From the principle of stationary phase As described for example hy Silver FirS, the e
-
kQ within the

integrand of (1) oscillates rapidly for large k to produce a cancellation (,dpstructive interference)
between each of the spherical wave contributions to P which arise from the different elemental sources on

ds' over S that do not lie in the immediate neighborhood of n; whereas, - kR changes slowly for the
spherical wave contributions to P arising from the elemental sources no ds' that are in the immediate
neighborhood of 0 and thereby provide a constructive interference to P. Thus. at high frequencies (or
large k), the dominant field contribution to P comes from n on S; this point 0 is called the "stationary
point." Without details (which can he found in 1 1]). the stationary phase evaluation of (11 yields the
following contribution from the stationary point:

-P) - , - - -jks ; -TlIs (3)

The expression in (3) describes the continuation of the field at 0 to the field at P along the highly
localized or "ray" path ?W; the field r(P) in (3) is thus referred to as a ray optical field. Figure 3
shows a ray tube interpretation of the energy transport along the central ray M as indicated by (3). The

PI and 02 in (3) refer to the principal wavefront radii of curvatures at n. From Figure 3 one notes that
the energy flux crossing the area dAo of the wavefront at n is given by 1r(0)12 dA,. and likewise, the
energy flun crossing the area dA1 of the same ray tube is tE(P)I

2
dAn . Since dA.(ejd0j)(P2d4r2) and

dAp-!(pl+U)dI I !(P0+s)d*aI, it is then clear that conservation of energy in a ray tuhe, which in turn
requires that I(O)(2dAo-'(P)jIdAp, leads to

Ir(P)l_ lr(O)Ij ( 1 (4)
(p+S)(02+s) 4

which is automatically implied in (3). The field E(P) at P has the same polarization as the field E(O) at
0 because the ray path is straight in a homogeneous medium. The field intensity in (3) becomes singular
when s--pIl or s--i2e; these points on the ray path are marked (3-4) anrd (1-2) in Figure 3, and they are
referred to as ray caustics. The actual field is not singular at the caustics; clearly the simple
expression in (3) is therefore not valid at and near the caustics even though it is asymptotically
accurate away from the caustics. The distances Pl and P2 are also referred to as caustic distances. The
distance s is measured positive in the direction of ray propagation. The caustic distances PI and P2 are
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positive if the caustics occur before the reference point f as one propagates along the ray; otherwise,
they are negative. If Pi and are positive, the wavefront is convex; if they are negative, the
wavefront is concave, If one o; the radii (pi or P2) is positive while the other is negative then the
wavefront is saddleshaped. If ol and P? are negative, and if s>-SpjI, or s>-)P21, then a caustic is
crossed at (3-4) or (1-2) in Figure 3. respectively so that ((pfl/(olas)) or r(p2 )/(p'+s)) changes sign
within the square root of (3). The positive branch of the square root is chosen in (i) so that

-7- ej / , if(5
and p=pi or 02. Thus. a phase jump of w/2 occurs at each caustinq crossing.

The field in (3) is sometimes also referred to as an "arbitrary" ray optical field since p1 and 0?
can he "arbitrary." The geometry in Figure 3 is referred to as an astigmatic ray tube or a quadratic ray
pencil because of the quadratic wavefront surface approximation at 0 that is used in the stationary phase
approach leading to (3). It is noted that if PI and p? become infinite, then the field in (3) is that of
a plane wave. If l or P2 become infinite then (3) is a cylindrical wave field. Also, if 01=0p (=finite
value), then (3) 1s a spherical wave field. Thus, plane, cylindrical, spherical and even conical wave
fields are special cases of an arbitrary ray optical field; clearly, it follows that each of these fields
is also ray optical.

Since the wavefront surface S in Figure 3 can he associated with either an incident, reflected or
diffracted wave, the field expression in (3) therefore applies equally to incident, reflected or
diffracted rays. The field is polarized transverse to the ray and the wavefront at P is "locally" plane
if ks is sufficiently large (as is assumed to be true in the stationary phase evaluation leading to (3));
also, the local plane wave relation between r and 1 holds, namely:

H(P) - Y0 x n (P) (6)

or

E(P) = - Zos x q(P) (7)

in which s 
= 
OP/IPI is the ray direction.

R. The GO Field

The GO field is a ray optical field. The incident G field is assoriatpd with rays directly radiated
from the source to the field point. When such an incident ray ,)nqr,vpncv st-ikes An .hbprt, it is
transformed into a reflected ray congruence. Since the present notes deal mostly with scattering hy
impenetrable objects, there are no transmitted or refracted rays pr,),ijcPd in this cas=. The incilent and
reflected Go rays satisfy Fermat's principle which makes the incident and reflected ray paths an extremal.
Consider a plane wave incident on a perfectly-conducting wedge or a smooth convex surface as shown in
Figures 4(a) or 4(h). The incident rays are partly blocked hy these surfaces creatinq the so-called
shadow zone where the incident ray optical field vanishes. The incident shadow boundary ISB in Figure
4(a) and the surface shadow boundary SSR in Figure 4(h) divide the region of space surrounding the wedqe
and the convex surface into a lit zone and a shadow zone.

It is important to note that inlike the conventional incident field which is defined to exist in the
ahsence of any scattering objects, the GO incident ray field exists in the presence of any objects that it
might illuminate. It is for this reason that the 011 incident field hecones discontinunis across the
shadow boundaries ISA and SSv in Figures 4(a) and 4()). On the other hand, the conventional incident
field would not he discontinuous anywhere outside the soirce region which produced that field.
Henceforth, the GO incident electric and magnetic fields will he denoted hy ri and 11, respectively.

The field of the GO reflected rays that are produced by the illuminated wedge in Figure 4(a) is also
discontinuous. In particular, the reflection shadow boundary (RAS) delineates the regions of existence
and shadow for the reflected rays in Fiqure (a); whereas, the incident and re'lection shadow boundaries
ISv and ?SA merge into the SSR for the convex surface in Figure (b)).

Consider a general problem of reflection where an arbitrary GO incident ray optical field illuminates
a smooth, perfectly-conducting curved surface. The astigmatic incident ray tube associated with the

incident ray in the direction s' is shown in Figure 5. This incident ray ssrikes the surface at )R to

produce a reflected ray in the direction sr. The astigmatic reflected ray tube associated with the

reflected ray from OR is also shown in Figure S. The field rr(,) at 0 whic, is reflected from N can he

written via (3) as:

or r s
irp) sp1 5 )/ _I _ e-jks r

(o r) (r-- r)

-r 
-r

It is noted that F (P) In (A) is given in terms of F(r R) at the point of reflection fiR. Thus, the
reference point 0 In (3) corresponds to the point OR in (8). The caustic distances ol and P2r associated
with the reflected wavefront are shown in Figure 5 along with the reflected ray distance sr from OR to p.
The value of rr(OR) is related to the Incident field T(0R) via the boundary condition
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x (R = 0 (9)

Here, n is the unit normal vector to the surface at OR . It follows from (9) that

e. (OR) = • 0(OR) ' (10)

where I is the dyadic reflection coefficient of the surface at OR . Incorporating (9) into (8) yields

r r r
r (P) = 1 P2 -jks (11)

r r r r

The reflected magnetic field Hr(p) is found easily from (11) via

--r(p) _ Vo r x r(p))

It is convenient to express ON(0k) and tr(p) in terms of the unit vectors (e1 ,e$) and (el,eli which are

fixed in the incident and reflected rays, respectively, as shown in Figure 6. The e
I 
and s are

mutually orthogonal; likewise, e 1,e1 and srare also a mutually orthogonal set. Furthermore,e I and e 1i,

in the plane of incidence defined by ;i and o at 
0
R* As a result of Fermat's principle, s also lies in

the plane of incidence and 8 =,
r 
in Figure 6. Thus, if

E-i( = E (OR ) et(OR) = Ei(QR) e1

and

Er(p) =E,(P)err + Er(pl;e (14)

where e =oi,r x ei , then R in (10) subject to the boundary condition (9) becomes

e r Rh +e e R, Rs ;1 (15)
h

In matrix notation, the above R can be written as

-I I- o-
oR FIRh 0 = 1 0 16

Therefore, in matrix notation, (11) becomes

E rIp 0 l E(R) r Pr ~ jks r (

r p E I P , - _ I_-__e__(17

The caustic distances or the principal radii of curvature of the incident and reflected wavefronts which

are denoted by inl,p,) and (p1,o). vs well as their principal wavefront directions
are given in [131. -

It is clear that the G0 representation of (11) falls at caustics which are the intersection of the
paraxial rays (associated with the ray tube or pencil) at the lines 1-? and 3-4 as shown In Figure 3.

Upon crossing a caustic in the direction of propagation, (pi'r+ i'r) changes sign under the radical in

and a phase jump of +R/2 results as explained earlier. Furthermore, the reflected field Fr of (11) fails

in the transition region adjacent to SSR of Figure 4(h). It is important to note that near the SSR (I.e.,

as 0.n/?). Pr and or approach the following limiting values:

1 2



( O s
1 (a)

2 for 6+ "/2

where *g(QR) is the surface radius of curvature in the plane of incidence at OR , and uh is the radius of

curvature of the incident wavefront in the (it,h) plane (i.e., in the plane tangent to the surface) at OR

for 81+w/2. Furthermore, the principal directions Xr and 'r of the reflected wavefront approach the
following values for grazing incidence: 1 2

"r q Ka (atR) (l11)i(tQ 
for 

0

i 
+ 

,/2I' X2 
=  -s r 

x r) . n (atO)(

where t is the direction of grazing incidence at 0lR and h=t x n at OR . The total GO electric field E
o 
at

PL in the lit region is the sum of the incident and reflected ray optical fields; hence,

- - r 0r .r

G o ( L E i L ) + i ( O 4 ) " 1 2 eJ 
s  ( 2 1 )

(pr+sr)(Pr+sr)

In summary, it is noted that the GO incident and reflected fields are discontinuous across their
associated shadow boundaries such as 158, RSB, and SSB in Figures 4(a) and 4(b). The failure of GO to
account for a proper non-zero field within the shadow region behind an impenetrable obstacle can he
overcome through the GTD and its uniform versions. Nevertheless, GO generally yields the dominant

contribution to the total high frequency fields, and it constitutes the leading term in the GTG solution.

The reflected GO field !r(pL) for the two-dimensional (2-0) case can he deduced directly from the 3-

case by allowing pr to approach infinity. Thus, one may let 4 prand P in (11) to arrive at the

2-l reflected GO field Er(pL) as

gr(pL5 = (OR) rr e-j s (22)

in which the incident ray optical field i)(R) is now a cylindrical wave at OR, and the caustic distance
pr in (22) for the 2-D case is given by

I I 2cosl5

Tpr s + p (OR (23)

where 61 has the same meaning as before, and s
i 
is the radius of curvature of the incident cylindrical

wavefront at OR . If the cylindrical wave is produced by a 2-D line source, then s
i 
in (22) can be chosen

to be the distance from that line source to the point of reflection OR on the 2-D boundary. The quantity

Pg(OR) in (23) denotes the radius of curvature of the 2-D boundary at the point of reflection R .

C. The Diffracted Ray Fields

The diffracted rays are introduced in the GTl via a generalization of Fermat's principle as stated
previously. Away from the point of diffraction, the diffracted rays behave according to the laws of GO.

The initial value of the diffracted ray field is given in terms of a diffraction coefficient. The
phenomenon of edge diffraction will b discussed first, and it will be followed by a discussion on the

phenomenon of diffraction at a smooth convex surface. The latter phenomenon is more complicated than the

first.

(i) Edge Diffraction

When an incident ray strikes an edge in an otherwise smooth surface, it produces diffracted rays
which lie on a cone about the tangent to the edge at the point of diffraction such that the angle So
between the incident ray and the edge tangent equals the half angle of the diffracted ray cone as shown in
Figure 1(a). This cone of diffracted rays is sometimes referred to as the "Keller cone," and it results
from the generalization of Fermat's principle to describe rays diffracted by an edge.

.. .... ..... -
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Let an arbitrary ray optical field be incident on a perfectly-conducting curved wedge as shown in
Figure 7. The resultant total HF electric field E(P) at any point P exterior to the wedge is given by

E(P) = E-GO(p) + EdP) (24)

where the GO field component t (P) is given as

jGO(p) = Ei(P)U i + Er (p)Ur  (25)
-i -

The domains of existence of the incident and reflected ray optical fields t (P) and r (P) are indicated
by the step functions Ui and Ur, respectively, which are defined as follows:

1, if 0 < p < 1+
Ui  = { (26)

0, if n+ ' < p < n

and

1, if 0 < < < u-p
Ur = 1 (21

0, if .- €' < p < n.

The azimuthal angles p and p' are made by the projections of the directions of incidence and ohservation
on a plane perpendicular to the edge at the point of diffraction 

0
F. These angles are measured from a

plane tangent to the "0" face of the wedge at OF as shown in Figure R. The plane tangent to the other
face of the wedge at BE is denoted by "n;" it is also shown in Figure 8.

The interior wedge angle is therefore given by (2-n)n. The expressions for the GO incident and
-d

reflected fields have been discussed previously. The diffracted field F exists exterior to the wedge
(i.e., for 0 < 0 < nn). From (2). one may write the general field expression for theray diffracted in the

direction ;d from QE as:

d -jksd
id(p) d(P ) P1 2 e (8)

0 -d -d -d d0 + so)(P
7 

+ 
S)

The diffracted ray tube corresponding to (28) is shown in Figure 7. The superscript "d" on )d ,oand s
d

denotes that these quantities are associated with the diffracted ray field component. In ordlf to relate

Ed(P) to the incident field at the point of edge diffraction 0E, one moves the reference P in Figure 7

to the point of diffraction OE on the edge by letting p + n so that

-d d
d 

js

E (P) = lim [ ad(P) -d d

P d 0 1 0 )(P2

Since Ed(p) is Independent of the reference point Po the above limit exists and it is defined as

lim r1 d(Po jio =
ad 1 00 e(0

where 6k= 6(,',; k) is Keller's "dyadic edge diffraction coefficient" which indicates how the energyeh enrg

is distributed in the diffracted field as a function of the angles p, and 0; 6k also depends on n and
the wavenumber k. From (29) and (30), it is clear that e

Ed Mk k) 
P  

e
- j k

sd
d ( p ) i ( O E ) . ( , X ., o ; k ) -1 ), -

dd d
where lim 2 E Pe (edge diffracted ray caustic distance), and likewise lim so  d as shown in Figure

7. Ed(P) is polarized transverse to the diffracted ray direction ;d since the field Ed(p) is ray optical;

thus, the associated magnetic field can he expressed as

0(p) _ Yo ;d . d(p) (32)

0 :
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If the incident field 0(0 ) exhibits a rapid spatial variation at 0E then an additional term referred to
as a slope diffracted fielS must he included in (31) to describe the diffraction effects accurately;
however, that slope diffracted field will not he described here. An expression for finding the diffracted
ray caustic distance Pe is given later in (43h).

It is convenient to express the dyadic edge diffraction coefficient 5k in terms of unit vectors fixede -

in the incident and diffracted rays as follows. Let si and e define an edge fixed plane of incidence

where e is the edge tangent at 0. Likewise, let sd and e define the edge fixed plane of diffraction.

The law of edge diffraction which defines the Keller cone is s1.e=sdoe Let S and be parallel to
the edge fixed planes of incidence and diffraction respectively as in Figure A, and let

°

= x so = s 0 . (33a;33h)

Here, * and * point in the direction of increasing angles p and p', respectively. The incident field

-ii
E(O E ) can then be expressed in terms of the triad of unit vectors (in 60') fixed in the incident ray;

likewise, the edge diffracted field Ed(P) can e expressed in terms of ) fixed in the diffracted
ray. Thus,

S o + E (34a)

and

7tp o Fd d
a(P) 0 F6  + 0 E (34h)

Then = k .k ' ke A "6o Ooes eh (34c)

The n 
k  

and 
k

es and ek can he found from the asymptotic solutions of appropriate canonical wedge diffraction

problems; they are given by:

4sin yj

SR i
0os s-cos s co cos ,- cos (n35

It is noted that the Keller edge diffraction coefficient in (35) henries singular at the incident shadow
boundary (ISR) and the reflection shadow boundary (RSR) which occur when *=n+)' and 0=0-H', respectively.
Thus, the result in (31) together with (34c) and (35) is not valid at and near the r1 incident and
reflection shadow boundaries. This deficiency of the TD can be overcome via the use of uniform
geometrical theory of diffraction (UTO). According to the ITO r4,Sl, the total HF field exterior to the

-d

wedge is still given by (24) as in Keller's original TS; however, the F in (24) and (31) is now modified=k

so that De of (31) is replaced by the IITD edge diffraction coefficient 
r
e so that:

E (P) = 77e(o). e0, 0 ; k) VF e e (36a)
sd (oe+Sd)

The De in (36a) can also he expressed as

eooes - ' 
0
Deh (36b)

In matrix notation, (36a) becomes

d eh E, C
3

----- j (37)

1, 0 -D (os

in which the Des and neh are £131:

a
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_j4 F
n ( ;Bo ) = -e o t - FrkL a+(-*') + cot Ln FrkL

1
a'(t-#')l2n/2-ksinBo___2

-I

0 t W+(4W) + -r.)rn
o n FVkL a+(6+ ,)1 + cot 4- FkL ra.(p+'l (38)

where the asymptotic large parameter kL (with the superscripts I, rn, ro on L omitted for convenience) is
required to he sufficiently large (generally greater than 3) and

2nnN
± 

- (8)

at(a) = 2 cos
2 

( 2-N ---)) (39a)

The N
± 

are the integers which most nearly satisfy the equation:

nnN -- t tn (3% )

with

8 = ,. (
3
qc)

Note that n=2 for a half plane or a semi-infinite curved screen. Also, n=3/? for an exterior right angled
wedge, etc.

For exterior edge diffraction N =0 or 1, and N-=1. n. or 1. The values of N at the shadow and
reflection boundaries as well as their associated transition regions are given in Tahle I for exterior wedge
angles (1 < n < 2):

TMLg.E I _________

The cotangent is singular when value of N
at the houndary

co(t-$) I = '-n, an ISN
+ 
=0

cot -- n- surface *=0 is shadowed

_-__-_') * = n ' .an ISR
cot 2n surface 4=nm is shadowed N- = 0

cot = (2n-1)-'. an RSR N+

cot - reflection from surface =nn =1

cot (@+ ') e = n-4' an RSR V

ot ! 2n j reflection from surface =O N = 0

For a point source (or spherical wave) type illumination, the distance parameter L Is:

L
I  

sl sd

= s iG-, in
2  

, (40)

in which sl and sd are the distances from the point of edge diffraction at OF to the source and ohservation
points, respectively. Only for a 3traight wedge with planar faces that is ifluminated by a point source,

Lro = Lrn = LI . si 'd 2
s-s Sin 1410

as in (40). For an arhitrary ray optical illumination which is characterized 
1
y two distinct principal

I I I
wavefront radii of curvature. p I and p2 , the above Li must he modified as shown below in the general

expressions for L and L
rn 

pertaining to a curved wedge; thus,

-- sd, i~sd, Ielsin
2
s -I

d I , )P IPn2 So

L ; +(42a)
Se(e I+s )(02 s 1 ( at ISR



Ssd(pr~sdjprprsin 200--

Lr= e 12 o 
r, r+d. r+d, _ 2h

pe e si )(P2+s 
at RB1

Here, L
r
o and L

r
y are the values of L

r 
associated with the "0" and "n" faces of the wedge, respectively.Furthermore, pr is given by:

1 2(n-ne)(s n)
rc I -T F -(4a)
Pe Pe a sin so

Also Pe in (36) is given by:

1 1 ne.(s -sd)

Pe pi a sin ao  
(43b)

e

The unit vector n is defined in Figure 8(h); whereas, n is a unit vector normal to the edge which is directed

away from the center of edge curvature at I. The radius of edge curvature is denoted by "a" in (43). 
0
e is

the radius of curvature of the incident wayfront at 0E which lies in the edge fixed plane of incidence. In
d > i d r sd i r

the far zone when s pI,2" s >>P ,', and s >o then the L
i 
and L in (42a) and (42h) simplify toPlp2 siv

2
ao

- in which the appropriate superscripts on L, pa and P2 are omitted for convenience. It is
noted that 0 and L

r 
in (42a) and (42b) are calculated on the appropriate shadow boundaries. The transition

function, F which appears in (38) contains a Fresnel integral; it Is defined by

F(x) - 2j-x e
j
x J" doe

3
JT2 (44)

A plot of the above F(x) is illustrated in Figure 13. In (44), /7 = IV7I if x>0 and /* -j ' )j if X<o. Ifcomple thnFx RSR tasioreon
5<0, then F(x) Ix<= F* ((xv) where * denotes the comples conjugate. Exterior to the ISP) transition regions

x becomes large and F(x)+1 so that the uniform 0% in (38) then reduces to Keller's form as it should; namely,

-e -k
e Ne, outside the transition region. (45)

Near the (1SB and RSR) boundaries, the small argument approximation for F(x may he employed (since x = on
ISR and RSB); namely, one can incorporate

F(x) -Vi e J4 + x) (46)

-d

into (38) to arrive at the following result for the diffracted field E at ISR or RS8:

Pir continuous
t =01 r~ '+ (higher order)

ISB;RSB 1- 2 terms I
(47)

on lit side of ISR;RS
if on shadow side of ISP;RSR

The above result in (47) ensures the continuity of the total HF field in (24) at 1SR and RSR. The field
contribution arising from the edge excited "surface diffracted rays" is not included in (74); it may he
important for observation points close to the surface shadow boundaries (SSR) associated with the tangent to
the "0" and "n" faces of a curved wedge at IF if the "0" and "n" faces are convex boundaries. The result in
(36a) and (36b) along with (38) is valid away from any diffracted ray caustics and away from the edqe caustic
at 0.

For grazing angles of incidence on a wedge with planar faces, Fes =
o, and 

0
eh must in replacpd hv (11;

Oeh. The reason for the 1/2 factor In the latter case is explained as follows. The incident and reflected GO
fields tend to combine Into a single "total incident field" as one approaches qrazing angles of incidence;
consequently, only half of this "total field" illuminating the edge at grazing constitutes the incident 90
field while the other half constitutes the reflected GO field. The case of grazing angles of incidencp at an
edge in a curved surface cannot be handled as easily as the case of a wedge with planar faces. Presently, one

can only treat angles of incidence that are greater than ( keOFl I where n (IF) is the radius of
curvature of the surface in the direction of the incident iay at tle point )f ege diffraction OF.
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Under the above restrictions, the result in (3R) for neg simplifies in the case of a plane or curvel
screen (n-2 case) to

-e s -'
De(pik) sec(---) rrkL a( -') sec r
Des"'Oa 's tn ino 2 se fkL ala8)l
eh _

where a()=2 cos
2
(/2) and Li,r are in (4?a;h with the understanding that L

r 
is evaluated ac the 595

corresponding to the face which is illuminated: hence the superscripts "o" and "n" in ir are dropped for this
n-2 case.

-d
The edge diffracted field F (P) for the 2-9 situation can he obtained from (16al by allowing 0, tO

approach infinity and by requiring ao = I/?; thus, for the 7-l case,

id(p) 0 EUOF le(, /
2  

e -
'Sq

The De ;n (4q) for the 2-4 case is available from (36a) and (36b) with 3= '2 (or sin,1 = 2 . Also. :1 for
the 2-D case is given by (41) with .0 = '/2; in particular.

I si s
d

Li I d *(50

5 +5
Likewise, L 

r 
is obtained from (42b) with 0 

=
n2, .r r r 'as In (f), and 

0
r: therefore, is the

2-0 case, 1 I

r d
L 
r 
. -
,r + s

d  I

Note that pr in (51) is the same as the one in (23); however, pr is in general different for the 0'" and "n"

faces of the wedge, with Lro and L
rn 

denoting the values of Lr for these two different faces. WhIle the
expression for L

r 
in (42b) is fixed to its value on the RS for convenience, the one in (511 can he eval.,ato=d

as a function of the observation point with almost the same ease as if one had approximated the value of Lr h
its value at the RS. The values of Li and L

r 
for the 3-D case involve various caustic distances as is

evident from (42a) and (42h). These distances are generally slowly varying within the ISR and RSR transition
regions and it is therefore convenient to approximate Li and Lr throughout the transition regions oy thei
values at the IS and RS as done in (42a) and (42b). Outside the respective transition regions, the P
functions containing Li and Lr approach unity anyway unaffected by the above approximation.

It is noted that the comment below (47) in regard to grazing incidence is also valid for the 2-0 case.

S =kIt is further noted that the essential difference between ne and De is that the former is range dependent
whereas the latter is not. As a result, (36a) is not ray optical within the ISR and RSR transition regions;

= =k
exterior to these regions, ) + uD as indicated before. Figure g illustrates the diffraction of a plane wavy
by a perfectly-conducting ha f-plane. It is noted that the geometrical optics field is discontinuous;
however, the ITD diffracted field cancels the GO discontinuity to yield a total IITD field which is
continuous.

(I0 fiffraction at a Smooth Convex Surface

The geometry for this problem of the diffraction by a smooth convex surface is shown in Figure 11. 'ie
total high frequency field F(P) for the situation in Figure 10 can he written as

d (P LU + L U + Ed(P( , if P = PL in the lit zone.

Ed(P,( ri -I} , if P = PS In the shadow zone.

The Incident and reflected fields F and F are associated with the incident and reflected GO rays shown in
Figure 11. The step function U in (S2) Is defined below with respect to the surface shadow boundary (SSR)
as:

1, in the lit region which lies above the 551u-{
0, in the shadow region which lies below the 555, (53)

Ta

-dThe surface diffracted field F (Ps) follows the surface diffracted ray path Into the shadow region, as In

-d
Figure 11; whereas, the field E (PL) which Is diffracted into the lit region follows the reflected ray path

(of ir ) in this solution. Therefore, it is convenient in this problem to conine the ,O reflected field-r -d-r

F(P)IJ and the diffracted field F (PL) into a single "generalized reflected field", Fr(PllIn the lit
region so that (52) becomes
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i Et(PL)U + EgpL)I
J  

if P - pL in the lit zone.

id (P) ri ll if P = Ps in the shadow zone.

The fields Tr(PL) and e l(Ps) are given symbolically hy

ejk
(01+sr)(pr+srl

jsd
IA S 

0
Al~ s e jk (56)

where the points 0 and 0 and the distances sr and sd are indicated in Figure 10. The surface diffracted
ray caustic dlstane ps il shown in Figure 11. The quantities within hrackets lnvolvlngq andE in (551 and

(56) h
(56) may be viewed as generalized dyadic coefficients for surface reflection and diffractinn, respectively.
It is noted that (55) and (56) are expressed invarlantly In terms of the unit vectors fixed in the reflected

and surface diffracted ray coordinates. The unit vectors ;i .*, and e in (55) have been defined earlier in

connection with the reflected field. It can he shown that cross terms actually exist in the ahove generalized
dyadic reflection coefficient; hut, in general their effect Is seen to he weak within the tSS transition
region. Also these terms vanish in the deep lit region and on the SSR, hence they have heen iqnnred in (55).

At 01. let t I he the unit vector in the direction of incidence, n i he the unit lutward normal vector to

the surface, and h1 - ti xno; likewise at 02. let a similar set of unit vectors ft,, n h.? he defined with

2 in the direction of the diffracted ray as in Figure 1?. In the case f surface rays with zero torsion.

I . b2. It is clear from Figure 11 that PS in (56) Is the wave-front radius nf curvature of the surface

diffracted ray evaluated In the h2 direction at I). First, the )Tn expressions fork and b in (SsO an,1
(56) will he given below; It will he shown that t4ese expressions are valid within th ' ransftfMP region
adjacent to the SSR. Subsequently, it will he shown how these expressions autonma+iraly sirnlify outside toe
SSR transition region to reduce to those obtained hy Keller in his VT represontli',. The Il I h l
(55) and (56) are r14,I51:

e -jn/4 -
_L- e-jJL))I L -- F1-F( L)! + P

r L )  
for the lit region

and

.jn .ljkt

h M (0I1)M(02) V -k rl-F(Xdl p At (0 -n "TT fr the shadow region

TABLE II

-- iTT -o -ryT-jct1 -- -76r -oof-tl e t f v t f e-- -

I _ o!}_,eA r1Fu_,ltio. _

AI(-q A -p()

ql 2.33R1 q I.niAI

q2 4.f16195 *3,.'>wn

Ai'(-ql) n .70171 Ai( -q - n).51W6

Ai'(-q?) •-0.R0311 AI(-?) - - .41W2

The function F appearing ahove has heen defined earlier in (44). The Fock type surface reflection function

soft
is is related to the (hard) Pekeris function (,) by
h

L
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P p( ( a ) - 3e7475%

q.4) , (Note that 6an at SRi

where p* and q* are finite and well behaved even when 6-0: these universal functions are plottad in Figures

13, 14 and 15. Also,

- - I soft case (6Ol

- - GyT LL, o -

T- , hard case (60I

in which the Fock type Airy functions V(T) and Wp(r) are

2jVl(z) -WILT) - W2(r) ; WI(r) - -" dt ; t1a/1

Set'/ (61A; 61o

W 2(T) .L j j2./3 't e~tt/ e 2/(61c)
2j5r)= e

-. e i~).W~)ad

The rest of the quantities occurring in57) and (58) are:The

L._2m(OR)cosf) ; 0dt, og--t-rT ; m(-) = ( -2'-I 6:3:64)

0 L 7 1 j kL ()
- 2 dt' ; X-? kL cos 9 ; X (65;66;67)

The quantity pg (OR) in m(OR) denotes the surface radius of curvature at 
1
R in the plane of incidience;

whereas, pg (0) is the surface radius of curvature at 0; in the t direction. The dt' in (63) and (65) is an

incremental arc length along the surface ray path. The angle of incidence qi is shown in Figure 6.
Also, the dn1(|) and dn(O) in (58) denote the widths of the s,jrface ray tube at 11 and 02. respectively; the

surface ray tuhe is formed by considering a pair of rays adjacent to the central ray as in Figure 11. he

geodesic surface ray paths are easy to find on cylinders, spheres, and cones. For example, the geodesic paths

on a convex cylinder are helical; whereas, they are great circle paths on a sphere. For more general convex

surfaces, the geodesic surface ray paths must be found numerically. The distance parameter L in (66) and ()71

is given by

where:

s srS . Sd I i(Ol
)  

incident wavfrunt raius iF (,rvature7

)SSRD/ in the R direction at 1;.
r

The distance s in (68) may he obtained hy projecting / d) on the 558 if the nhservatinn pint within the

/ lit ) side of the SSR transition region does not move in a predeterininpd naner. If the observation point

409O1cross the S58 in a predetermined fashion then it is clear that s In (68;h9) cin he found unantiquously.

The lOl and p'(I1 ) in (68) denote the principal radii of curvature of the Incident wavefrnnt at ([. And

hich is defined in (70), has been introduced earlier in (lI). For the special case of point snurce or

herical wave illumination, the L in (66) and (67) simplifies to:

S'+s for spherical wave illumination, (71)

where:

Sa 1 i/() a .1 (0 1 distance from the point source to the
' point of grazing incidence at 0I.

In the case of plane wave illumination, s' * - and hence (71) above simplifies to:



L S for plane wave illimination. (73)

1I 0< n; > n) type

If the incident wavefront is of the converging o1 cI , or converging-diverging (< t

then the parameter L in (68) can become negative. Ithas not been fully investigated hoi the geeral

solution can be completed if L hecomes negative. rin the other hand. if one of the principal directions of the

incident wavefront coincides with one of the principal planes of the surface at grazing, then one can treat a

converging, or converging-diverging (saddle) type wavefront for which L<O, by replacing FiXL'd) with

F d(IXL " ). Note that the asterisk on Ft lenotPs the complex cinjugate operator. The use of r*(IXL'dlI when

I-0 leads to a continuous total field at 558 in this case.

The above ITO result remains accorate outside the paraxial (i.e. near axial) regions of quasi-cylindrical
or elongated convex surfaces; a different solution is required in these regions and it has not yet been
completed. It is assumed that the source and observation points are not too close to the surface. Also, it

is assumed that any caustics of the incident ray system are not too close to the surface. Furthernore, the
amplitude of the incident field is assumed to he slowly varying at I and 01- otherwise, it is necessary to
add a slope diffraction contribution. The ITO solution described aho5e remalns accurate if kL and m are
sufficiently large, Typically WL should he larger than 3 although in some cases kL can he made smaller. Also
M should be such that ?m

3
>S or so; however, the results generally lose their accuracy slowly as 9m

3 
becomes

smaller. It is noted that the angular extent of the 558 transition region is of order m-1 radians.

A surface diffracted field of the type d (Ps ) can also he present in the lit zone if the surface is

closed; this may he seen by noting that the field of the type Td can propagate around the closed stirface.

Also, additional contributions to Fd (P can he present in the shadow zone for a closed surface because
surface diffracted rays can he initiat~d at all points of grazing incidence on that closed surface;
furthermore, these surface rays can undergo multiple encirclements around the closed body. However, these

additional surface diffracted ray contributions are generally quite weak in comparison to the jqr contribution
within the lit zone for surfaces which are quite large in terms of the wavelength; hence their contrihution
may he neglected in such cases.

The parameters . , X
L 

and X
d 

become small as one approaches the surface shadow boundary, 55R, from

both the lit and shadow regions. As one approaches the S1i, the small argument limiting form of the
transition function F(X) which has been introduced previously in (44) becomes helpful for verifying the

continuity of the total high frequency field at the 58. no the other hand, the above parameters hecome large

as one moves outside the SSB transition region; in this case F(X).1 for large X, and likewise,

h 5<<O

e
j
,
/4  N e J/6e5

qne j5-/6

iFAi '7 i- n )
I

~n=1
-,/ -j5'16P(u) = n=I(15

h 5>Q J5jn6 S
j, 

/4  
e e/e
Sqn e

e N e
n-, ?r nrAi(-6n)

I
2

where i 
= 
2 Is generally sufficient to compute s(t) accurately for i >0 in (751. In (75) and Table 11, the

h d
Miller type Airy function AiT) = V(n)// and Ai'(r) = AirA ). Thus, mj~on incorporating the limiting
values of (74) and (75). which are valid outside the 558 Jransition region, into 5S7 an ISPh and replacing

F(X) by It's asymptotic value of unity, it is clear that i S reduces to PS I ,utside the 55R transition

regon so that Er(p ) of 11, and likewise is h respetively, in which the Keller

surfaced diffracted ray field F(Ps) is given by f31

k d(S) - On)" (i012 ejt S - ed-ss"  eJkSd (l6)

k -(0102) 12h) dn( 2) 1d

where
-J O?. (t')dt'

TA n (00 )~ e nA 118 ()
n O n (8
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The 4 and A are the Keller's GTO diffraction coefficients and attenuation constants for the n"" snft fsl or
n n

hard (h) surface ray mode. Thus, in the GT, the surface ray field consists of surface ray Modes which
propagate independently of one another. Also, this surface ray field is not the true field on tire surface; it

is a boundary layer field. The DA and A are given by:
n n

e

1n4"(-qn)12Ma
LIn) k'-

-4.rAl i 5

and

s (0) = (, /" ) h n j( /6)re) (,)
ej~/ )  

n =_M It m(Q)e (80 q%'h

In (79) - (80), Q is any point on the geodesic surface ray path. The GT result of (76) in terms if 77) anI
(15) is not valid within the SSR transition region.

The HTO result for the 3-0 configuration can be simply modified to recover the corresponding 'IM result

for the 2-1l case by allowing the Caustic distances Pr- and Ds in (55) and (56) to receed to infinity. Then,
let

r r for

2* - and ps f. (9I)

so that

r p ) - ! (0 ) . [ e 1  e 1  a h r o rv sj k s 
r

in which pr is as in (23), and

rd(ps) i(0 " + h % -jks d
(0) jDs 6 h a-h In1 121 e

"d

since Ib I 2 h for the 2-n case (note: h e)). The s and fs in (82) and (83) are as defined earlier,
h h

respectively; only the t appearing in (66) and (67) is given by

SS
d

L - *,d , for the 2-0 case. (84)

where s' is the distance from the 7-ti line source to the point of grazing incidence at qland s 5 dl as

before. A comparison of the IT1 and GT solutions for a 2-) circular cylinder illuminated by a nearby line

source is illustrated in Figures 16(a) and 16(h); those In solutions are then compared with the
corresponding exact (tigenfunction, solutions in Figures 1I7a) and l7(b).

III. A FEw AOITIONAL M1h SOLUTIIIMS A1) SOW APPLICATIONS

In addition to the basic IIT) edge and convex surface diffraction solutions described above. ITO solutions
for some other canonical shapes also exist; however, the latter are not described here because of space
limitations. ITO type solutions for the radiation and mutual coupling associated with antennas on a smooth
convex surface are given in r6-1gl; also, an approximate vertex diffraction solution may he found in
(5.11,201. A result based on a recently obtained approximate UlTD solution for the field scattered by a fully
illuminated, semi-infinite, right-circular perfectly-conducting cone 1211 is shown in Figure 1A. Also, IT1
results for the 3-0 diffraction by a penetrable dielectric/ferrite strip in Figure 1q hased on the work in
r2i2 are shown in Figures 21 and 21. for parallel and perpendicular polarization of the incident field,
respectively. It is noted therein that even though the incident fields are TEz or 

T
Mz, the scattered fields

are not simply TEz or TMz due to a coupling between the two which is introduced hy the dielectric edge when
9'*a/2. Finally, Figures 22 and 23 show the application of )TO to deal with more realistic shapes 123,241.
The ogival shape in Figure 22 has a circular duct on it. In Figure 23, the aircraft fuselage is modeled by a

best fit prolate spheroid near the antenna location, a more recent calculation employs a composite ellipsoid
fuselage model r251.
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SINGULARITY EXPANSION METHOD: TARGET RESONANCES

Michael A. Morgan, Associate Professor, (Code 62 Mo),
Naval Postgraduate School, Monterey, CA 93943 USA

LSUMMARY

A unified treatment of the natural mode representations for induced currents and
scattered fields is described using elementary concepts of causality and superposition.
The transient back-scattered field is shown to have the form of a constant coefficient
a ponential series only in the *late-time

5
, after the last directly driven response is

received from the scatterer. Prior to this, the tearly time" response is f,,und to be
due to both the direct physical optics fields as well as a sum of modulated natural
modes. Practical implications of this result, regarding aspect-invariant target
classification using natural resonances, are discussed.

INTRODUCTION

A major impetus behind the development of the singularity expansion method (SEM) by
Baum in 1971, [1], was the need to predict electromagnetic pulse (EMP) excitation of
complex electronic systems. Efforts since then have, for the most part, considered the
numerical solutions for induced current natural modes and their associated coupling
coefficients for systems of increasing complexity. Very little quantitative analysis was
performed with EMP related efforts in extending the SEM description to the scattered
fields. It was conjectured by Baum (2], and others, that the scattered field could be
described by the usual exponential series plus a possible complex plane "entire" (fully
analytic) function. Until recently, even the SEM description for induced currents has
been a controversial and often confusing topic. Articles by Michalski [3], and others
have clarified the alternate SEM representations for induced currents. Heyman and Felsen
[4], have even developed a hybrid representation for induced currents and scattered
fields using both geometrical diffraction theory and natural modes.

The natural mode representation of the SEM has been more recently employed in the
framework of electromagnetic system identification, particularly in the context of non
cooperative target recognition (NCTR). The complex values of the natural resonance
frequencies of the current distributions which can be induced on the scatterer are
dependent upon its physical composition and geometry, while being independent of the
aspect and polarization of the incident field. This has led many researchers to believe
that a viable NCTR technique could be based upon the identification of the natural
resonance frequencies contained in the scattered field echo signature. Having no
comprehensive guide as to the exact SEM discription of transient scattered fields, eally
proponents of natural resonance NCTR usually assumed a simple complex exponential sum
model for the echo signature. Several methods exist for extracting the complex natural
resonances from this model. Most of these techniques are variations of the classic
Prony's method (circa 1795), which has been resurrected and improved upon by Van Blarlium
(5) and several others.

As will be shown, the simple exponential series model, which is known as a "class I"
SEM representation, does not provide a complete description of the transient scattered
field. In particular, the scattered field can be separated into two time segments: that
due to the driven current distribution, known as the "early-time" field, and that due to
the undriven natural mode current distribution, known as the "late time" field. Only
the late-time field can be accurately represented by the class 1 SEM form.

If it were not for the noise and clutter pollution of the received echo signal, it
would be a simple matter to base NCTR only upon the late-time portion of the scattered
field. Unfortunately, in many cases of practical concern, only a small percentage of
the total scattered signal energy remains in the late time portion. This condition may
thus result in a much reduced signal to noise ratio (SNH) in the class I portion of the
signal. Compounding this problem is the well documented intolerance of established
natural resonance extraction methods to low SNR. Typical SHE requirements for even
moderately accurate pole extraction is in the range of 15 to 20 dB, [6]. These practical
concerns motivated the work to now be described, where a complete signal model is
presented for use in developing efficient natural resonance NCTR signal processing
strategies. The theoretical development, whose major results are presented in this
paper, is more completely described, with derivations, in a previous publication by this
author, [7).

THE NATURAL MODE CONCEPT

Consider the transient electromagnetic scattering problem as depicted in Figure 1,
wherein a perfectly conducting finite-sized object is being illuminated by a generalized
incident field, (not necessarily a plane wave) in free space. The induced current on
the surface of the object will satisfy the magnetic field integral equation (MFIE), (8,

J~r.t) - 2 n x HN (r,t) K r,r'). J(r, t-Ir-r'l/c) dS 1

Sv
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where n iis the outward (to the surface) unit normal vector, J is the surface current
densityR is the incident magnetic field at the surface, K is a dyadic Green's function
kernel and the principal-value (PV) type integral excludes the surface point r - r.
The cross product of a and the incident magnetic field forms the "physical optics"
portion of the induced current while the surface integral term provides the "feedback"
current to each point on the scatterer due to all other induced current values.

With no incident field, the solutions of Eq.(l) are termed the natural nodes of the
scattering problem. These source free solutions each have the form of a product of a
spatial (on the surface) current distribution, kn(r), and a complex exponential term,

Jn(r,t) = 9n(r) exp(snt) (2)

Each of these surface current distributions will generate a scattered field mode. These
natural mode fields can be found through Green's function type surface integrations of
the respective current modes. For example the natural mode magnetic field is given by

Ran{r,t) z G(r,r' ) Jn(r,t -,r-r', /c) dS #4nS(r) exp(snt) (3)

S
where it should be understood that the spatial position vectors r and r' represent points
on the scatterer when used in reference to the surface current distribution, while for
the case of the field quanities the r-vector represents all spatial positions both on and
outside of the surface.

Since the currents and fields in Eqs.(2) and (3) are assumed to exist at times when
no incident field is illuminating the object, the complex natural frequencies,

an = 5'n ' j On (4)

are functions only of the geometry and physical composition of the scatterer. These
complex natural resonances may thus have the potential for use in aspect and
polarization independent identification of scatterers. Some additional properties of
the natural resonances are:

(1) The a 'a appear in complex conjugate pairs as a result of the "real" nature of
source-fren induced currents in physical problems

(2) The real part of each a is less than zero to produce exponential decay of the
magnitude of each mode, corresponding to power being radiated away from the
scatterer (radiation loss)

(3) The index "n" is an integer for the case of finite sized conducting bodies, as
has been shown by Marin, [9]. There are also an infinite number of natural
resonances, even for the simplest scattering shape. In practice, however, only a
finite number of resonances will be significantly excited by an incident signal of
particular frequency bandwidth.

Assuming that the incident field had previously illuminated the scatterer and then
had identically vanished for t > t , the source free current distribution on the surface
of the object and the correspondin scattered field will each be a weighted superposition
of their respective natural modes

J(r,t) Re{ A. J (r,t) ) Z IAn 'n a cos(JAt n) (5)

H(r,t) Re) nt A Hn(r't) Z -Ani n exp(dnt) cos(ult n) (6)inon

The exponentially decaying sinusoidal series results from the complex conjugate nature of
the pole-pairs, while the phase offset, On' is the phase of the complex amplitude, An .

The natural mode currents and fields are thus seen to be akin to generalized source-
free "steady-state" solutions which, although decaying due to outbound radiation, are
self-sustaining in the absence of any further excitation from that which provided their
genesis. Furthermore, one can view the integral equation in Eq. (1) as a continuous
"feedback system" equation where the undriven modes are space-time distributions whose
feedback to each surface point from all other points exactly sustains the form of the
distribution, both in magnitude and phase.

PLANE WAVE IMPULSE SCATTERING

Having introduced the concept of source-free natural modes, let us now investigate
the form of the scattered field due to an incident plane wave impulse. The situation is
depicted in Figure 2. The impulsive plane wave is moving with the velocity of light in
the direction indicated by the unit vector, p. To provide generalized results, let us
define the origin of our coordinate system to be located at the initial "impact" point of



the incident plane wave on the scatterer. In addition, assume that t:0 when this event
occurs. By considering a delta function plane wave, we can then use convolution to
obtain the scattered field which is due to any form of transient plane wave illumination.
This is directly analogous to the concept of impulse response in circuit theory or
Green's functions in mathematical physics.

As was initially discussed, the scattered field response to the plane wave will be
composed of two parts: an early-time driven response and a late-time natural mode
response. To see why this is true, let us look at Figure 2 and reconsider Eq.il). Note
that the impulsive plane wave incident field will be identically zero everywhere on the
surface of the scatterer except on the conformal ring which circumscribes the surface at
the intersection with the plane wavefront. The plane wavefront is indicated by the
dashed line in Figure 2. This conforming source ring on the scatterer's surface changes
shape and position as the wavefront moves over the scatterer at the velocity cf light.
From Eq.(2), the surface current at points on the wavefront ring will be composed of both
the direct "Physical Optics" term, 2 n x 1 and a contribution from all previously
illuminated points on the scattered. These points, which reside in the "wake" of the
incident field, are dot-shaded in Figure 2. Because of causality, there is no induced
current on the remainder of the scatterer, at points "ahead" of the incident wavefront.

Let us now consider the resultant back-scattered far-field (in the direction -; at a
very large distance) due to the surface current distribution. This "echo" field will be
due to a surface integration of the same form as in Eq.(3), but where the Green's
function can be simplified because of the far-field assumption, [8!,

Hs(-rpt) p .a J(r', t -Ir-r' /c) dS' 7)
4tfcr )t L

S

Upon substituting Eq.( ) into Eq.(7), two distinct terms result: the "physical optics"
scattered field generated by the 2 i a Hi driven current and the scattered field produced
by the source-free "wake" current behind the moving wavefront,

HS(-rp,t) H po(-rp,t) - Hw(-rp,t) .B1

The physical optics current can be shown to be directly proportional to the second time
derivative of the silhouette area of the scatterer 1[01. This fact provides the basis
for an alternate means of NCTR, based upon ramp response imcging, l1:. The second
component of the scattered field is due to a source free current distribution on a time
varying portion of the surface of the scatterer. It is shown in [7) that this wake
current can be represented by a class I SEM expansion, with constant coefficients, as in
Eq.(5). However, because the surface area is changing in Eq.7), wherein the wake
current integration takes place, the resultant H will contain the same exponential
resonance terms as the source free current, but witV time-varying coefficients until such
time as the field results from a (omplete surface integration. This form of the SEM
expansion is termed "Class 2". The ba(kscattered far field can be represented by the
following generic equation:

HS)-rp,t) - ult r/c) ) Hp (-rp,tl n Cn -rp,It ep(sat,

where the time-varying expansion coefficients become constant coefficients after a delay
of 2D/c from the initial field turn on at t r/c. D is the length of the scattering
object in the direction parallel to p. At this same transition instant, in goiig from
the class I to the class 2 SEM forms, the physical optics field vanishes and there
remains only the constant coefficient expansion. This "early time' scattered field is
thus composed of both a physical optics term and a class 2 SEN expansion, with time-
varying coefficients, while the "late time" field can be represented by a simple class I
expansion which contains aspect independent natural resonant frequencies, a n .

The general case of bistatic scattering at arbitrary distance (not necessarily in
the far field) has been considered in [7). If r is used to represent a particular
scattered field point and r' is used to denote points on the sur-face of the scatterer,
then the time at which the physical optics field reaches r from r' will be

t : p. r' , Ir - r'{I/c (10)

By allowing r' to vary over the surface, one can define the minimum and maximum of t
The early-time field at r begins at t - min(t ] and ends, with transiti"n to the la-
time when t = max[t 1. Two special far-figyd cases result from this analysis: (1) the
backscatttered casR, wherein the early-time duration is 2D/c and (2) the forward
scattering case where the early-time duration is of measure zero when illumination is due
to a plane wave impulse. These two cases represent the extreme in possible early time
durations.

Consider now the forms of the natural resonance representations for the general case

hm mm m ~mmmmmml~m mmm m mmmm~m~mmA&_
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of an incident plane wave which has time modulation f(t), instead of a delta function.
This f(t) can represent such radar waveshapes as AM pulsed CW or FM chirp-type waveforms.
Assuming that f(t) is time-limited, with duration Tthen the resultant time before
transition to the late time in the scattered field will, at all observation poInts, be
lengthened by T vis-a-vis that for the impulse illumination.

DISCUSSION

The motivation behind this original effort nt quantifying the SEN form for the
scattered field was the need for proper signal processing models on which to base NCTR
using natural resonances. This was quite important in light of the fact that many

researchers (the author included) had met with failure in attempting to "extract" the
natural resonances from experimental and numerical scattering signatures while assuming a
class I SEN signal model for the entire time signature.

With the discovery of the impropriety of the class I SEW model as a complete signal
description, a new and quite serious problem became apparent in regards to the practical
implementation of aspect independent NCTR based upon natural resonances. For the case of
typical convex "low-Q" metallic targets, having rapidly decaying natural resonances, only
a very small percentage of the total signal energy will remain in the late time
signature. As previously mentioned, class I pole extraction methods require relatively
high-fidelity signals which may be difficult to attain in even a friendly radar
environment.

It thus becomes of paramount importance, in implementing natural resonance NCTR in
the real world, to investigate methods for eitcattered field
signature to enhance the recognition process and/or circumventing the sensitivity of
natural resonance processing methods to low SNR in the late-time signature. Blending the
concepts of physical optics imaging with natural resonance NCTR may be the key to the
first approach while employing non-extraction type processing, such as the K-pulse to be
considered in a separate paper by this author) will follow the second technique.
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Summary

When observed over long periods, scattered returns from targets illuminated

by broad band signals reveal distinctive features in the early and late time
regimes. The features can be explained in terms of the different wave phenomena,
progressive and oscillatory, that are dominant during these respective intervals.
The former represent wavefront arrivals, and the latter full body resonances. A
recently developed hybrid theory has formalized the connection between them and

('\ has provided new interpretations that did not emerge in earlier treatments. These
interpretations can clarify issues which have arisen within the singularity
expansion method (SEM), in particular, the adequacy of the expansion at early
times. Here the hydrid wavefront resonance tneory is reviewed, first within the

rigorous context of scattering by a circular cylinder, and then via a ray analysis

of scattering by a general (composite) object.

I. INTRODUCTION

With the present trend toward short pulse excitation and the consequent broad frequency spectrum,

analytical models for these propagation and scattering problems must be able to accommodate early time

(high frequency) as well as late time (low frequency) characteristics. Two essentially different, but

complementary, approaches involve a description of the propagation or scattering process in terms of

traveling waves (wavefronts) or oscillatory waves (resonances) [1]. In a traveling wave formulation

[2,3], a causal wavefront is tracked from the source to the scatterer, where it undergoes an interactive

process that Is conveyed to the observer by successive wavefront arrivals corresponding to multiple

circumnavigations of the object and (or) multiple diffractions from scattering centers Ieated on the

object (Fig. 1). This description, which is sensitive to local features enountered along the wavefront

trajectory, becomes cumbersome at late observation times when many wavefronts (transient ray fields) hve

had time to reach the observer. Moreover, monitoring of the field at late times whvr lw freqcency

spectral contributions predominate also causes difficulties because high frequency met*hnn' sauh as the

Geometrical Theory of Diffraction (GTD). are not apblicable there.

" Source

Fig. I Interaction mechanisms for secattering by a typical composite object. Full and dashed lines

represent direct and multiple interactions, respectively.

The oscillatory representation, formalized by the Singularity Expaision Method (SEM) [4,5(,

emphasizes global features of the scatterer by expressing the field in terms of resonant modes which

are damped in time. Therefore, this formulation is most convenient for late observations times and the

lower frequency spectral components relevant there. However, the resonance expanscn Is deficient at

early times where damping is negligible and many resonances are needed to synthesize the abruptly changing

local high-frequency field near a (causal) wavefront. These convergence difficulties at early times are

manifested in the formal structure of the SEM, which evolves from the treatment of an integral equation

for the surface field, by the need to add to the SEM resonance series an entire function in the complex

frequency plane. A certain arbitrariness in the choice of this function and therefore of the excitation
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coefficients (usually referred to as "coupling coefficients") of the resonances has caused problems whih

have, however, been clarified in recent studies [6-8].

By incorporating self-consistently the well-behaved portions of wavefronts at early times and of

resonances at later times, the recently developed hybrid representation [9-15], provides a description
applicable and convenient for all times. Its foundation is a bilateral equivalence between wa-fronts and

resonances as cumulative phenomena of the one in terms of the other, which was first denonstrated

numerically and qualitatively in references [16] and [17], but which has been put in [9] on a rigorous

theoretical basis, utilizing the concepts of the GTD. Thereby a penetrating physical interpretation that

has remained hidden within the conventional integral equation format of SEMI has been furnished. The

wavefront analysis establishes the evolution of the resonances as a cumulative effect of the multiple

wavefront interactions and the role of the entire function which represents the contributions of the

direct interactions of the incident field with the scattering object (see Fig. 1). We call this function

intrinsic or non-removable entire function [10,11]. Py selective cumulative wavefront treatment, there

also emerge alternative choice for the SEM resonance excitation coefficients, and for the corresponding

turn-on times of the SEM expansion, as well as the related definition of removable (non-intrinslc) entire

functions. A remarkable feature of the resonance construction by wavefront summation is the accuracy of

the complex resonances, even including those at the lower frequency end, when high-frequency asymptotic

(ray) methods are used to approximate the scattering process [913,1 .18].

The preceding discussion makes evident the systemization achieved by placing the constituents and

concepts of SEM, as derived from the integral equation approach, within the framework of wavefront

representation and GTD. By retaining certain wavefront fields Intact while treating the remaining ones

collectively to yield resonances, one may obtain alternative expressions that highlight different aspects

of the scattering process and resonance formation. Success in this endeavour depends critically on a

systematic ordering of the multiplicity of wavefront events. For simple structures with few ray

species, this ordering is straightforward [9,10,13-15], but for more complicated configurations with

multiple scattering centers and/or multiple reflection points, the number of ray species proliferates.

Here, use of flow diagrams as in systems theory [19] can provide an overview that places in evidence the

totality of multiple interactions and therefore their collective role in establishing each of the full-

body resonances. For targets comprising composite substructures (e.g. Fig. 1), one may also consider

partial resonances characteristic of each substructure in isolation, and then explore the perturbation of

these isolated resonances when the substructures are assembled to form the composite object. By this

approach, it is possible to explore the effect on the resonance map caused by changes in a substructure,

thereby providing insight Into the scattering mechanisms that establish a compound resonance. If the

coupling between subsystems is weak, the resulting full-body resonances are expected to be only weakly

perturbed from those of the Isolated subsystems. This feature may facilitate a parametric

Identification of certain class of scatterers which have distinct groups of partial resonance. A special

class of such scatterers are those containing resonance mechanisms with relatively low radiation loss,

I.e., with high Q, such as open resonators, open pipes, dielectric scatterers, etc. In such cases some of

the full-body resonances are located near the high Q (partial) resonances.

It should be noted that the general scheme in this paper addresses multiple interaction and resonance

phenomena in a broad sense, with ray terminology employed to Identify wave transport and interaction

trajectories. Along these trajectories, the time harmonic field may be expressed by the ray approximation

and is then subject to the rules and constraints of GTD. However. the field may be expressed more

generally by a "better" wave function, for example a ray Integral spanning a spectrum of local plane

waves whose stationary phase approximation yields GTD but which, when kept Intact, is uniformly valid in

transition regions where GTD faiis [I]. Moreover, such spectral integrals, when Inverted into the time

domain via the Spectral Theory of Transients (STT) [20.21 ], yield expressions valid for longer

observation times that the wavefront approximation corresponding to GTD. Although not emphasized

throughout the discussion. the foregoing general features should be kept in mind. In a similar vein, the

presentation here is slanted toward obstacle scattering, hut the concepts and techniques apply equally to

categorization and collective treatment of multiple ray events caused by reflection and (or) refraction in

layered media.

In what follows, the traditional SEM formulation is reviewed in Section Ii, but within the perapectives

noted above. In Section InI we examine the hybrid wavefront resonance theory within the rigorous context
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of diffraction by a circular cylinder where the traveling waves basis functions are known for all

frequencies, with ray terminology employed only to identify wave transport and Interaction events. The

rigorously derived results of Section III are generalized in Section IV, within the framework of high

frequency ray theory to scattering by a general (composite) object. Here diagramatic methods are

introduced for systematic ordering and subsequently "collectivizing- the multiplicity of wavefront

interactions. In both sections the discussion is pursued so as to highlight the wavefront interpretation

of the various SEM constituents, the removable and the Intrinsic entire functions, SEM turn-on-times, full

body resonances, coupled partial resonances, etc. The concept of the weakly coupled partial resonances is

examined in Section V and concluding remarks are made in Section VI.

II. SEN FORMULATION

As formulated by Baum [4,5] and established rigorously by Marmn [22] the SEM describes the transient

field for a perfectly conducting object of finite extent as a superposition of the natural mode-solutions

of the scattering Integral equation, which relates the field incident on a scatterer to the Induced current

and thereby to the scattered field. The eigenmodes represent damped oscillations of standing wave

solutions which, for an implied exp(-iwt) dependence, occur at resonant frequencies w', v-I.. in the

lower half of the complex frequency plane, and generate poles in the resolvent kernel of the Integral

equation. The induced current or the scattered field in the frequency domain may thereforo be written in

the form

v v

The field In the time domain results from the Fourier inversion

u(r;t) - w e-" LB;

with causality ensured by having the Bromwich Integration contour B pass above all singularities in the

complex .-plane. Here and henceforth, a caret indicates a frequency domain constituent while its time

domain counter part is written without this sy5bol.

By closing the integration contour In (2) about the lower half of the w-plane, permissilie only for
t>t 0 where the turn on time to is determined by the asymptotic properties of a. one obtains the time

domain resonance series representation of the field. The resonance excitation coefficients n
(
l
) 
in (1), thev

residues at the complex frequency poles, are designated in the SEM literature somewhat inappropriately

(since no Intermode coupling is involved) as "class I coupling coefficients, [4-8]. Class I coefficients.

in contrast with class 2, are frequency (or time) independent. In the integral equation procedure of SEM,

they arise from surface current integrations over the entire obstacle surface. In what follows. we shall

construct the scattered field explicitely by asymptotic diffraction theory without recourse to the

integral equation. It is thereby Implied that the interpretation of our results in terms of 5EM coupling

coefficients involves only "class I" since integrations over portions of the sattrer, as 'required for

"class 2" [6-8], have no counterpart In our treatment.

As shown, the pole series in (1) must generally be augmented by an entire function F(r;u) In the

frequency domain [4,5] which, in the time domain, corresponds to a finite Juration signal at early

times. The role of the entire function, and whether or when to include It. has caused confusion and

controversy, but has recently been partially clarified [6-81 by linking it to the time of initiation (turn-

on times) of the resonance series. Referring to the class I coupling coefficients only (as in (1)), it has

been shown [6-8] that there is a degree of flexibility in Choosing the turn-on time of the resonance

series, and that the series converged formally in a time interval before the arrival of the causal

excitation (see also [9]). However, In that interval, numerical convergenue difficulties arise for the

required synthesis of a null field [23,24]. Accordingly it has been conjectured in [24] that the turn-on

time for the class 1 coupling coefficients should be the arrival time of the incident wavefront along a

straight line path to the observer. If, on the other hand, the resonance series is turned on thereafter,

one should compensate for the early time field in the deleted time Interval by an entire function In the

frequency domain. In fact, the pole series in (1) may be modified via the formal identity [6)
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to express turn-on of the first sum at any time t-t'. The second sum on the right-hand side of (3), which

has been generated solely by a shift In the turn-on time of the pole series. has no pole singularitie3 and

thus Is an entire function that contributes the field between t-O and t-t'. In 110-121 it has been shown

that there Is, however, another type of entire function which is intrinsic to the scattering process.

This will emerge in the discussion to follow.

The above mentioned convergence difficulties at early times in the clasb I representation are

alleviated in the class 2 representation wherein a time varying region of integration covers only that part

of the object surface which has already been illuminated [6-81 (the region of integration may even be

smaller, extending only over part of the illuminated domain which has had time to contribute at the

current observation point). Accordingly, the class 2 coefficients are time dependent at early times, but

after the incident wavefront has transversed the entire structure and the domain of Integration spans the

entire object, the two types of coupling coefficients are the same. The greater computational statility

with class 2 coefficients comes at the expense Of certain complexities In the computation of these

coefficients, as well as in their use for interpretation of measured transient data.

The role and interpretation of these constituents in the SEM may be clarified by recourse to the

hybrid wavefront resonance theory wherein the wavefront play a crucial role that remains submergel in the

conventional SEM approach. These aspects are examined below within the rigorous context of liffraotion by

a circular cylinder, and then are generalized, via GTD construction of the field, t- more comtli ated

scattering objects.

I1. TRANSIENT SCATTERING BY A CIRCULAR CYLINDER

A. Formulation

Referring to Fig. 2, In a conventional cylindrical coordinate frame, an Impulsive line source is located

at '(py,$'l exterior to a cylinder with radius "a" embedded in a homogeneous medium with wave velocity

"v". The exterior observer Is at £-(p,$). Without loss of generality, it Is as umed that -0 a nd that

O<*s_. The transient field G(t) (transient Green's function) Is assumed to satisfy on the cylinder the

acoustically hard boundary condition

-/n = 0 (4)

where "n" is the normal to the boundary. We shall construct r(t) from the time harmonic Green's function

G(w) corresponding to exp(-iwt) by the Fourier inversion (2).

B. Conventional Construction of S90 Representation

In general, the singularity expansion of the field is obtained by solving the scattering integral

equations for the Induced current. In the present example, one may employ the cylindrical symmetry to

expand the current and the field into a series of angular harmonics as basis functions, and then solve the

boundary value problem for the coefficient of that series. The time harmonic Green's function obtained via

this procedure may be expressed as
*(,, . ( ,p,) * S ,, (5)

where

Is the Incident field (free space Green's function),

') H (I') H- l(k,
' )  

(7)

Is the scattered field and, for the boundary conditions In (4)

Sin(') - - 2 J'(Y)/H ( )'() , Y - ka - wa/v (8)

Here, p( and p) are, respectively, the smaller and larger of the variables p and p' and a prime indicates a

derivative of a function with respect to its argument.

The singularities of 68 in the complex frequency plane comprise a branch point at .- O and simple

poles w,p , p - 1,2,... for the m-th term In the series (7) (Fig. 3). The branch cut is chosen along the
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(b) Observation point in lit region. The teetria1 Ittic.

respectively, are represented by 0 (,q), The evrl f-t f, t r,.. fr .

are r, and (,). They are the first i, ., ty t-

thereby leaving O®(Pq') as a free term entire fan

negative imaginary axis to ensure symmetry on tne entire top ie,-r sre. 11X

singularities (the SEM resonances) are the roots of the equation

H W (Y ) . 1), M n U, .1, . . ...

on the top sheet -n/2<arg w<r/2. For I given m, tne index p is.no to'- ' ,..

where [s denotes the largest integer less than a. The pxle:i art, I , In of h . , ,

Y) plane, symmetrically with respect to the imaginary axis, i.e. in pairs -Cr that

5
p - ,p

where the asterisk denotes the complex conjugate *J Il~exp(-iari .1. Thnl IrfirJti, f tn - 1'!;1".0;

facilitates the physical interpretation of the wave processes shnown in *,. .

Im Y

-9-8-7-6-5-4-3-2-I m I 2 3 4 5 6 7 8 9
Re Y

Fig. 3 Singularities of in co~mplex Y - ka plane: branch cut, X X X polesl Ymp Anvmpltotl 1

solutions ror Ym are shown by dots when they deviate froM the exact solutions withir ne le sale

or the drawing.

The SFM representation of the time-domain field may be obtained by closing the integration contour in

(2) at Infinity about either the upper or the lower half plane. The time intervals legitimizing these
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closures depends on the asymptotic properties of the integrand In the complex w-plane. From (7) ano (H),

one finds that for t<p-p,-2a. the integration contour may be closed at infinity about the upper iialf- lane,

giving a null contribution. For t0p'p', the integration contour may be closed about tie singularitles in

the lower half-plane, giving

G
5
12,2 p.Gt) - .0 * - (i)

M lp m'pm--- p M-

where E' excludes the m-0 term (which has no poles), and p assumes values according to (9a). 15 tin. ,p
contribution from the pole w , respectively, to the m-th term in the angular harmonics series (7)

G± - -(Y) I (1) H Hi
( k 

) e lm-iut 2)

H. (Y) mp

The branch cut integral, taken along the contour Cb surrounding the branch cut in Fig. 3. is given cy

I -elx 
d

. e-
l

t I SM ()(k) (') H(y1)(k 0)

Using (10) and the symmetry relation of the Bessel functions in the complex argument plane (wr.h- the

branch cut is taken as in Fig. 3) one may verify that (G
+ 
* G. ) is a real function; the same is truemp -mp

for the residue contributions with negative superscripts and for (I * I).

The time intervals that legitimize the evaluation of the Fourier transform (2) by upper and lower alf

plane closure do not overlap (see discussion before (11)) and there Is a time interval p''-
2  

0,y' er,

the field does not necessarily vanish, yet (11) is not valid. In fact, it may be verified that depending )n

the observation point, the arrival time of the specularly reflected wave occurs somewhere in this ti-.

interval. Thus, in order to obtain a valid SEM expansion in that time interval, one has tc extract tni5

early time entire function contribution from the total scattered field in (7). The SEM representati-c in

(11) will then have to be changed accordingly; clearly the residue contributions will not change yet thy

branch cut integrals and the turn-on times will be modified. This procedure is describel in Its mst

natural and physically transparent way by the collective treatment of the travelling wave representatixn

via the hybrid wavefront resonance approach, as described in Section II.D below.

C. Travelling Wave Representation

1. Frequency domain solution

To construct a travelling wave (wavefront) representation, one utilizes a Green's function

representing an angularly propagating waves in an infinitely extended (non-periodic) angular coordinate

space (25). Accordingly, the field is separated Into contributions Vi and a- from positively and

negatively travelling waves,

where

- ~IG~(2.2~)(15)
J-0

and

* (P.e ). - . 2vJ . - 2(j.1) (16)
are the images of g in the infinitely extended # domain -- <#<.. The J-th term in (15) represents the

contribution due to the (JQ1)th positive or negative progression of the wave G travelling around the

cylinder in the unbounded angular space. The travelling wave 6' may be represented by a spectral integral

(25]

G'(£ 'd&- o e(,';w; 
1  

(17)

with the radial Green's function given by

c.p'; :w, - i [2J(kp,) n (Y) H (ko<)] H(')(k,)

Here p, and 0> are defined in (6) and for the boundary condition in (4) (e.. (8))

S (Y) - - 2J'(Y)/H')(Y)" , Y ka (19)

Alternatively, by closing the Integration contour in (17) about the poles of in the upper half of the

complex wplane. G may be expanded in terms of radial eigenfunctions *p and their adjoints ;p.
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p-1i.2 ... giving

- ~ ~(20)
p-1

with

K
1 
1 k p)H( 1 )(I( P.

up up4,

and
(1i )'( =0 a sx

S0 at i, M(22)

A prime or an overdot denote differentiation with respect to the order or argument of the Hankel function,

respectively.

In the complex frequency plane, the wave functions of (21) are analytic except for a branch point
p

singularity at a-O. For symmetry, it is convenient to choose the branch cut along the negative imaginary

axis (Fig. 3), thereby defining the top Riemann sheet in the complex w-plane by -v/2<arg w<3w/2. With this

cut, is(Y) satisfies the symmetry relation
$(Y) - - (Y'eiw) (23)

Accordingly, G' possesses similar symmetries which ensure that the transient response of each wave species
p

is a real function.

At high frequencies, such that Y>>, one finds that

S- Y• A' ( , •0/2)' -(Y- , - ' e l 3  
(24)

P. p !P p
where a is the p-th zero of Ai(-.;) - 0. Accordingly, the asymptotic approximation of (21) is interpreted

in terms of the GTD creeping rays which propagate around the cylinder and shed energy along tangents into

the surrounding medium. For various source-observer configurations, either near or far from the boundary,

one may extract from (21) the appropriate ray diffraction, attachment or launching coefficients [263. Here,

we choose source and observer far enough from the boundary to permit formation of well-defined

illuminated and shadow zones. It then follows from (21) that use of the Debye asymptotic form of the

Hankel functions when the argument is kp or kp', and of the Airy function approximation when the argument

is Y (25), leads to the reduction

- - (Y,2)'/' e ik(505') eiCpt (5

p & wg(&') k.'ssr(5

where p,-(up/a) is the wavenumber of the creeping wave along the boundary, and w,(a) - / [Bl(s)-i Al(a)].

Referring to Fig. 2.

s - . s ' (26)

are the lengths of the tangent rays from the source and the observer to the boundary, respectively, and

t- I* - sin-'() - sin-'(2) (27)
p p

is the path length along the surface between the points of tangency. From their definition, t1O and >0

define the shadow and lit regions, respectively. Referring to (16), all the images are in the shadow

except possibly for the J =0 term which is in the lit r gion if e Is in the lit region (since we have

assumed that O<e<w, the j -0 term is always in the shadow).

Since the roots a; In (24) are well approximated by [(p-3/4)3v/2]
/
.

, 
then for Im V > O, the wave

functions in (25) decay in the shadow region >0, and furnish there an efficient approximation for the

field in terms of creeping waves. In the illuminated region 1<0, the initial terms with p-oiY) in the wave

series (20), contributed by (25), grow although the total se-les of exact elgenfunctions (21) converges

[251. The growth of this part oF the series Implies that convergence Is not uniform in the frequency

domain. Accordingly the representation in (20) is inappropriate In the illuminated region for the high

frequency range and also for determination of the time-dependent Green's function since the Fourier

inversion Of the series cannot be preformed term by term. Therefore, the field in the illuminated region

must be treated in another fashion.

Recalling that only - is located in the illuminated region, we express its contribution by tbe

spectral integral (17) which yields asymptotically the direct and reflected ray fields of geometrical

optics [25]

. ... t .. ... ..
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Gd(2,2) - eikLd+lr/4 Gr eikL( i
)  

R eikLsr(28a,b)
/9 wk L daTr 3/,Lrl/ r

respectively. Here, Ld is the length of the direct ray from 2' to while Lr and Lr are the lengths

along the reflected ray from 2' to the specular reflection point on the cylinder, and from Ps to p,

respectively (see Fig. 2(b)). Also. Rs-1 is the boundary reflection coefficient at the specular point, and

Dr is the radius of curvature of the reflected wavefront which depends on the angle of incidence 01 and on
the local radii of curvature of the incident wavefront (p iLr ) and of the boundary,

1 1 2 (29)

Dr 0i a come (
2. Time domain solution

The transient fields are obtained by Fourier transforming the time harmonic wave species discussed

above. For observation points in the shadow region, where the time harmonic series converge uniformly as

discussed after (27), the various wave fields are described term by term by the transient ,ounterpart of

the series in (14), (15) and (20). The same representation applies for observation points in the lit region

except for the contribution from G( 2 ,2 ') which is described by the spectral integral (17) because of the
convergence difficulties noted above. We begin with the evaluation of (17), which represents in the lit

region the dominant and earliest field contribution as expressed by the geometrical optics field.

a. Geometrical optics field

For observation points in the lit region, Gp,2') of (17) is given asymptotically by the sum of the

direct and reflected ray fields in (28a,b). The Fourier transforms of these expressions are, respectively,

I v H(vt-Ld) I v I H(vt-L r)
d( , ) r(2,2

' )  
- v __r r

d Ld . V-_L

where the Heaviside function H equals zero or unity for negative or positive arguments, respectively, and v

ls the wave velocity in the medium. These signals turn on at t-Ld/V and at t=Lr/v, the arrival times of

the direct and reflected rays, respectively. Resulting from saddle point evaluation of (17), expressions

(30a,b) represent constructive interference of a very narrow spectrum of plane waves around the central

geometrical ray. Therefore, these waveforms are limited to a short time interval behind the wavefront

(after turn-on), and are called therefore wavefront approximations.

A representation valid for longer time may be obtained by utilizing a wider spectral range around the

geometrical ray. This can be done by utilizing a non-dispersive plane wave (WKB) approximation of the

integrand in (17), with subsequent closed form evaluation of the Integral via the Spectral Theory of

Transients (STT) [20,21 ], which is a generalization of the Cagniard-deHoop technique [27]. The STT

derivation of these transient waveforms for the present example of transient scattering by a circular

cylinder is given In [12].

b. Creeping Waves

Except for the lit region, where the 0(2,2') integral describes the the geometrical optics field, all
other terms in (14) and (15) are expressed by the radial eigenfunction expansion in (20), with (21). For a

typical term G( 2, 2 ', one observes from (24) and (25) that

8(2,g') - O(eiL) L - s-s'.l (31)

where :. Is the total diffracted ray path from 2' to 2. Accordingly, G'(p,2') vanishes before t - L/v so

that the J-th term in (15), whic., represents the contribution from the J-th circumnavigation of the

composite travelling wave, turns on at t - Ll/v, where Lis the ray path of that wave, (obtained from

(31) and (27) with * replaced by t in (16) (see Fig. 4).

After turn-on, G is resolved into the creeping waves given by the Fourier transform of (21), which

cannot be found explicitly. However, near the wavefront (t>L/v) the main contribution to the integral

comes from high frequencies, whence G0 may be approximated by Fourier transforming the asymptotic
p

creeping ray field (25), yielding the result

0(2,2,) - 2_I'3 aw 6 AIld) H(vt-L), 6 (t,L) - ap[6(vt-L)/aI'
/

' (32)
P A((-a) P

., .
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Observer* jal

-Wavetront of the positively
revolving creeping wave

Fig. 4 Wavefront contributions from positively revolving creeping wave. Only wavefronts with small index

j such that Lj < vt contribute at time t.

Equation (32) is an exact evaluation of the Fourier integral of the asymptotically approximated creeping

wave field (25). Accordingly, its range of validity may be estimated by requiring that the approximation

(25) of the integrand will be valid in the vicinity of the stationary point of the phase of the integrand

which yields the main contribution to the integral (see Fig. 5). Accordingly, (32) applies as long as

IY - liap 6-3'/I >> p, (33)

where YS - wSa/v is the stationary point and 6 is given in (32). Since this condition imposes a restriction

on the observation time after the arrival of the wavefront of the creeping wave, (32) may be used to

describe only the contributions from the latest passes (see Fig. 4). Contributions from the earlier

passes (fewer revolutions or small j) are dominated by low frequency components not accommodated by (32).

However, by the hybrid representation of [9], the contribution from the earlier passes can be combined

into low frequency SEM resonances.

IMW

Fig. 5 Complex u-plane for the Fourier evaluation of the creeping wave result in (32). The range of

validity of (32) is estimated by requiring that the integrand in (25) will be valid along the
steepest descent path (SDP) which pass through the saddle point .. " B is the original integration

contour in (2).

D. Collective Summation of Wavefronts: SEN Representation

1. Frequency domain solution

The series of arrivals in (15) can be readily summed in closed form since, 3s follows from (16) and

(21), the index j appears only in the angular phase term. When the observer is in the shadow region, all

terms j > 0 can be treated collectively to yield

p-1 1-ei21i (34)

with 1 given in (16). However, for observation points in the lit region, since the J+ - 0 term in G is

represented by the spectral integral (17) (see discussion after (27)) and cannot be included in the

collective treatment, the sum starts at j - I, giving

-2,
' " (2,.') - ( ,'

i presnais (35)

The summation for G-starts at J--O as in (34I). The field representations in (341) and (35) consists of a
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collective term that give rise to the SEM resonances in terms of the roots of the denominator, plus a

possible free term (in (35). for observetion point In the lit region) which does not have the SEM pole

singularities and may be interpreted as the SEM entire function. We shall consider these terms in

sequence.

2. The resonances

The collective terms in (34) and (35) generate a field representation in terms of SEM resonances. The

numerators represent the field r; of the first creeping wave included in the collective sum:j
5 - 

0 in the

shadow, and J+-1 for Z, J-O for G- in the lit region, respectively (see Fig. 2). The denominator

represents the collective erfect due to all subsequent revolutions. The roots of the denominator, in the

lower half of the complex u-plane, define the poles P.M of the scattered field via

ep(Yp,m) - m, m ± (2p-1), v 2p .... (36)

which states that for a resonance, the phase accumulation in a complete revolution must be an integer

multiple of 2. From their definition in (36) and (22) one may readily verify that the resonances are

identical with those defined by (9). Moreover, it follows from (36) that for a given p, the resonances lie

on the p-th layer in the complex w-plane (Fig. 3) which generates the singularity expansion of the

angularly progressing p-th creeping wave. For given m, the resonances lie on arcs in the coDnplex

.- plane, and define by this grouping the conventional angular harmonics that are oscillatory in the

angular domain (c.f. (7)). The value m of up at the resonances is in agreement with (9) and Ida). The

resonances defined by the indices (mp) in (36) are located on the upper Relmann sheet -/2 <arg < 3s/2.

Other poles with other values of (m,p) are located on the lower sheet (e.g. poles with m - I, .... 2(p-1) are

located on the continuation of the p-layer in Fig. 3 from the forth quadrant -f/2<arg .<O to the third

quadrant -m<erg .<-/2 in the lower sheet)

3. Time domain resonance series

The SEM resonance series (including the branch point coatribution) Is generated by evoluatior f the

inversion integral (2) through contour deformation at infinity around the lower half plane frequency in the

complex frequency plane. The ability to deform the contour in the upper or lower halves depends on tne

convergence properties of the integrand. From (24) and (25), one may infer the dominant behavior as

follows:

rexpikL] , Im > 0 (37,a

collective term-

exp[i(L-2.a)] Im u < 0 (37t)

where, L defined in (31) represents the length of the surface ray paths associated with the wavefronts in

the numerator of the collective term, i.e., L - L and L - L* for the collective terms of (34) and of (35),

respectively. Thus, the field vanishes for t < L/v since, in view of (37), the Integration contour of (2)

may be closed at infinity in the upper half plane. After that time, the integration contour may be closed

about the singularities in the lower half plane to yield for 2 in the shadow region two real series

r012,R') - H(vt-L) e (IF G± p21)v (39)
p-1 m p

with residue contributions that are real for pairwise (symmetrical) m and (-m),

5it (1) (1)-  
m )

i r
-iwt (39)

" 2wa£(Y) L . P.m

and (real) branch cut contributions from the p-th term in (34),
e-iR/2

Gp'c(2,2') -- e
1

- '
t

e w ( 0 . 2 9 (h0)

In view of the relation
(1)'

e (Y) H (Y) - H (Y)

the pole contributions may be shown to be Identical with those in (12). Thus, (38) defines two real SEM

transient series, one for the positively, and the other for the negatively, revolving travelling waves.

Each "turns on" at the "physically correct" arrival time of the first wavefront OF the corresponding wave
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species. Note also that the p-th term in (34) and (38) may be considered as the SEM representation for
the field of the positively or negatively revolving p-th creeping wave. The m-summation in this case. with

p constant, goes along layers in the SEN pole map in fig.3 (see results of numerical summation in [161).

q. The intrinsic entire function

For observation points in the lit region, the SE representation of G- is unchanged whereas the one
of G* follows from (35) and contains, in addition to the collective term, the GO field as expressed by

6'(2,29 (cf. Sec. III.C). This term, a spectral integral, does not have the SEM pole singularities and,
except for the branch point at . - 0 (attributable to the two-dimensional problem here), is analytic in the
complex frequency plane. It can therefore be interpreted as the SEM intrinsic (non removable) entire
function. In the time domain, it yields a short duration signal, as discussed in Sec. II.K.2.a, which turns

on at the arrival time of the GO rays, i.e. before turn-on of the diffracted wavefronts expressed either
by the travelling wave expansion (15), with (32). or by the collective term in (35). This latter term

yields, in the time domain, the resonance series (38)-(40), with 2o , p,. Note that since sr-o+ 2, and

at .P , the residue contribution is the same as in (39), but the turn-on time of this expansion 1s now
the arrival time t - L,/v of the first positively revolving creeping wave and is later than that of the

geometrical optics field (see Fig. 2(b))

5. The removable entire function

As explained in the Introduction, one may generate another type of entire function ly switching the
resonance series on at some time after the physical turn-on time. Since this entire 'unction may be

absorbed into the SEM representation by turning on at the physically correct time, it is non-intrinsic

(removable). This function appears if the collective summation of travelling waves in (15) is started not
at the first possible revolution (lowest J, e.g. J= 0 for (34) and J+ = I for (35)) but after, any given

number of revolutions. say J (see Fig. 6). Thus

J-1

= p 1- e
2 

,,

where the singularity-free explicit contributions from the first J revolutions in the first sum can alo,

be written collectively in the form

J-1

p=1 1-e2" p

Clearly, in view of (36), the poles in the collective expression on the right hand side of (k) are

cancelled by the zeroes of the numerator. Thus, the wavefronts on the left-hand side of (42) arc soen t'

provide an Interpretation for the removable entire function on the right-hand side, and thereby for the

entire function on the left hand side of (3), which has been constructed (as in [6,) ny formal

reirrangement of the full resonance series with delayed turn-on times. The collective term in (41)

(second term on the right hand side) is equal to (34) multiplied by exp(12rJwp) (see (16) and (21)), whence
after Fourier transforming into the time domain, it yields an expression similar to (38) with the same

resonances as in (39), but turn-on time t L /v, the arrival time of the first (the J-th) wavefront
Included in the collective treatment.

SEM
(collective wavefront)

Observers -~J-1 .Obserer •Source

Fig. 6 A hybrid representation of the scattered field wherein the first J wavefronts are kept intact
whereas the remainder are expressed collectively via SEM (cf. (4i)).
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E. Hybrid Formulation

To circumvert the various analytical, conceptual and computational problems associated with either
the wavefront or the resonance expansion schemes in certain time intervals, one may explore hybrid

formulations that combine wavefronts and resonances (usually with a remainder term) in uniquely aefined

proportion, so chosen as to minimize the source of difficulty. The strategies for constructing these

forms, and the resulting expressions for the transient field, have been given in [9]. We shall therefore

not pursue this matter further.

However, one may note that utilization of the removable entire function in See. IV.D.5 also generates

a hybrid representation as schematized in Fig. 6, where an arbitrarily selected number f creeping wave

fields is kept intact, and the remainder is expressed in terms of resonances (plus a branch cut integral).

As seen from (4i) and (12), and the discussion thereafter, all of the resonances contribute here with the

same excitation (coupling) coefficients, but with delayed turn-on which diminishes the dominant excitation

amplitude from the j - 0 creeping wave to that of the first creeping wave j - J included in the collective

treatment. Since delaying the turn-on time implies reduction of the high-frequency spectral components in

the response, this procedure improves the convergence properties of the resonance series as well as

reducing its overall importance.

IV. WAVEFRONT ANALYSIS OF SCATTERING BY A GENERAL OBJECT

The basic observations derived in Sec. III regarding the wavefront resonance interplay, may be

generalized to more complicated targets comprising composite substructures. Here, the target response may

be described by wavefront interactions between identiflable scattering centers on the scatterer, and the

totality of multiple interactions can be "collecterized" in many alternative forms. This approach however

requires a systematic ordering of the multiplicity of wavefronts corresponding to successive scattering

events on the target as provided by the system flow diagram.

A. Ray Formulation of the Scattering Process

1. Ray expansion

The response generated by a field incident on a complicated configuration may be analyzed in terms of

simpler (canonical) scattering events and the Interaction between these events. The choice of the

canonical constituents is not unique but is influenced by the ease, or not, of treating each in isolation

and then accounting for the mutual interaction. Within the framework of ray theory, a scattering event is

taken to designate any process that converts an incoming ray into an outgoing ray. Scattering events

therefore include processes of reflection and refraction at a boundary, refraction by medium

inhomogeneity, diffraction at an edge, etc. The interaction process between (isolated) scattering events is

described by the propagation function, the ray optical amplitude and phase, that connects successive

scattering centers. The scattering centers, which identify where the scattering process takes place, may

be at a fixed location, as at an edge, or they may correspond to different points on a surface, as for

reflections from smooth boundaries (see Fig. 1).

To construct the hierarchy of scattering processes caused by direct scattering of the incident field

and by subsequent successive scattering events, we shall assume N scattering centers and identify by the

index p - 1,...N and their locations by the coordinate vector r p. We also define a scattering function

(rrp .which expresses the field at a point r caused by scattering at rp of a ray field with unit

amplitude arriving from a point T. Thus S(r,rp;C) includes the scattering process at rp (normalized with

respect to a unit amplitude incident field from the direction of F) and the propagation function between rp

and r. For time-harmonic ray field, it has the local plane wave form

S(r,r p;) - A(r,r p;)exp[ikg(r,r p) (43)

where A is slowly varying amplitude function, which may be proportional to an inverse fractional power of

the reference wavenumber k, and ky is a rapidly varying phase. The function 4, is independent of k to the

leading asymptotic order, and equals to

-pr~ L(r~r p (44)

where L(Urp) is the (optical) length of the ray trajectory from rp ti r. The higher order correction

terms are such that they have a positive imaginary part for Im . > 0. Finally, for vector fields, the

scattering function is a vector function that depends also on polarization (a dyad).
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The total field u(r) is given by

, (r- _ G(J)r.)(45)

J=1

with the contributions u(J)Cr) ordered according to the number J of interactions that have taken place

before reaching the observer at r and J-1 accounting for the direct scattering of the incident field u at

the scattering center r.. Thus, if the source located at r' establishes at r p the incident field u(r p;r')

u (rp), one may write

1)(r) - j ul(r p)S(r,rp;rl) (46a)

p

and express the field u(J)(r) by iteration as

J )= q u(J
1
Cr ) S(r,r p;r , j > 2 (46b)

p,q
With the indices p, q and Z extending ovejr the N scattering centers, u()(r p;r C, the ray field incident on

r from r after j interactions can be found recursively as
-p -'q

(J) rr ) -1)(r q; C S ,rr Cr , j > 2 (47a)

)(r; ) u (r q)S(r p,r q;r'
)  

(4Th)

In most time-harmonic applications the scattering amplitudes associated with A in (43) are reduced by

successive scattering events, thereby permitting truncation of the interaction series (45). This is not the

case however in certain applications, in particular those involving high Q resonances, where the

implementation of (45)-(47) in its stated form is clearly nonfeaslble. One must therefore attempt to sum

these multiple interactions collectively to synthesize the high frequency field. In the time domain,

truncation is automatic, due to causality. The wavefront fields are ordered according to their arrival

times along paths corresponding to the phase C, in ('3), and constituents with long composite travel paths

are eliminated at early times, thereby making the recursive approach a workable option. As time goes on,

not only does the number of arrivals increase, but the high-frequency ray model as in (43) fails to

describe the fields of the early arrivals, far behind their wavefronts. Therefore, alternative methods,

based on collective treatment of many wavefront fields, must be considered also at later times in the

transient domain. In this collective treatment, limitations imposed by GTD approximations (if these have

been used) must be kept in mind.

2. Implicit collective representation via matrix formulation

To proceed, it is desirable to reformulate the iterative equations (45)-(47) in matrix form. Summing

over j we obtain

u(rp;rc - U(rq;C) (rp-r.q;. V (r) Crr;r) (48a)

u(r) - T ' (rq) S(rr ;r') - Y (,r) (r,rp;r C , (48b

q p,q

where t,p,q - 1...N. This represents a system of N
2 

equations for the unknown total fields U(lr ;r q) at

rp due to all ray fields coming from r q. Equations (45)-(4?) may be regarded as an iterative solution of

(48). To affect a collective representation, (48a) will be solved alternatively in terms of the inverse of

the matrix (I-q), wherein I is the identity matrix and S is the (N
2 

x N 
2 ) 

matrix of the scattering

functions (r p,r ;r E) on the right hand side of (48a). In the frequency domain, the zeros of the

determinant of (1-§), which appears in the denominator of its inverse, are the SEM poles of the frequency

response of the scatterer (their accuracy will depend on the approximation, if any, incorporated into the

scattering function). Fourier transforming into the time domain, the transient response may then be

expressed in terms of the residues of the inverted matrix at the poles. thereby generating the SEM

resonance series representation. Physically, the collective representation accounts for multiple

interactions which occur along any closed ray path encompassing some (or all) of the scattering centers in
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a certain order. Resonances are consequences of self-consistent closure of the ray fields along dor a

path. Due to coupling between various closed paths (each scattering center may interact not only with one

other but with many centers), the partial resonances for a single closed path are perturbed, and the

resulting mechanism for generating the composite resonances is not easily discerned from the matrix

treatment of (48). Moreover, the asymptotic properties of the inverted matrix, of importance for

determination of turn-on times and convergence of the resonance series in the time domain, are not

explicit, but hidden within the formal treatment. For clarification of these features, it is suggestive to

resort to a graphical representation of (45)-(47) in terms of a signal flow graph, which yields the

determinant and the inverse of the matrix explicitely in terms of the scattering function along the ray

paths.

B. Flow Graph Representation

1. Construction of the graph

A signal flow graph is an operational diagram, in which weighted directed branches indicate the

operational relation between nodes that correspond to a set of variables describing the state of the

system. The "flow" incorporates the causal relationship among the variables and the graph as a whole but

permits insight into the dynamical properties of the system. These features have been exploited for

engineering analysis of complicated system configurations [19).

In a signal flow graph for the problem stated in (45)-(48) a typical node as shown in Fig. 7 is taken

to represent the field (rp;rq) at r due to rays originating at r, the latter in turn being excited by
p -p

rays originating at r, I ...N. These rays are represented by the branches which have weights

(transmittance ratios) given by scattering functions S(r pr :rk). They are the graphical equivalent of

terms in the sum in (48a) or (47a). Other branches shown on the graph depict the direct ray from the

source at r, to rq [node ui(r )] and from there to the observer [node u(r); terms of the first sum in (48b)

or (46a)) as well as to the various scattering centers r [node U(rp;r ); second terms on the right hand

side of (48a) or (47b)]. The contributions from a(rp;r ~ to u(r) are also shown [terms in the second sum in

(48b) or (46b)]. To distinguish branches which are associated with multiple Interaction process from those

which are not, the former are depicted by solid lines and the latter by dashed or dotted lines in Fig. 7

and thereafter. The complete flow graph is obtained by drawing simultaneously all possible (p,q) nodes and

their branch interactions. The graph then consists of a main graph (solid brancoes), describing the

multiple interactions, and of coupling branches, connecting the main graph to the source and observer

nodes.
------------------------------------------------

A
r S(,ro;r) S-(Fo.rQ,.1U (,'mp)- r.vq;,1 I

t/,.rq

-'N
L ~ ~ ~ 0 , ."P a pN molraphk.

S(r,rp;rq) ."% r)

Girl°) '  eir,rq;,r)

Observer
Source (')

Fig. 7 Typical unit cell in a flow graph. The node aI(r is excited by the source and radiates in turn

to the observer and to the node u(r ;r ) p-,...N. The field U(r p;r q) is also generated by- -p'-q -p-
u(q;r ), t-1 .... N, and radiate to u(r m;r p), m-1,...N. Excitation of the graph by the source, and

radiation to the observer are denoted by dashed and dotted lines, respectively. The main part or

the graph, along which multiple interactions occur, is represented by solid lines. The total

graph is obtained by connecting all the (p,q) unit cells.
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2. Cumulative treatment and entire function

The iterative approach to reading the flow diagram yields the ray expansion in (45)-(47). Here, one

tracks the signal as it evolves along the branches of the graph from one node to another. Alternatively,

the cumulative approach is based upon describing multiple interactions as repetitive events occurring along

closed ray paths, closed loops in the main part of graph, that include some or all of the scattering

centers In any order. In general, there are infinitely many such loops but for a finite graph there exists

a finite set of linearly independent loops in terms of which one may represent all others. This set

consists of all non-repeating closed loops on the graph, i.e., those which may be drawn without

encountering the same node twice. Having found all the closed loops, one may write the cumulative body

response (the total graph transmittance) in closed form by using Mason's formula [19]

(09)S n An
n

where the graph determinant A is given by

Here

un is the path gain (product of branch transmittances) of the n-th direct path (withc.t loops) fror

the source to the observer node;

An  is the complementary graph determinant, i.e., determinant of the n-th nontouching-subgraph

(which has no common node with the n-th direct path);

P l is the loop gain (product of branch transmittances along the loop) of the i-th !opp;

Pi,2 is the product of loop gains of the i-th pair of nontouehing loops;
ij is the product o loop gains of the -th group of j nontouching loops.

The index n in (49) may be taken to identify different ray species which we distioguish fron oe another by

the number and types of encounters between source and observer. When applying (49) to the graph of

equation (48) and of Fig.7, one may note first, that the path depicting the direct interactijo of the

incident field with the scatterer (the dashed path from rl to r via node a(r )) oens not touh any of the-q d
(solid line) closed loops which describe the multiple interactions. Accordingly the determina!,.t n of the

non touching subgraphs for these direct paths are equal to I . Extra-ting these terms, ine may write

instead of (49)

3(r) - d (r w u (Ir/AC
q n

This expression has the same functional form as (1) (of. (i5)). The first term in (51) coitains

contributions at r from direct interaction of the incident field with each of the scattering centers at r

d (r) - ( ) S(r,r ;r) (52)
q - -q - -q;-

and may be recognized as the first term in (48b) or the j-1 iteration In (46a). The summation over q in

(51) only includes points r in the region illuminated by the source. Points in the shadow are reached by~q

diffracted wavefronts, which have undergone at least two interactions with the scatterer and are therefore

in the main part of the graph (the non-dashed part) and also in the second term in (CI).

The second sum in (51) accounts cumulatively for all the higher order interactions j in (47), taking
place in the main part of the graph. The term aw represents the wavefront or ray field contribution along

n

paths going from source to observer via successive (more than one but without repetition) single scattering

events. Calling such a path the n-th direct path and denoting by P1, P2,...Pu the indexes of the scattering

centers along it. one has for the direct path transmittance
un(r) - ul(r )Si(r r ;r')S(r r ;r ) ... S(rr ;r ) (53)n -p, -P ~P - -P.'-P,'~P. "" -Pp -P I

Cumulative effects of multiple interactions along loops of the graph are included in (A n/A). This

expression will be seen to give rise to the SEM resonances located at the complex poles generated by

the roots of A:

A - 0 at a = a (5a)

The first term in (51), which does not contain these pole singularities, will be identified in Sec. IV.C.4

as the SEN intrinsic entire function. It should be noted that A and thereby the SEM resonances, are

generated by the main part of the graph only and are therefore Independent of the source o,- the observer

locations.
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C. SEH Representation

1. SgN resonances

When the direct path in (53) is modified to include multiple interactions (closed loops) between

scattering centers, the cumulative effect of the wavefronts transversing these loops is to the SEM

resonances of the scatterer. Consider first a direct path perturbed by a simple closed loop. The direct

wavefront or ray path field uw in ray species n is now weighted by the multiple interaction series (c.f.
n

(34))

( ) n " (C)6. A A -1n (55)

J-0

where Pn' the closed loop transmittance (gain), expresses the ray field modification after one complete

round trip. The collective effect of that species, written in closed form on the right hand side, exhibits

(SEM) resonances whenever the closed loop gain Pn equals unity (ray closure condition). These resonances

are indicative of global features pertaining to the physical environment along the closed loop. In

general, there are many such loops, and there is coupling (either direct or indirect) between them.

Accordingly, the simple model pertaining to an isolated ray species as in (55) has to be modified. We

shall define the n-th ray species as the group of all wavefronts associated with the n-th direct path,

including those which, in addition to travelling along the direct path, traverse also various closed

loops. From the topological considerations leading to (49) and (51), it follows that the collective effect

of the closed loops, which are associated with the n-th direct path, is given by ( n/). where An is the

complementary (or nontouchlng) subgraph determinant while A is the determinant of the total graph.

Accordingly, the collective field of the n-th wave species is given by the n-th term in (51),
Cn(r) - w(r )(An/A) (56)

Since A and An generally have no common zeros in the complex frequency plane, the SEM pole map of the n-

th species (56) Is generated by all of the zeros uv of A (possible poles introduced by the signal spectrum

of uw are not considered here). Thus, each wave species, in principle, excite all of the full-body
n

resonances, thereby expressing the effect of all of the closed loops in the graph. However, the

excitation amplitudes differ from one species to the next because of their dependence on An and uw at

-V . The former will be discussed in Sec. V, and will be shown to influence essentially the strength of

the coupling coefficients and the possibilities of resolving individual wave species from their SEM pole

map. On the other hand, uw is associated essentially with the turn on times of the wave species as will
n

be discussed in section iV.C.2.

Considering the locations of the SEM poles in the complex u-plane one may infer from the functional

form of A and of An in (50), that both have their zeros in the lower half plane. This observation is
based on the fact that since the closed loop gains PiJ appearing in (50) consist of multiplication of
branch transmittances, they behaviour with frequency is essentially as was discussed in (43) and

thereafter. It follows that the algebraic part of the PW is small, and that their exponential dependence

is one of decay and growth, respectively, in the upper and lower halves of the complex frequency plane.

Thus, (56) can be satisfied only in te lower half. Moreover, again from the functional form of (50), the

location of the dominant SEM poles, those near the real frequency axis, is determined by loops whose gains

P,1 are dominant near the real axis; these closed loop interactions are associated with low radiation loss

(high Q) (see See. V).

2. Resonance series, turn-on and switch-on

The SEM expansion for the transient field associated with a particular ray species follows on

inversion of (56) into the tise domain. The evaluation of the transform depends on the asymptotic

properties of the Integrand which may be inferred from (43) and the discussion thereafter. Via (5I) and

(43), the dominant asymptotic behaviour of the wavefront field in the frequency domain is
U(r) - k

"
In exp(ikL n  (IS)

n - n
where Yn is some positive constant, L is the (optical) length of the ray along the n-th direct path, and k

is the reference wavenumber. Considering the structure of A and An in (50), with the observation that the^n

closed loop gains Pi in (50) have essentially the same asymptotic exponential form exp(ikL IJ ) as in (18).

it follows that An/d - I and - exp[ik EJ in the upper and lower half planes, respectively, with cn a

positive constant. Accordingly, the asymptotic behavior of the n-th wave species in (56), expressed only

by its exponential dependence, is
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(exp(ikLn ] , Im . > 0 (59a)

-- 3xp[tk(Ln-cn) Im w < 0 (59b)

From (59a) and from the fact that all pole singularities a of u In (56) lie In the lower half of the
n

complex frequency one concludes that the Fourier transform of (56) vanishes before the turn on time of

the n-th ray species defined by

to,n - Ln/v (60)

which is recognized as the arrival time of the wavefront uw(r;t) - the first wavefront in the n-th
n -

species. For t>t o,n, the transient field in that species is obtained by closing the integ-atlon contour

with a large semicircle in the lower half plane, yielding the residue contributions from the SEM poles and

possible branch cut integrals Ib,n in the lower half of the frequency plane

Un(r;t) - Hit- t) { '-U(r) eIt L l bn (61)
v

where H is the Heaviside unit function. The factors multiplying the exponential term In (61) represent the

previously referred to excitation, or class I coupling, coefficients. Their properties in relation to the

flow will be discussed in Section V. They are seen to be proportional to the ray species field (r), which

provides the mechanism of excitation, and to An. In view of the meromorphicity of the resolvent kernel

for three-dimensional scatterers [22], it is expected that the total contribution from all of the branch

cut integrals will cancel in the overall result given by the second term in (51). For two-dimensional

scatters of infinite extent, however, there is an intrinsic branch point singularity at u 0 as was

discussed in See. III. Finally, since the poles u are distributed symmetrically with respect to the

imaginary . axis, and utilizing a similar symmetry relation for the wave function in (56), it follows that

the contribution from any pair of symmetrical poles in (61) yields a real field.

Finally, one may observer from (59b) that the lower half plane closing may be performed even before

t and that (61) may be modified by replacing the turn-on time t in (60) with a switch-on time to ,n o~n s~n

bounded by:
(to -cn/v) < ta~ < to~ (62)

onn s,n - o,n
Thus, the SEM time domain expression in (61) is valid formally even before the actual turn on time

[6,7,9], even though many terms are needed to synthesize the null field required there.

3. Delayed turn-on and removable entire function

In arriving at (56) and (61). all of the wavefronts associated with the ray species have been treated

collectively. This description can be modified into a hybrid form by retaining some of the earliest

wavefronts (small j) intact and accounting collectively for the remaining ones (of. (41). There is a

systematic procedure for extracting successive wavefronts from the collective ensemble involving partial

summation in (55) or in its generalized form in (56). Since the basic principle is illustrated adequately

by applying it to the first wavefront, we restrict our considerations to this special case. Accordingly,

instead of (56), we shall express the field of the n-th ray species, which is the one to be modified, by

the following identity:

an n n u (A -A)/A (61)
where the isolated first term represents the first wavefront which follows the direct path for that

species (of. (53)). The second term in (63) expresses the collective effect of all remalning wavefronts.

The manipulation leading from (56) to (63) can evidently be continued for retention of subsequent

wavefronts.

Aternatlvely, one may arrive at (63) by modifying the flow diagram to account for the individual

monitoring of uw. We illustrate this for a typical unit cell in the flow graph shown in Fig. 8, where
n

wavefronts with two scattering events are kept expilcitely; here the wavefront In question passes from the

source at r' to q and to r p before reaching tne observer at r. Accordingly, a new node a)(rp;r ) Is
added to identify this event (c.f. (47b)). This node contributes to the field at r as well as to nodes

u(rm;rp, m-1,..,N, in the main part of the graph. Note that the node u(r p; q ) In the main graph now

represents the incident field at r due to the field at rp, excluding the first wavefront which has

already been accounted for in a r p;rq). By calculating, via (49), the graph response, one may verify

that the field of the wave species associated with the direct path r'-r *r *r is modified according to (h3).- -q-p -
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1main
graph uQ(I'mp)

I • c~'omuSlrr,rqrq)
Ma ,. \ I •n-

S...Vu rp ;r)
S (r h,rm~.p. ... A

/ .. .."'(rrq) S(rprq . ;r')

Slr,r~r )

6 Source Wr)

Fig. 8 Modification of typical unit cell in the flow graph of Fig. 7, exhibiting explicitly the field of

the wavefront u(1) (rp r q) and the corresponding contribution u(2) (r) which reach the observer after

two scattering events.

The collective part in (63) has the same resonance denominator as (56). Moreover, the coupling

coefficients in (61) (i.e. the residues at the resonances) are unchanged for (63) since 1-0 at resonance.

However, these alternative collective expressions have different asymptotic properties in the complex

frequency plane. In (56). the numerator consists of '
n 

which, like A, Is 0(l) in the upper half plane (see

discussion after (58)). In contrast, considering the definition of 'n' the numerator (An-A) in (63) consists

only of loop gains of those loops which touch the n-th direct path, whence the dominant term in the upper

half plane is O[exp(ikL n.
1
)] where Ln

I 
is the shortest closed ray path which belongs to the n-th species.

Thus, the collective part of (63) behaves essentially like (59) except that L
n 

is replaced by L
n 

+ L n,1),

the ray path of the first wavefront of the n-th species which arrives at the observer after the direct

wavefront u
w

. Accordingly, the second term in (63) contributes a resonances series which is identical withn

(61) except that it turns on at the arrival time of the first wavefront which arrives after u
w 

but Isn

included in the collective sum.

Generalizing this observation, we may state that if some of the earlier wavefronts in a ray species

are monitored individually, the collective response of the remainder is described by the same resonance

series as in (61) except that its turn-on is delayed to the arrival time of the first wavefront included

In the collective treatment. Since the first term in (63) or its generalization as described alove nas no

pole singularities, we shall call it a "removable entire function" (Cf. (42)). In the time domain, the

removablh entire function turns on at t of (60) and contributes primarily at early times. Theo ,n

representation in (63) is equivalent to, and gives a wavefront interpretation of, the formal decomposition

in (3).

4. Intrinsic entire function

Unlike the removable entire function in the first term of (63), which could be incorporated into the

resonance serie; as in (56), the first term in (51) cannot be treated in this manner. Therefore, we call

it the Intrinsic entire function. Physically, this term represents the field at r due to direct

interaction of the Incident field with individual scattering centers, without any interaction between

these centers. Since each scattering center in isolation provides no input about the scatterer as a whole,

the global information essential for developing the body resonances is lanxing. As noted after (12), only

those scattering centers, which are directly visible from source and observation points, contribute here.

In the transient domain, the turn-on time at r of the intrinsic entire function is generally earlier than

that or the resonance aeries (61), as follows from the observation that at least one of the direct ray

paths in the first term in (51) will he shorter than the shortest path included in the second term.
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Unlike the collective term in (51) which has a long time transient representation in terms of the SEM

resonances, the intrinsic entire function in (51) usually contributes only at early times but even there.

its GTD form, which yields only a transient wavefront approximation is not enough to represent its full

transient waveform [2,31 (or. (30)) . However, the expressions for the Intrinsic entire function in 'he

first term of (51) may be represented by -better- wave functions, such as ray integrals. spanning a

spectrum of local plane waves whose stationary phase approximations yields the GTt fields but whioh,

when kept intact, are uniformly valid in transition regions where GTD fails [I ]. Moreover, such spectral

integrals, when inverted Into the time domain yield closed-form spectral expressions for the transient

field, that is valid for longer observation times than the wave front approximations corresponding to GTD

[20,21 1. Alternatively, recognizing that intrinsic entire function represents the contribution from the

direct Interaction of the incident field with the scatterer, it may be represented by the Physical Optics

(P) field [73, which has a closed-form finite duration expression for the transient scattered field in

terms of the scatterer's geometry [28,29].

D. An EXample: Scattering by a Flat Strip

To illustrate the ideas presented above, we apply the flow graph procedure to a simDle obstacle with

two scattering centers for diffracted fields: a perfectly conducting flat strip. This configuration can

actually be handled without the flow graph [13-151 but, as will be shown below, the flow graph analysis

handles systematically the 4-fold multiplicity of diffracted wave species which arises due to the fact

that diffractions occur on both faces of the strip.

Source

Mserver

edge edge 2

Fig. 9 Scattering by a strip.

Referring to Fig. 9, a harmonic line source at p' emits an H-polarized field whose strength at

distance L from the source is

E(L) - (8mkL)
"
11

2 
exp(ikL - 1m/4) (6)

By GTD, the diffracted H field a
d 

at a distance p from the edge Is given by
d - D(e,) -I ( P) (65)

where a
I 
is the strength of the incident field at the edge which arrives from the direction P', H is the

angle of observation and D is the soft edge diffraction coefficient

(BH( -sec ( 2~- sec ( 2p- (66)

For grazing incidence 6' - 0, V is replaced by V/2.

If the observer is located so that there is no specular point contribution, the field scattered from

the strip Is generated by single and multiple diffraction at edges I and 2 in Fig. 9. Introducing source

and observer coordinates p'-(e,,e') and -(Opep), respectively, in coordinate systems centered at edge p

(p-I,2), one is led to the flow graph in Fig. 10(a). The incident field at the edges is represented by

nodes uilp), p - 1,2, given by (64) with L-p'., and the singly diffracted ray contribution- by the dotted

branches Ap-tilpee)io( p ) leading from these modes to the observer. In addition, each edge also sends two

diffracted rays towards the other edge, one along the upper surface of the strip and the other along the

lower surface. Accordingly, nodes u(p,e) denote the field incident on edge p along the upper and lower

surfaces, respctively, and the transmittances of the corresponding branches are tBp, Bp-D(0,'Xiotd) (note

sur-aces. .-e-t--,.....
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that D(0.@')--D(2v.0)). Similarly, recalling the remark after (66), the branch transmittances between noles

u(p, ), which represent interaction between the edges, are IC, C-I /2D0,0)6o(d). and toe branch

transmittances from u(p,t) to the observer are E , Ep.i/2D( p,0)Go.p ) respectively.

//(2)

-c -c",. 2.2C 4282
-C -E2 -El W i8t -c" I, E* . .

2-(1)()G'
"

) A, Observer A2 ' (2)

', / .vA 1  - I,, ...9. .. ,o(P,) - p,)

Source Source

(a) (b)

Fig. 10 Flow graph for strip scatterer.
(a) Full graph. Nodes u(p,v) are the fields incident on edge p along the upper or lower surfaces
of the strip, respectively. As In Fig. 7, the dashed, full, and dotted branches represent
excitation, multiple interaction, and radiation, respectively. The branch transmittances for p -
1,2 are defined in the text. For clarity, the observer node is suppressed.
(b) Graph reduced by symmetry.

The graph of Fig. 10(a) has four two-branch loops, two four-branch loops and as many as 32 direct

paths through the main graph. However, due to symmetries it can be reduced to the simple graph in Fig.

10(b), which yields the simple expression for the graph determinant

A 4C C2 . I PGo(d) D400O) 3
2  

(A- 1- 1I
2
- 1- (d 000) (I

Similarly, equation (51) yields

2 2 2

p _v up~q (b8)
p.1 p-i q-1

where the direct contributions u are the singly diffracted ray fields

up G 8o(p;)D(6pk')ao(pp5 (69)

and Up.. represent multiple interactions corresponding to wave species (56) along direct paths through the

main graph, and account for all combinations of wave fields incident on edge p and radiating from edge q

(4 species). From (56), (53) and Fig. 10(b), one obtains by inspection

pq 26o(p)BpE q/A - Eo4p e) D4(0,e') 0(d) D4eq,0) 6o(P)I/A - q 0 p (70a)

pp- 4
0
(p;)BpC Ep/A - ilO4e') D(O,e') 8'(d) D(0,0) D(ep,O) 8o(pp)IA (70b)

With A given in (67). (70) represents the collective field of the wave species (cf. (56)). Alternatively,

the wavefront expansion is obtained by using in (70)

I/A - j [(d )(,O)]j (71)

One may verify that none of the direct interactions in (69) can be incorporated collectively into the sum

of multiple interactions in (70) and (71). The collective sum gives rise to the SEM resonances, the roots

of &. whose GTD approximation w. is given by

[a.o(d D(O,O)] - e12 , m - integer. (72)

These poles in the lower half of the complex frequency plane, and refinements obtained by retaining higher

order terms in the edge diffracted fields, have been calculated In [I] while the corresponding scattered

field due to and incident Impulsive plane wave have been calculated in [15). The resonance implied by (72)

are located along a layer that goes parallel to the real u-axis in the lower half of the u-plane.

Moreover, the simple diffraction model used in (65) has been improved in [131 by incorporating high order

slope diffracted rays within the multiple interaction scheme, with a subsequent generation of additional

layers of resonances which are located deeper into the lower half of the complex w-plane. The GTD
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approximated resonances agree remarkably well, even at the lower frequency end, with the resonances

calculated by applying the method of moments to the Integral equation for the induce current on the strip.

V. COMPOSITE SCATTERERS AND PARTIAL RESONANCES

As was described in Sec. IV.C the resonance equation and thereby the SEM poles takes into account the

collective effect of all the closed loop interactions, including coupling between the loops. In general.

for targets comprising composite substructures (Fig. 1) the flow graph consist of subgraphs that

correspond to the substructures, with branches that couple between them. For such targets, one may

consider partial resonances characteristic of each substructure in insolation, and then explore the

perturbation of these isolated resonances when the substructures are assembled to form the composite

object. By this approach, it is possible to explore the effect on the resonance map caused by changes in

substructures or in their relative location in the composite object, thereby providing insight Into the

scattering mechanisms that establish a compound resonance. Accordingly, the determinant of a scatterer

comprising M subscatterers with determinants Am. m - 1,...M, will be written in the form

M

A - T Am C (73)
M-1

where, in view of (50),the coupling term C consists of product of loop gains of the loops that are involved

in the coupling between the substructures (cf. (74)).

Assuming first that the scatterer is composed of completely isolated subgraphs, then there is no

coupling term in (73) and the resonances of the composite object consists of the partial resonances, the

resonances of each substructure in isolation, as implied by the roots of A. in (73). Depending on the

subgraph within which the n-th ray species is defined, the corresponding complementary graph determinant

An has factors in common with A in (73) (without the term C) thereby removing the poles generated by the

common factors from the field in (56). Accordingly, the poles from each isolated subgraph appear only in

the SEM pole map of a ray species which pass through this subgraph.

In general, the graph of a typical scatterer does not consist of completely isolated subgraphs.

However, there might be scatterers with weak coupling between subgraphs of an overall flow graph (e.g.,

those which contain resonance mechanisms with relatively low radiation loss - or high Q - such as open

resonators, open pipes, dielectric scatterers, etc.). In such cases, the factorization described above is

no longer possible but furnishes a good first approximation. The zeroes of A will still cluster in groups

defined essentially by the dominant unperturbed zeros of the Am in (73). This feature provides insight

into the physical mechanisms responsible for the various resonances. It therefore follows that ray

species with direct paths which do not pass through an almost isolated subgraph, provide weak excitation

of the SEM resonances for that subgraph, since the determinant of that subgraph is almost a common factor

of A and An is (56) (of. (79) and (801) below).

P1

0b,

U Ca C1

<0b
ap2

Fig. 11 A flow graph for a scatterer comprising two coupled substructures.

We shall demonstrate the observations above by considering a simple flow graph model of a scatterer

comprising two weakly coupled substructures (Fig. 11). Here, the wave interaction in each substructure is

modeled by a single closed loop p n, m-I,2 and the coupling is modeled by two branches c, and c. The

scattered field u due to the Incident field uI is given now by

u *u[a,b ,)1-p,) 4 ab,(1-p,) + acb,* a&,c 1]/A (74)
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where the graph determinant is given by (cf. 73))

A - (1-p)(I-pd) - c'c 0  (75)

and the various branch transmittances are defined in Fig. 11. Recalling that the branch transmittance has

the form (43), one may readily verify that the partial resonances, the roots of the uncoupled loops are

located in the lower half of the a-plane along layers whereon JpmJ-1, m-I,
2
, with pm being exponentially

small or large for a located above or below these layers, respectively. Similarly, the coupling term is

also either exponentially small or large for w above or below a "layer" whereon Jcc,1. Supposing now

that one of the closed loop interactions, say pl, Is of high Q type, than the corresponding layer lies

close to the real -axis so that JcJ<<1 along that layer. The global resonances, the roots of (75), are

therefore located near the partial resonances a of p, and may be approximated by

W W - c ,c, , v - 1,2.... (76)

VI

where c#c2 is a small paramete- and w , m - 1,2, are the roots of
Vs

P. . 1 (77)

Regarding the partial resonances of p,, one may consider two cases in which p. represents either high Q or

low Q interactions (e.g., in the first case p, and p2 represent weakly coupled resonators whereas in the

second case p, and p. represent, respectively, internal and external closed loop interactions of an open

resonator). In the first case, the coupling term is again negligible and there is another group of high Q

resonances related to the partial resonances w as in (76). On the other hand, in the second case, oneVI

usually has cIc2 - O(p) so that the coupling term is non-negligible along the layer of the partial

resonances of p.. However, since tpJ>> on that layer (recall that p, represents high Q interactions), one

finds t~at i also has roots near w , given approximately by (cf. (76))V.

wa = WV2 _-p,'' J.' , - 1,2... (78)

where here, p, is a large parameter.

When the above approximations are substituted into (74) one finds for the field of a high Q resonance

of (76)

u (t) - iuV [atb1/p) + o(clc2)] I  e
- i

w
v t  

(79)

while the contribution of a low Q resonance of (78) is

u (t) - 1u
1 

Ca b2/pj + O(1/pi)]Iw e
- t w v t  

(80)

It therefore follows that both the high Q and the low Q resonances are excited and monitored, to the

leading order, by the corresponding partial resonance mechanisms, i.e. through the direct paths atb, and

aPb2, respectively (see Fig. 11).

VI. CONCLUSIONS

Transient fields scattered by an object may be synthesized in terms of traveling waves (wavefronts) or

oscillatory waves (resonances). Traveling waves sample the propagation or scattering environment

locally along their trajectories while oscillatory waves convey global information about the environment,

with the former and latter being convenient (rapidly convergent) at early and late times. The two schemes

have generally been employed independently, but together, these local and global samples yield effective

discriminants for clansification and identification of environmental features. The hybrid wavefront

resonance method, reviewed In this presentation, not only clarifies the connection between the two schermes

but also permits their combination within a self-consistent systematic format that draws upon the

advantages of each. The hybrid approach has also been utilized for classification of the SEM resonances

and the corresponding class 1 coupling coefficients and turn-on times, and for identification and

interpretation of the entire function, whether intrinsic (non-removible) or removable, The main properties

of these constituents of the SEM are summarized and discussed in Sections IV.C.1, 2, 3 and 4, respectively

(for the circular cylinder problem, analog discussions are given In Sections 111.0.?, 3. 4 and 5,

respectively).
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For targets comprising composite substructures. we have considered partial resonance

characteristics, obtained by wavefront Interactions within each substructure in isolation. The global

resonance fields may in turn be regarded as a synthesis of interacting partial resonances due to ray

coupling between the substructures. When a partial resonance process Is only weakly coupled (e.g., when

it is of high-Q type), it will identify approximately a subgroup of global resonances In the SEM pole map
of the full body, and thereby clarify its origin. This feature may facilitate a parametric identification

of certain class of targets. Conversely, this selective sampling by rays can be used for an approximate

calculation of the full-body resonances.

The hybrid wavefront resonance theory has been demonstrated first within the rigorous context of

transient scattering by a perfectly conducting circular cylinder (Sec. 1I1), and has been generalized latter

within the high frequency framework of ray theory (Sec. W) In the analysis of Sec. III, we have treated

the exact traveling wave solutions collectively (cf. Sec. III.D), and ray notations nave been employed

only to interpret wave transport and interactions mechanisms. In the general high frequency analysis of

See. IV on the other hand, emphasis has been put on methods of systematic ordering and "collectivizing" the

multiplicity of wavefront events. Accordingly, the matrix repr,3entations in (45)-(48) has been introduced

to assort the wavefront interactions, whereas the flow graph representation has been used to collectivize

them in terms of wave species. The field of these wave species depends explicitly on the scattering

functions along the ray paths (cf. (51), (56)), yielding the ray interpretation of the SEM.

The preceding discussion has been based on the assumption that the propagation or scattering

environment can be decomposed into scattering centers and interaction functions between the centers.

Although ray terminology has been employed throughout, the model applies not only to GTD ray fields per

se but to any other more general wave description (such as spectral integrals, modal rays, complex rays,

neams, etc.) whose transport properties are associated with the ray trajectories. By using ray spectral

integrals, for example, one may uniformize GTD in transition regions and also obtain long-time expressions

for the ray fields [20,21 ]. However, the assignment of scattering centers and interaction regions in a

rt=iicated environment may be difficult. The choice of the one Influences the choice of the other. Here,

one may te guided by a combination of numerical and analytical techniques. Numerical methods are

effective. for calculation of low frequency resonances and the SEM series converges well at the later

;tervaticn times corresponding to that regime. At early times, wavefronts are few, initial ray paths can

ce traced, and wavefront representations (via GTD, or even better, via STT) legitimized in this high

rrequency regime. The wavefront treatment at early times must include the intrinsic entire function but

it may also include some of the earliest wavefront interactions. Thereby, one can postpone turn-on of the

recnance series until the low frequency resonances generated numerically provide an adequate

lecription. These analytical-numerical tradeoffs, when built into the hybrid wavefront resonance scheme,

cay lead to an effective means for attacking a broad class of forward and inverse transient propagation

-nd scattering problems.
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The pnysical optics method finds increasing interest in the computation of radar signatures of comn] :-
cated objects, which are large compared to the wavelength. A series of ideal conducting structures for
wnich the physical optics nethod has been successfully a9o*lied to coipute the back-scattered field is ore-
sented at first. The basic idea of physical optics following the Huygens-Helmholtz principle is evaluate.

VZ The surface integra.s for the electromagnetic scattered field are presented and discussed. Some details of
the physical optics ,,ethod, when applied to complicated structures, are considered in the form c-f a snort
survey. This includes the hidden surface problem, the ability to predict depolarization effects for cer-
tain situations, the evaluation of the phase integral, tne extension of physical optics to treat double
reflections, the accuracy of the geometrical model and an estination of the computer time. In the corclu-
sion some steps for furtner extension and improvement of the nhysical optics method are summarized.

I. I,iTRJDULTIjl

Tne pnysicai optics method (P)) is used since long time to predict bistatic scatterino c)rocesses v'e
applied to tne computation of reflector antennas 1I, 21. There are numerous measurements to vahidate tpe
PO-results for tne copolar and crosspolar cases. The reflector systems under investigations may o.)S"St
of a single reflector in tne synmetric or offset [3J arrangement. In rocent times also ocre conmol care
structures like dual- and four-reflector antennas [4, 51 were successfully treated with PC.

The progress in radar tecnnology concerning the classification, identification and discr-iml1at'c, f
targets nas stimulated the interest in predicting the monostatic scattering process for ali icatior -e-
ted objects like an airplane or a sea surface, see Fig. 1.1. Various methods, among tnese the PC -etnoc
come into consideration for this ourpose [61. he scattering objects as the reflector antennas are la -qe
cocpared to the wavelengtn. They are in general very crhiol icated structures witn partial , r corlletl.,
shadowed surface regions. In a variety of practical caoes also non ideally conducting subregions ,iuot te _i-
ren into account. For this category of objects rigorous methoas like tne integral equation method fall oe-
cause of tne high effort in computer time and capacity. One tries to use approximate methods, and since P3

6'+

Fin. 1.1 Radar Targets
a) airplane
b) moving sea surface.

aas proved its advantage in analyzing reflector antennas, one could think, that also in the radar bacs scat-
ter case the method would work wits an accuracy, which is sufficient for most practical nroblems. If one
considers the structures of Fig. 1.1 one realizes that they can be constructed from a series of simpler
structures like a flat plate, a sphere a.s.o. Several work has been done till now to test the physical op-
tics iioetnod in the scattering case against measurements or other independent theories. Some of these struc-
tures are listed in the following and depicted in Fig. 1.2:

flat plate (panel) [71,
sphere 13, 9],
circular disk 191,
cylinder [9),
cylinder with sphere and cone 13., 91,
cube [8, 91,
cube with additional shadowing surfaces [9, 101,
trihedral corner reflector [111.

In the following the PO procedure is developed parallel to the geometrical optics (GO) concept, which forms
the basis of PO. Since a lot of references, which deal with the validation of PO in the antenna and in the
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fig. 1.2 Test objects, dimensions in mm.

scattering case is given above, the paper is restricted to some details of P9 like the hidden surface pro-
blem, depolarization effects, double reflections and some other problems concerning the evaluation of the
phase integral, model ing accuracy, and computer time.

Z. THE HUYGENS-HELMHOLTZ PRINCIPLE FOR SCALARS AND THE ELECTROMAGNETIC VECTOR FORIULAS

The name "physical optics" is often used synonymously with the terms "Kirchhoff aoproximation , 'tn-
gent plane approximation" and "Huygens' principle". This is due to historical evaluation and indiidual ;re-
ferences [12 - 161.

The diffraction theory of light, developed by Fresnel (1818) is based on the Huygens' arnlnipleli-
of the construction of envelopes and the Young's principle (1801) of the interference (171. The kuvqens'
principle states, that every point of a wave-front may be considered as a center of a secondary distu,-hin-



ce, which gives rise to spherical wavelets, and the wave-front at any later instant may be reqarded as the
envelope of these wavelets [18, 191. So Huygens' principle was first formulated long before Maxwell's equa-
tions (1873) showed the true vector nature of electromagnetic waves. According the principle of Young the
distribution of light behind a black screen is due to the direct incident wave and a wave, which propaates
from the edges of the screen, the diffracted wave. The diffraction phenomena are explained by the interfe-
rence of the several diffracted waves under each other, mainly however, by interference with the direct
wave [201.

The Huygens-Fresnel principle extends the Huygens' principle by taking into consideration the inter-
ference of waves and states, that the wave excitation in an observer point is obtained by the superposition
of all wavelets, which propagate from different points taking into account their phase 1191. An exact for-
mulation of the Huygens' principle by an integral formula was the merit f Helmholtz (1859). Ihis integral
formula allows the computation of tht field v(r) at an observer point P(r) from the values v(r') of the
field and its normal derivatives ;v(r')/n', both given in the points Q(r') of a closed surface:

F - n (r df' (2.1)
F

= Otr '-) = exp(-.k,;-r': 1 -P, = scalar Green's function,
n = n(r') = unit normal vector, directed in the /'=x,[ci of the surfjcj, see Fig. 2.1,
ir-r' = distance between observer and integration point, later R r-r' is introduced.

P(,) FFig. 2.1 The Huygens' principle for a source free fi-
nite space, bounded toward the exterior by
the closed surface F.

0

The function v(r) is solution of the inhomogeneous wave equation

,v + k v = 0 (2.2)

and satisfiei the radiation condition. The values v(') and v(;')/,n' are denoted as boundary values of
the field v(r).

The integral formula above is known in the literature as the Huygens-Helmholtz principle. The names
Huygens-Kirchhoff principle or Kirchhoff formula, which also sometimes are found in the literature are
unhistorical.

Eq. (2.1) expresses that each wave field v(r) can be generated by a superposition of spherical waves
exp(-jkR)IR with "density distribution" - v(r)/ n and dipole waves /n(exp(-jkR)R, with density distri-
bution v(;), The waves propagate from a closed surface, which encloses the observer point 117, 20, 211.

The choice of F is arbitrarily. Of special interest is the division of F into two closed surfaces F1
and Fa, where Fa encloses Fi , see Fig. 2.2. F i may enclose all sources E and scattering bodies. A further
special case of high practical interest is given, if there are no sources within Fi, and Fi coincides with
Fs, the surface of the scattering body.

j P r E' - ( r I
scatteringZ I Fig. 2.2 The surface F is divided into an inner sur-

' body '// 'Fi face Fi and an outer surface F

If Fa tends to infinity, see Fig. 2.3, one gets no contribution from Fa, since v satisfies the radiation
condition. In this case equation (2.1) is also valid in the exterior. The unit normal vector now is directed
outwards of F1 , which we denote again as F in the following.

If the boundary values v(r') and Ov(r )/in' of the field would be knownl on the surface F, e.g. by mea-
surements or by estimations, the field at any observer point could be computed according Eg. (2.1). The ri-
gorous treatment of Eq. (2.1), however, leads to the formulation of two independent integral equations and
their solution for the unknown density distributions. Thereby en. has to take into account that a relation be-
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/ r

Fig. 2.3 The Huygens' principle for a source free

E infinite space, bounded towards the in-
r' Q(r) - terior by the closed surface F=F.

' 0n'
0

scattering F = F1

X body

F s

tween the two boundary values exists. That is the solution v(;) can be determined uniquely if either v(r')
or Uv(;')/an' is defined on the surface F [171.

For completeness tne Huygens-Kirchhoff principle should be mentioned. It can be evaluated from the
Huygens-Helmholtz principle by a Fourier transformation [201. Kirchhoff (1882) received the following ex-
pression for the function f describing the wave propagation in space time:

f(-. t) = - I 1 f(;-, R I f( , t -R

F
/an' = normal derivative if r' is variable, U/Un = normal derivative if i is variable.

Therewith the motion of the wave at the observer point P can be computed for the timhe t, if it is
known at tne points Q on a surface F at times, which are retarded by the times 7/-.

,1 :uygens-Helmholtz principle originally was formulated for scalars. There are several vector formu-
lations for the electromagnetic field, which are derived from different starting points but also can be
transfered into each other [17, 22, 231. In the following the expressions only for the electric field are
given, since the magnetic field expressions may be constructed in applying the duality principle.

Using the second Green's formula for the scalar components one receives [i

d (2.4)

F

In applying the vectorial Green's formula with the e':!r ;:c::: of a point source one can derive
121, 22, 24J:

T. (j~w(;'xP)~)I - )A'xf(;')) x 2P -df' , (2.5)

F

= 2mf angular frequency,
f = frequency,

Po = permeability of the vaccum,

Pr complex relative permeability,

u=P hr  =absolute complex permeability of the p,'opagation medium,

component of the jmagnetic field tangential to the surface F,
n'xL(r' )= J electric

Tcomponent of the .magnetic }field normal to the surface F.
i', (7')= J electric

Using the classical theory of vector potentials and the equivalence theorem one immediately receives 1221

t(V) = - -. Vx (P'xf())8 df' + T Vx(Vxl (n'xA(;'))D df') (2.6)

F F

=o r absolute complex dielectric constant,

LO = permittivity of the vacuum,

Er=c*+j = complex relative permittivity (dielectric constant).

Starting with the reciprocity theorem or with the vectorial Green's formula, now with the .:'*.- of a
point source, one arrives with the expression [2, 22. 251:

= (Juu( 'x)r')) - ('x!)A')) x V'O - )( 'xi()')).V')V' ) df' . (2.7)

Equations (2.6) and (2.7) have the advantage, that only field components tanqential to the surface F are
under the integrand.
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It should be mentionned, that the derivation of the field equations with the aid of the vectorial
Green's theorem or the reciprocity theorem represents the field E as a sum of a volume integral and the
above given surface integra]l. The volume integral is extended over the known primary sources and thus re-
presents the incident field E . The surface integral is extended over the tangential components of the
wcrL field and represents tA scattered field Cs. so that the equation holds

t, = t e () + ftS(r) . (2.8)

The extension of the surface integral over the components of the total field can lead to some confusion,
since -there is no difference in the function inside and outside of the integral of the Huygens' principle.
This conf sion can be explained by the proof, that it is possible to express the .cattered field f in
terms of E as well as in terms of i + t that is in terms of the total field [15 261 This meahs that
the expresions iven above are s~itjd to compute the scattered field by inserting for t, A under the
integral either t, A. or e+fs

, 
He +Hs . From Sec. 4 on the scattered field will be denoted by rs' As.

3. THE KIRCHHOFF INTEGRAL FOR SCALARS AND THE PROPERTIES OF THE VECTOR FORMULATIONS

In general it is very difficult to construct a solution of the Huygens-Helmholtz formula Eq. (2.1).
Thdt is, why Kirchhoff (1882, 1891) tried to find an approximate solution. He hal the optnion, that one re-
ceives good results, if one uses instead of the unknown exact boundary values v(r'), av(r')/in' approximate
boundary values va(r'), av(r'2/an', which follow from geometrical optics laws. This idea forms the basis
of the physical optics nethod.

If one inserts the approximate values v,(;') and ax (r')/un' in the Huygens-Hel'nholtz formula, one re-
ceives the so-called Kirchhoff integral

S a ) d ' (3.1)
xv' va (r an'

F

With this step one has to deal no longer with a boundary value problem but with a discontinuity problem. In
this case the surface F nay be an arbitrary non closed surface. As before, v(r) satisfies the scalar ho-
mogeneous wave equation. How behave the vector fornulations in the case, that the surface is not closed?

Equations (2.4) and (2.6) no longer satisfy Maxwell's equations and would become therewith not appli-
cable for a lot of practical problems like reflector antennas. The satisfaction of Maxwell's equations can
be achieved in adding correction terms in fori of line integrals to the surface integrals Ll, 241. The line
integrals were extended over the rim of the open surface. One gets instead of Eq. (2.4):

- n- d( ds' -- a i ds' , (3.2)

F C C
and instead of Eq. (2.5):

11;) = - 4. (j~p( 'x~a( 'flv - lh'Xt (;')lv' - (.*. (;i),') 1 ' dx' (3.3)
an a a d'-~ 9 a

F C

St(r') - unit tangent vector. C - c.rve of cne rim of the open surface. The geometrical situation is
depicted in Fig. 3.1.

open surface F rim C

e sFig. 3.1 Geometry of a nonclosed surface.

£qs. (2.6) and (2.7) have the remarkable property that even in the case of an open surface they will
satisfy Maxwell's equations, so in general one would prefer to work with these. On receives:

*) - . n j (;'xr(w))8 df' + Vx(Vx I (nvA a(r))4, df') (3.4)

F F
or alternatively 

F

1 - (jw(n'xna('-))2 - (n'ufa(r')) . Va --- ((i'Xfa(r'))'v')v'a) df' (3.5)
F

In the following the second equation is prefered, since there the differentiations can be evaluated

under the Integral. One receives:
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I r ' _a(R')) R j kR (-(,))a )) sR) + (3.6)

F R z nr~j a j.., +n- n a

+ R3+3jkR-k
2
R
2 
((,X a (r,)),eR)eR) -7- df'

eR = (A'r')I-' = /R unit vector, which points from the integration point toward the observer point,
see Fig. 3.2.

Ee. He satr n

e df Fig. 3.2 Geometry for equation (3.6).

For the computation of the bistatic or monostatic scatter cross-section, only the far field approxi-
mation of Eq. (3.6) is of interest:

- '4----~----he
- r 

er x J (e
rX
(
n '
x

a
(r'

}
) . .. (• ()) eJkerr, d '.

r ariL e f( ~('))) ekr df'. (3 7,

F

r = distance between the coordinate origin, which is situated within or in the neighbourhood of the surface
F, see Fig. 3.3.

er= unit vector, which points from the coordinate origin toward the observer point,

P

R=e RR t
r=er 

r

Fig. 3.3 Geometry for the far field formula Eq. (3.7).

OA_
0 r

The magnetic field in this case is given explicitly:

e- Jkr - jkr * f

1
4
() e---- r x (r')) + ( '))) r df(38)

F

4. THE KIRCHHOFF ANSATZ AND THE ANSATZ OF PHYSICAL OPTICS

The ansatz, which Kirchhoff made for the functions va(;') and )va(;')/.n is explained at hand of Fig.
4.1 1171. We consider a scattering (Fig. 4.1a) and a diffracting (Fig. 4.1b) body in the field of a point
source of light E. Both types of bodies are to be dark. This means that the incident light is absorbed and
no light is reflected. The shadow boundary Sg in the GO sense touches the bodies in a shadow line C. This
line can be regarded as a rim of an arbitrary surface L, which should close behiVd the source. The surface
L forms together with the shadow part S" of the body a closed surface S"+L, dividing the space into a source
free space T+ and in a space T-, which contains the source. According GO the following situation exists in
T+: within the frustrum T bounded by L and S2 the field distribution ve of the source is undisturbed, out-side of Tq the field disappears. This GO fie distribution can be represented according the Huyqens' prin-

ciple by 2n integral over the boundary lines of the frustrum:

vg(r) = ( = - -- 
(

) df' for (4.1)

By transversing the shadow boundary S from the positive towards the negative area, field discontinui-
g
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Fig. 4.1 Illustration of Kirchhoff's procedure
a) scattering at a structure, b) diffraction at a screen,

ties arise with magnitude

(Vg)+ (V 9 ve . (7,1)+ - - (4.2)

These discontinuities, however, which can be due to fictive surface source distributions, are in con-
tradiction to the hwogeneous wave equation. We construct now in T+ a solution, whicn satisfies the wave
equation. For this purpose we add on the right hand side a ter., which shows exactly the same discontinui-
ties, however, with the opposite sign. This term is given by

+ 1Ve(;') a
n - V(r 35') df'

g

Therewith one receives the following solution, valid for the total space T+

vgr a ve(r') "4__
v(r) v + ( (- - - ve(r') 'n df' (4.3)

S
g

' Ve;') € df' E T
+

.)e e) (; _

L

This is the Kirchhoff solution, which expresses, that the wave field in space is generated by the
superposition of wavelets, which propagate from the points of the aperture L. Kirchhoff originally has
derived this formula by choosing the surface S"+L for the application of the Huygens' principle and in-
serting in Eq. (3.1) the more or less plausible boundary values

a ve av
Ca ve , = on L ; va = 0 , -! = 0 on S" , (4,4)

These are the values of the GO field at the surfaces L and S".

Specially in the scattering case we are interested in a solution, which is valid in the total space.
This can be reached by deforining the surface L in Fig. 4.1 in such a way that it borders the illuminated
surface S' of the scattering object. Then, however, the source singularity in E is to be taken into account.
The contribution of this singularity results in the undisturbed field v.. Therewith we now can write the
previous equation in the form

1 Se(r') -. a , ; T

rV(i) - I j J n( - ve(r) a-- df , r E T (4.5)
S,

Since with this special choice of the surface L the total space is described by T, the solution q.
(4.5) is valid everywhere with exception of the scattering body and the source. For this formula Kirchhoff
has assumed that on the illuminated side of the body or the screen the values v and /4n are given by
the incident field Ce, where on the shadowed side these values disappear: a a

vi .v on S va -- = D on S" (4.6)va 2 ye an va
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These assumptions become obvious, if one assumes that the screen is completely absorbing the light.
Since then on the illuminated side no reflection occurs, the light movement is given by the incident light

approximately. Further a black screen is opaque for the light and, therefore, in first approximation
there is no wave movement in the shadowed parts [201.

The subdivision of a body into its illuminated and shadowed parts is a purely geometrical problem,
which in the case of a complex body needs a considerable computer effort, see Sec. 5.

In the electromagnetici we are used to construct the total field t as the sum of the incident field
e and the scattered field £s" In this way we can write

v(;) = ve( ) + vs(S) (4.7)

with the scattered field
I r aVe(r') _ (

vs = (---- 0 - ve(r') r df . (4.8)

S,

The Kirchhoff idea for the ansatz of approximate boundary conditions for a black scattering or diftrac-
ting structure foliowing G9 principls may be used accordingly in electromagnetics for the estimation of
the tangential components n'x a and n 'x a .

In the case of an ideally conducting structure we know some boundary conditions exactly, while Oier
boundary conditions may be constructed in the Kirchhoff sense. The following Table 4.1 gives a jrvy over

the known and unknown boundary conditions in tne scattering and diffracting case.

boundary conditions
exact approximate

on the scatterer ;nx = 0 nx~a = 0 shadow region

body _x~a = 2Axe illuminated region

outside the scatterer ix A rx e  x t. = x e

in the aperture ;xig nxA e  ;xf = hr e

diffractingx 0 n shadow region
body on the screen nx a 0____a__Xe

i__[x 2A A illuminated regionj

Table 4.1 Exact and approximate boundary conditions of the total fields in the scattering and diffracting
case if the bodies are ideally conducting.

The approximate boundary condition

;xa = xge + ;x~r 2;xe

would be exact, if the scatterer could be represented by an infinitely extended ideally conducting plane,
where Ar = He holds. In practice this means that a scatterer should be modeled by local tangent planes.

rr' r denote the reflected field in the GO sense.

Of special interest within this lecture is the scattering case with the boundary conditions given on
a scatterer. From Table 4.1 we receive

;xr a  nxt = 0 for the total scatterer, (4.9a)

nx a = 0 in the shadow region of the scatterer, (4.9b)

and

nxI - xA e + xAr - 2;xA e  in the illuminated region (4.9c)

of the scatterer. Using Eqs. (3.7) and (3.8) we receive for the case of an ideally conducting scatterer the
PO solution of the scattered field:

e-jkr jkr.s() -- ;r x(;r x (;ni 'e (r')) e dr') (4.10)

7 r kr r
F

s -A
-(
) -. 

e Jk
r er ( (n"X e(P,)) ejkrr ' df' . (4.11)

F

If the scatterer is nonideally conducting, we cannot define any exa:t boundary condition. The approxi-
mete boundary conditions may be formulated as follows:

Ax, - 0 a  0 in the shadow region, (4.12a)a a2a



nx l = nx e  n null nv lh e * nA x in the illuminated region of the scatterer. (4.12b)

Again, these boundary conditions would be exact if the scatterer could be represented by an infinite
extended nonideally conducting plane. Using the Fresnel reflection coefficients RE and R for a plane multi-

layered medium, Fig. 4.2, the boundary conditions (4.12b) above can be formulated in the following way:

x = X(Ee, + ' ,, + RE Ee , + R H  e- 'S ) (4.13a'

nxi= x(-E el, + E ,, - RH E , RE E,. s,,)/Z . (4.13b)

reflected wave

nc id nt ______layer no. free

wave lick1 pce
1 sIpace

4 ' 2 d2

3 d 3  multi-
.. ... - layurcd

4 d4  pan(i Ip;m( I5 d5

dN.N

Fig. 4.z Geometry of a uulti-layered panel.

R h  reflection coefficient for the case, that the inci ent magnetic field vector is vert ca fo f e olare
of incidence (H-polarization),

N6  reflection coefficient, if the incident electric field vector 1s vertical to the plane of uncid ce(-polarization).

The reflection coefficients have to be determined at the interface between free space and multi-layere.d
panel

C. unit vector vertical to the plane of incidence,
e, unit vector vertical o e,and vertical to the incident ray -ez and therewith parallel to te ;1ldie

of incidence, so tsat e,, e, a e olds,
s,. unit vector vertical to j. and virtical to the reflected ray with direction s and therewit:

parallel to the plane of Tncidence, so that s., a , holds.

Ee , resp. E - component of the electric field in the direction of e, resp. ir tnt Jdreution of e..
For details see N.). 26-301. The geometrical situation is depicted iin Fig. 4.3.
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plane of Ent Er Hell Hio
incidenceo )ejo rHan .

-He 1 Hr Ee I Eri

- e z a

free I Hrjl RH HI g E r IRE Eel
space

Multi....... ....

layered
panel CL2.

a) b)

Fig. d.3 Definitionsof polarizations
a) i-polarization, b) t-polanuzation.



5. SOME DETAILS OF PHYSICAL OPTICS

5.1 GEOMETRICAL 1ODEL AND HIDDEN SURFACES

The GO concept of using Fresne) reflection coefficients, which rigorously are val.d for infinitely
extended plane layers, proposes to model the structure by Panels (flat platesk the structure should be
large compared to the wave length. For this kind of modeling the so-called hidden surface problem, that is
the discrimination between the illuminateo and shadowed surface regions, has to be solved by a computer pro-
gram. At this time there are two computer programs in use. The first computer program [311 has been applied
for the solution of all hidden surface and double reflection problems, cited in this and previous reports
g, 101. The computer time increases almost linearly with the number of panels. The second computer pro-

gram [32] is a basis version, which is foreseen to be extended to treat multiple reflections. A rough des-
cription of the procedure, which is illustrated by Fig. 5.1, is given in [10].

Fig. 5.1 Illustration of the hidden surface

procedure at hand of a rectangular
box modeled by triangles or quadrang-
les. A triangle is positioned in
front of it

a) b) a) original situation
b) elimination of all surfaces with

normal vectors including more than
900 with the observer direction

c) splitting of the box panel, whicn
is partially hidden by the triang-
le, the invisible Part of the box
can now be removed

d) rcmaining elements of the box only.

c) d)

One also could think to use curved panels in order to model the structure. This may have some advan-
tages in modeling certain structure like a wing of an airplane or a bow of a ship. The solution of the
hidden surface problem, however, will increase in complexity. The PO solution for a curved panel, descri-
bed by the two principal radii of curvature is evaluated in [33, 341.

A further modeling technique is described in 1351. The body is considered to be an enserble of compo-
nents, each of which can be geometrically approximated by a simple shape. For these simple shapes, the so-
called basis structures (sphere, flat plate, cylinder, cone, etc.), the radar cross-section is known by
exact solutions, approximation method or measurements. By proper combining the component cross-sections one
can estimate the cross-section of the entire body. Hidden surface and multiple reflection problems must also
be solved within this procedure. The correct treatment of the phase of the component scattered field is a
very difficult task. That is why one often uses a random-phase method, which yields the average radar
cross-section and the amount of probable deviation from this average.

5.2 PREDICTION OF POLARIZATION EFFECTS

PO predicts zero cross-polarization in the monostatic case, when the scattering structure is ideally
conducting and no doubly or multiply reflecting panels occur. This is not in agreement with the actual si-
tuation. Also in all other cases the predicted cross-polarization effects are erroneous. Therefore, tests
are in progress to decide, if the PO results in this case satisfy pratical accuracy requirements.

Fig. 5.2 shows as an example for the bistatic case the computed and the riasured radiation pattern of
an offset reflector antenna 13J with a corrugated horn as primary feed. The reflector was assumed to be
ideally conducting. No double reflections occur. Experilental and theoretical results are in fair agreement.

The components of the backscattered field (monostatic case) of a multi-layered Panel 110, 26, 301.
may be represented by

E ITI[Eexl (5.1)EsyJ EeyI
where the scattering matrix ITI, computed by PO, is given by

[R-n2- REny (RH *RE) nx n Ee-
IT] = e k r e

2j kz ' 
dx' dy' I 5.2)

21rIn (R H v E x R n 
2

R n
2  

EP ,. nny H y E n

nx, n ,nz cartesian components of the unit normal vector of the panel,
F P 9rea of the panel.

The geometrical situation is illustrated in Fig. 5.3.
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The formula predicts cross polarization with the exception that R, E- R , nh A ine asi f -

tical incidence (n. z n l 0). if the material is non ideall, ccnducting, and flr al andl, i, )f r Ijeri,
if the panel is ideally conducting (R - RE  = 1). Further no cross lolarizal i :,edli ted. f tnv s -

cident field vector is either vertIcal or parallel to the plane of incidence.

The polarization dependent backscatter cross section of a nioni10vij! .. i,, J'. c' .,
presented in Fig. .4. An experimental validation of the depolarization effe t, A a ,,' I . ,,
panel is planned for the near future. For other theoretical worb in this field see [ iti
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.3 LVAL.,ATlIU OF 'HE PHASE !NTLORAL

The prase integral in .s. 5) can, 1e evaluateld numericall10 in any case. if triangular or rlai-
lar panels ire rousen, trio lnjse intqoal can 'ie evaluated anal ticall ]1), 371. If tne object to lie '

Jrlod has s-r, a roy , tt large panels an oe used, irue analytic solution ri35 some adoantaqe in 1 ,r
and conp t Pr , tfort.

In toe literatu~re -e finds very if ten an a;c tevcal uation of the :inase i oteclra I O toe
tirnar/ ,rnast principle JIZ ISJ lii t it. a .kellI-Pnown phenomeon triat waves, which are snort coi;:la-d %
injects liensilOn, are scattered almst entirely frim +hose surface polntn, which ar, S!iecularla oriented.
wohet ap;)Iy In tone ,t a tionary pnase priniple on tne Ohdai' integral onn canl 51010, that most If tn scate-

rigdes inee coi fro)m these specula r alo ts, and thie small oei Ihho Urnoyd orround Ing te. Th iva I -

t i n of tne phase intesjral by too stationar, pna,ot principyle as tile advantage tnat inalytical yrs'5
for tehe scattered field are anaiale On the oner 0 ide very incorrect resolts can arize for, directionll
fa r a a y from tie mla in I ole if cat tereI energy. Sinc1 e tone stationary 'mpase principle is no t Inherent !"
tile irc-nnoff inod i iol npalea irc is,' evaluat ion of tro phase iiiteqral by numerical or0 inl
special cases liy daait]iI till I jue.

s-IlijBLL RLFLLCt:U.,S

In order to treat dm010; roflec lior to ',0 Oricept for thte construct iso of too surf ace, flelI, l
applied i0 a logical extnsion 1I P.lII. 113. S.', shows the geometry of two back scattering iiaiiets, wrlii
are oriented in sumh a way. tiadt duuiil reflections ,an ocar. In order to describe double reflectiis. ln
toe 60 sense,. toe angle is set ti zeo- takes into account that the PO field of panel B propagates nol
only in the Gcm direction. Toe proper value Of the angle ,depends on the desired accuracy and is saDtiect
of current investigations. Values of 01) % - SO0 seem to be real istic.

The brack scattering lf eaco panel is de'scribed by Eqs. (5).I) and ().Additioialty each panel ne-
nerates a reflected field at the surface iif toe Itner panel, which is scattered toward the eceiver. This
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reflected field, whic.h is ,_orstructed according rO principles, represents the incident field in the P')
sense.

In the case of ideally conducting doubly r'eflecting paolIs tne nolarization wectr J : of tbe bpa-scat-
tered field is given by the following formula:

e polarization vector- of the incident field e
a n it e r v te direction of the FO reflectior of panel A,

unit norial L.tur of panel A,
r

a
=unit notrial vector of panel 5,

11a D ez ra a

T,)i s me ans tnat in th~e case of ideally conductinqj Surfaces, the PC concep t 1s ab.le to )reedict r S
#c ~aions also in the baLk scatter case, if double reflections occur. The same is valid, if nujl '1e

reflections arise. On the basis ,f this concept a computer program was develooed [i - 1g]. Thie qeorietricil
pro.le iis arising with double reflections are treated in 13I.

r il . e .7 snows the computed and measured depolarization effects for an ideally conducting cu witn
adilona scadowfng surfaces, w ih gcveoni ref le eflections. The dimensions of the olbject are

given in Fig. I.isg. The position of the object for th~e rotation angles 90
, 

150
, 

310 and 4150 is illustfra-
ted in Fig. b.5. The results sow the actual state of the work in the field of double reflectis.

differences between experimental and theoretical results are subject of current discussions.
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Fi.j. 5.7 Depolarization effects of the ideally conducting doubly reflecting stru.'ture, see Fig. 1.29 and
Fig. .6;
a) theoretical results,
b) experimental results.

o.5 MiWl.LING ACCURACY

In modeling a structure by panels the question arises according to which criterium the size of the

panels has to be deterined. On the one side one would like to choose the panel size as large as possible
in order to safe computer time. On the other side the difference between the true surface and the model

surface is not allowed to exceed a certain value. A series of tests has shown that the deviation between
the true surface and the modeled surface should not exceed a value of about X/16. This is illustrated in
Fig, 5.o.

This criterium is well known from antenna measuring technique. If the admissible phase error over the
aperture with oianeter D of the antenna under test is assumed to be 22.50 (A/16), then the far field di-

stance R nust be chosen in such a way that R > 2D2/X. The true far field pattern for the distance R -

then will differ only in a negligible amount from the measured one.
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Fig. b.8 Admissible deviation between the true and the
modeled surface.

true

surface

5.6 COiPUTER TIME

The najor portion of the computer time is needed to carry out purely geometrical computations like the
eli,nination of the shadowed subsurfaces and the search procedure for doubly reflecting panels. The actual
version of the computer prograv takes about 0.01 s per field contribution of one panel and per one aspect
angle on a computer of the type IBM 3081. The cylinder with a hemisphere at one end and a cone at the other
end (see Fig. 1.2d) is modeled by 140 panels. This means that the computation of the scattered field for
180 aspect angles takes a time of about 250 s.

6. CONCLUSION

The PO method has proved its qualification in the prediction of the radiation pattern of sym-
netric and off-set reflector antennas with single-, dual- and four-reflector systems. A series of test
objects with increasing complexity has been used to validate PO also in the monostatic radar case. For
the accuracy checks numerous comparisons with measurements and/or the results of independent theories
were eade. The test objects were assumed to be ideally conducting. The computations were carried out for
the far field.

Though the used test objects can be identified as substructures of more complicated objects, a vali-
dation of PO for application oriented objects should be provided for. Exact backscatter measurements,
however, of an object like an airplane require a high effort, and a comparison with the theory is a com-
prehensive task. Further PO should be validated for the case of nonideally conducting multi-layered struc-
tures. This affords a precise knowledge of the constituent parameters of the materials. In the field of
double reflections more measurements are needed to discuss the preliminary PO results presented.

Since the quasi-near field of a scattering structure is of practical interest one should study the
qualification of PO in predicting the scattering process in this event. Further it seems of high practical
interest to extend the PO method to treat multiple reflections for ideally and non ideally conducting com-
plex structures and to solve the ray tracing problem for this general case. A further point of investiga-
tion could be the correction of the PG field by an additional field term, which takes into account edge dif-
fraction effects. This correction term has to be evaluated for an edge of finite length.
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SUMMARY

-Tatget classification is set up as a multidimensional inverse scatt-rirng probliit for fetrrtag
netic waves. The target is considered to le of compact supprt residing in a meditim with corte'tit
wave speed. The scattered field produced by a prescribed incident field is repreetited b' it, eqpic
alent sources in terms of Hluygens' principle: for the sake of simplicity, inversion ,f this rer-til
tation is outlined for a scalar quantity, say a scalar potential. It is illustrated that the intrili

tion of the physical optics or weak scatterer approximation linearizes thfe inversi' probleix r-ullttig
immediately in an inversion formula for the characteristic or singular Iuntlion of the cattfzrfr if
the scattered field is measured as function of frequeicy - or as Iroadband tralrisieut oni a ,:o,,
surface sufficiently remote front the target in an either iistatic or monostatit experitental arrarigi
ment. When interpreted in the time domain the resulting far-field algorithm', turn out to lije of the
backprojection type inversion of the Radon transform as it is a basic tool in comptiterized ton
graphy. To get rid of the far-field approximation the wavefield iackpropagation prinlcieh! is il
lized to define a generalized holographic field, which is explicitly related to tie ninnial eergv
components of the equivalent sources according to the Porter-Bojarski integral equation inttigratitl
with regard to frequency yields a unique explicit solution for the geonetry of the targit if atd nll
if the physical optics or weak scatterer approximation holds. 4J the time domain the reitlting sili-
tion of the multidimensional inverse scattering problem can b intuitively interpreted as time toraiii
backpropagation of transient scattered wavefields, which turns 'it to be a generalization ol fadon
transform methods to diffractive waves instead of projective rays:' As such. the Synthetit Apterture
Radar can be theoretically derived within a tomographic framework, Additionally. this gives rise to
either bistatic or monostatic Fourier domain processing of transient data even in the tear field.

1. INTRODUCTION

We define the following electromagnetic scattering probleut (Fig. 1 ): a soturt:e volutne Q tratisit

E = Ei + Es EsI

R SC
V

C

Fig. 1: Scattering problem

an electromagnetic (incident) field (El.
0
i), which is scattered by a target of compact support with

surface S., both residing in free space with (vacuum) wave speed c - ( 0 P)- 1/2. The total field
(Ell) at some spatial point R is then composed of the sum of the incident field and the scattered
f Rela (E,Hs). In the time domain E(Rt) and R(R.t) have to satisfy time dependent Maxwell eqiua-
tions with-initial conditions and appropriate boundary conditions. Introducing a Fourier transform
with respect to t according to

F() = ff(t)eJ'tdt = P 1 ft)1 II)

leads to spectral quantities E(Rtui) and H(R,.), which satisfy time harmonic Maxwell equations with
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the initial condition replaced by a radiation condition; notice that we have choser the positive sign
in the exponential, which yields the complex conjugate of the conventional Fourier transform for re-al
valued time functions; this is indicated by the asterisk in operator notation.

In the spectral domain, a solution - for instance for E(i) - can be giver in terms of tl
following integral representation for the incident and the scattered field 1i,2 ,

( '(4 n' + In' -- __ c, d ' n

(2)

SC

where 1() ..) denotes the electric current and PIR'...)I the electric charge density in tb source vol-
ume Q. n' is the outward - source point - normalaon Sc: GIll - F', I represents the threedimenional
tree space Green's function

jkIR - Hi'l
Gill- R' . ) - e (3)

4,JIR-R'l

with the wave number k 4 .1c.

Usually, equ. (2) is made the basis for the solution of the direct s:attering probleir whre tihe
equivalent surface sources n' * H, n'- E, n' m E on the scatterer have to be determined In advan1ce1
applying some appropriate boundary condition to E(R..l J2,31 . With regard to the inverse, i.e. tar-
get classification problem, equ. (21 has "simply" to-be inverted to determine the localized equiv-
alent sources provided E(R.) is considered as data and Ei(R. I is known a priori. This inversion
will be outlined in the following, where, for the sake of simplicity, we concentrate upon the scalar
counterpart of equ. (21.

It has been emphasized that polarization effects play an important role in target classilication
4.5 1; they can only be accounted for by the full vector treatment of electromagnetic scattering and

inverse scattering. We anticipate that our scalar discussion can be most probably extendedi not only
to the complete electromagnetic vector problem but also to the tensor problem of elastodynamic waves.

Suppose, the electromagnetic field is decomposed into a scalar potential 5 and a rector poten-
tial A. In the spectral domain, O1(R.-) satisfies the following wave equation

(A +k')O(R,.) z - (I(R,.) . (4)

where the source term q(t.(.i is - for instance - proportional to the electric charge density in Q.

With the aid of Green's theorem, we immediately obtain a solution of equ. (4) in terms orf an
integral representation, which is the scalar counterpart to equ. (2) (compare Fig. 2) as soon as tire
arbitrary surface S

O(.,fff,
Q S

surrounding Sc is smoothly adjusted to Sc.

SC
V

Fig. 2: Scalar Huoygens' principle
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2. HUYGENS' PRINC:IPLE, EQUIVALENT SOUIICES. PHYSICAL OPTICS AND WEAK SCATTERER APPROXIMATION

From equ. (5) we immediately learn two things, which are important for the inverse problem:
- Suppose. S characterizes a measurement surface S 1, where the quantities 0 ani at /an' are known

from experiment: then, equ. (5) tells us that the total potential outside SM can be computed with
the aid of a surface integral, any additional measurement point outside SM yields redundant in-
formation. Therefore, our data space is essentially twodinensional, whereas our scatterer is at
least threedimensional (in terms of the equivalent sources - see below - it is even fourdirvension-
all. A remedy consists in the increase of the dimension of the data, varying experimental para-
meters, which can be conveniently controlled: these could be the angle of incidence of a plane
wave, say, modelling the incident field or - more important for radar purposes - spectral fre-
quency. Here, we will concentrate upon the latter procedure.

- Applying equ. (5I to a point interior of S, Green's theorem only tells us that

fq(R.,'G(R - R'Id'R' a ,[ l H - (F-i a (iS (6)

VQ S

As has been pointed out by Bojarski 16] . equ. (5) cannot be considered explicitly useful for tar-
get classification.

In order to invert equ. (5) it is appropriate to transform the surface integral into a volume
integral for arbitrary scatterers, be they either perfe(:t ("perfectly conducting") or penetrable. i.e.
allowing for wave propagation inside Sc, This can be done defining the characteristic and singular
function of the scatterer first. The characteristic function denotes the support of the scatterer accor-
ding to

1 for Bt V
r(It l (71

0 for RP V

and the singular function has been introduced by Bleistein [7 in terms of

fff r, .l.,.ld'R O(R d1 (8
S

c

to characterize S. explicitly.

Let us choose the Iirichlet boundary condition (R',) - 0 on Sc to describe a perfect scatterer.
We theti obtain the following equivalent volume source representation for the scattered field

with

qlD(R,.l - i(Rln * V10

where the upper index "D" stands for Dirichlet.

The case of the penetrable scatterer can be obtained transforming the surrace integral in (5)
for S Sc into a volume integral for points It outside Sc applying Green's theorem, which yields

OsM N. (R - ffG(R.. (A 1k) 0 (RI .. )d'' (111

V

Very often, a penetrable scatterer is characterized by a variable wave speed c(R] inside V,
which can be modelled by the following wave equation

6 0 - R'(R)$ 0 Re V (12)

From (12) we obtain

64 + k'
= 

-[k'(R) -k' 0 (13)

and hence

.,(_.) f f qc(R'. G(R-R',- d'R (14)
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with the equivalent volume sourc:e

qc~li. { , r(H) ! k (19 - k1

Therefore, the subsequent integral representation

,( . : ,i + f f f ( c(H . lG 01t- H'., ld'P t161}

can be made the starting point for further investigations; the equivalent volume source 1
, 

tithmr
given by (10l or (15), and we emphasize that a variety of more comlI)MX surface or volmi sourc-
- electromagnetic currents and charges as well as elastodynamic forces - can Ie modelled in a simS

ilar manner (someties only approximately, as it is already the ease for tht scalar Nouimnn ,rto -
lem }.

In contrast to the prescribed sources accounting for the incident field the equivalernt sourc ,
are field-dependent, which makes both the direct and the inverse scattering protiler non- linear with
regard to the scattering geometry: if only a sitgle scattering "pixel" is added to V. the iholli

equivalent source distribution changes.

One might be tempted to solve the non -linear in verse problern ti devon solving equ. 1If6: in
cartesian coordinates (x,y z, equ. (16) is a threedimensional conrvoltution equation. anl. p[,cog
a threedimensional spatial Fourier transform acrording to - K {Kx,K yK z ) denote, the c-for of
corresponding Fourier variables -

we would obtain

*1(K, q, q(K. fi K.) (1ttl

Considering t as (Fourier transformed) data. we couht divide by G to obtain the spatial Fou
rier spectrum of the equivalent sources. Infortunately. this procedure is not possible for tao rea-
sons:

- (R., I is only known on SN, or outside,.SN twith the aid of Huygen' integral): there is no way
to compute it inside SM, ani, hence. ts is missing the most important spectral components.

Computation of G6(<.) yields for any spatial dimension

-, I - (19)

- K - k-

with

K -WKT', Ky - 1K . (20)
X y z

where "pf" stands for pseudo-function: loosely interpreted. C is singular on the so-calitd Ewald-
sphere K = k preventing simple deconvolution.

The remaining alternatives to solve the multidimensional inverse scattering problem rely on
approximations for the equivalent sources. which essentially result in a linearization with regard to
the scattering object; the physical optics and weak scatterer assumption are physically intuitive
procedures to achieve this linearization.

The case of the penetrable scatterer can be linearized provided the surface Sc encloses a weak
scattering volume, which means that it is present as an equivalent source but not as a scatterer.
i.e. in (15) we sot the total field 0 inside the scatterer equal to the incident field Oi. which is
certainly valid if the difference lkfl) - kl is not too large. Usually. the weak scatterer approx-
imation is associated with the name of Born. i.e. we write instead of Ii)

qBo (R.) = r(R) [k (R) - k't 0i(R..) (21)

Assuming plane wave incidence according to

¢i(R w] ~ w~
jk i

0 F .) = (22)

where Fiw) denotes the frequency spectrum of the incident wave, we conclude that a prescribed char-
acteristic function is transformed into an equivalent volume source (within the Born approximation)
simply by multiplication with a phase factor, which is completely determined by the propagation vec-
tor k i of the incident plane wave with 1kil 

= 
k.

For very high frequencies w, a smooth convex surface of a perfect scatterer can be considered
to be composed of locally plane patches, which are "infinitely" large with respect to the pertinent
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jkR*far e(281

where

H(kR..l I IqcR', )e d3R' (9
f f fjC

denotes the scattering amplitude. Comparing (29) with (17) we conclude

11kA. . z~ q1< kft..) (30)

which tells us that measurements of the scattering amplitude in various directions )proides o, ith
Ewald-sphere information of the equivalent sources, where points on the Ewsald-s 1 ,here. i.e. in spa-
tial Fourier space, are explicitly related to points in observation space through K kti. This tact
can be exploited to derive far-field solutions of the multidimensional inverse scattering problemf with-
in the Born or physical optics approx imat ions either in a bistatic or monostat i. operat ion~al rmode.

Here, we want to concentrate upon the bistatic case, because algorithms for mono~tatlc tar-field
inversion within the physical optics approximation have been reported earlier (cilniare, th(e lamous
POFFIS-identity. which stands for Physical Optics Par-Field Inverse Scattering 8.9 1. For !he lb
richlet scatterer we have

ik R, ik IR * tI
P0 (R. z -2(. W ),, u-1)t' - e -- .11R,4 (31)

and further

0 PO~ar R.. - -2k() k R)n' * k iul-k. R')e j( kd -, W'. (32)

l[Wining a spatial Fourier-vector through

K kM-ki) (33)

identifies the threedimensional integral in 1321 as a threedimensional Fourier integral ri-tat ing fir-
field data to the Fourier transform of the "lDirichlet singular function"

1 )(H'. dz I '~ *ku(-k 'RI1 (34)

in terms of

D -j t Pt) far We kll

f ,(t('k.( - H 2,f -R - -k (35)

Dlue to the definition of K. a Prescribed exsper imen talI setup. i .e. choice (f k ., k an ni I uiqu pe
ly determines a point in K-space: data space and Fourier splice are related) oil a pint wi..e liasi.
This is the argument to interprete the far-field data ofar(R~ki.,wI measured ir, the direction ft fur

the direction ki of the incident wave of wavenumber k as a "data pioint" , far()J in tho Foirier 'piace'
of the object after the normalization indicated in (351.

Fig. 4 exhibits the relation between object space andl Fourier space: obviously, if ki remnain-.
fixed, according to 133) the vector K reaches all points of the shiftedt twald-spihere IK< k ijI it
the receiver rotates around the scatfererirecording ofr t~I~ for al lpossitile idireictions li. Thease
(normalized) scattering data have to he interpreted as Fourier data 0a M.(K hence, a single bistatic
time harmonic experiment yields spatial Fourier components of the tDirichlet sinigular functiotn on the
Ewald-sphere only. This information can be augmented in a multipile expet itnent varying the spiectral
frequency .: for 0 < we obtain

,-'r PO~far(Kl- jlkf (6

where the step-function in K-space indicates that only "one half" of K-space can tie swepit that way.

Without loss of generality we can assume to find ki in the xz-plano (as well as in the Xz
plane) according to

K.0 i-cose1, 0. -sxine. d137)
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whore4 the,: sp-ace now su poins c n o r a neg ati f-.fieln epermn sia roatiosfofith

xsz - plane with .C' to be the new coordinates, the Fourier inversion of the leift- hand side! of (361
reads

(1 e)' - KK K I u K )e ilK ilKy jK

f5 f I f K ~ 4..) * ~ [ i Y' il<e 4 KlK ilK

(2 nP -+tI K 4f ejK F j y ,( 9

whr Kc 4 K .4,k . denotes the twodimensional Fourier transform of (Y M.k~ ihrsett
and y' the ateIk in (39) indicates a oneutimrensional convolution. toterrhanging this convolution
w ith the twodlimensional inverse Fourier transform and taking the real part y~rlds

D ~ ~ PO, far M e -jk4 jK 1491'

y ef f s do (-0

Eqis. (40) represents a bistatic far-field inverse scattering identity within the physical optics
approximation; obviously, this procedure implies target clasification in terms of the magnitude, of

the equivalent Dirichlet surface sources, which only piartly represent the geometry of the scatterer
(compare Fig. 3). The situation turns out to be somewhat different fur the penetrable sratterTer with -
in the weak scatterer approximation: we similarly obtain

R .. .. .. Born .far K~-jkR K-R

0(8) Fi~e f f f Os 'F - e WK ( 41)

where O(R) denotes the object function, which is directly related to the Characteristic function accord-
ing to-

O(R) r(R) [I - k (42)
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A processing alternative to eilu. 146) is obtained via analytical manipulation to yield 11I

T(Xzl -~~ o zsin 0)do (47)

0

with

QC,( 0 HlD PC (1;~ (481

where HDC denotes a filter operation on the data with regart to I;consisting of a derivative opera-
tor followed by a Hilbert transform. According to (471. the filtered data are subsequently backpro-
jected into the target space along lines of constant C(compare Fig. 51. Superpositicrn of all baik-
projections for varying 0 yields r(x~zl. For obvious reao~ons. this data processing procedure is
called the filtered backiprojection inversion of the Radon transform.

For certain materials projections of the kind 1441 can be obtained with X-rays whence the
success of computerized tomography in medical imaging and nondestructive testing.

5. FAR-FIELD INVERSION VIA TIME DOMAIN BACKFRCliCTION

Similar to the Radon transform inversion, far-field inverse scattering via K-space Ias it, -un
lerpart in filtered backprojection algorithms which operate directly on time domra-in scattered da
Again, the monostatic case has been treated earlier [9,12,13], therefore. we concentrate in th
bistatic arrangement, and, for the sake of iconvenience, we choose eilu. (41) as starting point. hitSi
1371 and

A (cosEacos*. cosEtsin4. sino I1 141

we obtain the following Jacobian

dK dK dKE = k' ItA k i dkd Q
x y z 2--

with the spatial angle element

dn = coseded~ '

Insertion into 1411 yields

0(RI) =- R RleI e jkR dk Born~far (Rii ") ktl R kl d

0 4,,

where the spatial angle integral extends over its hrill range (if 4- Ti, Iiter 'P-t, III, k rrt-graI is
an inverse Fourier integral, we smiuggle esi ~~I-Iinto itl,- it. grirld t " put 1t 1) 1S, 0i
afterwards. Due to the step-function ul Il-in Ilower Integrafiir 1111 -ll III 0an 1t 11 'IfItos,'tt
nity. Because ult) according Io

is the inverse transform of ul.. (compare tru 391 indri.st- It ..,. .5) ' ..... git ph) i i. (III
we obtain

R() (fi,lBorn. far 14 1 li ,i. 14
-W 4.C k7~ -ill()I -tId 14

with

ct 0 z4 R Rk~ R, 155)

Due to the occurrence of Fl I iii (52). the time idrea in tata cirr-po.rniditg to the lreqiiricy
spectrum of the measureit idata have toi be ,leionvolved a itti the time dlepienden~e (if the meiasiired idata
have to be deconvolved with the time idepenidence of the incident plane wave whence the upper iIne
"I" in (54). which standls for time domain imrrtse respotise.

Equ. (54) repiresenits a lime idomain histatic far-fielil itiversut scattering identity within the
Born approximation: its exprressive interpiretation is given in Fig. 6 for the exampile oh a spherical
Born scatterer whose far-fielt Impulse reslmie calt he comp~utedh stra ightto-rwarilly 1101 a I icei do-
main data point observed in -the. direction R4 for a time instant to is distributed, i.e. backprujerted.
to a plane perpendicular to R - ki, where the scalar pirodiuct R4' -(it - ki is a constant relating
points R' in object space with tj through (55). As such, timeilntna-in rar-field target classification
within the physical optics or weak scatterer applroxsimnation is closely related to the backlirojectin

*operator (47) as an inversion scheme of the Iladon transform.
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Fig. 6: Time domain backprojection of the bistatic far-field impulse response of
a weak spherical scatterer

A straightforward extension of (54) to non-far-field experimental arrangements, where, for in-
stance, extended planar measurement surfaces have to be accounted for. is heuristically obtained in-
serting to according to

ct 0  =k.* ' IR - 'R 1 (56)

instead of (55): from (56) equ. (551 can be deduced it far-field conditions hold. The resulting target
classification scheme has been made the basis of the Synthetic Aperture Radar (SARI. In the follow-
ing we give a rigorous evaluation based on the backpropagation principle. It will enable us to
clearly state all approximations, which have to be made to end up with the heuristic SAR scheme.
We stay with the bistatic case and the penetrable scatterer; in 01, the monostatic case is treated
in detail, and the perfect scatterer can be approached along the same guidelines with our equivalent
volume source formulation.

6. BACKPROPAGATION PRINCIPLE, PORTER-BOJARSKI INTEGRAL EQUATION

We return to the formulation of wave scattering in terms of Huygens' principle, which, as we
already mentioned, is not explicitly useful to tackle the inverse problem. Therefore, we follow the
ideas of Porter t14 1 and Bojarski 15 1, and define a so-called generalizedl holographic field
XH(R. ) inside the (measurement) surface S (compare Fig. 2) according to the principle of backpro
paga tion

(8, - L- L- - (;'(R - I'.I n ds' (57)

S

here. G* denotes the complex conjugate of the threedimensional free space (;reen's function, which
accounts for incoming spherical waves travelling towards the measurement surface with amplitudes
according to the known values (and normal derivatives) on S: we are going to "meet" the outgoing
scattered field if we compute XH inside S from 0 and 6/ n' via G*.

As a target classification scheme, equ. (571 has been investigated as generalized holography
f161 and within the context of exact inverse scattering [ 15.171: it allows to derive a relationship
between backpropagated fields and their original equivalent sources, tha so-called Porter-Bojarski
integral equation [6,141.

Applying Green's theorem to the interior of the surface SM transforms equ. (57) into

XH( .) s(R,.a - f f fqc(R' vG* ( - III.a) Will (58)

Inserting (16) we obtain

XH*(H. si - 2i f qclR'.w)Ci(R-R' ,,d'R' (591
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where Gi denotes the imaginary part of the Green's function. We can eliminate 0i defining

e H(R, ) XH(R,.) - 4. (60)

which yields

eH(R0.a} - sY [ )G- a ( . ) dS' (61)

a H (. w)an' G- -,.
o s
S

and therefore

OH(R. 2j f f qc(R'.wlGi(R-R',ldR' (62)

Equ. (62) is an integral equation relating the backpropagated scattered field and its equiv-
alent volume sources: unfortunately, its solution in terms of q(R..) is non-unique 1181. This can
be readily seen applying a threedimensional spatial Fourier transform

aH (K..) = 2jqcCK..)G i (K.w) (63)

Recognizing

Gi
( K

.-
) 

= - 1k 6(K - k) (64)

we obtain

e H (K., j J; (K = k, eK, K,16 (K -k)1 (65)

where OK®'K denote angular coordinates in K-space. Equ. (65) relates the spatial Fourier spectrum
of a generalized holographic field - a quanity, which can be computed from measurements - to the
Ewald-sphere components of the equivalent sources; obviously, c(Kw) can be arbitrarily changed
outside the Ewald-sphere without changing equ, (65), whence the non-uniqueness of the solution of
the Porter-Bojarski integral equation (62). Equ. (651 reminds us to equ. (18). where we stated that
the scattered field is mainly composed of Ewald-sphere components; here we find, that the backpro-
pagated field is only composed of Ewald-sphere components. In fact, the difference is due to the ev-
anescent or non-radiating source components, which get lost in the backpropagation process [ 10,18.
19.20 1.

From a physical standpoint, equ. t65) is somewhat similar to the far-fiehl inverse scattering
identities, insofar, as scattered fields measured on closed surfaces exhibit specific K-space infor-
mation about the equivalent sources: we just lost the point-wise correspondence between K-space and
observation space: in fact, the backpropagation principle relates all measurement points to all points
on the Ewald-sphere. Consequently, as in the previous chapters, w-ewill tray to augment K-space
coverage via multiple, i.e. broadband or transient experiments. Unfortunately. due to the explicit
dependence of 4,(K,.) upon w, sweeping k changes the total K-space structure of the equivalent
source, which belongs to every single frequency component. To control thi. dependence, we have to
introduce a priori knowledge, which is accessible assuming physical (ptics or weak scatterer approx-
imations. Therefore. to continue in the derivation of explicit inverse scattering identities, it is a
must to introduce linearizing assumptions.

7. INVERSION VIA TIME DOMAIN BACKPROPAGATION

We choose the penetrable scatterer for plane wave incidence within tte Born approximation. and
rewrite equ. (62)

jk . R ff -.. (F - H''I
e H - (R.) = -2jk'F(w) f f 0(R ' )e 6- - (R It' .. ) I 1U(66)

Threedimensional Fourier transformation and integration with respect to , yields

k7 H O_ i )d (K)I IK, 0i) (67)

0

with

l( I =f ,8( 1 KIt_ k~il-k0dk (68)

--- II ~ m 
a l "

m, mm "0



6.2The latter integral can be carried out explicitly with the aid of distributional analysis [101:

RT U(- k d.(69)

Theref ore

i(K)u(I- K k T_ kf'F(.) 6H( , k (70)
0

The right-hand side of this equation can be manipulated it we recognize that H
1
('- satisfieis tile

Fourier transformed homogeneous wave equation

(K' - k') I j =K. 0. (71)

Hence

K ; sH K d) (-K * ii H(0 ki.2V H-(i172)

Insertion into (70) yields in the spatial domain

~p ff(K)u K.( dkl if )e ~w jK - R (

;ej k'F_ _i 4k(3

00

Equ. (74) is an exact inverse scattering identity provided the weak scatterer approximation
holds; it can be considered as a generalized filtered hack propa gat ion algorithm.

As previously in our investigations, further manipulation of the k-integral yields a time domain
target classification scheme, which represents a generalization of far-tiel.) time domain backlirojeictio.
Proceeding similarly as in the derivation of equ. (541 we obtain

0(R) -2ck. .ve V 0 t-14 I

where the upper index "B" stands for "ramp response': mnsteadt of dleconvolving the tfime 'Itea ii go-n
ralized holographic field 0 H(R.ti with k

t
Fl.). we have specialty chosen

which is the spectral Fourier transform nt the twosided ramp tunctin

Evaluating the normal derivative of the complex conjugate of the treer''s futiction io the- tell
nition (61) of the generalized) holograp~hic field, we obtain

tR 6 It H'I -ik,11A HIl 4

H ~ ~ ~ k k' $t,4 AR hit t

78 1

*s T R ~ '~R' Is.

and, hence.
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where, as it is usually understood, the partial derivatives 3/a n and a/at operate on the ramp res-
ponise scattered field in the lime domain before insertion of the retardled time t - IIH RI Ic.

The interpretation of etqu. (75) together With (79) is as follows: suppose, a time domain bistatic
scattering "experiment" has been made with a weak scatterer, where the incident field is prescribed
as pilane wave with a twosided ramp function time dependence (which, of course is not available for
practical applications); on a closed surface surrounding the scatterer completely, the scattered field.
its time derivative and its normal derivative have to be measured as function of time t yielding a
threedimensional triple data field depending on two (printed) spatial variables, say i,. T' and the
lime variable t. Every point in this triple data field for fixed *j. ij and varying tq as then to be
tiackpropagated. i.e. distributed on a surface given by image points It. which satis~ the equation

ct 0  k i. R - HRI . (80)

where this distribution involves appropriate amplitude normalization. Obviously. equ. (810) is the de-
sired generalization of (55) as proposed in (56) (notice, that the role of H and R' has been, inter-
changed), whence the interpretation of (75) as a backpropagation instead of a backprojection scheme.
The object function O(R) is obtained after coherent superposition of timie domain backpropagated data
for all points Ti, T, arid subsequent V -operation with regard to ft.

DA TA RECEIVER
POINT to POINT x'=0

y =O
z'= d

Fig. 7: illustration tit timmie dommain hai:k1 .roijagation in the reflection mmml. o cto 0mt

Thme ta:kpruma gat inn step is ift itratedm in Fig. 7 for a spec ific reflecti timodm~ve exp;erimenmtal
arrangement for a receiver pomimnt in tmackscatlering tire,tim,.

Alternatively to the above time Ioma in bAmckpropiagat ion trocessing (irrimeilre, on m cm'ould k.eep thm,'
image! pomint R tixedl anti suim up all data po~ints ltl 14,11' Ifor which empi. 18011 holds for varying ft'.

The inverFse scattering algorithm idlentifiedl as generalizedl filteret tack1 ro)agatiiin tin the time
dolintar can tie onsiderabily simiplified if terms of the order ft W l' are' neglectedl to if,' ?,kpro
)agAtion integral (611, or (7S1). respmettvelv . Evaluating the exp ressiion
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up to the same order, we obtain after some calculation

- it - -jk 'Fl - R' Il
FeR) cdi i se

0 St

-jklR - R: 'R!l~(1

I F -j -T - H-

Apparently. equ. (8t) can also be interpreted into the time dornaiti: notice, that thie.-opieratiion
has been - approximately - transformed into jk- and k' -filters operating on the double data tield

s. an' and %,. simultaneousl y with the decoovolution filter , 'Fl.w): obviously. these filters jiartiv
compensate each other.

Equ. (75) is an exact target classification equation for a bistatic Iscalar I Sytnthetic Apertujro
Radar; every presently utilized algorithm implicitly relies on additional apiprosimiatiomis. whoms- in

ft uence can now be judged against ( 75) . O~ne of the most straightftorwar nI tIro xiena tions ,to timg miff
the occurrence of the normal derivative of the data. which can he hardly measured: in fact. this 1
cor rect for planar measuremnent surfaces S, the corresponding algorithmi is gin in III

Inversion via timle dloma in tmack propagation is a general iza tion of the filtered tiack p rI m i on
Radon transform in version to di ffractedl waves. whlich do not yield si mpit projeci ons oit a target
W~hat we are still missing is the K-space processing counterpart: we will bimefly vommiemm it that iii
the following.

S. lVEMISION VIlA H-SPACE

As in conventional computerized) tomjographyv let uts assume that ftle mmeisi oiieit.rta-ii
platte tin three spatial dimensions), which coincides with tihe xv plan(- if a irtmrsm m,in
system at some listance z dl it froin tile origin. Theremmro. taking I,, two

t 
mmmmrmtimmal I ....i mm- till-

tormn of 0,~ according tom eqn. ( 16) witti respect to x aiv yields

z - z' Vk i-H H
1

IK

x y

we have I - z'l Idm z' I i - z' on !melmalf oft the bounimded omipport ofmi the 4 atter,'t wii ii i

smiemee) tim resimde in time half -space z (Im. anti therefoire

pl jz- _J - ''-NK'

(K8 ,K *m e' f--.---I l I

The integral in (83) can he tomnsidereil as the nnemlimetsimmal Emnirmer integral oft 1,.tKX.KV.z . . I
with respect to z' evaluated for the mctorresponmding Fourier variable kx7V ,tfe-tt-

positive signt has to tie chosen to fulfill the radiation conditiomn mfit tie twmm;itmensiimial F oier trins
form of the tree space Greei,,i ftitct ion (or z - .Hence

)t lk' 10 K'

*I(Kx,( .d.m-i I _- __- (K 8 .H . 477-K' K: .. 1 841

In order to utilize * 8 IH8  d * I as input data to a threedimenrsional inverse Fourier trtisfmrn
target classification scheme, we ~Av to isolate q, on the right-hand side mot equ. (84): the pierttttett
multiplication with exp( - jd k-K' - K remquires confinement of K. ani K. In values sithttt itl,
circle K' -i K; k', i.e. neg'lection

5
&fteevanescent wave components in our data. We finally otitami
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Equ. (851 relates threedimensional Fourier spectra of equivalent sources on one FEwald-frerroi-
phere to twodimensional Fourier spectra of planar measured wavefields: it is obviously arn inverse
scattering extension of the Fourier Slice Theorem. whence the terminology Fourier D~iffraction Slice
Theorem (an extensive reference list is given in II 101. In our context, it is nothing buot the Porter-
Bojarski equation for planar measurement surfaces, therefore, in order to inicrease K-spa-e coverage
for varying frequency we have to introduce physical optics or weak scatterer a1pproximatlolls.

Apart from being a data processing alternative to time domain back itropagatI.ion. equ. (851 :ar.
serve as a tool to estimate spatial resolution associate.) with prescribed experimrental parameters, say
aperture width, frequency bandwidth antt angle of illumination. A certaitn numb~er ot possibilities is
discussed in j101. where the interested reader can' also find the monostatir counterpart to e1t1. 185).
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4Z We discuss parametric modeling in transient wave scattering. We review global
modeling based on the body resonances of the scattering object and give two examples.
We explore the nature of the incompleteness of global models and introduce the concept

Sof the local model, based on ray-optic methods. We include an example of local Model-
ing. We show that the local model is an order of magnitude more parsimonious and more
robust in the presence of noise, compared to the global model. we conclude with a

(r discussion indicating that the local model has a better probability of success in
practical target classification because of its performance in a noisy environment. *

1. INTRODUCTrION

Scattering problems in many areas of applied physics are governed by the wave
equation. In the usual situation, we are given the incident wave (input) and the
scatterer(s) and attempt, through analytical, experimental, or numerical methods, to
produce the scattered waves (output). Such procedures can be carried out in either the
time or frequency domains and are catagorized under the general heading of "forward
problems.' in a less usual, but no less important situation, we are given the incident
wave (input) and the scattered waves (output) and attempt to find the scatterer(s) that
produced the output. In this case, we call the procedures inverse problems." Unfor-
tunately, there are few inverse problems that can be solved exactly 11). Recently,
however, there has been attention to a class of inverse problems, solved by approxima-
tion techniques, with the potential for application to practical target classification.
In this situation, we are given the incident wave .input) and the scattered waves
(output), and attempt to find parameters that describe the scatterer(s). We call such
procedures "parametric inverse" methods [2).

In this paper, we describe the parametric inverse problem and discuss the present
state of affairs with regard to its solution and its application to target classifica-
tion. We begin with a review of basic results from scattering theory. We nest intro-
duce a global model that has been the subject of intensive investigation in electromag-
netics over the pest decade. We include some results with simulated data that point out
the capabilities and limitations of global modeling. We nest introduce the concept of a
local model and include a recent example. Finally, we discuss the possibilities of
using global and local modeling in practical target classification. We conclude with a
discussion of the present state of affairs in parametric inverse descriptions and sug-
gestions for future work.

2. SCATTERING THEORY

Procedures in parametric inverse problems are based on the following fundamental
result from sathesatical scattering theory [1: Given a scattering problem governed by
the wave equation with Dirichlet boundary conditions,, the acattred response to Mono-
chromatic plane wave excitation is, with mild mathematical restrictions, a meromorphic
function of complex frequency. This result has been extended to the vector wave equa-
tion in electromagnetic* 141 for scatterers upon whose surface the tangential electric
field vanishes, Bly the Mittag-Leffler Theorem (5), the meromorphic property allows the
scattered response V(x,y,z,s), abbreviated V(L,s), to be written as a sum over the
complex body resonances of the scatterer plus an entire function of complex frequency s
12). The inverse Laplace transform yields v(L,t) in the form of a complex exponential
series plus the inverse transform of the entire function, viz:

v(L,t) - R1 (L)exp(slt) +R 2 (L)exp(52t) + -- + w(Lt) (1)

In (1), vIL,t) Is any component of the electric or magnetic field, a is the n-th
complex resonance, and Rn is the residue at the n-th resonance. In addlt~on, if W(L,s)
is the entire function, w(L,t) is its inverse transform. Note that the residues are
functions of position but the complex resonances are not. This fact is an indication
that the complex s-plane locations of the natural resonances of the scattering object
are not a function of how the body is illuminated or where the scattered response is
measured. Their strengths (the residues), how. Cr, vary with position.

The formulation given by (1) is the cornerstone of the Singularity Expansion Method
[61, discussed in detail elsewhere in this Lecture Series (71. Two features are Impor-
tant to note. First, the entire function contribution w(L,t) is time-limited to early

i ,L
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time 18,91. Therefore, for times greater than the time of disappearance of the entire
function, the scattering is given completely by the complex exponential series in (1).
Second, whereas the complex series contribution is parametrized by the poles s and
residues Rn, the entire function contribution is not parametrized at all [10]. Tere-
fore, in any target identification scheme based on (1), there are parameters describing
the target (body resonances) available in the complex exponential series. The entire
function, however, yields no target information unless it can be further analysed.

3. GLOBAL MODELING

Despite the inadequate target description provided by (1), there has been some
success in target classification based on the complex exponential series portion of (1).
Since this series contains the body resonances of the scattering object, the technique
we shall describe is a form of global modeling. (The distinctions between global and
/s target descriptions are discussed by Felsen elsewhere in this lecture series
[111.) The basic ideas begin with some concepts in electromagnetic system identifica-
tion [2,12]. Let a plane wave be incident on a scattering system from a given direc-
tion. In the absence of the scatterer(s), the time history f(t) of the incident wave is
recorded at a reference position P(L). This time history, adjusted so that t = 0
corresponds to the initial arrival time of the pulse, is the single input to the system.
With the scatterers in place, observations of the components of the vector field are
made at p locations. Observation of a given component at a given location comprises one
response (scalar) in a sequence of p responses. The time reference of each response is
adjusted so that its turn-on time is t = 0. The incident pulse ( defined above isthen subtracted from each response to yield time histories y 'P t), j = 1,2..
corresponding to components of the scattered field at different spatial locations. The
p time histories are defined as the multjyle output ports of the system. Define the
electromagnetic system transfer function H by

H(J)(s) = Y(J)(s) / F(s) (2)

where Y(J)(s) and F(s) are the Laplace transforms of the multiple outputs and single
input, respectively. For a given value of the index j, the system transfer function
represents one component of the electric or magnetic field at a given location. The
electromagnetic system description in (2) is for a single-input, multiple-output (SIMO)
system. For the case of single-input, single-output (SISO), we shall omit the super-
scripts and write

H(s) = Y(s) / F(s) (3)

We now show that if we truncate the complex exponential series in (1) after N terms,
the series is compatible with electromagnetic system ideas for both the SIMO and SISO
cases. We shall concentrate on the SISO case. The extension to SIMO is trivial [2).

Because most analysis is done digitally, we shall consider discrete time formula-
tions. Let f(k) and y(k), k = 1,2,..., be the input to and output from, respectively, a
SISO linear system. The notation f(k) is the brief form for f(kTs), where T. is the
sampling interval. We model the system by the difference equation

Ay(k) = Bf(k) + elk) (4)

where e(k) is an error term and A and B are polynomial stepping operators with, typical-
ly,

A = a0 + alq-I + ... + aNq-N (5)

and where

q-lf(k) - f(k - 1) (6)

The error term e(k) is included to account for the usual case where the model fails to
fit the data exactly. It is well known 13] that the Z-transform of (4) gives a trans-
fer function H(z) of the form H(z) - Y(z) / F(z), plus an error term. A subsequent
inverse 2-transform yields

h(k) - Rlexp(slkT) + ... + RNexp(sNkT) * e'(k) (7)

where e'(k) is an error term obtained from e(k) in the diff'rence equation (131. Note
that the solution to the difference equation is a finite length complex exponential
series. We now compare the result in (7) with the result from scattering theory in (1).
We can interpret (7) a a discrete time equivalent of (1) RL fideA we lump the tail of
the series and the entire function in (I) together as an error term. For the error to
be small, both the tail and the entire function must be small. The tail can be made
small by limiting the data to a restricted frequency range. In actual experiments, this
limitation often happens naturally because of the bandwidth limitations on equipment.
In any event, it can be forced by intelligent filtering. We emphasize that for times
earlier than the disappearance of the entire function, it is not clear that the entire
function contribution is small. Indeed, in early time, it often dominates the scattered
signal.

The difference equation model In (4) is called the gjution n. model (141. The



7.

SISO electromagnetic system identification problem with equation error model can now be
defined as follows: Given data on the single input f(k) and single output y(k), identify
the difference equation coefficient sequences (a } )and {b I Transform [131 the coeffi-
cient sequences into the pole sequence {Sk} and the residue sequence {Rk). Provided
that the resonances obtained from the solution to the electromagnetic system identifica-
tion problem can be interpreted as body resonances of the scatterer, we shall have
arrived at a global modeling method for classification of the target.

The most usual method for obtaining an estimation of the pole and residue sequences
[13,151 is to adjust the coefficients a and b in (4) to minimize the Euclidean norm of
the error e(k). This procedure is a linear last squares problem that has been quite
popular in electromagnetics over the past decade [13,15-171. Recently, we have been
using the minimization of the equation error to produce initial values of the difference
equation coefficients [18,191. We then follow with the minimization of the norm of the
error eo(k) in the following ouput erL= model:

y(k) = A-iBf(k) + eo(k) (8)

The estimation of parameters in (8) is a nonlinear least squares problem. We use the
VAX/VMS interactive algorithm NLS [201, beginning with initial estimates obtained by
solving (4). We shall discuss two examples utilizing simulated data.

4. GLOBAL MODELING EXAMPLES

As a first example of global modeling, consider an electromagnetic plane wave at
normal incidence on a lossless dielectric slab (Fig. 1) of thickness d and dielectric
constant sr. The slab is terminated by a perfect conductor at its back face (z = -d).
Assume that the plane wave polarization is (E ,H . The details of the solution to this
problem are well known [18,191 and will not teyepeated here. What are important are
the locations in the s-plane of the complex resonances and the two forms of solution for
the electric field in Region 1. The complex resonances are located at the s-plane poles
of the scattered field, and are given by

sm = T-l[ln(R) + ir(2m + 1)], m = 0,±l,... (9)

where R is the reflection coefficient at the front face (z = 0) under the condition that
the slab is infinitly thick, and where

T = 2d / v (10)

where v is the propagation velocity in the slab. For the two forms of solution, the
first is i*-XJi and the second is hyLri. For the ray-optic form, we obtain for the
electric field in the time domain in Region 1

exl(z,t) - f(t) - Rf(t - 2z/c) - (1 - R2)[R
0
f(t -2z/c -T) + Rlf(t - 2z/c - 2T) + ...]

(11)

where f(t) is the incident pulse and c is the speed of light. The terms on the right
side of (11) can be described as follows: The first term is the incoming pulse; the
second is the pulse reflected from the front face of the slab (z = 0); the remaining
terms are successive reflections from the back face of the slab (z - -d). A significant
feature of this solution form, provided that f(t) - 0 for t < 0, is that the successive
terms in the solution can be truncated and still give the exact solution up to the time
of the most recent reflection.

REGION 1 REGION 2

-- d

INCIDENT
PLANE
i AVec(sl bce b

rig. I - Dielectric slab backed by a perfect conductor.
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For the hybrid solution form, we obtain

exl (z,t) = f(t) - Rf(t - 2z/c) - (1 - R
2
)s(t - 2z/c - T) (12)

where s(t) consists of a complex exponential series plus any additional terms that might
arise from s-plane singularities contained in the spectrum of the input pulse f(t) [18).
Note that the first two terms in (12) are identical to the ray-optic case in (11). The
remaining terms, however, are very different. Whereas each term in (11) represents the
onset of a localized event, the terms in the complex exponential series are global. The
representation is called *hybrid* because it consists of both local and global terms.
To obtain the hybrid representation from the ray-optic, all terms with turn-on times
greater than or equal to 2z/c + T must be combined and then reseparated in an entirely
different form.

We shall now attempt a global target classification of the dielectric slab. All
signal processing was done using the algorithm SIG [21]. All system identification was
done using NLS [20]. For an input pulse, we choose the double exponential pulse

f(t) = Au(t)[exp(-clt) - exp(-c 2t)] (13)

where u(t) is the unit step function and A is a normalization constant selected so that
the peak of the signal is unity. We have adjusted the parameters c and c to give a
rise time (10 to 90 percent of peak) of 5 ns and a fall time (mejsures from f = to the
point where the pulse has decayed to I/e) of 30 ns (c1 = 7 x 10 , cz = 1.7 x 0 ). For
slab parameters, we select d = 10 m and er - 4. We display the raw input data (Fig. 2)
and the raw output data (Fig. 3) with 1024 points and a 1 ns sampling interval. We have
used the ray-optic form of the solution to generate the output data. Since the informa-
tion we seek (complex resonances) is contained in the scattered field, we subtract the
incident pulse, the first term in (11), from the data. In addition, since information
concerning the complex resonances is not available until after the arrival of the first
return from the back face (z = -d), we subtract the reflection from the front face, the
second term in (11). We remark that in practice, it is always possible to subtract the
incident pulse. Subtraction of further early returns, in this case the front face
reflection, is often impossible because of radiation damping. This is precisely the
region where the entire function contribution is present. We emphasize that any such
contributions will be modeled as if they were complex exponentials. Because of our
ability to subtract these terms in our example, there are only complex resonance cont1l-
butions in our synthetic data.

In the output data (Fig. 3), note the occurance of successive events, caused by
multiple refections between the slab front and back faces. This onset of tinre-
successive events is a prominent feature in electromagnetic scattering, where the exter-
nal body resonances are caused by the mutual constructive and destructive interference
of localized phenomena. A 4096 point discrete Fourier transform (DFT) of the output
data (Fig. 4) shows the well-known low-pass characteristic of the double exponential
pulse and the successive resonances of the slab. To enable identification with a
parsimonious model, we low-pass filter (Butterworth, 8-th order) the input and output
data at 50 MHz, thereby including seven resonances (seven complex pole pairs) in the
pass band. We next decimate the data by 8:1 (down to 128 points) with the resulting
input (Fig. 5) and output (Fig. 6) data at 1.25 times the Nyquist rate.

We apply the NLS algorithm to the decimated data, beginning with the initial selec-
tion of 24 poles and 24 zeros. After the algorithm converges, we use a model order

1.0

0.8

t:

z
0.

inS0.4

0.2

0
0 0.5 1.0

TIME (IiSEC)

Fig. 2 - Incident field (input); 5 na rise, 30 ns fall time; 1024 points; I na sampling
interval.
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-0.4

- 0.6

- 0.8r

0 0.5 1.0

TIME (ySEC)

Fig. 3 - Scattered field (output); incident field and front face reflection removed; d =

1im; Or = 4; 1024 points; 1 ns sampling interval.
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Pig. 4 - Discrete Fourier transform of output, zero-filled to 4096 points, shoving low-
pass characteristic of input and slab resonances.

0.8

V)
Z 0.6

_ 0.4

0.2

0 0.5 1.0
TIME (pSEC)

Fig. 5 - Inputo low-pass filtered (B-th order Butterworth) at 50 MHz; decimated to 120
points: 8.055118 no sampling Interval.
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0.2

t- 0
Z

-0.2
9
LU -0.4

- 0.6

-0.8
0 0.5 1.0

TIME (,uSEC)
Fig. 6 - Output; low-pass filtered (8-th order Butterworth) at 50 MHz; decimated to 128
points; 8.055118 ns sampling interval.

reduction scheme 1201 to eliminate six poles and produce an 18-th order model. We next
use a partial fraction decomposition algorithm to compute poles and residues. The
algorithm computes s-plane poles from z-plane results by the transformation

s = [ln(z)] / T, (14)

This procedure gives nine pairs of identified poles which in Fig. 7 are compared with
the theoretical ones computed from (9). Note that the ples compare closely until we go
beyond the cutoff of the Butterworth filter (3.1416 x 10 rad/sec).

We remark that the above identification was done on data where the only noise is the
roundoff error in the computer. The SIG package contains a Gaussian noise generator,
which we use to add increasing amounts of noise to the output signal. As might be
expected, the identification degenerates with increasing noise. We display the 5% noise
case (Fig. 8). (By "five-percent,* we mean that the noise standard deviation is 0.05
times the peak value.) Note the strong corruption, with successive reflections disap-
pearing into the noise after the third reflection. We again filter at 50 MHz and
decimate to 128 points. We begin the identification with a 32-nd order model with 32
zeros and then use the order reduction scheme to reduce the model order to 14. Our
identified poles (Fig. 9) show good agreement with theory for the first two pole pairs.
The next four pole pairs agree in frequency, but deviate in damping. This result is
consistent with the deterioration of the resonances displayed in the DFT (Fig. 10) of
the filtered and decimated data.
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Fig. 7 -Identified poles (diamonds), IB-th order model; theoretical poles (squares).
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Fig. 9 - Identified poles (diamonds), 18-th order; 5 percent noise; theoretical poles
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Fig. 10 - DFT of output; 5 percent noise; low-pass filtered (8-th order Butterworth) at
50 MHz; decimated to 128 points; 8.055118 ns sampling interval.



Although the above results give a positive indication of ability to apply a global
modeling method to identify complex body resonances in the presence of small amounts of
noise, considerable caution must be exercised in interpreting the results. In this
example, the scattering has been given completely by the complex exponential series. In
the example to follow, however, we must also deal with the presence of the entire
function.

As a second example of global modeling (221, consider an acoustic plane wave inci-
dent in the -z direction on a rigid sphere (Neumann boundary conditions) of radius a - 1
m (Fig. 11). We shall attempt to identify a subset of the complex resonances (Fig. 12).
The s-plane locations are well known [231. For an input signal, we choose f(t) to be
zero everywhere, except on the interval 0 < t < ,/cI , where it is given by

f(t) = sin(2,rf0 t) sin
2
clt (15)

The input (Fig. 13, with f0 = 150 Hz and c1 = 150 rad/sec) vanishes after t = 20.9 msec
and has the spectrum of a bandpass filter (Fig. 14). The center frequency corresponds
to the n=3 pole (153.5 Hz) in the first layer of poles (Fig. 12). A relatively small
number of poles either side of the n=3 pole are in the passband. We have found that the
best results occur when we are required to identify from three to five pole pairs.
Wider bandwidths drive up the order of the model required by NLS and make the identifi-
cation more difficult. The choice of c. = 150 rad/sec corresponds to having four pole
pairs in the passband.
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Fig. 11 - Sphere of radius a 1 m illuminated by a -z traveling plane wave.
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Fig. 13 - Input signal (zero after 20.9 msec).
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Fig. 14 - Spectrum of input (showing bandpass characteristic).

The scattered field (synthetic output data) was calculated in the frequency domain
using the classic Mio series (24] with the spectrum of f(t) as an input. The inverse
transform was performed using a Filon method [25]. To determine the essential elements
of the synthetic output data needed for accurate identification, we divide the synthetic
output into three components- the reflection, the first creeping 1vm, and the s
creLkkgf MaVm. We display the reflection and the first creepii.g wave in Fig. 15, and
the second creeping wave in Fig. 16. Note the change in scale for the second creeping
wave. (It is too small to be visable on the previous figure.) In the figures, the
reflection comes first. Its magnitude is much greater than that of the other compo-
nents) it therefore contains most of the energy in the output. Following the reflection
is the first creeping wave, which has made one excursion around the sphere before
returning to the observer. As the wave travels around the sphere, it loses energy to
radiation and arrives at the observer one-tenth the size of the reflection. Following
the first creeping wave is the second creeping wave, which has made an additional
excursion around the sphere, arriving at the observer 1/10000 the size of the reflec-
tion. This smallness causes its retrieval from experimental data, even in a controlled
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Fig. 15 - Synthetic output showing the reflection and first creeping wave.
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Fig. 16 - Synthetic output (enlarged scale) showing second creeping wave.

environment to be an exercise in frustration. This result is unfortunate because we are
able to demonstrate that the second creeping wave is nasnt to the identification of
the resonances.

There are important similarities and differences between the return from the sphere
and the slab considered previously. In both cases, the compl-x resonances are produced
from the mutual interaction among local events. In the case of the sphere, however, the
radiation damping causes the local events (creeping waves) to disappear into the noise
more quickly than in the case of the slab. In addition, the sphere data contains the
entire function.

We have found little difficulty in identifying a limited number of pole pairs
centered around the pole in center of the pasaband. To restrict the influence of higher
order poles, we filter the input and the output with an 8-th order Butterworth filter.
There are approximately four pole pairs in the pasaband. We next decimate the 1000
points in our data to 100 points thereby eliminating oversampling and reducing the



computational burden. We next use NLS to identify the coefficients in an equation error
model. Finally, we obtain the poles and residues by partial fraction expansion.

We show (Fig. 17) the agreement between theoretical (triangles) and identified poles
and a function of model order. The first layer of poles and the first two poles on the
second layer are shown. Since the poles are in complex conjugate pairs, we display only
the upper half plane. We find that the n-l through n-4 poles are correctly identified.
We note, however, that the order of the identification modei must be greater than 24.
High order models are required for two reasons. First, the scattered field consists of
an infinite numer of poles. Through filtering, we attempt to limit the number of poles,
but filtering does a" correspond to truncation. Second, we have fLild to model the
entire function, which contains a large percentage of the energy in the total signal.
The difference equation model treats the entire function as a part of the complex
exponential series thus driving up the order of the model.

We have performed many experiments on identification of sphere resonances. We find
that our basic result above is unaltered if we remove the reflection portion of the
output signal, provided that we do not destroy the time reference. If we remove the
reflection and change the time reference, the identification collapses. A very impor-
tant computer experimental result is associated with the second creeping wave. Although
the second creeping wave is only one part in 10000, compared with the reflection, if we
remove it from the output signal, the identification is unsuccessful. This result is an
important limitation in complex resonance modeling of objects containing high radiation
damping. As a final test, we added small amounts of noise to the data. Because of our
earlier tests with the second creeping wave, we expected the noise to defeat the identi-
fication as soon as it overwhelmed the second creeping wave. This is in fact what
occurred. If we select the variance of the noise such that the ratio of the peak of the
spectrum to the average of the spectrum of the white noise is 70 db, we find that the
noise is a few times larger than the creeping wave. In this case, the identified poles
(Fig. 18) are in error by approximately 25% in attenuation. If we increase the noise to
60 db, the identification is defeated. This result is in agreement with the findings of
Ksienski and Willis [26]. They found, using frequency domain methods, that similar
amounts of noise defeated pole identification methods for the sphere in the electromag-
netic case.

The sensitivity of the identification to small amounts of noise is a crucial defect
in any attempt to use the method with real data. We emphasize that the model is incom-
plete since it ignores the entire function. The entire function occurs in early time
where the reflection is the dominant portion of the scattered signal. In the next
section, we shall show a local modeling method that models the reflection.

5. LOCAL MODELING

Our initial approach to obtaining a local model for scattering has been to use an
asymptotic series solution to the wave equation (27). Our goal has been to identify the
local radius of curvature of a scatterer. In particular we have concentrated on acous-
tic scattering from the sphere, using the same input-output data as described above. We
write the asymptotic series as follows:

Y(s) - (do  + dlS-
1  

+ ... iF(s) (16)
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Fig. 17 - Theoretical poles [triangles] compared with identified polesg 20-th order
(squares), 24-th order (diamonds), 26-th order (bowties), 28-th order (circles).
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where F(s) and Y(s) are the Laplace transforms of the input and output, respectively.
The coefficients dk, k - 0,1,..., can be related to the radius a of the sphere. In
particular [241,

ao = 2d 0  (17)

a2 = 5c
2 
/ 4d2  (18)

a32 = 25c
3 
/ 8d3  (19)

where c - 330 m/sec. The subscripts on the a's indicate different estimates of the
radius A obtained from the different coefficients in (16). (There is no relationship
between dl and the radius. For the acoustic sphere with Neumann boundary conditions, d]
should be equal to unity [221.) Note that the successive terms in (16) imply, in the
time domain, successive integrations of the input signal. We therefore adopt the fol-
lowing local model for our radius of curvature identification:

y(k) - d 0 fl(k) + dlf 2 (k) + ... + e(k) (20)

where k again refers to the kTs time step and e(k) is an error term. The sequence fn
represents successive integrations of the input, with fl - f(t). The identification
procedure is as follows: Given the input sequence f(k) and output sequence y(k), identi-
fy the coefficients d in (20) by minimizing the Euclidean norm of the error e(); then
transform the estimates of the dn into estimates of the radius by using (17) through
(19).

We have done exhaustive tests using our algorithm to identify the radius of the
sphere [271. We include a sample of the results here. We use the same input signs) as
in the previous example, except that we vary the carrier frequency f from 300 to 1500
Hz. We filter and decimate the input and output data and then plot te results for the
radius as a function of f0. Actually we normalize the frequency to the radius and plot
as a function of ka, where k is the wave number. In the results, when we refer to
"model order" we mean the number of terms in the identification lquation (20). We plot
the results for the first order model in Fig. 19, for the second order model in Fig. 20
and Fig. 21, and for the third order model in Fig. 22 and Fig. 23. Since the radius is
to be determined, we require the estimates of the radius to be relatively frequency
independent for the identification technique to be practical.

The first order model has two terms (zeroth and first, Fig. 19) which give estimates
that improve with increasing ka. (The known radius of the sphere is 1 m.) As previous-
ly noted, the first term provides no information on sphere radius, but should be equal
to unity. At low ka the estimates are biased low; however, they still provide useful
information since they are only 6.5% in error for the zeroth term and 10% in error for
the first term.

The second order model has zeroth, first and second terms (Fig. 20 and Fig. 21). We
note that the first term estimate of the second order model is identical to the first
term estimate of the first order model. Indeed, we have proved 127) that as model order



009

C. 0o9

0 0.96

0 9

- 0.92

o0.93

0.91

0.90
S 10 15 20 25

ko

Fig. 19 - Least squares estimates of the zeroth (solid line) and first (dashed line)
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Fig. 20 - Least squares estimates of the zero (solid line) and first (dahed line) terms
of the second order model versus ka.

is increased by one, only every other new estimate changes with respect to the previous
order estimates. When the new order is odd, the odd terms change; when the new order is
even, the even terms change. In this case, the zeroth term is within one percent of the
correct value over the entire frequency range. Indeed, at carrier frequencies above ka
- 15, the estimates are within .1%. The second term, however, gives poor estimates of
the radius. The estimate is over 501 in error at low frequencies and 10% at the higher
frequencies.
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Fig. 22 -Least squares estimates of the zeroth (solid line) and first (dashed line)
terms in the third order model versus ka.

For the third order model, the zeroth and second term estimates are the same as the
previous model. The first term estimate (Fig. 22) at low frequencies has less bias than

the first term in the second order model (5.5% versus 10t error). The estimate, how-
ever, no longer strictly improves with frequency. The third term (Fig. 23) fails to
accurately estimate the radius. Ise emphasize that the magnitude of the third coeffi-
cient d3 is 60 db down from the coefficient do for ka > 20 (Fig. 24).

We have done detailed noise studies on our local modelinq method. Our procedure has
been to add noise to 200 pairs of input-output data. Ie then calculate estimates of the
mean and variance of the identified radius. We have found that we can obtain estimates
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t hat are within 1.51 of the no-noise came when the signal-to-noise ratio in 45 db. wenote tha t in the global technique described previously, the identification failed com-
pletely at 60 db. The details are contained in 127).

6. DISCKUSS ION

we have shown examples of both global and local identification methods. The local



model has been motivated by the incompleteness of the parametrization in the global
model. Indeed, we have shown [221 that the early time portion of the scattered return
can be eliminated from consideration in the global model with negligible effect on the
identification of the resonances. In the local model, however, we have shown that the
early time portion plays a central role in overall target classification since it yields
an asymptotic model describing local features.

There are two principal advantages to the local model. First, it is more robust in
the presence of noise. Second, since it requires an order-of-magnitude lower n odel
order, it is significantly more parsimonious [14). Moreover, the estimation of para-
meters is more efficiently performed since the problem is linear least squares. These
considerations lead us to speculate that, whereas the global resonance method is mar-
ginal with real data, the local model may prove to be a practical target classifier.

For immediate future work, we propose the investigation of objects with varying
curvature. We favor using multiple data sets containing specular returns from different
points on the scattering surface. Each data set might then provide an estimate of the
local curvature at each point. There has been some work with multiple data sets in SIMO
global modeling of the acoustic sphere [281. The results showed some improvement in the
robustness of identification of the resonances, but not enough to make it practical for
real noisy data.

Finally, we believe that further efforts in complex resonance modeling should be
minimized unless they are coupled with techniques that utilize the local information
available in early time. This coupling of the two techniques might then lead to a truly
hybrid target classification method.
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INPUT SIGNAL SHAPING: K-PULSE
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'C 
SUMMARY

Classification of electromagnetic scatterers by selective mode annihilation is
discussed. After providing a brief description of historical background, the conceptual
basis of this methodology will be developed, followed by a theoretical explaination of
the techniques that are employed. Some particular resonance annihilation s'hemes that
have been implemented and tested, on e preliminary basis, are illustrated. Results from
tests using synthetic signals, integral equation computations and experimental transient
scattering measurements are featured.

HISTORICAL BACKGROUND

The concept of radar target identification by use of electromagnetic natural
resonances was introduced in 1974 by Mains and Moffatt U] . This idea, in turn, evolved
from the earlier work of Baum at the Air Force Weapons Laboratory 12 , who developed the
formalism known as the Singularity Expansion Method S M) for use in the analysis of
nuclear SMP vulnerability of strategic systems. Within the context of SEM. the response
of a system can be represented as a weighted expansion using complex natural modes.
These modes, which are self sustaining in the absence of any excitation, are only
functions of the structural geometry and compUsition of the scatterer and are independent
of the incident excitation. The temporal variation of each mode pair has the form of an
exponentially Jecaving sinusoid. In the Laplace transform domain this is represented by
a pair of onjugate poles (natural resonances) in the left half complex plane. The
knowledge of a finite subset of these poler for each potentially observable target can
thus serve as an aspect invariant parameter set for unique identification.

Much of the initial work in utilizing natural resonances for non (ooperative targe-t
recognition (NCTR) has been in the context of attempting to identify the "dominant" poles
in the time domain scattering response of simple targ'ts. These extracted poles are then
correlated with a data base of computed natural resonances for candidate targets. Fally
efforts in this direction were "less than successful" and created much controversy within
the electromagnetics basic research community concerning the validity of SEN. A
theoretical study by Morgan, 13J and (4]. has shown that the validity of the pole series
expansion is restricted to the "late time" portion of the scattering response which
occurs after the incident field has completed its illuminatiiin of the target. As a
result of this, the energy content of the usable late time portion of the siattered
signal is often a small percentage of that contained in the complete transient signature.

Early failures in demonstrating aspect independent pole extractions resulted from
attempts to process the entire scattered signal rather than just the undriven late time
portion. A recent endeavor by Van Blaricum (Si to identify poles in measured data, using
the late time signal, have met with success under the condition of relatively high signal
to noise ratio (SNR of about 30 dBI.

A new class of techniques has arisen for aspect independent NCTR which is based upon
the selective annihilation of resonances in the received scattered signal. These
dynamically evolving methods are extensions of the original "K Pulse" concept proposed by
Kennaugh (61. Independent efforts by Morgan [71 and Chen 181 have nhown that NCTR which
is based upon the annihilation of natural resonances has two primary advantages via a via
NCTR which utilizes pole extraction:

(1) Successful identifications using SNR's of lOdB and lower

(2) Orders of magnitude reduction in signal processing time in comparison to pole
extraction methods

NATURAL RESONANCE SCATTBRING

Consider the basic radar scattering scenario as depicted in Figure 1, where a time
limited pulse illuminates the radar target. The currents inducei' on the target reradiate
a scattered field in all directions, a small portion of which is intercepted by the
receiving antenna. As was shown in s previous paper in this publication,141, the
received echo signal will have the form

yMt = Y 8 t) (u(t) - u(t-To)] - YL (t) u(t-T.)* N(t) (1)

Early-Time Late-Time Noise and Clutter

The early-time component of this signal is generated by directly driven (physical optics)
currents as well as source-free currents which are located in the "wake" of the incident
pulse, as it transits the object. The transitions from early to late-time signal



components are specified in .q.(l) by the explicit use of unit step func1 iO.n In
particular, the early-time signal will transition into the late time signal afte

T 0 T * 2D/c secondo 2,

where T is the incident pulse width, D is the dimension of the scatterer in the line-of
sigh t(LOS) direction of the radar and c is the velocity of light. A generic waeform,
indicating the early and late-time nature of the received signal, is shown in Figure 2.

The results of [41 indicate that the late-time signal will be composed of a constant
coefficient complex exponential series of the form

YL(t)
= 

Re( R. exp(Snt) ) An exp(c'nt) cos( Wn
t 

+n) t3)

n=1 n=

where the complex "poles" of the scatterer,

an n n

are innate functions of the shape and composition of the object and are independent of
the aspect and polarization of the incident field. On the other hand, the complex
"residues" of the expansion, H = A exp(J ), are highly dependent upon all properties
of both the incident field n the scatterer. This dependence of the residues is such
that for an essentially band-limited incident field there will typically be only a small
finite subset of significant complex "modes" in the infinite series in Eq.(3). This
effect is so strong, in fact, that some modes which are strongly excited at some aspects
may vanish at other aspects. The damped cosine series form of the late time response in
9q.(3) results from combining conjugate pairs of terms in the series (ordered as -n and
-n). Complex values of poles and residues occur in conjugate pairs since the response
to a real-valued excitation must aso be real-valued.

The third component of the received signal is the "noise and clutter" which may be
due to combinations of such pollutants as receiver system noise, antenna noise from
external sources (both natural and man-made) and undesirable scatterers with propagation
delays that are similar to that of the target. There are many possible sources of this
clutter component, including colocated interfering targets, ultipath scattering from
low flying targets and returns through the antenna sidelobes from significant scatterers.
In any case, the N(t) is an undesirable element whose presence will increase the
difficulty of implementing NCTR using natural resonance annihilation.

THE RESONANCE ANNIHILATION FILTERING CONCEPT

The resonance annihilation filter (RAF) concept for NCTR is depicted in Figures 3
and 4. As indicated in Figure 3, the output of the m th RAF will be a convolution of
its impulse response, k,(t) with the input signal of Eq.(l),

z.(t) = k5 (t) * ( YE(t) [u(t)-u(t-To)J + YL(t) u(t) , N(t) ) 5)

The decision process for NCTR is based upon selecting that target whose RAF in Figure 4
exhibits the minimum output signal energy in the "late-time" of zm(t). This late-time
energy is defined as

z,2( t) dt (6)

TL
The late-time startup, TL' must be large enough to exclude any significant contribution
from the convolution with the early-time signal, which is not composed of simple aspect
independent modes. The RAF is designed to cancel a selected subset of the natural modes,
which appear in their pure form only in the late-time. One way to guarantee that there
will be no contribution to the energy in Eq.(6) from the early-time signal is to use
finite impulse response (FIR) digital filters in the design of the RAF's. Such filters
are nonrecursive (no feedback paths) and have impulse responses that are identically zero
beyond some finite time, Tk, (9). This would give TL ) To - Tk  in Eq.(6).

Three primary design criteria for RAF's are:

(I) The convolution of the RAF impulse response and the early-time echo signal
should decay to sn "insignificant" amplitude in as short a time beyond T as
Is possible. This tranlates into minimizing the significant duratio of
the individual impulse responses.

(2) The ratios of late-time energy for the "matched" target to that of all other
targets should be minimized. This minimization should be made over a range of
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pertinent aspect angles.

(3) The RAF should be designed to minimize the transfer of the pollutant, N(t)
through the filter.

The reason for the demand in (I) is to allow a maximum usable late-time interval for
computing the energy values in Eq.(6). This also assists in optimizing the energy
ratios as discussed in the constraint (2). This first criterion will, however, conflict
with that of (3) since effective noise filtering requires either signal integration,
through recursive filter design (with feedback paths), or by use of extended feed-forward
paths in an FIR filter design. In either case, there is a tradeoff of the effective RAF
impulse response duration for enhanced noise and clutter suppression.

The whole process is also complicated by the effect on the design of the RAF's when
there are uncertainties in the exact pole locations for each target class. This latter
sensitivity may be a very real problem where there are several variations on the same
type of target due, for instance, to alternate external fuel pod and weapon
configurations. With variable wing angle the same target may even present a continuum
of natural resonance sets.

It should also be mentioned that the original K-Pulse idea of Kennaugh, (6],
accomplished the same objective as the RAF concept, except the transmitted pulse was to
be designed to perform the annihilation of the natural resonances. This would require
the transmission of one pulse for each candidate target, but otherwise is an equivalent
idea to that of RAF.

FILTER EXAMPLES

We are now in a position to consider two initial generic RAF examples. The first of
these RAF designs failed to provide consistently lower late-time energies for the matched
target in our tests. As will be shown, this failure resulted from attempts to implement
an analog signal processing strategy using digital techniques. The second form of RAF is
based entirely upon digital signal processing methods and is shown to be successful using
synthetic, integral equation and experimental data. Both of these RAF's are
conceptually simple and do not rigorously address the constrained optimization problem
which was posed in the previous section. They do, however, provide illustrations of the
considerations that must be made and the pitfalls that may appear in even the most
elementary implementation methods. Current efforts are underway towards developing RAF
designs that more completely optimize the NCTR constraints.

The first RAF is based upon the use of differential operators to cancel individual
natural modes. It follows from elementary calculus that the exponential modes in Eq.(3)
of the form Yn t)- Rn exp(sn t) are each a solution of the appropriate first-order
homogeneous differential equation

Lnt Yn'ty (d/dt s) Yn(t) 0 (7)

where the operator L which cancels the n th mode, is as defined. Using this simple
result, it follows that multiple modes can be annihilated by the successive application
in any order) of the corresponding operators. For example, to eliminate the set of
mols, (y (t)) for n - N to - N excluding n O, requires the use of a 2N-order
differential operator formed from the operator product of each L in the range indicated.
The corresponding RAF impulse response, whose convolution the Yate-time signal in ylt)
will eliminate these same 2N modes, is simply kit) - Lof(t), where L is the 2N th order
operator and f(t) is a smoothing function with continuous derivatives up to and including
order 2N. In such a case, it can be shown by way of either repeated integration by
parts or via Parseval's Fourier transform thenrem, that

k(t) * y(t) f~t) * L.y(t) (8)

To implement this differential operator RAF, one may be tempted to make use of the
digital Fast Fourier Transform (FFT), where y(t) is transformed and then multiplied by
the complex transfer function of the RAF. The analytical form of this transfer function
can be obtained through Fourier transformaton of k(t),

K(w) { 8 1 s pa - l.. ............... ( sN )  (jo sN ) F( ) (9)

The 2N th order polynomial, which appears within the curly brackets, will tend to provide
extreme high frequency noise amplification. The raison d'etre for f(t) is thus seen to
be its reduction of this effect through supplying appropriate high-frequency
"compensation". This can be viewed in the time-domain as a smoothing operation on the
nise to reduce the effects of high order differentiations. A Gaussian shaped
smoothing function,

AL ==_ = = = , ,
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f(t) exp[-a(t-to)
2
1 (10)

allows the selection of "a" to provide optimum rolloff of F( ).

The second form of RAF is also based upon cancellation of the natural modes, but
through the construction of appropriate difference equations". Conaider the
conjugate-pair damped sinusoid representation of the late-time signal in Eq.(3). These

individual modes are solutions to a three-point homogeneous difference equaticn of the
form

An y[(p-l) at] y[p At] ' Bn  y[(p+l) At] = 0 (11)

where the sampling interval is At. The coefficients to cancel the n-th mode-pair are

n . -0.5 exp(+C dn t) / cos(O u At) 12)
B n

n

where the - sign gives A while B is produced by the - sign in the exponential. The
3-point difference equatioR is easily synthesized using a nonrecursive digital FIR filter
(also known as a transversal filter). To cancel N pole-pairs, a cascade of N su-h
filters can be employed. By combining coefficients that multiply the same sample points,
a simpler FIR filter can be generated which has a total of 2N delays. The difference
equation that represents this new filter will have the form, [9J,

N
zfp t] - Z C. y[(p - a) t] 1]31

M=-N

Of course, this filter is non-causal and could not be implemented for real-time operation
without adding N additional delays in the design. For post-processing of acquired data.
as was done in this effort, no such constraint on causality is needed and the filter can
be used as is. As will be seen in the nest section, this filter has the same type of
high-frequency noise amplification as does the analog differential operator based filter.
For noisy signals it will thus be necessary to perform additional smoothing on the input
signal in the form of a low-pass filter.

RESULTS OF ANNIHILATION FILTERING

The initial tests on both methods were performed using a set of "synthetic" signals
whose form in the late time was that of a sum of damped sinusoids, as in Eq.(3). The
early-time signal was set equal to

YE(t) : A sin
2
(l.5fft / TO ) (14)

where T is the transition-time in Eq.(1). The upper half-plane complex poles and their
corresponding residues are shown in Table I.

Table 1 Synthetic Signal Poles and Residues

n Poles Residues

Magnitude Phase

I -0.10 + j 1.50 10.0 0

2 -0.19 + j 2.85 7.0 /2

3 -0.28 + j 4.20 5.0 0

4 -0.39 + j 5.85 3.0

5 -0.46 + j 6.90 2.0 /2

6 -0.54 + j 8.10 1.0 0

These values were selected to follow the generic behavior of typical "layered" pole
patterns of simple symmetrical objects such as wires and spheres. The constant "A", in
the early-time, was selected to provide continuity of the waveform (but not the
derivatives) at the transition time, T . The 6 pole-pair synthetic signal is displayed
in Figures 5 and 5, where Gaussian 3istributed random digital noise is added in the
second case to provide a 10 dE average power SNR.

The testing of the analog-based RAF proceeded only to the the synthetic data level
without noise, since consistently correct NCTR decisions could not be made using this
filter type. The particular testing, which was duplicated for the digital FIR RAF with



excellent success, involved processing the synthetic signal using numerous versions of
the respective RAF. These various RAF versions included an "exact" 6 pole-pair filter,
as well as filters which cancelled the first 1, 2 and 4 pole-pairs of the signal.
Additional RAF's included those with all (1,2,4 or 6) poles-pairs shifted in magnitude by
5% or 10%. These RAF's represented alternate "targets". The results of the tests for
the analog-based RAF are displayed in Table 2., where the late-time signal energies are
tabulated.

Table 2 Analog-Based RAF Late-Time Energy
(Noiseless Case)

RAF Pole-Pairs

1 2 4 6

Exact 1.5E-2 6.04E-5 2.43E-9 6.38E-16

5% Shift 2.5E-2 1.50E-4 3.65E-9 3.29E-16

10% Shift 2.OE-1 1.49E-3 1.50E-8 6.94E-16

In following each vertical column, the "exact" RAF should ideally display the lowest
output energy. The result in the last column and second row indicates that for the case
of 6 pole-pair filters, the 5% displaced pole-pair RAF yields a smaller signal energy
than does the exact RAF. The explaination for this error can be seen by looking at the
output waveform for the N=6 exact RAF, as shown in Figure 7. Notice the non-zero late-
time output signal for this "exact" case RAP. The reason for this late-time residue is
the large high-frequency amplification of small round-off errors. To implement the
differential equation approach, the discrete K(W ) is formed by using the formula in
E%.(8). This is then multiplied by the digital FFT of the sampled y(t), followed by an
inverse FFT to obtain the output waveform. Any errors in the FFT (in say the 14th
decimal place) are amplified by the high-order (12-th order in this case) all-zero filter
characteristic polynomial in K(u)). The source of this error has been confirmed by
extensive tests involving additions- cases not shown here. The end result is that an
attempt to simulate very high-order analog differentiation using discrete FFT methods is
wrought with seemingly insolvable problems brought on by extreme amplification of
otherwise insignificant roundoff errors.

Turning now to the digital FIR realization of the RAP, the same test was repeated
for both "clean" input data and for the case of a 1OdB SNN noisy input signal, as shown
in Figure 6. The unit sample response of the digital RAF, which uses the exact 6 pole-
pairs, is shown in Figure 8, where the scale has been greatly expanded to show the
initial 13 non-zero values. The output of this exact RAF, as shown in Figure 9,
displays virtually zero late-time response. A summary of the test results is shown
below in Table 3.

Table 3 Digital FIR RAF Late-Time Energy
(Noiseless Synthetic Signal Case)

RAF Pole-Pairs

1 2 4 6

Exact 7.9E-24 2.16E-23 7.32E-23 1.17E-16

5% Shift I.OE-3 5.95E-5 3.29E-5 9.90E-2

10% Shift 7.OE-3 3.09E-4 3.97E-4 1.55

At the T transition, a very large and rapid oscillation occurs. In fact, the level of
this oscillation is so large that extensive "clipping" has been employed in the figure
so that the late-time level can be seen. The reason for this behavior is the lack of any
smoothing function being utilized for this noiseless case. At the T transition, the
synthetic y(t) has discontinuous deriviatives, and these are ampliFied by the high-
frequency asymptotic behavior of K(4 ), which is shown in Figure 10. Since the proper
RAF filter "exactly" cancels the matched late-time signal (without noise), there is no
noticible effect except in the vicinity of the discontinuous deriviative transition
region,having 2N+I points.

For the case of lOdB SNR, an additonal Gaussian shaped smoothing function was used
to reduce the high-frequency content of the additive noise. Toe output for the exact
RAF is shown in Figure 11 and the late-time signal energies are contained in Table 4.
Note, that with the smoothing function convolution, the large oscillation near T has
disappeared. The improvement of performance accompanying the increase of RAF °pole-
pairs (up to the actual number contained in the processed signal) can be seen by
comparing energy ratios in each column in Table 4.
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Table 4 Digital FIR RAF Late-Time Energy
(10 dB SNR Synthetic Signal Case)

RAF Pole-Pairs

1 2 4 6

Exact 630.4 2.80E 2 1.13E--4 6.43E-6

5% Shift 773.9 4.20E-2 2.86E-4 5.46E-5

10* Shift 940.9 6.20E-2 7.07E-4 1.99E-4

After validating the concept of digital RAF using synthetic signals, it was decided
to progress to a simple electromagnetic scattering case where, both the complex pole
values and the scattering response could be obtained to a high accuracy. The thin--wire
was chosen because of its amenability to numerical scattering solutions and SEM analysis.
Thin-wire scattering is depicted in Figure 12, where a Gaussian-shaped incident pulse,
having a 10% pulse duration of 2 Nsec (where the pulse amplitude is greater than 10% of
its I V/m maximum value), arrives at an angle of incidence, 9i. The electri, field has
linear polarization which is parallel to the plane of incidence. The temporal waveform
of the transient far-zone scattered field is computed in the the direction 4s. Numerous
combinations of Gi and Ba were considered for each of three wire "targets" having
lengths, in meters, of 0.9, 1.0 and 1.1. The length to diameter ratio of each target
was 100. A single RAF was constructed for each target and was then used for all
incident and scattering angles to demonstrate its aspect independence.

A time-domain thin wire integral equation computer program was written, and
extensively tested, following the method of Harrington and Sayre, [0. An example
scattered field waveform for the 1 meter thin-wire, with 0i z @a - 90 degrees is shown in
Figure 13. The magnitude of the associated frequency spectrum is displayed in Figure
14, where the resonant peaks are indicative of the presence of individual natural modes
whose poles are in the first "layer" which is adjacent to the j i axis. For the case of
broadside 90 degree incidence, only the symmetric, current modes having odd integer mode
indices are excited. For other incident angles, the antisymmetric modes were also
present. The abrupt spectral rolloff beyond the n 5 mode is due to that of the incident
Gaussian shaped waveform.

Resonant filters which canceled the first seven pole pairs for each (if the th-,'e
thin-wires were implemented using the digital FIR design technique. The poles values
were extrapolated from parameterized plots in the work of Tesche, It1, and are only
accurate to about 3 decimal places. Example RAF outputs are displayed in Figure 15, for
the case of 10 dB SNR waveform from the L = a wire with 9i = 90 deg and Bs : 45 deg.
The late-time energy results are summarized in Tables 5 and 6 for the respective cases of
no additive noise and 10 dB additive noise. For thc'sake of brevity, these tables only
display the results of RAF operations on the scattered weveforms from the 1. - I a wire.
Equally good results were obtained in processing the waveforms from the other two wires
in that the matched RAF consistently provided the lowest late-time signal energy,
independent of bistatic aspects on the target. It should be noted that a more optimal
"double-Gaussian" smoothing function was employed with the noisy data to reduce both high
and low frequency noise content. This smoothing function is the sum of two cilocated
Gaussian functions having opposite polarity and different standard deviations. The
constraint is that the function has zero area under its curve. The adjustment of the two
different standard deviations allows tailoring of the frequency filtering characteristics
at both the high and low range. As is apparent, consistently good identifications (an
be made even with a relatively low fidelity scattered signal in the case of a thin wire.

Table 5 Digital FIR tate-Time Energy
(Noiseless Thin-Wire I.E. Case)

B i s t a t i c 0- / @ , ( d e g )

90/90 90/45 45/135 45/45

L 0.9 m 4.24E-15 1.87E-15 1.33E-15 9.35E-16

L 1.0 m 7.99E-18 3.00E-18 1.90E 18 2.04E-18

L 1.1 m 1.30E-17 5.38E-18 3.74E-18 2.82E-18

Table 6 Digital FIR Late-Time Energy
(10 dE SNR Thin-Wire I.E. Case)

Bistatic 0 /Go (deg)

90/90 90/45 45/135 45/45

L = 0.9 m .045 .018 .012 .014

L = 1.0 a .019 .005 .005 .008

L = 1.1 m .112 .055 .028 .038
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The final evaluation of the RAF concept is through use of experimental broadside
back-scattering signatures of copper wires having lengths of 9 cm, 10 cm and II cm with a
common diameter of .24 cm . These measurements were performed using the Transient
Electromsgnetic Scattering Laboratory at the Naval Postgraduate School, which is
described in a separate article within this publication as well as in a previous paper,
([12, [131. An example scattering signature and its corresponding spectral magnitude
(for the L = 10cm wire) are respectively shown in Figures 16 and 17. The scattering
responses are due to a double-Gaussian shaped excitation having zero mean. Because of
the smoothing that was used in synthesizing the double-Gaussian response from the "raw
data", it was not necessary to perform further smoothing. Based upon the spectral
behavior of the responses, at most, only three significant pole-pairs are present in the
data. These poles were estimated from the data in [Il1 in order to produce the RAFs.
The measured broadside backscattering signatures of each of the three wires was then
filtered by each of the three RAFs, with the late-time energy results being shown in
Table 7. The consistently low energies provided by the proper NAFs appear as the
diagonal values in this table. These results, although hardly comprehensive, are yet
another indicator of the potential of this method for target identification.

Table 7 Digital FIR Late-Time Energy
(Measured Thin-Wire Broadside Backscatter)

Wire Length for Data
9 cm 10 cm 11 cm

RAF

L 9 cm 2.53 12.92 53.95

L 10 cm 15.88 2.89 10.97

L 11 cm 41.07 17.31 3.79

CONCLUSION

A new class of "K-pulse" based aspect independent NCTE. which makes use of simple
digital FIR filters, has been described and initially tested on a very limited basis
using synthetic waveforms, integral equation computations and measured data. The
original concept, which was based upon analog different ial oper ator methods, was
described and then shown to fail because of critical, although small, roundoff errors in
the digital implementation.

Future work will involve several important investigations on further refinements and
more comprehensive validations of the NAF method. One of the first orders of business
will be to conduct a performance comparison with the alternate "F pulse" method, whi-h
has been developed by Chen and others, 181. This will be a iooperativ, effort whiih
will seek to uncover the relative virtues of each method and address their possible.
integration. Another major quest, perhaps tied in with the first, will be in the
development of systematic digital design methods to optimize the 14AF perfrmiance fir
realistic cases of transient scattering. Such optimization will address seweral issues,
including moderate and low "0" target signatures, having more rapidly damped natural
modes than that of thin wires. An additional concern is the tradeoff of system
bandwidth reduction for reduced decision reliability. This issue will lie onsidred as
part of a more general effort which seeks to quantify the expected error probabilities as
a function of (1) signal center frequency and bandwidth, (2) SNR and (3) target ensemble.
This latter consideration will be highly significant since a target ensemble which has
elements whose dominant poles are close to those of other element(s) will be more
difficult to consistently identify. This "selectivity" issue also has another aspeit,
where a single target type may have multiple configurations due to variable wing sweep
and "stores", for example. The viability of the resonance annihilation method for real
world NCTN may ultimately prove insufficient for stand-alone aspect independent
identification. On the other hand, this late-time data set may be highly useful when
augmented by aspect-dependent "imaging" methods, which primarily employ the early time
signal.
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NUMERICAL MODELING: FINITE METHODS

Michael A. Morgan, Associate Professor, (Code 62Mo)
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SUMMARY

C Recent developments in computational methods for unbounded electromagnetic problems
involving antennas and scattering will be considered. Emphasis will be given to the
numerical implementations of differential equation based formulations using either finite
differencem or finite elements, to be referred to as the finite methods. Elementary
examples are used as conceptual vehicles for introducing finite element and unimoment
techniques. This is followed by a discussion concerning some of the most recent
innovations, such as that of the finite element boundary integral method and the field

Sfeedback formulation. Current capabilities are demonstrated by considering some of the
most important research results utilizing the finite methods.

INTRODUCTION

The numerical computation of electromagnetic interaction with increasingly complex
material structures has been a major research topic for over two decades. Surface
integral equations have been utilized extensively in the solution of problems involving
both metallic structures and layered penetrable materials. Formulations based upon
differential equations have been employed for the most generalized inhomogeneous
geometries, with numerical solutions effected through the finite methods (i.e. finite
elements and finite differences) [1]. The numerical implementations of the finite methods
usually result in the production of very sparse system matrices while full matrices are
generally produced by integral equation formulations. The use of sparse matrix
algorithms often result in significant reductions of needed memory and computation time
when compared to the case of full matrix inversions, if the same number of unknowns are
to be considered. As a result of this, for given computational constraints of time and
memory, the finite methods have the potential to solve larger volume electromagnetic
problems (in wavelengths) than can be handled by volume integral equations.

Although the finite methods offer numerical efficiency they are, by necessity,
formulated as boundary value problems, as will be considered in the next section. As
such, the solution of scattering and radiation problems in unbounded spatial regions
requires a mechanism for coupling closed region solutions to the exterior space. This
procedure must also ensure that the proper radiation conditions are satisfied, since
these form the "boundary conditions" at infinity. The Unimoment Method, as developed by
Mei [2], provided a self-consistent approach to coupling interior and exterior field
problems through a separable surface interface. This method was employed by Stovall and
Mei [3) and Morgan and Mei [41 to both antenna radiation and scattering problems
involving inhomogeneous axisymmetric dielectrics. Further applications of the unimoment
method, using finite elements, were made by Morgan [5],[6] to problems involving raindrop
scattering and microwave energy deposition in the human head. Some of these results
will be considered in the section devoted to the unimoment method.

For many applications the use of a separable surface, as is needed in the unimoment
method, results in numerical inefficiencies and other difficulties. To allow the use of
more generalized surfaces, which may even be made conformal to the object's outer
surface, a new hybrid method was developed by Mcrgan, Chen, Hill and Barber, [7). This
approach, termed the Finite Element Boundary Integral (FEBI) method, combines a finite
element interior solution with a surface integral equation on the boundary. The FEBI
formulation will be briefly discussed in a subsequent section concerning recent 3 advances.
The most recent innovation is that of the Field Feedback Formulation, (F'), which
replaces the integral equation on the boundcry in the FEBI approach with a discrete
feedback relationship between adjacent boundaries, [8]. This methodology will also be
developed at a basic level in the section on recent advances.

Additional methods exist for employing finite method solutions in open region
problems. One such technique imposes an artificial zero boundary condition at
sufficiently large distance from the antenna or scatterer, [9]. The drawbacks of this
procedure are (1) the inaccuracy of such an assumption and k2) the large mesh that is
needed, with the accompanying large matriy size. Another method employs "infinite
elements", where an assumption is made as to the behavior of the exterior field, [I0].
To approach an accurate approximation, these infinite elements must lie in the "far-
field" of the problem. This means that the finite mesh region must be extended
sufficiently far from the scatterer to accomplish this, yielding the same type of
inefficiency as the zero boundary method.

THE FINITR METHODS

The finite methods may be classified as the various techniques that provide
discrete-wise approximate solutions to continuous boundary value problems, I]. As such,
the finite methods offer a means to approximate the solution of specified differential
equations in one or more dimensions, including time. The most common method has been
that of finite differences, which obtains discrete approximations to partial derivatives
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by differentiating a piecewise polynomial, or other approximating function, which has
been "point-watched" to the actual unknown function at the "nodes" of the problem. As a

simple example, consider the finite difference approximation of the various derivatives,
up to the n-th order, of an unknown function, fix), in one-dimension. The domain of x is

partitioned into generally unequal segments, separated by ordered nodes, x , for

k l,2 ........ In the region of x that contains the i-th node, x
i
, let fx) be

approximated by an n-th order polynomial,

n-i ................
f(x) = a. x

n  
+ an- 1  

x + +a x + a. (1)

The coefficients can be found as linear functions of n+l of the unknown nodal values of

f(x). Usually, these particular nodes will be taken to bracket the i-th node. The
linear relationship between the coefficients and the nodal values of f(x) is developed by

point matching the polynimial in Eq. (1) at the ncl nodes, resulting in the linear system

defined by

n

p; xkP a f(x) for n~l distinct values of k (2)

After inverting this system, the resultant linear functional form for each a can be
substututed into Eq.(l). The finite difference formulas for each derivativePup to the

n-th order can then be obtained by analytically differentiating Eq.(1), followed by an

evaluation at x-x.. This procedure will yield a formula for each of the derivatives
which is a linear iunction of the n-l nodal values of f(x). For example, if n 2, with

equal segments, Ax, then a quadratic expression in (1) yields the well-known formula for

the second derivative,

d 2f(x) f(xi ) - 2 f(x
i
) + f(xi-

l

dx2 ( a X) (3)

The finite difference solution of a boundary-value problem is set up by replacing
the analytical derivatives contained in the differential equation by finite difference

formulas at each nodal point where the solution function is to be found. Thus, there
results a system of linear equations relating the unknown nodal values of the solution

function to both the known excitations (drivers) of the differential equation and the
known boundary values of the solution function. As will be shown, the finite difference

method can be thought of as a very special case of a much more generic technique, called

the finite element method (FEM).

The finite element method can be approached in general through the "weighted

residual method", [11], which considers the numerical solution of a differential operator

equation in an M-dimensional "volume", V., which bounds r (rPr
2 

.... rM), where M is

usually no more than 4,

D(r).f(r) - g(r) for r inside V. (4)

D(r) is the differential operator, f is the unknown vector function, g is the known

driving vector. Essential boundary data concerning f is known on a surface, So, which

encloses V . An example is the scalar Helmholtz equation in 2-D,

V 2 + ko 2 fx,y) g(xy) (5)

To find the approximate numerical solution of this equation we use a basis function

expansion to represent f,

N
f~r) Y Cn U(r) 6)

where the set {U } should, ideally, have the same order of differentiability as does th,-

exact solution and, as N is increased, the approximate expansion should -ihnverge in n

pointwise sense to f(r). This last condition depends upon ho' completely the set of

basis functions "spans" the subspace of functions occupied by the various solutions to,

(4). This quality is reflected in the linear independence of the function set.

Upon substituting Eq.)6) into (4), there results,

N

D0 f(r) =: C
n  

{D(r) Un (r)) g(r) 7)
nzl

To solve for the N coefficients, we enforce this equation with respect to a suc-ession of
N weighted integrations over V.

,



N

<wk(r), D.f(r)> ' C.C (wk(r), D(r).Un(r)) (wk(r), g(r)> for k=lN (8)

with <w(r),v(r)) indicating an integration of the dot product of the two indicated vector
functions over V . The set (wk(r)) is termed the "weighting functions" or "testing
functions". This weighted residual approach has also been termed the Method of
Moments" (MoM) ,[121, because of the similarity of the weighted inner product integral
terms to statistical "moments". The MoM has, for the most part, been applied to
integral equations in electromagnetics. The conceptually identical weighted residual
approach was originally associated with numerical developments in finite elements, as
applied to structural and fluid dynamics problems.

In setting up the NxN linear system indicated by (8) there are some additional
considerations that need to be addressed. One of these concerns the support region of
the basis functions: either full range (over all of V ) or compact (each being nonzero
over only a portion of V ). An example of full ranie basis functions is the set of
complex exponentials employed in Fourier series, where the C 'a are termed the spectra of
the expansion. Compact basis functions are more common tonfinite element applications.
Usually these basis functions are selected so that at each node of the discretized
problem all basis functions, except one, are zero. At its associated node, where it is
nonzero, the basis function will usually be set to unity. In such a case, the compact
support basis set conveniently yields C 'a which represent the solution values of f(r) at
the N nodes. Another consideration involves the set of weighting functions. There is
obviously an unlimited selection available. Three of the more common types are:

(1) Point Collocation, which uses a delta function at each ordered node coordinate, rk,
for the associated wk. The effect of this is to reduce the integration "moments
in Eq.(8) to simple point-matching at the respective nodes, resulting in nothing
more than the finite difference method. An advantage of this method is its
relative simplicity in generating the matrix elements from (8), since integrations
are reduced to enforcing the approximation at the node points. On the other hand.
there is no control on the behavior of the solution in-between the nodes, in the
sense of solving the differential equation. This usually results in the least
accurate solution of these three methods, assuming a similar node density and
computer word-length in each case.

(2) Subdomain Collocation, which employs a set of mutually exclusive constant functIons
wk(r)=l, in a defined region around the k-th node. These regions around each node
are non overlapping and usually are directly adjacent to one another, without
unfilled space. This approximation is usually more accurate than Point
Collocation, but not as accurate as Galerkin's method, when self adjoint operators
are involved.

(3) Galerkin's Method, which uses the same set of functions for both basis and testing,
wi(r)-Uk(r). For the case of a self-adjoint operator, D(r), it can be shown that
the functional defined by Q(f) z <f, D.f> - 2(f,g> is stationary about the solution
to the original operator equation, in (4), (131. This variational principle, when
enforced upon the basis function expansion in Eq.(6) is termed the "Rayleigh-Ritz
Method" and yields the Galerkin's result for the weighted residual approach. This
method generally provides the most accurate solution and forms the foundation for
most of the FEM work that has been done. Another means of achieving this same
result (the Galerkin equations, with w OU ) is by way of the classical Euler
Lagrange variational formulation. This Ias-the advantage of reducing the order of

differentiation on the basis functions, via-a-vim a direct Galerkin approach, and
will be demonstrated in the following section.

An excellent discussion of the error bounds and rates of convergence for these three

methods is given by Strang and Fix, [13].

FINITE ELEMENT EXAMPLE

Consider the simple problem of the undriven (goO) Helmholtz equation in Eq.(5) in a
rectangular region with "mixed" boundary conditions (BCs), as shown in Figure 1. The
rectangular problem space is discretized into a grid of doubly ordered nodes, with
triangular finite elements, as per Figure 2. The unknowns are thus the values of
f(xily.) at the nodes where f(x,y) is not given by the BCs.

We will employ piecewise linear "pyramid" basis functions, U i. (x,y), to represent
the solution,

6 7
f(x,y) 7 r Z fi~j U

i 
(x,y) (9)

i-I j-l

The support region for U. is all elements which share the (i,j) node, as illustrated in
Figure 3 for an intehAr node. In the 1--th element, we will locally number the

associated 3 nodes, k=1,2,3. as shown in Figure 4. Within this l-th element, the linear
basis function associated with the klth node is given by the matrix product

'11[
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Uk(Xy) 1X, Y, I * (L]k 10

with [L]k the k-th column of the element coordinate matrix,

I1I (Y2-Y3) (Y3- l (YlY2)

L] Ill (x3-x 2 )  (x1 -x3 ) (x2-x)
x2 Y3-X3Y 2 ) (x3Yl-'lY3 (XlY2-xzY1 )

where D l  det [L] is twice the area of the triangle.

Employing the Euler-Lagrange formulation, we seek the nodal values in (9) for which
the quadratic functional below is stationary,

0(f) f, Vf - ko <f, f> 12)

Note that this functional has only first order derivatives inside of the < , integrals
in x,y. This result follows directly from the classical variational formulation and can
be obtained through applying Green's theorem (or multiple integration by parts) to the
Galerkin equations. The stationary solution is found by substituting (9) into (12)
and then differentiating Q with respect to each of the unknowns, setting the results to
zero in each case, resulting in the linear system of equations,

7- f { < VUi,) .VU > - ko 2< U.. n> 
}  

0 (13)
m=l n=l ,J ,3 im 0 1 , ,n>

for iz2 to 5 and j=2 to 7. Note that for a given (i,j) node, only (m,n) nodes sharing
at least one common element will provide a nonzero contribution to the moment
integrations. Thus, the matrix defined by (13) will usually be quite sparse, with most
matrix elements, indicated by the terms in curly brackets, being zero. This feature is
produced by all finite methods upon using compact support basis and testing functions.

Denoting the 4 unknowns at the nodes across the j-th horizontal row of the mesh in
Figure 2 by the vector,

T
Fj = If2 ,j' f3 ,j' f4 , j' f5 ,j ] (14)

the matrix equation inplied by Eq.(13) can be written as a linear matrix-vector
relationship between adjacent row vectors,

[A].. Fj_ 1  + [B]j.*Fj + [C] j Fj+ 1  pj (158)

where the "block-matices" are banded in structure,

(A]: x x 0 [B]: x x 0 [Cl: x l (15

0 xx x xx x

x X x-x×

These nonzero matix elements, indicated by "x", as well as the elements of the boundary
condition vector, P., are obtained in terms of the element integrals within the curly
brackets in Eq.(13) Within the 1-th element, having L-matix defined by (II), the
integrands can be obtained directly from Eq.(10). Denoting the relationship between
local (in element I) and global node coordinates by k-(m,n) and k=(i,j), there results

Uk Uq ([LkIT a [ xy y
2  

y IL L
q  

(16)

x y I

VF -V U q ((LIW T. 1 0 -(Lj q  (7

0 a 0

AIL



with )T indicating matrix transpose. The elements are thus assembled from element
integrations of the form

prs SS r yo dx dy 18)

which are available in tabular form in a number of references on finite elements, e.g.
[I1].

Having loaded the block matrices relating adjacent row vectors of unkowns, the
global matrix structure will be of the tri-block form

[B]2 [C)2 F2 P2

[A] 3  [B] 3  [C] 3  0 F3 P3

[A] 4  [B]4  [C] 4 , F4 P4  t

0

[A[ 7  [B]7 F7 p7

The finite element solution thus comes down to inverting a matrix. As previously
mentioned, the global matrix is generally quite sparsely occupied with nonzero elements,
in contrast to integral equation methods, which produce full matrix structures. This
sparse matrix allows highly economical inversion, for even very large matrix order, by
any of a number of different algorithms, [14]. In addition, by properly ordering the
nodes, the matrix can often be made to have a block structure, as it does in this case.
A block structured matrix can be very readily inverted by way of the Riccati transform
algorithm, [4].

This example was presented in the spirit of demonstrating some of the elementary
numerical procedures that accompany the application of the finite element method. We
will now turn our attention to some of the techniques for employing finite method
solutions to field problems in open, unbounded regions.

UNIMOMENT METHOD

As developed in the unimoment method, the exterior region fields are represented by
a functional expansion in one of the separable coordinate systems for the vector
Helmholtz equation [15]. The spatial interface for coupling the interior numerical
solution to the unbounded exterior region is thus a constant coordinate surface of the
separable system employed in the outside expansion. Spherical interfaces were utilized
in [3]-[6] and [18], [19] due to the relative ease of generation of exterior region
spherical harmonic field expansions.

To understand the conceptual basis of the unimoment method, consider the solution of
a scattering problem involving a 2-D cylindrical penetrable object of arbitrary cross
sectlon which is, perhaps, inhomogeneous. For either TE or TM incidence (z- directed Hi

or E , respectively) the homogeneous scalar Helmholtz equation, Eq.(5) with g 0 O, is
again applicable, but with a variable wavenumber within the scattering object,

( * 2(r,o) ) f(r,O) = 0 (20)

where we are using circular coordinates (r,O).

The unimoment solution proceeds by enclosing the scattering body within a separable
"mathematical" surface, which we will choose to be a circular cylinder, as is illustrated
in Figure 5. Notice that there are two concentric circles, of radius r and r both of
which are outside of the scattering object. With specified Dlrichlet BCs on he outer
boundary, r r, a finite method is used to solve for nodal values of f(r,O) for r , r2.
A necessary altribute of the interior mesh construction is that a set of the solution
nodes lie on the inner circle, r=r 2.

The total field outside of the smallest circle (centered at r=O) which encloses the
scatterer may be represented by the sum of the known incident field and a cylindrical
harmonic expansion for the unknown scattered fields,

N

f(r,O) f (r,O) -,,- an Cn(rO) + b
n  

Sn (r.) (21a)

where
Cn (r,O) H n- (2)(kor) cos(n) 

(21b)

Sn(r,O) H n(2)(kor) sin(ne) (21c)



with H '2) the Hankel function of the 2nd kind. Notice that this is an appro. mat,

result Bue to the truncation of the series at N-l terms. In prat-tie, this so, ies wll
converge rapidly to the scattered field if N I k r,. To find the unknown s, tt -i

field coefficients, a and b , we first solve the interior region problem fot UN- I
separate BCs on r r . These PCs are composed of the incident field and -ah of if-,
scattered field modes in the expansion. The numerical solution within the intior,
which corresponds to one of these applied BCs, is indicated by a iircumflex o-,rhat .
For example, a BC~of f (rl,@) produces an interior solution of f (re; while a BC of
Sn 8r,9) produces S (r,O) for ri r, Using the principle ii f superposition, the

numeric'al solution or the total field inside of the outer boindiry will be g v by

Sqn.(21), but with numerical solutions replacing f', C and S

To solve for the coefficients, we simply equate the numeri.-al solution to the
analytical solution along the circular contour, r r

2
, resulting in

an 'Cn (r2,) - Cnr2' n {n(r
2
,O) Snr2,O0 f r 2 ,OS f 0r 2,O 2

n-0

The equality of the analytical and numerical expressions for the total field at r r, is
theoretically correct. The unknown scattered field coefficients may be obtained ry a
weighted residual approach, where < indicates, in this case, an integratl ion on 0 from

0 to 21r and the A functions below indicate the respective function differences in 22

N an Wm (@), & AC( )l> - b Wm(9), (ASn(9))' - Wm(Q),Af i( " i23n:O n m n 5

for m: 0 to 2N, with 2N+2 linearly independent weighting functions, W - By seleting

delta function weights at 2N+2 nodes along the matching contour, rr Eq.(23 will
provide the point-matching form of the solution. A much more accurate method is to
enforce (22) tn the least squares sense over the entire circle, including in between the
nodes. In this case, this results in the weighting functions being proportional to the

complex conjugates of the function differences within the curly brackets. The
integrations to evaluate the matrix elements in (23) are performed either numerically, or
semi-analytically by using the basis function expansions employed in the interior
solution to represent both the difference functions and the weighting functions. In any
case, the resultant 2N+1 square matrix can be inverted to obtain the scattered field
coefficients. The scattered field may then be obtained from its expansion and if
desired, the interior field can be found by using the weighted superposition of the

stored interior field solutions.

The unimoment method has been employed in several computational efforts. One of the

earliest of these involved the finite difference solution for radiation and input
impedance of a finite length hiconical antenna, loaded by inhomogeneous dielectric [3',

as is depicted in Figure 6. Since both the fields and material structure are
axisymmetric in form (invariant to the phi-coordinate) the solution can be reduced to a
single meridian plane, (r,e) in spherical coordinates. A section of the the finite

difference mesh is shown in Figure 7. The interior region solution for this antenna
problem was formulated using a special case of the Coupled Azimuthal Potential (CAP)
formulation, where all fields are represented using two (in this case only one was

needed) continuous potential functions which are related to the azimuthal field vector
components, [16]. A sample result is shown in Figure 8, which compares the computed and

measured input impedance of a plexiglas loaded biconical antenna. The computation was

performed at discrete frequencies over a 10:1 range, wherein the bicone height ranged

from .16 to 1.6 wavelengths.

As a second example of the unimoment method, consider scattering by inhomogeneous
bodies of revolution [41, which employed the tri-regional finite element mesh in the
(r,@) meridional plane, as shown in Figure 9. The CAP formulation was employed to

represent the general (non-axisymmetric) fields using two coupled potentials and a
Fourier series in the phi-coordinate. Independent spherical harmonic expansions were
used to represent the scattered field outside of the mesh and the total fields within the
spherical "core" region surrounded by the mesh. The sets of coefficients used in these

field expansions were found by applying the various expansion modes for the potentials as
boundary conditions along the contours r~a and r b. In addition, the various incident

fields being considered were applied along r~b. A finite element solution for each
applied BC was then then evaluated along the inner contours r-r

I 
and r-r

2
. The total

fields were then assembled from these numerical solutions and equated in the least
squares sense to the original analytical expansions, resulting in a matrix equation for
the coefficients. Numerous comparisons to experiments were made for solid and hollow

dielectric bodies of various shapes. A typical result is shown in Figure 10, where the
bistatic scattering is from a plexiglas body having cylindrical, conical and spherical
portions. Note that the vertical scale is not in dB.

Additional research efforts involving the unimoment method include scattering by

dielectric cylinders [17] and axisymmetric raindrops [5], as well as scattering by
multiple bodies of revolution [18] and even buried objects [Ill. In another case, the
scattering problem was solved for a complex losy dielectric model of the human head, in
order to evaluate the interior field distribution as a function of frequency, incident

aspect and polarization, [6].



The numerical solution within a spherical interior region becomes ineffilcient,
for scattering shapes that occupy only a small portion of the enclosed volume (e.g. thin
cylinders and flat discs). Although it is possible to utilize a separable non spherical
surface to increase the numerical efficiency of the interior region solution, this will
be offset by additional requirements in both generating the special functions that are
needed in the exterior expansion and in computing the required moments of these functions
with the numerical solutions over the interface.

RECENT ADVANCES

A technique to circumvent the need for a separable boundary interface was developed
by Morgan, Chen, Hill and Barber [8]. This hybrid Finite Element Boundary Integral
(FEBI) method combines a finite element solution of the interior region witi the surface
integral equation found in the extended boundary condition method. The FEBI procedure
allows the use of a surface interface that conforms to the outer boundary of the
scattering object, as is shown for the finite element mesh in Figure 11. The finite
element solution proceeds in a similar manner to that of the unimoment method, with the
incident field and scattered field spherical harmonic expansion modes being applied as
BCs at the outer boundary, SG .  Numerical solutions are then found at the surface of the
scattering body, SB, for each of these applied BCs. Since these boundaries at S. and S
do not in general conform to a spherical surface, a single spherical harmonic expansion
for the scattered fields outside of SB is not "complete", except outside ,f a sphere that
encloses the scatterer. Thus we can not, in theory, match the numerical solution at S
to the original analytical expansion, as we did for the unimoment method. To evaluate
the expansion coefficients for the boundary field, we use a combined field integral
equation, as employed by Waterman in the "extended boundary condition formulation" [20j.
This integral equation relates the tangential field just inside of the boundary SB  to
that just outside and does not make use of a knowledge of the material structure inside
of SB .

The FEBI method has been shown to work well for T-matrix calculations involving
moderately elongated lossy dielectric scatterers. An example computation, with
comparison to that performed using the extended boundary condition method, is illustrated
in Figure 12. The method tends to have difficuties, however, with attaining
convergence of the solution if the surface interface becomes extremely elongated (i.e
length to diameter ratios exceeding about 10). This failure occurs because of the
generally incomplete nature of the exterior region spherical harmonic expansion which is
employed to represent the field over the surface of the scattering body. Such a problem
is related to the Rayleigh hypothesis [21].

The Field Feedback Formulation (F 3) has been proposed, (RI, to mitigate the
restrictions inherent in coupling i~terior and exterior region field solutions, as are
found in other techniques. Using F , the interior boundary value problem is initially
decoupled from the outside region. The interior problem may then be formulated and
computed using the most expedient approach that can accurately accomodate the level of
material complexity that is present. The exterior region field is represented in terms
of modes generated from surface integrations involving equivalent currents obtained from
the interior region solution. These modal fields, which satisfy the radiation conditions,
do not rely upon the use of separable coordinate surfaces for their completeness.
Another primary advantage of this method is its modular nature, where forward and
feedback transfer matrices can be independently computed.

The F
3 

scattering solution method may be easily conceptualized by considering the
simple feedback system which is depicted in Figure 13. The input to the forward
transfer function, A ,is an array composed of boundary nodal values of the field on the
outer surface, S as was shown in Figure II. The A -operator represents the finite
method solution to attain the tangential field values on the inner surface, S., in terms
of any specifed boundary data on SG' These numerically derived tangential fields on S
can then be used to form equivalent electric and magnetic currents (combined to form an
array X) that generate the scattered field from the object. Ir particular, by way of
Green's function integrations of these equivalent currents on S the scattered field can
be found on the outer surface, S These integrations are represented by the feedback
operator A . The original boungary array on SG was composed of the incident field plus
an expansion, with unknown coefficients C , for the scattered field. By superposition,
the numerically generated "feedback" scatered field, will be equal to a known term,
given by A'A operating on the incident field, plus an expansion of the unknown
coefficients with known expansion functions ( AA operating on the original scattered
field expansion functions on SG). By closing the loop, and literally making the
feedback field equal to the scattered field portion of the original expansion, an
equation results that is similar in form to that from the anaiysis of a simple recursive
control system,

smcat = N I r -1 ! 'A Jinc(4Z Cn En 1-PA.A-(4n=1

where III is an identity matrix. The unknown coefficients may be found from this
equation through the method of weighted residuals, where bcth sides are integrated over
S: with respect to a et of N linearly independent weighting functions. Once the
cgefficientm are obtained, then the scattered far field is found through simplified
Green's function integrations of the assembled equivalent currents on S These
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integrations are denoted by the P -operator in Figure 13.

A very simple demonstration of the F
3 

is scattering by a metallic thin wire. The
finite element mesh for this is shown in Figure 14. This is obviously a case where the
unimoment method would be quite i~efficient, requiring a meridian spherical mesh to
enclose the wire. Using the JF , the mesh has only a single column of triangular
elements, which produces an interior solution global system matrix having a nonzero
bandwidth of only 3 matrix elements in this case. The Riccati transform allows ultra
fast inversion of this matrix. Comparisons 3of the magnitude and phase of current on a I
wavelenth long wire, as computed from the F 3and Hallen's integral equation, is shown in
Figure 15. One source of error in the F- computation was the use of linear basis
functions in the finite element calculation, which were used to represent the phi
component of magnetic field. In the immediate vicinity of the thin-wire this field
component is characterized by a rapidly decaying evanescence which is not accurately
"trackable" using linear functions. More specialized basis functions would allow a
natural convergence of the solution as the wire is made thinner.

CONCLUSION

The objective here has been to consider recent developments in finite method based
computational techniques for unbounded electromagnetic field problems. Along the way, a
brief tutorial concerning the finite methods was provided. Special consideration was
then given to three methods for solving field problems involving scatterers or antennas
which use finite method boundary value numerical solutions. The most established of
these techniques, the unimoment method, was developed through a simple example, and some
representative computational results were given. This was followed by the description
of two more recently developed methods which provide the systematic coupling of interior
region solutions to the unbounded exterior domain. These formalisms, called She finite
element boundary integral method (FEBI) and the Field Feedback Formulation F permit
the use of sparse matrix finite methods for field solutions within complicated scatterers
composed of inhomogeneous and anisotropic materials. Furthermore, a minimal volume
conformal bounding surface may be employed to enclose the scatterer, which is an
advantage over the need for a separable surface mesh in the unimoment method.
Convergence probleml for non-spherical boundary surfaces, as encountered in the FEBI
work, led to the F concept, which circumvents the need for any separable coordinate
expansion.

The F
3 

casts the scattering problem into a vector matrix equivalent of a simple
feedback system, wherein the forward (interior problem) and feedback (radiated field
matrices may be computed independently and then combined to obtain a self consistent
scattering solution. A very simple example of thin-wire scattering was considered to
demonstrate the technique. The unique power of this method resides in extending the
realm of electromagnetic computation to large and quite complex scattering configurations
where volume integral equation techniques are numerically bottlenecked by their resultant
full system matrices. Current work by the author is being directed at demonstrating
this potential power in scattering computations involving complex 3 D objects having both
metallic and penetrable substructures.
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c SUMMARY

~A review is given to the different expressions for the representation of the electromagnetic fields
by integrals over the surface current. The integral equations, which oostly are used for the solution of

Q41 practical problems, are discussed and the method of moments is outlined, where the use of pulses as basis
functions is emphasized. Estimations of the core storage and the computer time are given. Two geometrical
models for the scattering structure are discussed in more detail : the surface patch model and the wire-grid
model. A list of application examples ot the integral equation method with references is given. Two further
examples are outlined in detail: computation of the radiation pattern of an antenna mounted on a helicopter

r and determination of the extreme near field of a cube.

1. INTROOUC[ION

A prediction and analysis of target signatures can be made more effective, if electrodynamic models
are available, which describe the interaction process between the electromagnetic wave and the structure
under test with sufficient accuracy. In the event that the objects are in the design phase, where a lot of
structural changes must be provided, the worth of such models will be obvious. Two examples will demonstrate
this.

Fig. 1.1 shows two airfoil sections [iJ. The question arizes, which of the two airfoils has the smal-
ler monostatic cross section for a wave impinging on the broadside or on the trailing edge etc., and which
different frequency dependence exists for both configurations. The question can be answered if the current
distribution on the airfoil is known so that the scattered far field may be computed.

1.1oX -l- - l.0 __ -

yA Ro=0.75

&A Z j4.30X
A4p -

Incident 

wave 3.40X- 
I - (

---v1v Incident

62 w -ve 1 62

Re=0.31X Il
R070 18X

Fig. I Optimized design of structures.

Fig. 2 shows an airplane, which is equipped for position finding purposes. Since the phase front of the
incoming plane wave is distorted more or less by the airplane structure, depending on the angle of incidence
and the frequency, the question arises, where an appropriate place on the plane for the installation of the
direction finding antenna may be found. The magnitude of the distortion of the wave front in dependence
from frequency, polarization and incidence angle of the wavefront is of great interest. The solution of this
problem requires the computation of the scattered near field.

In Lhe past only approximate theoretical or experimental methods were available. While approximate me-
thods can fail in givinV sufficient accurate predictions of the scattering process, experimental methods re-
quire a high effort especially if changes of the structure must be carried out. Therefore, it is desirable
to reduce the number of experimental studies to a few final measurements, which can be defined by the pre-
cedin0 theoretical analysis. This requires from the theory to develop and validate models which are able to
predict the interaction of electromagnetic waves with a complicated structure with an accuracy, which is
sufficient for practical applications.

The progress in computer techniques permits in an increasing manner the use of theories, which because
of their high numerical effort could not be considered, in the past. Among these theories are not only heu-
ristic methods like the physical optics method L2J, and the geometrical theory of diffraction [3, 41, but
also rigorous methods like the integral equation [3, 5 - 7], and the differential equation method [8, 91.
A survey over the variety of methods, which come into consideration, is given in [10].
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The heuristic methods allow the computation of the far field or quasi far field, if the object's di-
,iensiuns are larger than several wave lengths. The rigorous methods in principle permit a computation also
of the near field, since the accuracy is limited only by the computer capacity. The computer effort, how-
ever, increases considerably with the dimension of the scatterer, and therefore, limits the size of the
structure.

This paper deals with the integral equation method (IE1) and its geometrical and numerical models.
First the way is resuaed to derive the integral equations for ideal conducting bodies of jeneral and thin-
wire structure. The solution of the integral equations for the current with the method of moments is re-
viewed and an estimation of computer storage and computer time is made. In the following sections the mo-
deling of structures by surface patches and wire-grids is discussed in detail. A list of various applica-
tion exaoples (antenna and scattering case), which are treated by the IEM, is presented. Two examples are
outlined in detail. One treats the far field of VHF antennas mounted on a helicopter, the other has the
objective to deternine the extreme near field of u cube.

2. INTEuRAL REPRESE.iTAr[ONS OF THE ELLCTROMAGALTIC FIELD FOR IDEALLY CONDUCTING STRUCTURES

One is used to represent the total field , A at an observer point P() as the sum of the known inci-
dent field re' Re and the scattered field s, Hs:

t('r= T fe(r ) + T s , (1)

) T 4e(r) *T ) s(r) .(2)

In introducing the factor T one can take into account the nature of the immediate neighbourhood of the
ubserver point. T is given by the formula (53

1- 174-4 1 (3)

where i is the solid angle, which is enclosed by the surface F of the scatterer at the observer point P,
see Fig. 3.

The above general equations include the following familiar special cases:

a) The observer point is situated in the volume V and not on the surface of the scatterer. This results
in a = 0 and T = 1.

b) The observer point is situated on a smooth surface. This results in , 2n and T 2 2.

For the construction of an integral equation it is necessary to represent the scattered field in an inte-
gral form. There are several ways in literature L5, II - 13] to derive integral representations for the
scattered field. For an ideal conducting structure the following expressions are available:
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i0

S()= T 2 F F df = (4a,b,c)

t + ~(k4 r,r') F,(r tU(Fsr-)V)Vtsr~r//)

F -k
T 2 2 2 -ekR

. F
(
r
')+ (3 3 jkR

-
k2 R2 ( [ ' ' )  )  

e
-j k

((-l jkR+k2R
2  

F- --R f'

F

i+(k20(; 
'
) 'F(r) + (V;F(r'))V( ,')) df'

F

-r t+ (vo(r' .r F~ df- L - (1+jkR)(Il(P) x e) R-jkR df' (Sa ,b)

F F
Denotations:

w =Znf = angular frequency,
f=frequency,

k = 211/ = wave number of the propagation medium,
A = wavelength,
= absolute complex dielectric constant of the propagation medium,

F 
= 
electric surface current,

= surface of the scatterer,
r = vector of the observer point,
S- vtcor of the integration point on the surface of the scatterer,

R =r-r' = distance between observer and integration point,
;R =/1 = unit vector, pointing from the integration point toward the observer,

= exp(-jkR)/R = scalar Green's finction.
V = Nala-operator, V = en d/dx + ey d/dy + e, d/az for cartesian coordinates,
v .iF(r') = ajF/u + JJFC/dv = surface divergence of the current with surface components JFu and JFv"
The geometrical situation is illustrated in Fig. 4.

The synbol'is used to denote the principal value integral over a closed surface excluding an L
neiyhbourhood of the singularity. The terms under the integral become singular if the gbserver point is
situated on the surface and the integration point approaches the observer point: r, - r.

E-, -. ,- n

u~, H ~ scattering

6=en K Fig. 4 Geometrical situation for the description
-" o R d-- of the scattering problem.

0V 
F

r

Eq. (4b) resp. (Sb) nay be evaluated directly from tq. (4a) resp. (5a) by inserting 0 and V4 and re-

arranging the terms. Eq. (4c) is equivalent to Eq. (4a) in the case that the surface is a closed one as in-
dicated by the circle in the integral siyn. The equations are rigorously valid, if the closed surface has no
edges, that is no discontinuity in the surface tangents is allowed to occur. If there are any edges, the
field and with it the current distribution must be determined under the constrailt that the edge condi-
tions [14, 15J are satisfied. Only in this case an unique solution of the boundary value problem can be

evaluated. The edge condition for an infinite thin half-plane is known and is formulated as follows: The
current component vertical to the edge, see Fig. 5, is given by

JP " 112 for ., 0 , (6)

vertical distance of the current point from the edge. The current component parallel to the edge be-

haves like

1fN -1/2 for ,0. (7)
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There is a lack in the literature concerning edge conditions for other configuration. For a wedge,
however, some informations may oe found in [141.

If the surface is not closed it is always limited by edges. For an open surface Eq. (4cj no more sa-
tisfies the Maxwell equations, which is the case for Eqs. (4a,b) and Eqs. (Sa,b). If, however, the edge
conditions are satisfied in the sense that JF, = 0 on the edge, then also Eq. (4c) is a solution of Max-
well's equations L14j. Therefore, if the edge-conditions are not taken into account, it is preferable to
use Eqs. (4a,b) and Eqs. (5a,b), which in any case satisfy Maxwell's equations. Regarding the edge condi-
tions all the given equations determine an unique solution also for open surfaces.

I f one is interested to compute the field on the surface of the scatterer, specially in the point
P' r and its neighbourhood, one has to make considerable efforts in treating the singularity. There are
two ways to proceed. The first way L16, 17J consists in splitting the surface into a subsurface F - Fo
without singularity and a subsurface F ° with boundary line C., which contains the singularity, see Fig. 6.

y

F

singularity CO Fig. 6 Rectangular plate with a singularity at

the center and with square exclusion

The kernel of Eq. (4a) is rearranged in such a way, that the surface integral over FO, which contains
the singularity, is splitted into rwo parts by subtracting and adding Green's function for the static case.
The first part can be integrated over the surface F . The second surface integral is transduced to a line in-
tegral by using Stoke's theoren. The line integral gas no singularity problems, since the line doesn't
cross the singularity itself.

The second way L17J consists in an expansion of the phase function e
-
jkR in Eq. (4b) into a potential

erie with sufficient terms. After integrating, which can be done analytically, the limiting process
r r is carried out. Both ways are applied in computing the extreme near field of a cube.

Of special interest in numerical modeling are the expressions for the scattered field of a thin circu-
lar cylinder. For the derivation of the field equations a series of assumptions usually are made:

a) there is only a current component JFz parallel to the axis of the cylinder, with a direction described
by the unit vector es, see Fig. 7,

hs,z

eSl Ies= es' ez P( x,y,z)

t (x-,Y.Z)COJFz y Fig. 7 Geometry of a circular cylinder.

y 
,p 

P



I(1-5

b) the contribution of the end facs of the cylinder are neglected.

c) the current is assumed to tend to zero in approach to the end faces.

With assumption c) one satisfies the boundary conditions, so that Eqs. (4a,b) and (4c) can be used.

The evaluation of the integral over the circumference of the cylinder can be done analytically only if
the distance

R = '/(x-x')
2 
+ (y-y,)

2 
+ (ss,)

2 
= /P2 + P,2 _ 2PP cos(;-P') + (s-s')2 (8)

between the observer point (p,y,s) and the integration point (p',,',s') becomes independent from the inte-
gration coordinate p'. This is the case under the following conditions:

the observer point is far enough from the surface, so that R > pp':

R + (ss 2 (8a)

the observer point is situated on the axis of the cylinder (p 0) and the current is a sumed to be
concentrated on the shell (.' a):

R = ,/ a 2, (s-s) (8b)

the current is concentrated in the axis (p = 0), see Fig. 8:

R = P + . (8c)

The assumptions cause only minor errors if the cylinder is thin in comparison to its length (a/L < 1)
and to tue wavelength (a/A << 1), a = radius of the cylinder.

The nost comnon formula is given by Eq. (8c). So assumption d) is formulated as follows:

d) the current is assumed to bt concentrated in the axis of the wire and expressed by the line current
I(s') with the unit vector e,,:

.a e s , (9 )

P

£ I(s') m,

L N

I(S) Fig. 8 Introduction of the line current l(s'j.

2a -

With assumption d) it is possible to evaluate the integration over the surface in a trivial manner. A
second consequence of assumption d) is, that a coincidence between observer point and integration point
is avoided, and therefore, no longer singularity problems must be considered.

Under the assumptions a), b), c) and d) one receives for the scattered field of a thin cylinder of
length L:

T ( (k
2 
P',-) s e (, s

'
.V)P

@
t 

'/
')) I(s') ds' = (I0a,b,c)

L
T 2 . -JkR

w - 'jkR+k2R2 e s. + (3+3jkR-k2Rs)(eheR)eR) e I s) do' -

L
T 2-f-
Tj (k +(r) s', (s) (V'.(e , I(s')))VD( ,r')) ds'

L
f T - s - ) o = T e-JkR

ns(r) n - (v(r,r') ,) ds' - T (+jkR)(' s, x eR) - (s' do' . (llab)

L L

Since

R Ix 2 
+ y (s-s,)

2  
's

eR x(ex + y + (s-s')es)/R - (pcosnpex + psinpey + (s-s')es)/R

y i - nnslile 
h
ll l IIinnl n dlnll
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v = ex -- e -t e
dx y eay a3s

e = , e, • = e s *ey = 0

there results for the electric field of a thin cylinder

T s(r,r') ,, + (,t')) I(s) ds= (12a,b,c)

L

T 22 e
-
jkR 22 -jkR

- c ((-I-jkR+k2A) -R - ,, + (3+3jkR-k R2)(s-s
'
) eR4 I(s') ds' =

L

T (k 2qq'rr) es I(s.) + i_-r4 V4(r,r,)) ds'
' TSJas

L

and for the magnetic field

Tek R

s = p(-sinp, + cosly ) (1'jkR) - -ds'
L

The latter equation indicates that the thin cylinder has only azimuthal components of the magnetic field.

3. THE INTEGRAL EQUATIONS AND THE METHOD OF MOMENTS

Since the boundary conditions for the total field at the surface of an ideally conducting body are gi-

ven by

n(it) x t( ) = 0, io(it) x i( i) = IS(ji) , r on the surface, (14)

the integral equations for the surface current 3F or the line current I can easily be constructed in posi-
tioning the observer point on the surface of the scatterer. One receives with the total electric field Eq.
(I) and the scattered electric field according Eq. (4a) the Electric Field Integral Equations (EFIE) for
general structures:

I 4mwc(it) x44k 2(t i)5~(t+5(t,) i) dP
F

The equations (4b,c) lead correspondingly to equivalent integral equations. Because of the Nabla-ope-
rator acting on the surface current, the integral equation resulting from Eq. (4c) is denoted as integro
differential equation. Using the expression for the total magnetic field Eq. (2) and the scattered magnetic
field according Eq. (5b) the Magnetic Field Integral Equation (MFIE) results:

)+
T  

eff) -jkR
Fe + T () (r)(r T nik) xf (u

+~~ 
-J 

k R

Ix ae(r) + L n(;) x ,(L+jkR)(I F(r ) e ' dr'

Equation (5a) again leads to an equivalent formulation of the MFIE.

The equation (15) is an integral equation of the first Kind from Fredholm's type with the unknown sur-
face current only inside the integral, whereas the equation (16) is an integral equation of the second kind
from the same type with the current outside and inside the integral. Both integral equations in principle
can be used for the determination of the surface currents. From the mathematics of integral equations,
however, one knows that an integral equation of the second kind in general involves less problems for the

solution finding.

Some advantages of the MFIE become obvious in regarding the first term of the right-hand side. If the
surface of the scatterer is smooth and convex in the sense that the radius o curvature is large compared
to the wavelength, then the factor T becomes 2 and the first term represents the well-known physical optics
ansatz for the surface current 12j:

3F - 2(r) x 2 e(A ) .

In this case of surface shapes, the integral can be regarded as a correction term for the physical op-
tics current. That is why the MFIE is frequently preferred if the scatterer's surface is smooth. However,
the EFIE also can be used for this class of scatterers. In the following we will consider only surfaces for
which T - 2 is valid.

In applying the boundary conditions to a thin cylinder one usually neglects the effects of azimuthally
directed incident fields. Therefore, the boundary condition for the elect-ic field can be readily stated
by only regarding the field component in the direction of the axis:

s • t(s) 0. (17)

This leads to the following electric field integral equations:
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es "e(s)  e"s *s is)= (18a .b,c)

1 ( t,2, 2 5 s')ds'=
If

1 2 
2
) e

- j
kR 22 2 e

- jkR

L R

I 
( k 
2 P I(s') + s) ) ds

L

Equation (18a) is denoted as integral equation of Pocklington, and equation (18c) is the integro differen-
tial equation of Harrington.

The integral equation of Hallhn, established for thin cylindrical antennas, is directly related to
the integral equation of Pocklington in assuming that the incident field is giver by

es .re(s) = - U6s)

where U is the excitation voltage over the (infinitesimal small) feeding gap of the antenna. 6(s) repre-
sents te Dirac-function.

If one substitutes in Eq. (18b) s-s' by the relation

(s-s,)
2 

= R
2 

- a
2

and rearranges the terms one receives the integral equation of Richmond

es t es) = -'s " rss ) = (18d)

=- I -a s
2  

ejkR d

4mj ((I+jkR)(2R 23a2) 
+ 

k2a2R) I(s') ds'

L

In reviewing the magnetic field equation (13) for thin cylinders one recognizes that the scattered
magnetic field vanishes, if p tends to zero. This means, that in the case of zero-thickness there is no
magnetic field integral equation. But also for thin cylinders with finite thickness the magnetic field in-
tegral equation is fraught with numerical instability problems, so that only the electric field integral
equation is applicable.

The integral equations can be transduced to a linear system of equations with the aid of the method
of moments [71, which in the following is shortly outlined. For this purpose operators are introduced
with which the integral equations can be expressed in a more compact form. The magnetic field integral
equation (16) is represented by

L,(JF(r")) = - i() x 9e (), (19)

with the operator
1 ~F~) 4e-JkR

I + L 'n~) x (l+jkR)(
3
fI ) e -k df' .(19a)

F

These equations wilI be used in Sec. 4, where the impedance matrix for a structure modeled by surface pat-
ches is evaluated.

For the electric field integral equation of a thin cylinder one receives, introducing the scattered

field according Eq. (lOb)

LE(l) = - 's "e(s) (20)

with
I e

j kR

4I -. I-jk~ 2 2- 22 )(es -j e=
IE(1) - 4mw. es " ((-l-ljkR+k2R2) es, + (3+ljKR-k2R2)(e 

'  
e ) e R I(s') ds' . (20a)

L

The equations will be used in Sec. 5 for the representation of the impedance matrix of a wire-grid struc-
ture.

In the first case the operator acts on a vector, in the second on a scalar. The more general case,
therefore, is described by

L(I F('.)) = g(r) ,(21)

where I contains the known incident field. The following procedure can be described by four steps:

a) Definitian of a set of basis functions (r J with coefficients In and expansion of the surface
current J F according with these basis fun

2
tions
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N

F(r' )  I n  tn( ')  .(22)
n 4

The coefficients I will become the unknowns of the linear system of equations. Since there is a
finite number of b

2
sis functions an error E(r) arises which is determined by

L N

'( = In L(n)) - ( ) . (23)
n=l

b) Definition of a set of testing or weighting functions 4 1n and evaluation of the inner products with
both sides of Eq. (23):

N
<, I n < p'r), L (i I 4m(i%, 1(r)> , m 1, 2 ... M (24)

= n=1n

The inner product of two vectors f and 4 is defined by <4, 4> = 4 df
F

F is extended over the comnon range of definition of the functions and 4. The left-hand side of
Eq. (24) represents the projection of the error vector in the space of the weighting functions. By
forming the moments, the satisfaction of the boundary conditions are enforced in certain points or
regions on the scatterer's surface.

c) Setting the left-hand side of Eq. (24) to zero one receives the following system of equations:

LZmnJL-nJ = Lym ,1 (25)

with

Zmn = T1 (r), L(fn(r')) , (26a)

Ym = n() )h > " (26b)

The column vector [XnJ contains the cdrrent coefficients In, the column vector lyJ represents the
tangential components of the known fields Ee or Ae, incident on the scatterer. The incident field may be
the field of a plane wave propagating from infinity (scattering case) or the field of the feeding gap of
a radiator (antenna case).

The matrix [ZImn frequently is denoted as generalized impedance matrix. It represents the coupling
impedances of the currents of different surface parts. It characterizes the structure independent from
aspect angle and polarization of the incident field. The expression impedance matrix was chosen in analogy
to the network theory, the unit of the elements is not necessarily the Ohm. In a more general case the
elemeits of the columns may be vectors, the elements of the matrix then are dyads.

The computer effort of the method of moments is concentrated on the computation of the elements of the
impedance matrix and the solution of the linear system of equations. In reviewing Eq. (Z6a) one realizes
that for the computation of the matrix elements a twofold integration is necessary, one over the basis
functions and the other over the testing functions. In general both integrations are to be evaluated nu-
merically.

The structure of basis and testing functions influences strongly the computer effort. If a basis func-
tion is well adapted to the actual current distribution then a comparatively small system of equations is
jenerated since the convergence to the actual current will be fast. On the other side the integration over
such basis functions probably can oe done only numerically. Using Dirac delta functions as testing func-
tions the first integration in Eq. (2oa) just yields the operator, so that only the integration over the
basis functions remains. This special case of the moment method is denoted as point-matching method which
is also known as collocation method. Physically this means, that the boundary conditions are satisfied not
continuously over the total structure but rather in discrete points. The point-matching method is frequent-
ly applied in electromagnetics. In the case of this cylinders the use of pulse functions as basis functions
leads to very simple expressions and the use of trigonometric functions even allows an analytical evaluation
of the integral. If basis and testing functions are chosen to be equal one has another special case of the
method of moments known as Galerkin's method. Galerkin's method with trigonometric functions is applied in
literature 1i8, 1gj in treating thin-wire structures. Of special interest is tne use of pulse functions
as basic functions and the approximation of the operator integral by it's mean value, that is, for the in-
tejration the pulses are reduced to Dirac delta functions, see the following sEctions.

In the literature there are numerous examples in combining basis and testing functions to treat scat-
terers, which are modeled by surface patches or/and wire-grids, with the EFIE or/and MFIE. A survey over
the literature and a sumnary of the different experiences till now would result in an own report, see
[20, 21j. The following Table I presents computer programs, which solve three-dimensional scatter problems.
One realizes that the point-matching method with pulses as basis functions are prefered. Pulse functions
seem also to have some advantage when one tries to satisfy the edge condition, see [22]. Fig. g shows the
current distribution of a flat plate when a wave is normally incident. The dashed line shows the current
when the edge conditions are satisfied by an edge correction term, while the solid line shows the current
represented by pulses alone.

There is a great variety of methods for the solution of large linear systems of equations. A good sur-
vey is given in (26]. The methods may be classified Into direct and iterative methods:



Name of the Reference Model Basis functions Testing Field-integral

computer program functions equation

WIRE-GRID BODY PROGRAM 6 wire-grid pulse Dirac EFIE

WF-OSuINPSI 23 wire-grid trigonometric trigonometric EFIE

H3F-TUD1 Z4 surface pulse Dirac MFIE
patches and and
wire-grid pulse Dirac EFIE

NEC 25 surface pulse Oirac MFIE
patches and and and
wire-grid trigonometric Dirac EFIE

INFE 17 surface pulse Dirac MFIE
patches

Abbreviations:

WF-OSU/NPSI: Wire Configuration, Frequency domain, originated at Ohio State University, modified at
Naval Postgraduate School. Monterey, California

H3F-TUDI: ybrid, 3-dimensional, Frequency domain, developed at the Technical University of Den-
mark

NEC: Numerical Electromagnetics Code
INFt: Tntegral equation method Near Field Evaluation

Table I Some computer programs based on the IEM.

4 EzeI
A i

He 3

2

0 __ __ __ __ __ __

-0.5 -0.25 0 0.25 0.5

x/a -

fig. 9 The behaviour of pulse functions near the edges of a flat plate.

1. Direct solution methods

Gaussian elimination

2. Iterative methods

2.1 Linear iterative methods

Jakobils iterative method
Seidel's iterative method

2.2 Nonlinear iterative methods

method of steepest descent
conjugate gradient method

The advantage of the direct solution method becomes obvious if the current distribution has to be de-
termined for a variety of aspect angles or/and polarizations of the incident field. Since the matrix ele-
ments depend only from the geometrical parameters of the structure and the frequency, the computer effort
for the inversion of the matrix has to be oone only once per frequency. The currents for the different si-
tuations are determined only by multiplying the inverted matrix with the incident field.

A very important point for practical application of the method of moments is the estimation of the
computer effort with respect to storage and time. The dimension N of the system of equations and there-
with the number of the complex unknowns to be determined are influenced by the chosen basis and testing
functions and the mathematical model of the scatterer. For the estimation of N the following empirical va-
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lues can serve, see also the following paragraph:

a) modeling by surface patches, point-matching olethod, pulse functions as basis functions:

N 50 F (27)

if F is the surface of the scatterer,

b) wire-grid modeling, point-matching method, pulse fuictions as basis functions:

N 200F. (26)

From this rough estimation it becomes evident, that the application limits of the integral equation
,ethods are reached if the dimensions of the scatterer will exceed some few wavelengths.

In the following Tables 2 and J the computer storage and the number of arithmetic operations for va-
rious methods arecompared L26J.

Method ICore Storage Method Number of arithmetic operations
Mho Storage--- Method Divisions Multiplicat.1 Additions

uaussian elimination 2 2N Gaussian elimination N N /3+N 2-N/3 3/3+N 2/2-5N/6

Seidel's iterative N+
2
+ZN Seidel's and Jacobi's N N

2  
N2-N

method iterative method +

aussian elimination N2+ 3N method of steepest I 2N
2
+3N 2N

2
+4N

with complete pivoting descent +

Jabobi's iterative A 
2 

3N conjugate gradient 2 2N
2
+6N 2N

2
, 6N

method method ++ I

method of steepest ,4
2
+4N+2 + Gaussian elimination with complete pivoting requires

descent N
3
/3+N

2
/2-SN/6 comparisons in addition to the above armth-

conjugate gradient N
2
+6N+3

method metic operations

++ number of arithmetic operations per iteration

Table 2 Core storage requirement of Table 3 Number of arithmetic operations of various solution
various methods for the solution methods.
of linear system of equations.

4. HODELIAG OF SMOOTH BODIES BY SURFACtE PATCHES

In this section details, see also L24, 27J, are given for the application of the MFIE, when the surface
of the structure is modeled by patches (solid surface structures). The basis functions are chosen to be
pulse functions and the point-matching method is applied. Use is made from the formula (19) with the ope-
rator L. given by Eq. (19a).

The surface of the smooth body is modeled by Ne surface patches with sizes %Fq, see Fig. 10. The ex-
perience shows that far field problems will be solved with sufficient accuracy if one models a surface of
one square wavelengths by at least 20 to 30 patches. This means that the edge length of a surface patch
should have an amount of less than about A/5 (maximum size of about 0.04 square wavelengths).

PFig. 10 Modeling 9 f a surface F(4,n) of a smooth
body by N" surface patches.

In choosing basis functions Sq ( ,i) the surface current is expanded according

N
IF(4'n) q 3q S(,n) (29)

S represents a pulse function with amplitude I on the surface patch q and 0 on all other surface patches.
s,'and n are orthogonal coordinates of a local coordinate system (;,n,n), where and n are parallel to the
plane of the patch. For the unit vectors of the local coordinate system the following relations hold:

en 
x

or n.- e x . (30)
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n is the normal unit vector on the patch, see Fig. Ila.

AZ

cylindrical /
patch 

surface

V

Fig. 11 Definition of a local coordinate system
a) local coordinates of a patch, x
b) special case of a cylindrical body.

The orientation of the local coordinate system within the global coordinate system depends on the
specific geometry of the scatterer. For a cylindrical body, the axis of which points in the direction of
the Z-axis of a global cylindrical coordinate system (p,v,z), the relation between local and global coor-
dinate system can be established by the following equation:

e x ( (31)

see Fig. 11b.

In this case, where the current coefficients 3 are vectors, une receives instead of Eq. (25) the

following systen of equations q

[
2
pqJ ° LxqJ - L;pJ ,

where the ,atrix elements are dyads and the elements uf the columns are vectors.

Introducing the current expansion in the operator of Eq. (19) and choosing the point-matching method
one explicitly receives the following system of equations:

[<6 p, LH(Sq >J.t
3
q1 = - L<6 p, p x Ape>J . (32)

6 denotes a Dirac function, which is infinite in the center of the patch p and zero in all other regions
the structure. In the center of each patch the current is decomposed into two orthogonal components

o,, and Jq:

3 = ;qC eq + iq eqrj (33)

The vectorial elements of the current column therewith are

q q4 eq4 + Jqn qn "e (34)

The vectorial elements of the right-hand side are represented by

p r = 6p, p x pe = pn * pm ep A p pe p, (35)

where 'p = ep, x ep is introduced.

For the determination of the matrix elements Zpo the integral of the operator Eq. (19a) must be eva-
luated. This can be simplified by assuming that the distance Rpq between integration point varying on patch
q and observer point situated In the center of patch p is given by the distance between the centers of the
patches q and p, see Fig. 12. This means, for the integration purpose the pulse functions are reduced to
Dirac functions. With these simplifications we get the following analytical expressions for the matrix ele-
ments:

2pp = 2 (P& p + i prtp)= 2 , p q , (36a)

... .. ........... . ...... . . . . . , A&
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e e

-. R p q fp ep

AFq

patch q patch p

Fig. 12 Geometrical situation of two patches.

- .F lvjkR -jkR .
k e pqe eeep x - (36b)

p e Pe P- p q p q pi e +P txR pq *r q,
ep,,-ieq, x e;kq  ep(;L " -e q"q x e ep eit) , q .

Pg . i pq p , q'i

LF area of patch q,

eR =nit vector directed from the center of patch q towards the center of patch p.
pq

For the determination of the elements Z of the main diagonal the contribution of the integral in
the operator is neglected in order to avoid te singularity. This procedure approximates the principal va-
lue of the integral.

Eq. (36b) may be written in the following alternative form:

Vq= - 4, R
2  

eJkhpq (eR pq  - Rpq * p
Pq

The dimension N (number of complex unknowns) of the linear system of equations to be solved is deter-
mined as follows: a patch size of asout x/5 results in 25 patches for one square wavelength of the scat-
terer's surface. For each patch 2 complex current coefficients have to be determined. Therefore the di-
nension of the complex linear system of equations can be estimated by N = 2N* ~ 50 F/xv F representing
the surface size of the scatterer.

The following Fig. 13 represents the time I which computers of the type IBM 3081 and CRA(-L need for
the inversion of the complex matrix. The time required by the computer CRAY-i, which is installed at the
data center in Oberpfaffenhofen, nay be expressed by the formula

T = (.59 N3 + 70 NZ) 10- 6 s .

Hi number of the complex unknowns. The Gaussian elimination method with complete pivoting was used.

2500 -

A
1 2000

T(sec)

1500 -

'IBM 308 1
1000 ,

iooo- /"
CRAY-i

500

200 400 600 800 1000 1200

N 6.

Fig. 13 Cowputer time for watrix inversion, N - number of complex unknowns (dimension of the complex matrix),
N* N12 = number of surface patches.

One can see, that the computer time increases with approximately N3 . Assuming that a patch has a size
of A1/25 then the dimension N - 1120 means that the surface of the body to be modeled may have a size of
about 22 Au. A cube, which is a representative of a three-dimensional scatterer, has then an edge length



i0-13

uf a little less than ZA. It is to be emphasized, however, that for accurate near field investigations the
patch sizes must be chosen to be much smaller as assumed in this section.

5. MOUELING OF STRUCTURES BY A dIRE-GRID

The nethod of wire-grid modeling is based on the fact, that a structure consisting of thin wires (Fig.14),has the same electromagnetic features as a solid structure, if the mesh width is chosen to be sufficient-

ly smal 1.

Fig. 14 Modeling of a structure by thin wires.

ZWegmnel I

A good esti,,ation of the mesh width is obtained, if a source is positioned within a structure, which
is Aodeled by a wire-grid with variable mesh width. The field in the exterior of the structure, which
should be zero, is then computed in dependence from the mesh width.

For this theoretical experimoent a cube with an edge length of 0.4 A has been chosen. In the center
of the cube a point source was positioned. The diameter of the wire was 0.003 A, so that the thin cylinder
approximnation of the EFIE holds. The basis functions are chosen to be pulses, the boundary conditions were
satisfied in the center of the wire (Dirac functions as testing functions).

Figure 15 shows the electric field in the exterior in dependence from the mesh width. A mesh width of
0.057 corresponds to about 600 wire segments. One can assume, that a mesh width of about 0.1 A in mode-
ling a structure could be sufficient for far-field computations. This means, that about 200 wire segments
are necessdry to model a surface with a size of x A. Since per segment only one current coefficient has
to be determiined the dimension of the linear system of equations is given by N = 200 F/A

2
. Shorter wire

segments, 0.05 A' or less, may be needed in modeling critical regions of a structure.

0.3

~Fig. 15 Isfluence of the mesh width.

iX o.2X

0.1

For the solution of this scattering problem the EFIE is applied. Use is m.Je from the formula (20)
with the operator LE given by Eq. (20a). The line current i(s') is expanded in a set of pulse functions
P (s'):

I(s') = 1 I. P (s') . (37)=1

The pulse functions have the value I on wire segment j and zero on all other segments. N is identical
with the total number of segments. Using the point-matching method one receives the linear system of equa-
tions

LZAjIJ - lyJ
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in the following form

L<6i. LE(P3 )>ILI = - V< 1 . e J 38)

The elements of the current column now are scalars and given by

. = ,(39)

and the elements of the right-hand side result in

yi " i (40)

If again the numerical integration in the operator is avoided by reducing the pulses to Dirac func-
tions one gets for the matrix elements immediately

AY.. -jkR.,2
z ij = 

i  
((-1-jkRij + k R.J)(eSi 

° e sj )  
+ (41)

+ (3+3jkR. - k
2
R
2 
)(e

i. ij Si R i" eR i"

R.. = distance between the centers of the segments i and j,
e R unit vettor directed from segment j toward segment i,

A
2
J= length of segment j,

-J
esi respectively e, unit vector parallel to segment i respectively segment j, see Fig. 16.

The main diagonal elements can be formally determined from Eq. (40). The expression cannot become
singular since the line current coincides with the axis of the segment and the boundary conditions are
satisfied on the surface of the segment,

Since there are analytical expressions for the matrix elements the matrix fill time is very low, as
before. This procedure was developed in L24A and provided good results when antennas on satellites were
compu ted .

N-

Fig. 16 Geometry of a Sire-grid.

6. APPLICATION EXAMPLES

In literature there are numerous examples to demonstrate the field of application of the integral
equation method as well in the antenna as in the scattering case. Therefore, the following list, which on-
ly can give a survey, cannot be complete, also only those configurations are mentioned, for which either
experimental results or results of independent theories are available for comparison. Most of the examples
are taken from reference [51. Where this is not the case the pertinent reference is cited behind the ex-
ample.



Solid surface structures

bistatic cross-section (BSCS) of a sphere,
radiation pattern (RP) and input impedance of a monopole antenna, driven against a sphere,
BSCS of a spheroid,
monostatic cross-section (MSCS) of a cone sphere,
MSCS of a flat-back cone,

- SCS ot a right circular cylinder L51 and [28J,
MSCS of a sphere-cylinder,
MSCS of a stub-cylinder,
MCS of a rectangular box [281,
mutual impedances between two rectangular dipoles [28],
MSCS of a thin plate [L28j,
MSCS of a thick plate [2%J,
MSCS of a cube L29i.

4ire-grid structures

MSCS of a circular disk,
14SCS of a sphere,
MSCS of a slotted gria,
BSCS of a cone sphere,
scattered field pattern of a OH-6a helicopter model
- P of a towel-bar haing antenna on a OH-6a helicopter nodel,

MSCS of an aircraft (Mig 19) model L30J,
MSCS of two coplanar, concentric rings,
- SCS of a planar, log-periodic zig-zag array,
- SCS of a five-ring, log-periodic array of circular rings,
ISCS of a straight wire, straight wire with low-tie terminations, eleven-element array of log-perio-
dically spaced straight dipoles, diamond-band dipole, circular ring with spokes, seven-ring array
squirrel cage,
input impedance of a 2 1/2-turn loop .6j,
input impedance of a three-element coplanar TEM-line antenna [6J,
RP of a monopole and a circular slot in the base of a cone L6, 33],
RP of a monopole and a loop on a cube L3J,
RP of a three-elexent Yagi antenna L3],
RP of a fifteen-element Yagi antenna L3j,
RP of corner reflectors L3J,
input impedance and current distribution of linear antennas Li, 31,
input resistance and RP of a pair of dipoles over lossy ground [3J,
input impedance and RP of twelve-element loj-periodic dipole antenna [32].
gain of coupled log-periodic dipole antennas (systems of two, three and five log-periodic antennas)
1321,
gain and RP of log-periodic dipole feeds for reflector antennas [32J.

Combination of solid surface structures and wire-grid structures

antenna on a cylindrical satellite model with experimental boom or solar cells [24j,
cylinder with excited and passive elements, RP L34J,
cone-sphere with loop, RP [34J,
sphere with excited and passive elements, RP L341.

In the following two further examples are presented showing particular features, which are different
from the cited examples. In the first example the radiation pattern of a monopole antenna on a helicopter
is determined. The theoretical results computed for a wire-grid model, wbich only can roughly represent
the real structure, are compared with in flight-measurements of a real helicopter. The second example deals
with the scattered field of a cube. For this geometrically simple structure the numerical model with patches
agrees perfectly with the real structure. The extreme near field behaviour is subject of the investigations.

Fig. 17 shows the wire-grid model of a helicopter of the type Bo 105 and Fig. 18 the details of the
actual structure with the position of the two A/

4
-monopoles operating in the VHF-band. The antenna on the

right-hand side of the flight direction was driven, the other was terminated. The in flight-measurement
[351 of the radiation pattern in the horizontal plane for a freauency of 117,6 Mhz is represented in Fig.
19 by the dashed line. The flight direction is defined by v = 0 . For the computation of the radiation
pattern the computer program WF-OSU NPS I was used. It could be shown that the immediate neighbourhood of
the antennas, that is the shape of the top side and the drive for the blades, must carefully be modeled
while the farer parts of the helicopter, especially the lower part could be approximated only roughly or
even completely neglected. The actual thickness of the shaft of the drive was taken into account. In
principle a monopole array, consisting of a driven and two parasitic excited monopoles, a thin and thick
one, over a finite plane, was analyzed. The theoretical results are illustrated in Fig. 19 by the solid
line.

The cube of the second example had an edge length of A. The incident field is oriented parallel to
the z-axis. tach side of the cube was modeled by 25 to 49 patches, that is, the patches had a dimension
of 0.2 A to 0.14 A, see Fig. 20. In using the point-matching method with pulses for the current one follows
exactly the details of Sec. 4 for the determination of the surface current. The computation of the extreme
near field, however, is indicated in Sec. 2, see [17J.

The computed copular component in amplitude and phase of the current oh the front side (side 1I) is
compared with measureaents in Fig. 21. The copolar tangential electric field component is depicted to-
gether with measurements in Fig. 22. For various distances from the surface this component has to vanish
if one reaches the surface. In this way an internal accuracy test of the integral equation method may be
performed. The measurements were carried out at a wavelength of A 30 cm. Amplitudes and phases are re-
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Fig. 19 Comnparison between in fliiht-ineasurements (dashed 1ine) and results of the ILM (solid line),
frequency 117.6 MHz.
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EXPERIMENTS: TEST RANGE FACILITIES (PART I)
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SUMMARY

A brief overview of some of the transient electromagnetic scattering ranges at t.S
universities and research facilities will be given. This will be followed by a detell .t
discussion of the Transient Electromagnetic Scattering Laboratory whith is located at the
Naval Postgraduate School. Particular attention is given to the role of this faclity
in studies of natural resonance target classification studies. Detailed insiLderation
will be given to the measurement concepts of transient scattering, with examples
presented to illustrate the procedures and requisite signal processing that is involved.

INTRODUCTION

(Z Transient electromagnetic scattering measurements offer a viable and often

advantageous alternative to the sore conventional continuous wave rCW) approach. As a
result of recent advances in short-pulse technology, impulse generators having very broad
instantaneous bandwidths, as high as several thousand to one, are available. Transient
measurements also provide response waveforms that can be directly interpreted as to cause
and effect. In fact, the fundamental methodology behind transient scattering
measurements can be considered as an extension of that which is utilized in time- domain
reflectometry (TDR). The TDR method has been extensively employed for measuring
dispersion and imperfections on guided wave structures, Il).

In the historical context, transient scattering ranges are relatively recent
innovations when compared to their CW counterparts. This is not surprising, since

electromagnetic analysis and design has historically tended to b' heavily biased towards
frequency domain approaches. The development of fast pulse sounces and sampling
oscilloscopes in the 1960's provided the technical foundation for direct transient
scattering measurements. One of the earliest facilities to use this new technology
began operation at Sperry Research Center in the late 1960's, .2 . This was a ground
plane range which supported theoretical efforts in radar target imaging through
synthesized "ramp-responses of sctterers. More recently developed transient scattering
ranges, which are currently in operation, include facilities at Michigan State University
[3j, Naval Surface Weapons Center [4] and the Naval Postgraduate School 'NPS'. Th,-
first two of these are ground plane ranges which can be used for bistatic s-atterirg
measurments on symmetric targets. The NPS range is a "free field" configuratiin, wh,'r.
scatterers are suspended in free space without a ground plane. The relative merits at
both types of scattering range will be discussed in the following seition.

Another class of transient electromagnetic facility came into existence in the early
1970's: Electromagnetic Pulse (EMP) ranges. Swch facitities came about because of
revelations regarding EMP vulnerability of electronic systems, as were observed during
many of the initial atmospheric thermonuclear weapon tests in the Pacific. EMP ranges
were developed to support both hasic research and to assess the vulnerability of various
tactical and strategic electronic systems. These installations came in two varieties.
full-scale and scale-model. Two of the most notable scale model EMP ranges are those at
the Lawrence National Laboratory [5], and at the Naval Oceans Systems Center. The tNt.
facility, which has been operational since the early 1970's, has provided extensive
measurements of EMP induced currents on scale models of tactical and strategic weapon
systems. The NOSC range, on the other hand, has been used to assess the EMP responses
of in situ mounted antennas on scale model ships. The measurement of scattered far
fields is usually not of primary concern in EMP ranges and they are often not even
configured to support such measurements.

Transient scattering ranges have, for the most part, evolved from the need to
support basic research in resonant region noncooperative radar target recognition (NCTH)-
Of course, broad band stepped-frequency CW ranges are also employed in this type of
research, one of the most notable being the state of the art "compact range" at Ohio
State University, [6). The approaches to resonant region NCTR can be broadly classed
into two categories: inverse scattering and natural resonance identification. The
first of these seeks to provide direct evaluation of the scatterer's geometry and
composition by approximate application of fundamentsl inverse scattering theory embodied
in, for instance, the integral transform relationships of Hojarski (71 and Kennaugh and
Cosgriff [8). In applying these principles it becomes necessary, in the general case of
3-D inverse scattering, to have available wide bandwidth scattering data from numerous
aspects on the target. Conversely, natural resonance based NCTR requires only single
aspect scattering data since the target's resonances are, in principle, functions only of
its innate structural and material properties. The resulling tradeoff for natural
resonant NCTR is that the identified complex poles must be correlated with a
comprehensive date base that includes these parameters for all candidate targets.
Although this way appear as a major disadvantage, consider that for the case of inverse
scattering, an "image" of the target must also be correlated, hut with other images using
either human observers and/or automated image recognition algorithms.



TRANSIENT ELECTROMAGNETIC SCATTERING LABORATORY

The transient electromagnetic scattering laboratory (TESL) became operational at NPS
in early 1980, [9J, with the initial establishment of an outside ground plane range, as
is depicted in Figure 1. Bisected targets were placed upon the 12 meter square aluminum
ground-plane. An omnidirectional quasi-TEN incident field was provided by a 7 meter
long vertical monopole antenna, which was driven with an impulse generator. An imaged
pyramidal TEM horn functioned as the bistatic receiving antenna. The instrumentation was
housed below the ground-plane structure. This type of configuration offered simple
bistatic measurement flexibility along with a usable 5 octive bandwidth from 100 to 3200
MHz.

The ground-plane TESL was originally constructed to support inverse scattering
research based upon multiple aspect ramp responses. This concept, which was originally
based upon the physical optics approximation, as proposed in 1958 by Kennaugh and
Cosgriff [81, was suggested for radar target imaging in 1965 by Mains and Moffatt 110 .
The idea was later extended by Bennett !ll to an exact theoretical formulation using the
magnetic field integral equation. The use of resonance region frequencies allows imaging

of the complete target, even beyond the shadow boundary. It thus becomes possible, in
principle, to look around to the back of an object as perceived by the normal high
frequency optical perspective. Very impressive work by Young [121, used stepped
frequency CW measurements to synthesize ramp responses for forming target images. The
NPS effort in this regard was also quite successful and incorporated Bennett's iterated
integral equation method to enhance image fidelity, with particular improvement noted
beyond the shadow boundary (13j. A major limitation of ramp response methods is the
need for multiple aspect data to provide images of general 3 D objects. From a practical
radar standpoint, this is a serious penalty and would require either coopetative or
naturally rotating targets, and/or a aultistatic radar system. This limitation
motivated the investigation of an alternate methodology, based upon aspe t )nvarisnt
natural resonances. The requisite experimental capablIties for thls new area of

research brought about the construction of a unique "free field" configuration, as will
be discussed shortly.

The conceptual basis of natural resonance NCTR is derived from the result- of the
singularity expansion method (SEM) which wss originated by Baum 114' for use in both
explaining and predicting EMP interactions with electromagnetic systems. The aspet
independent virtue of SEM is embodied in the innate complex natural frequencies of
material structures, which appear as fixed parameters in analytical SEN expressions for
both induced current and scattered field responses, 15). The accurate estimation of
these natural resonance frequencies, using experimental data, requires relatively high
signal to noise ratios vi-a via that needed for ramp response imaging. This enhaned
data requirement for natural resonance estimation is a result of three fundamental facts

(1) The ramp response is obtained by twice integrating the impulse scattering
response, thus providing an effective low pass filter to eliminate muh of the
inherent noise and other broad band signal pollutants. This type of filtering
would be unacceptable for use with natural resonance processing because of the
suppression of higher frequency (and innately weaker) resonances.

(2) The ramp response is obtained by use of the "early time" scattering, as opposed
to the "late-time" signal being employed for natural resonance identification. In
most cases the early time signal component, which ts due to directly driven induced
currents, contains most of the total signal energy. On the other hand, the late
time field is due to inertia driven natural modes which reradiate the remnants of
the energy that had been previously injected into the system by the incident field.

(3) The process of estimating the natural resonances in a given late time scattered
signal is highly sensitive to pollutants. This sensitivity results from the
nonlinear relationship between the natural resonance sigral parameters (system
poles) and the signal time-history. Numerical experiments indicate that even with
the most advanced signal processing strategies, accurate extraction of complex
natural resonance frequencies requires SNR's of 15 to 30 dt, [16).

Although the accurate estimation of natural resonanc:s requires high SNR'',
alternate methods of identifying radar targets based upon annihilating the known poles in
the system appear to be much less demanding on signal fidelity. However, any natural
resonance NCTR method will still need to rely upon an accurate a priori knowledge of the
observable poles of targets which are expected to be observed. This requisite pole
library will need to be obtained, at least in part, by extract,og complex resonances from
experimental data. As supercomputer run electromagnetic scattering software becomes
increasingly sophisticated in handling the complexities of realistic radar targets, this
situation may change.

The free field TESL became operational at NPS in 1983, [171, and incorporates a
shielded snechoic enclosure, as is depicted in Figure 2. Inside chamber dimensions are
6.2 meters long by 3.1 meters square. Because targets are taspended within the chamber,
there is no restriction to symmetric objects, as is the cse for a ground-plane range
(where the target must be bisected along the plane of symmetry). Also, the free field
configuration poses no polarization restriction on the incident field. For the ground
plane range, the incident 9-field will be linearly polarized and normal to the metal
plane.



The metallic shielding in the chamber reduced the effects of outside interference to
the point that it became negligible compared to either "thermal noise" provided by the
receiver system (sampling head front-end) or antenna noise generated by ambient radiation
of the absorbing material on the inside of the chamber. This minimal noise
configuration allowed the introduction of a unique wide band, but relatively low power,
pulse generator. This pulse generator is composed of a very fast (25 psec rise time)
step generator followed by a highly stable 1 watt peak GaAs FET linear amplifier, having
an effective bandwidth of I to 7 GHz. (18.] Several alternate pulse generators had been
utilized (or tested and rejected) over the years. The main drawback of many of these
generators is their lack of pulse stability, or repeatability. This is of extreme
importance in sampling measurements where the data waveforms are produced by the
superposition of shifted time samples from repeated observations, each due to a separate
pulse excitation of the syatem. Any change in the pulse shape or amplitude as the
sampling measurement proceeds appears as equivalent signal pollution. Such "pulse-noise"
is quite common to gai-discharge pulse generators, which often have very impressive power
and bandwidth specifications, but are otherwise unusable for natural resonance
experiments.

Returning to the depiction in Figure 2, the pulse amplifier and the sampling head
for the digital processing oscilloscope (DPO) are each directly connected to coaxially
fed double-ridged horn antennas, for nearly monstatic (3 degree angle separation)
transmission and reception from the source wall of the chamber. These horns provide an
effective bandwidth of I to 12 GHz and are linearly polarized in the boresight direction.
An example of a suspended scale model aircraft target, in front of the back-wall, is
shown in Figure 3. The back wall is composed of 46 cm long pyramids while the sourc-e
wall is covered by 21 cm pyramids. The walls, floor and ceiling are covered by 21 cm
longitudinal wedged material, which acts to channel energy towards the back wall, with
minimal reflections. A very low density foam target support is used in lieu of the
polyethylene support shown. The rotational position of the target is computer controlled
to high resolution by a stepping motor.

SIGNAL ACQUISITION AND PROCISSING

The operation of the free field scattering range can be readily understood by
referring to the system representation shown in Figure 4. Various frequency domain
transfer functions represent the physical interactions embodied in the scattering process
as they affect the measured scattered field waveform. For example, the pulse generator
output, Xf,, drives the transmitting antenna, whose field is then incident upon the

scatterer, Hs(f),. and the the absorber in the chamber (clutter scatterers). Hcif,. In
addition, energy is directly (oupled into the physically adJacent receiving antenna, as
fi symboloed by HAlf) The purpose of the measurement is to ascertain the transient
field response of the target to some specified excitetion function. The pertinent
scattering characteristics of the target are embodied in its transfer function, HS(f),
which gives the frequency domain scattered field response at the receiving antenna due to
the incident field at the scatterer. Direct scattering of the incident field by the
chamber is symbolized by Hc(f), with multipath and multiple scattering between the target
and the chamber walls represented by the two-way interaction arrow from HC to H. The
thermal noise and interference, which either arrive through the recelving intenna
(antenna noise) or are innate to the DPO (receiver system noise), are lumped together as
N(t).

We will only have direct measurement access to Y(f), via y(t). A multiple
measurement technique will allow us to eliminate (in theory) the effects of the antenna
transfer functions, antenna coupling and direct clutter pollution of the received signal.
Y(f). We will even be able to obtain the target response to some specified incident
waveform, whose spectral content does not extend beyond that of the actual incident

field. As a vehicle for understanding this data acquisition atid front-end signal
processing, we will follow the measurement of scattering from a 8.095 cm diameter

aluminum sphere, which we will refer to as the target. There are three fundamental
measurements to be made:

(1) No target present (termed the background measurement)

(2) Desired target present (termed the target measurement)

(3) Canonical target present (termed the calibration measurement)

Without any target present, the received signal spectrum will be liven by

y I(f) = RRIf)  HT f) X(f) {(HA M) + H C f) I + NlI(f) (l)

With the desired target present, this quantity becomes

HR(f HT (f) ( Hs cT M N 2If) (2)

where the superscript "T" indicates that the target is present while the interaction
between the target and the chamber, which includes sultipath and multiple scattering is



11-4

denoted bylHl. Note that the measured random noise, N2 (f), i T assumed to differ from
that acquires from the independent background measurement. as it should.

With the "canonical" target present, the received signal spectrum is given by

¥3(f) = HR(f) HT(f) X(f) { HA(f) Hc(f) + HSC(f) + HSCC(f) + N3 (f) (31

The purpose of this calibration measurement is to eliminate the effects of the antenna
transfer functions by comparing Y to a computation of H -(f). Thus, the canonical
target should be amenable to an accurate and efficient coiputer algorithm. A 20.32 ca
diameter aluminum sphere is used for the canonical target.

The three basic measurements are made directly in the time domain and are stored as
digital time-series for 2 equispaced points ranging from 64 to a maximum of 1024.
Example 512 point time-series for the background, target and calibration measurements are
shown respectively in Figures 5 through 7. These measurements are each composed of s00
ensemble averaged (time overlayed) sampled waveforMs. This is done to reduce the noise
background and improve the SNR by approxmately 500 times over that of a single sampled
signal. As part of this extensive ensemble averaging, an adapt-squares "drift
compensation" algorithm is employed to compensate for slow shifts of the temporal range
being sampled. This relatively small drift occurs over the long time periods taken for
each measurement (typically several minutes).

Notice the large response beginning at about 16 Nsec in these measurements. This is
due to scattering froN the back-wall, whose pyramid tips are roughly 2.5 a behind the
target support. In addition, the contribution that appears in the beginning of the
background measurement is the remnant of the very large antenna coupling which began
approximately 24 Nsec prior to the start of this time window. To eliminate the clutter
returns and antenna coupling that are common to the three measurements we simply subtract
the background measurement from both the target and calibration measurements. The
corresponding time-series of these subtracted waveforms are shown in Figures 8 and 9.
where the elimination of the common clutter and antenna coupling provides such enhanced
scattering signatures. A Fast Fourier Transform (FFT) is then applied to each of these
subtracted time-series. Using our previous frequency domain nomenclature, the subtracted
scattering signals have respective spectra given by

Y4)f) Y2 (f) - Y 1 (f) HR(f) HT(f) f) H H T (f) f2()f) N f) 4)

Y5 (f) Y3 (f) - YI(f) HR(f) HT(f) X(f) IlH S H'SC M NI i

The magnitude of V (f) is illustrated in Figure 10. where the system bandwidth of about 1
to 7 GHz becomes apparent.

To further process the acquired data, in order to eliminate the antenna transfer
function effects and to provide the target response to a specified incident waveform, the
canonical target transfer function is computed using a Mie series solution !19. This
computation provides the frequency domain scattered fieid at the location of the
receiving antenna, including the effects of: 1; finite distance, without far field
approximations in the Hankel functions, and (2) the slight bistatic angle between the
transmitting and receiving antennas. The desired incident field waveshape is somewhat
arbitrary, being constrained only in its significant bandwidth, which can not be expected
to extend beyond that of the measurement system (I to 7 GHz). One such waveform is the
Gaussian amplitude modulated cosine (GAMC) of the form

Xo(t) A A. exp( - st(t to) Cos (21 f t).6

where the center frequency, f, and significant bandwidth via is ) can he adjusted
independently. An example of the GAMC waveform is shown i Figure II, while the
magnitude of the computed scattered electric field for the 20.32 cm diameter sphere
canonical target) is provided in Figure 12, being represented by

Y6(f) Xo(f) H sC(f) (7,

The next processing step involves forming an optimal deconvolution estimator for the
target's frequency domain response,

X o(f) ; (f) Y4(f) 5* C M

Y5 (f) Y M C(f)

This form of estimator can be shown to provide the best fidelity, in the least squares
sense, for the deconvolved target response 120), The "smoothing parameter", C, is



selected so that the significant spectral content of the deconvolved response in Eq. .8;
is approximately equal to that of the measurement system, as is shown in the spectral
magnitude plot of Figure 13. Notice that when C O, the ratio in Eq.(8) bcomes simply
Y4 /Y , which could be termed "naive deconvolution. In such a case, signal pollution in

Yt which has spectral components at frequenciea where the unpolluted signal has loi
spectral content will yield a very large amplified effect on the resultant spectral
ratio. This noise enhancement is thus tempered by establishing a minimum baseline for
the denominator through the addition of a positive C.

The inverse FFT of the spectrum in Figure 13 is shown as the time-series in Figure
14, which represents the estimated transient scattering response of the spherical target
due to an incident field having the GAMC waveform in Eq. (6. This deconvolved measured
response can be compared to the computed target response, which is shown in Figure 15.
This computation is provided by performing an inverse FFT on a Mie series based spectral
response, obtained using the same algorithm as was employed to compute y for the
canonical sphere target. Notice that the computed transient response is essentially
composed of a main specular return, from the front face of the sphere, followed by a
first order (single circumnavigation) "creeping-wave" return. The deconvolved
experimental return has this same initial waveform, but is followed by a small "error"
signal which continues out to the end of the 20 Nsec time window. Part of this error is
due to unfiltered measurement noise which is colocated in frequency with the scattered
field waveform. This noise remnant is further augmented by specular side-wall multipath
returns which are delayed by about 3 Nsec from the direct return, when the target is
positioned at 3.5 meters from the antennas. For the near grazing angle incidence on
these corregated walls, independent experiments indicate an approximate 12 dB reflection
coefficient which, if doubled to 24 dB for two-way multipath from the target, roughly
corresponds to the magnitude that is observed in the multipath signal component. The
additional error contribution, near the end of the time record, is due to the uncancelled
back-wall echo of the forward scattering from the target.

To indicate the level of fidelity of the measurement deconvolution, a comparison is
shown, in Figure 16. of the first 5 Nsec of the measured target response to that which is
computed. The RMS error is of the order of only a few percent. The FFT magnitude for
this time-windowed measured target response is compared to the computed spectral
magnitude in Figure 17. Note the comparison of this "clean" spectrum with that in
Figure 14, which is polluted by the noise and other error sources that appear outside of
the temporal support region of the scattered signal. This dramatic improvement of the
measured spectrum results from both frequency and time filtering. The same type of
range-gate filtering can even be used to improve the spectral measurements of CW ranges.
In such cases, an inverse FFT is used on stepped frequency measurements, with the
resultant time-response being range-gated around the target to eliminate clutter. This
range-gated signal is then transformed back to the frequency domain. Another common
method in CW ranges is to use a pulsed CW waveform and physical range-gating oif the
return signal, 16].

A second scattering measurement that illustrates the accuracy of the TESL is that of
broadside backscatter from a thin copper wire, of length 10 cm and 0.24 cm diameter.
The measurement of the background was subtracted from that of the thin wire and canonical
sphere, as before, and the spectral estimator was formed using Eq. 8). The resultant
spectral estimator of the thin-wire scattering response to the GAMC waveform is then
inverse FFTed to yield the time-series in Figure 18. Notice the small multipath
contribution occuring near the end of the decaying wire response (approximately 3 Nse(
from the initially large direct return) as well as the uncancelled back wall echo of the
target's forward scattering. To check the accuracy of the scattering measurement
deconvolution, a comparison is made in Figure 19 to a time-domain computation of the wire
scattering using the time domain E-field integral equation approach of Sayre and
Harrington, (21]. The apparent slight difference in the fundamental natural resonance
frequency may be due to the thin wire approximation employed in the computation, which
ignores the current path length on the finite end caps of the wire. This effective
lengthening of non ideal thin wires is analogous to the "end effect" in predicting
resonant frequencies in antenna theory, (22]. In FFTing the 10 Nsec windowed trensient
responses in Figure 19, we obtain the spectral responses, whose magnitudes are compared
in Figure 20. As was the came with the sphere scattering example, the RMS error level is
only a few percent.

It should be noted that numerous additional measurements have been made using much
more complex scattering objects than just simple spheres and wires. In fact, there
exists a library of metalized scale model tactical aircraft. The measured scattering
responses of these are being used in studies of natural resonance NCTR.

CONCLUSION

After providing some historical perspective on transient scattering measurements,
the unique free-field range at the Naval Postgraduate School was described. This
description included both the physical configuration and a comprehensive system
measurement model, which is bamed upon linear system theory. Two particulary
significant attributes of the range are its free-field configuration and its employment
of a solid-state amplified step generator transmission source. Using the scattering
measurement from a simple target s an example, the acquisition and signal processing
methodology of the range was considered. Direct time-domain interpretations were given
for noise and clutter pollutants of the measured signal. Special emphasis was placed



upon both the need for highly stable pulse sources, when used with sampling measurements,
and the limitations imposed by the finite practical bandwidth of the range.
Additionally, the respective effects of spectral and temporal signal filtering on
improving time and frequency domain data was considered in the example.

Although the indicated fidelity of the scattering measurements for the sphere and
wire targets were quite good when compared to computations, there is room for
improvement. The primary role of this facility is to support natural resonance target
identification efforts. As such, there is a continuing quest to improve both the SNR
and the frequency bandwidth of the measurements. Both of these improvements translate
into better target discrimination capability. A simple way to extend the effective
bandwidth of any scale model range is to employ a succession of alternately scaled
replicas of the targets, as was done in using the NPS TESL and an alternate stepped
frequency range in the effort described in [16]. This technique will be employed in the
future, as needed. On the other hand, to physically increase the range bandwidth to its
full potential of I to 12 GRz (as limited by the antennas and the sampling configuration)
two new methods are planned. These methods are intended to circumvent the current
limitations in the power-bandwidth product of stable (meaning solid-state) pulse
generators. One such method is to extend the bandwidth of the amplified step-generator
by adding an additional higher frequency amplifier in parallel with the current I - 7 GHz
amplifier. This can be done using a power splitter and a recombiner network. A more
novel method is also planned for enhancing the SNR and bandwidth: using a broadband
random noise source as the generator and employing a coherently triggered dual-channel
sampling scheme to provide cross-correlation measurements of the transmitted and received
noise signals. This cross-correlation provides an effective dynamic matched-filtering
whose output is the smoothed impulse response of the scattering system.

A final consideration for the future improvement of the measurement fidelity is the
multipath signal interference, as was observed in the example measurements. To reduce
this effect directly requires either a significant reduction in the reflection
coefficient around the specular regions of the chamber and/or the construction of a new,
and larger, anechoic chamber. Because of the small cross-sectional dimensions of the
chamber, the specular region is illuminated at near grazing incidence, thus providing
enhanced reflection, even from otherwise excellent absorbing material. The enlargement
of the chamber's cross-sectional dimensions is not possible because of physical space
limitations. Also, there is currently no larger space available to rebuild a larger
chamber. So, alas, there remains the possibility of a software fix. Such an approach
will rely upon an accurate estimate of the frequency behavior of the specular region
scattering matrix elements. Since the multipath angle is only a few degrees from direct
backscattering, and the target is, at most, only a few wavelengths in dimension (at the
highest frequency), the multipath return can be approximated as a delayed and frequency
filtered (dispersive) version of the direct return. Such a model will permit the
extraction of some of the multipath interference. The accuracy and practicality
of such a technique have yet to be tested.
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(PART 2)
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SUMMpY

S We give a description of the electromagnetic transient range facility (EMTRF) at the
Lawrence Livermore National Laboratory (LLNL). We discuss tho range design and show the
instrumentation for both time domain and broadband frequency domain measurements. We
give two examples of experiments on the range: Scattering from a conducting plate and
transmission through an aperture in a screen.

i. LLNL RANGE HISTORY

The electromagnetic transient range facility (EMTRF) at the Lawrence Livermore
National Laboratory (LLNL) was initially constructed in 1968. Since that time, the
range has been used for a variety of transient measurements and has undergone a series
of improvements and updates [11. Many scientists, engineers, and technicians have
contributed to this range to the degree where the EMTRF can now be considered one of the
premier facilities of its kind presently operational.

The range is located indoors and consists of a conducting ground plane (8.5 m x 8.5
m). Initially the transmitting antenna was a long vertical wire fed at its base with a
coaxial transmission line located beneath the ground plane. In 1975, the vertical wire
was replaced by a monocone with a 377 ohm input impedance. This design was followed by
a 120 degree sector monocone (Fig. 1) with a 50 ohm input impedance offering a better
match to the pulser. This monocone was constructed with a sheet brass conical section
at the apex joined to a conical copper screen and secured to the ceiling with resis-
tively loaded wires.

Fig. 1 -Monocone antenna, prior to 1984-1985 range up-grade.

Although the 50 ohm monocone performed adequately in many applications for nearly a
decade, there were some serious limitations. Unwanted scatteri-g occurred from the
surface of the antenna, the junction with the ceiling, and various obstacles located in
the room. These effects combined to limit seriously the signal-to-noise ratio provided
by the system. Such limitations are particularly damaging in any attempt to observe
late time returns from objects exhibiting a high degree of radiation damping.

In the period 1984 to 1986, the range was subjected to an thorough upgrade aimed at
increasing the signal-to-noise ratio and increasing the bandwidth [11. The result was a
new monocone (Fig. 2), the EMP Engineering Research Omnidirectional adiator (EMPEROR).
The EMPEROR consists of a solid aluminum section at the apex. T' remainer, up to a
height of 3 m, is 0.050 in. rheet aluminum attached to a girded fr 4ork. The monocone
is supported from the ceiling. At the floor is a floating conne r allowing flex as
the ceiling expands and contracts in response to changes in the envionment. The design



Fig. 2 - EMPEROR monocone antenna.

was completed by adding absorber suspended around the cone perimeter (Fig. 3). In
addition, a vertical wall of absorber was also placed behind the test area.

The effects of the range upgrade have been demonstrated [I) by comparing the verti-
cal electric field in the absence of any test object (Fig. 4). The field is measured
with a small vertical D-dot sensor protruding up through the ground plane. The pulser
is an Omni-Wave R-100. Both monocones provide an increase in signal by approximately a
factor of three over the long wire. The improvement of the noise level of the new
monocone over the old monocone is apparent in the plot. The effect of the absorber is
also dramatically displayed on a time scale from zero to 100 ns (Fig. 5). Note that the
quieting effect of the absorber is approximately 12 db. This improvement is very impor-
tant in any attempt to do measurements on the range where observation of small late time
phenomena is required.

2. RANGE INSTRUMENTATION

The LLNL range is capable of operating in either the tranient or the broadband
frequency mode. We shall describe bo~h methods of operation.

In the transient mode (Fig. 6), a repetitive pulser drives the monocone. Typically,
the pulser delivers I Kv peak at a 250 Hz repetition rate. The pulse has a rise time of
less than 0.2 ns and a 3 db width of less than 0.15 ns. The spectrum is flat within _ 2
db from 1 MHz to 1 gHz. The transmitted signal from the monocone is typically received
with a D-dot sensor and routed through a delay line to a sampling oscilloscope. The
scope is triggered by a tap from the pulser. On-site storage and display is provided by
an LSI-11/02 computer. Provisions are made to store the data on floppy disk for trans-
fer to a VAX-ll/780, where signal processing is accomplished with the algorithm SIG (2).

Fig. 3 - EMPEROR monocone antenna with absorber; note test object between monocone and
vertical absorber.
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In the broadband frequency mode (31 (Fig. 7), a frequency synthesized source and a
network analyser are used to provide frequency domain data from 0.1 to 18 gHz. Data is

typically taken at 401 equi-spaced points so that the frequency resolution is 45 MHz.
Should a finer resolution be required, the total frequency range can be subdivided and
401 points taken on each interval. Again, on-site computation is provided by the LSI-11
system, with storage and handover to the VAX.

3. EXAMPLE, PLATE SCATTERING, TRANSIENT MODE

As an example of use of the LLNL range in the transient mode, we have done
exhaustive tests (4) involving scattering from a conducting rectangular plate. For the

experiments described herein, we have used the sampling oscilloscope to average 100
repetitions of the signal.

A thin rectangular aluminum plate, 30 cm high and 60 cm wide, is mounted
perpendicular to the ground plane orthogonal to the direction of propagation from the
monocone (Fig. 8). The probe measuring backscatter is positioned 1.49 m from the mono-
cone and 0.914 m from the plate. Data is taken with the probe positioned at five
different angles relative to the plate: 0,45,90,135, and 180 degrees (Fig. 9). The
distance between the probe and the center of the plate is held constant at 0.914 m.

To obtain a measure of the incident field, as described elsewhere [53 in this
lecture series, data is first taken in the absence of the plate. Next the plate is
mounted and the data-taking process repeated to obtain the total field. Since the D-dot
probe differentiates the data, both data sets are measurements of the time derivative of
the vertica electric field. There are 512 points per record at a sampling interval of
3.906 x 10 seconds. For each of the five aspect angles, the incident and total

6,olb.,, M_

x,\ A-.

0.1 - 2

IF 9-s

Fig. 7 - Range instrumentation, broadband frequency mode.
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Fig. 8 Transient range set-up, showing plate dimensions and separation distances.
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fields are registered. Then the incident field is subtracted from the total field to
obtain the scattered field. We process each incident and scattered field using the
algorithm SIG [21. Herein, we describe only the 45 degree case.

We begin with the raw input field (Fig. 10) and total field (Fig. 11). We produce
the scattered field as described above. Next, we filter the data at 2 MHz with a tenth
order Butterworth filter. (The frequency 2 MHz approaches the upper limits of the
pulser bandwidth.) To eliminate low frequency noise, we highpass filter both the input
and output data at 100 MHz with a sixth order Butterworth filter. We then decimate the
data to 90 points to eliminate oversampling. We display the final input data (Fig. 12)
and its spectrum (Fig. 13) and the output data (Fig. 14) ...d its spectrum (Fig. 15). We
have used these results to obtain estimates of the complex resonances of the plate by

.2

0.9

0.

0.3

-0.3

-0.9 -

a ao is 2o
Time (nsecands)

Fig. 10 - Raw input field with probe at 45 degree probe position.
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Fig. 12 - Input pulse, bandpass filtered to 0.1 to 2 gHz, decimated to 90 points.

methods discussed elsewhere in this lecture series (5]. Using the algorithm NLS [61, we
have attempted to identify the complex resonances of the plate fo. all five observation
angles. Here, we include only representativve results at 45 degrees (Fig. 16). We
compare results with 18th, 23rd, 25th, and 27th order models with theoretical results
obtained by Pearson (7). Note that for the pole closest to the real axis, the identifi-
cation is accurate for all model orders. For all other poles, the identification fails.

The upgrade of the LLNL range has made a significant contribution to our efforts to
identify the principal resonance of the rectangular conducting plate. Prior to the
upgrade, our attempts had been unsuccessful. After upgrade, however, the decrease in
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the noise has allowed later time scattering to appear in the data. This improvement is
essential because of the strong radiation damping produced by the plate.

4. EXAMPLE - APERTURE COUPLING, BROADBAND FREQUENCY MODE

As a second example, we include aperture coupling through a conducting screen
(Pig. 17), a case considered by Zing and Hudson 13). A metal wall is mounted
perpendicular to the range ground plane with a 5 cm length rectangular aperture at
bottom center. A D-dot sensor is located at d - 5 cm from the slot. All data taken is
with the range instrumented in the broadband frequency mode as described above. We
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display (Fig. 18) the transfer function of different slots, all fith the same length (5
cm), but with various heights (1,2,4,8 mm). Clearly in evidence are the primary reso-
nances of each and the first secondary resonances at approximately three times primary.
The transfer function is simply the ratio of the response of the D-dot sensor when
located behind the aperture to the response at the aperture in the absence of the wall.
The data clearly shows the utility of the range in making broadband electromagnetic

measurements. We comment that our included data is only a sample of a large group of
exhaustivve measurements that have been taken by LLNL scientists. The interested reader
is referred to R.J. Ring or H.G. Hudson at LLNL for details.
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