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Target Strength: An Overview of Some Recent Theoretical Developments

Leopold B. Felsen
Department of Electrical Engineering and Computer Science/Weber Research Institute
Polytechnic University, Route 110, Farmingdale, NY 11735 USA

I." Introduction

With the increasing availability of short pulse sources of electromagnetic energy, targets can be sub-
fected to broadband illumination, which pives rise in the returned signal to a vich varietv of phenomena
not encountered under time-harmonic or narrow-band conditions. Some recent theoretical developments that
seek to cope with, and take advantage of, the resulting enhanced flexibility for target assessment and
classification are summarized heve. Basically, the techniques to be described seek to manipulate wave
spectra in such a manner as to yield compact observable spectral objects with significant physical content.
These compact spectral objects are then employed to interpret synthetic or real translent scattering re-
turns and relate distinctive features in these returns to distinctive features of the target giving rise
to them. Depending on whether the structural information content is local or global, the respective wave
objects characterizing them are (progressing) wavefronts and (oscillatorv) resonances, the transient ana-
log of ray flelds and modal fields under time-harmonic conditions. ..Evanescent spectra, which are trans-
ported along complex ravs, are often found to be important in this‘$§scess and should be included in the
catalog of relevant spectral events. Having learned how to Interpret\ classify, and therebv parameterize,
scattering data from known structures, one may attempt to use such a p\rameterization for reconstruction
of unknown target features from given scattering data. .
o
Emphasis will be on phenomena at high and moderate frequencies, for which the relevant wavelenpths
are much smaller than or comparable with, but not appreciably lareer than, characteristic length scales in
the scatterer. It fs in these parametric resions where wave transport phenomena play an essential role.
High frequency waves can be localized around the ray tratectories of the gemoetrical theory of diffraction
(GTD), which thereby serves to chart and classifv the progression of wavefronts., The reader is assumed to
be familiar with GTD and its uniform refinements to account for transiti.nal effects in various diffrac-
tion environments; a compilation of representative articles mav be found in [1], and the technigues have
been included in a number of texts [2] and handbooks [3] dealing with high freguency wave principles and
applications, The oscillatory modal and resonance fields are glohal descriptors of a propagation or
scattering environment, and thereby organize the overall wave process In an entirely different wav. In
the transient domain, the resonance formulation has become known within the framework of the Singularitv
Expansion Methnd (SEM) (for a representative set of articles see [4,5]). The connection between these two
fundamental and physically meaningful building blocks for wave field svnthesis in progressing or oscilla-
tory form [6] has recently been elucidated in a bilateral and quantitative manner [7,8], thus sranting
insight into how these compact spectral obtects are generated by alterpative spectral contractions from
wave spectral continuum. These aspects will be covered in subsequent lectures in this series. The pre-
sentation below begins with the wavefront-resonance interplay, and then passes on to applications and ex-
amples illustrating various aspects of the theorv.

11. Wavefront-Resonance Description

When the high-frequency methodology of GTD is transformed into the time domain [9], cach rav des-
cribes the trajectory of a wavefront, and the time domain analog of the rav field vields the transient
field at and near the wavefront arrival time. While these results are adequate for the transieat res-
ponse within a narrow time window surrounding each wavefront arvival, they fail when the received sivonal
is monitored over a longer time interval that includes late observation times for earlv arrivals. Fven if
the field associated with each wavefront were described correctlv for all subsequent times, the multipli-
city of arrivals makes resolution of individual cvents nonfeasible, and thereby defeats the virtue of usine
these arrivals as {dentifiers of distinct scattering centers. It is then more appropriate to seek an al-
ternative description that deals with the multiple wavefronts in a collective manner. This {s provided bv
the target resonances of SEM which express the free oscillations of the entire structure. In fact, tvplcal
synthetic or actually measured broadband signatures of targets reveal fairlv distinct replicas of the in-
put pulse in the early time portion but more smoothed out ascillations at later times, Indicative of the
predominance of wavefronts and resonances, respectively.

The wavefront-resonance complementarity and dualitv has been expressed {n a systematic and self-con-
sistent format the provides flexibilitv of interpreration of divect scattering data [7] and efficient
parameterization of such data for inversion to extract target characteristics {10,111, A distinction
made between early (intrinsic) wavefront events that cannot be phenomenologically absorbed within the
resonance structure (although a purely formal but physically awkward scheme of such incorporation can be
implementéd [12,13]), and subsequent (nonintrinsic) wavefront events that can bh. embedded within the res-
onances in a physically meaningful manner. The intrinsic events arise from the first scattered response
before the incident sfgnal has had time to traverse the entire scattering object; hecause these responscs
contain no knowledge of the actual total target shape, their incorporation inte descriptors, like resonances,
that do depend on the total shape is nonphysical and mav lead tuo errors. Within the SEM format, the
intrinsic wavefronts can be identified with the "intrinsic entire function” {7]. The nonintrinsic events
correspond to subsequent arrivals after the entire object has been excited. While these wavefronts can
be treated meaningfully in collective form, it may be more efffcient and phvsically incisive to retain the
first few Intact and only convert into resonances those that remain [14,15]: see also [16]. Delaving the
onset of the resonance description weakens the strength of the resonances and pushes their regime tn lower
frequencies, thereby limiting their significantly contributing number, Where to switch poses a tradeoff
that 1s problem dependent but it is important to observe that bv the self-consistent wavefront-resonance
acheme [7,14,15], all combinations are correct although they may have different convergence properties.
Typically, for low-0 scatterers, the resonances are highly damped and may actuallyv be avoided altogether
because all the essential signature features can be explained with a few wavefronts., For high-0 scatter-
ers, especially those with penetrable low-1oss interfor, the resonances can he distinct, strong, and plav
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a major role at later times: here, it may even be desirable to revert to the resonance description after
igolating the iatrinsic wavefronts ounly.

To illustrate these observations, we consider electromagnetic plane pulse scattering by the perfectly
conducting flat strip in Fig. 1(a) [17,18], which, even for H-polarization, represents a low-0} target.
The GTD generated results for impulsive plane wave scattering are shown in Figs. 1(b)~1(d). Evidently,
the failure of GTD at later times (low frequency spectral components) makes the method inapplicable for
this type of input pulse but the results reveal nevertheless the internal consistency of the wavefront-
resonance algorithm, including its hybrid form (Fig. 1(d)). When the chosen pulse spectrum is bandlimited
with a low frequency cutoff, the high-frequency algorithm does become quantitatively accurate 118}

(Fig. 1(e)). The resonances are now weakened substantially, and the entire "resonant” structure cam, in
fact, be duplicated by only a few wavefront events, as indicated. For E-polarization (acoustically soft
case), the resonance contributicn is so small in this case [18] as to mitigate altogether against its util-
ity as a descriptor of target responses.

It has been mentioned earlier that GTID generated transient fields are applicable only for short time
intervals after arrival of the wavefront transported along a particular ray. However, it is noteworthy
that the complex resonance frequencies generated by collective treatment of the GTD arrivals (Fig. 1(f))
are remarkably accurate (Fig. 1(g)), even at the low frequency end, which is most relevant for late obser-
vation times. This feature has been confirmed in a number of other investigations of simple target
shapes (19,20]., Thus, it is suggestive that the GTD machinery can be exploited to determine the resonance
frequency map also for more complicated shapes, although the resonant fields may be strongly in error.

TTI. Concave-Convex Boundary Shapes: Complex Spectra

Ray fields incident on the concave portion of a convex-concave exterior boundary of a target are gen-
erally focused after reflection. When the scattered fileld is observed on the shadow side of the caustic
confining this focused ray family, the corresponding evanescent fields have usually been ignored. Yer,
numerical experiments on plane wave scattering from perfectly reflecting shapes of this kind have revealed
certain features in the scattered signal shape that appear to originate near the concave-to-convex inflec-
tion point [21] and, yet, are neither conventional specularly reflected nor diffracted events {(diffraction
would require a point of non-analyticity on the surface contour but the postulated surface function is com-
pletely analytic). Analysis shows that the anomalous features can be attributed to specular reflection of
complex incident ray fields from the complex analytic extension of the obstacle boundary [22] (Fig. 2).
Thus, specular reflection, when generalized to include both real and complex rays, can explain signatures
arising from the illuminated portion of smooth targets of arbitrary shape. Creeping waves, which account
for contributions from the nonilluminated portion, may also undergo complex reflection when encountering
convex-concave surface deviations [23] (Fig. 2).

IV. FExterior~Interior Coupling

When a target is penetrable or grants access through an opening to an {nterfor that can trap enerpv,
the reradiation from the ephanced interior fields at their resonance frequencics can stronglv affect the
scattered signal. For idealized models such as plane stratified lavers and radiallv stratified dielectris
cvlinders and spheres, an exact analyvsis can be performed by separation of variables, and the solution cast
in a form, from which one mav extract the various rav-optical and rescnant wave constituents that are uxe
ful for interpretation and classification in the high and mid-frequencv range [24,24]. TIn some of these
configurations, the lavers mav possess elastic properties [26,27]. Open-ended semi-infinite or terminated
thin-walled waveguides in plane parallel, circular or elliptic peometrv likewise form useful prototypes
for testing hypotheses pertaining to edge diffraction coupline into, and subsequent radiatien from, an
elongated enclosure {28]. By expressine the results obtained from these canonical buildine blocks in in-
varfant form tailored to a particular wave event, one may invoke the principle of locality, which is oper-
ative at high freauencies, to construct approximate theories applicable under more general conditions. In
this endeavor, {t {s important to effect the modification in terms of wave phenomena that remain stable
under perturbation from an idealized shape. For rav events, the analvsis can be based on the general
machinerv of GTD and its uniformized modifications, For resonant and stronelv puided fields, one mav em-
ploy modal rav procedures [8], local (adiabatic) modes 1291, intrinsic modes [30], boundary laver [131],
parabolic equation {321, and perturbation methads to describe bodv modes and resonances occupying essen-
tially the entire volume, whispering pallery modes and resonances confined to a laver near a concave bound-
arv surface, or beam-tvpe modes and resonances trapped hv focusing between opposite concave boundarv sep-
ments, Studies of configurations even with small perturbations from an jdcalized nodel are useful because
wave tvpe degeneracies that usuallv occur in stronely symmetric prototvpes are broken therebv.  Under-
standing wavefront and resonance behavior individually, one mav then attempt to combine them within the
hybrid format as for impenetrable structures. So far, this has been accomplished only for the simplest
prototvpes,

Perturhing structures in the interfor of smooth enclosures cause coupling between the empty cavity
wave fields, in addition to introducing sipgnatures of their own. Here, hvhrid approaches combining rav
(wavefront) and mode (resonance) descriptions can be expected to be particularly useful to characterize
the multiplicity of interaction mechanisms, which are predicted by numerical experiment as in [331,
in a physically transparent and numericallv tractable manner. Numerical modeliue for a compact interior
scatterer, combined with a boundarv intearal eanation approach, provides another tvpe of hybrid option for
coupling the wavefields due to a confined structure to the plobal configuration of the enclosine shell.
Evidently, the "best' approach is problem dependent, and much carefullv posed analvtical and numerfcal
modeling {s required to sort out even the dominant effects that influence the sienal scattered from a
composite target with interjor structure. Wwhen certain parts of an interfor are hiehly disoreantzed, they
may be better treated as a statistical ensemble. This requires combining statistical measures (averages)
of a random wave field with determiniatic guiding and scattering events [34,751, a discipline that fs only
beginning to be explored at present. For an interior of moderate complexitv that permits construction of
numerical proprams for multiple reflected, refracted and diffracted rav trajectaries, ray shootine aleor-
ithma, which cover the interior with ravs, can provide much {nsicht concerning the strong fleld (dense ravs
near caustics) and weak fleld domafns. Rav shootine is widelv used in seismic exploration [36) and, by
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associating it with dynamic ray tracing and Gaussian beam methods {371, can provide some quantitative in-
formation about field strengths, although much remains to be done to render these methods truly predictive.
Some attempts have already been made to transfer this approach to electromagnetics and underwater acoustics
134,35)

Figure 3 provides a numerical generated set of data [33) that 1llustrate how the interior of a high~0-
cavity backed apertyre influences the target signature. For analytical modeling, one may employ conventional
(including edge diffracted) ray tracing or ray-mode coupling introduced by the edge discontinuities. The
ray~to-mode coupling can be calculated either by collective treatment of multiple reflected and diffracted
Tays, or (often more ronveniently) by establishing on the obstacle surface or cavity aperture an initial
physical optics distribution determined from the incident signal, and evaluating the modal excitation co-
efficients from this prescribed excitation. This requires knowledge of the complete mode structure, i.e.,
the Green's function, of the interior. Fxamples may be found in [40,41]. Typically, the mosc strongly
excited modes or resonances in a highlvy overmoded system are those whose modal ray congruences have direc-
tions near the ones produced by the incident ray family. Radiation due to the resonant modal fields, or
modal fields reflected from the cavitv end and(or) interior structures, can be treated by considerations
of reciprocity. These considerations may also help toward an understanding of anomalous phenomena ex-~
hibited by the computed data in Fig. 1.

V. Matching the Interrogating Signal to the Target

Having pained an understanding of the wave mechanisms that are instrumental in producing the scattered
fleld from a target of given size, shape and composition, an important question is whether input signals
can be constructed that interrogate this target in such a manner as to produce a unique response for class-
ification and identification. Evidently, such a scheme will have to depend on the manner in which the
target signature is parametrized, i.e., on the basic waveforms that are assumed to synthesize the response.
One approach, based on the resonance spectrum, seeks to shape an input pulse so as to eliminate several
or all of the complex resonances from the late time response [42,43]. Since each target has, in principle,
a unique aspect~independent set of resonances, illumination bv its own matched input signal will produce
predetermined features fn the response that distineuish it from a "wrong" target. Some model analytical,
numerical and physical experiments, which have been conducted, reveal that this scheme may merit further
exploration. The late-time restriction is imposed to assure that the resonances (and not the wavefronts)
do indeed dominate the scattered response, and that the number of resonances is not excessively large.
However, the delaved onset of observations reduces the excitation strengths of the resonances, thereby
leaving inadequate information content for low-0 structures. This limitation is removed for high-0
structures {f the incident signal level is sufficiently hieh to produce a distinctive response, The late
time rezime also deemphasizes the high-frequency resonances, thereby blurring local target features in
favor of global structural effects. Local features are best jdentified by wavefronts whose arrival times,
if they can be resolved, give a firm indication of where on the scatterer the response originates. This
is the early time regime which, generally, also contains most of the pulse energy. It mav be conjecturcd
that the most effective interrogation will utilize both the early and late time returns parametrized,
respectively, in terms of wavefronts and resonances, which may be embodied self-consistently, in any com-
bination, via the hybrid wavefront-resonance formalism.

V1. Summary

This brief review, has focused on some recent developments and trends in the theorv of target scatter-
ing and classification, with the intent of setting the tone for the presentations that follow, Sub-
sequent talks deal with foundations of the theory and with applications.
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Fig, 1 Far zone transient plane wave scattering by a perfectly reflecting flat strip of width d [17, 18],
All numerical results are for electromagnetic H-polarization (acoustically rigid). incidence ane¢le
89 = 45°, observation angle 8=-~45°,d = 20m, observation distance ~3km.

a) Physical configuration, ray trajectories, and ray species. p and # are cylindrical coordinates
centered at an edge, Relevant rays are specularly reflected (DR, shaded region) and edge
diffracted (pA B existing everywhere). SBI,r are incident and reflected ray shadow boun-
daries. Ray species j =1 to 4 group diffracted wave processes according to their excitation
(downgoing ray) and emission (upgoing ray) points.

b) Diffracted wave front contributions Uj ,(t) in ray species i =1 (excitation and departure at
edge A), for impulsive plane wave incidence. N denotes the number of edge interactions as
depicted below each arrow, which locates the diffracted wavefront arrival time at the ob-
server. Other ray species behave similarly, --: individual GTD diffracted wave fields:

——: sum of all diffracted wave fields (note the predominance of the n=1 contributicn and
the successive weakening of the others): A : sum of SEM resonances (for this low-0 struc-
ture, the resonances furnish only a small slowly convergent correction whose inclusion, how-
ever, restores complete agreement with the ray field sum): »: continuous spectrum {arises
for two-dimensional (infinitely extended) scatterers, but not for three-dimensional spatially
confined targets: this spectrum 1is almost entirely equivalent to the diffracted ray sum):

x: (++8). The numbers next to A show how many resonances had to be included to stabilize
their sum to within 1% error. Due to the low-frequency inadequacy of GTD, the results diverce
at later times. Nevertheless, the formulations by either wavefronts or resonances plus ron-
tinuous spectrum agree.

¢} Total scattered field (all species j =1 to 4 plus primary diffracted (intrinsic) contributions
U1,3 arising from sinpgle scattering at edges A and B, respectively). Same low frequency de-
fects as in Fig. 1(b). Lepend as in Fig. 1(b). Crosses denote sum of resonances plus con-
tinuous spectrum.

d) Hybrid wavefront-resonance formulation (species j=1), where Uy, is kept intact and where
the collective treatment is initiated at n =2 with Uy,2. Legend as in Fig. 1(b) and 1(c)
SEM contributions are now much weaker but more rapidly convergent.

e) Incident plane wave with band-limited raised cosine time dependence instead of the impulse.
All other parameters and notations as in Fig. 1(b) except that diffracted wave fields are
denoted by U],n and U*, and the observation distance is lkm. Low frequency cutoff of pulse
spectrum now repairs defects of GTD analysis, and the total GTD results shown [18] agree com-
pletely with the solution from an exact eipenfunction expansion [44]. The resonances are
weakened substantially, and the entire "resonant" structure can, in fact, be duplicated by
only a few wavefront events, as indicated. For E-polarization, the resonance contribution is
so small as to mitigate altogether against its utility as a descriptor of tarpet responsec.

f) Resonance generation mechanism by self-consistent closure of multiple edge cdiffracted fields
[45]. Resonance condition requires equality of fully established diffracted fields after cach
full cycle around the object. Ray closure condition: P1DgPyD,Pg = 1(P3DgP;D,) where Pya=0-5,
are propagation functions, and “A'DB signify edge diffraction: C is an arbitrary reference
point. Possible partial closure paths: P,Py,:PoP3:P,Pe:P3P;. Each such path generates a
corresponding partial resonance condition. For a strip, there is multiple degeneracy, and
PyPy=P, P3=P,P=P3Pc,with Dy = Dg=D, For example, P,P, accounts for partial resonances due to
the lower surtace contour between the cdges [7].

g) Dominant (first layer) complex resonance frequencies (SEM poles) Yy in complex v =kd plane.
A symmetrical set in the third quadrant is not shown. x: GTD construction [45]. «:
numerical, by method of moments [46]. Agreement is excellent, even for the lowest fre-
quency resonance yp. For higher order layers, see [45]. There is also a continuons spectrum
along the negative imaginary axis, due to the two-dimensionality of the problem. The
corresponding branch cut is not shown.

Fig. 2 Plane wave far field back-scattering by a perfectly reflecting deformed cylinder with surface sin-
usoidal contour n(6) =a(1-0.2c0837), where p and ® are cylindrical coordinates. TIncidence and ob-
servation angle a=" = n/3, Numerical results are for electromagnetic H-polarization [21,22].

a) Physical configuration, ray trafectories and reflection points for backscattering. SR and
(5R)¢ denote real and complex specular reflection points, respectively, for the incident field.
They can be found either from direct complex ray tracing or from a physical optics analvsis
with subsequent stationary phase evaluation of the surface integral containing the physical
optics induced surface flelds over the directly illuminated portion. Real and complex sta-
tionary phase points locate real and complex ray reflection points, respectively. Real inci-
dent and reflected ray trajectories are shown solid, while complex ray trajectories are shown
shaded. The complex rays are reflected specularly from the complex extension of the
acatterer surface, The depiction of the complex ray trajecotries and reflection points should
be reparded as symbolic, located in a complex coordinate space. Diffraction effects are des-
cribed by creeping waves which circumnavigate the ohstacle along trajectories marked C. lLike
the incident rays, creeping rays can be reflected from complex reflection points RC, The
creeping rays progreas in both directions around the obstacle, Only the counterclockwise
creeping ray C is shown; the clockwise arrow accounts for the reflection from RC.

b) Real incident rays reflected specularly from the concave portion between inflections points.
A two-~branched caustic {8 formed by these rays which do not reach the observer in the back-
scatterer direction of Fig. 2(a). Such an observer, who {s situated {n the shadow region of
this system, {s reached by an evanesent wave "tunneled" across the caustic. The tunneled ray
can alternatively be regarded as a complex ray reflected specularly from the complex extension
of the obstacle. Its contribution as in Fig, 2(a) becomes weaker as the ohserver moves further .
into the shadow.




¢) Time-harmonic transfer function (normalized back-scattering cross section) H(ka) con-
tributed by directly illuminated portion of the scatterer, as a function of frequency [22].
k= w/c is the incident wavenumber, exp(~iwt) is the suppressed time dependence, and ¢ is
the wave propagation speed in the medium. Dashed curve: numerical integration of physical
optics (PO) integral over illuminated portion: this serves as the reference solution. Solid
curve: ray solution with real and complex contributions from the specular points (SR) and
(SR), given by

H(ka)ISR =0.741exp(-12.21 ka)

H(ka) =0.608-10.250exp(~11.24ka-0.125 ka)
Liswy,

Their sum, through interference, generates the oscillations in the transfer function. The
transfer function for the unperturbed cylinder r= a Is constant. The ray solution is seen
to agree well with the reference solutfon for ka > 2.

d) Pulsed plane wave used f r transient calculation. Pulse shape: g(t) =Dd3f(t)/dt3,
F(t) = (6t/tm) 1/ 2exp[-(6t/1)?], t = 2a/c. D is a normalization constant. The pulse spectrum
deemphasizes low frequencies, thereby making ray theory applicable.

e) Back-scattered transient response obtained by frequency inversion of time-harmonic solution
in Fig. 2(c) convolved with the pulse spectrum in Fig. 2(d), with inclusion of creeping wave
effects [23]. Arrival times of various ray field contributions along the trajectories de-
picted in Fig. 2(a) have been identified by arrows, with (t/t) =0 for the SR (central zero
crossing) chosen as a reference. Each arrival is seen to contribute an identifiable feature
(zero or maximum} to the signal shape. The insert shows a fourfold mangification of the
weak C and RC portion. Dashed curve: reference solution by numerical integration of coupled
mode code. Solid curve: real and complex ray contributions.

Time-harmonic normalized electromagnetic back-scattering cross section for perfectly reflecting
thin-walled open sphere with radius a =1 perforated by a circular aperture with polar angle

Sap =10°, without and with interior loading by a concentric dielectric sphere having dielectric
constant < =3 and radlus b=0.3 [33]. The incident field is a plane wave along the axis of
symmetry. The closed sphere exterior resonance response (not shown) is a smooth curve with de-
creasing oscillations around ka =1. For ka €3, the solid curve for the perforated sphere, as
plotted in the figure, agrees essentially with that for the closed sphere. At higher (ka) values,
access to the interior produces some background distortion and superimposes a series of spikes,
whose (ka) locations are slightly lower than those corresponding to the interior resonances of
the closed empty sphere. Adding the concentric dielectric sphere (dashed curve) does not sub-
stantially affect the empty sphere response over the plotted (ka) interval but shifts the
resonance spikes. Thus, the spikes contain information about the interior configuration.
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UNIFORM GEOMETRICAL THEORY OF ODIFFRACTION

by
- . P.H, Pathak
The Ohio State tiniversity ElectroScience Laboratory
1320 Kinnear Road
Columbus, Ohio 43212

_ Keller's geometrical theory of diffraction (5TN) represents a major breakthrough in solving a wide
variety of electromagnetic (EM) radiation and scattering problems at high frequencies., In particular, the
GTD is an extension of geometrical optics to include a class of diffracted rays via a generalization of
Fermat's principle. These diffracted rays are initiated, for example, from geometrical ard electrical
discontinuities in a scatterer, ar from points of grazing incidence on smooth convex parts of the
scattering surface. However, being a purely ray optical theory, the original GTD fails within the
transition regions adjacent to geometric optica) shadow boundaries where the diffracted field generally
assumes fts largest value, This limitation of the TN is overcome via the uniform version of the GTD
(i.e., UTD) which requires the diffracted field to make the total high frequency field continuous across
the optical shadow boundaries. The UTD solutions for the diffraction by edges and smooth convex surfaces
are reviewed in detail after introducing the basic concepts of GTD, Results hased on a few additional UTH
solutions are also presented together with a few selected applications of these UTD solutions to predict
the EM radiation and scattering from complex structures, x

I. INTRODUCTION

An efficient analysis of the radiation and scattering of waves hy objects which are large in terms of
the wavelength can be performed via high frequency techniques. fne of the most versatile and useful high
frequency {HF) technigues is Keller's geometrical theory of diffraction (ATN) M1,2,37 which was developed
in the early 1950s, The GTN constitutes a significant extension of geometrical nptics (G0) in which a
class of diffracted rays are introduced to exist in addition to the usual rays of 60, These diffracted
rays are postulated via a generalization of Fermat's principle with the knowledge that at high frequencies
diffraction, like reflection, is a hinhly local phenomenon, Just as reflected rays originate from points
of specular reflection on an illuminated surface, the diffracted rays likewise originate from certain
lncalized parts on the surface: e.g., from geometrical and electrical discantinuities, and from points of
grazing incidence on a smooth convex surface as shown in Figure 1,

The shadow boundaries divide the space surrounding an illuminated hody into a 1it reqinn where the 4N
incident, reflected and refracted rays are present, and intn a shadow region where these G rays are
absent, Thus, the G0 approach is seriously in error within the shadow reqion where it predicts a zero
field; this limitation of GO is overcome by the TN since the diffracted rays penetrate into the 60 shadow
zone tn entirely account for the field therein, Furthermore, the diffracted rays can alsa eater intn the
1it reginn and thereby provide an improvement tn G in the 1it region, The total GTN field is a
siuperposition of the field of all the G0 incident, reflected and refracted rays tngether with the fiald nf
al! the diffracted rays which pass through the nhservation point., The initial values of the diffracted
ray fields are given in terms of the diffraction cnefficients just as the initial amplitudes nf the A0
reflected and refracted rays are given in terms of the reflection and transmissinn caefficiants,

r

Nue ta the 1ncal nature of diffraction at hiqgh frequencies, the diffractinn cnefficiants can he faunt
from the appropriate snlutions tn simpler canonical problems which model the geometrical and electrical
properties in the neighharhood of the pnint of diffraction as in tha origina) prohlem, fansequently, the
GTN provides an efficient high frequency salutinn ta prohlems that cannot e solyed rigarously. Thus, a
6N analysis of the radiatinn/scattering from complex shapes can he develnped hy simulating these
structures with simpler shapes that lncally provide a sufficiently accurate descriptinn o€ the dominant
reflection and diffraction effects. The GT0 can alsn he useful in providing informatinn an ways to
cantrol the radiation/scattering from different parts of the structura, [t is interasting that aven
thangh (T is 3 high frequency methad, it is nften found ta wark far ohijects nearly as small as a
wavelength in size, Althaugh 6T is not a4 rignrous methnd, it generally yields the laading terms in the
asymptotic nigh frequency sotutions of diffractinn problems,

Since the (TN is a purely ray aptical thenry, it fails within the *ranqi®inn reqiong adjacent ty tha
G0 shadow houndaries where the HE field generally undergnes a rapid transitirn arrass the shadaw Sagniary
from one ray optical form in the 19t reginn to annther ray nptical farm in tne shadow reqina,
Cansequently, the HF field departs from a strictly ray nptical character within the G0 shadow Snandary
transitinn reqinns., This failure nf the ariginal G0 can he avercome hy nifarm varsinag nf the GTY quch
as the UTD 4,57 and the AT T61, In the present develnpment, the facus will he an the TV, Ragically,
the UTN rematns valid within the N0 shadow houndary transition reginng wheee the ordinary 670 fails, and
secondly, it reduces to the ATD outside these transitinn reginns where the lattor is iadead valid,

The 670 and its unifarm versians TN OATY fa1] within the reqinag of G0 and 41 Ffracted ray caustics.
Ray ~austics or focii accur whenever a family 2f rays {1,p,, ray cangruences) merge or .atersect toy form a
facal surface, nr a focal line or a focal point, The field near d:ffracted ray caustics can he descrihed
with the help af the equivalent current method (FCM) (78,47 5n which the 6T 1ndirectly pravides the
strengths nf these equivalent currents that radiate fields at and near the caustics, Away from the
caustics, the FM ysually reduces to the GTD,  The ECM can in general he used provided the 60 shadow
boundaries and caustics do nnt overlap, In the Tatter situatinn, FCM could in some cases still he used
byt only after significant modification: alternatively, the phy<iral thenry nf diffractinn (PTD) can he
employed, The PTD was introduced hy Ufimtsev [1N1 in the Soviet 'Inian at ahout the same time as Keller's
6D was introduced in the i1,S. The PTN requires an inteqratinn of the asymptotic HF currents an the
radiating/scattering hody. 1f the PTN integrals can be evaluated asymptatically autside the conflyence af
30 shadow boundary and caustic regions, then it generally reduces to the (TN, However, 1n some special
instances, the GTN can he made to work without resorting ta FOM or PTD despite a presence of a confluence




gy

Ry

of caustic and GO shadow boundary transition regions. Away from the special regions where it may he
necessary to use ECM or PTD, it is natural to employ the more efficient ATD/UTD which unlike the ECM and
PTD requires no integration (111,

These notes will deal mostly with the diffraction by perfectly-conducting surfaces in free space,
The GTD formulation is presented after briefly introducing the concept of wavefronts, rays
and GO in Section Il. Next, the UTD is discussed and UTD expressions are given for the two main
diffraction mechanisms; namely, for edge diffraction and diffraction at a smooth convex surface. fther
UTD solutions are not included due to space Yimitations. Finally, a few examples ilisutrating the utility
of UTD to analyze radiation and scattering problems are given in Section ITI. An ejwt time dependence is
assumed and suppressed in the following development.

I1. THE GTD AND ITS UNIFORM VERSION -- THE UTD

The basic ideas of wavefronts, rays and GO are hriefly reviewed at first. Diffracted rays which
exist in additifon to the GO rays are discussed subsaquently.

A. Vavefronts and Rays

A wavefront is an equiphase surface. The connection between wavefronts and rays can be made in
several ways, One such procedure which is based on the method of stationary phase is described helow.
Let E(F') and H(r') refer to the electric and magnetic field intensities at any point *' on an equiphase
{or wavefront) surface S. The electric field E{r) at a point P ahead of the wavefront is provided hy the
equivalence theorem as:

) -5kR
- k2o . . L - - e
E(F) = {f ds' rm 1R x R x Js(r') + YR x Ms(r')] R {1\

in which the equivalent electric and magnetic surface current sources Jg and ﬁs, respectively on S are

JS(F') =n' x H(F'Y ; s(F') = E{r*) x n' . 2a,7M)

The quantity Z0 denotes the impedance nf free space, and Vo=(lo)'l. Also, k represents the wave number of
free space. The vector R and the unit normal vector n' to the surface S at r' are shown in Figure 2

Consider a rectangular coordinate system chosen for convenience so that the x and y axes are tangent

to the wavefront at 0, and 0P = ;|5F[ as in Figure 2. 1t is noted that n'sz at 0. It is generally true

that there is at least one point 0 on S so that 0P = n' 0P however, for the present development it is
assumed that there is only ane such point 0, [f there are more points on S with the above property such

that the n' directions from those points intersect at P, then P is said tn he a focal or caustic pnint,

From the principle of stationary phase as described for example hy Silver 121, the e-JkQ within the
integrand of (1) oscillates rapidly for large k to produce a cancellation (destructive interference)
between each of the spherical wave contributions to P which arise from the different elemental sources on

ds' over S that do not lie fn the immediate neighborhood of 0; whereas, FRELS changes slowly for the
spherical wave contributions to P arising from the elemental sources on ds' that are in the immediate
neighborhood of 0 and thereby provide a constructive finterference to P, Thus, at high frequencies (or
large k), the dominant field contribytion to P comes from N an S; this point 0 is called the "statinnary
point." Without details (which can he found in T127), the stationary phase evaluation of (1)} yields the
following contribution from the stationary point:

Epy - by /s 2B ks 1P| =5 (3
I (ol*s) (0205) e ' :

The expression in (3) describes the continuation of the field at 0 to the field at P along the highly
Tocalized or “ray" path UP; the field T(P) fn {3) is thus referred to as a ray optical field. Figure 3
shows a ray tube interpretation of the energy transport along the central ray OP as indicated by (3), The
o1 and pp in (3) refer to the principal wavefront radii of curvatures at 0. From Figure 3 one notes tnat
the energy flux crossing the area dA, of the wavefront at N is given by |E(0)12 dA;, and likewise, the
energy flux crossing the area dAp of the same ray tube is IEYP)?ZdAp. Stnce dAge(pydiy}(ppdvp) and
dAp-?(plos)dwl (ofos)dwféf it 1s then clear that conservation of energy in a ray tube, which in turn

P

[
requires that ]fto) 2dA,= Y|2dAp, leads to

p1 P2 y
(oy+s)(0yts)

HEEREGIN . ()

which fs automatically fmplied in (3), The field E(P) at P has the same polarizatfon as the field E(0) at
0 hecause the ray path is straight in a homogeneous medium, The field intensity in (3) hecomes singular
when s=-lp1| or s=-|pp|; these points on the ray path are marked (3-4) ard (1-2) in Figure 3, and they are
referred to as ray caustics, The actual field s not singular at the cacstics; clearly the simple
expression in (3) {s therefore not valid at and near the caustics even though it 15 asymptotically
accurate away from the caustics. The distances py and oy are also referred to as caustic distances. The
distance s is measured positive in the direction of ray propagation. The caustic distances py and op are
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positive if the caustics occur before the reference point N as one propagates along the ray; otherwise,
they are negative. 1If p) and py are positive, the wavefront is convex; if they are negative, the
wavefront is concave. 1f one of the radii (py or p3) is positive while the other is negative then the
wavefront is saddleshaped. If o) and pp are negative, and if s>-[pj|, or s>-}og|. then a caustic is
crossed at (3-4) or (1-2) in Figure 3, respectively so that [(py)/{p1+s)) or [(p2}/(ps+s)) changes sign
within the square root of (3). The positive hranch of the square root is chosen in (§) s0 that

} 0
/;%_(;:'/:%—S_ |eJ["/2} . if (pis]:ﬁ . (5)

and p=p) or pp, Thus, a phase jump of /2 occurs at each causting crossing.

The field in (3) is sometimes also referred to as an “arhitrary" ray optical field sinca oy and o9
can he "arbitrary." The geometry in Figure 3 is referred to as an astigmatic ray tuhe or a quadratic ray
pencil hecause of the quadratic wavefront surface approximation at 0 that is used in the stationary phase
approach leading to {3). It is noted that if p] and o5 become infinite, then the field in (3) is that af
a plane wave. 1If oy or op become infinite then (3) is a cylindrical wave field. Also, if oy=0y (=finite
value), then (3) is a spherical wave field. Thus, plane, cylindrical, spherical and even conical wave
fields are special cases of an arhitrary ray nptical field; clearly, it follows that esach of these fields
is also ray optical,

Since the wavefront surface S in Figure 3 can he associated with either an incident, reflected or
diffracted wave, the field expression in (3) therefore applies equally to incident, reflected or
diffracted rays. The field is polarized transverse to the ray and the wavefront at P is “locally” plane
if ks is sufficiently large (as is assumed to be true in the stationary phase evaluation leading to (3));
alsn, the local plane wave relation hetween T and W holds, namely:

HP) = ¥ s x E(P) 16)
or

E(P) = - 25 x H(P) (7

in which s = 63/153| is the ray directinn,
8. The GO Field

The N field is a ray optical field. The incident 60 field is assnciated with rays directly radiated
from the source to the field point, When such an incident ray rongruence strikes an ohject, it is
transformed into a reflected ray congruence, Since the present notes deal mostly with scattering by
impenetrable ohjects, there are no transmitted or refracted rays produced 1a this casa, The incident and
reflected G0 rays satisfy Fermat's principle which makes the incident and reflacted ray paths an extremal,
Consider a plane wave incident on a perfectly-conducting wedge or a smonth convex surface as shown in
Figures A4(a) or 4(h). The incident rays are partly hlocked hy these surfaces creating the sn-called
shadow znne where the incident ray nptical field vanishes, The incident shadow houndary ISR in Figure
4(a) and the surface shadow boundary SSR in Figure 4(h) divide the reginn of space surrounding the wedge
and the convex surface into a 1it zaone and a shadow zone,

[t is important to note that unlike the cnnventional incident field which is defined to exist in the
ahsence of any scattering ohjects, the G0 incident ray field exists in the presence of any nhjects that it
might illuminate. 1t is for this reasan that the R0 incident field hacnmes discontinungs across the
shadow houndaries ISR and SSR in Figures 4(a) and 4(h), Nn the ather hand, the conventinnal incident
field would not he discantinuous anywhere outside the source region which produced that field.

Henceforth, the GO incident electric and magnetic fields will he denoted hy ¥} and Hi, respectively.

The field of the (0 reflected rays that are produced by the illuminated wedqe in Figure 4(a) is also
discontinuous, In particular, the reflectinn shadow boundary (RSR) delineates the reqions of existence
and shadow for the reflected rays in Figure 4{a); whareas, the incident and re“lectinn shadow houndaries
ISR and RS4 merge into the SSR for the convex surface in Figure 4(h),

Cansider a general problem of reflectinn where an arhitrary 60 incident ray nptical field illuminates
a smoth, parfectly-conducting curved surface, The astigmatic incident ray tuhe assnciated with the

incident ray in the direction s' 1s shown in Figure 5, This incident ray sirikes the surface at ﬁR to
produce a reflected ray in the direction ", The astigmatic reflected ray tube associated with the

reflected ray from OR is alsn shown in Fiqure 5, The field Er(D) at O whice is reflected from 0R can he
written via (3) as:

E(p) = Ty ets ()

r r r r
(ol +s) (°2 +s)

-r -r
It is noted that F (P) in (R) is given in terms of £ (fp) at the point of reflection na. Thus, the
reference potnt 0 in (3) correspands to the point g in (8). The caustic distances o1" and oo™ assnctated

with the reflected wavefront are shown in Figure 5 alang with the reflected ray distance s© from Ng to P,
The value of TT(0p) fs related to the incident field F‘(On) via the houndary condition
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nx (B0 + EM0) =0 . {9)
Here, n is the unit normal vector to the surface at Qp. It follows from (9) that

Flog) =R - Tog) - (10)

where R is the dyadic reflection coefficient of the surface at Or. Incorporating (9) into (8) yields

r r
P 0 r
LT s (an

NPy = E(0y) - R
rrr.r
OI*S 02*5

=r
The reflected magnetic field H (P) is found easily from (11) via
ey~ v s x Ty (12)

It is convenient to express Ef(QR) and Er(P) in terms of the unit vectors (e:,el) and (e:.el) which are

fixed in the incident and reflected rays, respectively, as shown in Figure 6, The e:.el and s are

mutually orthogonal; likewise, ;:,; and ;rare also a mutually orthogonal set. Furthermore, e: and e: 1

1

in the plane of incidence defined by ;i and n at OR. As a result of Fermat's principle, ;r also lies in
the plane of incidence and 81=er in Figure A, Thus, if

Ehg) = elag) el v El(oy) e (13)

R R F LVRT FL

and

cr r or Frovs

£ (r) = Ey(Pley + EL(P)el (14}
where ;l=;1.r X ;:,r , then R in {10) subject to the boundary condition (9) becomes

R=el o™ R +e e R iR =7l (15)

i 1 h LTL s ﬁ ¢

In matrix notation, the ahove R can he written as

Ry 0 1 o

h
= (16)
0 R 0 -1
Therefore, in matrix notation, (11) becomes

— - - SRS

e"(P) 1 0 £.(0) rF
! - 1R 1P jes” (n
£5(p) 0 -1 | | ENoR)) Y (efes ohrs")

The caustic distances or the principal radii of curvature of the incident and reflected wavefrants which

are denoted b (o{.o;) and (p:.o;). as well as their principal wavefront directions
are given in (131, ~ -

It ts clear that the /0 representation of (11) fatls at caustics which are the intersection of the
paraxta) rays (associated with the ray tube or pencil) at the lines 1-2 and 3-4 as shown in Figure 3,

Upon crossing a caustic in the direction of propagation, (a"rbs"r) changes sign under the radical in

and a phase jump of ¢x/2 results as explained earlter., Furthermore, the reflected field £ of (11) fatls
in the transition region adjacent to SSB of Figure 4(h). It fs important to note that near the SSR {i,e,,

as B'ow/Z). p: and o; approach the following limiting values:
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9
D *9%) 0y . (182)
2 for 8' » u/2

A 180)
Pl Py (
wher. “g(OR) is the surface radius of curvature in the plane of incidence at OR' and o; is the radius of

curvature of the incident wavefront in the (t,G) plane (i.e., in the plane tangent to the surface) at 0y

for 8 »n/2, Furthermore, the principal directions X; and i; of the reflected wavefront approach the

following values for grazing incidence:

Xp b (at 0p) , (19)
for 81 » n/2
X; = (-sr x X{) +n (at 0p) (20

: : X : N : 6
where t is the direction of grazing incidence at OR and b=t x n at 0. The total G0 electric field E’0 at
PL in the 1it region is the sum of the incident and reflected ray optical fields; hence,

ol ol r
E(PL) ~ EV(P) + EN(ng)e R 17 ek, (21)
( . r) rer
p1ts Mop+s')

In summary, it is noted that the G0 incident and reflected fields are discontinuous across their
associated shadow boundaries such as ISB, RSB, and SSB in Figures 4(a) and 4(b). The failure of G0 to
account for a proper non-zero field within the shadow region behind an impenetrahle obstacle can he
overcome through the GTD and its uniform versions. Nevertheless, G0 generally yields the dominant
contribution to the total high frequency fields, and it constitutes the leading term in the GT9 solution.

The reflected GO field Er(PL) for the two-dimensional (2-N) case can he deduced directly from the 3-D
case hy allowing o; to approach infinity. Thus, one may let o; z orand o; > @ in (11) to arrive at the
2-D reflected GO field Er(PL) as

AN
ET(P) = E'(0y) - R /

-jks"
e . (92)
P8

in which the incident ray optical field E‘(OR) is now a cylindrical wave at g, and the caustic distance
of in (22) for the 2-D case is given by

1 1 2cos”tel
w2yt , 23}
o st eglty) {

where 81 has the same meaning as hefore, and s' is the radius of curvature of the incident cylindrical
wavefront at Og. If the cylindrica) wave is produced by a 2-N line source, then s! in (22) can be chosen
to he the distance from that line source to the point of reflection Op on the 2-D houndary. The quantity
og(OR) in (23) denotes the radius of curvature of the 2-D boundary at the point of reflection fg.

C. The Diffracted Ray Fields

The diffracted rays are introduced in the GTD via a generalization of Fermat's principle as stated
previously, Away from the point of diffraction, the diffracted rays hehave according to the laws of 6,
The initial value of the diffracted ray field is given in terms of a diffraction coeffictent, The
phenomenon of edge diffraction will be discussed first, and it will be followed hy a discussion on the
phenomenon of diffractfon at a smooth convex surface. The latter phenomenon is more complicated than the
first,

(1) Edge Diffraction

When an incident ray strikes an edge in an otherwise smooth surface, {1t produces diffracted rays
which lie on a cone ahout the tangent to the edge at the point of diffraction such that the angle 8,
hetween the incident ray and the edge tangent equals the half angle of the diffracted ray cone as shown in
Figure 1{a). This cone of diffracted rays is sometimes referred to as the "Keller cone," and it results
from the generalfzation of Fermat's principle to describe rays diffracted by an edge,
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Let an arhitrary ray optical field be incident on a perfectly-conducting curved wedge as shown in
Figure 7. The resultant total HF electric field E(P) at any point P exterior to the wedge fs given hy
£y = () + E%p) (24)

-G0
where the GO field component £ (P) is given as

90 = E pyu, + ET(P, . (25)

=i -r co.
The domains of existence of the incident and reflected ray optical fields £ (P) and E (P} are indicated
by the step functions U and !, respectively, which are defined as follows:

1, §f 0 <$ < a+g'
Uy = { (26)
0, if nep' < < nm

and
1, if 0 < < n-p’
Up = | (27
0, if 7-¢' < 6 < nu .
The azimuthal angles ¢ and »' are made by the projections of the directions of incidence and ohservation
on a plane perpend!cular to the edge at the point of diffraction Op. These angles are measured from a
plane tangent to the “0" face of the wedge at OE as shown in Flgure R, The plane tangent to the other
face of the wedge at 0Op is denoted hy "nm;" it is also shown in Figure 8,
The interior wedge angle is therefore given by (2-n)r. The expressions for the GO incident and

~d
reflected fields have been discussed previously. The diffracted field £ exists exterior to the werdge
(i.e., for 0 < § < nu), From (2), one may write the general field expression for theray diffracted in the

direction s from Op as:

e3(p) ~ E9(p,) . (28)

The diffracted ray tube corresponding to (28) is shown in Figure 7. The superscript "d" on o 5, and sd
denotes that these quantities are associated with the diffracted ray field component., In ordgf “ta relafe

Ed(P) to the incident field at the point of edge diffraction OE' ane moves the reference Po in Figure 7

to the point of diffraction OE on the edge by letting pq + 0 so that

d a.d
-d 02 -jks
E(P) = lim [ JEd Fd(Po)1 4 a4 e 0 (29)
od .0 (o *+ Moy +50) :

1
Since E (P) is independent of the reference point P , the ahove limit exists and it is defined as

v’g £9(p,) = E'(0p) - 0 (30)

"

40
where 5k = ﬁk(@,o',s ; k) is Keller's "dyadic edge diffraction coefficient” which indicates how the energy

is distributed in the diffracted field as a function of the angles ¢, ¢', and 5 ﬁ: also depends on n and
the wavenumber k., From {29) and (30), it is clear that
Pe d
K, . Pe ik
UTII gf(oE) o fig(0,0",8,5 k) 0oy + 51 © k™ (31)

where lim pz 3 0 (edge diffracted ray caustic distance), and likewise lim s: H sd. as shown in Figure
l’ 0 pdl* 0

7. (P) is potarized transverse to the diffracted ray direction sd since the field Ed(P) is ray optical;
thus, the associated magnetic field can be expressed as

ey ~ v, sd ey L (12)
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[f the incident field Ei(o ) exhibits a rapid spatial variation at . then an additional term referred to
as a slope diffracted fiels must he included in (31) to describe the diffraction effects accurately;
however, that slope diffracted field will not be described here. An expression for finding the diffracted
ray caustic distance o is given later in (43n).

It is convenient to express the dyadic edge diffraction coefficient 5: in terms of unit vectors fixed
in the incident and diffracted rays as follows. Let sl and e define an edqe fixed plane of incidence

s od - X . . .
where e is the edge tangent at OF. Likewise, let s and e define the edge fixed plane of diffraction,

The law of edge diffraction which defines the Keller cone is slee = sd-;. Let éo‘ and & he parallel to
the edge fixed pianes of incidence and diffraction, respectively as in Figure 8, and let”

Ay N g~
By =s x ¢ H 3p =S X b . (33a;33h)

Here, $ and ¢' point in the direction of increasing angles § and ¢', respectively, The incident field

El(OE) can then be expressed in terms of the triad of unit vectors (s'.sn,¢') fixed in the incident ray;

likewise, the edge diffracted field Ed(P) can be expressed in terms of (;d,éo_;) fixed in the diffracted
ray. Thus,

i ! E1' ~g
E Q) = B 8 o B (38a)
and
2oed ~od
Ed(P) =8y EBO + ¢ EQ . {34h)
Then
USRI
De = By 8D -6 4Dy . (34c¢)

The D;S and D:r can he found from the asymptotic solutions of appropriate canonical wedge diffraction
problems; they are given by:

x
-JZ .
" e ‘singy
Do (#:9'38.) = . (35)
& n/Znksing,

It is noted that the Keller edge diffraction coefficient in (35) heomes singular at the incident shadow
boundary (ISB) and the reflection shadow houndary (RSR) which occur when ¢=n+)' and p=n-p', respectively.
Thus, the result in (31) together with (34c) and (35) is not valid at and near the G0 incident and
reflection shadow houndaries. This deficiency of the GTD can be overcome via the use of uniform
geometrical theory of diffraction (UTD)., According to the UTD T4,57, the tntal HF field exterior tn the

-d
wedge is still given by (24) as in Keller's origfnal GT0; however, the £ in (24) and {31) is now modified

=K =
so that Dp of (31) is replaced by the UTD edge diffraction coefficient N so that:

I d
_d i - -jk
£) = F (0p). Tolss ¥y fot ) e e (363)
sd(oe+sd)

The Be in {36a) can also be expressed as

5e= “B8,0pg = & gy - (36h)

In matrix notation, (36a) hecomes

Ta . T
Ea I D ! ‘ Ee' q
es | ¢t 8.+  yoTTTTTTT N
I (] I . [\ Po E-Jks (37
d 1
E - E s {o +s )
l ¢ Deh‘ I ¢’

in which the Dgg and Ngp are [131:
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X -
S BT
. vlos lanat
L (6,8'38)) = ——— " | cot (1—;"°—] Fretta*(s-0'11 + cot (L%‘i—)] Frctta (-6
2n/Zrksingg ’
|
- +(o44") . . -
s % cat u;,.—°- FIL™a* (04911 + cot™ et £ (40911 } { (38)
(I
|

where the asymptotic large parameter kL (with the superscripts i, en, ro on L omitted for converience) is
required to be sufficiently large {(generally greater than 3) and

a"(8) = 2 cos? (— ) . (39a)
The N are the integers which most nearly satisfy the equation:

2neN” - g =t (39)

with

B =4t (39¢)

Note that n=2 for a half plane or a semi-infinite curved screen. Alsn, n=3/2 for an exterior right angled
wedge, etc.

+ - 3
For exterior edge diffraction N =0 or 1, and N =<1, 0, or 1, The values of N at the shadow and
reflection boundaries as well as their associated transition regions are given in Table I for exterior wedge
angles (1 < n < 2}):

TABLE 1
The cotangent is singular when vatue of N
¢ 9 . at the boundary
1

w+{9-9") $ = 4'-x, an ISR | +

cot (T ) surface 6=0 is shadowed N=0
r-(9-9') ¢ = ¢'+n, an ISB .

cot (T ) surface ¢=nv is shadowed No=0
nt(pte') é = (2n-1)n-4', an RSB +

cot (T 0 ) reflection from surface ¢=nn Nl
n-(p+") ¢ = n-p', an RSR -

cot (T, reflection from surface $=0 No=0

For a point source (or spherical wave) type iilumination, the distance parameter L 1s:

i_stsd
L = oTaed sin Go . (40)

in which s and s? are the distances from the point of edge diffraction at ¢ to the source and ohservation
points, respectively. 0Only for a straight wedge with planar faces that is itlluminated hy a point source,

i d
ro rn i1 S S 2
L7 =L =L =;r:s_,{sin 8o (41)
as in (4D). For an arbitrary ray optical illumination which is characterized by two distinct principal
wavefront radii of curvature. pl and p;. the ahove L' must be modified as shown helow in the general

expressions for L™ anda L™ pertaining to a curved wedge; thus,
Tyt dy o 20 T
1 |” s%(o3+sT10]0ps1n 8
t A Ady e, ; (422)
_ D;(O{*Sd)(oé*sd) | at ISR
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Ty r,dy rr -
s7(o+sNogo5stn s l

P I . .4
_ p;(n;*sd)(o;+sd) _J at RSB

(42n)

Here, L™ and L™ are the values of L™ associated with the "0* and "n" faces of the wedge, respectively,
Furthermore, of is given by:

11 2(neng)(s'en)
= 7 . (43a)
% Pa a sin Bo

Also pg in (36) is given by:

- ne-(s‘-sd)

A1 fetls s )
o 1 2 (43h)
e oe a sin Bo .

The unit vector n is defined in Figure 8(b); whereas, o is a unit vector normal to the edge which is directed

away from the center of edge curvature at 0., The radius of edge curvature is denoted by "a" in (43}, 91 is
the radius of curvature of the incident wavgfront at OE which lies in the edge fixed plane of incidence. "In

the far zonezwhen sd>>o; 2 Sd>>p; 2 and sd>>oe then the L' and L in (42a) and (42b) simplify ta

P1p2 sinc8, ! *
L = "‘j;"—'f“— in which the appropriate superscripts on L, oy and py are omitted for convenience. It is
noted that L1 and LT in (42a) and (42b) are calculated on the appropriate shadow houndaries. The transition
function, F which appears in (38) contains a Fresnel integral: it s defined hy

- ~jte
x j dte T . (44)
e

X

F{x) = 2j'x &
A plot of the above F(x) is illustrated in Figure 13. 1In (48}, /x = |VX] if x>0 and /X = -j IV/X] if x<0. If
x<N, then F(x) " F* (|x]) where * denotes the complex conjugate. Fxterior to the (égg) transition regions
X
x becomes large and F(x)+1 so that the uniform nea in (38) then reduces to Keller's form as it should; namely,
e

- -k
De » Dg, outside the transition region, (45)

Near the {ISB and RSR) boundaries, the small argument approximation for F(x) may he employed (since x = o an
ISR and RSB); namely, one can incnrporate

n
F{x) » /ix e J(F *+ x} (46}
X+0

-d
into (38) to arrive at the following result for the diffracted field £ at ISR or RSR:

. continuous
fﬂ =131 Ej'r + {higher order) .
ISB;RSB |7 terms
(an
on 1it side of ISR;RSB
if {

on shadow side of ISR;RSR

The ahove result in (47) ensures the continuity of the total HF field in (24) at ISR and RSR, The field
contribution arising from the edge excited "surface diffracted rays" is not included in (24); it may He
tmportant for observation points close to the surface shadow houndaries (SSR) assoctated with the tangent to
the "0" and "n" faces of a curved wedge at Np if the "0" and "n" faces are convex hnundaries. The result in
(36a) and (36b) along with (38) is valid away from any diffracted ray caustics and away from the edge caustic
at O,

For grazing angles of incidence on a wedge with planar faces, Nag = 9, and Ny must he replaced 4y (1/?;
Den. The reason for the '/p factor in the latter case is explatned as follows. The incident and reflected G0
f?elds tend to combine into a single "total incident field" as one approaches grazing angles of incidence;
consequently, only half of this "total field" illuminating the edge at grazing constitutes the incident f0
field while the other half constitutes the reflected GO field. The case of grazing angles of incidence at an
edge tn a curved surface cannnt he handled as easily as the case of ? wedge with planar faces, Presently, ane

2 1173
can only treat angles of incidence that are greater than l_ﬁag[nii | where oo (Ng) ts the radius of
curvature of the surface in the direction of the incident ray at the point of eage diffraction Of,

Py e e e e e e i e e e
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Under the ahove restrictions, the result in {3R) for Ngg simplifies in the case of a plane or curved
screen (n=2 case) to ei
n
_Jz
D _(t.0',8 ) = = — '_sec’l:zilkaLia(o-o')1 3 sec'ﬁiﬁl]FrkLra(o*o')1i| (48)
es 3970850 = a/7nk sing = v ? -2 ;
e

where a(8)=2 cos2(8/2) and LisF are in 42a;h) with the understanding that L™ is evaluated at the RS8
correspanding to the face which is illuminated; hence the superscripts “n" and "n" in LF ara drapped for this
n=2 case.
-d
The edge diffracted field £ (P} for the 2-D situation can he ohbtained from (36a) hy allowing o, t1
approach infinity and by requiring 8y = "/ thus, for the ?-D case,

ive
e-JkS

fdipy - F N N -
ET(P) = ET{0g; « D (3,0" ,1/2: &) = . 149}

The Dg in (49) for the 2-N case is available from (36a) and (360) with 3,22 (or sind, = 1), Alsa, 1! for
the 2-N case is given by (41) with 3,5 = 7/2; in particular,

] si ¢d
= (50)

Likewise, L is obtained from (42b) with 3 = n/2, o] » =, oy 2 o' ‘a5 fa (72)1, and o] es: therefore, in the
2-D case, .

Ve — . 151)

Note that p® in (51) is the same as the one in (23); however, p is in general different far the “N" and “n*
faces of the wedge, with LFO and LM denoting the values of LT for these two different faces. While the
expression for LF in (42b) is fixed to its value on the RSB for convenience, the one in {51) can he evaluated
as a function of the observation point with almost the same ease as if one had approximated the value of Lf n,
its value at the RSB, The values of L1 and LF for the 3-D case involve various caustic distances as is
evident from (42a) and (42h). These distances are generally slowly varying within the ISR and RSR transitinn
regfons and it is therefore convenfent to dpproximate L¥ and Lr thraughout the transition regions hy their
vatues at the ISR and RSB as done in (82a) and (42b). Outside the respective transition regions, the F
functtons containing LV and L™ approach unity anyway unaffected by the ahove approximatinn,

It is noted that the comment helow (47) in regard to grazing incidence is also valid for the 2-N case,

= =k
It is further noted that the essential difference hetween Ne and Dg is that the former is range dependent
whereas the latter is not. As a result, (36a) is not ray optica) within the ISR and RSR transition reginns;

= =k

exterjor to these regions, N, + Dy as indicated before, Figure 9 illustrates the diffraction of a plane wave
by a perfectly-conducting ha?f-plane. It is noted that the geometrical aptics field is discontinuous;
however, the UTD diffracted field cancels the GO discontinuity to yield a total "TD field which is
continvous,

(i1) Diffraction at a Smooth Convex Surface

The genmetry for this grohlem of the diffraction hy a smoath convex surface is shown in Fiqure 17, The
total high frequency field E(P) for the situation in Figure 10 can he written as

-i - -
£p 0+ TP 0+ EYP Y L 4F P = B i the 14t zone.
L L L L 151

3 (PY M1 -1 o 1f P = Pg {n the shadow zone.

E(P) =

-1 -r
The fncident and reflected fields £ and £ are associated with the incident and reflected G0 rays shown in
Figure 11. The step function U in (52) is defined helow with respect to the surface shadow houndary (SSR)
as:

1, 1n the it region which Tfes ahove the SSR
Y =

0, in the shadow region which lies helow the SSB, , (53

-d
The surface diffracted field £ (Pg) follows the surface diffracted ray path into the shadow region, as in
-d
Figure 11; whereas, the field E (P_) which is diffracted into the 1it region follows the reflected ray path
-1
{of £ ) 1n this solution. Therefore, it is convenient in this problem to comhine the GO reflected field

-r -d =qr
E (PL)Y and the diffracted field E (P)) tnto a single “generalized reflected field", F (PLIY in the 11t
regtan so that (52) becomes

o M ] e
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E'p U + E9P U, if P =P in the 1it zone,

U ' (54)
E (P M1 - M , if P = P in the shadow zone.
{ H s
The fields Fgr(PL) and EA(PS) are given symbolically by
r i - - “i=r £ ks

00 ~ € op)eRresey +Rpeel) /P12 e (55)

(9{05’)(9505")
e(05) - £ (01)- Do ing +Lhogns ] o, ks (561

s) ~ 1)+ [@sbih2 +4niny - .
’ sd(os*s;)

where the points 0, and Q,, and the distances s" and sd are indicated in Figure 10, The surface diffracted
ray caustic distance o 18 shown in Figure 11, The quantities within brackets involving X% andjz in (55) and

h
(56) may he viewed as generalized dyadic coefficfents for surface reflection and diffraction, respactively,
It is noted that (55) and (56) are expressed invariantly in terms af the unit vectors fixed in the reflected

and surface diffracted ray coordinates. The unit vectors e:, e:, and e, in {55) have heen defined earlier in

connection with the reflected field. 1t can be shown that cross terms actually exist in the ahove generalized
dyadic reflection coefficient; hut, in general their effect is seen to he weak within the SSR transition
region, Also these terms vanish in the deep 1it region and on the SSR, hence they have heen ignared in (6§),

At 01. Tet ty he the unit vector in the direction of incidence, ny he the unit Jutward normal vector to

the surface, and bl =ty oxnys 1ikewise at 0?. let a similar set of unit vectors (t,, n,, h,) he defined with

t, tn the direction of the diffracted ray as in Figure 12, In the case ;f surface rays with zero torsion,
hl = bz. It is clear from Figure 11 that Py in (56) 1s the wave-front radius nf curvature nf the surface

diffracted ray evaluated in the h, direction at 0,. First, the TN expressions for X, and D in 56 and
(56) will be given betow; it will“be shown that taese expressions are valid within thé BransitiaR reginn
adjacent to the SSB, Subsequently, it will he shown how these expressions automa*irally simplify outside the
SSB transition regfon to reduce to those ohtataned hy Xellar fn his 5TN representa*in, The in

(55) and (56) are 14,151: S,h ANTES

-jx/4

L - _ -
T V/E§~ e, { ¢ v r-r(hy1 + o ey
£ | 2/ & : |

, for the 13t region

5T

- Lo B R
B, -1 /7 e N VA
h /iy Im(07) vV T-F(xd)7 + pg () | 4n (077 . for the shadow reginn

_ /vy g B
{88
TABLE It
" Teros of the Airy Functlon | ~Zeros of the Nerfvative |
- of the Afry Function ;
Aﬁ(-qp)-o A1'(-ap\ =N ;
q) = 2.33811 51 = 1.01879 |
gy * 8.MA795 q, = 328820
Ai'(-q;) = 0,7012) Ai(-&l\ = 0,53666
Af'(-q,} = -0.80311 Ai(-&?) = -n. 41902

The function F appearing ahnve has heen defined earlier in (44), The Fock type surface reflection function

~ soft p*
Pa is related to the (p,pq) Pekeris function (44) by
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1 LA T
- p*(8) -Jg e (59a)
Ps(8) = VY
h q*(s) . (Note that 5=0 at SSR) {59}
where p* and q* are finite and well hehaved even when §30: these universal functions are plottad in Figures
13, 14 and 15. Also,
2
e'ja - 1 » soft case {A0a)
~ = OV(t) _; ~
P(s) = = [drT e g,
ﬁ - OHZ(I) 3
3t , hard case (Ah Y
in which the Fock type Airy functinns V{r) and Wy(r) are
1 s s
2V0e) = W {e) - Hole) 3 W le) == | at "t [61a:610)
1 2 1 g : |
- o-d2n/3
- e
= it-t?/3
Wo(e) = & | jowsy dt e . {81c)
@
The rest of the quantities occurring in (57) ana [58) are:
I"vp (3] 13
L i % . om(t") e
£ = 2m{Dy)cos6’ ;£ = }“ at’ SoteT mie) = ) 5T 162:53:68)
1
0 ?
2.0 L 2.4 4kt (5)
t s /0 at PO = AL eose L XD = TR0 - (65:66:67)

1
The quantity Pg (0g) tn m(0R) denotes the surface radiys of curvature at g in the plane of incidence;

whereas, og (0;) is the surface radius of curvature at 0; in the t; direction, The dt' in (63) and (65} is an

incremental arc length along the surface ray path, The angle of incidence 81 is shnown in Figure 6.

Alsn, the dn(%)) and dn(02) in (58) denote the widths of the surface ray tuhe at N and 0y, respectively; the
surface ray tube is formes hy considering a pair of rays adjacent to the central ray as in Figure 11, ¥he
geadesic surface ray paths are easy to find on cylinders, spheres, and cones, For example, the geodesic paths
on a convex cylinder are helical; whereas, they are great circle paths on a sphere. Fnr more general convex
surfaces, the gendesic surface ray paths must Se found numerically. The distance parameter L in {66) and (&7}

is given by

i t
01101) a;(ﬂ‘) s{og (0))#+s)
SR UR P TP (U N P B U R (58)
where:
B ,sf sd | ) 1(0 Y« incident wavefront radiys of curvature (590711
7 fssa 55R o in the b dfrection at 7). I

r
The distance s in (68) may he ohtained hy projecting (:d) on the SSR if the ahservatian pnint within the

{ "to )} side of the SS8 transitinn region does not move in a predatermined nanner, If the ohservatinon point
m8089 Ycross the SSB 1n a predetermined fashion then ft {s clear that s in (68;69) can de Ffaund unamhiquously.

The o;(ol) and o;{ol) in (68) denote the principal radii of curvatiure of the incident wavefrant at 0[. and

i, which is defined in (70}, has heen introduced earlier in (18h), For the special case of poiat source or
sBherfcal wave illumination, the L in {A6) and (67) simplifies to:

s's

L= 5'+s .

for spherica) wave illumination, (1)

where:

vt s o P | . distance from the paint source to the 72
$TE (°l(01) 92{01) °h(ql)) potnt of grazing incidence at 01. t2)

In the case of plane wave i1lumination, §' + = and hence (71) ahove simplifies to:




> - -

L =s , for plane wave illumination, (73)

1f the incident wavefront is of the converging 01 < 0, or converging-diverging (o‘ a N 0} type,
then the parameter L in (68) can hecome negative. It ngs not heen fully investigated how the gegeral
solution can he completed if L hecomes negative, 0n the other hand, if one of the principal directionc af the
incident wavefront coincides with one nof the principal planes of the surface at grazing, then one can treat a

converging, or converging-diverging ({saddle) type wavefront for which L<0, hy replacing F{KL'd) with
F'(IXL'dl). Note that the asterisk nn F* denotes the cnmplex conjugate operator., The use of F*(|XL‘4|) when
L<0 leads tn a continunus total field at SSB in this case.

The above UTD result remains accarate outside the paraxial {i.s, near axial) regions of quasi-cylindrical
ar elongated convex surfaces; a different solutinn is required in these regions and it has not yet heen
completed, It is assumed that the source and ohservation points are not too close to the surface. Also, it
is assumed that any caustics of the incident ray system are not too close tn the surface. Furthermore, the
amplitude of the incident field is assumed to he slowly varying at 0, and 0,; atherwise, it is necessary to
add a slope diffraction contribution. The UTD soluytian described above rematns accurate if ki and m are
sufficiently large. Typically kL should he larger than 3 although in some cases kL can bhe made smaller, Also
m should “e such that 7m?>5 or so; however, the results generally lose thefr accuracy slowly as 2m? becomes
smaller, It is noted that the angular extent of the SSR transition region is of order ,-1 radians,

A surface diffracted field of the type Ed(Ps) can alsg he present in the lit zone if the surface is
closed; this may he seen hy noting that the field of the type g can propagate araund the clased surface.

Also, additinnal contributions to fd(P } can he present in the shadow zone for a closed surface because
surface diffracted rays can he initiatdd at al)l points of grazing incidence an that closed surface;
furthermore, these surface rays can undergn multiple encirclements around the clnsed hody., However, these

additional surface diffracted ray contributions are generally quite weak in comparisnn to the F97 contribution
within the lit zone for surfaces which are quite large in terms of the wavelength; hence their contribution
may he neglected in such cases.

The parameters EL, £, XL and Xd hecome small as nne approaches the surface shadow boundary, SSR, from
both the lit and shadow regions. As one approaches the S8, the small argument limiting form of the
transition function F(X) which has heen introduced previously in (44) hecnmes helpfyl for verifying the
continuity of the total high frequency field at the SSR, fin the ather hand, the ahave parametars hecome large
as one moves outside the SSB transition region; in this case F{X)»1 for large X, and likewise,

~ FEETS!
R S T (18)
h 5¢<0
j5n/6
’ » jn/6 5q e
e A N e
G TR L AR
-~ n= n
P (3} = J (75
k §>>0 ! - -j51/6
! _jn/a jn/6 sqne
' e y e e
\ o )

et 2Ta MAi(-q, )2

where N = 2 is generally sufficient to compute 35(5) accurately far $>>0 in (76}, In (75) and Tanle 11, the
h d . .
Miller type Airy function Ai(t) = V(t)//7, and Ai'(1) = g~ Ai(r), Thus, upon incorporating the limiting
values of {74) and (75), which are valid outside the 558 fransition reginn, intn {57) and (SR} and replacing
F(X) by 1t's asymptotic value of unity, it is clear that g feduces to R =3 1 outside the SSR transition
- - - h h
region so that Egr(PL\ . e'(PL\ of G0, and likewise r_"(vs\ . r;'(vs\ therein, respectively, in which the Keller

surfaced diffracted ray field ES(PS) is given hy 3]

- - = /an(0y)  / og q
d i k B [ S A Aniditint 54 LOs o -jks
E (s} ~E(D)) T (01.02) e dn(f)z) sd(o NCH e (76)
S

;kfol.oz) = ! ﬁ‘ 62 Ts + ;1 ;7 h . (17
where - 0 -
2
~ DL R
0
. i ! of 178)
Tﬁ “Z‘ 0" (01) e n (07) .
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The Di and = 8 are the Keller's GTD diffraction coefficients and attenuation constants for the a'™ snft /5) or
n n

hard (h} syrface ray mode. Thus, in the GTD, the surface ray field consists of surface ray modes which
propagate independently of one another, Also, this surface ray field is not the true field on the surface; it

is a houndary layer field, The Da and « i are given by:
n n

) I e-j(w/l?)
s
Dy (M) = \/m m{Q) [ (g 12 : 7931
n
-j(=/12)
L 2 /1 e
(Dp(0)] =V 27k ™) — T, (7903
AnA1{-qp)
and
s n PRILTLY h an i (776
«, (0) = Sl m{0) I () m(0) . (40 ;3061

In {79) - (80), Q is any point on the geodesic surface ray path, The GTD result of (76) in terms of 177} and
{78) is not valid within the SSR transition region.

The UTD result for the 3-0 configuration can be simply modified to recover the carresponding 17D resylt

for the 2-D case by allowing the caustic distances 9; and p_ in (55) and (56) to receed to infinity., Then,
Tet

r r

oz ol ifo] +eando v (81)
so that

r 1 2. oce s e kst
8Py ~ El(0g). (Rs e e + Ry e, 0] [ o e J (82)
Dr,sr
in which of is as in (23), and
a n PO aef
e~ o). Oshs e Ona a0 (4
/sd

since (51 2 h2 : b for the 2-N case (note: 6 = ;1))‘ The }?s and 135 in {82) and (83) are as defined earlier,
h h

respectively, only the L appearing in (66) and (67) is given by

5'sd
= sresd ., for the 2-D case, (R4}
where s' {5 the distance from the 2-D line source to the point of grazing incidence at 01 and s = sd as
1SSR

before. A comparison of the UTD and GTD solutions for a 2-D circular cylinder illuminated by a nearhy line
source is illustrated in Figures 16(a) and 16(h); those UM solutions are then compared with the
corresponding exact (Eigenfunction) solutions in Figures 17{a) and 17(b).

11, A FEM ADOITIONAL UTD SOLUTIONS AND SOME APPLICATIONS

In addition to the hasic UTD edge and convex surface diffraction solutions described above, UTD solutions
for some other canonical shapes also exfst; however, the latter are not descrihed here hecause of space
limitations, UTD type solutions for the radiation and mutua) coupling associated with antennas on a smooth
convex surface are given in [16-197; also, an approximate vertex diffraction solution may he found in
[5,11,207, A result hased on a recently obtained approximate UTD solution for the field scattered by a fully
11lyminated, semi-infinite, right-circular perfectiy-conducting cone 211 is shown in Figure 18, Also, UTD
results for the 3-0 diffraction by a penetrable dielectric/ferrite strip in Figure 19 hased on the work in
[227 are shown in Figures 20 and 21, for parallel and perpendicular polarization of the incident field,
respectively, [t {s noted therein that even though the incident fields are TE, or ™,, the scattered fields
are not simply TE, or TM; due to a coupling hetween the two which is introduced hy the dielectric edge when
2'#x/2, Finally, Figures 22 and 23 shaw the application of UTD to deal with more realistic shapes 723,241,
The ogival shape fn Figure 22 has a ctrcular duct on ft. In Figure 23, the afrcraft fuselage is modeled hy a
best fit prolate spheraid near the antenna locacion, a more recent catculation employs a composite ellipsoid
fuselage model 1251,
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SINGULARITY EXPANSION METHOD: TARGET RESONANCES

Michael A. Morgan, Associate Professor, (Code 62 Mo),
Naval Postgraduate School, Monterey, CA 93943 USA

SUMMARY

A unified treatment of the natural mode representations for induced currents and
scattered fields is described using elementary concepts of causality and superposition.
The transient back-scattered field is shown to have the form of a constant coefficient
exponential series only in the "late-time®”, after the last directly driven response is

received from the scatterer. Prior to this, the "early-time* response is found to be
due to both the direct physical optics fields as well as a sum of modulated natural
modes. Practical implications of this result, regarding aspect-invariant target

classification using natural resonances, are discussed.

INTRODUCTION

A major impetus behind the development of the singularity expansion method (SEM) by
Baum in 1971, [1], was the need to predict electromagnetic pulse (EMP) excitation of
complex electronic systems. Efforts since then have, for the most part, considered the
numerical solutions for induced current natural modes and their associated coupling
coefficients for systems of increasing coumplexity. Very little quantitative analysis was
performed with EMP related efforts in extending the SEM description to the scattered
fields. It was conjectured by Baum [2]), and others, that the scattered field could be
described by the usual exponential series plus a possible complex plane "entire” (fully
analytic) function. Until recently, even the SEM description for induced currents has
been a controversial and often confusing topic. Articles by Michalski {31}, and others
have clarified the alternate SEM representations for induced currents. Heyman and Felsen
(4), have even developed a hybrid representation for induced currents and scattered
fields wusing both geometrical diffraction theory and natural modes.

The natural mode representation of the SEM has been more recently emplioyed in the
framework of electromagnetic system identification, particularly in the centext of non
cooperative target recognition (NCTR). The complex values of the natural resonance
frequencies of the current distributions which can be induced on the scatterer are
dependent upon its physical composition and geometry, while being independeat of the
aspect and polarization of the incident field. This has led many researchers to believe
that a viable NCTR technique could be based upon the identification of the natural
resonance frequencies contained in the scattered field echo signature. Having no
comprehensive guide as to the exact SEM discription of transient scattered fields, early
proponents of natural resonance NCTR usudally assumed a simple complex exponential sum
model for the echo signature. Several methods exist for extracting the complex natural
resonances from this model. Most of these techniques are variations of the classic
Prony’'s method (circa 1795), which has been resurrected and improved upon by Van Blaricum
(5] and several others.

As will be shown, the simple exponential series model, which is known as a “"class 1"
SEM representation, does not provide a complete description of the transient scattered

field. In particular, the scattered field can be separated into two time segments: that
due to the driven current distribution, known as the "early-time"” field, and that due to
the undriven natural mode current distribution, known as the "late time” field. Only

the late-time field can be accurately represented by the class 1 SEM form.

If it were not for the noise and clutter pollution of the received echo signal, it
would be a simple matter to base NCTR only upon the late-time portion of the scattered
field. Unfortunately, in many cases of practical concern, only a small percentage of
the total scattered signal energy remains in the Jate time portion. This condition may
thus result in a much reduced signal to noise ratio (SNR) in the class | portion of the
signal. Compounding this problem is the well documented intolerance of established
natural resonance extraction methods to low SNR. Typical SNR requirements for even
moderately accurate pole extraction is in the range of 15 to 20 dB, [6). These practical
concerns motivated the work to now be described, where a complete signal model is
presented for wuse in developing efficient natural resonance NCTR signal processing

strategies. The theoretical development, whose major results are presented in this
paper, is more completely described, with derivations, in a previous publication by this
author, [7].

THE NATURAL MODE CONCEPT
Consider the transient electromagnetic scattering problem as depicted in Figure 1,
wherein a perfectly conducting finite-sized object is being illuminated by 8 generalized
incident field, (not necessarily a plane wave) in free space. The induced current on
the surface of the object will satisfy the magnetic field integral equation (MFIR&), [8],
Jir,t) = 28 x R'(r,t) + Sg Kir,r')+ J(r, t-ir-r'yc) ds (n

Sev




where ; iis the outward (to the surface) unit normal vector, J is thg surface current
density,H is the incident magnetic field at the surface, K is a dyadic Green’'s function

kernel and the principal-value (PV) type integral excludes the surface point r = r'.
The cross product of n and the incident magnetic field forms the “physical optics"”
portion of the induced current while the surface integral term provides the "feedback"”
current to each point on the scatterer due to all other induced current values.

With no incident field, the solutions of Eq.{(l) are termed the natural modes of the
scattering problem. These source free solutions each have the form of a product of a
spatial (on the surface) current distribution, »h(r). and a complex exponential term,

I rat) = §or) expis,t) (2)
Each of these surface current distributions will generate a scattered field mode. These
natural wmode fields can be found through Green's function type surface integrations of
the respective current modes. For example the natural mode magnetic field is given by
s . , r-p? - s
B (rit) s .SS G(r.r')e J (rit ~lr-r’'l/c) ds = H (r) exp(s t) (3)
S

where it should be understood that the spatial position vectors r and r' represent points
on the scatterer when used in reference to the surface current distribution, while for
the case of the field quanities the r-vector represents all spatial positions both on and
outside of the surface.

Since the currents and fields in Eqs.(2) and (3) are assumed to exist at times when
no incident field is illuminating the object, the complex natural frequencies,
= j a
sn o; o n 4)
are functions only of the geometry and physical composition of the scatterer. These
complex natural resonances may thus have the potential for wuse in aspect and

polarization independent identification of scatterers. Some additional properties of
the natural resonances are:

[@ D] The s _’'s appear in complex conjugate pairs as a result of the “"real" nature of
source-free induced currents in physical problems

(2) The real part of each s, is less than zero to produce exponential decay of the
magnitude of each mode, <corresponding to power being radiated away from the
scatterer (radiation losas)

(3) The index "n” is an integer for the case of finite-sized conducting bodies, as
has been shown by Marin, [971. There are also an infinite number of natural
resonances, even for the simplest scattering shape. In practice, however, only a
finite number of resonances will be significantly excited by an incident signal of
particular frequency bandwidth.

Assumwing that the incident field had previously illuminated the scatterer and then
had identically vanished for t > t_, the source free current distribution on the surface
of the object and the corresponding scattered field will cach be a weighted superposition
of their respective natural modes

- o0
J(r,t) = Re{ Z, A J (r,t) } = nZ::I Ia! s’n exp( < t) cos(w t + $) (5)

oo
H(r,t) - Re{ 2. A H_(

oo
r,t) } = nZ:',Anl #n exp(dnt) cos(w t + ¢n) (6)

The exponentially decaying sinusoidal series results from the complex conjugate nature of
the pole-pairs, while the phase offset, ¢n' is the phase of the complex amplitude, An

The natural mode currents and fields are thus seen to be akin to generalized source-
free "steady-state” solutions which, although decaying due to outbound radiation, are
self-sustaining in the absence of any further excitation from that which provided their
genesis. Furthermore, one can view the integral equation in Eq. (1) as a continuous
"feedback system” equation where the undriven modes are space-time distributions whose
feedback to each surface point from all other points exactly sustains the form of the
distribution, both in magnitude and phase.

PLANE WAVE IMPULSE SCATTERING

Having introduced the concept of source-free natural modes, let us now investigate
the form of the scattered field due to an incident plane wave impulse. The situation is
depicted in Figure 2. The impulsive plane wave is moving with the velocity of light 1n
the direction indicated by the unit vector, $. To provide generalized results, let us
define the origin of our coordinate system to be located at the initial "impact” point of
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the incident plane wave on the scatterer, In addition, assume that t-=0 when this event
occurs. By considering a delta function plane wave, we can then use convolution to

obtain the scattered field which is due to any form of transient plane wave illumination.
This is directly analogous to the concept of impulse response in circuit theory or
Green's functions in mathematical physics.

As was initially discussed, the scattered field response to the plane wave will be
composed of two parts: an early-time driven response and a late-time natural mode
response. To see why this is true, let us look at Figure 2 and reconsider Eq.{(l). Note

that the impulsive plane wave incident field will be identically zero everywhere on the
surface of the scatterer except on the conformal ring which circumscribes the surface at
the intersection with the plane wavefront. The plane wavefront is indicated by the
dashed line in Figure 2. This conforming source ring on the scatterer's surface changes
shape and position as the wavefront moves over the scatterer at the velocity «cf light.
From Eq.(2), the surface current at point§ on ghe wavefront ring will be composed of both

the direct "Physical Optics” term, 2 n x H and a contribution from all previously
illuminated points on the scattered. These points, which reside in the "wake" of the
incident field, are dot-shaded in Figure Z. Because of causelity, there ia no induced

current on the remainder of the scatterer, at points "ahead” of the incident wavefront.

Let us now consider the resultant back-scattered far-field (in the direction ~$ at a
very large distance) due to the surface current distribution. This "echo"” field will be
due to a surface integration of the same form as in Eq.(3), but where the Green's
function can be simplified because of the far-field assumption, (8},

BS-rp.t) - Ao 2 gg; x J(r’, t ~|r-r'l /c) dS’ g
aMcr At
s

Upon substituting Eq.(1) into Eq.(7), two distinct terms result: the "physical optics”
scattered field generated by the 2 h x H' driven current and the scattered field produced
by the source-free "wake” current behind the moving wavefront,

s ~ . oA A )
B (-rp,t) = Hpo( rp,t) + Hw( rp,t) VB

The physical optics current can be shown to be directly proportional to the second time

derivative of the silhouette area of the scatterer {10]. This fact provides the basis
for an alternate means of NCTR, based upon ramp response 1meging, [ The second
component of the scattered field is due to a source free current distribution on a time-
varying portion of the surface of the scatterer. 1t is shown in {7] that this wake
current can be represented by a class | SEM expansion, with constant coefficients, as 1in
Eq.(5). However, because the surface area is changing in Eq.(7}), wherein the wake

current integration takes place, the resulitant H will contain the same exponential
resonance terms as the source free current, but with time-varying coefficients until such
time as the field results from a complete surface integration. This form of the SEM
expansion is termed “"Class 2". The backscattered far field can be represented by the
following generic equation:

oo
B3 eh oty = wit rsc) LB (-rpoty v D C (rBit) exp(s t; ) e
po n»ln n

where the time-varying expansion coefficients become constant coefficients after a delay
of 2D/c from the initial field turn on at t : r/c. D is the length of the scattering

object in the direction parallel to p. At this same transition instant, in going from
the «class 1 to the class 2 SEM forms, the physical optics field vanishes and there
remains only the constant coefficient expansion. This "early time' scattered field is

thus composed of both a physical optics term and a class 2 SEM expansion, with time-
varying coefficients, while the "late -time" field can be represented by a simple class |
expansion which contains aspect independent natural resonant frequeacies, s,

The general case of bistatic scattering at arbitrary distance (not necessarily in
the far field) has been considered in (7}, If r is used to represent a particular
scattered field point and r’ is used to denote points on the sui-face of the scatterer,
then the time at which the physical optics field reaches r from r’ will be

tpo = { ; er’ + |r - e'{lsec (103

By allowing r’ to vary over the surface, one can define the minimum and maximum of t .
The early-time field at r begins at t = min{t__] and ends, with transition to the 1a%2-
time when t - max(t__]. Two special far-fiB%d cases result from this analysis: (1) the
backscatttered casg? wherein the early-time duration is 2D/c and (2) the forward
scattering case where the early-time duration is of measure zero when illumination is due
to a plane wave impulse. These two cases represent the extrema in possible early time
durations.

Consider now the forms of the natural resonance representations for the general case
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of an incident plane wave which has time modulation f(t), instead of a delta function.
This f(t) can represent such radar waveshapes as AM pulsed CW or FM chirp-type waveforas.
Assuming that f{t) is time-li1mited, with duration T then the resultant time before
transition to the late time in the scattered field will, at all observation points, be
lengthened by T vis-a-vis that for the impulse illumination.

DISCUSSION

The motivation behind this original effort at quantifying the SEM form for the
scattered field was the need for proper signal processing models on which to base NCTR
using natural resonances. This was quite important in light of the fact that wmany
researchers {the author included) had met with failure in attempting to “extract” the
natural resonances from experimental and numerical scattering signetures while assuming a
class ]| SEM signal model for the entire time signature.

With the discovery of the impropriety of the class | SEM sode! as a complete signal
description, a new and quite serious problem became apparent in regards to the practical
implementation of aspect independent NCTR based upon natural resonances. For the case of
typical convex "low-Q" metallic targets, having rapidly decaying natural resonances, only
a very ssall percentage of the total signal energy will remain 1n the late time
signature. As previously mentioned, <clasa 1l pole extraction methods require relatively
high-fidelity signals which may be difficult to attain in even a friendly radar
environhment.

It thus becomes of paramount importance, in implementing natural resonance NCTR 1n
the real world, to investigate methods for eitcattered field
signature to enhance the recognition process and/or circumventing the sensitivity of
natural resonance processing methods to low SNR in the late-time signature. Blending the
concepts of physical optics imaging with natural resonance NCTR may be the key to the
first approach while employing non-extraction type processing, such as the K-pulse (to be
considered in a separate paper by this author) will follow the second technique.
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Summary

When observed over long perjods, scattered returns from targets i{lluminated
by broad band signals reveal distinctive features {n the early and late time
regimes. The features can be explained in terms of the different wave phenomena,
progressive and oscillatory, that are dominant during these respective {ntervals.
The former represent wavefront arrivals, and the latter full body resonances. A
recently developed hybrid theory has formalized the connection between them and
has provided new interpretations that did not emerge in earlier treatments. These
interpretations can clarify issues which have arisen within the singularity
expansion method (SEM), in particular, the adequacy of the expansion at early
times. Here the hydrid wavefront resonance theory is reviewed, first within the
rigorous context of scattering by a circular cylinder, and then via a ray analysis
of scattering by a general (composite) object.

AD- POOSELEY T

1. INTRODUCTION

With the present trend toward short pulse excitation and the consequent broad frequency spectrum,
analytical models for these propagation and scattering problems must be able to accommodate early time
(high frequency) as well as late time (low frequency) characteristics. Two essentjally different, but
complementary, approaches involve a description of the propagation or scattering process {n terms of
traveling waves (wavefronts) or oscillatory waves (resonances) [1]. In a traveling wave formulation
[2,3], a2 causal wavefront is tracked from the source to the scatterer, where it undergoes an interactive
process that 1s conveyed to the observer by successive wavefront arrivals corresponding to multiple
circumnavigations of the object and (or} multiple diffractions from scattering centers located on the
object (Fig. 1). This description, which is sensitive to local features encountered along the wavefront
trajectory, becomes cumbersome at late observation times when many wavefronts {transient ray fi{elds) nave
had time to reach the observer. Moreover, monitoring of the field at late times where low frequency
spectral contributions predominate also causes difficulties because high freguency methods, such 2as the

Geometrical Theory of Diffraction (GTD), are not applicable there.

Observer

Source

Fig. 1 Interaction mechanisms for scattering by a typical composite object. Full ana dashed lines
represent direct and multiple interactions, respectively,

The oscillatory representation, formalized by the Singularity Expansion Method (SEM) [4,5],
emphasizes global features of the gcatterer by expressing the fleld in terms of resonant modes which
are dasped in time. Therefore, this formulation i3 most convenient for late observations times and the
lower frequency spectral components relevant there. However, the resonance expansicn ls deficient at
early times where damping is negligible and many resonances are needed to aynthesize the abruptly changing
local high-frequency fleld near a (causal) wavefront. These convergence difficulties at early times are
manifested {n the formal structure of the SEM, which evolves from the treatment of an integral equation
for the surface field, by the need to add to the SEM resonance series an entire function {n the complex

frequency plane., A certajn arbitrariness i{n the choice of this function and therefore of the excitation
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coefficients (usually referred to as "coupling coefficients") of the rescnances has caused protlems which

have, however, been clarified in recent studies [6-8].

By incorporating self-consistently the well-behaved portions of wavefronts at early times and of
resonances at later times, the recently developed hybrid representatfon [9-15], provides a ilescription
applicable and convenient for all times. Its foundation is a bilateral equivalence between wavefronts and
resonances as cumulative phenomena of the one in terms of the other, which was first demonstrated
numerically and qualitatively in references [16] and [17], but which has been put in [9] on a rigorous
theoretical basis, utilizing the concepts of the GTD. Thereby a penetrating physical interpretation that
has remained hidden within the conventional integral equation format of SEM has been furnished, The
wavefront analysis establishes the evolutjon of the resonances as a cumulative effect of the multiple
wavefront interactions and the role of the entire function which represents the contributions of the
direct interactions of the incident field with the scattering object (see Fig. 1). We call this function
intrinsic or non-removable entire function [10,11]}. By selective cumulative wavefront treatment, there
also emerge alternative choice for the SEM resonance excitation coefficlents, and for the corresponding
turn-on times of the SEM expansion, as well as the related definition of removable (non-intrinsic) entire
functions. A remarkable feature of the resonance construction by wavefront summation is the accuracy of
the complex resonances, even including those at the lower freguency end, when high-freguency asymptotic

(ray) methods are used to approximate the scattering process [9,13,14,18],

The preceding discussion makes evident the systemization achjeved by placing the constituents and
concepts of SEM, as derived from the integral equation approach, within the framework of wavefront
representation and GTD. By retaining certain wavefront fields Intact while treating the remaining ones
collectively to yleld resonances, one may obtain alternative expressions that highlight different aspects
of the 3scattering process and resonance formation, Success in this endeavour depends critically on a
systematic ordering of the multiplicity of wavefront events. For simple structures with few ray
species, this ordering is straightforward [9,10,13-15], but for more complicated configurations with
multiple scattering centers and/or multiple reflection points, the number of ray species proliferates.
Here, use of flow diagrams as in systems theory [19] can provide an overview that places in evidence the
totality of multiple interactions and therefore their collective role in establishing each of the full-
body resonances. For targets comprising composite substructures (e.g. Fig. 1), one may also consider
partial resonances characteristic of each substructure in isolation, and then explore the perturbation of
these isolated resonances when the substructures are assembled to form the composite object. By this
approach, it is possible to explore the effect on the resonance map caused by changes in a substructure,
thereby providing insight into the scattering mechanisms that establish a compound resonance. If the
coupling between subsystems is weak, the resulting full-body resonances are expected to be only weakly
perturbed from those of the {solated subsystems. This feature may facilitate a parasetric
identification of certain class of scatterers which have distinct groups of partial resonance. A special
class of such scatterers are those containing resonance mechanisms with relatively low radiation loss,
1.e., with high Q, such as open resonators, open pipes, dielectric scatterers, etc. [n such cases some of

the full-body resonances are located near the high Q (partial) resonances.

It should be noted that the general scheme in this paper addresses multiple fateraction and resonance
phenomena in a broad sense, with ray terminology employed to identify wave transport and interaction
trajectories. Along these trajectories, the time harmonic field may be expressed by the ray approximation
and is then subject to the rules and constraints of GTD. However, the field may be expressed more
generally by a "better" wave function, for example a ray i{ntegral spanning a spectrum of local plane
waves whose stationary phase approximation yields GTD but which, when kept {ntact, 1s uniformly valid in
transition regions where GTD fails [1}. Moreover, such spectral integrals, when inverted into the time
domain via the Spectral Theory of Tranatents (STT) (20,21), yleld expressions valid for longer
observation times that the wavefront approximation corresponding to GTD., Although not emphasized
throughout the discussion, the foregoing general features should be kept in mind. In a similar vein, the
presentation here is slanted toward obstacle scattering, but the concepts and techniques apply equally to
categorization and collective treatment of multiple ray events caused by reflection and (or) refraction in

layered media.

In what follows, the traditional SEM formulation is reviewed in Section ]I, but within the perspectives

noted above, In Section IIl we examine the hybrid wavefront resonance theory within the rigorous context
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of diffraction by a circular cylinder where the traveling waves basis functions are known for all
frequencies, with ray terminology employed only to identify wave transport and interaction events. The
rigorously derived results of Section III are generalized in Section IV, within the framework of high
frequency ray theory to scattering by a general (composite) object. Here diagramatic methods are
introduced for systematic ordering and subsequently "collectivizing" the multiplicity of wavefront
interactions. In both sections the discussion is pursued so as to highlight the wavefront interpretation
of the various SEM constituents, the removable and the intrinsic entire functions, SEM turn-on-times, full
body resonances, coupled partial resonances, etc. The concept of the weakly coupled partial resonances is

examined In Section V and concluding remarks are made in Section VI.

I1. SEM FORMULATION

As formulated by Baum [4,5] and established rigorously by Marin (22] the SEM describes the transient
field for a perfectly conducting object of flnite extent as a superposition of the natural mode-solutions
of the scattering integral equatlon, which relates the field incident on a scatterer to the induced current
and Lhei‘eby to the scattered field. The eigenmodes represent damped oscillations of standing wave
solutions which, for an implied exp(-iwt) dependence, occur at resonant frequencies w e vel,2,.4s, in the
lower half of the complex frequency plane, and generate poles i{n the resolvent kernel of the integral
equation. The {nduced current or the scattered field in the frequency domain may therefore be Wwrittern in
the form

- m 1
de) - & aVe

v

¢ firiw tn
The field in the time domain results from the Fourier inversion

uleit) = 5= | dw et G ()

with causality ensured by having the Bromwich integration contour B pass above all singularitles in the
complex w-plane, Here and henceforth, a caret indicates a frequency domain constituent while its time

domaln counterpart {s swritten without this symdol.

By closing the integration contour in (2) about the lower half of the w-plane, permissible only for
t)to where the turn on time "o is determined by the asymptotic properties of G. one obtains the time
domain resonance series representation of the field. The resonance excitation coefficients ni” in {1}, Lhe
residues at the complex frequency poles, are designated in the SEM literature somewhat {inappropriately
(since no intermode coupling is involved) as "class 1 coupling coefficlents" [4-8B]. Class 1 coefficients,
in contrast with class 2, are frequency {or time) independent. In the integral equation procedure of SEM,
they arise from surface current integrations over the entire obstacle surface. In what follows, we shall
construct the scattered field explicitely by asymptotic diffraction theory without recourse to the
integral equation., It Is thereby implied that the interpretation of our results in terms of SEM coupling
coefficients involves only "class 1" since integrations over portions of the scstterer, as Tequlred Tor

nelass 2" [6-8], have no counterpart In our treatment.

As shown, the pole serles in (1) must generally be augmented by an entire function ?(r;;m) in the
frequency domain [U4,5] which, in the time domain, corresponds to a finite Juratfon signal at early
times. The role of the entire function, and whether or when to include it, has caused confusion and
controversy, but has recently been partially clarified [6-8) by linking it to the time of Initlation (turn-
on times) of the resonance series. Referring to the class 1 coupling coefficients only (as in (1)), {t has
been shown [6-8] that there 13 a degree of flexibility in choosing the turn-on time of the resonance
series, and that the series converged formally {n a time interval before the arrival of the causal
excitation (see also [9]). However, {n that interval, numerical convergence difficulties arise for the
required synthesis of a null fleld [23,24]. Accordingly it has been comjectured in [24] that the turn-on
time for the class 1 coupling coefficients should be the arrival time of the incident wavefront along a
straight line path to the observer, If, on the other hand, the resonance series is turned on thereafter,
one should compensate for the early time field in the deleted time interval by an entire function in the
frequency domain. In fact, the pole series in (1) may be modifled via the lormal Identity (6]
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to express turn-on of the first sum at any time tst'. The second sum on the right-hand side of (3), which
has been generated solely by a shift in the turn-on time of the pole series, has no pole singularities ana
thus is an entire function that contributes the field between t=0 and tet'. In [10-12] it has been shown
that there is, however, another type of entire function which i{s intrimsic to the scattering process.
This will emerge in the discussion to follow.

The above mentjoned convergence difficulties at early times in the class ! representation are
alleviated in the class 2 representation wherein a time varying region of integration covers only that part
of the object surface which has already been {lluminated [6-8] (the region of integration may even be
smaller, extending only over part of the illuminated domain which has had time to contribute at the
current observation point). Accordingly, the class 2 coefficients are time dependent at early times, but
after the incident wavefront has transversed the entire structure and the domain of integration spans the
entire object, the two types of coupling coefficients are the same. The greater computational stability
with class 2 coefficients comes at the expense of certain complexities in the computation of tnese

coefficients, as well as in their use for {nterpretation of measured transient data,

The role and interpretation of these constituents in the SEM may be clarified by recourse to the
hybrid wavefront resonance theory wherein the wavefront play a crucial role that remains submerged in the
conventional SEM approach. These aspects are examined below within the rigorous context of diffraction by
a circular cylinder, and then are generalized, via GTD construction of the field, t- more comglicated

scattering objects.

IIl. TRANSIENT SCATTERING BY A CIRCULAR CYLINDER
A. Formulation

Referring to Fig. 2, in a conventional cylindrical coordinate frame, an impulsive line scurce is located
at p'=(p",9") exterior to a cylinder with radius "a" embedded in a homogeneous medium with wave velocity
"v". The exterior observer Is at p=(p,¢). Without Joss of generalily, it i3 assumed that 2'=0 and that
0<9<w. The transient fleld G(t) (transient Green's function) is assumed to satisfy on the cylinder the
acoustically hard boundary condition

aG/3 = 0 )
where "n" {s the normal to the boundary. We shall construct G(t) from the time harmonic Green's function

6(«.) corresponding to exp{(-iwt) by the Fourier inversion (2),

B. Conventional Construction of SEM Representation

In general, the singularity expansion of the field {s obtained by solving the scattering integral
equations for the induced current. In the present example, one may employ the cylindrical symmetry to
expand the current and the field into a series of angular harmonics as basis functions, and then solve the
boundary value problem for the coefficient of that series. The time harmonic Green's function obtained via
this procedure may be expressed as

Glp.p®) = Gl(p,pn » E3(p,p" o)
where
PSCIER RO PU IS MR SR TR R R (6a,b)
M-
is the incident field (free space Green's function),
3300 o) = 1 _img &) My,
Bgn - X g™ s Moo n{ Vg n )

Me-e

is the scattered field and, for the boundary conditions in (&)
SaM = = 23 L vk ey ®
Here, e and [N are, respectively, the smallier and larger of the variables p and p' and a prime indicates a

derivative of a functifon with resp to its arg .

The singularities of G tn the complex frequency plane comprise a branch point at w0 and simple

poles Yunp P = 1,2,... for the m~th term in the series (7) (Fig. 3). The branch cut is chosen along the
|
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The SEM representation of the time-domaln field may be obtained by closing the integration contour {n

{2) at infinlty about either the upper or the lower half plane., The time

{ntervals legitimizing these




-—~v Wy

46

closures depends on the asymptotic properties of the integrand in the complex w-plane. From (7) ana (4),
one finds that for t{p+p'-2a, the integration contour may be closed at infinity about the upper half-plane,
giving a null contribution. For t>p+p’, the {ntegration contour may be closed about tie singularities in
the lower half-plane, giving

- -
s r) o - - )
Slpptit) = X XL Aoy vop e XL nn
Me-= p Mew
where I' excludes the m=0 term (which has no poles), and p assumes values according to {9a). G; P 13 tne
e
contribution from the pole ©en K respectively, to the m-th term in the angular harmonics series (7)
N
3
+ 1 m () R (1) ime-iwt Iy
Gm.p- T —(TY"_-HBI (kD)Hm (kp) e © 12
H (1] m,p
m
The branch cut integral, taken along the contour Cb surrounding the branch cut {n Fig. 3, is given by
ime 1 -t § m (1) .
I, ~e 53 L dw e S Sm(V) Ho (ko") Ho (k p) (13)
b

Using (10) and the symmetry relation of the Bessel functions in the complex argument plane {(whan tne
branch cut is taken as in Fig. 3) one may verify that ((;;n o - G:m p) is a real function; the same is true
, .

for the residue contributions with negative superscripts and for (Im + I_m).

The time intervals that legitimize the evaluation of the Fourjer transform (2) by upper and lower nalf
plane closure do not overlap (see discussion before {11)) and there is a time interval pep'~la<t<pep! shore
the field does not necessarily vanish, yet (11) is not valid. In fact, it may be verified that depending »n
the observation point, the arrival time of the specularly reflected wave occurs somewhere in this time
interval, Thus, in order to obtain a valid SEM expansion {n that time interval, one has to extract tnis
early time entire function contribution from the total scattered field in (7). The SEM representaticn in
(11) will then have to be changed accordingly; clearly the residue contributions will not change yet the
branch cut integrals and thc turn-on times will be modified. This procedure is described in {ts most
natural and physically transparent way by the collective treatment of the travelling wave representation

via the hybrid wavefront resonance approach, as described in Section II.D below,

C. Travelling wave Representation
1. Frequency domain solution

To construct a travelling wave (wavefront) representation, one utilizes a Green's function 5.'(9.9')
representing an angularly propagating waves in an lInfinitely extended (non-periodic}) angular coordinate
space [25]. Accordingly, the field is separated into contributions (:,‘ and 5- from positively and

negatively travelling waves,

Glp,pM = G (pg" » E (g p" (1)
where
B%pep) = & G%(ptpn )
)
30
and
1 t + -
1 (o.oj) ’ Sy m 21, 66 2n(je1) (16)

are the {mages of p in the Infinitely extended ¢ domaln -e<4<e, The j~th term in (15) represents the
contribution due to the (j+1)th positive or negative progression of the wave G travelling around the
cylinder in the unbounded angular space. The travelling wave 6. may De represented by a spectral integral
[25)

-
& . : Smwelyl ol
G pp" = 5 J_. 8 (ov0'iuiwle du G
with the radial Green's function given by
~ X M (&)] [€})
go(o.p'.uw) 5 [ZJu(kp<) . SD(Y) Hu (kp()] Hu (ko)) (18)

Here p, and p, are defined in (6) and for the boundary condition {n (4) (c.f. (8))

(1 - - 2J;(v)/n£"'m LY ks (19)
Alternatively, by ?‘l.osms the integration contour fn (17) about the poles of ip in the upper half of the
complex y-plane, G may be expanded in terms of radial eigenfunctions op and their adjoints ;p.
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p=1,2,...giving
a.(g.g‘) - Z 6;(9,9‘) {20)
p=t
with
| ORIV
Gp(g.g') = wp(p:u)ﬁp(p':w) 2—1— ehﬁ)l‘ - ‘?“)' up“ e W’"l {21)
% it D ol "ty
Y ]
and
(SN
H, (n =0 at = up(\r) . (22)

A prime or an overdot denote differentiation with respect to the order or argument of the Hankel function,
respectively.

In the complex frequency plane, the wave functions 5; of (21) are analytic except for a branch point
singularity at we=0. For symmetry, it i3 convenient to choose the branch cut along the negative imaginary
axis (Fig. 3), thereby defining the top Riemann sheet in the complex w-plane by -w/2<arg w<3w/2, With this
cut, %(Y) satisfies the symmetry relation

R pn - -W';(v'elv') 23
Accordingly, G; possesses similar symmetries which ensure that the transient response of each wave species
is a real function.

At high frequencies, such that Y>>!, one finds that
-y =1 1/s -2/ 3 = af L
(n 8, (vs2) s oY ¥y, §, = a (2%)

*
where u; is the p-th zero of Al(-u;) = 0. Accordingly, the asymptotic approximation of (21) is interpreted

e11/3

in terms of the GTD creeping rays which propagate around the cylinder and shed energy along tangents {nto
the surrounding medium, For various source-observer configurations, either near or far from the boundary,
one may extract from {21} the appropriate ray diffraction, attachment or launching coefficients [26]. Here,
we choose source and observer far enough from the boundary to permit formation of well-defined
illuminated and shadow zones. It then follows from (21) that use of the Debye asymptotic form of the
Hankel functions when the argument is kp or kp', and of the Airy function approximation when the argument
1s Y [25], leads to the reduction
AT bR U
& wi() k/as '
where xp-(up/a) {s the wavenumber of the creeping wave along the boundary, and w,(a) = Y% [Bi(a)-i Af(a)].

Gp(g.g) - (25)

Referring to Fig. 2.
s - /pTat . 3" = /pTR? (26)
are the lengths of the tangent rays from the source and the observer to the boundary, respectively, and
telol - sinmd) - sln"(%) (27
fs the path length along the surface between the points of tangency. From their definition, <0 and t>0
define the shadow and 1it regions, respectively. HReferring to (16}, all the i{mages g; are {n the shadow

except possibly for the J‘-O term which is in the 1it region If p {3 In the lit region (since we have
assumed that 0<¢<n, the J--O term {s always in the shadow).

Since the roots a' in (24) are well approximated by ({(p-3/4)3x/21¥? then for Im > 0, the wave
functions in {25) decay in the shadow region £>0, and furnish there an efficfent approximation for the
field in terms of creeping waves, In the {lluminated region <0, the initial terms with p~0(Y) in the wave
series (20), contributed by (25), grow although the total series of exact elgenfunctions (21) converges
[25). The growth of this part of the series {mplies that convergence 1s not uniform in the freguency
domain. Accordingly the repreaentation in (20) is inappropriate in the {lluminated region for the high
frequency range and also for determination of the time-dependent Green's function since the Fourier
{inversion of the series cannot be preformed term by term. Therefore, the field in the illuminated region

must be treated {n another fashion.

Recalling that only E; = p 13 located in the illuminated reglon, we express {ts contribution by the
spectral integral {17) which ylelds asymptotically the direct and reflected ray fields of geometrical
optics [25]
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. otKLg+1n/t . RUMNTER oiklar
Gylprp®) =~ , G.(g.p') = Ry (28a,b)
Bk < VBakLy, Telp Jor

respectively. Here, Ld is the length of the direct ray from p' to p, while l‘r, and er are the lengths
along the reflected ray from p' to the specular reflection point g on the cylinder, and from B to p,
reapectively (see Fig. 2(b}). Also, Rs-l is the boundary reflection coefficient at the specular point, and
°r i1s the radius of curvature of the reflected wavefront which depends on the angle of incidence eX and on
the local radil of curvature of the incident wavefront (ol-l‘r‘.) and of the boundary,

1 1 2
—_— - —- s —< (29}
o o) acosg

2. Time domain solution

The transient fields are obtained by Fourier transforming the time harmonic wave species discussed
above. For observation points in the shadow region, where the time harmonic series converge uniformly as
discussed after (27), the various wave fields are described term by term by the transient oounterpart of
the series in (14), (15) and (20). The same representation applies for observation points tn the lit region
except for the contribution from 6'(9.9') which is described by the spectral fntegral (17) because of the
convergence difficulties noted above. We begin with the evaluation of (17), which represents in the 1it

region the dominant and earliest field contribution as expressed by the geometrical optics field.

a. Geometrical optics field

For observation points in the lit region, 5'(9.9') of (17) is given asymptotically by the sum of the
direct and reflected ray fields in (28a,b). The Fourier transforms of these expressions are, respectively,
H(vt-Ld) P v ' H(vt-Lr)

o G (pp") = 5= o L=l +L (30a,b)
r B AL e L FT T

v
' Yvi-1_
2Ld vt Ld

' 1
Gd(g.g) - 37

where the Heaviside function H equals zero or unity for negative or positive arguments, respectively, and v
i{s the wave velocity in the medium. These signals turn on at t-Ld
the direct and reflected rays, respectively. Resulting f{rom saddle point evaluation of (17), expressions

/v and at l-Lr/v. the arrival times of

(30a,b) represent constructive interference of a very narrow spectrum of plane waves around the central
geometrical ray. Therefore, these waveforms are limited to a short time interval behind the wavefront

(after turn-on), and are called therefore wavefront approximations.

A representation valid for longer time may be obtained by utilizing a wider spectral range around the
geometrical ray. This can be done by utilizing a non-dispersive plane wave (WKB) approximation of the
integrand in (17), with subsequent closed form evaluation of the integral via the Spectral Theory of
Transients (STT) [20,21], which is a generalization of the Cagniard-deHoop technique [27]. The STT
derivation of these transient waveforms for the present example of transient scattering by a circular

cylinder {s given {n [12].

b. Creeping Waves

Except for the 1it region, where the a(g.g') integral describes the the geometrical optics field, all
other terms in (14) and (15) are expressed by the radial elgenfunction expansion in (20), with (21), For a
typical term 5(9,9'). one observes from (24) and (25) that

&%, p" ~ ote!®l
where .. 1s the total diffracted ray path from p' to p. Accordingly, C-(g.g') vanishes before t = L/v so

L = 3+38'+4 (31)

that the j-th term in (15), whlc. represents the contribution from the j-th ecircumnavigation of the
composite travelling wave, turns on at t = Ltlv, where L; is the ray path of that wave, (obtalned from
(31) and (27) with ¢ replaced by o; in (16) (see Fig. 4).

After turn-on, ¢ is resolved into the creeplng waves given by the Fourier transform of (21), which
cannot be found explicitly. However, near the wavefront (QLIV) the main contribution to the integral
comes from high frequencies, whence G; may be approximited by Fourier transforming the asymptotic

creeping ray fleld (25), yielding the result

- i/
8%p p" ~ —2573 ay SL), & e S(t,L) = a'[6lve-L)sa]V? 2)
olere BmLA (-u"’) = SAL{8) M{vt-L), & « &(t,L ap[ (vt-L)’a) (3
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Observer® Source

~-Wavefront of the positively
revolving creeping wave

Fig. 4 wWavefront contributions from positively revolving creeping wave. Only wavefronts with small index
J such that L.‘1 < vt contribute at time t.

Equation (32) is an exact evaluation of the Fourier integral of the asymptotically approximated creeping

wave field (25). Accordingly, its range of validity may be estimated by requiring that the approximation

(25) of the integrand will be valid in the vicinity of the stationary point of the phase of the integrand

which ylelds the main contribution to the integral (see Fig. 5). Accordingly, (32) applies as long as

[vg] = |iu;;6"/’| >> p, (33

where Ys B wsa/v is the stationary point and & is given in (32). Since this condition imposes a restriction
on the observatfon time after Lhe arrival of the wavefront of the creeping wave, (32) may be used to
describe only the contributions from the latest passes (see Fig. 4). Contributions from the earlier
passes (fewer revolutions or small j} are dominated by low frequency components not accommodated by (32).
However, by the hybrid representation of [9], the contribution from the earlier passes can be combined
into low frequency SEM resonances.

Imw
[
Ws
] s
+ > Re W
SoP

Fig. 5 Complex w-plane for the Fourier evaluation of the creeping wave result in (32). The range of
validity of (32) is estimated by requiring that the integrand in (25) will be valid along the
steepest descent path (SDP) which pass through the saddle point w_. B is the original integration
contour in (2). s

D. Collective Summation of Wavefronta: SEM Representation

1. Frequency domain solutfon

The series of arrivals in (15) can be readily summed in closed form since, is follows from (16) and
(21), the index j appears only in the angular phase term, When the observer is in the shadow region, all
terms j > 0 can be treated collectively to yield

w4
@ Gp(go.g')

At
G pog") - Z anyr
P l_gl?wkb

(34)

with g; given in (16). However, for observation points {n the 1it region, since the J’ =0 term in 6' is
represented by the spectral integral (17) (see discussion after (27)) and cannot be {ncluded in the
collective treatment, the sum starts at J‘ = 1, giving
e &% (p!,p!
8*(p,p" = G7gip" + Z p(E\'E)
p=1
The summation for G starts at 3 =0 as in (34). The field representations in (34) and (35) consists of a

Iy 3%
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collective term that give rise to the SEM resonances i{n terms of the roots of the denominator, pius a
possible free term (in (35}, for observation point in the lit region) which does not have the SEM pole
singularities and may be interpreted as the SEM entire function. We shall consider these terms in

sequence,

2. The resaonancea

The collective terms in (34) and (35) generate a field representation in terms of SEM resonances. The
numerators represent the fleld E; of the first creeping wave included in the collective sum:3® < 0 in the
shadow, and J'-I for G‘, J‘-O for G in the 1lit region, respectively (see fig. 2). The denominator
represents the collective effect due to all subsequent revolutions. The roots of the denominator, in the
lower half of the complex w-plane, define the poles up'm of the scattered field via

up(Yp'm) =m, m = 3 (2p=1), + 2p,... (36)
which states that for a resonance, the phase accumulation in a complete revolution must be an integer
multiple of 2m. From their definition in (36) and (22) one may readily verify that the resonances are
identical with those defined by (9). Moreover, it follows from (36) that for a given p, the resonances lie
on the p-th layer in the complex w-plane (Fig. 3) which generates the singular{ty expansion of tne
angularly progressing p-th creeping wave. For given m, the resonances lie on arcs in the oomplex
w-plane, and define by this grouping the conventional angular harmonics that are oscillatory in the
angular domain (c.f. (7)). The value m of “p at the resonances is in agreement with (9) and (9a). The
resonances defined by the indices (m,p) in (36) are located on the upper Reimann sheet -w/2 <arg w < 3w/2,
Other poles with other values of (m,p) are located on the lower sheet (e.g. poles with m = 1,...,2{p~1) are
located on the continuation of the p-layer in Fig. 3 from the forth gquadrant -u/2<arg w<C to the third

quadrant -w<arg w<-m/2 in the lower sheet)

3. Time domain resonance series

The SEM resonance series (including the branch point coatribution) {s generated by evaluation of the
inversion integral (2) through contour deformation at infinity around the lower half plane fregquency in the
complex frequency plane. The ability to deform the contour in the upper or lower halves depends on the
convergence properties of the integrand. From (24) and (25), one may infer the dominant behavior as
follows:

explikL] vImw >0 {37a}
collective term =~
exp{ik(L-2m)] » Imw<O (370)

where, L defined in (31) represents the length of the surface ray paths associated with the wavefronts in
the numerator of the collective term, ij.e., L = Lé and L = L: for the collective terms of (34) and of (3%),
respectively. Thus, the field vanishes for t < L/v since, in view of (37), the integration contour of (2)
may be closed at {nfinity in the upper half plane. After that time, the jntegration contour may be closed
about the singularities in the lower half plane to yield for p in the shadow region two real series

+ t + + '
6Ypg = BvE-LD) T (X Gy (22 * OF (pag") (39)
p=1 m
with residue contributions that are real for pairwise (symmetrical) m and (-m),
) )
-fwt H "(kp)H (kp")
+ Aw. 1 ve w m m Hmgy-luwt
G (pep') = G (p yp'iw) - Rl ey - seww € e 24 (39)
Pam P %o Zna;bhs wawp m 2ni [Yz-mzl[H"' (1)32 up,m
and (real) branch cut contributions from the p-th term in (34),
’e-lﬂ/2
+ 1 d -fat Aty ¢
6pclee2") = 55 L e 2Relw G (g up") (10)

In view of the relation
L1 ()
ul')(Y) H (Y) «H 89}
the pole contributions may be shown to be identical with those in (12). Thus, (38) defines two real SEM
transient series, one for the positively, and the other for the negatively, revolving travelling waves.

Each "turns on" at the "physically correct" arrival time of the first wavefront of the corresponding wave
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species. Note also that the p-th term in (34) and (38) may be considered as the SEM representation for
the field of the positively or negatively revolving p-th creeping wave. The m-summation in this case, with
p constant, goes along layers in the SEM pole map in Fig.3 (see results of numerical summation in [16]).

N. The intrinsic entire function

For observation points in the lit region, the SEM representation of G~ is unchanged whereas the one
of G follows from (35) and contajns, in addition to the collective term, the GO field as expressed by
5‘(9.9') (cf. Sec. III.C). This term, a spectral integral, does not have the SEM pole singularities and,
except for the branch point at w = 0 {(attributable to the two-dimensional problem here), is analytic in the
complex frequency plane. It can therefore be interpreted as the SEM intrinsic (non removable) entire
function. In the time domain, it yields a short duration signal, as discussed in Sec. II.7.2.3, which turns
on at the arrival time of the GO rays, i.e. before turn-on of the diffracted wavefronts expressed either
by the travelling wave expansion (15), with (32), or by the collective term in (35). This latter term
yields, in the time domain, the resonance series (38)-(40), with g; + g:- Note that since o;-oovzu and by =M

at » the residue contribution {3 the same as in (39), but the turn-on time of this expansion {s now

W
p.m
the arrival time t = L:/v of the first positively revolving creeping wave and {s later than that of the

geometrical optics field (see Fig. 2{b)) .

5. The removable entire function

As explained in the Introduction, one may generate another type of entire function by switching the
resonance series on at some time after the physical turn-on time. Since this entire .Juncticn may be
absorbed into the SEM representation by turning on at the physically correct time, it is non-intrinsic
(removable). This function appears if the collective summation of travelling waves in (1%} is started not
at the r'lr:st possible revolution (lowest j, e.g. j* = O for (34) and J' = 1 for (3%)) but after any given

number of revolutions, say J (see Fig. 6). Thus

J-1 @ 6n(g‘.g')

A aw, 4 prJ

Sppn = 2 G7pheY ¢ L (ut)
30 3 p= 1™y

where the singularity-free explicit contributions from the first J revolutions in the first sum can alsc

be written collectively in the form

R i 142

- Awp * - ad 5
3 Gl - X G2l S a2y
=0 ? p=1 -e Yo

Clearly, in view of (36), the poles in the collective expression on the right hand side of (42) are
cancelled by the zeroes of the numerator. Thus, the wavefronts on the left-hand side of (42) are seen tc
provide an interpretation for the removable entire function on the right-hand side, and thereby for the
entire function on the left hand side of (3), which has been constructed (as in [5]) by formal
rearrangement of the full resonance series with delayed turn-on times. The collective term in (41)
(second term on the right hand side) is equal to (34) multiplied by exp(iZuJup) (see (16) and (1)), whence
after Fourier transforming into the time domain, it ylelds an expression similar to (38) with the same
resonances as in (39), but turn-on time t = L;/V, the arrival time of the first {(the J-th) wavefront

included In the collective treatment.

SEM
(collective wavefront)

)=J

Observere j=d-1

j=0
Wavefronts

Source

Fig. 6 A hybrid representation of the scattered field wherein the first J wavefronts are kept intact
whereas the remainder are expressed collectively via SEM (cf. (41)).
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E. Hybrid Formulation

To circumvert the various analytical, conceptual and computational problems associated with either
the wavefront or the resonance expansion schemes in certain time intervals, one may explore hybrid
formulations that combine wavefronts and resonances (uaually with a remainder term) in uniquely aefined
proportion, 30 chosen as to minimize the source of difficulty. The strategies for constructing these
forms, and the resulting expressions for the transient field, have been given in [9]. We shall therefore

not pursue this matter further.

However, one may note that utilization of the removable entire function in Sec. IV.D.5 also generates
a hybrid representation as schematized in Fig. 6, where an arbitrarily selected number nf creeping wave
fields is kept intact, and the remainder {s expressed in terms of resonances (plus a branch cut integral).
As seen from (841} and (42), and the discussion thereafter, all of the resonances contribute here with the
same excitation (coupling) coefficients, but with delayed turn-on which diminishes the domlnant excitation
amplitude from the J = 0 creeping wave to that of the first creeping wave § = J included In the collective
treatment. Since delaying the turn-on time implies reduction of the high-frequency spectral components in
the response, this procedure improves the convergence properties of the resonance series as well as

reducing its overall importance.

IV. WAVEFRONT ANALYSIS OF SCATTERING BY A GENERAL OBJECT

The basic observations derived in Sec. III regarding the wavefront resonance interplay, may be
generalized to more complicated targets comprising composite substructures. Here, the target response may
be described by wavefront interactions between identifjable scattering centers on the scatterer, and the
totality of multiple interactfons can be "collecterized" in many alternative forms. This approach however
requires a svstematic ordering of the multiplicity of wavefronts corresponding to successive scattering

events on the target as provided by the system flow diagram.

A. Ray Formulation of the Scattering Process

1. Ray expansion

The response generated by a field {ncident on a complicated configuration may be analyzed in terms of
simpler {(canonical) scattering events and the Interaction between these events. The choice of the
canonical constituents {s not unique but is influenced by the ease, or not, of treating each in {solation
and then accounting for the mutual interaction, Within the framework of ray theory, a scattering event is
taken to designate any process that converts an incoming ray into an outgoing ray. Scattering events
therefore include processes of reflection and refraction at a boundary, refraction by medium
inhomogeneity, diffraction at an edge, etc. The interaction process between (isclated) scattering events is
described by the propagation function, the ray optical amplitude and phase, that connects successive
scattering centers. The scattering centers, which {dentify where the scattering process take"s place, may
be at a fixed location, as at an edge, or they may correspond to different points on a surface, as for

reflections from smooth boundaries (see Fig. 1).

To construct the hierarchy of scattering processes caused by direct scattering of the incident field
and by subsequent successive scattering events, we shall assume N scattering centers and identify by the
{ndex p = 1,...N and their locations by the coordinate vector r;p. We also define a scattering function
S(l:,r;p;?_) wnich expresses the field at a‘point r. caused by scattering at r:p of a ray field with unit
amplitude arriving from a point r. Thus S(r;.r;p;f) includes the scattering process at gp {normalized with
respect to a unit amplitude incident field from the direction of r;) and the propagation function between r
and r. Ffor time-harmonic ray field, it has the local plane wave form

§(r_.r_p;E) - Al DlexplikUr,r )] (43)
where A is slowly varying amplitude function, which may be proportional to an Inverse fractional power of
the reference wavenumber k, and ky i{s a rapidly varying phase. The function y is independent of k to the
leading asymptotic order, and equals to

w(r;.r;p) - L(r;.r;p) (ui)
where L,(r:.r;p) is the (optical) length of the ray trajectory from r;p to £, The higher order correction
terms are such that they have a positive imaginary part for Im w > U, Finally, for vector fields, the
scattering function 13 a vector function that depends also on polarization (a dyad).
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The total field u(r) fs given by

-
i - X iYW 5)

J=1
with the contributions GU)(E) ordered according to the number j of interactions that have taken place
before reaching the observer at r and j=1 accounting for the direct scattering of the Incident fleld GI at
the scattering center Lpe Thus, If the source located at r' establishes at r, the incident ffeld G‘(gp;r_")

- Gi(r_‘_p). one may write

) ‘;(”(E) - Z Gl(‘:p)g(c'tp;c‘) (462}
. p
and express the field G(’)(r_:) by jteration as

ey o ¥ 9 e ey B iy L3 2 (46n)
- spteq” T+'epTeq =
P.q )
With the indices p, q and % extending over the N scattering centers, u(J (r;p;gq). the ray field incident on
r;p from r;q after J interactions can be found recursively as

.(J) i . .(J_1) . - .

u (r;p.r_'q) zz u (r;q,r_;l) s(r_‘_p.r;q.r_'l) v 322 (47a)
A1) . ot 2 e .
u (r;p,r } =ulr )s(r;p.r;q.[) um)

In most time-harmonic applications the scattering amplitudes associated with 4 in (43) are reduced by
successive scattering events, thereby permitting truncation of the interaction series (45). This is not the
case however In certain applications, in particular those Iinvolving high Q resonances, where the
implementation of (45)-(47) in its stated form i{s clearly nonfeasible. 0One must therefore attempt to sum
these multiple interactions collectively to synthesize the high frequency field. In the time domain,
truncation Is automatic, due to causality. The wavefront fields are ordered according to their arrival
times along paths corresponding to the phase ¢ in (43), and constituents with long composite travel paths
are eliminated at early times, thereby making the recursive approach a workable option. As time goes on,
not only does the number of arrivals increase, but the high-frequency ray model as in (43) fafls to
describe the fields of the early arrivals, far behind their wavefronts. Therefore, alternative methods,
based on collective treatment of many wavefront fields, must be considered also at later times In the
transient domain. In this collective treatment, limitations imposed by GTD approximations (if these have
been used) must be kept in mind.

2. Implicit collective representation via matrix formulation

To proceed, it is desirable to reformulate the iterative equations (45)-(47) in mairix form. Summing

over j we obtain

- - - ~f -

. - . . Lot Yy
Bein ) % Brginy Stepuginy v Gty S ey (u8a)
) - § Gty Stnngeen + E Strgurgd B (48b)

where £,p,q = 1...N. This represents a system of M2 equations for the unknown total fields \:(r; -.r;q) at
r, due to all ray flelds coming from r . Equations (45)-(47) may be regarded as an iterative solution of
(48). To affect a collective representation, (48a) will be solved alternatively in terms of the {nverse of
the matrix (g-§). wherein I is the identity matrix and § is the (Nz x Nz) matrix of the scattering
functions §(r;p,r;q;r_‘l) on the right hand stde of (48a). In the frequency domain, the zeros of the
determinant of (I-8), which appears i{n the denominator of ita inverse, are the SEM poles of the frequency
response of the scatterer (their accuracy will depend on the approximation, if any, {ncorporated into the
scattering function). Fourier transforming into the time domain, the translent response may then be
expressed in terms of the residues of the inverted matrix at the poles, thereby generating the SEM
resonance serles repregentation. Physically, the collective representation accounts for multiple

interactions which occur along any closed ray path encompassing some {or all) of the scattering centers in
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a certain order, Resonances are consequences of self-consistent closure of the ray fields along such a
path. Due to coupling between various closed paths (each scattering center may interact not only with one
other but with many centers), the partial resonances for a single closed path are perturbed, and the
resulting mechanism for generating the composite resonances is not easily discerned from tne matrix
treatment of (48), Moreover, the asymptotlc properties of the {nverted matrix, of importance for
determination of turn-on times and convergence of the resonance series in the time domain, are not
explicit, but hidden within the formal treatment. For clarification of these features, It Is suggestive to
resort to a graphical representation of (45)~(47) in terms of a signal flow graph, which yields the
determinant and the inverse of the matrix explicitely in terms of the scattering functfon along the ray

paths.

B, Flow Graph Representation
1, Construction of the graph

A signal flow graph is an operational diagram, in which weighted directed branches indicate the
operational relation between nodes that correspond to a set of variables describing the state of the
system. The "flow" incorporates the causal relationship among the variables and the graph as a whole but
permits insight into the dynamical properties of the system., These features have been exploited for

engineering analysis of complicated system configurations [19).

In a signal flow graph for the problem stated in (45)-{(48) a typical node as shown in Fig. 7 is taken
to represent the field g(r;p;r_‘_q) at r_‘p due to rays originating at gq. the latter in turn being excited by

rays originating at r L = T...N, These rays are represented by the branches which have wefights

Iz
(transmittance ratios) given by scattering functions s(r:_p,r:_q:[ ). They are the graphical equivalent of
terms in the sum in (48a) or (47a), Other branches shown on the graph depict the direct ray from the
source at r' to r_‘_q (node G‘(r_'q)] and from there to the observer [node G(r_‘_); terms of the first sum in (48b)

or {46a)) as well as to the various scattering centers '-"-p {node \;(r; ;r;q): second terms on the right hand

side of (48a) or (47b)]. The contributions from G(r_‘_p;r_‘_q) to G(r_‘_) are al;so shown [terms in the second sum in
(48b) or (46b)]. To distinguish branches which are associated with multiple interaction process from those
which are not, the former are depicted by solid lines and the latter by dashed or dotted lines in Fig. 7
and thereafter. The complete flow graph is obtained by drawing simultaneously all possible (p,q) nodes and
their branch interactions. The graph then consists of a main graph (solid brancnes), describing the
multiple interactions, and of coupling branches, connecting the main graph to the source and observer

nodes.
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moin_graph_ _

§ {r.rpitg). »Yéi(,q)
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Stno” T8y !
Observer s .
Source(r’)

Fig. 7 Typtcal unit cell in a flow graph. The node Jj(r;q) is excited by the source and radiates in turn
Eo the observer and to the node.ﬁ(r;p;r;q), p=T,...N. The field G(r;p;r:q) ts also generated by
u(r_‘_q;[l). 2=1,...N, and radiate to u(r;m;r:p). m=1,...N. Excitation of the graph by the source, and
radiation to the observer are denoted by dashed and dotted lines, respectively. The main part of
the graph, along which multiple interactions occur, {s represented by solid llnes. The tatal
graph is obtained by connecting all the (p,q) unit cells.




2. Cumulative treatment and entire function

The iterative approach to reading the flow diagram ylelds the ray expansion in (45)-(47). Here, one
tracks the signal as it evolves along the branches of the graph from one node to another. Alternatively,
the cumulative approach is based upon describing multiple interactions as repetitive events occurring along
closed ray paths, closed loops in the main part of graph, that include some or all of the scattering
centers In any order., In general, there are infinitely many such loops but for a finite graph there exjists
a finite set of linearly independent loops in terms of which one may represent all others. This set
consists of all non-repeating closed loops on the graph, i.e., those which may be drawn without
encountering the same node twice, Having found all the closed loops, one may write the cumulative body
response (the total graph transmittance) in closed form by using Mason's formula [19]

u =

20, (493
n

=g Rl

where the graph determinant A is given by

Aa1- 2 A Y Pio- D2 S (50)
i 1 i

Here

Gn is the path gain (product of branch transmittances) of the n-th direct path (withcut loops) from
the source to the observer node;

Zn is the complementary graph determinant, i.e., determinant of tne n-th nontouching-subgraph
(which has no common node with the n-th direct path);

;1'1 ts the loop gain (product of branch transmittances along the loop) of the i-th ioap;
1,2 is the product of loop gains of the i-th pair of nontouching loops;
J is the product of loop gafns of the I-th group of j nontouching loops.
The index n {n (49) may be taken to identify different ray species which we distinguish from one another by
the number and types of encounters between source and observer. When applying (49) to the graph of
equation (48) and of Fig.7, one may note rirst, that the path depicting the direct liateractior of the
incident field with the scatterer (the dashed path from r' to r via node Gi(r;q)) does not tournh any of tne
(solid line) closed loops which describe the multiple interactions. Accordingly the determinants An of the
non touching subgraphs for these direct paths are equal to A . Extracting these terms, oane may write
instead of (49)

ite) - X G‘;(c) e X W 1)
q n

This expression has the same functional form as (1) (cf. (35)). The first term In (51) contains
contributions at r from direct interaction of the incident field with each of the scattering centers at r:q

u(;(r;) - ul(gq) §(r;,r:q;[') (52)
and may be recognized as the first term in {(48b) or the j=1 iteration ln (46a). The summation over q in
(51) only includes points r_‘q in the region illuminated by the scurce. Points in the shadow dre reached by
diffracted wavefronts, which have undergone at least two interactions with the scatterer and are therefore
{n the main part of the graph (the non-dashed part) and also in the second term in (51).

The second sum in (51) accounts cumulatively for all the highe~ order interactions j in (47), taking
place in the main part of the graph. The term G: represents the wavefront or ray field contribution along
paths going from source to observer via successive (more than one but without repetition) single scattering
events. Calling auch a path the n-th direct path and denoting by p,, p,....pu the indexes of the scattering
centers along it, one has for the direct path transmittance

aw ot 3 Y . 3 . 5
up(e) = u (r;pl)s(r;pz.r;pl.r_j Is(r, r_~p|) sen Slr,r sr ) (53)

R D, 5p 1 -
Cumulative effects of multiple f{nteractions along loops of the graph are fncluded f{n (An/A). This
expreasion will be seen to give rise to the SEM resonances located at the complex poles generated by
the roots of A:

4 =0 at w = w, (54}
The first term in (51), which does not contaln these pole singularities, will be identified in Sec. IV.C.4
as the SEM intrinsic entire function. It should be noted that 4 and thereby the SEM resonances, are
generated by the main part of the graph only and are therefore independent of the source o, the observer
locations.

2l
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C. SEM Representation
1. SEM resonances

When the direct path in (53) is modified to include multiple interactions (closed loops) between
scattering centers, the cumulative effect of the wavefronts transversing these loops is to the SEM
resonances of the scatterer. Consider first a direct path perturbed by a simple closed loop. The direct
wavefront or ray path field G: in ray specles n is now weighted by the multiple interaction series ({(c.f.
(34))

-
vy ¥ (B Y - Qhweva, - 1-B (55)
3=0
where En' the closed loop transmittance {gain), expresses the ray field modification after one complete
round trip. The collective effect of that specles, written in closed form on the right hand side, exhibits
(SEM) resonances whenever the closed loop gain Sn equals unity (ray closure condition). These resonances
are indicative of global features pertaining to the physical environment along the closed loop. In
general, there are many such loops, and there is coupling (either direct or indirect) between them.
Accordingly, the simple model pertaining to an isolated ray species as in (55) has to be modified. We
shall define the n-th ray specles as the group of all wavefronts assoclated with the n-th direct path,
including those which, In addition to travelling along the direct path, traverse also various closed
loops. From the topological considerations leading to (49) and {(51), it follows that the collective effect
of the closed loops, which are associated with the n-th direct path, is given by (zn/A). where En i3 the
complementary (or nontouching) subgraph determinant while A is the determinant of the total graph.
Accordingly, the collective field of the n-th wave species is given by the n-th term in (51),
) 3 (e) = AN (a8 (56)
Since A and An generally have no common zeros in the complex frequency plane, the SEM pole map of the n-
th species (56) is generated by all of the zeros w, of 8 (possible poles introduced by the signal spectrum
of G: are not considered here). Thus, each wave species, in principle, excite all of the full~-body
resonances, thereby expressing the effect of all of the closed loops in the graph. However, the
excitation amplitudes differ from one species to the next because of thelr dependence on ‘-‘n and a: at
m-mv. The former will be discussed in Sec, V, and will be shown to influence essentially the strength of
the coupling coefficients and the possibilities of resolving individual wave species from their SEM pole
map. On the other hand, G: is associated essentially with the turn on times of the wave specles as will
be discussed in section IV.C.2.

Considering the locations of the SEM poles in the complex w-plane cne may infer from the functional
form of A and of 8, in (50), that both have their zeros in the lower half plane. This observation is

based on the fact that since the closed loop gains P appearing {n (50) consist of multiplication of

i
branch transmittances, they behaviour with frequency i3 essentfally as was discussed in (43) and

thereafter., It follows that the algebraic part of the !3 is small, and that their exponential dependence

is one of decay and growth, respectively, in the upper l;s.;'j1d lower halves of the complex frequency plane.
Thus, (56) can be satisfied only in the lower half. Moreover, again from the functional form of (50), the
location of the dominant SEM poles, those near the real frequency axis, is determined by loops whose gains
51.1 are dominant near the real axis; these closed loop interactions are associated with low radiation loss
(nigh Q) (see Sec. V).

2. Resonance series, turn-on and switch-on

The SEM expansion for the transient field assoclated with a particular ray species follows on
inversion of (56) into the time domain, The evaluation of the transform depends on the asymptotic
properties of the integrand which may be inferred from (43) and the discuss.on thereafter. Via (53) and
(43), the dominant asymptotic behaviour of the wavefront field in the frequency domain is

G:(r_‘_) - k‘Y" exp(lkl.n) (58)
where vn is some positive constant, Ln ifs the (optical) length of the ray along the n-th direct path, and k
is the reference wavenumber. Considering the structure of A and An in (50), with the observation that the
closed loop gains P

-4
It follows that An/A ~ 1 and ~ exp[lkcn] in the upper and lower half planes, respectively, with €, 3

in (50) have essentially the same asymptotic exponential form exp(ikl.1 J) as in {58),
.

positive constant. Accordingly, the asymptotic behavior of the n-th wave species in (56), expressed only
by its exponential dependence, is

Y S - - . e s
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exp[lkLn] N Imw>0 {59a)

u, () ~
exp[lk(Ln-cn)] . Imw< 0 (590)

From (59a) and from the fact that all pole singularities @, of Gn in (56) lie In the lower half of the
complex frequency one concludes that the Fourier transform of (56) vanishes before the turn on time of
the n-th ray species defined by

to,n - Ln/v (60)
which {s recognized as the arrival time of the wavefront u:(g;t) - the first wavefront in the n-th
species. For t)to'n, the transient field in that species 13 obtained by closing the Integration contour
with a large semicircle in the lower half plane, yielding the residue contributions from the SEM poles and

possible branch cut integrals [ in the lower half of the frequency plane

b,n
-Mn e-lwt }
3A/ dw

U ie) = He- by ) (2 it (61)
v

where H is the Heaviside unit function. The factors multiplying the exponential term (n (61) represent the

previously referred to excitation, or class 1 coupling, coefficients. Their properties in relation to the

flow will be discussed in Section V. They are seen to be proportional to the ray species field G:(r;), which

provides the mechanism of excitation, and to An. In view of the meromorphicity of the resclvent kernel

for three-dimensional scatterers [22], it i{s expected that the total contribution from all of the branch

cut integrals will cancel in the overall result given by the second term {n (51). For two-dimensional

‘scatt,ers of infinite extent, however, there is an intrinsic branch point singularity at « = 0 as was

discussed {n Sec. IlI. Finally, since the poles w, are distributed symmetrically with respect to the
imaginary w axis, and utilizing a similar symmetry relation for the wave function in (56), it follows that

the contribution from any pair of symmetrical poles in (61) yields a real field.

Finally, one may observer from (59b) that the lower half plane closing may be performed even before

"o n and that (61) may be modified by replacing the turn-on time to n in (60) with a switch-on time LS n

B s »
bounded by:

Con eV <t S thn (62)

Thus, the SEM time domain expression in (61) is valid formally even before the actual turn on time

[6,7,91, even though many terms are needed to synthesize the null field required there.

3. Delayed turn-on and removable entire function

In arriving at (56) and (61), all of the wavefronts associated with the ray species have been treated
collectively. This description can be modified into a hybrid form by retaining some of the earliest
wavefronts (small j) intact and accounting collectively for the remaining ones (cf. (41). There is a
systematic procedure for extracting successive wavefronts from the collective ensemble {nvolving partial
summation in (55) or in its generalized form i{n (56). Since the basic principle is illustrated adequately
by applying it to the first wavefront, we restrict our considerations to this special case. Accordingly,
instead of (56), we shall express the field of the n-th ray species, which i{s the one to be modified, by
the following identity:

§, = 0% e 3¥(a -n/a 61
where the {solated first term represents the first wavefront which follows the direct path for that
species (cf. (53)). The second term in (63) expresses the collective effect of all remaining wavefronts.
The manipulation leading from (56) to (63) can evidently be continued for retention of subsejuent

wavefronts.

Alternatively, one may arrive at (63) by modifying the flow dlagram .to account for the individual
monitoring of G: We illustrate this for a typical unit cell in the flow graph shown in Fig. 8, where

wavefronts with two scattering events are kept explicitely; here the wavefront in question passes from the

m

~{1
source at r' to r;q and to r;p before reaching tne observer at r. Accordingly, a new node u (r;p;l:q) is

added to {dentify this event (c.f. (47b)). This node contributes to the fleld at r as well as to nodes
G(r;m;r;p). m=1,...,N, in the maln part of the graph. Note that the node \:(r:p;r:q) {n the maln graph now
represents the incident field at r_~q due to the fleld at r;p. excluding the firat wavefront which has

(1)

already been accounted for In \:‘ (r;p;r;q). By calculating, via (49), the graph response, one may verify

that the field of the wave species assocfated with the direct path r_'"r:qn;pﬂ: is modified according to (63).
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Fig. 8 Modification of typical unit cell in the flow graph of Fig. 7, exhibiting explicitly the field of
the wavefront u(”(r.'p.r:q) and the corresponding contribution u(Z)(r_‘) which reach the observer after

two scattering events,

The collective part in (63) has the same resonance denominator as (56). Moreover, the coupling
coefficients in (61) ({.e. the residues at the resonances) are unchanged for (63) since A=0 at resonance.
However, these alternative collective expressions have different asymptotic properties in the complex
frequency plane. In (56), the numerator consists of Zn which, like A, {s 0{1) in the upper half plane (see
discussjon after (58)). In contrast, considering the definition of An, the numerator (An-A) in (63) consists
only of loop gains of those loops which touch the n-th direct path, whence the dominant term in the upper
half plane is O[exp(lkLn")] where Lp 1 1s the shortest closed ray path which belongs to the n-th species.
Thus, the collective part of (63) behaves essentially like (59) except that Ln is replaced by (Ln + Ln.\)'
the ray path of the first wavefront of the n-th species which arrives at the observer after the direct
wavefront u:. Accordingly, the second term in (63) contributes a resonances series which is identical with
(61) except that it turns on at the arrival time of the first wavefront which arrives after u: but s

included in the collective sum,

Generallzing this observation, we may state that if some of the earlier wavefronts In a ray species
are monitored individually, the collective response of the remainder is described by the same resonance
series as in {61) except that its turn-on is delayed to the arrival time of the first wavefront included
in the collective treatment. Since the first term in (63) or its generalization as described above has no
pole singularities, we shall call it a "removable entire function"” (cf. (42)). In the time domain, the
removable entire function turns on at "o.n of (60) and contributes primarily at early times. The
representation in (63) is equivalent to, and gives a wavefront interpretation of, the formal decomposition
in (3).

4. Intrinsic entire function

Unlike the removable entire function in the first term of (63), which could be incorporated into the
resonance serie3 as in (56), the first term in (51) cannot be treated in this manner. Therefore, we call
it the {ntrinsic entire function. Physically, this term represents the field at r. due to direct
interaction of the lIncident field with individual scattering centera, without any interaction between
these centers, Since each scattering center in isolation provides no input about the scatterer as a whole,
the global information essentfal for developing the body resonances is lacxing. As noted after (52), only
those scattering centers, which are directly visible from source and observation points, contribute here,
In the transient domain, the turn-on time at r of the intrinsic entire function is generally earlier than
that of the resonance series (61), as follows from the observation that at least one of the direct ray

paths (n the first term in (51) will be shorter than the ahortest path included in the second term.
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Unlike the collective term in (51) which has a long time transient representation in terms of the SEM
resonances, the intrinsic entire function in (51) usually contributes only at early times but even there,
its GTD form, which ylelds only a transient wavefront approximation is not enough to repregent {(ts full
transient waveform [2,3] {(cf. (30)) . However, the expressions for the intrinsic entire function {n “he
first term of (51) may be represented by "better® wave functions, such as ray integrals, spanning a
" spectrum of local plane waves whose stationary phase approximations yields the GTL filelds but which,

when kept intact, are uniformly valid in transition regions where GTD fails [!]. Moreover, such spectral
integrals, when inverted into the time domain yleld closed-form spectral expressions for the transient
field, that is valld for longer observation times than the wave front approximations corresponding to GTD
[20,21]. Alternatively, recognizing that intrinsic entire function represents the contribution from the
direct interaction of the incident fleld with the scatterer, it may be represented by the Physical Optics
» (PO) rield (7], which has a closed-form finite duration expression for the transient scattered field in

; terms of the scatterer's geometry [28,29].

D. An Example: Scattering by a Flat Strip

V To {llustrate the ideas presented above, we apply the flow graph procedure to a simple obstacle with
‘ two scattering centers for diffracted flelds: a perfectly conducting flat strip. This configuration can
actually be handled without the flow graph [13-15) but, as will be shown below, the flow graph analysis
handles systematically the 4-fold multiplicity of diffracted wave species which arises due to the fact

hAd

that diffractions occur on both faces of the strip.

, Source
P (]

Fig. 9 Scattering by a strip.

Referring to Fig. 9, a harmonic line source at p' emits an H-polarized field whose strength at a
distance L from the source is
&y - (amy”' "2
By GTD, the diffracted H field Gd at a distance p from the edge {s given by
i . 5 oce,en Ei(p) (65)

u = u
where Gl is the strength of the fncident field at the edge which arrives from the direction @', ¢ is the

exp(iklL + {n/&) (6u)

angle of observation and D i3 the soft edge diffractlon coefficient

‘ D(8,8" = - sec ( ) - sec ¢ B (66)

For grazing incidence 6' = 0, U is replaced by 4'/2,

If the observer is located so that there is no specular point contribution, the field scattered from
the strip is generated by single and multiple diffraction at edges 1 ana 2 ln.Fxg. 9. Introducing source
and observer coordinates g'-(p;.eé) and p=( op.ep). respectively, in coordinate systems centered at edge p
(p=1,2), one is led to the flow graph in Fig. 10(a). The incident fleld at the edges is represented by

nodes ﬁl(p), p « 1,2, given by (64) with L-p"’, and the singly diffracted ray contributions by the dotted

L branches A_«D(8 ’e')éc(pp) leading from these modes to the observer. 1In addition, each edge also sends two
aiffracted rays towards the other edge, one along the upper surface of the strip and the other along the

lower surface. Accordingly, nodes a(p.x) denote the fteld {ncident on edge p along the upper and lower

’ surfaces, respectively, and the transmittances of the corresponding branches are zBp. Bp-D(D, 85)60(6) (nove

—
-——
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that D(0,0')=-D(2x,8%')). Similarly, recalling the remark after (66), the branch transmillances between noles
G(p,x). which represent jnteraction between the edges, are i, C-I/ZD(O.O)EO(G). ana the branch
transmittances from G(p.ﬁ to the observer are ng, Ep-\/ZD(ep,O)aoipp). respectively.
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Fig. 10 Flow graph for strip scatterer.
(a) Full graph. Nodes u(p,t) are the fields incident on edge p along the upper or lower surfaces
of the strip, respectively. As in Fig. 7, the dashed, full, and dotted branches represent
excitation, multiple interaction, and radiation, respectively. The branch transmittances for p =
1,2 are defined in the text. For clarity, the observer node is suppressed.
(b) Graph reduced by symmetry.

The graph of Fig. 10(a} has four two-branch loops, two four~branch loops and as many as 32 direct
paths through the main graph. However, due to symmetries it can be reduced to the simple graph in Fig.
10(b), which yields the simple expression for the graph determinant

2 . 2
A=1-nc? ey - [ca(a) D(o.o)] 67
Similarly, equation (51) yields
2 2
D S b 3 8y (68)
pel p=t q=1
where the direct contributions t:‘; are the singly diffracted ray fields
~d _a . Y 6
A up Go(op)D(ep.Gp)GO(pp) (69)
and u represent multiple interactions corresponding to wave species (56) along direct paths through the

Psq
main graph, and account for all combinations of wave fields incident on edge p and radiating from edge q

(4 species). From (56), (53) and Fig. 10(b}, one obtains by inspection
- 5 (or A e "R - , o
Yoq ZGo(op)Bqu/A Go(cp) D(O,ep) Go(d) D(eq.o) Go(oq) A,qép (70a)

a - Nco(pp)BpC Ep/A - G (p') p(o, 6') G (d) p(0,0) D(e ,0) G (p ) A (700)
With A given In (67), (70) represents the co]lecr.lve r1e1a or the wave specxes (cr. (56)). Alternatively,
the wavefront expansion is obtained by using in (70)

- 2j
A - X [co(a)o(o.o):] m
J=0
One may ver{fy that none of the direct {nteractfons in (69) can be incorporated collectively into the sum
of multiple {nteractions in (70) and (7T1). The collective sum gives rise to the SEM resonances, the roots

of A, whose GTD approximation w

q 19 Biven by

. 2
[%““ p(o.m] <! 4o integer. (12)

These poles in the lower half of the compiex frequency plane, and refinements obtained by retaining higher
order terms in the edge diffracted fields, have been calculated in [14] while the corresponding scattered
field due to and {ncident impulsive plane wave have been calculated in [15], The resonance implied by (72)
are located along a layer that goes parallel to the real w-axis in the lower half of the uw-plane.
Moreover, the simple diffraction model used in (65) has been improved {n [13] by incorporating high order
slope diffracted rays within the multiple interaction scheme, with a subsequent generation of additional
layers of resonances which are located deeper {ntc the lower half of the complex w-plane., The GTD

[N
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approximated resonances agree remarkably well, even at the lower freguency end, with the resonances

calculated by applying the method of moments to the integral equation for the induce current on the strip.

V. COMPOSITE SCATTERERS AND PARTIAL RESONANCES

As was described {n Sec. IV.C the resonance equation and thereby the SEM poles takes {nto account the
collective effect of all the closed loop interactions, including coupling between the loops. In general,
for targets comprising composite substructures (Fig. !) the flow graph consist of subgraphs that
correspond to the substructures, with branches that couple between them. For such targets, one may
consider partial resonances characteristic of each substructure in {nsolation, anc then explore the
perturbation of these isolated resonances when the substructures are assembled to form the composite
object. By this approach, it is possible to explore the effect on the resonance map caused by changes in
substructures or in their relative location in the composite object, thereby providing {nsight {nto the
scattering mechanisms that establish a compound resonance. Accordingly, the determinant of a scatterer

comprising M subscatterers with determinants Am' m = 1,...M, will be written {n the form

M
s« TT 8, ¢ (73)
mal

where, in view of (50),the coupling term C consists of product of loop gains of the loops that are involved

in the coupling between the substructures (cf. (74)).

Assuming first that the scatterer {s composed of completely isolated subgraphs, then there i{s no
coupling term in (73) and the resonances of the composite object consists of the partial resonances, the
resonances of each substructure in isolation, as i{mplied by the roots of Am in (73). Depending on the
subgraph within which the n-th ray species is defined, the corresponding complementary graph determinant
Zn has factors in common with A In (73) (without the term C) thereby removing the poles generated by the
common factors from the fleld in (56). Accordingly, the poles from each isolated subgraph appear only in
the SEM pole map of a ray species which pass through this subgraph.

In general, the graph of a typical scatterer does not consist of completely isolated subgraphs.
However, there might be scatterers with weak coupling between subgraphs of an overall flow graph (e.g.,
those which contain resonance mechanisms with relatively low radiation loss - or high Q - such as open
resonators, open pipes, dlelectric scatterers, etc.). In such cases, the factorization described above is
no longer possible but furnishes a good first approximation. The zeroes of A will still cluster {n groups
defined essentially by the dominant unperturbed zeros of the Am in (73). This feature provides insight
into the physical mechanisms responsible for the various resonances, It therefore follows that ray
species with direct paths which do not pass through an almost isolated subgraph, provide weak excitation
of the SEM rescnances for that subgraph, since the determinant of that subgraph Is almost a common factor
of A and Zn is (56) (ef. (79) and (80) below).

a,
b,

<>
-
>

Fig. 11 A flow graph for a scatterer comprising two coupled substructures.

We shall demonstrate the observations above by considering a simple flow graph model of a acatterer
comprising two weakly coupled substructures (Fig. 1), Here, the wave [nteractlion In each substructure is
modeled dy a single closed loop pm. m=1,2 and the coupling i3 modeled by two branches ¢, and c,. The
scattered field u due to the incident field G‘ is given now by

0. G’[a.b.(!-p,) s ab,(1-p,) + a2 b, agd,l/a (74)
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where the graph determinant is given by (cf. 73))

A= (1-p)(1-py) - cC, (7%)
and the various branch transmittances are defined in Fig. 11, Recalling that the branch transmittance has
the form {(43), one may readily verify that the partial resonances, the roots of the uncoupled loops are
located in the iower half of the w-plane along layers whereon ]pm|-l, m=1,2, with pm being exponentially
small or large for w located above or below these layers, respectively. Similarly, the coupling term is
also either exponentially small or large for w above or below a "layer" whereon |c,c,|-1. Supposing now
that one of the closed loop interactions, say p,, is of high Q type, than the corresponding layer lies
close to the real w-axis so that |c,c,|<(1 along that layer. The global resonances, the roots of (75), are
therefore located near the partial resonances w\h of p, and may be approximated by

w ozw - L sV o= 1,2,u0 (76)

v " Vi pi(i-py) o,
1

where c¢c, is a small parameter and NVm , m = 1,2, are the roots of

Pn ® 1 an
Regarding the partial resonances of p,, one may consider two cases in which p, represents either high Q or
low Q interactions {(e.g., in the first case p, and p, represent weakly coupled resonators whereas i{n the
second case p, and p, represent, respectively, internal and external closed loop interactions of an open
resonator). In the first case, the coupling term is again negligible and there is another group of high Q
resonances related to the part{al resonances w,, as in (76). On the other hand, in the second case, one
usually has c,c, - O(p) so that the coupling term is non-negligible along the layer of the partial
resonances of p,. However, since lp,|>>! on that layer (recall that p, represents high Q interactions), one
finds t>at A also has roots near w, given approximately by (cf. (76))

ey

@ zw - — s v o= 1,20, (78)
v V2 (1-p,)p, lwy,

where here, p, is a large parameter.

When the above approximations are substituted into (74) one finds for the field of a high Q resonance
or (76)

-{w,t
e Y (19)

u (t) = 10! [apuy/pl + Oleed)]
Vv UV
1

while the contribution of a low Q resonance of (78) is

~lw,t
e UV

u(t) = 16* (apy/pt ¢ ou/p.)]‘w (80)
v

2
It therefore follows that both the high Q and the low Q resonances are excited and monitored, to the
leading order, by the corresponding partial resonance mechanisms, i.e. through the direct paths ab, and

ap,, respectively (see Fig. 11).

Vi. CONCLUSIONS

Transient flelds scattered by an object may be synthesized in terms of traveling waves (wavefronts) or
oscillatory waves (resonances). Traveling waves sample the propagation or scattering environment
locally along their trajectories while oscillatory waves convey global Information about the environment,
with the former and latter belng convenient (rapidly convergent) at early and late times. The two schemes
have generally been employed independently, but together, these local and global samples yield effective
discriminants for clanssification and identification of environmental features. The hybrid wavefront
resonance method, reviewed In this presentation, not only clarifies the connection between the two schenes
but alsc permits their combination within a self-consistent systematic format that draws upon the
advantages of each. The hybrid approach has also been utilized for classification of the SEM resonances
and the corresponding class 1 coupling coefficients and turn-on times, and for identification and
interpretation of the entire function, whether {ntrinsic (non-removable)} or removable. The main properties
of these constituents of the SEM are summarized and discussed {n Sections IV.C.1, 2, 3} and 4, respectively
(for the circular cylinder problem, analog discussions are given In Secticns III.D.2, 3, 4 ana 5,

respectively).
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For targets comprising composite substructures, we have considered partial resonance
characteristics, obtained by wavefront interactions within each substructure {n {solation. The global
resonance fields may in turn be regarded as a synthesis of interacting partial resonances due to ray
coupling between the substructures. When a partial resonance process is only weakly coupled (e.g., when
it 1s of hnigh-Q type), it will identify approximately a subgroup of global resonances in the SEM pole map
of the full body, and thereby clarify its origin. This feature may facilitate a parametric tdentification
of certain class of targets, Conversely, this selective sampling by rays can be used for an approximate

calculation of the full-body resonances.

The hybrid wavefront resonance theory has been demonstrated first within the rigorous context of
transient scattering by a perfectly conducting circular cylinder (Sec. III), and has been generalized latter
within the high frequency framework of ray theory (Sec. IV}). In the analysis of Sec. III, we have treated
the exact traveling wave solutions colleetively (ef. Sec. IIL.D), and ray notations nave been employed
only to interpret wave transport and interactions mechanisms. In the general hign frequency analysis of
Sec., IV on the other hand, emphasis has been put on methods of systematic ordering and "collectivizing" the
multiplicity of wavefront events. Accordingly, the matrix representations in (45)-(48) has been introduced
to assort the wavefront interactions, whereas the flow graph representation has been used to collectivize
them in terms of wave species. The field of these wave species depends explicitly on the scattering
functions along the ray paths (cf. (51}, (56)), ylelding the ray interpretation of the SEM.

The preceding discussion has been based on the assumption that the propagation or scattering
ervironment can be decomposed into scattering centers and interaction functions between the centers,
Although ray terminology has been employed throughout, the model applies not only to GTD ray fields per
se but to any other more general wave description (such as spectral integrals, modal rays, complex rays,
peams, etc.) whose transport properties are associated with the ray trajectories. By using ray spectral
integrals, for example, one may uniformize GTD in transition regions and also obtain long-time expressions
rfor the ray flelds [20,21], However, the assignment of scattering centers and interaction regions in a
complicated environment may be difficult, The choice of the one influences the choice of the other. Here,
one may bue gulded by a combination of numerical and analytical techniques. Numerical methods are
effective, for calculation of low frequency resonances and the SEM series converges well at the later
stservaticn times corresponding to that regime. At early times, wavefronts are few, initial ray paths can
we traced, and wavefront representations (via GTD, or even better, via STT) legitimized in this high
frequency regime. The wavefront treatment at early times must include the intrinsic entire function but
it may also include some of the earliest wavefront interactions. Thereby, one can pestpone turn-on of the
resonance  series until the low freguency resonances generated numerically provide an adequate
deseription. These analytical-numerical tradeoffs, when built into the hybrid wavefront resonance scheme,
~31y lead to an effective means for attacking a broad class of forward and inverse transient propagation

andg scattering problems.
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SUrMARY
L

The pnysical optics method finds increasing interest in the computation of radar signatures of compli-
cated objects, wnich are large compared to the wavelength, A series of ideal conducting structures for
wnich the pnysical optics nethod nas been successfully anplied to co.pute the back-scattered tield s cre-
sented at first. The basic idea of physical optics following the Huygens-relmholtz principle is evaiuates.
The surface integrals for the electromagnetic scattered field are presented and discussed. Some details of
the physical optics method, when applied to complicated structures, are considered in the form ¢f a snort
survey. Tnis includes tnhe nidden surface probiem, the ability to predict depolarization effects for cer-
tain situations, the evaluation of the phase integral, tne extension of physical optics to treat double
reflections, the accuracy of the geometrical model and an estination of the computer time. In the corclu-
sion some steps for furtner extension and improvement of the nhysical optics method are summarized.

1. [WTRODULTIUM

The physical optics method (PJ) is used since long time to predict bistatic scattering processes woen
applied to tne computation of reflector antennas [1, 2j. There are numerous weasurements to vaiidate tre
PO-results for the copclar and crosspolar cases. The reflector systems under investigations may cors st
of a single reflector in tne symwetric or offset [3} arrangement. In recent times alsc mcre complicatec
structures 1like dual- and four-reflector antennas (4, 5| were successfully treated with PC.

The progress in radar tecnnology concerning the classification, 1dentification and discrininat cr uof
targets has stimulated the interest in predicting the monostatic scattering process for anplicatior crien-
ted objects like an airplane or a sea surface, see Fig. 1.]. Various methods, among tnese the PO methac
come into consideration for this purpose [6]. The scattering objects as the reflector antennas are large
conpared to the wavelengtn, They are 1n general very comnlicated structures witn partialiy; or compietel.
snadowec surface regions. In a variety of practical cases also non ideally conducting subrejions nust he ta-
wen into account. For this category of objects rigorcus methods like tne integral eguation method fail he-
cause of tne high effort in computer time and capacity. One tries to use approximate methods, and since PJ
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Fig. 1.1 Radar Targets
a) airplane
b) moving sea surface.

nas proved its advantage in analyzing reflector antennas, one could think, that also in the radar back scat-
ter case the method would work witn an accuracy, which is sufficient for most practical problems. If one
considers the structures of Fig. 1.1 one realizes that they can be constructed from a series of simpler
structures like a flat plate, a sphere a.s.o. Several work has been done t11] now to test the physical op-
tics method in the scattering case against measurements or other independent theories. Some of these struc-
tures are listed in the following and depicted in Fig. 1.2:

flat plate (panel) (7],

sphere [3, 9],

circular disk [9],

cylinder [9),

cylinder with sphere and cone {3, 9},

cube [3, 9],

cube with additional shadowing surfaces [9, 10},
trinedral corner reflector [11].

In the toliowing the PO procedure is developed parallel to the geometrical optics (GO) concept, which forms
the basis of PO. Since a lot of references, which deal with the validation of PC in the antenna and in the
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f} trihedral corner reflector causing triple re-
flections, panels of 1 mm thickness, % = 33 mm

1) cube with additional shadowing panels, causing
two interfering double reflections, - - 11.01

scattering case is given above, the paper is restricted to some details of PJ like the higden surface pro-
blem, depolarization effects, double reflections and some other problems concerning the evaluation of the

¢. THE HUYGENS-nELMHOLTZ PRINCIPLE FOK SCALAKS AND THE ELECTROMAGHETIC VECTOR FOR!ULAS

The name "physical optics” is often used synonymously with the terms "Kirchhoff aoproximation , “tan-
gent plane approximation” and “Huygens' principle". This is due to historical evaluation and individual pre-

The diffraction theory of light, developed by Fresnel (1813) is based on the Huygens' principle (levl:
of tne construction of envelopes and the Young's principle (1801) of the interference (171. The Huyqens’
principle states, tnat every point of a wave-front may be considered as a center of a secondary disturban-
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ce, which gives rise to spherical wavelets, and the wave-front at any later instant may be regarded as the
envelope of these wavelets [18, 19j. So Huygens' principle was first formulated long before Maxwell's equa-
tions (1373) showed the true vector nature of electromagnetic waves. According the principle of Young the
distribution of light behind a black screen is due to the direct incident wave and a wave, which propacates
from the edges of the screen, the diffracted wave. The diffraction phenomena are explained by the interfe-
rence[gglthe several diffracted waves under each other, mainly however, by interference with the direct
wave [20].

The Huygens-Fresnel principle extends the Huygens' principle by taking into consideration the inter~
ference of waves and states, that the wave excitation in an observer point is obtained by the superposition
of all wavelets, which propagate from different points taking into account their phase [19]. An exact for-
mulation of the Huygens' principle by an integral formula was the merit gf Helmholtz (1859). This integral
formula allows the computation of thg field v(r) at an observer point P(r) from the values v(r') of the
field and its normal derivatives 5v(r')/an', both given in the points Q(r') of a closed surface:

- 1O av(F <.y 90 .
V(7 e - e (B o yF) B e (2.1)
F
¢ = O(Fy ¥') = exp(-ik,F-F' .Y P-F', = scalar Green's function,
n. = n{r') = unit normal vector, directed in the 7/aterior of the surface, see Fig. 2.1,
jr-r', = distance between observer and integration point, later R = r-r' is introduced.
,’—’45‘\\ Q)
// 7r:' e
’ - LN
) Pl S, S Fig. 2.1 The Huygens' principle for a source free fi-
X * < F nite space, bounded toward the exterior by
| the closed surface F.
° .

The function v(F) is solution of the inhomogeneous wave equation
av + k8 = 0 (2.2)

and satisfieg the radiation condition. The values V(') and :v(¥')/n' are denoted as boundary values of
the field v(r).

The integral formula above is known in the literature as the Huygens-Helmholtz principle. The names
Huygens-Kirchhoff principle or Kirchnhoff formula, which also sometimes are found in the literature are
unhistorical.

Eq. 52,1) expresses that each wave field‘v(F) can be generated by a superposition of spherical waves
exp(-JkRJ/R with “density distribution" - .v(r)/sn and dipole waves /an(exp(-jk®!-R* with density distri-
bution v(r), The waves propagate from 3 closed surface, which encloses the observer point [17, 20, 21}.

The choice of F is arbitrarily. Of special interest is the division of F into two closed surfaces F;
and F,, where F, encloses Fy, see Fig. 2.2. F; may enclose all sources £ and scattering bodies. A further
special case of high practical interest is given, if there are no sources within Fi' and Fi coincides with
Fs' the surface of the scattering body.
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\ S scattering \ ! Fig. 2.2 The surface F is divided into an inner sur-
[N e, ! face F. and an outer surface F_.
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If F, tends to infinity, see Fig. 2.3, one gets no contribution from F,, since v satisfies the radiation
condition. In this case equation (2.1) is also valid in the exterior. The unit normal vector now is directed
outwards of Fi’ which we denote again as F in the following.

If the boundary values v(r') and av(*')/sn' of the field would be known on the surface F, e.g. by mea-
surements or by estimations, the field at any observer point could be computed according Eq. (2.1). The ri-
gorous treatment of Eq. (2.1), however, leads to the formulation of two independent integral equations and
their solution for the unknown density distributions. Theraby one has to take tnto account that a relation be-
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tween the two boundary values exists. That is the solution v(¥) can be determined uniquely if either v(r')
or av(r')/3n' is defined on the surface F [17].

For compieteness tne Huygens-Kirchhoff principle shouid be mentioned. It can be evaluated from the
Huygens-Helmholtz principle by a Fourier transformation [20}. Kirchhoff (1832) received the following ex-
pression for the function f describing the wave propagation in space ani time:

> { 3 - -
FF0) = -9 (rar FFL - D - g e e - Byar (2.3)
F

o d T W e

a/3n* = normal derivative if *' is variable, 3/5n = normal derivative if r is variable.

Therewith the motion of the wave at the observer point P can be computed for the time t, if it is
known at tne points 9 on a surface F at times, which are retarded by the timas 2/:.

(12 huygens-Helmholtz principle originally was formulated for scalars. There are several vector formu-
lations for the electromagnetic field, which are derived from different starting points but also can be
transfered into each other (17, 22, 23]. In the following the expressions only for the electric field are
given, since the magnetic field expressions may be constructed in applying the duality principle.

Using the second Green's formula for the scalar components one receives [1]
nd ! 7 bl '
E(r)=-%—;?(%r(‘:—)-®-f(r)%%r)df ) (2.4)
F

In applying tne vectorial Green's formula with the ve:ror pctential of a point source one can derive
(21, 22, 24j:

{ -, > - -
EF) = - 15 9 Gun(ai(E )0 - (BB ) x 70 - (RBF V) of (2.5)
F
w = 2nf = angular frequency,
f = frequency,
Ho = permeability of the vaccum,
[ = complex relative permeability,
u=u3ur = absolute complex permeability of the propagation medium,
P A . X
T X (: )= } component of the magnetic } field tangential to the surface F,
AxE(F )= electric
3'-“(7’)= magnetic ;
” R } component of the } field normal to the surface F.
n'-f(r'): electric
Using the classical theory of vector potentials and the equivalence theorem one immediately receives {22
4 - -
B(F) = - %7 uxg (R xE(F ) df' + TiT w(wé GORFE ) dFY) (2.6)
F F
CPCHE absolute complex dielectric constant,
3 = permittivity of the vacuum,

Lr=€}+jt;= compiex relative permittivity (dielectric constant).

Starting with the reciprocity theorem or with the vectorial Green's formula, now with the -~ ../ of a
point source, one arrives with the expression [2, 22, 25]:

' L) - - }Wi GuuAOdF e - G EFED)) x v'o - 3}? ((RxB(F ) ow )0 s) df* . 2.1

Equations (2.6) and (2.7) have the advantage, that only field components tangential to the surface F are
under the integrand.
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It should be mentionned, that the derivation of the field eqyations with the aid of the vectorial
Green's theorem or the reciprocity theorem represents the field as a sum of a volume integral and the
above yiven surface inteyralg. The volume integral is extended over the known primary sources and thus re-
presents the iancident field é . The surface integral is extended over the tangential components of the
total field and represents thE scattered field %5, so that the equation holds

B(¥) = Eem + ES(F) . (2.8)

The extension of the surface integral over the components ot the total field can lead to some confusion,
since ‘there is no difference in the function inside and outside of the integral of the Huygens' principle,
This conf%sion can be explained by the proof, that it is possible to express the scattered field in
terws of as well as in terws of + , that is in terms of the total field [15, 26], This meafs that
the expres§ions 1ven above are syitéd toscompute the scattered field by inserting for E, H under the
inteyral either és, ﬁs or Ee*ts' He’“s' From Sec. 4 on the scattered field will be denoted by ES, HS.

3. THE KIRCHHOFF INTEGRAL FOR SCALARS AND THE PROPERTIES OF THE VECTOR FORMULATIONS

In general it is very difficult to construct a solution of the Huygens-Helmholtz formula Eq. {2.1).
That is, why Kirchhoff (1882, 1891) tried to find an approximate solution. He had the opinion, that one re-
ceives good results, if one yses instead of the unknown exact boundary values v{r'), av(r')/on' approximate
boundary values va(r'), avy(r')/on', which follow from geometrical optics laws. This idea forms the basis
of the physical optics method.

If one inserts the approximate values v_(r') and ava(?')/an' in the Huygens-Helmholtz formula, one re-
ceives the so-called Kirchhoff integral 4

-’I
. 1o (r") R . . R
Vs gy e s v () ) df (3.1
F

With this step one has to deal no longer with a boundary value problen but with a discontinuity problem. In
this case the surface F may be an arbitrary non closed surface. As before, v(r) satisfies the scalar ho-
mogeneous wave equation, How behave the vector formulations in the case, that the surface is not closed?

Equations (2.4) and (2.5) no longer satisfy Maxwell's equations and would become therewith not appli-
cable for a lot of practical problems like reflector antennas, The satisfaction of Maxwell's equations can
be achieved in adding correction terms in form of line integrals to the surface integrals (1, 24]. The line
inteyrals were extended over the rim of the open surface. One gets instead of Eq. (2.4):

R o (7)) e L. . .
HOIER }WJ (o - (P E are - %?r (€47 xE )9 g5t - a?j:? A FOtysast, (3.2)
F C C

and instead of Ey. (2.5):
I U RV FEETS e LYY T ‘e ' / yef ) .

EF) = - I {Junin xﬁd(r 18- (n'xfa(r Yvte - (n fa(r 11e) dE - e ? (A (F )t ds' L(3.3)

F [

tr - E(F') - unit tangent vecter, C = curve of the rim of the open surface. The geometrical situation is

depicted in Fiy. 3.1

i
open surface F rm C

Fig. 3.1 Geometry of a nonclosed surface.

Eqs. (2.6) and (2.7} have the remarkable property that even in the case of an open surface they will
satisfy Maxwell's equations, so in general one would prefer to work with these., On receives:

BGr) - - 5; Vox ?‘ (AU, (1)) df' + ﬁ Vx(Vx ?' (AR (Fe))e af) (3.4)
or alternatively F F
B - - 3‘;7‘ QB (Fr))s - (BB (Fr)) x 9 - T:E (Al (F1))ev)Tre) df (3.5)
F

in the following the second equation is prefered, since there the differentiations can be evaluated
under the inteyral. One receives:
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E(¥) - Tjx ) (—-—LRz— (n xﬂa(r 1)+ Jwe =— (R xfa(r ))xég) + (3.6)
3
: 2,2 -JkR
335kR-K2RE |, xe x ry iz a2y € ,
# RIGHE (3, (7)) S of
& = (F-F*)/,F-F', = R/R = unit vector, which points from the integration point teward tfe observer point,
see Fig. 3.2.

Fig. 3.2 Geometry for equation (3.6).

For the computation of the bistatic or monostatic scatter cross-section, only the far field aoproxi-
mation of Eq. {3.6) is of interest:

o _dmedRrL T o e ke o7 X
E(F) = %%h g g X (ex(n'xh (r')) - - % (n'xfa(r‘))) eIkE T gre 3.7
F

r = distance between the coordinate origin, which is situated within or in the neighbourhood of the surface
F, see Fig. 3.3.

ér: unit vector, which points from the coordinate origin toward the observer point,
P
- -
= 4
R = eF}R [

Fig. 3.3 Geometry for the far field formula Eq. (3.7).

The magnetic field in this case is given explicitly:

> i "jkl"’ - + - T, ike opt
A(F) = - %%5 & — &, x [ @, x(A B (F')) + 7 £ (R (7)) elkep T g (3.8)
F

4. THE KIRCHHOFF ANSATZ AND THE ANSATZ OF PHYSICAL OPTICS

The ansatz, which Kirchhoff made for the functions va(;') and ava(F')/ﬁn is explained at hand of Fig.
4.1 117]. We consider a scattering (Fig. 4.la) and a diffracting (Fig. 4.1b) body in the field of a point
source of light E. Both types of bodies are to be dark. This means that the incident light is absorbed and
no light is reflected. The shadow boundary S,; in the GO sense touches the bodies in a shadow line (. This
line can be regarded as a rim of an arbitrary surface L, which should close behifd the source. The surface
L forms together with the shadow part S“ of the body a closed surface S"+L, dividing the space into a source
free space T* and in a space T™, wnich contains the source. According GO the following situation exists in
T*: within the frustrum T, bounded by L and Sq the field distribution ve of the source is undisturbed, out-
side of Ty the field disaPpears. This GO fielg distribution can be represented according the Huygens' prin-
ciple by &n integral over the boundary lines of the frustrum:

e T

. v_(F) ) w_(F) . s
vg(r) = { oe } - %) (—%n-r— ? - v (F) %%r) df! for { Tg . (4.1)
S +L § q

al)

RT3

By transversing the shadow boundary Sg from the positive towards the negative area, field discontinui-




57
Fig. 4.1 INlustration of Kirchnoff's procedure
a) scattering at a structure, b) diffraction at a screen,
ties arise with magnitude
3V ) ave
(vgly = (vl = v v (), - (= 57 (4.2)

These discontinuities, however, which can be due to fictive surface source distributians, are in con-
tradiction to the homogeneous wave equation, We construct now in T* a salution, which satisfies the wave
equation. For this purpose we add on the right hand Side a term, which shows exactly the same discontinui-
ties, however, with the opposite sign. This term is given by

1 ¢ 3v (r ) ,
A i (ﬁ—sﬁr—— ® - v (r ) ) df
59
Therewith one receives the following solution, valid for the total space ™
> > 1 f ave(Fl) 3P .
vir) = vg(r) A (g%~ v (r ) Fpv) of° = (4.3)
S
g
[ (;I) - 3 >
: ’115) (mr— vl ggr dft L FeT
L

This is the Kirchhoff solytion, which expresses, that the wave field in space is generated by the
superposition of wavelets, which propagate from the points of the aperture L. Kirchhoff originally has
derived this formula by choosing the surface $“+L for the application of the Huygens' principle and in-
serting in Eq. (3.1) the more or less plausible boundary values

av Va éve Bva
- . - =2 - "
Vot Ve T T Am on L vy ® 0, T 0 on S". (a4.4)

These are the values of the GO field at the surfaces L and S".

Specially in the scattering case we are interested in a salution, which is valid in the total space.
This can be reached by deforming the surface L in Fig, 4.1 in such a way that it borders the iiluminated
surface S’ of the scattering abject. Then, however, the source singularity in £ is to be taken into account.
The contribution of this singularity results in the undisturbed field Ve . Therewith we now can write the
previous equation in the form

(® + 1 f e(;‘) R df* ret N 4.5
(r) = v (r) - g7 | (gt - v (r ) ) v TrE€ . {4.5)
5

Since with this special choice of the surface L the total space is described by T*, the solution Lq.
(4.5) is valid everywhere with exception of the scattering body and the source. For this formula Kirchhoff
has assumed that on the illuminated side of the body or the screen the values v, and 3v,/%n are given by
the incident field Ve where on the shadowed side these values disappear:

v v v

Ve T Ve o §ﬁ£ = 3;5 on §'; v =0, 333 =0 on S" . (4.6)




These assumptions become obvious, if one assumes that the screen is completely absorbing the light.
4 Since then on the illuminated side no reflection occurs, the 1ight movement is given by the incident liaht
approximately. Further a black screen is opague for the light and, therefore, in first approximation
there is no wave movement in the shadowed parts [20].

The subdivision of a body into its illuminated and shadowed parts is a purely geometrical problem,
which in the case of a complex body needs a considerable computer effort, see Sec. 5

In the e!ectromagnetici we are used to construct the totai field £ as the sum of the incident field
fe and the scattered field s In this way we can write

W(F) = v () + v (P (4.7)
with the scattered field .
- 12 a0y B0 Lo
ve(r) = - .o (5 ¢ = vo(r') 35r) af’ . (4.8)
&

The Kirchhoff idea for the ansatz of approximate boundary conditions for a black scattering or diffrac-
ting structure foliowing GQ principles may be used accordingly in electromagnetics for the estimation of
the tangential components n'xﬂa and n'x a

In the case of an ideally conducting structure we know some boundary.conditions exactly, while other
boundary conditions may be constructed in the Kirchhoff sense. The foliowing Table 4.1 gives a survey over
the known and unknown boundary conditions 1n tne scattering and diffracting case.

boundary conditions
exact approximate

~r

on the scatterer axE =0 shadow region

scattering

body illuminated region

outside the scatterer | nxf = nx

in the aperture

diffracting

body shadow region

on the screen nx€ = 0

illuminated region

Table 4.1 Exact and approximate boundary conditions of the total fields in the scattering and diffracting
case if the bodies are ideally conducting.

Tne approximate boundary condition

would be exact, if the scatterer could be represented by an infinitely extended ideally conducting plane,
whers p = Hg holds. In practice this means that a scatterer should be modeled by local tangent planes.
tr’ - denote the reflected field in the GO sense.

Of special interest within this lecture is the scattering case with the boundary conditions given on
a scatterer. From Table 4.1 we receive

Ak, - it = 0 for the total scatterer, (4.9a)

ﬁnﬁa =0 in the shadow region of the scatterer, (4.9)
and

ﬁxﬂa = TR, + ol - ZikA,  in the illuminated region (4.9¢)

of the scatterer. Using Eqs. (3.7) and (3.8) we receive for the case of an ideally conducting scatterer the
PO solution of the scattered field:

-jkr . . . .
EF) = 42 S 8 x(E x| (Rl ST g (4.10)
F
5 w v pe ok, r s, T JKe P o,
g(r) = - 1—7—,, Sr ek (AH(F)) e aft (4.11)

F

If the scatterer is nonideally conducting, we cannot define any exa:t boundary condition. The approxi-
mate boundary conditions may be formulated as follows:

MmE =0 MR, -0 in the shadow region, (8.12a)




ﬁxfa = ﬁxie + r'\xfr | ﬁxﬁa = ﬁxﬂe + ﬁxﬁr in the 11luminated region of the scatterer. (4.12b)

Again, ;hese boundary conditions would be exact if the scatterer could be represented by an infinite
extended nonideally conducting plane. Using the Fresnel reflection coefficients R. and R for a plane multi-
layered medium, Fig. 4.2, the boundary conditions (4.12b) above can be formulated in the following way:

. » - - . »
Ak - Ax(Egy & + Eg, €4 + R Egy B0 ¢ RUE,, Su) s (4.13a;

And = 0x(-E,, €y + B,y €0 - Ry Eg, € R EL SW)/T) . {4,130}

reflected wave

layer
incident A y

free

le Al
no.
wave thick-| space
\%‘ v o ness
/ // €rsihy: !
- £
i \ AN

’\\f < ‘4_4,4_;_6_%,
. \\
z = \\\:\\ 3 d3 multi-
== . T Y o
T I A
dN- 1
N

Fi1g. 4.2 Geometry of a multi-layered panel.

R

[

s reflection coefficient for the case, that the incident magnetic field vecter 1s vert:ca. tu the plane
of incidence {H-polarization),

RE = reflection coefficient, if the incident electric field vector 15 vertical to the plane of 1ncidence
(E-polarization).
The reflection coefficients have to be determined at the interface detween free space and multi-layered
panel.

* unit vector vertical to the plane of incidence, .

unit vector vertical o e, and yertical to the incident ray e, and therewith parallel to the nlane

R of incidence, so that e, = e, x e nolds, .

< unit vector vertical to €, and vértical to the reflected ray with direction s and therewith
parallel to the plane of incidence, so that s, = § x e, holds.

.

"

o«
[

Eg. resp. Ea. = component of the electric field in the direction of ‘-;-. resp. in the direction of é..
For details see fl\). 26-301. The geumetrical situation 1s depicted in Fig. 1.3,

-
. . s
€z - S
- “n R
el l syz€)

plane of

incidence

tree prm———— Ry H

space rl= "Wy el

multe-
layered
panel

a)

Fig. 4.3 Definition of polarizations
aj H-polarization, b) E-polarization.



S-10

5. SOME DETAILS OF PHYSICAL OPTICS
5.1 GEOMETRICAL MODEL AND HIDDEN SURFACES

The GO concept of using Fresnel reflection coefficients, which rigorously are val.d for infinitely
extended plane layers, proposes to model the structure by panels (flat plates) the structure should be
large compared to the wave length. For this kind of modeling the so-called hidden surface problem, that is
the discrimination between the illuminatea and shadowed surface regions, has to be solved by a computer pro-
gram. At this time there are two computer programs in use. The first computer program [31] has been applied
for the solution of all hidden surface and double reflection problems, cited in this and previous reports
(9. 10}. The computer time increases almost linearly with the number of panels. The second computer pro-
gram [32] is a basis version, which is foreseen to be extended to treat myltiple reflections. A rough des-
cription of the procedure, which is illustrated by Fig. 5.1, is given in [10].

\ procedure at hand of a rectangular
box modeled by triangles or quadrang-
-j& les. A triangle is positioned in

r\& Fig. 5.1 ITlustration of the hidden surface

front of it
3) original situation

Ei) t)) b) elimination of all suyrfaces with
normal vectors including more than
90° with the observer direction

c) splitting of the box panel, which
is partially hidden by the triang-
le, the invisible part of the box
can now be removed

d) remaining elements of the box only,

[\

c) d)

One also could think to use curved panels in order to model the structure. This may have some advan-
tages in modeling certain structure like a wing of an airplane or a bow of a ship. The solution of the
hidden surface problem, however, will increase in complexity. The PO solution for a curved panel, descri-
bed by the two principal radii of curvature is evaluated in [33, 34].

A further modeling technique is described in [35]. The body is considered to be an ensemble of compo-
nents, each of which can be geometrically approximated by a simple shape. For these simple shapes, the so-
called basis structures (sphere, flat plate, cylinder, cone, etc.), the radar cross-section is known by
exact solutions, approximation method or measurements. By proper combining the component cross-sections one
can estimate the cross-section of the entire body. Hidden surface and multiple reflection problems must also
be solved within this procedure. The correct treatment of the phase of the component scattered field is a
very difficult task. That is why one often uses a random-phase method, which yields the average radar
cross-section and the amount of probable deviation from this average.

5.2 PREDICTION OF POLARIZATION EFFECTS

PO predicts zero cross-polarization in the monostatic case, when the scattering structure is ideally
conducting and no doubly or multiply reflecting panels occur. This is not in agreement with the actual si-
tuation. Also in all other cases the predicted cross-polarization effects are erroneous. Therefore, tests
are in progress to decide, if the PO results in this case satisfy pratical accuracy requirements.

Fig. 5.2 shows as an example for the bistatic case the computed and the rmeasured radiation pattern of
an offset reflector antenna |3] with a corrugated horn as primary feed. The reflector was assumed to be
ideally conducting. No double reflections occur. Exnerimental and theoretical results are in fair agreement .

The components of the backscattered field (monostatic case) of a multi-layered panel |10, 26, 30],
may be represented by

E E
el M, (5.1)
sy ey
where the scattering matrix [Tj, computed by PO, is given by
2 2 - .
R.,n° ~ R.n (R, + Rc) n_n 3

~jkr P [ H ' Ey H £ Tx Ty ex

(- - 2* el [ o2k gy gy [ : (5.2
nr(1-n%) 2 2
z kp (Ry + R[) "y RN"y Ren S -Eev-

Nyy Ny, N, = cartesian components of the unit normal vector of the panel,
Fp = grea of the panel.
The geometrical situation is illustrated in Fig. 5.3.
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Frg. 5.3 Geometry of the monustatic scatter Lase.
The formula predicts cross polarization with the exceptton that Ry : - Ry Thiy as the case for ver-
tical incidence (n, = n 2 = 0}, 1f the material 1s non rdeally conducting, and for all anales of eosdence

1f the panel 15 1deally conducting {Ry = - Rp = 1). Further no cross polarization ag predicted, “f the in-
cident field vector 15 either vertlca? or parallel to the plane of incidence.

The polarization dependent backscatter cross section of & nomideall, Conduct vy ngie g ernd are
presented 1n Fig. 5.4. An experimental validation of the depolarization effects uf a ngeigea’ ', cor t,00
panel 15 planned for the near future. For other thegretical work 1n this field see |3t
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5.3 LYALLATION OF oL PHASE INTEGRAL

Trne prase integral 1n L4g. (5.2) can be evaluated numerically in any case. If triangular or quairaniia-
lar panels dre chosen, tne hase integral cdan be evaluated analyticallv |19, 37]. If the object to bde mo-
feled nas Sucnh a shape, toat large panels can be used, the analytic solution has sume advantage in Accuracy
and computer effort.

In tne literature one finds very often an aoproximate evaluation of the phase integral by tne stu-
tignary pnhase principle |12, 15]. It 15 a well-kngwn pnencrmenon that waves, which are short compared wite
ubjects 11aens19ns, are scattered almost entirely from those surface points, which are specularly oriented.
Anen applying tne stationary phase principle on tne phase inteqgral one c¢an snow, that most of the scatte-
ring does 1ndeed come from these specular points and the small nerghbourhood surrounding them. The evalua-
ticn of the phase integral by the stationar, pnase principle nas tne advantage that analytical expresstins
fur the scattered field are avarlable. Un the otner side very incorrect results can arize for directions
far amway from tne main lobe of <cattered energy. Since tne stationary phase principle is not inherent to
tne kirconoff metnod one snould emphasize a precise evaluation of tre phase inteqgral by numerical or in
special cases by anaiyztical techarques.

5.4 DOUBLE REFLECTIONY

In order tu treat double reflections the 0 concept for the construction of the surface fields 1o
applied 1n a logical extensyon [4, 101, F13. 5.% shows the qeometry of two back scatteriug panels, which
are orrented 10 such 3 way, tnat doublie reflections _an occur. In order to describe double reflectionsg in
the GO sense, the angle * is set to zero. ° takes into account that the PO field of panel B propaqates not
only in the GU direction. The proper value of the angle * depends on the desired accuracy and is subject
of current investigations. Values of 00 « - - 500 seem to be realistic.

The bacv scattering of each panel s described by Eqs. (5.1) and (5.7). Additionally cach panel ne-
nerates a reflected field at the surface of the atner panel, which 15 scattered toward the ‘eceiver. This
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Fig. 5.5 Geometry fur double reflections.

reflected field, which is constructed according 63 principles, represents tne incident field in the P9
sense.

In the case of ideally conducting doubly reflecting panels tae polarization vector 55 of the backscat-
tered field is jiven by tne following formula:

PR e . T o
P (nb x(\na X pe)x enl) ke, . 5.3}

ée = polarization vector of the incident field Ee.

Cap ° unit vector in the direction of the GO reflectior of panel A,

T untt normal vector of panel A,

n,o= unit normal vector of panel &,
r50
“ap Ve TN T L

Tnis means that in tne case of iceally conducting surfaces, the PO concept is able to predict cross
selarizations alss n tne back scatter case, 1f double reflections occur. The same is valid, if cwitinle
reflections arise. On the basis of tnis concept a computer program was develoned |8 - 12]. The qeometrical
oroblens arising with double reflections are treated in {35].

Fig. 4.7 snows the computed and measured depolarization effects for an ideally conducting cube with
aaditional snadowing surfaces, which give rise to double reflections. The dimensions of the object are
given in Fig. 1.2g. The pusition of tne cbject for the rotation angles 29, 159, 300 and 450 is illustra-
ted in Fig. 5.6. Tne results show the actual state of the work in the field of double reflecticns. The
differences between experimental and theoretical results are subject of current discussions.

g _€(1 Fiy. 5.6 Position of the depolarizing structure tor
axis of the rotation anjles 00, 1u0, 109, 459,

A rotation

| incident
field vector

a) Q= 0°

b) a=15° c) U=30° d) Q=4s°
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Fiy. 5.7 Depolarization effects of the ideally conducting doubly reflecting structure, see Fig. 1.29 and
Fig. 5.6;
a) theoretical results,
b) experimental results.

5.5 MODELIWG ACCURACY

In wodeling a structure by panels the question arises according to which criterium the size of the
panels has to be determined. On the one side one would like to choose the panel size as large as possible
in order to safe computer time. On the other side the difference between the true surface and the model
surface is not allowed to exceed a certain value. A series of tests has shown that the deviation between
the true surface and the modeled surface should not exceed a value of about A/16. This is illustrated in

Fi), 5.6

This criteriwn is well known from antenna measuring technique. If the admissible phase error over the
aperture with dianeter D of the antenna under test is assumed to be 22.50 (A/16), then the far field di-
stance R inust be chosen in such a way that R > 20%/\. The true far field pattern for the distance R + «
then will differ only in a negliyible amount from the measured one.
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Fig. 5.8 Admissible deviation between the true and the
modeled surface.

modeled
surface

true
surface

5.6 COMPUTER TIME

The .najor portion of the computer time is needed to carry out purely geometrical computations like the
elimination of the shadowed subsurfaces and the search procedure for doubly reflecting panels. The actual
version of the computer progran takes about 0.0l s per field contribution of one panel and per one aspect
angle on a computer of the type 18 308l. The cylinder with a hemisphere at one end and a cone at the other
end (see Fig. 1.2d) is modeled by 140 panels. This means that the computation of the scattered field for
180 aspect angles takes a time of about 250 s.

6. CONCLUSION

The PO method has proved its qualification in the prediction of the radiation pattern of sym-
aetric and off-set reflector antennas with single-, dual- and four-reflector systems. A series of test
objects with increasing complexity has been used to validate PO also in the monostatic radar case. For
the accuracy checks numerous comparisons with measurements and/or the results of independent theories
were made. The test objects were assumed to be ideally conducting. The computations were carried out for
the far field.

Thouyh the used test objects can be 1dentified as substructures of more complicated objects, a vali-
dation of PO for application oriented objects should be provided for, Exact backscatter measurements,
however, of an object like an airplane require a high effort, and a comparison with the theory is a com-
prehensive task. Further PO should be validated for the case of nonideally conducting multi-layered struc-
tures. This affords a precise knowledge of the constituent parameters of the materials. in the field of
double reflections more measurements are needed to discuss the preliminary PO results presented.

Since the quasi-near field of a scattering structure is of practical interest one should study the
qualification of PO in predicting the scattering process in this event. Further it seems of high practical
interest to extend the PQ method to treat multiple reflections for ideally and non ideally conducting com-
plex structures and to solve the ray tracing problem for this general case., A further point of investiga-
tion could be the correction of the PO field by an additional field term, which takes into account edge dif-
fraction effects. This correction tern has to be evaluated for an edge of finite length.
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SUMMARY

1Y

Target classification is set up as a multidimensional inverse scattering problem for electromag
netic waves. The target is considered to be of compact support residing in a medium with constant
wave speed. The scattered field produced by a prescribed incident field is represented by its equiv
alent sources in terms of Huygens' principle: for the sake of simplicity. inversion of this represen
tation is outlined for a scatar quantity, say a scalar potential. It is illustrated that the introduac-
tion of the physical optics or weak scatterer approximation linearizes the inverse problem resalting
immediately in an inversion formula for the characteristic or singular function of the scatterer if
the scattered field is measured as function of frequency - or as broadband transients - on a closed
surface sufficiently remote from the target in an either bistatic or monostatic experimental arrange
ment, When interpreted in the time domain the resulting far-field algorithms turn out to be of the
backprojection type inversion of the Radon transform as it is a basic tool in computerized toma-
graphy. To get rid of the far-field approximation the wavefield backpropagation principle 1s uhi
lized to define a generalized holographic field, which is explicitly related to the minimal energy
components of the equivalent sources according to the Porter-Bojarski integral equation; integration
with regard to frequency yields a unique explicit solution for the geometry of the target if and only
if the physical optics or weak scatterer approximation holds. _Ln the time domain the resulting solu-
tion of the multidimensional inverse scattering problem can beé\intuitively interpreted as time domain
backpropagation of transient scattered wavefields, which turns t to be a generalization of Radon
transform methods to diffractive waves instead of projective rays) As such, the Synthetic Aperture
Radar can be theoretically derived within a tomographic framework, Additionally, this gives rise tn
either bistatic or monostatic Fourier domain processing of transient data even in the near-field,

-

1. INTRODUCTION

We define the following electromagnetic scattering problem (Fig, 1): a source volume Q transmits
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Fig. 1: Scattering problem

an electromagnetic (incident) field (E;,H;): which is scattered by a target of compact support with
surface Sg, both residing in free space with (vacuum} wave speed ¢ = (egug)” 2, The total field

(E,H) at some spatial point R is then composed of the sum of the incident field and the scattered

field (Eg,Hg). In the time domain E(R,t) and H(R,t} have to satisfy time dependent Maxwell equa-
tions with initial conditions and appropriate boundary conditions. Introducing a Fourier transform

with respect to t according to

+o

Flu) =[f(!)ej“tdt = Fp (10}

(1)

leads to spectral quantities E(R,e) and HI(R,s), which satisfy time harmonic Maxwell equations with




6-2
the initial condition replaced by a radiation condition: notice that we have chosen the positive sign
in the exponential, which yields the complex conjugate of the conventional Fourier transfurm for real

valued time functions: this is indicated by the asterisk in operator notation.

In the spectral domain, a solution - for instance for E(R,u) - can be giver in terms of the
following integral representation for the incident and the scattered field [1.2!

o(R', v}
g0 = [l 6 m-ntw) « ——— 6] @r' ¢
0
Q
@{‘“*'o‘ﬂ' CHURT )1 - 1 a) + Tn' - B(RY L) -"<='fnx"::“}'»’“'“} "
S,

where J{R',w) denotes the electric current and ofR',w) the electric charge density in the source vol-
ume Q, n' is the outward - source point - normal on S.: G(R-R',s) represents the threedimensional
free space Green's function

(2}

JkiR - R
GIR-R'.w) = S (1
anp-R

with the wave number k = w/C.

Usually, equ. (2} is made the basis for the solution of the direct scattering problem where the
equivalent surface sources n’' x H, n'x E, n'* E on the scatterer have to be determined in advance
applying some appropriate boundary condition to E{R,w) [2,3]. With regard to the inverse, i.e. tar-
get classification problem, equ. {2) has "simply" to be inverted to determine the localized equiv-
alent sources provided E(R,u} is considered as data and E;(f,»}) is known a priori. This inversion
will be outlined in the following, where, for the sake of simplicity, we concentrate upun the scalar
counterpart of equ. (2}.

It has been emphasized that polarization effects play an important role in target classification
{4,5]; they can only be accounted for by the full vector treatment of electromagnetic scattering and
inverse scattering. We anticipate that our scalar discussion can be most probably extended not anly
to the complete electromagnetic vector problem but also to the tensor problem of elastodynamic waves.

Suppose, the electromagnetic field is decomposed into a scalar potential ¢ and a vector poten-
tial A. In the spectral domain, ¢(R.w) satisfies the following wave equation

(8 +Kk*)e(R,0) = - q(R,u) . (4)

where the source term g{R.u) is - for instance - proportional to the electric charge density in Q.
With the aid of Green's theorem, we immediately obtain a solution of equ. (4) in terms of an

integral representation, which is the scalar counterpart to equ. (2) (compare Fig. 2) as soon as the
arbitrary surface $

o(R,w) = ]I[q(g'.m)c(g—g-,w)d’g' . @ [0 & - om-Rrw) 18] ase (s)
Q

S

surrounding S; is smoothly adjusted to §..

Fig. 2: Scalar Huygens' principle
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2. HUYGENS' PHINCIPLE, EQUIVALENT SOURCES, PHYSICAL OPTICS AND WEAK SCATTERER APPROXIMATION

From equ. (5) we immediately learn two things, which are important for the inverse problem:

- Suppose, S characterizes a measurement surface Sy where the quantities ¢ and 3¢/3n' are known
from experiment; then, equ. (5) tells us that the total potential outside Sy can be computed with
the aid of a surface integral, any additional measurement point outside Sy yields redundant in-
formation. Therefore, our data space is essentially twodimensional, whereas our scatterer is at
least threedimensional (in terms of the equivalent sources - see below - it is even fourdimension-
al). A remedy consists in the increase of the dimension of the data. varying experimental para-
meters, which can be vonveniently controlled: these could be the angle of incidence of a plane
wave, say, modelling the incident field or - more important for radar purposes - spectral fre-
quency. Here, we will concentrate upon the latter procedure.

- Applying equ. (5) to a point interior of S, Green's theorem only tells us that

j]]q(ﬁ'.m)G(ﬂ*ﬂ',wid‘ﬂ’ #[@(@'.w)—:—% - G(B‘B'.u)%:—,] as’ . (6)
v S
Q
As has been pointed out by Bojarski [ 6], equ. (5) cannot be considered explicitly useful for tar-
get classification.

In order to invert equ. (5) it is appropriate to transform the surface integral into a volume
integral for arbitrary scatterers, be they either perfect ("perfectly conducting”) or penetrable, i.e,
allowing for wave propagation inside S.. This can be done defining the characteristic and singular
function of the scatterer first. The characteristic function denotes the support of the scatterer accor-
ding to

1 for Re V
T{R) = 7]
0 for Ré¢ V |,

and the singular function has been introduced by Bleistein [7] in terms of

to @ 4@

ff vlg)o(g)d’g:#o(g)d‘g (8)
S

T leo o

c
to characterize S, explicitly.

Let us choose the Dirichlet boundary condition ¢fR',w) = 0 on S, to describe a perfect scatterer.
We then obtain the following equivalent volume source representation for the scattered field

4@ + o 4o

o (Row = / f [',2(5'.“0(5—5'.“.1(1’5' (9)

with
D -
(]C(E,w) = - y(R)n * ve R (10}

where the upper index "D" stands for Dirichlet.

The case of the penetrable scatterer can be obtained transforming the surface integral in (5}
for S = S, into a volume integral for points R outside S, applying Green's theorem, which yields

o (R, u) = - jjfc(g-g'.u)u' + i) 0 (R . w) d’R! (1)
v

Very often, a penetrable scatterer is characterized by a variable wave speed c(R) inside V,
which can be modelled by the following wave equation -

8¢ + kK*(R1¢ =0 , ReV . (12)
From (12) we obtain
89 + k*e = -[K"(R) - k']¢ (13)

and hence

+® ra 4w

s (R.u) =ff[qc(g'.w)cm_-g'.w)d’r_«' (14)
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with the equivalent volume source

q.(R.w) = T(R) KPR - Kk¥1e t15)

Therefore, the subsequent integral representation

@ e@ @

olB,w) - o +f /qc(g-,uc(r_azg'.um'r_a' 16}

can be made the starting point for further investigations; the equivalent volume source is either
given by (10) or (15), and we emphasize that a variety of more compiex surface or volume sources
- electromagnetic currents and charges as well as elastodynamic forces - can be modelled 1n a sim
ilar manner (sometimes only approximately, as it is already the case for the scalar Neumann prob-
lem).

In contrast to the prescribed sources accounting for the incident field the equivalent sources
are field-dependent, which makes both the direct and the inverse scattering problem non-linedar with
regard to the scattering geometry: if unly a single scatlering "pixel” is added to Vi, the whole
equivalent source distribution changes.

One might be tempted to solve the non-linear inverse problem by deconvolving equ. (16): in
cartesian coordinates (x,y,z), equ. (16) is a threedimensional convolution equation, and, applving
a threedimensional spatial Fourier transform according to - K - (K‘(,Ky,Kz) denotes the veotor of
corresponding Fourier variables - :

+o tw +®

. -jK TR

S(K, w} = *o{R,u)e TR 0an
we would obtain

o (K, w) = q (K,w)G(Ku) (18)

Considering 5 as (Fourier transformed} data, we could divide by G o obtain the spatial Fon
rier spectrum of th& equivalent sources. Unfortunately, this procedure is not possible for two rea-
sSOns:

- tS(R,u) is only known on Sy or outside .Sy twith the aid of Huygens' integral): there is no way
to compute it inside Sy, and, hefnce, ¥s 1s missing the most important spectral components.

- Computation of (J(E.») yields for any spatial dimension

(;(lf,w) = pf _r

(19}
K? - k?
with
- 2z + kd 2
K - Kx Ky Kz B tz2u)

where "pf" stands for pseudo-function; loosely interpreted, G is singular on the so-called Ewald-
sphere K = k preventing simple deconvolution.

The remaining alternatives to solve the multidimensional inverse scattering problem rely on
approximations for the equivalent sources, which essentially result in a linearization with regard to
the scattering object; the physical optics and weak scatterer assumption are physically intuitive
procedures to achieve this linearization.

The case of the penetrable scatterer can be linearized provided the surface S; encloses a weak
scattering volume, which means that it is present as an equivalent source but not as a scatterer,
i.e. in (15) we sot the total field ¢ inside the scatterer equal to the incident field o, which is
- certainly valid if the difference |k*(R) - k*| is not too large. Usually, the weak scatterer approx-
imation is associated with the name of Born, i.e. we write instead of (13)

a®™ (R.w) = F(R) [K*(R) - k?] o,(R.0) (21)
Assuming plane wave incidence according to
ik; *R
¢.(R,w) = Fluw)e (22)

where F(w) denotes the frequency spectrum of the incident wave, we conclude that a prescribed char-
acteristic function is transformed into an equivalent volume source (within the Born approximation)
simply by multiplication with a phase factor, which is completely determined by the propagation vec-
tor k; of the incident plane wave with |5il = k.

For very high frequencies w, a smooth convex surface of a perfect scatterer can be considered
to be composed of locally plane patches, which are "infinitely” large with respect to the pertinent



[
waveleogth, Hereoe, for the Intecbibet bonndary condition we pat
St AN S LN tagl
1
anevery locally plane paten swhich resides on tae alluminated spde of fhie wcattening B T T L

“darks o sidel the equavalent surtace songoes are set egual te zero, Theretorne, we write pste ad
within the physiciad opties Lt

(L]
1,

(R, ) ZaBut kl.H]“":) . [IXR N

ahere nlo kot BE denotes aoanit step tunction dccouanting tor the distinction ot pifameicated aned

sute] ks the anit vector an 1 direction,

Let us bretly consider an example for an equvalent hrichlet sorface sanroe, whe o b pro
dineed by plane wave incidence atong the negative z direction upon an infinately Jong cirodar oy
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tnoour special case, where we have antrobiced polar coordinates (r, Foan the [ozb plane acoandaing
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2 ey
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X reos @

#(r - a} denotes a *-distribation accounting for the (twodimensional) singular fnoction of the varoalar

cylinder.,

3. FAR-FIELD INVERSION VIA K SPACE
Introducing the far-field approximation of the Green's funation

RIS e ki e
- ]}ﬁ'" (27

anlR- R

with the unit-vector R H/R we obtain instead of (18)
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ol (g4 - oJkA H(KR,w) 128)
s R T OERR = ‘

where

N +® o 4o -jké'ﬁ'
H(kR.u) = f ch(@'.w)e ¢’R’ (29)

To o e

denotes the scattering amplitude, Comparing (29) with (17) we conciude
H(KR.w} = q (K = kR.w) . (30)

which tetls us that measurements of the scattering amplitude in various directions B pro.ides us with
Ewald-sphere information of the equivalent sources, where points on the Ewald-sphere. i.e. in spa-
tial Fourier space, are explicitly related to points in observation space through K kH. This fact
can be exploited to derive far-field solutions of the multidimensional inverse scattering problem with-

in the Born or physical optics approximations either in a bistatic or monostatic aperational mode,

Here, we want to concentrate upon the bistatic case, because algorithms for monostatic far-field
inversion within the physical optics approximation have been reported earlier {compare the famous
POFF|S-identity, which stands for Physical Optics Far-Field Inverse Scattering 8.9 ). For the Di
richlet scatterer we have

TR RE jRIR - R
1 -]

. l'k__lﬁ!
RLu) - ~2F(u)[ [v([(")u(—! <R )0’ Ve . aw (30
B EE N N 4n|R- R

and further

PO
L8 (

. ‘o to rw A~ s o
FONAT(p ) - k(e YRk ulk crne TR g (32)
s = 1 LS = =i =i =T
Defining a spatial Fourier-vector through
K = k(A -k ¢33

identifies the threedimensional integral in (32) as a threedimensional Fourier integral relating far-
field data to the Fourier transform of the "Dirichlet singular function"

P@ig) = v®a ek ut-k; R (4

in terms of

+@ tm b Sk e R opo‘“"(K)e - jkR
Dipe 2 . s £
TRk e 'R’ - Z"R‘“W— (351

Due to the definition of K, a prescribed experimental setup, i.e. choice «f Kj, k and R unique-
ly determines a point in K-space: data space and Fourier space are related on a point wise bhasis.
This is the argument to interprete the far-field data ogf"(g,lii.w) measured in the direction R for
the direction ki of the incident wave of wavenumber k as a "data point” ogﬂ'(KD in the Fourier space
of the object after the normalization indicated in (35). B

Fig. 4 exhibits the relation between object space and Fourier space: obviously, if k; remains
- fixed, according to (33) the vector K reaches all points of_ the shifted Ewald-sphere (K« I k if
the receiver rotates around the scatferer recording oga'(n.k,r,“.) for al)l possible directions R. These
(normalized) scattering data have to be interpreted as Fourier data osa (K}, hence, a single bistatic
time harmonic experiment yields spatial Fourier components of the Dirichlel singular function on the
Ewald-sphere only. This information can be augmented in a multiple experiment varying the spectral
frequency w: for 0 < w < = we obtain

WFOTar () o~ JKR

<D, ~ oy s
Y (K.Ei)u(—ﬁ k;} = -2"R TIRFGT ’ (36}
where the step-function in K-space indicates that only “"one half" of K-space can be swept that way.

Without loss of generality we can assume to find k; in the xz-plane (as well as in the KyK,-
plane) according to - i

!i = k(-cosei. 0, —sinei) (37)
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Fig. 4: Object space versus K-space for a bistatic far-field experiment satisfying
the physical optics or weak scatterer approximation
We introduce rotated K K_-coordinates ipnstead of Kxaml K7 to make
A 3
K k. =K . (38)

where the K,-axis now points into the negative fg - direction; performing a similar rotation of the
x'z' - plane with £', ¢’ to be the new coordinates, the Fourier inversion of the left-nand side of (361}
reads

‘4o +o t @

D Kpet v Kyt . K e
Y ‘K K K k )ulK e 4 *dK dl\y(ﬂ(c

v 4@ i iy €39)
! <0 I 1 13 ! [ 3
YO f f VKK ek ) ey [5(:) - ~pf~j?]e Y ak, aky

where v (K Kyebo k ) denotes the twodimensional Fourier transform of v (R k i} with respect to ¢’
and y'; the ag‘ensk in (39} indicates a onedimensional convolution. lnlorrhangmg this convolution
with the twodimensional inverse Fourier transform and taking the real part yields

‘e 4@+ m PO far -jkR

b . A (K)e KR
YUAR"MK;) = - 5 Re —We a'K 10

Equ. (40) represents a bistatic far-field inverse scattering identity within the physical optics
approximation; obviously, this procedure implies target classification in terms of the magnitude of
the equivalent Dirichlet surface sources, which only partly represent the geometry of the scatterer
(compare Fig. 3). The situation turns out to be somewhat different for the penelrable scatterer with-
in the weak scatterer approximation: we similarly obtain

A -] 0Eorn.faru_{)e-jkn iK - R .
0(R") =-'_,ne[ —FmT—— K. (41)

where 0(R) denotes the object function. which is directly related to the characteristic function accord-
ing to

k*(R)
0(R) = r(R) [1 - —_ (42)

v e e e i v e . . - R TP



6-8

The essential difference uf the monostatic counterparts to equ,’s (400 and (341} 15 in the et
nitton of the Fourier vectar K: due to R kl we then have anstead of (3310
K 2R 143

Evaluating the corresponding algorithms similarly as above (compare the referenced Literatare)
we tind that monostatic far field target classification is in terms of 8(R) for the penetrable scat
terer, and in terms of either T(R) or ytHin * R for the perfect scatterer (Dirichlet and Neomann
boundary condition yield the same results), In any case, a closed measurement surface and infinite
spectral bandwidth 1s understood: deviations from these tdeal conditions lead to dmage degradations,
which can be intuitively investigated via computer simulations 7, Aternativelv, a certain physi-
cal understanding of the occurring phenomena is obtained transtormung the far field K space anverse
scattering identities into the time domain. This step formally vields the bdckprojection algnrithm of
computerized X-ray tomography as inversion of the Hadon transtorm.

1. RADON TRANSFORM: K-SPACE INVEHSION AND FILTERED BACKPROJECTION
For the sake of simplicity we reter to twodimensional problems, i.e. 4 twodimensional target s
defined by its characteristic function Tix.z). A projection of f(x.zl along "ravs" distingoisted by

the parameter £, whose normal makes an angle with the x axis, is obtamed trongh fompare Fig.

Al

v s @
P} [[!‘lx.z)*ixmsw . ozsine fhdxdz. (RN

Fagu. (441 13 called the Radon transform of 7(x,z2).

Computing and evaluating the onedimensional Fourrer transform of PoGo) wath respt
according to

leads to the so-called Fourier Slice Theorem 11 of computerized tomography o~ an anversion of the

Hadon transform

PR ) K cos o K, s ), (161
which relates tonedimensionally Founer transtormed) data of observation space to the twodimensional
Fourier transtorm fle.Kl_l of the characteristic function along a raial live through the orgin of
Kosprace (compare Fig. 3)0 varving .« contipuonsly Hlls Kospace continuously . and, hence, 7 ix,2) can
be obtained by multuhimensional Fouarier inversion,

A
FK, FKz
-1t
rx,2) = FK! FKz‘ Fg(PGlg)))

Mxz2) =-BHD§( RlEh

Fig. 5: [llustration of the Fourier Slice Theorem and filtered backprojection
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A processing alternative to equ. (46) is obtained via analytical manipulation to yield 11’
)
; 1
Tx,z) - ﬁfoa(xcose + zsin 9} de (47)
0
with
Q,le) - -HD [P (e)] . (48)

where HD; denotes a filter operation on the data with regart to £ consisting of a derivative opera-
tor followed by a Hilbert transform. According to (47), the filtered data are subsequently backpro-
jected into the target space along lines of constant { (compare Fig. 5). Superpositicn of all back-
projections for varying © yields T(x,z). For obvious reasons, this data processing pracedure is
called the filtered backprojection inversion of the Radon transform.

For certain materials projections of the kind {44) can be obtained with X-rays whence the
success of computerized tomography in medical imaging and nondestructive testing.
5. FABR-FIELD INVERSION VIA TIME DOMAIN BACKPRC iCTION

Similar to the Radon transform inversion, far-field inverse scattering via K-space has its coun
terpart in filtered backprojection algorithms which operate directly on time domain scattered data.
Again, the monostatic case has been treated earlier [9,12,13), therefore, we concentrate upan the
bistatic arrangement, and, for the sake of ronvenience, we choose equ. (41) as starting pomt. With
(37) and

f_l_ = (cos6cos¢, cosesing, sino) tig

we obtain the following Jacobian

ST R
clededKz = 7 IE—EiI dkd @ t501
with the spatial angle element
da = cosodeds (S
Insertion into (41) yields

ij Born far : jk(;—{ . I.Si) T
0(R') = - —,—Re __FTT?- Rk .w)e Bk it [

where the spatial angle integral extends over its full range of 4-. To interprete the kointegral as
an inverse Fourier integral, we smuggle exp(- jotlulc) into the mtegramd, atdd pat 1 0 pmmediatedy
afterwards. Due to the step-function u{w) the lower integration 1unit can he chosen das minus inti
nity. Because ul(t) according to

21 1 .
u(t) = 76(!) A pf]! (73
is the inverse transform of u(u) (compare equ. (39) and notice the complex conpagate an equ. (101,

we obtain

y - . _R {.Born far - B R
0(R") = - = s (Rl t) TR- k1P 1531

4n

with

IZ')

ct =R-(fl_

0 }*R (55}

i z
Due to the occurrence of Flu) in (52), the time domain data corresponding to the frequency
spectrum of the measured data have to be deconvolved with the time dependence of the measured data
have to be deconvolved with the time dependence of the incident plane wave whence the upper index

"I" in {54), which stands for time domain impulse response,

Equ. (54) represents a time domain bistatic far-field inverse scattering identity within the
Born approximation; its expressive interpretation is given in Fig. 6 for the example of a spherical
Born scatterer whose far-field impulse response can be computed straightforwardly [10): a time do-
main data point observed in the_ direction f for a time instant tp is distributed, i.e. backprojected,
to a plane perpendicular to fi - k,. where the scalar product R' ¢ (R - k ) is a constant relating
points R' in object space with ty through (55). As such, time domain Tar field target ctassification
within the physical optu,s or weak scatterer approximation is closely related to the backprojection
operator (47) as an inversion scheme of the Radon transform,

Sl
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Fig. 6: Time domain backprojection of the bistatic far-field impulse response of
a weak spherical scatterer

A straightforward extension of (54) to non-far-field experimental arrangements, where, for in-
stance, extended planar measurement surfaces have to be accounted for, is heuristically obtained in-
serting ty according to

17>

ct, =

0 = K;*B « R-R'I . (56)

i o-2
instead of (55); from (56) equ. (55} can be deduced it far-field conditions hold. The resulting target
classification scheme has been made the basis of the Synthetic Aperture Radar (SAR). In the follow-
ing we give a rigorous evaluation based onr the backpropagation principle. It wil) enable us to
clearly state all approximations, which have to be made to end up with the heuristic SAR scheme.

We stay with the bistatic case and the penetrable scatterer; in {10}, the monostatic case is treated
in detail, and the perfect scatterer can be approached along the same guidelines with our equivalent
volume source formulation.

6. BACKPROPAGATION PRINCIPLE, PORTER-BOJARSKI INTEGRAL EQUATION

We return to the formulation of wave scattering in terms of Huygens' principle, which, as we
already mentioned, is not explicitly useful to tackle the inverse problem. Therefore, we follow the
ideas of Porter {14 ] and Bojarski {15 ], and define a so-called generalized holographic field
Xp(R.w) inside the (measurement) surface S (compare Fig. 2) according to the principle of backpro-
pagation

Ky(R, ) = -# [m_«',wp$ - (;ﬁ(g-g'.w);ﬁ&] ast (57}
s

here, G* denotes the complex conjugate of the threedimensional free space fireen's function, which
accounts for incoming spherical waves travelling towards the measurement surface with amplitudes
according to the known values (and normal derivatives) on S: we are going to "meet” the outgoing
scattered field if we compute Xy inside $ from ¢ and 3¢/3n' via G+,

As a target classification scheme, equ. (57) has been investigated as generalized holography
[16] and within the context of exact inverse scattering [ 15,17]; it allows ta derive a relationship
between backpropagated fields and their original equivalent sources, tha so-called Porter-Bojarski
integral equation [6,14].

Applying Green's theorem to the interior of the surface Sy transforms equ. (57) into

+@® 4@ 4@
Xy(Roo) = #(R,u) - f [ ch(a_'.m)c-(g—ﬁ'.w)d'g' (58)

Inserting (16} we obtain

to s m @

Xg(R,o) = o z;f ch(g'.umi(g-g'.m)d‘g' . (59)
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where G; denotes the imaginary part of the Green's function. We can eliminate ¢; defining
oy(R,w) = X, (R,u) - o (60)

which yields

e
o, (R.0) = —@[Os(g',w)gg—: - c*(g-g'.w)m?] as’ (61)
S

and therefore

o+ o @

BH(ﬁ,u) = 21f [qC(E',w)Gi (B—E'.u]d’ﬂ' : (62)

Equ. (62) is an integral equation relating the backpropagated scattered field and its equiv-
alent volume sources; unfortunately, its solution in terms of qc(R.w) is non-unigue {18). This can
be readily seen applying a threedimensional spatial Fourier transform

Sk, w) = 2jq (K.w) 6, (Kw) (63)
Recognizing

S o B

Gi(K,w) = o 8(K-Kk) . (64)
we obtain

Sy(Kow) = 2 GUK=K.0, 0 wl8(K-k) . (65)

where @8y.¢, denote angular coordinates in K-space. Equ. (65) relates the spatial Fourier spectrum
of a generalized holographic field - a quantity, which can be computed from measurements - to the
Ewald-sphere components of the equivalent sources; obviously, g¢(K.u) can be arbitrarily changed
outside the Ewald-sphere without changing equ. (65), whence the non-uniqueness of the solution of
the Porter-Bojarski integral equation (62}. Equ. (65} reminds us ta equ. [(18), where we stated that
the scattered field is mainly composed of Ewald-sphere components: here we find, that the backpro-
pagated field is only composed of Ewald-sphere components. In fact, the difference is due to the ev-
anescent or non-radiating source components, which get lost in the backpropagation process [ 10,18,
19,20 ].

From a physical standpoint, equ. (65) is somewhat similar to the far-field inverse scattering
identities, insofar, as scattered fields measured on closed surfaces exhibit specific K-space infor-
mation about the equivalent sources; we just lost the point-wise correspondence between K-space and
observation space: in fact, the backpropagation principle relates all measurement points to all points
on the Ewald-sphere. Consequently, as in the previous chapters, we will tray to augment K-Space
coverage via multiple, i.e. broadband or transient experiments. Unfortunately, due to the explicit
dependence of ‘ic(E-“) upon w, sweeping k changes the total K-space structure of the equivalent
source, which belongs to every single frequency component. Ta contrcel this dependence, we have to
introduce a priori knowledge, which is accessible assuming physical optics or weak scatterer approx-
imations. Therefore, to continue in the derivation of explicit inverse scattering identities, it is a
must to introduce linearizing assumptions.

7. INVERSION VIA TIME DOMAIN BACKPROPAGATION

We choose the penetrable scatterer for plane wave incidence within tre Born approximation, and
rewrite equ., (62)

+@ 4@ ¢ @

“ik;t 8B Skt (R-RY
e 8y(R.w) = - 2jk*F(u) fo(g'le - Gi(R - R w1d'R (66)

Threedimensional Fourier transformation and integration with respect to ¢ yields

. N e
{[m olK+ ki ubdk = G(KITIK, o) (67
(]
with
11 -
"'-(-'ei, "[k—' ““ﬁ"ii' k)dk (68)
0
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The latter integral can be carried out explicitly with the aid of distributional analysis [ 10]:
K. 6) = & ul-K * &;). (59)
Therefore
-~ ~ j 1 K? .
0(Klu(-K *k;} = 'fm GH(K*Iii.w)dk. (70)

0

The right-hand side of this equation can be manipulated if we recognize that 5H(§.m) satisfies the
Fourjer transformed homogeneous wave equation

(K? ~ k) 9, (K.w) = 0. 171)
Hence

KI -~ -~ ~

Tic QH“-(-”ii'“) = {-K* 5|)BH(§+5i.w) (72)

Insertion into (70) yields in the spatial domain

+® 4@+ @ -

1 p L KSR [ kgt R N
o DK u(-K * k,le R s e Y [r:)H[B,w)P. ]dk (73)
A NS o

With the same arguments, which lead from (36) ta (40) we find

oy - -2 1 - RATIE.
(R) = -ZRe| oy KV Joq(Ruwle dk (74)
0

Equ. (74) is an exact inverse scattering identity provided the weak scatterer approximation
holds; it can be considered as a generalized filtered backpropagation algorithm.

As previously in our investigations, further manipulation of the k-integral yields a time domain

target classification scheme, which represents a generalization of far-field time domain backprojection.

Proceeding similarly as in the derivation of equ. (54} we obtain

N R E;"_‘
0(R) - —chgi-ve"(ﬂ.x N —E“) . (75)

where the upper index "R" stands for “ramp response”: instead of deconvolving the time domain gene
ralized holographic field o 4(R,t) with k*F(w), we have specially chosen

1 N
Flw) : pt o . 1761}
which is the spectral Fourier transform of the twosided ramp tunction
fit) '—E—I- (771

Evaluating the normal derivative ol the complex conjugate of the Greer's function 1n the dety
nition (61) of the generalized holographic field, we obtain

R UNT S JRIRRTE .
e“( ) i S e ) k‘n o - n lu_ n}
i) -y, i TTRVRT T M T TR T TR
Su
(781
. _'“‘“5 LT
B ]

and, hence,
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R 1 e (a' 'y t.l_r—tg_l)
QH(R‘” = 4—-# s,an'\2 g s 7,
4 R-A
™
Yo wmow
TRRTT (79)

n'e R-RY)
R i il B

where, as it is usually understood, the partial derivatives 3/3n' and a/3t operate on the ramp res-
ponse scattered field in the time domain before insertion of the retarded time t + {R-R'|/c,

The interpretation of equ, (75) together with (79) is as follows: suppose, a time domain bistatic
scattering “experiment” has been made with a weak scatterer, where the incident field is prescribed
as plane wave with a twosided ramp function time dependence (which, of course is not available for
practical applications): on a closed surface surrounding the scatterer completely, the scattered field.
its time derivative and its normal derivative have to be measured as function of time t yielding a
threedimensional triple data field depending on two (primed)} spatial variables, say x‘,xé and the

; time variable t. Every point in this triple data field for fixed 1{.t, and varying t as then to be
backpropagated, i.e. distributed on a surface given by image points R, which satisty the equation

i'R*IH-R'I . (80)

where this distribution involves appropriate amplitude normalization. Obviously, equ. (80) is the de-
sired generalization of (55) as proposed in (56} (notice, that the role of B and R' has been inter-

4 changed), whence the interpretation of (75) as a backpropagation instead of a backprojection scheme,

The object function O0(R) is obtained after coherent superposition of time domain backpropagated data

for all points 1(, v, and subsequent k; * v -operation with regard to R,

RECEIVER

AY

N\,
-
- -

0(8)\\4 Xy

Fig. 7: lllastration of time domain backpropagation in the reflection mode, 0 oy o

The backpropagation step is illustrated in Fig, 7 for a specific reflection mode experimental
arrangement for a receiver point in hackscattering direction.

. Alternatively to the above time domain backpropagation processing procedure, one could keep the
image point R fixed and sam up all data points tolR,R') for which equ. (80) holds for varying R',

The inverse scattering algorithm identified as generalized filterpd backpropagation in the time
domain can be considerably simplified if terms of the order R R'l 7 are neglected in the backpro
pagation integral (61), or (78), respectively. Evaluating the expression
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- -jk; "R
ki [e“(lj. le ]

up to the same order, we obtain after some calculation

= -ik;*R ae  CikIB-BY
P e dw . s e
OR). = 7o “ef TFGT [J"a—m TTE-RT Y
0 M
-jklR - R

e n'* (R-R") (81}
b - _ - .
KT RT TR R ]

5i~(5—a')] ]
e

Apparently, equ. (81) can also be interpreted into the time domain: notice, that the . -operation
has been - approximately - transformed into jk- and k’-filters operating on the double data field
%5, 3n and o, simultaneously with the deconvolution filter w*F(w); obviously, these filters partly
compensate each other,

Eqgu. (75) is an exact target classification equation for a bistatic (scalar) Synthetic Aperture
Radar; every presently utilized algorithm implicitly relies on additional approximations, whose in
fluence can now be judged against (75). One of the most straightforward approximations i to gnore
the occurrence of the narmal derivative of the data, which can be hardly measured: in fact, tlas s
correct for planar measurement surfaces S, the corresponding algorithm is given in 10

Inversion via time domain backpropagation is a generalization of the filtered backprojection
Radon transform inversion to dilfracted waves, which do not yield simple projections ot a target,
What we are still missing is the K-space processing counterpart; we will briefly comnent on that in
the following. -

B. INVERSION VIA K-SPACE

As in conventional computerized tomography let us assume thdat the measurement surtace 1~ 4
plane (in three spatial dimensions), which coincides with the xy plane of a4 cartestan oonfinate
system at some distance 2z d > 0 from the origin, Therefors, taking the twodimenstonal Fourer trans
form of ¢ according to equ. (16) with respect to x and y yields

‘e iz - 2"l of k' - K2 - K?
. : R ‘_ x oy
. e uy) S . . )
P KKz } 90K K2 dz : a2
Tw® : (¢ 3
k M Ky
we have |z -z2'| Jd - z') 4 -z' on hehalf ol the bounded support of the scatterer, which is 4~

sumed to reside in the half-space 2z < d. and therefore

T KR! e
i : ‘_Jd kS Ky Ky R 12 of k* K;
.s(Kx‘Ky'd'wl - e e — e - t|(le.Kv.z‘,u)e (843
) - °
k Kx KY

The integral in (83) can be considered as the onedimensional Fourier antegral of Q,.(Kx.Kv.z o}

with respect to z2' evaluated for the corresponding Fourier variable
k', "Vk’ Ky W, where the
positive sign has to be chosen to fulfill the radiation condition of the twodimensional Fourier trans

form of the {ree space Green's function for z —— =  Hence

;dJk' K’ K?
K ) - b Y Sk % K KD )
S(K K — KKK y Ky (841
k' - K? - K?
v x "y

In order to utilize Oslkx.K «d.w) as input data to a threedimensional thverse Fourier transform
target classification scheme, we have to 1solate q. on the right-hand side of equ. (B4); the pertinent

multiplication with exp(-jd 4fk LM KY ) requires confinement of Kx and Ky to values within the
circle K3+ Ky ¢ k*, i.e, ne}‘acu'on of the evanescen: wave components in our data. We f{inally obtain
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qc(Kx sz Vk Kx Ky,w)u(k Ky Ky)
(85)
! ok e_)d s CLdelalkt KK
! x Y AR x Ty

Equ. (85) relates threedimensional Fourier spectra of equivalent sources on one Ewald-hemis-
phere to twodimensional Fourier spectra of planar measured wavelields: it is ohbviously an inverse
scattering extension of the Fourier Slice Theorem. whence the terminology Fourier Diffraction Slice
Theorem (an extensive reference list is given in [ 10]). In our context, it is nothing but the Porter-
Bojarski equation for planar measurement surfaces, therefore, in order to increase K-space coverage
for varying frequency we have to introduce physical optics or weak scatterer approximations,

Apart from being a data processing alternative to time domain backpropagation. equ. (B3] can
serve as a tool to estimate spatial resolution associated with prescribed experimental parameters, say
aperture width, frequency bandwidth and angle of illumination. A certain number of possibilities is
discussed in |[10], where the interested reader car also tind the monostatic counterpart to equ. (85).
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\J) SUH’ARY

Q We discuss parametric modeling in transient wave scattering, We review global
modeling based on the body resonances of the scattering object and give two examples.

< We explore the nature of the incompleteness of global models and introduce the concept
of the local model, based on ray-optic methods. We include an example of local model-
ing. We show that the local model is an order of magnitude more parsimonious and more
robust in the presence of noise, compared to the global model. We conclude with a

(:5 discussion indicating that the local model has a better probability of success in
practical target classification because of its performance in a noisy environment., ___

1. INTRODUCTION

Scattering problems in many areas of applied physics are governed by the wave
equation. In the usual situation, we are given the incident wave (input) and the
scatterer(s) and attempt, through analytical, experimental, or numerical methods, to
produce the scattered waves (output). Such procedures can be carried out in either the
time or frequency domains and are catagorized under the general heading of "forward
problems.” In a less usual, but no less important situation, we are given the incident
wave (input) and the scattered waves (output) and attempt to find the scatterer(s) that

produced the output. In this case, we call the procedures “inverse problems." Unfor-
1 tunately, there are few inverse problems that can be solved exactly [1). Recently,

however, there has been attention to a class of inverse problems, solved by approxima-
tion techniques, with the potential for application to practical target classification,
In this situation, we are given the incident wave (input) and the scattcred waves
(output), and attempt to find parameters that describe the scatterer(s). We call such
procedures “"parametric inverse™ methods [2).

In this paper, we describe the parametric inverse problem and discuss the present
gtate of affairs with regard to its solution and ite application to target classifica-
tion. We begin with a review of basic results from scattering theory. We next intro-
duce a global model that has been the subject of intensive investigation in electromag-
netics over the past decade. We include some results with simulated data that point out
the capabilities and limitations of global modeling. We next introduce the concept of a
local model and include a recent example., Finally, we discuss the possibilities of
using global and local modeling in practical target classification. We conclude with a
discussion of the present state of affairs in parametric inverse descripticns and sug-
gestions for future work,

2, SCATTERING THEORY

Procedures in parametric inverse problems are based on the following fundamental
regsult from mathematical scattering theory [3]: Given a scattering problem governed by
the wave equation with Dirichlet boundary conditions, the scattered response to mono-
chromatic plane wave excitation is, with mild mathematical restrictions, a meromorphic
function of complex frequency. This result has been extended to the vector wave equa-
tion in electromagnetics 4] for scatterers upon whose surface the tangential electric
field vanishes. By the Mittag-Leffler Theorem (5], the meromorphic property allows the
scattered response Vix,y,z,s), abbreviated V(r,s), to be written as a sum over the
complex body resonances of the scatterer plus an entire function of complex frequency s
[2). The inverse Laplace transform yields v(z,t) in the form of a complex exponential
series plus the inverse transform of the entire function, viz:

1 vig,t) = Rl(;)exp(slt) + sz&)exp(szt) + ...+ wip,t) (1)

In (1), wvi(g,t) is any component of the electric or magnetic field, 8 is the n-th
complex resonance, and R, is the residue at the n-th resonance. In addit?on, if wi(g,s)
is the entire function, wig,t) is its inverse transform. Note that the residues are
functions of position but the complex resonances are not. This fact is an indication
that the complex s-plane locations of the natural resonances of the scattering object
are not a function of how the body is illuminated or where the scattered response is
measured. Their atrengths (the residues), how er, vary with position.

The formulation given by (1) is the cornerstone of the Singularity Expansion Method
[6], discussed in detail elsewhere in this Lecture Series (7)., Two features are impor-
tant to note. First, the entire function contribution w([,t) is time-limited to early
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time {8,9). Therefore, for times greater than the time of disappearance of the entire
function, the scattering is given completely by the complex exponential series in (1).
Second, whereas the complex series contribution is parametrized by the poles s_ and
residues R;, the entire function contribution is not parametrized at all [10). There-
fore, in any target identification scheme based on (1), there are parameters describing
the target (body resonances) available in the complex exponential series. The entire
function, however, yields no target information unless it can be further analysed.

3. GLOBAL MODELING

Despite the inadequate target description provided by (1), there has been some
success in target classification based on the complex exponential series portion of (1).
Since this series contains the body resonances of the scattering object, the technique
we shall describe is a form of global modeling. (The distinctions between global and
local target descriptions are discussed by Felsen elsewhere in this lecture series
[11).) The basic ideas begin with some concepts in electromagnetic system identifica-
tion {2,12]. Let a plane wave be incident on a scattering system from a given direc-
tion. 1In the absence of the scatterer(s), the time history f(t) of the incident wave is
recorded at a reference position P(r). This time history, adjusted so that t = 0
corresponds to the initial arrival time of the pulse, is the single input to the system.
With the scatterers in place, observations of the components of the vector field are
made at p locations, Observation of a given component at a given location comprises one
response (scalar) in a sequence of p responses. The time reference of each response is
adjusted so that its turn-on time is t = 0. The incident pulse f(?) defined above is
then subtracted from each response to yield time histories y'3'(t), 3 = 1,2,...,p.
corresponding to components of the scattered field at different spatial locations. The
p time histories are defined as the mult%?}e output ports of the system. Define the
electromagnetic system transfer function H by

#H3s) = v3(s) 7 Fs) (2)

where Y'3)(s) and F(s) are the Laplace transforms of the multiple outputs and single
input, respectively. For a given value of the index j, the system transfer function
represents one component of the electric or magnetic field at a given location. The
electromagnetic system description in (2) is for a single-input, multiple-output (SIMO)
system. For the case of single-input, single-output (SISO), we shall omit the super-
scripts and write

H(s) = Y(s} / F{(s) (3)

We now show that if we truncate the complex exponential series in (1) after N terms,
the series is compatible with electromagnetic system ideas for both the SIMO and SISO
cases. We shall concentrate on the SISO case. The extension to SIMO is trivial [2].

Because most analysis is done digitally, we shall consider discrete time formula-
tions. Let f(k) and y(k), k =1,2,..., be the input to and output from, respectively, a
SISO linear system. The notation f(k) is the brief form for f(kTg), where Ty is the
sampling interval. We model the system by the difference equation

Ay (k) = Bf(k) + e(k) (4)

where e(k) is an error term and A and B are polynomial stepping operators with, typical-
1Y'

1

A=ag+aqls .+ ayg® (5)

and where
gl = £tk - 1) 6)

The error term e(k) is included to account for the usual case where the model fails to
fit the data exactly. It is well known (13] that the Z-transform of (4) gives a trans-
fer function H(z) of the form H(z) = Y(z) / Flz), plus an error term., A subsequent
inverse Z-transform yields

h(k) = Ryexp(8)kT) + ... + Ryexp(sykT) + e'(k)} on

where e'(k) is an error term obtained from e(k) in the diffrrence equation [13). Note
that the solution to the difference equation is a finite length complex exponential
series. We now compare the result in (7) with the result from scattering theory in (1).
We can interpret (7) a a discrete time equivalent of (1) provided we lump the tail of
the series and the entire function in (1) together as an error term. For the error to
be small, both the tail and the entire function must be small. The tail can be made
small by limiting the data to a restricted frequency range., In actual experiments, this
limitation often happens naturally because of the bandwidth limitations on eguipment,
In any event, it can be forced by intelligent filtering. We emphasize that for times
earlier than the disappearance of the entire function, it is not clear that the entire
function contribution is small. 1Indeed, in early time, it often dominates the scattered
signal.

The difference equation model in (4) is called the equation error model ([141. The
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SISO electromagnetic system identification problem with equation error model can now be
defined as follows: Given data on the single input f(k) and single output ytk), identify
the difference equation coefficient sequences {a,} and {b,}. Transform [13) the coeffi-
cient sequences into the pole sequence (sk) ans the residue sequence {Ry}. Provided
that the resonances obtained from the solution to the electromagnetic system identifica~
tion problem can be interpreted as body resonances of the scatterer, we shall have
arrived at a global modeling method for classification of the target.

The most usual method for obtaining an estimation of the pole and residue sequences
[13,15] is to adjust the coefficients a, and b_ in (4) to minimize the Euclidean norm of
the error e(k). This procedure is a lgnear least squares problem that has been quite
popular in electromagnetics over the past decade [13,15~17]1. Recently, we have been
using the minimization of the equation error to produce initial values of the difference
equation coefficients [18,19]. We then follow with the minimization of the rorm of the
error ey,(k) in the following outpyt error model:

y(k) = ATIBE(K) + ey (k) (8

The estimation of parameters in (8) is a nonlinear least squares problem. We use the
VAX/VMS interactive algorithm NLS [20], beginning with initial estimates obtained by
solving (4). We shall discuss two examples utilizing simulated data.

4. GLOBAL MODELING EXAMPLES

As a first example of global modeling, consider an electromagnetic plane wave at
normal incidence on a lossless dielectric slab (Fig. 1) of thickness d and dielectric
constant ¢_.. The slab is terminated by a perfect conductor at its back face (z = -d).
Assume that the plane wave polarization is (E_,H,). The details of the solution to this
problem are well known [18,19] and will not ’Be%’epeated here. What are important are
the locations in the s-plane of the complex resonances and the two forms of solution for
the electric field in Region 1. The complex resonances are located at the s-plane poles
of the scattered field, and are given by

s. = T M 1In(R) + in(2m + DI, m=0,%l,... (9)

m
where R is the reflection coefficient at the front face (z = 0) under the condition that
the slab is infinitly thick, and where

T=24/v (10)

where v is the prvopagation velocity in the slab. For the two forms of solution, the
first is ray-optic and the second is hybrid. For the ray-optic form, we obtain for the
electric field in the time domain in Region 1

ey1(z,t) = £(t) - RE(t - 2z/¢c) - (1 - RHIROf(t -2z/¢ -T) + RIE(t = 2z/¢c - 2T) + ...]
an

where f(t) is the incident pulse and ¢ is the speed of light, The terms on the right
side of (11) can be described as follows: The first term is the incoming pulse; the
second is the pulse reflected from the front face of the slab (z = 0); the remaining
terms are successive reflections from the back face of the slab (z = -d). A significant
feature of this solution form, provided that f(t) = 0 for t < 0, is that the successive
terms in the solution can be truncated and still give the exact solution up to the time
of the most recent reflection.

REGION 1 REGION 2
(1ot,)
d
INCIDENT 9=
JAVE g.2,)
Z
EqyHyy) Ho Lo
T -

Fig. 1 - Dielectric slab backed by a perfect conductor,
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For the hybrid solution form, we obtain
ex1(z,t) = £(t) - RE(t - 2z/¢) - (1 - R%)s(t - 2z/c -~ T) a2

where s(t) consists of a complex exponential series plus any additional terms that might
arise from s-plane singularities contained in the spectrum of the input pulse f(t) [18},
Note that the first two terms in (12) are identical to the ray-optic case in (11). The
remaining terms, however, are very different. Whereas each term in (11) represents the
onset of a localized event, the terms in the complex exponential series are global. The
representation is called "hybrid” because it consists of both local and global terms.
To obtain the hybrid representation from the ray-optic, all terms with turn-on times
greater than or equal to 2z/¢ + T must be combined and then reseparated in an entirely
different form.

We shall now attempt a global target classification of the dielectric slab. All
signal processing was done using the algorithm SIG [21]. All system identification was
done using NLS [20]. For an input pulse, we choose the double exponential pulse

f£(t) = Au(t) lexp(~c;t) - exp(-cyt) ] 13)

where u(t) is the unit step function and A is a normalization constant selected so that
the peak of the signal is unity. We have adjusted the parameters cy and c, to give a
rise time (10 to 90 percent of peak) of 5 ns and a fall time (me9sureé from€ = 0 to the
point where the pulse has decayed to 1/e) of 30 ns (cy =7 x107, Cg = 1.7 x 10%)., For
slab parameters, we select d = 10 m and e, = 4. We display the raw input data (Fig. 2)
and the raw output data (Fig. 3) with 1024 points and a 1 ns sampling interval. We have
used the ray-optic form of the solution to generate the output data. Since the informa-
tion we seek (complex resonances) is contained in the scattered field, we subtract the
incident pulse, the first term in (11), from the data. 1In addition, since information
concerning the complex resonances is not available until after the arrival of the first
return from the back face (z = -d), we subtract the reflection from the front face, the
second term in (11). We remark that in practice, it is always possible to subtract the
incident pulse. Subtraction of further early returns, in this case the front face
reflection, is often impossible because of radiation damping. This is precisely the
region where the entire function contribution is present. We emphasize that any such
contributions will be modeled as if they were complex exponentials. Because of cur
ability to subtract these terms in our example, there are only complex resonance contri-
butions in our synthetic data.

In the output data (Fig. 3), note the occurance of successive events, caused by
multiple refections between the slab front and back faces. This onset of tine-
successive events is a prominent feature in electromagnetic scattering, where the exter-
nal body resonances are caused by the mutual constructive and destructive interference
of localized phenomena. A 4096 point discrete Fourier transform (DFT) of the output
data (Fig. 4) shows the well-known low-pass characteristic of the double exponential
pulse and the successive resonances of the slab., To enable identification with a
parsimonious model, we low-pass filter (Butterworth, 8-th order) the input and output
data at 50 MHz, thereby including seven resonances (seven complex pole pairs) in the
pass band. We next decimate the data by 8:1 (down to 128 points) with the resulting
input (Fig. 5) and output (Fig. 6) data at 1.25 times the Nyquist rate.

We apply the NLS algorithm to the decimated data, beginning with the initial selec-
tion of 24 poles and 24 zeros. After the algorithm converges, we use a model order
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Pig. 2 - Incident field (input); 5 ne rise, 30 ns fall time; 1024 points; 1 ns sampling
interval,
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Pig. 3 - Scattered field (output); incident field and front face reflection removed; d =
10m; ¢, = 4; 1024 points; 1 ns sampling interval.
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Pig. 4 - Discrete Pourier transform of output, zero-filled to 4096 points, showing low-
pass characteristic of input and slab resonances.
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fig. 5 - Input; low-pass filtered (8-th order Butterworth) at 50 MHz; decimated to 120
points; 8.055118 ns sampling interval.
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Fig. 6 ~ Output; low-pass filtered (8~th order Butterworth) at 50 MHz; decimated to 128
points; 8.055118 ns sampling interval.

reduction scheme [20] to eliminate six poles and produce an 18-th order mwodel. We next
use a partial fraction decomposition algorithm to compute poles and residues. The
algorithm computes s-plane poles from z-plane results by the transformation

s = [1n(2)] / Tg as

This procedure gives nine pairs of identified poles which in Fig. 7 are compared with
the theoretical ones computed from (9). Note that the pgoles compare closely until we go
beyond the cutoff of the Butterworth filter (3.1416 x 10° rad/sec).

We remark that the above identification was done on data where the only noise is the
roundoff error in the computer. The SIG package contains a Gaussian noise generator,
which we use to add increasing amounts of noise to the output signal. As might be
expected, the identification degenerates with increasing noise. We display the 5% noise
case (Fig. 8). (By "five-percent,” we mean that the noise standard deviation is 0.05
times the peak value.) Note the strong corruption, with successive reflections disap-
pearing into the noise after the third reflection., We again filter at 50 MHz and
decimate to 128 points. We begin the identification with a 32-nd order model with 32
zeros and then use the order reduction scheme to reduce the model order to 14. Our
identified poles (Fig. 9) show good agreement with theory for the first two pole pairs.
The next four pole pairs agree in frequency, but deviate in damping., This result is
consistent with the deterioration of the resonances displayed in the DFT (Fig. 10) of
the filtered and decimated data.
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Fig. 7 - Identified poles (diamonds), 18-th order model; theoretical poles (squares).
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Fig. 9 - Identified poles (diamonds), 18-th order; 5 percent noise; theoretical poles
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Pig. 10 - DFT of output;
50 MHz; decimated to 128 points; 8.055118 ns sampling interval.
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Although the above results give a positive indication of ability to apply a global
modeling method to identify complex body resonances in the presence of small amounts of
noise, considerable caution must be exercised in interpreting the results. 1In this
example, the scattering has been given completely by the complex exponential series. In

the example to follow, however, we must also deal with the presence of the entire
function. '

As a second example of global modeling [22], consider an acoustic plane wave inci-
dent in the -z direction on a riqgid sphere (Neumann boundary conditions) of radius a = 1
m (Fig. 11). We shall attempt to identify a subset of the complex resonances (Pig. 12).
The s-plane locations are well known [23). For an input signal, we choose f(t) to be
zero everywhere, except on the interval 0 < t < n/c;, where it is given by

£(t) = sin(2nfgt) sinejt (s)

The input (Fig. 13, with £45 = 150 Hz and ¢; = 150 rad/sec) vanishes after t = 20.9 msec
and has the spectrum of a bandpass filter (Fig. 14). The center frequency corresponds
to the n=3 pole (153.5 Hz) in the first layer of poles (Fig., 12). A relatively small
number of poles either side of the n=3 pole are in the passband. We have found that the
best results occur when we are required to identify from three to five pole pairs.
wider bandwidths drive up the order of the model required by NLS and make the identifi-
cation more difficult. The choice of ¢y = 150 rad/sec corresponds to having four pole
pairs in the passband.

Plane Wave Source
(trovelling in -z direction)

Observer

\

_ A Rigid
Sphegre

o~

fig. 11 - Sphere of radius a = 1 m illuminated by a -z traveling plane wave.
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Fig. 12 - Theoretical pole locations in the s-plane for a sphere of unit radius.
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Fig. 14 - Spectrum of input (showing bandpass characteristic).

The scattered field (synthetic output data) was calculated in the frequency domain
using the classic Mie series [24] with the spectrum of £(t) as an input. The inverse
transform was performed using a Filon method [25). To determine the essential elements
of the synthetic output data needed for accurate identification, we divide the synthetic
output into three components: the reflection, the first creeping wave, and the gecond
creeping wave. We display the reflection and the first creepii.g wave in Fig. 15, and
the second creeping wave in Fig. 16. Note the change in scale for the second creeping
wave. (It is too small to be visable on the previous figure.,) In the figures, the
reflection comes first., Its magnitude is much greater than that of the other compo-
nents; it therefore contains most of the energy in the output, Following the reflection
is the first creeping wave, which has made one excursion around the sphere before
returning to the observer, As the wave travels around the sphere, it loses energy to
radiation and arrives at the observer one~tenth the size of the reflection. Following
the first creeping wave is the second creeping wave, which has made an additional
excursion around the sphere, arriving at the observer 1/10000 the size of the reflec-
tion. This smallness causes its retrieval from experimental data, even in a controlled
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Fig. 15 - Synthetic output showing the reflection and first creeping wave.
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Fig. 16 - Synthetic output (enlarged scale) showing second creeping wave.

environment to be an exercise in frustration. This result is unfortunate because we are
able to demonstrate that the second creeping wave is egsgential to the identification of
the resonances.

There are important similarities and differences between the return from the sphere
and the slab considered previously. 1In both cases, the compl_x resonances are produced
from the mutual interaction among local events. In the case of the sphere, however, the
radiation damping causes the local events (creeping waves) to disappear into the noise
more quickly than in the case of the slab. In addition, the sphere data contains the
entire function.

We have found little difficulty in identifying a limited number of pole pairs
centered around the pole in center of the passband, To restrict the influence of higher
order poles, we filter the input and the output with an B8-th order Butterworth filter.
There are approximately four pole pairs in the passband. We next decimate the 1000
points in our data to 100 points thereby eliminating oversampling and reducing the
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computational burden. We next use NLS to identify the coefficients in an equation error
model. Finally, we obtain the poles and residues by partial fraction expansion.

We show (Fig. 17) the agreement between theoretical (triangles) and identifijed poles
and a function of model order. The firat layer of poles and the first two poles onh the
second layer are shown. Since the poles are in complex conjugate pairs, we display only
the upper half plane. We find that the n=1 through n=4 poles are correctly identified.
We note, however, that the order of the identification mode: must be greater than 24.
High order models are required for two reasons. First, the scattered field consists of
an infinite numer of poles. Through filtering, we attempt to limit the number of poles,
but filtering does pnot correspond to truncation. Second, we have failed to model the
entire function, which contains a large percentage of the energy in the total signal.
The difference equation model treats the entire function as a part of the complex
exponential series thus driving up the order of the model.

We have performed many experiments on identification of sphere resonances. We find
that our basic result above is unaltered if we remove the reflection portion of the
output signal, provided that we do not destroy the time reference. If we remove the
reflection and change the time reference, the identification collapses. A very impor-
tant computer experimental result is associated with the second creeping wave. Although
the second creeping wave is only one part in 10000, compared with the reflection, if we
remove it from the output signal, the identification is unsuccessful. This result is an
important limitation in complex resonance modeling of objects containing high radiation
damping. As a final test, we added small amounts of noise to the data. Because of our
earlier tests with the second creeping wave, we expected the noise to defeat the identi-
fication as soon as it overwhelmed the second creeping wave. This is in fact what
occurred. If we select the variance of the noise such that the ratio of the peak of the
spectrum to the average of the spectrum of the white noise is 70 db, we find that the
noise is a few times larger than the creeping wave. 1In this case, the identified poles
(Fig. 18) are in error by approximately 258 in attenuation. If we increase the noise to
60 db, the identification is defeated. This result is in agreement with the findings of
Ksienski and Willis [26]). They found, using frequency domain methods, that similar
amounts of noise defeated pole identification methods for the sphere in the electromag-
netic case.

The sensitivity of the identification to small amounts of noise is a crucial defect
in any attempt to use the method with real data. We emphasize that the model is incom-
plete since it ignores the entire function. The entire function occurs in early time
where the reflection is the dominant portion of the scattered signal. 1In the next
section, we shall show a local modeling method that models the reflection.

5. LOCAL MODELING

Our initial approach to obtaining a local model for scattering has been to use an
asymptotic series solution to the wave equation {27). Our goal has been to identify the
local radius of curvature of a scatterer. In particular we have concentrated on acous-
tic scattering from the sphere, using the same input-output data as described above. We
write the asymptotic series as follows:
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Fig. 18 - Theoretical poles (triangles) compared with identified poles; 20-th order
(squares), 24~th order (diamonds), 26-th order (bowties), 29-th order (circles); 70 db
signal-to-noise ratio.

where F(s) and Y(s) are the Laplace transforms of the input and output, respectively.
The coefficients dg, k = 0,1,..., can be related to the radius a of the sphere. In
particular [24],

ag = 2dg (173
= 5c2

a; = 5¢2 / 44, (18)
2 . 35¢3

ay? = 25¢3 / a4, 19

where ¢ = 330 m/sec. The subscripts on the a's indicate different estimates of the
radius 3 obtained from the different coefficients in (16), (There is no relationship
between d, and the radius. For the acoustic sphere with Neumann boundary conditions, d;
should be equal to unity [22].) Note that the successive terms in (16) imply, in the
time domain, successive integrations of the input signal. We therefore adopt the fol-
lowing local model for our radius of curvature identification:

y(k) = dgfy (k) + difptk) + ...+ e(k) (20)

where k again refers to the kT, time step and e(k) is an error term. The sequence
represents successive integrations of the input, with f; = £(t), The identification
procedure is as follows: Given the input sequence f(k) and output sequence y(k), identi-
fy the coefficients d, in (20) by minimizing the Euclidean norm of the error e(k); then
transform the estimates of the d, into estimates of the radius by using (17) through
(19).

We have done exhaustive tests using our algorithm to identify the radius of the
sphere [27). We include a sample of the results here. We use the same input signal as
in the previous example, except that we vary the carrier frequency f, from 300 to 1500
Hz. We filter and decimate the input and output data and then plot the results for the
radius as a function of f,. Actually we normalize the frequency to the radius and plot
as a function of ka, where k is the wave number, 1In the results, when we refer to
"model order” we mean the number of terms in the identification 2quation (20). We plot
the results for the first order model in Fig. 19, for the second order model in Fig. 20
and Pig. 21, and for the third order model in Fig. 22 and Fig., 23, Since the radius is
to be determined, we require the estimates of the radius to be relatively frequency
independent for the identification technique to be practical.

The first order model has two terms (zeroth and first, Fig. 19) which give estimates
that improve with increasing ka. (The known radius of the sphere is 1 m.) As previous-
ly noted, the first term provides no information on sphere radius, but should be equal
to unity. At low ka the estimates are biased low; however, they still provide useful
information since they are only 6.5% in error for the zeroth term and 10% in error for
the firat term.

The second order model has zeroth, first and second terms (Fig. 20 and Fig. 21). We
note that the first term estimrate of the second order model is identical to the first
term estimate of the first order model. Indeed, we have proved [27) that as model order
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Fig. 19 - Least squares estimates of the zeroth (solid line) and first (dashed line)
terms in the first order model versus ka.
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FPig. 20 - Least squares estimates of the zero (s0lid line) and first (dahed line) terms
of the second order model versus ka.

is increased by one, only every other new estimate changes with respect to the previous
order estimates. When the new order is 0dd, the 0dd terms change; when the new order is
even, the even terms change. In this case, the zeroth term is within one percent of the
correct value over the entire frequency range. Indeed, at carrier frequencies above ka
= 15, the estimates are within .18. The second term, however, gives poor estimates of
the radius. The estimate is over 50% in error at low frequencies and 10% at the higher
frequencies.
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Fig. 22 - Least squares estimates of the zeroth (solid line) and first (dashed line)
terms in the third order model versus ka.

Por the third order model, the zeroth and second term estimates are¢ the same as the
previous model. The first term estimate (Fig. 22) at low frequencies has less bias than
the first term in the second order model (5.5% versus 10% error). The estimate, how-
ever, no longer strictly improves with fregquency. The third term (Fig. 23) fails to
accurately estimate the radius. We emphasize that the magnitude of the third coeffi-
cient dy is 60 db down from the coefficient dg for ka > 20 (Fig. 24).

We have done detailed noise studies on our local modeling method. Our procedure has
been to add nojise to 200 pairs of input-output data. We then calculate estimates of the
mean and variance of the identified radius. We have found that we can obtain estimates
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Pig. 23 - Least squares estimates of the second (solid line) and third (dashed line)
terms in the third order model .ersus ka.

3
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g 3

ka

Pig. 24 -~ Magnitude of the first three terms in the asymptotic series versus ka; each
term normalized to dg; first term marker with squares; second with diamonds; third with
hourglasses.

that are within 1.5% of the no-noise case when the signal-to-noise ratio is 45 db. We
note that in the global technique described previously, the identification failed com-
Pletely at 60 db., The details are contained in [27].

6. DISCUSSION
We have shown examples of both global and local identification methods. The local
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model has been motivated by the incompleteness of the parametrization in the global
model. Indeed, we have shown (22] that the early time portion of the scattered return
can be eliminated from consideration in the global model with negligible effect on the
identification of the resonances. In the local model, however, we have shown that the
early time portion plays a central role in overall target classificaticn since it yields
an asymptotic model describing local features.

There are two principal advantages to the local model. First, it is more robust in
the presence of noise, Second, since it requires an order-of-magnitude lower nodel
order, it is significantly more parsimonious [14]. Moreover, the estimation of para-
meters is more efficiently performed since the problem is linear least squares. These
considerations lead us to speculate that, whereas the global resonance method is mar-
ginal with real data, the local model may prove to be a practical target classifier.

For immediate future work, we propose the investigation of objects with varying
curvature, We favor using multiple data sets containing specular returns from different
points on the scattering surface. Each data set might then provide an estimate of the
local curvature at each point. There has been some work with multiple data sets in SIMO
global modeling of the acoustic sphere [28]1. The results showed some improvement in the
robustness of identification of the resonances, but not enough to make it practical for
real noisy data.

Finally, we believe that further efforts in complex resonance modeling should be
minimized unless they are coupled with techniques that utilize the local information
available in early time. This coupling of the two techniques might then lead to a truly
hybrid target classification method.
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SUMMARY
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Classification of electromagnetic scatterers by selective mode annihilation 1s
r:h discussed. After providing a brief description of historical background, the conceptual
‘:3 basis of this sethodology will be developed, followed by a theoretical explaination of

the techniques that are employed. Some particuler resonance annihilation s<hemes that

\ have been implemented and tested, on a preliminary basis, are illustrated. Results from
tests using synthetic signals, integral equation computations and experimental transient

y scattering measurements are featured.

HISTORICAL BACKGROUND

/7D

The concept of radar target 1dentification by use of electromagnetic natural
resonances was i1ntroduced 1n 1974 by Mains and Moffatt (1. This 1dea, 1in turn, evoived
from the earlier work of Baum st the Air Force Weapons Laboratory [2], who developed the
forsalism known as the Singularity Expansion Method (SEM) for use i1n the analysis of
nuclear EMP vulnerability of strategic syateas. Within the context of SEM, the response
of a system <can be represented as a weighted expansion using complex natural modes.
These modes, which are self sustaining 1n the absence of any excitation, are only
functions of the structural geometry and compusition of the scatterer and are 1ndependent
of the i1ncident excitation. The temporal variation of each mode pair has the form of an
exponentially Jdecaving sinusoid. In the Laplace transform domain this i1s represented by
a psir of ‘onjugate poles (natural resonances) in the left half complex plane. The
knowledge of a finite subset of these poler for each potentially observable target «can
thus serve aa an aspect! invariant parameter set for unique identification.

Much of the initisl work 1n uti1li1zing natural resonances for non cooperative target
recognition {NCTR) has been in the context of attempting to 1dentify the “dominant™ poles
1in the time dusain scattering response of simple targets. These extracted poles are then
correjated with a data base of computed natural resonances for candidate targets. Eatly
efforts 1n this direction were "less than successful” and created much controversy within
the electromagnetics basic research community concerning the validily of SEM. A
theoretical study by Morgan, {3) and (4], has shown that the validity of the pole series
expansion is restricted to the "late ti1me” portion of the scattering tesponse which
occurs after the incident field has completed i1ts 1llumination of the target. As a8
result of this, the energy content of the usable late-time portion of the scattered
signal is often a smsl) percentage of that contained 1n the complete transient signature.

Early failures in demonstrating aspect independent pole extractions resulted from
attempts to process the entire scattered signal rather than jJust the undriven late time
portion. A recent endesvor by Van Blaricum (5] to identify poles 1n measured data, using
the late time signal, have met with success under the condition of relatively high signal
to noise ratio (SNR of about 30 dB).

A new class of techniques has arisen for aspect- - independent NCTR which 18 based upon

the selective annihilation of resonances in the received scattered signal. These
dynamically evolving methods are extensions of the original "K Pulse” concept proposed by
Kennaugh [6]. Independent efforts by Morgan (7] and Chen {8] have nhown that NCTR which

is based upon the annihilation of natural resonances has two primary advantages vis a vis
NCTR which utilizes pole extraction:

(1) Successful identifications using SNR's of 10dB and lower
(2) Orders of magnitude reduction in signal processing time in comparison to pole
extraction methods
NATURAL RESONANCE SCATTERING

Consider the basic radar scattering scenario as depicted in Figure 1, where a time-

limited pulse illuminates the radar target. The currents inducec on the target reradiate
a scattered field in all directions, a small portion of which is intercepted by the
receiving antenna. As was shown in 8 previoua paper in this publication,(4], the

received echo signal will have the form

y(t) = y!(t) {u(t) - u(QATo)} + y (1) u(t-T)+ N(t) (1)
Barly-Time Late-Time Noise and Clutter
The early-time component of this signal is generated by directly driven (physical optica)

currents as well as source-free currents which are located in the "wake” of the incident
pulse, as it transits the object. The transitions from early to late-time signal
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components are specified 1n Eq.(l) by the explicit use of unmit step functions. In
particular, the early-time signal will transition into the late time signal after

T =T + 2D/c seconds 2

where T is the incident pulse width, D is the dimension of the scatterer in the line-of
sight (LOS) direction of the radar and c is the velocity of light. A generic waveform,
indicating the early and late-time nature of the received signal, is shown in Figure 2.

The results of (4] indicate that the late-time signal will be composed of a constant
coefficient complex exponential series of the form

-
y () = ne(nz:.l R, exp(s,t) } = nz=',l A, exp( o, t) cos( Wt + F) (3)

where the complex "poles” of the scatterer,
s I+ jW 14

are innate functions of the shape and composition of the object and are independent of
the aspect and polarization of the incident field. On the other hand, the complex
“"residues™ of the expansion, R_= A_ exp(j ¢ ), are highly dependent upon all properties
of both the incident field and"the Scatterer® This dependence of the residues is such
that for an essentially band-limited incident field there will typically be only a small
finite subset of significant complex "modes"” in the infinite series in Eq.(3). This
effect is so strong, in fact, that some modes which are strongly excited at some aspects
may vanish at other aspects. The damped cosine series form of the late time response in
Eq.(3) results from combining conjugate pairs of terms in the series (ordered as -n and
+n). Complex values of poles and residues occur in conjugate pairs since the response
to a real-valued excitation must aiso be real-valued.

The third component of the received signal is the "noise and clutter” which may be
due to combinations of such pollutants 8s receiver system noise, antenna noise from
external sources (both natural and man-made) and undesirable scatterers with propagsation
delays that are similar to that of the target. There are many possible sources of this
clutter component, including colocated interfering targets, multipath scattering from
low flying targets and returns through the antenna sidelobes from significant scatterers.
In any case, the N(t) is an undesirable element whose presence will increase the
difficulty of implementing NCTR using natural resonance snnihilation.

THE RERSONANCE ANNIHILATION FILTERING CONCEPT

The resonance annihilation filter (RAF) concept for NCTR is depicted in Figures 3
and 4. As indicated in Figure 3, the output of the m th RAF will be a convolution of
its impulse response, k.(t) with the input signal of Eq.(1),

z () = k_(t) ¢ { yg(t) [u(t)-u(tATo)] oy (U uit) o+ N(E) } (5)

The decision process for NCTR is based upon selecting that target whose RAF in Figure 4
exhibits the minimum output signal energy in the "late-time” of z.(t). This late-time
energy is defined as

) 2
& - g 22 at (6)

The late-time startup, T,, muat be large enough to exclude any significant contribution
from the convolution with the early time signal, which is not composed of simple aspect
independent modes. The RAF is designed to cancel a selected subset of the natural modes,
which appear in their pure fora only in the late-time. One way to guarantee that there
will be no contribution to the energy in Eq.(6) from the early-time signal is to use
finite impulse response (FIR) digital filters in the design of the RAF’a. Such filters
are nonrecursive (no feedback paths) and have impulse responses that are identically zero
beyond some finite time, Tk' {91. This would give TL > To . Tk in Eq.(6).

Three primary design criteria for RAF's are:

(1) The convolution of the RAF ispulse response and the early-time echo signal
should decay to an "insignificant” amplitude in as short a time beyond T as
is possible, This tranlates into minimizing the significant duratio of
the individual iwpulse responses. -

(2) The ratios of late-time energy for the "matched” target to that of all other
targets should be minimized. This minimization should be made over a range of




pertinent aspect angles.

(3) The RAF should be designed to minimize the transfer of the pollutant, N(t)
through the filter.

The reason for the demand in (1) is to allow a maximum usable late-time interval for
computing the energy values in Eq.(6). This also assists in optimizing the energy
ratios as discussed in the constraint (2). This first criterion will, however, conflict
with that of (3) since effective noise filtering requires either signal integration,
through recursive filter design (with feedback paths), or by use of extended feed-forward
paths in an FIR filter design. In either case, there is a tradeoff of the effective RAF
impulse response duration for enhanced noise and clutter suppression.

The whole process is also complicated by the effect on the design of the RAF’s when

there are uncertainties in the exact pole locations for each target class. This latter
sensitivity may be a very real problem where there are several variations on the same
type of target due, for instance, to alternate external fuel pod and weapon
configurations. With variable wing angle the same target may even present a continuum

of natural resonance sets.

It should also be mentioned that the original K-Pulse idea of Kennaugh, (6],
accomplished the same objective as the RAF concept, except the transmitted pulse was to
be designed to perform the annihilation of the natural resonances. This would require
the transmission of one pulse for each candidate target, but otherwise is an equivalent
idea to that of RAF.

FILTER EXAMPLES

We are now in a position to consider two initial generic RAF examples. The first of
target in our tests. As will be shown, this failure resulted from attempts to implement
an anslog signal processing strategy using digital techniques. The second form of RAF is
based entirely upon digital signal processing methods and is shown to be successful using
synthetic, integral equation and experimental data. Both of these RAF’s are
conceptually simple and do not rigorously address the constrained optimization problem
which was posed in the previous section. They do, however, provide illustrations of the
considerations that must be made and the pitfalls that may appear in even the most
elementary implementation methods. Current efforts are underway towards developing RAF
designs that more completely optimize the NCTR constraints.

The first RAF is based upon the use of differential operators to cancel individual
natural modes. It follows from elementary calculus that the exponential modes in Eq.(3)
of the form y it) © R_exp(s t) are each a solution of the appropriate first-order
homogeneuus diffelential equation

Ln-ynlt) (d/dt sn) yn(t) =0 (7)
where the operator, L , which cancels the n-th mode, is as defined. Using this simple
resuit, it follows that multiple modes can be annihilated by the successive application
tin any order) of the <corresponding operators, For example, to eliminate the set of
nodes, (yn(!)) for n - N to + N excluding n=0, requires the use of a 2N-order
differential operator formed from the operator product of each L_ in the range indicated.
The «corresponding RAF impulse response, whose convolution the Yate-time signal in y(t)

will eliminate these same 2N wmodes, is simply k(t) = Lef(t), where L is the 2N th order
operator and f(t) is a smoothing function with continuous derivatives up to and including
order 2N, In such a case, it can be shown by way of either repeated integration by
parts or via Parseval's Fourier transform theorem, that

k(t) & y(t) - f(t) & Leytt) (8)

To implement this differential operator RA¥, one may be tempted to make use of the
digital Fast Fourier Transforw (FFT), where y(t) is transformed and then multiplied by
the complex transfer function of the RAF. The analytical form of this transfer function
can be obtained through Fourier transformat on of k(t),

Ko@) = { (j@ s ) (j@ -s By CW s ) ) P (9)

jw
1 PN ] s

1 N N

The 2N th order polynominrl, which appears within the curly brackets, will tend to provide
extrese high frequency noise amplification. The raison d'etre for f(t) is thus seen to
be its reduction of this effect through supplying appropriate high-frequency
"compensation”. This can be viewed in the time -domain as a smoothing operation on the
noise to reduce the effects of high order differentiations. A Gaussian shaped
smoothing function,
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£(1) = expl-a(t-t )?] (10)
allows the selection of "a" to provide optimum rolloff of F( ).

The second form of RAF is also based upon cancellation of the natural modes, but
through the construction of appropriate "difference equations”. Consider the
conjugate-pair damped sinusoid representation of the late-time signal in £q.(3). These
individual modes are solutions to a three-point homogeneous difference equaticn of the
form

AL yl(p-1) At]+ ylp&t] « B y((p+l) pt] =0 (1)

where the sampling interval is At. The coefficients to cancel the n-th mode-pair are

B

A
{ » = -0.5 exp(:dnbt) / cos(anAt) (12)
n

where the + sign gives A_ while B_ is produced by the - sign in the exponential. The
3-point difference equation is easily synthesized using a nonrecursive digital FIR filter
(also known as a transversal filter). To cancel N pole-pairs, a cascade of N su-h
filters can be employed. By combining coefficients that multiply the same sample points,
a simpler FIR filter can be generated which has a total of 2N delays. The dif{erence
equation that represents this new filter will have the form, [9],

N
zip At] =2, C_ yi(p - mw) Bt] (13}

p=-N ®

Of course, this filter is non-causal and could not be implemented for real-time operation
without adding N additional delays in the design. For post-processing of acquired data,
as was done in this effort, no such constraint on causality is needed and the filter can
be used as is. As will be seen in the next section, this filter has the same type of
high-frequency noise amplification as does the analog differential operator based filter.
For noisy signals it will thus be necessary to perform additional smoothing on the input
signal in the form of a low-pass filter.

RESULTS OF ANNTHILATION FILTERING
The initial tests on both methods were performed using a set of "synthetic” signals

whose form in the late-time was that of a sum of damped sinusoids, as in Eq.(3). The
early-time signal was set equal to

) _ .2 )
yp(t) = A sin (1.6t / TO) (14)

where T is the transition-time in Eq.(1]). The upper half-plane complex poles and their
corresponding residues are shown in Table }.

Table 1 Synthetic Signal Poles and Residues

n Poles Residues
Magnitude Phase

1 -0.10 + j 1.50 10.0 0

2 -0.19 + ; 2.85 7.0 /2

3 -0.28 + j 4.20 5.0 0

4 ~0.39 + j 5.85 3.0

5 -0.46 + j 6.90 2.0 /2

6 -0.54 + j 8.10 1.0 0
These values were selected to follow the generic behavior of typical "layered"” pole
patterns of simple symmetrical objects such as wires and spheres. The constant "A", in
the early-time, was selected to provide continuity of the waveform (but not the
derivatives) at the transition time, T . The 6 pole-pair synthetic signal is displayed

in Figures 5 and 5, where Gaussian distributed random digital noise is added in the
second case to provide a 10 dB average power SNR.

The testing of the analog-based RAF proceeded only to the the synthetic data level

without noise, since consistently correct NCTR decisions could not be made wusing this
filter type. The particular testing, which was duplicated for the digital FIR RAF with

L‘.—_ P atigihed,




excellent success, involved processing the synthetic signal using numerous versions of
the respective RAF. These various RAF versions included an "exact" 6 pole-pair filter,
as well as filters which cancelled the first 1, 2 and 4 pole-pairs of the signal.
Additional RAF's included those with all (1,2,4 or 6) poles-pairs shifted in masgnitude by

5% or 10%. These RAF’s represented alternate "targets". The results of the tests for
the analog-based RAF are displayed in Table 2., where the late-time signal energies are
tabulated.

Table 2 Analog-Based RAF Late-Time Energy
{Noiseless Case)

RAF Pole-Pairs

1 2 4 6
Exact 1.5E-2 6.04E-5 2.43€E-9 6.38E-16
5% Sshift 2.5E-2 1.50E-4 3.65E-9 3.29E-16
10% shift 2.0E-1 1.49E-3 1.50E-8 6.94E-16

In following each vertical column, the "exact" RAF should ideally display the lowest
output energy. The result in the last column and second row indicates that for the case
of 6 pole-pair filters, the 5% displaced pole~pair RAF yields a smaller signal energy
than does the exact RAF. The explaination for this error can be seen by looking at the
output waveform for the N-6 exact RAF, as shown in Figure 7. Notice the non-zero late-
time output signal for this "exact” case RAF. The reason for this late-time residue is
the large high-frequency amplification of small round-off errors. To implement the
differential equation approach, the discrete K(W) is formed by wusing the formula in
E%(B). This is then multiplied by the digital FFT of the sampled y(t), followed by an
inverse FFT to obtain the output waveform. Any errors in the FFT (in say the 14th
decimal place) are amplified by the high-order (12~th order in this case) all-zero filter
characteristic polynomial in K(w). The source of this error has been confirmed by
extensive tests involving additiona. cases not shown here. The end result is that an
attempt to simulate very high-order analog differentiation using discrete FFT methods is
wrought with seemingly insolvable problems brought on by extreme amplification of
otherwise insignificant roundoff errors.

Turning now to the digital FIR realization of the RAF, the same test was repeated
for both "clean” input data and for the case of a 10dB SNR noisy input signal, as shown
in Figure 6. The unit sample response of the digital RAF, which uses the exact 6 pole-
pairs, is shown in Figure 8, where the scale has been greatly expanded to show the
initial 13 non-zero values. The ocutput of this exact RAF, as shown in Figure 9,
displays virtually =zero late-time response. A summary of the test results is shown
below in Table 3.

Table 3 Digital FIR RAF Late-Time Energy
(Noiseless Synthetic Signal Case)

RAF Pole-Pairs

1 2 4 6
Exact 7.8E-24 2.16E-23 7.32E-23 1.17E-16
5% Shift 1.0E-3 5.95E-5 3.29E-5 9.90E-2
10% Shift 7.0E-3 3.09E-4 3.97E-4 1.55
At the T transition, a very large and rapid oscillstion occurs. In fact, the level of

this oscillation is so large that extensive "clipping"” has been employed in the figure
so that the late-time level can be seen. The reason for this behavior is the lack of any
smoothing function being utilized for this noiseless case. At the T transition, the
synthetic y(t) has discontinuous deriviatives, and these are amplified by the high-
frequency asymptotic behavior of K(w ), which is shown in Figure 10. Since the proper
RAF filter "exactly" cancels the matched late-time signal (without noise), there is no
noticible effect except in the vicinity of the discontinuous deriviative transition
region,having 2N+] points.

For the case of 104dB SNR, an additonal Gaussian shaped swoothing function was used
to reduce the high-frequency content of the additive noise. Tne output for the exact
RAF is shown in Figure 11 and the late-time signal energies are contained in Table 4.
Note, that with the smoothing function convolution, the large oscillation near T has
disappeared. The improvement of performance accompanying the increase of RAF pole-
pairs (up to the actual number contained in the processed signal) cen be seen by
comparing energy ratios in each column in Table 4.




Table 4 Digital FIR RAF Late-Time Energy
(10 dB SNR Synthetic Signal Case)

RAF Pole-Pairs

1 2 4 6
Exact 630.4 2.80E-2 1.13E-4 6.43E-6
5% Shift 773.9 4.20E-2 2.86E-4 5.46E-5
i0x shift 940.9 6.20E-2 7.07E-4 1.99€-4

After validating the concept of digital RAF using synthetic signals, it was decided
to progress to a simple electromagnetic scattering case where, both the complex pole
values and the scattering reasponse could be obtained to a high accuracy. The thin-wire
was chosen because of its amenability to numerical scattering solutions and SEM analysis.
Thin-wire scattering is depicted in Figure 12, where a Gaussian-shaped incident pulse,
having a 10X pulse duration of 2 Nsec (where the pulse amplitude is greater than 10% of
its I V/m maximum value), arrives at an angle of incideance, 8i. The electric field has
linear polarization which is parallel to the plane of incidence. The temporal waveform
of the transient far-zone scattered field is computed in the the direction 8s. Numerous
combinations of ©i and ©6s were considered for each of three wire "“targets"  having
lengths, in meters, of 0.9, 1.0 and 1.1. The length to diameter ratio of each target
was 100. A single RAF was constructed for each target and was then  used for all
incident and scattering angles to demonstrate its aspect independence.

A time-domain thin-wire integral equation computer program was written, and
extensively tested, following the method of Harrington and Sayre, {10]. An  example
scattered field waveform for the 1 meter thin-wire, with 8i = 88 = 90 degrees is shown in
Figure 13. The magnitude of the associated frequency spectrum is displayed 1n Figure
14, where the resonant peaks are indicative of the presence of individual naetural modes
whose poles are in the first "layer" which is adjacent to the jW axis. For the case of
broadside 90 degree incidence, only the symmetric current modes having odd integer mode
indices are excited. For other incident angles, the antisymmetric wodes were also
present. The abrupt spectral rolloff beyond the n:5 mode is due to that of the incident
Gaussian shaped waveform.

Resonant filters which canceled the first seven pole pairs for each of the three

thin-wires were implemented using the digital FIR design technique. The poles values
were extrapolated from parameterized plots in the work of Tesche, 11}, and are only
sccurate to about 3 decimsl places. Example RAF outputs are displayed in Figure 15, for
the case of 10 dB SNR waveform frow the L = | m wite with 81 = 90 deg and 0s : 45 deg.
The late-time energy results are summarized in Tablea 5 and 6 for the respective cases of
no additive noise and 10 dB additive noise. For the 'sake of brevity, these tables only
display the results of RAF operations on the scattered waveforms from the L - 1 m wire.

Equally good results were obtained in processing the waveforms from the other two wires
in that the matched RAF consistently provided the lowest iate-time signal energy,
independent of bistatic aspects on the target. It should be noted that a more optimal
“double-Gaussian” smoothing function was employed with the noisy data to reduce hoth high
and low frequency noise content. This smoothing function is the sum of two <colocated
Gaussian functions having opposite polarity and different standard deviations. The
constraint is that the function has zero area under its curve. The adjustment of the two
different standard deviations allows tailoring of the frequency filtering characteristics
at both the high and low range. As is apparent, consistently good identifications can
be made even with a relatively low fidelity scattered signal in the case of a thin-wire,.

Table 5 Digital FIR Late -Time Energy
(Noiseless Thin-Wire T.E. Case)

Bistatic 8. /6 (deg)

90/90 90/45 ! 45/135 45/45
L=09anm 4.248-15 1.87E-15 1.336-15 9.35E- 16
L=1.0m 7.998-18 3.00E-18 1.90E 18 2.04E-18
L=1.1m 1.30E-17 5.388-18 3.74E-18 2.82E- 18

Table 6 Digital FIR Late-Time Energy
(10 4B SNR Thin-Wire [.E. Case)

Bistatic 0. /0 (deg)

90/90 90/45 1% 45,135 45/45
L-09as .045 .018 .o12 014
L:=10m .o19 .005 .005 .008
L=1.1m 112 .055 .028 .038
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The final evaluation of the RAF concept is through use of experimental broadside
back-scattering signatures of copper wires having lengths of 9 cm, 10 cm and 1]l cm with a
common diameter of .24 cm . These measurements were performed using the Transient
Electromagnetic Scattering Laboratory at the Naval Postgraduate School, which is
described in a separate article within this publication as well as in a previous paper,
[t2), [13}. An example scattering signature and its corresponding spectral magnitude
(for the L = 10cm wire) are respectively shown in Figures 16 and 17. The scattering
responses are due to a double-Gaussian shaped excitation having zero mean. Because of
the smoothing that was used in synthesizing the double-Gaussian response from the “"raw
data”, it was not necessary to perform further smoothing. Based upon the spectral
behavior of the responses, at most, only three significant pole-pairs are present in the
data. These poles were estimated from the data in {11] in order to produce the RAFs.
The measured broadside backscattering signatures of each of the three wires was then
filtered by each of the three RAFs, with the late-time energy results being shown in
Table 7. The consistently low energies provided by the proper RAFs appear as the
diagonal values in this table. These results, although hardly comprehensive, are yet
another indicator of the potential of this method for target identification.

Table 7 Digital FIR Late-Time Energy
{(Measured Thin-Wire Broadside Backscatter)

Wire Length for Data

9 cm 10 cm 11 ca
RAF
L = 9 cm 2.53 12.92 53.95
L = 10 cm 15.88 2.89 10.97
L =11 cm 41.07 17.31 3.79
CONCLUSION

A new class of "K-pulse” based aspect- independent NCTR, which makes use of simple
digital FIR filters, has been described and initially tested on a very limited basis

using synthetic waveforms, integral equation computations and measured data. The
original concept, which was based upon analog differential operator wmethods, was
described and then shown to fail because of critical, although small, roundoff errors in

the digital implementation.

Future work will involve several important investigations on further refinements and

more comprehensive validations of the RAF method. One of the first orders of business
will be to conduct a performance comparison with the alternate "FE pulse” method, which
has been developed by Chen and others, (8]. This will be a cooperative effort which
will seek to wuncover the relative virtues of each method and address their possible
integration. Another major quest, perhaps tied in with the first, will be 1n the
development of systematic digital design methods to optimize the HAF performance for
realistic cases of transient scattering. Such optimization will address several 1ssues,
including moderate and low "Q" target signatures, having more rapidly damped natural
modes than that of thin-wires. An additional concern is the tradeoff of system
bandwidth reduction for reduced decision reliability. This issue will be considered as

part of a more general effort which seeks to quantify the expected error probabilities as
a function of (1) signal center frequency and bandwidth, (2) SNR and (3) target ensemble.
This latter consideration will be highly significant since a target ensemble which has
elements whose dominant poles are close to those of other element(s) will be more
difficult to consistently identify. This "selectivity” issue also has another aspect,
where a single target type may have multiple configurations due to varishle wing sweep
and "stores", for example. The viability of the resonance annihilation method for real
world NCTR may ultimately prove insufficient for stand-alone aspect independent
identification. On the other hand, this late-time data set may be highly useful when
augmented by aspect-dependent "imaging” methods, which primarily employ the carly time
signal.
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NUMERICAL MODELING: FINITE METHODS

Michael A. Morgan, Associate Professor, (Code 62Mo)
Naval Postgraduate School, Monterey, CA 93943 USA

SUMMARY

Recent developments in computational methods for unbounded electromagnetic problems
involving antennas and scattering will be considered. Emphasis will be given to the
numerical implementations of differential equation based formulations using either finite
differences or finite elements, to be referred to as the finite methods. Elementary
examples are used as conceptual vehicles for introducing finite element and wunimoment
techniques. This is followed by a discussion concerning some of the most recent
tnnovations, such as that of the finite element boundary integral method and the field
feedback formulation. Current capabilities are demonstrated by considering some of the
most important research results utilizing the finite methods. o

INTRODUCTION

The numerical computation of electromagnetic interaction with increasingly complex
material structures has been a major research topic for over two decades. Surface
integral equations have been utilized extensively in the solution of problems involving
both wmetallic structures and layered penetrable materials. Formulations based upon
differential equations have been employed for the most generalized inhomogeneous
geometries, with numerical solutions effected through the finite methods (i.e. finite
elements and finite differences) [1). The numerical implementations of the finite methods
usually result in the production of very sparse system matrices while full matrices are
generally produced by integral equation formulations. The wuse of sparse matrix
algorithms often result in significant reductions of needed memory and computation time
when compared to the case of full matrix inversions, if the same number of unknowns are
to be considered. As a result of this, for given computational constraints of time and
mesory, the finite wmethods have the potential to solve larger volume electromagnetic
problems (in wavelengths) than can be handled by volume integral equations.

Although the finite methods offer numerical efficiency they are, by necessity,
formulated as boundary value problenms, as will be considered in the next section. As
such, the solution of scattering and radiation problems in unbounded spatial regions
requires a mechanism for coupling closed region solutions to the exterior space. This
procedure must also ensure that the proper radiation conditions are satisfied, since
these form the "boundary conditions” at infinity. The Unimoment Method, as developed by
Mei (2], provided a self-consistent approach to coupling interior and exterior field
problems through a separable surface interface. This method was employed by Stovall and
Mei [3] and Morgan and Mei {4] to both antenna radiation and scattering problems
involving inhomogeneous axisymmetric dielectrics. Further applications of the unimoment
method, using finite elemsents, were made by Morgan [5),[6) to problems involving raindrop
scattering and microwave energy deposition in the human head. Some of these results
will be considered in the section devoted to the unimoment method.

For many applications the use of a separable surface, as is needed in the unimoment
method, results in numerical inefficiencies and other difficulties. To allow the use of
more generalized surfaces, which may even be made conformal to the object's outer
surface, a new hybrid method was developed by Mcrgan, Chen, Hill and Barber, [7]. This
approach, termed the Finite Klement Boundary Integral (FEBI) method, combines a finite
element interior solution with a surface integral equation on the boundary. The FEB!
formulation will be briefly discussed in a aubsequent section concerning recent?advances.
The most recent innovation is that of the Field Feedback Formulation, (F"), which
replaces the integral equation on the boundery in the FEBI approach with a discrete
feedback relationship between adjacent boundaries, (8]. This methodology will also be
developed st a basic level in the section on recent advances.

Additional methods exist for esmploying finite method solutions in open region
problems. One such technique imposes an artificial zero boundary condition at
sufficiently large distance from the antenna or acatterer, {9]). The drawbacks of this
procedure are (1) the inaccuracy of such an asaumption and (2) the large mesh that is
needed, with the accompanying large matrir size. Another method employs "infinite
elements”, where an assumption is made as to the behavior of the exterior field, [10].
To approach an accurate approximation, these infinite elements muat lie in the "far-
field” of the problens. This means that the finite mesh region must be extended
sufficiently far from the scatterer to accomplish this, yielding the same type of
inefficiency as the zero boundary method.

THE FINITE MEBTHODS

The finite wmethods wmay be <classified as the various techniques that provide
discrete-wise approximate solutions to continuous boundary value problems, {1]. As such,
the finite methods offer a means to approximate the solution of specified differential
equations in one or more dimensions, including time. The most common method has been
that of finite differences, which obtains discrete approximations to partial derivatives
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by differentiating a piecewise polynomial, or other approximating function, which has
been "point-matcheg" to the actual unknown function at the "nodes" of the problem. As a
simple example, consider the finite difference approximation of the various derivatives,
up to the n-th order, of an unknown function, f(x), in one-dimension. The domain of x is
partitioned into generally unequal segments, separated by ordered nodes, x,, for
k=1,2,...... . In the region of x that contains the i-th node, X let ka) be
approximated by an n-th order polynomial,

f(x) = a, x4 ap_, xn>l R R +apx v oag ‘n

The coefficients can be found as linear functions of n+l 6f the unknown nodal values of
fi(x). Usually, these particular nodes will be taken to bracket the i-th node. The
linear relationship between the coefficients and the nodal values of f(x) is developed by
point matching the polynimial in Eq. (1) at the n+l nodes, resulting in the linear system
defined by

xkp ap = f(ka for n+} distinct values of k (2)

After inverting this system, the resultant linear functional form for each a can be
substututed into Eq.(1). The finite difference formulas for each derivative up to the
n-th order can then be obtained by analytically differentiating Eq.(1), followed by an
evalustion at x=x.. This procedure will yield a formula for each of the derivatives
which is a linear function of the n+l nodal values of f{x). For example, if n=2, with
equal segments, A x, then a quadratic expression in (1) yields the well-known formula for
the second derivative,

2
RO Thg) T B T TG ) .
dx? (Ax)2

The finite difference solution of a boundary-value problem is set up by replacing
the analytical derivatives contained in the differential equation by finite difference
formulas at each nodal point where the solution function is to be found. Thus, there
results a system of linear equations relating the unknown nodal values of the solution
function to both the known excitations (drivers) of the differential equation and the
known boundary values of the solution function. As will be shown, the finite difference
method can be thought of as a very special c8se of a much more generic technique, <called
the finite elewment method (FEM).

The finite element method can be approached in general through the "weighted
residual method”, [11], which considers the numerical solution of a differential operator
equation in an M-dimensional “volume", V , which bounds r = (r,,r,,...,r,), where M is

o 1'°2 M
usually no more than 4,

Dir)ef(r) = g(r) for r inside V0 (4)

D(r) is the differential operator, f is the unknown vector function, g is the known

driving vector. Essential boundary data concerning f is known on a surface, So, which
encloses VO. An example is the scalar Helmholtz equation in 2-D,
(vl ko2 ) f(x,y) = g(x,y) (5)

To find the approximate numerical solution of this equation we use a basis function
expansion to represent f,

o

N
flry = 20 C U (r) )
n:1

where the set {U_} should, ideally, have the same order of differentiability as does the

exact solution and, as N is increased, the approximate expansion should cunverge in a
pointwise sense to f(r). This last condition depends upon hov completely the set of
basis functions “spans"” the subspace of functions occupied by the various solutions to
(4). This quality is reflected in the linear independence of the function set.

I!'pon substituting Eq.(6) into {4), there results,
N
Def(r) = n§ €, {Dir) U (r)) = g(r) T

To solve for the N roefficients, we enforce this equation with respect to a succession of
N weighted integrations over Vo'




N
<w (r), Def(r)> :nz;lcn { (wk(r). D(r)-Un(r)) = <wk(r). g(r)> for k=1,N (8)

with <w(r),v(r)> indicating an integration of the dot product of the two indicated vectcr
functions over V . The set {w (r)} is termed the "weighting functions" or “testing
functions”, Thi$ weighted residual approach has also been termed the “"Method of
Moments" (MoM) ,[12], because of the similarity of the weighted inner product integral
terms to statistical “moments". The MoM has, for the most part, been applied to
integral equations in electromagnetics. The conceptually identical weighted residual
approach was originally associated with numerical developments in finite elements, as
applied to structural and fluid dynamics probleas.

In setting up the NxXN linear system indicated by (8) there are some additional
considerations that need to be addressed. One of these concerns the support region of
the basis functions: either full range (over all of V ) or compact (each being nonzero
over only a portion of V ). An example of full range basis functions is the set of
complex exponentials enploged in Fourier series, where the C 's are termed the spectra of
the expansion. Compact basis functions are more common to"finite element applications.
Usually these basis functions are selected so that at each node of the discretized
problem all basis functions, except one, are zero. At its associated node, where it is
nonzero, the basis function will usually be set to unity. In such a case, the compact
support basis set conveniently yields C 's which represent the solution values of f(r) at
the N nodes. Another consideration involves the set of weighting functions. There is
obviously an unlimited selection available. Three of the more common types are:

(1) Point Collocation, which uses a delta function at each ordered node coordinate, r

for the associated w, . The effect of this is to reduce the integration "moments"
in Eq.(8) to simple point-matching at the respective nodes, resulting in nothing
more than the finite difference method. An advantage of this method 1s its
relative simplicity in generating the wmatrix elements from (8), since integrations
are reduced to enforcing the approximation at the node points. On the other hand,
there 1is no control on the behavior of the solution in-between the nodes, in  the
sense of solving the differential eguation. This usually results in the least

accurate solution of these three methods, assuming a similar node density and
computer word-length in each case.

(2) Subdomain Collocation, which employs a set of mutually 2xclusive constant functions,
w,(r)=1, in a defined region arcund the k-th node. These regions around each node
are non-overlapping and usually are directly adjacent to one another, without
unfilled space. This approximation is usually more accurate than Point
Collocation, but not as accurate as Galerkin's method, when self-adjoint operators
are involved.

(3) Galerkin’s Method, which uses the same set of functions for both basis and testing,
w (r)=U (r). For the case of a self-adjoint operator, D{(r), it can be shown that
the functional defined by Q(f) = <f, Def> - 2<f,g> is stationary about the solution
to the original operator equation, in (4), {13]. This variational principle, when
enforced upon the basis function expansion in Eq.(6) is termed the "Rayleigh-Ritz
Method" and yields the Galerkin's result for the weighted residual approach. This
method generally provides the most accurate solution and forms the foundation for
most of the FEM work that has been done. Another means of achieving this same
result (the Galerkin equations, with w =Uk) is by way of the «classical Euler
Lagrange variational formulation. This has the advantage of reducing the order of
differentiation on the basis functions, via-a-vis a direct Galerkin approach, and
will be demonstrated in the following section.

An excellent discussion of the error bounds and rates of convergence for these three
methods is given by Strang and Fix, [13].
FINITE ELEMENT EXAMPLE

Consider the simple problem of the undriven (g=0) Helmholtz equation in Eq.(5) in a

rectangular region with "mixed” boundary conditions (BCs), as shown in Figure 1. The
rectangular problea space is discretized into a grid of doubly ordered nodes, with
triangular finite elements, as per Figure 2. The unknowns are thus the values of

f(xi,yj) at the nodes where f(x,y) is not given by the BCs.

We will employ piecewise linear "pyramid" basis functions, Ui (x,y), to represent
the solution, v J

6
flayy = 20 2 f U () (9)
in v 'J

<.
n

The support region for U, is all elements which share the (i,j) node, as illustrated in
Figure 3 for an intetidr node. In the 1-th element, we will locally number the
associated 3 nodes, k-1,2,3, as shown in Figure 4, Within this l-th element, the linear
basis function associated with the k=th node is given by the matrix product

Y S i
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Upi{x,y) = [x, y, 1] o [L]y SR

with lL]k the k-th column of the element coordinate matrix,

(yy-vg) (yg-yy) (yy-vy)
- -1 T _ _
fL] = Dl (x3 x2) (xl xa) (x2 xl) (11}
(xzys_xayz) (xsyl—x1y3) (%¥g7%5¥ )
where Dl = det [L] is twice the area of the triangle.

Employing the Euler-Lagrange formulation, we seek the nodal values in (9) for which
the quadratic functional below is stationary,

olf) = < v£, 9 - k P, o (12)

Note that this functional has only first order derivatives inside of the < , > integrals

in x,y. This result follows directly from the classical variational formulation and can
be obtained through applying Green's theorem (or multiple integration by parts) to the
Galerkin equations. The stationary solution is found by substituting (9) into (12)

and then differentiating Q with respect to each of the unknowns, setting the results to
zero in each case, resulting in the linear system of equations,

e

7
2 -
nZ}l £, LEVU VU o -k Fau o u sy =0 ()

for iz2 to 5 and ;=2 to 7. Note that for a given (i,j) node, only (m,n) nodes sharing
at least one common element will provide a nonzero contribution to the moment
integrations. Thus, the matrix defined by (13) will usually be quite sparse, with most
matrix elements, indicated by the terms in curly brackets, being zero. This feature is
produced by all finite methods upon using compact support basis and testing functions.

Denoting the 4 unknowns at the nodes across the j-th horizontal row of the mesh 1in
Figure 2 by the vector,

F. = [f

L, foo.
J 2,4 5.J] e

the matrix equation inplied by Eq.(13) can be written as a linear matrix-vector
relationship between adjacent row vectors,

(Al joF ) « [BIoF, + (CleF ) = Py (15a)

where the "block-matices"” are banded in structure,

X X x X x
(A]: x x 0 [(B): x x x 0 [C}: xx 0 (15b}
0 X X 0 x x x 0 x x
x X X X x

These nonzero matix elements, indicated by "x", as well as the elements of the boundary
condition vector, P., are obtained in terms of the element integrals within the curly
brackets in Bq.(lB)? Within the 1-th element, having L-matix defined by (11}, the
integrands can be obtained directly from Eq.(10). Denoting the relationship between
local (in element 1) and global node coordinates by k=(m,n) and k={i,j), there results

1 x2 Xy X T
U Ug = T e xy vy | e g9 (16)
X vy 1
1 0 o ]
- W, T q
VU VU = ((L]}e) 0 1 0 o (L] (7
Lo o o ]
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with { )T indicating matrix transpose. The elements are thus assembled from element
integrations of the form
- r 8 .
Pr.s = Sg X y dx dy (18)
[AY
which are available in tabular form in a number of references on finite elements, e.g.
[11].
Having loaded the block matrices relating adjacent row vectors of unkowns, the
global matrix structure will be of the tri-block form
[B], [C], Fo P2
[Al; (BI, [Cl, 0 Fq Py
(Al [Bl, [C]4. Fal = | Py 19
B . .
. .
. . .
0 . . .
. . «
(al; (Bl Fy Pq
The finite element solution thus comes down to inverting a matrix. As previously
mentioned, the global matrix is generally quite sparsely occupied with nonzero elements,
in contrast to integral equation methods, which produce full matrix structures. This
sparse matrix allows highly economical inversion, for even very large matrix order, by
any of a number of different algorithms, {14]). In addition, by properly ordering the
nodes, the matrix can often be made to have a block structure, as it does in this case.

A block structured matrix can be very readily inverted by way of the Riccata transform
algorithm, (4].

This example was presented in the spirit of demonstrating some of the elementary
numerical procedures that accompany the application of the finite element method. wWe
will now turn our attention to some of the techniques for employing finite method
solutions to field problems in open, unbounded regions.

UNIMOMENT METHOD

As developed in the unimoment method, the exterior region fields are represented by
a functional expansion in one of the separable coordinate systems for the vector
Helmholtz equation [15). The spatial interface for coupling the interior numerical
solution to the unbounded exterior region is thus a constant coordinate surface of the
separable systewm employed in the outside expansion. Spherical interfaces were utilized
in [3)-[6) and ({18), {19] due to the relative ease of generation of exterior vregion
spherical harmonic field expansions.

To understand the conceptual basis of the unimoment method, consider the solution of
a scattering problem involving a 2-D cylindrical penetrable object of arbitrary cross
section which is, perhaps, inhomogeneous. For either TE or TM incidence (z-directed e
or E°, respectively) the homogeneous scalar Helmholtz equation, Eq.(5) with g = 0, is
again applicable, but with a variable wavenumber within the scattering object,

{ 2%+ w%%(r,0) } f(r,8) = 0 (20)

where we are using circular coordinates (r,9).

The unimoment solution proceeds by enclosing the scattering body within a separable
"mathematical” surface, which we will choose to be a circular cytinder, as is illustrated
in Figure 5. Notice that there are two concentric circles, of radius r, and r,, both of
which are outside of the scattering object. With specified Dirichlet &Ce on ghe outer
boundary, r = r,, a finite method is used to solve for nodal values of f(r,8) for r < r,.
A necessary altribute of the interior mesh construction is that a set of the solutidn
nodes lie on the inner circle, rary.

The total field outside of the smallest circle (centered at r=0) which encloses the
scatterer may be represented by the sum of the known incident field and a cylindrical
harmonic expansion for the unknown scattered fields,

. N
f(r,0) = fi(r,0) ’nz=0 a, €,(r,8) + b S (r,8) (21a)
where (2)
c,(r.@8) = H (kgr) cos(n®) (21b)
s (r.@ = 1 (2 (K, r) ain(ne) (21c)
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with H ‘2' the Hankel function of the 2nd kind. Notice that this 1s an approximate
result aue to the truncation of the series at N+! terms. In practice, this sert1es will
converge rapidly to the scattered field 1f N > k r,. To find the wunknown scattered
field coefficients, a and b_, we first solve the interior region problem for N+l
separate BCs on r.r,. These BCs are composed of the 1ncident field and each of the
scattered field modes in the expansion. The numerical solution within the interjor,
which corresponds to one of these applied BCs, is indicated by 4. circumflex overbar.
For example, & BC,of f (r ,8) produces an interior solution of f (r,8; while a BC of
S (rl.e) produces S (r,8) for r « r,. Using the pranciple of superposition, the
numerical solution or the total fie{d inside of the outer boundury will be given by
Eqn.{21), but with numerical solutions replacing f , Cn and Sn.

To solve for the coefficients, we simply equate the numerical solution to the

analytical solution along the circular contour, r to. resulting 1in

z (€ (r,.8) - C (r,,8F + b (S (r,,8) S (r,0)%  flr 8 F'ir,,o0
Fer 2q n'fa n'f2r n n 2 ntfo®0 - a2t Far s~
The equality of the analytical and numerical expressions for the total field at r r, 1S
theoretically correct. The unknown scattered field coefficients may be obtained tiy a

welghted residual approach, where ¢ > indicates, in this case, an integration on & from
0 to 2T and the B -functions below indicate the respective function differences in 22

N .

. N [ i N R

;g% a, 'WD(O). { ACD(O))/ + bn <Wm(6). (ASn(O)) ~Wm(9),Af {80 23
for m= 0 to 2N, with 2N+2 linearly independent weighting functions, W_. By selecting
delta function weights at 2N+2 nodes along the matching contour, r=r,, Eq.{23) will
provide the point-matching form of the solution. A much more accuraté method is to
enforce (22) in the least-squares sense over the entire circle, including in between the
nodes. In this case, this results in the weighting functions being proportional to the
complex conjugates of the function differences within the «curly brackets. The

integrations to evaluate the matrix elements in (23) are performed either numerically, or
semi-analytically by wusing the basis function expansions employed 1in the interior

solution to represent both the difference functions and the weighting functions. In any
case, the resultant 2N+]1 square matrix can be inverted to obtain the scattered field
coefficients. The scattered field may then be obtained from its expansion and ,if
desired, the interior field can be found by using the weighted superposition of the

stored interior field solutions.

The unimoment method has been employed in several computational efforts. One of the
earliest of these involved the finite difference solution for radiation and input
impedance of a finite length biconical antenna, loaded by inhomogeneous diclectric [3],
as is depicted in Figure 6. Since both the fields and material structure are
axisymmetric in form (invariant to the phi-coordinate) the solution can be reduced to a
single meridian plane, (r,8) in spherical coordinates. A section of the the finite
difference mesh is shown in Figure 7. The interior region solution for this antenna
problem was formulated using a special case of the Coupled Azimuthal Potential (CAP}
formulation, where all fields are represented using two (in this case only one was
needed) continuous potential functions which are related to the azimuthal field vector
components, [16]. A sample result is shown in Figure 8, which compares the computed and
measured input impedance of a plexiglas loaded biconical antenna. The computation was
performed at discrete frequencies over a 10:1 range, wherein the bicone height ranged
from .16 to |.6 wavelengths.

As a second example of the unimoment method, consider scattering by inhomogeneous
bodies of revolution [4], which employed the tri-regional finite element mesh in the
(r,8) meridional plane, as shown in Figure 9. The CAP formulation was employed to
represent the general (non-axisymmetric) fields using two coupled potentials and a
Fourier series in the phi-coordinate. Independent spherical harmonic expansions were
used to represent the scattered field outside of the mesh and the total fields within the
spherical "core" region surrounded by the mesh. The sets of coefficients used in these
field expansions were found by applying the various expansion modes for the potentials as
boundary conditions along the contours r=a and r:=b. In addition, the various incident
fields being considered were applied along r=b. A finite element solution for each
applied BC was then then evaluated along the inner contours r-r, and r-r,. The total
fields were then assembled from these numerical solutions and equated 1Tn the least-
squares sense to the original analytical expansions, resulting in a matrix equation for

the coefficients. Numerous comparisons to experiments were made for solid and hollow
dielectric bodies of various shapes. A typical result is shown in Figure 10, where the
bistatic scattering is from a plexiglas body having cylindrical, conical and spherical
portions. Note that the vertical scale is not in dB.

Additional research efforts involving the unimoment method include scattering by
dielectric cylinders ([17] and axisymmetric raindrops [5], as well as scattering by

multiple bodies of revolution [18]) and even buried objects (19]. In another case, the
scattering problem was solved for a complex lossy dielectric model of the human head, in
order to evaluate the interior field distribution as a function of frequency, 1ncident

auspect and polarization, [6].
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The numerical solution within a spherical interior region becomes inefficient,
for scattering shapes that occupy only a small portion of the enclosed volume (e.g. thin
cylinders and flat discs). Although it is possible to utilize a separable non spherical
surface to increase the numerical efficiency of the interior region solution, this wi1ll
be offset by additional requirements in both generating the special functions that are
needed in the exterior expansion and in computing the required moments of these functions
with the numerical solutions over the interface.

RECENT ADVANCES

A technique to circumvent the need for a separable boundary interface was developed
by Morgan, Chen, Hill and Barber [8]. This hybrid Finite Flement Boundary Integral
(FEBI) method combines a finite element solution of the interior region wita the surface
integral equation found in the extended boundary condition method. The FEBI procedure
allows the use of a surface interface that conforms to the outer boundary of the
scattering object, as is shown for the finite element mesh in Figure 11. The finite
element solution proceeds in a similar manner to that of the unimoment method, with the
incident field and scattered field spherical harmonic expansion modes being applied as
BCs at the outer boundary, S,.. Numerical solutions are then found at the surface of the
scattering body, S_., for each of these applied BCs. Since these boundaries at S_ and S
do not in general conform to a spherical surface, a single spherical harmonic expansion
for the scattered fields outside of S is not "complete”, except outside of a sphere that
encloses the scatterer. Thus we can not, 1in theory, match the numerical solution at $
to the original analytical expansion, as we did for the unimoment method. To evaluate
the expansion coefficients for the boundary field, we use a combined field integral
equation, as employed by Waterman in the "extended boundary condition formulation" [20].
This integral equation relates the tangential field just inside of the boundary S to
that just outside and does not make use of a knowledge of the material structure inside
of S,.

B

The FEBI method has been shown to work well for T-matrix calculations involving
moderately elongated lossy dielectric scatterers. An example computation, with
comparison to that performed using the extended boundary condition method, is illustrated
in Figure 12, The wethod tends to have difficuties, however, with attaining
convergence of the solution if the surface interface becomes extremely elongated (i.e
length to diameter ratios exceeding about 10). This failure occurs because of the
generally Jincomplete nature of the exterior region spherical harmonic expansion which is
employed to represent the field over the surface of the scattering body. Such a problem
is related to the Rayleigh hypothesis [21).

The Field Feedback Formulation (Ps) has been proposed, {B], to mitigate the
restrictions inherent in coupling igteriur and exterior region field solutions, as are
found in other techniques. Using F°, the interior boundary value problem is initially
decoupled from the outside region. The interior problem may then be formulated and
computed wusing the most expedient approach that can accurately accomodate the level of
material complexity that is present. The exterior region field is represented in terms
of modes generated from surface integrations involving equivalent currents obtained from
the interior region solution. These modal fields, which satisfy the radiation conditions,
do not rely upon the use of separable coordinate surfaces for their completeness.
Another primary advantage of this method is its w®odular nature, where forward and
feedback transfer matrices can be independently computed.

The FS scattering solution method may be easily conceptualized by considering the
simple feedback system which is depicted in Figure 13. The input to the forward
transfer function, A ,is an array composed of boundary nodal values of the field on the
outer surface, S, as was shown in Figure l1. The A -operator represents the finite
method solution to attain the tangential field values on the inner surface, S_., in terms
of any specifed boundary data on S_. These numerically derived tangential filelds on S
can then be used to form equivalent electric and magnetic currents (combined to form an
array K) that generate the scattered field from the object. Ir particular, by way of
Green’s function integrations of these equivalent currents on S, the scattered field can
be found on the outer surface, S_. These integrations are represented by the feedback
operator ﬂ . The original boungury array on S, was composed of the incident field plus
an expansion, with unknown coefficients C_, for the scattered field. By superposition,
the numerically generated "feedback” scattered field, will ke equal to a known ternm,
given by B- operating on the incident field, plus an oxpansion of the unknown
coefficients with known expansion functions ( B'A operating on the original scattered
field expansion functions on S,). By closing the loop, and literally making the
feedback field equal to the scattered field portion of the original expansion, an
equation results that is similar in form to that from the ana.ysis of a simple recursive
control systenm,

§scat. - ZN: c, §n = [ 1-PA TR pA . §inc (24)

n=1

where ({I) is an identity matrix. The unknown coefficients may be found from this
equation through the method of weighted residuals, where bcth sides are integrated over
s with respect to a set of N linearly independent weighting functions. Once the
cgefficientl are obtained, then the scattered far -field is found through simplified

Green's function integrations of the aasembled equivalent currents on SB' These
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integrations are denoted by the [ -operator in Figure 13.

A very simple demonstration of the F3 is scattering by a metallic thin wire. The
finite element mesh for this is shown in Figure 14. This is obviously a case where the
unimoment method would be quite igefficient, requiring a meridian spherical mesh to
enclose the wire. Using the F”, the mesh has only a single column of triangular
elements, which produces an interior solution global system wmatrix having a nonzero
bandwidth of only 3 matrix elements in this case. The Riccati transform allows ultra
fast inversion of this matrix. Comparisons,of the magnitude and phase of current on a 1
wavelenth long wire, as computed from the F _and Hallen's integral equation, is showa 1n
Figure 15. One source of error in the F° computation was the use of linear basis
functions in the finite element calculation, which were used to represent the phi
component of wmagnetic field. In the immediate vicinity of the thin-wire this field
component is characterized by a rapidly decaying evanescence which is not accurately
"trackable” wusing linear functions. More specialized basis functions would allow a
natural convergence of the solution as the wire is made thinner.

CONCLUSION

The objective here has been to consider recent developments in finite method based
computational techniques for unbounded electromagnetic field problems. Along the way, a
brief tutorial concerning the finite methods was provided. Special consideration was
then given to three methods for solving field problems involving scatterers or antennas
which use finite method boundary value numerical solutions. The most established of
these techniques, the unimoment method, was developed through a simple example, and some
representative computational results were given. This was followed by the description
of two more recently developed methods which provide the systematic coupling of interior
region solutions to the unbounded exterior domain. These formalisms, called the finite
element boundary integral method (FEBI) and the Field Feedback Formulation (F”) permit
the use of sparse matrix finite methods for field solutions within complicated scatterers
composed of inhomogeneous and anisotropic materials. Furthermore, a minimal volume
conformal bounding surface way be employed to enclose the scatterer, which is an
advantage over the need for a separable surface mesh in the wunimoment method.
Convergence problem for non-spherical boundary surfaces, as encountered in the FEBI
work, led to the F~ concept, which circumvents the need for any separable coordinate
expansion.

The F3 casts the scattering problem into & vector matrix equivalent of a simple
feedback system, wherein the forward (interior problem) and feedback (radiated field:
matrices may be computed independently and then combined to obtain a self consistent
scattering solution. A very simple example of thin-wire scattering was considered to
demonstrate the technique. The unique power of this method resides in extending the
realms of electromagnetic computation to large and quite complex scattering configurations
where volume integral equation techniques are numerically bottlenecked by their resultant
full system matrices. Current work by the author is being directed at demonstrating
this potential power in scattering computations involving complex 3-D objects having both
metallic and penetrable substructures.
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WUMERICAL MODELING: INTEGRAL EQUATION METHOD

V. Stein

Deutsche Forschungs- und Versuchsanstalt fiir Luft- und Raumfahrt e.V.
Institut fir Hochfrequenztechnik,
8031 Oberpfaffenhofen
Germany

SUMMAR Y
P

A review is given to the different expressions for the representation of the electromagnetic fields
by inteyrals over the surface current. The integral equations, which mostly are used for the solution of
practical problems, are discussed and the method of moments is outlined, where the use of pulses as basis
functions is emphasized. Estimacions of the core storage and the computer time are given. Two geometrical
models for the scattering structure are discussed in more detail: the surface patch model and the wire-grid
mode]. A list of application examples ot the integral equation method with references is given. Two further
examples are outlined in detail: computation of the radiation pattern of an antenna mounted on a helicopter
and determination of the extreme near field of a cube. Fi

;

1. INTRODUCTION i

A prediction and analysis of target signatures can be made more effective, if electrodynamic models
are available, which describe the interaction process between the electromagnetic wave and the structure
under test with sufficient accuracy. In the event that the objects are in the design phase, where a lot of
structural changes wust be provided, the worth of such models will be obvious. Two examples will demonstrate
this.

Fig. 1.1 shows two airfoil sections [l]. The question arizes, which of the two airfoils has the smal-
ler monostatic cross section for a wave impinging on the broadside or on the trailing edge etc., and which
different frequency dependence exists for both configurations. The question can be answered if the current
distribution on the airfoil is known so that the scattered far field may be computed.

1.90A .
110\ —4 ~ — i ‘T 1
Y4

1.12X
yd{Ry=0.752
4.30A
» X
Incident [X)
wave 3.40X I - T
Incident

Fig. 1 Optimized design of structures.

Fiy. 2 shows an airplane, which is equipped for position finding purposes. Since the phase front of the
incoming plane wave is distorted more or less by the airplane structure, depending on the angle of incidence
and the frequency, the question arises, where an appropriate place on the plane for the installation of the
direction finding antenna may be found. The magynitude of the distortion of the wave front in dependence
from frequency, polarization and incidence dangle of the wavefront is of great interest. The solution of this
problem requires the computation of the scattered near field.

In Lhe past only approximate theoretical or experimental methods were available. While approximate me-
thods can fail in giviny sufficient accurate predictions of the scatteriny process, experimental methods re-
quire a high effart especially if changes of the structure must be carried out. Therefore, it is desirable
to reduce the number of experimental studies to a few final measurements, which can be defined by the pre-
cediny theoretical analysis. This requires from the theory to develop and validate models which are able to
predict the interaction of electromagnetic waves with a complicated structure with an accuracy, which is
sufficient for practical applications.

The proyress 1n computer techniques permits in an increasing manner the use of theories, which because
of their high numerical effort could not be considered, in the past. Among these theories are not only heu-
ristic methods like the physical optics method [2), and the geometrical theory of diffraction {3, 4], but
also rigorous methods like the integral equation [3, 5 - 7], and the differential equation method I8, 9i.

A survey over the variety of methods, which come into consideration, is given in [10].
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The heuristic methcds allow the computation of the far field or quasi far field, if the object's di-
aensions are larger than several wave lengths. The rigorous methods in principle permit a computation also
of the near field, since the accuracy is limited only by the computer capacity. The computer effort, how-
ever, increases considerably with the dimension of the scatterer, and therefore, limits the size of the
structure.

This paper deals with the integral equation method (IEM) and its geometrical and numerical models.
First the way is resuwied to derive the inteyral equations for ideal conducting bodies of jeneral and thin-
wire structure. The solution of the integral equations for the current with the method of moments is re-
viewed and an estimation of computer storage and computer time is made. In the following sections the mo-
deling of structures by surface patches and wire-grids is discussed in detail. A list of various applica-
tion examples {antenna and scattering case), which are treated by the IEM, is presented. Two examples are
outlined in detail, One treats the far field of VHF antennas mounted on a helicopter, the other has the
objective to determine the extreme near field of u cube.

2. INTEGRAL REPRESENTATIONS OF THE ELECTROMAGNETIC FIELD FOR IDEALLY CONDUCTING STRUCTURES

One is used to represent the total figld £, f at an observer point P(F) as the sum of the known inci-
H .
or Ao

dent field Ee' He and the scattered field s

EF = TE R v TE (D, (1}
AF) = TA(F) « TAF) . (2)

In introducing the factor T one can take into account the nature of the immediate neighbourhood of the
vbserver point. T is given by the formula (%)

T= 11%73; . (3)

where . is the solid angle, which is enclosed by the surface F of the scatterer .t the observer point P,
see Fiy, 3.

The above Jeneral equations include the following familiar special cases:

a) The observer point is situated in the volume V and not on the surface of the scatterer. This results
inyw=0and T =1,

b) The observer point is situated on a smooth surface, This results in i = 2n and 7 = 2.
For the construction of an inteyral equation it is necessary to represent the scattered field in an inte-

gral form. There are several ways in literature [5, 11 - 13] to derive integral representations for the
scattered field. For an ideal conducting structure the following expressions are available:
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Fig. 3 Geometry for the calculation of the factor T.

E(F) = 4an“‘ o(F, 7Y JF (TR ) v)ve(F 7)) df = (4a,b,¢)
- jkR
= mm?(( -1-jkRek?R?) 3 ((F1)+(343jkR- RO (S ) -3, )8,) ﬁ———df‘ -

- +u o ) JpF) ¢ (VeI F ) ve(R F)) arr

4wac
AR =1 PR x ) dft = - § (eikR)I(T(Fr) x 8 IR 5
S(r)-mi(w(r.r)x fF) ar = B kR x &) S ar (5a,b)
F F

Denotations:
w = 27f = angular frequency,

f = frequency,

k = 2n/A = wave number of the propagation medium,

A = wavelength,
3 = absoiute complex dielectric constant of the propagation medium,

£ electric surface curreat,
5 = surface of the scatterer,
r = vector of the observer point,

[ vgcgor of the integration point on the surface of the scatterer,
§ = jr-r'; = distance between observer and integration point,
e = R/R = unit vector, pointing from the integration point toward the abserver,

» = exp{-jkR}/R = scalar Green's fgnctlon

Y = Na la -operator, V = e‘ dfox + dfdy + eZ d4/3z for cartesian coordinates,

V Jr(r = dJ u/du + dJ /dv = surface divergence of the current with surface components JF and JFv

The yeometrical situation is illustrated in Fig, 4.

The symbol is used to denote the principal value integral over a closed surface excluding an ¢
neighbourhood of/the singularity. The terms under the integral become singular if the gbserver point is
situated on the surface and the integration point approaches the observer point: >

Fig. 4 Geometrical situation for the description
of the scattering problem.

Eq. (4b) resp. (5b) may be evaluated directly from Lq. (4a) resp. (Sa) by iaserting ¢ and V¢ and re-
arranging the terms. Eq. {4c) is equivalent to Eq. (4a) in the case that the surface 15 a closed one as in-
dicated by the circle in the integral siyn, The equations are rigorously valid, if the closed surface has no
edjes, that is no discontinuity in the surface tangents is allowed to occur. If there are any edges, the
field and with it the current distribution must be determined under the constraiit that the edge condi-
tions (14, 15} are satisfied. Only in this case an unique solution of the boundary value problem caa be
evaluated. The edye condition for an infrnite thin half-plane is known and is formulated as follows: The
current component vertical to the edye, see Fig. 5, is given by

k72

JF: .M for v »+ 0 , {6)

v = vertical distance of the current point from the edge. The current component parallel to the edge be-
haves like

-1/¢
» ’

J

e for o » 0 . (7)
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Fig. 5 Geometry for the formulation of the
edge condition for a half-plane.

0

There is a lack in the literature concerning edje conditions for other configuration, for a wedge,
however, some informations may oe found in [i4].

If the surface is not closed jt is always limited by edyes. For an open surface £q. (4c} no more sa-
tisfies the Maxwell equations, which is the case for Eqs. (4a,b) and Eqs. (5a,b). If, however, the edge
conditions are satisfied in the sense that Jp, = 0 on the edge, then also Eq. (4c) is a solution of Max-
well's equations [14). Therefore, if the edge conditions are not taken into account, it is preferable to
use Eqs. (4a,b) and Eqs. (5a,b), which in any case satisfy Maxwell's equations. Regarding the edge condi-
tions all the given equations determine an unique solution also for open surfaces.

R f one is interested to compute the field on the surface of the scatterer, specially in the point
r' = r and its neiyhbourhood, one has to make considerable efforts in treating the singularity. There are
two ways to proceed. The first way [16, 17] consists in splitting the surface into a subsurface F - Fy
without sinyularity and a subsurface Fo with boundary line Co‘ which contains the singularity, see Fig. 6.

L Y

I
singularity | C4 Fig. 6 Rectangular plate with a singularity at

the center and with square exclusion

uSFO . area.

F-Fo

A j

The kernel of £q. (4a) is rearranged in such a way, that the surface integral over Fos which contains
the singularity, is splitted into iwo parts by subtracting and adding Green's function for the static case.
The first part can be integrated over the surface F,. The second surface integral is transduced to a line in-
teyral by using Stoke's theorem. The line integral has no singularity problems, since the line doesn't
cross the singularity itself,

The ‘secona way L17] consists in an expansion of the phase function e'JkR in Eq. (4b) into a potential
1erie§ with sufficient terms, After integrating, which can be done analytically, the limiting process
r' +r is carried out. Both ways are applied in computing the extreme near field of a Cube.

Of special interest in numerical modeling are the expressions for the scattered field of a thin circu-
lar cylinder, For the derivation of the field equations a4 series of assumptions usually are made:

a} there is only a curpent component Jp, parallel to the axis of the cylinder, with a direction described
by the unit vector e;, see Fig. 7,

>
dplxyz):sdp, Y Fig. 7 Geometry of a circular cylinder.
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b} the contribution of the end faces of the cylinder are neglected,
¢) the current is assumed to tend to zero in approach to the end faces.
With assumption c) one satisfies the boundary conditions, so that Eqs. (4a,b) and (dc) can be used.

The evaluation of the integral over the circumference of the cylinder can be done analytically only if
the distance

R = //(X-x’)z + (,v-y')2 + (S-S')2 = J/pz v o' ? - 2o cos(s-9') + (S:;T;Z (8)

between the observer point (p,¢,5) and the integration point (o',¢',s') becomes independent from the inte-
Jration coordinate ', This is the case under the following conditions:

- the observer point is far enough from the surface, so that RE >> o'y pr':

RaV p2 + (s-s')2 N (8a)

- the gbserver point is situated on the axis of the cylinder (p = 0) and the current is assumed to be
concentrated on the shell (' = a)

/2 Y]
R=/va" + (s-s')° , (8b)
- the current is concentrated in the axis (p' = 0), see Fiy. 8:
Y
R= 0%+ (s-5) . (8¢)

The assumptions cause only minor errors if the cylinder is thin in comparison to its length (a/L << 1)
and to the wavelength (a/A << 1), a = radius of the cylinder.

The wost comnon formula is given by Eq. {8c). So assumption d) is formulated as follows:

d)  the current is assumed to bg concentrated in the axis of the wire and expressed by the line current
I(s') with the unit vector €t

UNEORE T (©)

[y
X . is")
Fig. 8 Introduction of the line current I{s';.
~
-,'I 2a la—

With assumption d) it is possible to evaluate the integration over the surface in a trivial manner. A
second consequence of assumption d) is, that a coincidence between observer point and integration point
is avoided, and therefore, no longer singularity problems must be considered.

Under the assumptions a), b}, c¢) and d) one receives for the scattered field of a thin cylinder of
tength L:

(7 - z;%:z RCTCEOR I (B VIVelF, 7)) 1(s') ds* = {10a,b,¢)
L
i . s o+ 2 o JKR
. 4“}we | L-1-gkReiBRE) B, v (3933kR-ICRE) (3, 808 ,) i gt
L
e T ey 2 1(st) ¢ (9 (R, 1(s')))Ve(FR)) dst
§njuwe | , 5! gt A8 g ’
L
-> { -+ -+ > > -JkR
R = J ) (o) x 0 1) ast = Lo [ (kR x 8 T sy ¢ L (1ab)
R
{ L

Since
Re/xls y2 + (S-S')2 =/ 92 +(S-S‘)2 ,

" . . . Y ) ,
€= (x € +y @ + (s-s")8)/R = (pcosed, + ps1nw3y * (s-st)dm
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there results for the electric field of a thin cylinder

E(F) = 4,,§wE ; Wo(FF) &, ¢ Sw(EF) st ¢t = (12a,b,c)
L
- mr_we Jr ({-1-jkR+k%R?) E-ZZR L (343jkR-kZR% ) (s-5") &, e-i:R) I{s') ds* =
{
- e | (BeF R B s ML ) e
L
and for the magnetic field
ﬁs(?) = g;-p(-sinng + cosazy) ; (1+jkR) e-:;R ds' . (13)
L

The latter equation indicates that the thin cylinder has only azimuthal components of the magnetic field.

3. THE INTEGRAL EQUATIONS AND THE METHOD OF MOMENTS

Since the boundary conditions for the total field at the surface of an ideally conducting pody are gi-
ven by

BF) x E(F) =0, RA(F) x A(F) = jF(F) . ¥ on the surface, (14)

the integral equations for the surface current 3; or the line current I can easily be constructed in posi-
tioning the observer point on the surface of the scatterer. One receives with the total electric tield Eq.
(1) and the scattered electric field according £q. (4a) the Electric Field Integral Equations (EFIE) for
yeneral structures:

A(F) x te(F) = R(F) x ES(F) = (15)

- - -
= - zmljﬁﬁm xéa(kz«b(?,;')dr(r'ﬂ(jF(r')w’)W(r,r')) df
F
The equations (4b,c) lead correspondingly to equivalent integral equations. Because of the Nabla-ope-
rator acting on the surface current, the integral equation resulting from Eq. (4c) is denoted as integro
differential equation, Using the expression for the total magnetic field £q. (2) and the scattered magnetic
field according Eq. (5b) the Magnetic Field Integral Equation (HFIE) results:

JpF) = TRE) x B (F) + TR(EF) x B (F) = (16)

-jkR
e + > T »,+ ( . s ed ,
=1 n(r) x He(r) tar n(r) x-’w(I+JkR)(jF(r )x eR) Rz df
Equation (5a) again leads to an equivalent formulation of the MFIE.

The equation (15) is an integral equation of the first kind from Fredholm's type with the unknown sur-
face current only inside the integral, whereas the equation {16) is an integral equation of the second kind
from the same type with the current outside and inside the integral., Both integral equations in principle
can be used for the determination of the surface currents. From the mathematics of integral equations,
however, one knows that an integral equation of the second kind in jeneral involves less problems for the
solution finding.

Some advantages of the MFIE becowe obvious in regarding the first term of the right-hand side. [f the
surface of the scatterer is smooth and convex in the sense that the radius of curvature is large compared
to the wavelength, then the factor T becomes 2 and the first term represents the well-known physical optics
ansatz for the surface current [2):

Jp o @R x AP .

In this case of surface shapes, the integral can be regarded as a correction term for the physical op-
tics current. That is why the MFIE is frequently preferred if the scatterer's surface is smooth. However,
the EFIE also can be used for this class of scatterers, In the following we will consider only surfaces for
which T = 2 is valid.

In applying the boundary conditions to a thin cylinder one usually neglects the effects of azimuthally
directed incident fields. Therefore, the boundary condition for the elect-ic field can be readily stated
by only regardiny the field component in the direction of the axis:
§-8s)=0. (17)
This Teads to the following electric field integral equations:
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+ > Y o=
& - B (s) = -8 - EL(5) (18a,b.c)
R (k2¢ + ﬁfﬁ, I(s') ds' =
4njuwe | R 2
i S
-jk -JkR
- - 4"§w€ j ((-1-jkR+kZR?) & el (3+3jkR-k2R?) (5-5 )2 E-Eg—) I{s') ds* =
L
_ ) , olfs') oty 4.
T (k"¢ I(s') + ¢ oe) 45" .
L

Equation {13a) is denoted as integral equation of Pocklington, and equation (18¢) is the integro differen-
tial equation of Rarrington.

The integral equation of Hallén, established for thin cylindrical antennas, is directly related to
the inteygral equation of Pocklington in assuming that the incident field is giver by

& - Els) = -y, 8ls)

where U_ is the excitation voltage over the {infinitesimal small) feeding gap of the antenna. &(s) repre-
sents the Dirac-function.

1f one substitutes 1n Eq. (18b) s-s' by the relation
(s-s‘)2 = R2 - a2

and rearranges the terms one receives the integral equation of Richmond

ES . Ee(s) = -ss . Es(s) = (184d)
[ 2.2, 222 eitR
I — {(1+jkR)(2R"-32°) + k"a“R") =~ I(s') ds'
41 juwe { R5

In reviewing the magnetic field equation (13) for thin cylinders one recognizes that the scattered
magnetic field vanishes, if p tends to zero, This means, that in the case of zero-thickness there is no
maygnetic field inteyral equation. But also for thin cylinders with finite thickness the magnetic field in-
tegral equation is fraught with numerical instability problems, so that only the electric field integral
equation is applicable.

The integral equations can be transduced to a linear system of equations with the aid of the method
of moments (7], which in the following is shortly outlined, For this purpose coperators are introduced
with which the integrai equations can be expressed in a wore compact form., The magnetic field integral
eyuation (16) is represented by

Ly(Te(Fr)) = - B(F) x B(F) (19)
with the operator
+ 1 > 1 +,» . - > e-‘ij
Ly ED) = - 3 30F) + 45 A x 4 (g (7 0x) ekl (1%)
F

These equations will be used in Sec. 4, where the impedance matrix for a structure modeled by surface pat-
ches is evaluated.

For the electric field integral equation of a thin cylinder one receives, introducing the scattered
field according £q. (10b)

L) = - &« E(s) s (20)

with

1 s . + . 2.2, ,+ -jkR , ,
Lell) = g 8+ ) (1-Likeai®®?) B0 v oaakeid?) @, - &) 8 S s ast L (200)
L

The equations will be used in 5ec. 5 for the representation of the impedance matrix of a wire-ygrid struc-
ture.

In the first case the operator acts on a vector, in the second on a scalar. The more general case,
therefore, is described by

LG = 8GR, (21)
where & contains the known incident field, The following procedure can be described by four steps:

a) Definitign of a set of basis functions (F J with coefficients In and expansion of the surface
current Jp according with these basis funltions
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&
N
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JFy e 3 1 FF {22)
nsl

The coefficients I will become the unknowns of the linear system of equations. Since there is a

finite number of basis functions an error a(r) arises which is determined by

N
) = ; 1 L(?n(r')) - B . (23)

b) Definition of a set of testing or weighting functions 1H } and evaluation of the inner products with
both sides of Eq (23):

> = ngl L, AL U F e s A FLEF . w12, (24)
The inner product of two vectors P and Q is defined by <P, J> = j B dr .

F
F is extended over the comnon range of definition of the functions B and Q. The left-hand side of
Eq. {24) represents the projection of the error vector in the space of the weighting functions, By
forming the moments, the satisfaction of the boundary conditions are enforced in certain points or
regions on the scatterer's surface.

c) Setting the left-hand side of Eq. (24) to zero one receives the following system of equations:

Wy dlxy) = Lyl (25)
with

Lo = WP, LE () (26a)

Yy = A (F)L B> (260)

The colunn vector [xnj contains the c%rrent coefficients 1, the column vector (y] represents the
tanyential components of the known fields tg or He- incident on the scatterer. The incident field may be
the field of a plane wave propagating from infinity (scattering case) or the field of the feeding gap of
a radiator {antenna case).

The matrix iZmpnl frequently is denoted as generalized impedance matrix. It represents the coupling
jinpedances of tne currents of different surtace parts. [t characterizes the structure independent from
aspect angle and polarization of the incident field. The expression impedance matrix was chosen in analogy
to the network theory, the unit of the elements is not necessarily the Ohm. In a more general case the
elements of the columns may be vectors, the elements of the matrix then are dyads.

The computer effort of the method of moments is concentrated on the computation of the elements ot the
impedance matrix and the soiution of the Tinear system of equations. In reviewing Eq. (26a) one realizes
that for the computation of the matrix elements a twofold integration is necessary, one over the basis
functions and the other over the testing functions. In general both integrations are to be evaluated nu-
merically,

The structure of basis and testing functions influences strongly the computer effort. If a basis func-
tion is well adapted to the actual current distribution then a comparatively small system of equations is
senerated since the convergence to the actual current will be fast. On the other side the integration over
such basis functions probaoly can pe done only numerically. Using Dirac deita functions as testing func-
tions the first integration in £q. (Zoa) just yields the operator, so that only the integration over the
basis functions remains, This special case of the moment method is denoted as point-matching method which
is also known as collocation method. Physically this means, that the boundary conditions are satisfied not
continuously over the total structure but rather in discrete points. The point-matching method is freguent-
iy applied in electromagnetics. In the case of thin cylinders the use of pulse functions as basis functions
leads to very simple expressions and the use of trigonometric functions even allows an analytical evaluation
of the integral. If basis and testing functions are chosen to be equal one has another special case of the
method of moments known as Galerkin's method. Galerkin's method with trigonometric functions is applied in
literature 118, 191 in treating thin-wire structures. Of special interest is tne use of pulse functions
as basic functions and the approximation of the operator integral by it's mean value, that is, for the in-
teyration the pulses are reduced to Dirac delta functions, see the following sections.

In the literature there are numerous examples in combining basis and testing functions to treat scat-
terers, which are modeled by surface patches or/and wire-grids, with the EFIE or/and MFIE, A survey over
the literature and a sumnary of the different experiences till now would result in an own report, see
[20, 21j. The following Table 1 presents computer programs, which solve three-dimensional scatter problems.
One realizes that the point-matching method with pulses as basis functions are prefered. Pulse functions
seen also to have some advantage when one tries to satisfy the edge condition, see [22]. Fig. 9 shows the
current distribution of a flat plate when a wave is normally incident. The dashed line shows the current
when the edge conditions are satisfied by an edge correction term, while the solid line shows the current
represented by pulses alone.

There is a great variety of methods for the solution of large linear systems of equations, A good sur-
vey is given in [26]. The methods may be classified into direct and iterative methods:




Name of the Re ference Model Basis functions Testing Field-integral
computer program functions equation
WIRE-GRID 80DY PROGRAM 6 wire-grid pulse Dirac EFIE
WF-0SU/NPS1 23 wire-grid trigonometric trigonometric EFIE
H3F-TuDl 24 surface pulse Dirac MFIE
patches and and
wire-grid pulse Dirac EFIE
NEC 25 surface pulse Dirac MFIE
patches and and and
wire-grid trigonometric Dirac EFIE
INFE 17 surface pulse Dirac MFIE
patches
Abbreviations :

WF-0SU/NPSL :

Naval Postgraduate School, Monterey, California

H3F-TUD1 ;

mark
NEC:
INFe:

Table 1 Some computer programs based on the IEM,

Numerical Electromagnetics Code
Integral equation method Near Field Evaluation

4 4

]

Jz

He 3
2
1 .
0 ) "
~0.5 -0.25 0 0.25 0.5

x/la —®

Fig. 9 The behaviour of pulse functions near the edges of a flat plate.

1. Direct solution methods

Gaussian elimination

2. Iterative methods
2.1 Linear iterative

methods

Jakobi's iterative method
Seidel's iterative method

2.2 Nonlinear iterative methods

method of steepest descent
conjugate gradient method

-9

Wire Configuration, Frequency domain, originated at Dhio State University, modified at

Hybrid, 3-dimensignal, Frequency domain, developed at the Technical University of Den-

The advantage of the direct solution method becomes obvious if the current distribution has to be de-
termined for a variety of aspect angles or/and polarizations of the incident field. Since the matrix ele-
ments depend only from the geometrical parameters of the structure and the frequency, the computer effort
for the inversion of the matrix has to be done only once per frequency. The currents for the different si-
tuations are determined only by multiplying the inverted matrix with the incident field.

A very important point for practical) application of the method of moments is the estimation of the
conputer effort with respect to storage and time. The dimension N of the system of equations and there-
with the number of the complex unknowns to be determined are influenced by the chosen basis

and testing

functions and the mathematical mode) of the scatterer. For the estimation of N the following empirical va-
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lues can serve, see also the followiny paragraph:
a) modeling by surface patches, point-matching method, pulse functions as basis functions:

N<soE (27)
AZ
if F is the surface of the scatterer,
b) wire-grid modeling, point-matching method, pulse fusnctions as basis functions:
N<200 B, (28)
Al
From this rough estimation it becomes evident, that the application Vimits of the integral equation
wethods are reached if the dimensions of the scatterer will exceed some few wavelengths,

In the followiny Tables 2 and 4 the computer storage and the number of arithmetic operations for va-
rious methods are compared 126].

Method Core Storage Method Number of arithmetic operations
Oivisions { Muitiplicaty Additions
waussian elimination Wevan aussian elimination *{ N i3/3*N2-N/3 il /3+N2/2-5N/6
Seidel's iterative Noean Seidel's and Jacobi's | N w2 Ne-N
method iterative method ++
caussian elimination N2+3N method of steepest 1 ZNZ*JN 2N2+4N
with complete pivoting descent ++
Jabobi's iterative N2+3N conjugate gradient 2 2N2*6N 2N2*6N
method method ++
method of steepest M2+4N02 + Gaussian elimination with complete pivoting requires
dessent 2 N3/3*N2/2-5N/6 comparisons in addition to the above arith-
;Zggggate ’r‘d‘?"‘ NT+ON+3 metic operations
++ number of arithmetic operations per iteration
Table 2 Core storage requirement of Table 3 Number of arithmetic operations of various solution
various methods for the solution methods .

of linear system of equations.

4. HODELING OF SMOOTH BODIES BY SURFACE PATCHES

In this section details, see also |24, 27), are given for the application of the MFIE, when the surface
of the structure is modeled by patches (solid surface structures). The basis functions are chosen to be
pulse functions and the point-matching method is applied. Use is made from the tormula (19) with the ope-
rator L, given by Eq. (19a).

The surface of the smooth body is modeled by N surface patches with sizes 4Fg, see Fig. 10. The ex-
perience shows that far field problems will be solved with sufficient accuracy if one models a surface of
one square wavelengths by at least 20 to 30 patches. This means that the edge length of a surface patch
should have an amount of less than about A/5 (maximum size of about 0.04 square wavelengths).

Fig. 10 Modeling of a surface F(5,n) of a smooth
body by N surface patches.

In choosing basis functions Sq(é.n) the surface current is expanded according
*
N
eleun) = qgl 3, sqtean) (29)

S represents 4 pulse function with amplitude 1 on the surface patch q and O on all other surface patches.
sJand n are orthogonal coordinates of a local coordinate system (f£,n,n), where £ and n are parallel to the
plane of the patch, For the unit vectors of the local coordinate system the following relations hold:

-> > -> » » »

e " nx eg or n = ec x en . (30)

adb. . - _ RPN
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® is the normal unit vector on the patch, see Fig. lla.

cylindrical
surface

Fiy. 11 Definition of a local coordinate system
a) local coordinates of a patch, » X
b) special case of a cylindrical body.

The orientation of the local coordinate system within the global coordinate system depends on the
specific geometry of the scatterer, fFor a cylindrical body, the axis of which points in the direction of
the z-axis of a ylobal cylindrical coordinate system (p,¢,2), the relation between local and global coor-
dinate system can be established by the following equation:

> -
nx{e_ x e.)
e - —p 2 (31)
S (@ X8 ),
‘ p ZI
see Fiy. llb.

In this case, where the current coefficients J are vectors, une receives instead of E£q. (25) the
following system of equations 9

=
2 e (X ) =y
{ qu lqu lypl ’

where the matrix elements are dyads and the elements uf the columns are vectors.

Introducing the current expansion in the operator of £q. (19) and choosing the point-matching method

one explicitly receives the following system of equations:
<6, L (S )21l J =< (<6 0 x A > .- 32
i<sp. s q) ildgl L ng x Hoo>l (32)

6y denotes a Dirac function, which is infinite in the center of the patch p and zero in all other regions
of the structure. In the center of each patch the current is decomposed into two orthogonal components

d :
Jyg 2" gn
- >
= + .
Iy = Yae Fag * g0 S (33)
The vectorial elements of the current column therewith are
> > *
= + .
Xq ™ Jgg Sq¢ * dan Can (34)
The vectorial elements of the right-hand side are represented by
-* -> - »> > > - > >
a o H = ] - .
J Bps Mg % Hpe> = (Cpn ~ Hpe) €pe = (&pe = Fioe) &y o (38)

-+

where ﬁp =2 _x@e_ is introduced.

23 pn

for the determination of the matrix elements Zp the integral of the operator Eq. {(1Ya) must be eva-
luated. This can be simplified by assuming that the gistance Rpq between integration point varying on patch
q and observer point situated in the center of patch p is given by the distance between the centers of the
patches q and p, see Fig. 12. This means, for the inteyration purpose the pulse functions are reduced to
Dirac functions. With these simpliifications we get the following analytical expressions for the matrix ele-
ments :

z - 1 > -

Y ST U TS W 1
pp 2 Y7pg Tpg  Tpn Tpn 2

ma

p=q, (36a)
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epy
FQ(’Q
.
np epE
patch p
Fig. 12 Geometrical situation of two patches,
- AF  1+jkR
=4 e IMRog (2 @ IS e & . +e (B IS P 36b
pg T E T Pa (e tleg equ) o % ¥ %" {8qn qu) pn Can (360)
PY
+ ,* > »> + - > - > -
-é oe.xe € .8 . -¢é - e . .
pr t8qs X qu) pe €ag T Spu g X qu) ®pg San) pta

;Fq = areg of patch g,

ER = unit vector directed from the center of patch g towards the center of patch p.
»q
For the determination of the elements Z,, of the main diagonal the contribution of the integral in
the operator is neylected in order to avoid Eﬂe singularity. This procedure approximates the principal va-
Tue of the inteyral.

Eq. (36b) may be written in the foliowing alternative form:

- N +jkR .

rFPIE ko T WY1 LN SR SR

¥4 47 RZ 4 1€ p R
o Pq Pq

-+

<R

The dimension W {nunber of complex unknowns) of the Tinear system of equations to be solved is deter-
mined as follows: a patch size of avout A/5 results in 25 patches for one square wavelength of the scat-
terer's surface. For each patch ¢ complex current coefficients have to be determined. Therefore the di-
mension of the complex linear system of equations can be estimated by N = 2N" . 50 F/A%, F representing
the surface size of the scatterer.

The following Fig. 13 represents the time 1 which computers of the type 18M 3081 and CRAY-L need for
the inversion of the complex matrix., The time required by the computer CRAY-1, which is installed at the
data center in Oberpfaffenhofen, may be expressed by the formula

T=-(sand+70n8) 1055,
W = number of the complex unknowns. The Gaussian elimination method with complete pivoting was used.
2500
' /
| 2000
T(sec) )//
1500
IBM 3081/ //]

1000 7

)4 //éRAY—1
A
500 "r///
/
/

200 400 600 800 1000 1200
N —b

Fiy. 13 Computer time for matrix inversion, N = number of complex unknowns {dimension of the complex matrix),
N* = N/2 = number of surface patches.

One can see, that the coaputer time increases with approximately N3‘ Assuming that a patch has a size
of A%/25 then the dimension N = 1120 means that the surface of the body to be modeled may have a size of
about 22 A%, A cube, which is a representative of a three-dimensional scatterer, has then an edge length
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uf a little less than 2x. It is to be emphasized, however, that for accurate near field investigations the
patch sizes must be chosen to be much smaller as assumed in this section,

5. MOUELING OF STRUCTURES BY A WIRE~GRID
The method of wire-grid modeling is based on the fact, that a structure consisting of thin wires (Fig.

14), has the same electromagnetic features as a solid structure, if the mesh width is chosen to be sufficient-
1y swall,

Fig. 14 Modeling of a structure by thin wires.

A jood estimation of the mesh width is obtained, if a source is positioned within a structure, which
is modeled by a wire-grid with variable mesh width, The field in the exterior of the structure, which
should be zero, is then computed in dependence from the mesh width,

For this theoretical experiment a cube with an edge length of 0.4 A has been chosen. In the center
of the cube a point source was positioned, The diameter of the wire was 0.003 A, so that the thin cylinder
approximation of the EFIE holds. The basis functions are chosen to be pulses, the boundary conditions were
satisfied in the center of the wire (Dirac functions as testing functions).

Figure 15 shows the electric field in the exterior in dependence from the mesh width. A mesh width of
0.057 A corresponds to about 600 wire seyments. One can assume, that a mesh width of about 0.1 A in mode-
ling @ structure could be sufficient for far-field computations. This means, that about 200 wire segments
are necessary to model a surface with a size of A x A. Since per segment only one current coefficient has
to be determined the dimension of the linear system of equations is given by N = 200 F/A*. Shorter wire
segnents, 0.05 a or less, may be needed in modeling critical regions of a structure.

A 04

0.3

0.2
Fig. 15 Influence of the mesh width,

relative electric tield strength

0.1A 0.2

mesh width —p

For the solution of this scattering problem the EFIE is applied. Use is mgde from the formula (20)
with the operator L. given by Eq. (20a). The 1line current I(s') is expanded in a set of pulse functions
P.(s'):

J

N
I{s') = } 1,P(s') . (37)
J'.]_JJ
The pulse functions have the value 1 on wire segment j and zero on all other segments. K is identical
with the total number of segments. Using the point-matching method one receives the Tinear system of equa-~

tions

[Ziix) = Ly)
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in the following form

v = - by .
L<sy LglP )Ll ) <8y, & Ee>J . (38)
The elements of the current column now are scalars and given by
=1, 39
Xy =0y (39)
and the elements of the right-hand side result in
>
yi=- 3 o E, . (40)

If again the numerical integration in the operator is avoided by reducing the pulses to Dirac func-
tions one yets for the matrix elements immediately

A, -JkR. .
- e i R 2,2 iz .2
T —F_l (C1-3kR; + kPRTE G+ &G5) (41)
iJ
, 2.2 > > - -

+ (3*3.]1(Ri‘j - K Rij)(esi eR]_')(eS‘j eRij))
Rij = distance between the centers of the segments i and j,
€. = unit veLtor directed from segment j toward segment i,

Ax;J= length of segment j,

Esi respectively Esj = unit vector parallel to segment i respectively segment j, see Fig. 16.

The main diagonal elements can be formally determined from Eq. {40). The expression cannot become
singular since the line current coincides with the axis of the segment and the boundary conditions are
satisfied on the surface of the seynent,

Since there are analytical expressions for the matrix elements the matrix fill time is very low, as
before. This procedure was developed in [24] and provided good results when antennas on satellites were
computed,

i -
" €s)
:segment j } <

7 N-1

.

Y;b X3
=2 / '9/,-‘\'9\ -é si :‘:
N\ ;. /»/_ @‘ N 4 i N
] A N-2
/ ~
a S segment i
3 £ 3
2
1
(o]

Fig. 16 Geometry of a wire-yrid.

6. APPLICATION EXAMPLES

In literature there are numerous examples to demonstrate the field of application of the integral
equation method as well in the antenna as in the scattering case. Therefore, the following list, which on-
ly can give a survey, cannot be complete, also only those configurations are mentioned, for which either
experimental results or results of independent theories are available for comparison. Most of the examples
are taken from reference (5]. Where this is not the case the pertinent reference is cited behind the ex-
ample.




1-1%

Solid surface structures

- bistatic cross-section (BSCS) of a sphere,

- radiation pattern (RP) and input impedance of a monopole antenna, driven against & sphere,
- BSCS of a spheroid,

- mongstatic cross-section (MSCS) of a cone sphere,

- MSCS of a flat-back cone,

- MSCS o1 a right circular cylinder 5] and [28],

- MSCS of a sphere-cylinder,

- MSC3 of a stub-cylinder,

- M3CS of a rectangular box |28,

- mutual impedances between two rectangular dipoles [28],
- MSCS of a thin plate (28],

- MSCS of a thick plate [29;,

- M5CS of a cube 129).

Aire-yrid structures

- M3CS of a circular disk,

- M5CS of a sphere,

- MSCS of a slotted grig,

- BSCS of a cone sphere,

- scattered field pattern of a Od-6a helicopter model,

- xP of a towel-bar huwing antenna on a UH-6a helicopter model,

- MSCS of an aircraft {Mig 19) model [30],

- MSCS of two coplanar, concentric rings,

- MSCS of a planar, loy-periodic zig-zag array,

- MSCS of a five-ring, log-periodic array of circular rings,

- M3CS of a straight wire, straight wire with low-tie terminations, eleven-element array of log-perio-
dically spaced straiyht dipoles, diamond-band dipole, circular ring with spokes, seven-ring array
squirrel cage,

- input impedance of u ¢ 1/2-turn loop [6],

- input impedance of a three-element coplanar TEM-line antenna [6),

- RP of a monopole and a circular slot in the base of a cone |6, 33],

- RP of a monopole and a loop on a cube [3],

- RP of a three-element Yagi antenna [3],

- RP of a fifteen-element Yagi antenna [3),

- ]P of corner reflectors [3],

- input impedance and current distribution of linear antennas (s, 31},

- input resistance and RP of a pair of dipoles over lossy ground (3},

- input impedance and RP of twelve-element log-periodic dipole antenna [32],

- Jain of coupled loy-periodic dipole antennas (Systems of two, three and five log-periodic antennas)
1324,

- yain and RP of loy-periodic dipole feeds for reflector antennas (32].

Combination of solid surface structures and wire-grid structures

- antenna on a cylindrical satellite model with experimental boom or solar cells (24,
- cylinder with excited and passive elements, RP [34],

- cone-sphere with loop, RP [34],

- sphere with excited and passive elements, RP [34),

In the following two further examples are presented showing particular features, which are different
from the cited exampies, In the first example the radiation pattern of a monopole antenna on a helicopter
is determined. The theoretical results computed for a wire-grid model, which only can roughly represent
the real structure, are compared with in flight-measurements of a real helicopter. The second example deals
with the scattered field of a cube, For this Jeometrically simple structure the numerical model with patches
agjrees perfectly with the real structure, The extreme near field behaviour is subject of the investigations.

Fig. 17 shows the wire-grid model of a helicopter of the type Bo 105 and Fig. 18 the details of the
actual structure with the position of the two A/4-monopoles operating in the VHF-band. The antenna on the
right-hand side of the flight direction was driven, the other was terminated. The in flight-measurement
135) of the radiation pattern in the horizontal plane for a fresuency of L17,6 Mz is represented in Fig.
19 by the dashed line, The flight direction is defined by ¢ = 0. For the computation of the radiation
pattern the computer program WF-OSU NPS 1 was used. It could be shown that the immediate neighbourhood of
the antennas, that is the shape of the tep side and the drive for the blades, must carefully be modeled
while the farer parts of the helicopter, especially the lower part could be approximated only roughly or
even completely neglected. The actual thickness of the shaft of the drive was taken into account. In
principle a monopole array, consisting of a driven and two parasitic excited monopoles, a thin and thick
one, over a finite plane, was analyzed. The theoretical results are illustrated in Fig. 19 by the solid
line.

The cube of the second example had an edge length of A, The incident field is oriented parallel to
the z-axis. Each side of the cube was modeled by 25 to 49 patches, that is, the patches had a dimension
of 0.2 4 to 0.14 A, see Fiy. 20. In using the point-matching method with pulses for the current one follows
exactly the details of Sec. 4 for the determination of the surface current. The computation of the extreme
near field, however, is indicated in Sec, 2, see [17].

The computed copolar component in amplitude and phase of the current on the front side (side II) is
compared with measurements in Fig. 21, The copolar tangential electric fieid component is depicted to-
gether with measurewents in Fiyg. 22, For various distances from the surface this component has to vanish
if one reaches the surface. In this way an internal accuracy test of the integral equation method may be
performed. The measurements were carried out at a wavelength of X = 30 c¢m. Amplitudes and phases are re-
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EXPBRIMENTS: TEST RANGE FACILITIBS (PART 1)
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SUMMARY
A brief overview of some of the transient electromagnetic scattering ranges at .S,
universities and research facilities will be given. This will be followed by a detailed
discussion of the Transient Electromagnetic Scatteriang Llaboratory which 18 located at the
Naval Postgraduate School. Particular attention is given to the role of this facaility
in studies of natural resonance target classification studies. Detai1led consideration
will be given to the measurement concepts of transient scattering, with exaaples

presented to illustrate the procedures and requisite signal processing that 1s involved.

INTRODUCTION

Transient electromagnetic scattering measurements offer a viable and often
advantageous alternative to the more conventional continuous wave (CW) approach. As a
result of recent advances in short-pulse technology, 1mpulse generators having very broad
instantaneous bandwidths, as high as several thousand to one, are available, Transient
measurements also provide response waveforms that can be directly interpreted as to cause
and effect. In fact, the fundamental methodology behind transient scattering
measurements can be considered as an extension of that which s utilized in time domain
reflectometry (TDR). The TDR method has been extensively employed for measuring
dispersion and imperfections on guided wave structures, [1].

In the historical context, transient scattering ranges are relatively recent
innovations when compared to their CW counterparts. This 18 not surpristing, since
electromagnetic analysis and design hes historically tended to be heavily biased towards
frequency domain approaches. The development of fast pulse sources and sampling
oscilloscopes in the 1960's provided the technical foundution for direct transient
scattering measurements. One of the earliest facilitiea to use thi1s new technolagy
began operation at Sperry Research Center in the late 1960°’s, 2], This was a ground
plane range which supported theoretical efforts in radar target imaging through
synthesized "ramp-responses of scatterers. More recently developed transient scattering
ranges, which are currently in operation, include facilities at Michigan State University
{3], Naval Surface Weapons Center (4] and the Naval Postgraduate School (NPS:. The
first two of these are ground plane ranges which can be used for bistatic scattering
measurments on symmetric targets. The NPS range is a "free -field” configuration, where
scatterers are suspended in free space without a ground plane. The relative meri1ts of
both types of scattering range will be discussed 1n the following section.

Another class of transient electromagnetic facility came 1nto existence in the varly
1970's: Electromagnetic Pulse (EMP) ranges. Such facitities came about because of
revelations regarding EMP vulnerability of electronic systems, as were observed during
many of the initial atmospheric thermonuclear weapon tests 1n the Pacific. EMP ranges
were developed to support both hasic research and to assess the vulnerability of various
tactical and strategic electronic systeuws. These installations came in two varieties:
full-scale and scale-model. Two of the most notable scale model EMP ranges are those at
the Lawrence Nationsl Laboratory [§5], and at the Naval Oceans Sys:iems Center. The LNL
facility, which has been operational since the early 1970's, has provided extensive
measurements of EMP induced currents on scale models of tactical and strategic weapon
systems. The NOSC range, on the other hand, has been used to assess the EMP responses
of in situ mounted antennas on scale model ships. The weasurement of scattered far
fields is usually not of primary concern in EMP ranges and they are often not even
configured to support such measurements.

Transient sacattering ranges have, for the most part, evolved from the need to
support basic research in resonant region noncooperative radar target recognition (NCTR).
Of course, broad band stepped-frequency CW ranges are also employed in this type of

research, one of the most notable being the state of the art "compact range” at Ohio
State University, (6). The approaches to resonant region NCTR can be broadly classed
into two catagories: inverse scattering and natural resonance identification. The

first of these seeks to provide direct evaluation of the scatterer's geometry and
composition by approximate application of fundamental inverse scattering theory embodied
in, for instance, the integrel transform relationships of Bojarski {7]| and Kennaugh and
Cossgriff [8]. 1In applying these principles it becomes necessary, in the general case of
3-D inverse scattering, to have available wide bandwidth scattering data from numerous
aspects on the target. Conversely, natural resonance based NCTR requires only single
aspect scattering data eince the target's resonances are, in principle, functions only of
ite innate astructural and material properties. The resulting tradeoff for natural
resonant NCTR is that the identified complex poles must be correlated with a
comprehensive data base that includes these parameters for all candidate targets.
Although this may appear as a major disadvantage, consider that for the case of inverse
scattering, an "image” of the target must also be correlated, but with other 1mages using
either human obaerveras and/or automated image recognition algorithms.




TRANSIENT ELECTROMAGNETIC SCATTERING LABORATORY

The transient electromagnetic scattering laboratory (TESL) became operational at NP§

in early 1980, {9], with the initial establishment of an outside ground plane range, as
is depicted in Figure 1. Bisected targets were placed upon the 12 meter square aluminum
ground-plane. An omnidirectional quasi-TEM incident field was provided by a 7 wmeter
long vertical monopole antenna, which was driven with an impulse generator. An 1maged
pyramidal TEM horn functioned as the bistatic receiving antenna. The instrumentation was
housed below the ground-plane structure. This type of configuration offered simple

bistatic measurement flexibi1lity along with a usable 5 octive bandwidth from 100 to 3200
MHz .

The ground-plane TESL was originally constructed to support inverse scattering
research based upon multiple aspect ramp responaes. This concept, which was originally
based upon the physical optics approximation, as proposed in 1958 by Kennaugh and
Coagriff (8], was suggested for radar target imaging in 1965 by Mains and Moffatt {10 .
The ides was later extended by Bennett {11] to an exact theoretical formulation using the

magnetic field integral equation. The use of resonance region frequencies allows 1maging
of the complete targat, even beyond the shadow boundary. 1t thus becomes possible, n
principle, to look around to the back of an object as perceived by the normal high

frequency optical perspective. Very 1mpressive work by Young {12, wused stepped
frequency CW measurements to synthesize ramp responses for forming target images. The

NPS effort in this regard was also quite successful and incorporated Bennett’'s 1terated
integral equation method to enhance image fidelity, with particular 1mprovement noted

beyond the shadow boundary {13}. A major limitation of ramp response methods 1s the
need for multiple aspect data to provide images of general 3 D objects. From a practical
radar standpoint, this is a seriocus penalty and would require either cooperative or
naturally vrotating targets, and/or a wmultistatic radar systes. This limitation
motivated the investigation of an alternate methodology, based upon saspect 1nvarisnt
natural resonances. The requisite experimental capabilities for this new area of
research brought about the construction of a unique "free field” configuration, as will

be discussed shortly.

The conceptual basis of natural resonance NCTR is derived from the resultsz of the
singularity expansion method (SEM) which wea originated by Baum [14] for use 1n baoth
explaining and predicting EMP interactions with electromagnetic systems. The aspect
independent virtue of SEM is embodied 1n the i1nnate complex natural frequencies of
material structurea, which appear as fixed parameters in analytical SEM expressions for
both induced current and scattered field responses, f18]. The accurate estimation of
these natural resonance frequencies, using experimental data, requires relatively high
s1gnal to noise ratios vis-a vis that needed for ramp response 1maging. This enhanced
data requirement for natural resonance estimation is a result of three fundamental facts.

(@B The ramp response is obtained by twice integrating the 1mpulse scattering
response, thus providing an effective low pass filter to eliminate much of the
inherent noise and other broad band signal pollutants. This type of filtering

would be unacceptable for use with natural resonance processing because of the
suppression of higher frequency (and 1nhnately weaker) resonances.

(2) The ramp-response is obtained by use of the "esrly time” scattering, as oppused

to the “late-time" signal being employed for natural resonance identification. In
most cases the early time signal component, which ta due to directly driven i1nduced
currents, contains most of the total signal energy. On the other hand, the late

time field is due to i1nertia-driven natural modes which reradiate the remnants of
the energy that had been previously 1njected into the system by the i1ncident field.

(3) The process of estimating the natural resonances in a given late time scattered
signal 1s highly sensitive to pollutants. This sensitivity results from the
nonlinear relationship between the natural resonance sigral parameters ({systea
poles) and the signal time-history. Numerical experiments indicate that even with
the most advanced signal processing strategies, accurate extraction of complex
natural resonance frequencies requires SNR's of 15 to 30 dB, [1l6].

Although the accurate estimation of natural resonances requires high SNR's,
alternate methods of identifying radar targets based upon annihilating the known poles in
the system appear to be much less demanding on signal fidelity. However, any npatural
resonance NCTR method will still need to rely upon an accurate & priori knowledge of the
ohservable poles of targets which are expected to be observed. This requisite pole
library will need to be obtained, at least in part, by extract.ug complex resonances from
experimentsl data. As supercomputer run electromagnetic scattering software becomes
increasingly sophisticated in handling the complexities of realistic radar targets, this
situation may change.

The free field TESL became operational at NPS in 1983, [17}, and incorporates a
shielded anechoic enclosure, as is depicted in Figure Z. Inside chamber dimensions are
6.2 meters long by 3.1 meters aquare. Because targets are sispended within the chamber,
there is no restriction to symmetric objects, as is the cause for a ground-plane range
(where the target wust be bisected along the plane of symmetry). Also, the free field
configuration poses no polarization restriction on the incident field. For the ground
plane range, the incident E-field will be linearly polarized and normal to the wuetsl
plane.
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The metallic shielding in the chamber reduced the effects of outside interference to
the point that it became negligible compared to either “thermal noise” provided by the
receiver system (sampling head front-end) or antenna noise generated by asbient radistion
of the absorbing wmaterial on the inside of the chasmber. This wmipimal noilse
configuration allowed the introduction of a unique wide band, but relatively low power,
pulse generator. This pulse generator is composed of a very fast (25 psec rise time!
step generator followed by a highly stable | watt pesk GaAs FET linear amplifier, having
an effective bandwidth of 1 to 7 GHz, (18]. Several alterpate pulse generators had been
utilized (or tested and rejected) over the years. The main drawback of many of these
generators 18 their lack of pulse stability, or repeatability. This is of extreme
importance 1in sampling seasurements where the data waveformss are produced by the
superposition of shifted time samples from repested observations, each due to s separate

pulse excitation of the systea. Any change in the pulse shape or amplitude as the
saupling measurement proceeds appears as equivalent signal pollution. Such "pulse-noise”
is quite common to gas-discharge pulse generators, which often have very impressive power
and bandwidth specifications, but are otherwise wunusable for patural resonance

experiments.

Returning to the depiction in Figure 2, the pulse amplifier and the sampling head
for the digital processing oscilloscope (DPO) are each directly connected to «coaxially
fed double-ridged horn antennas, for nearly monstatic (3 degree angle separation)
transmission and reception from the source wall of the chamber. These horns provide an
effective bandwidth of 1| to 12 GHz and are linearly polarized in the boresight direction.
An example of a suspended scale model aircraft target, in front of the back-wall, 1s
shown in Figure 3. The back wall is composed of 46 cm long pyramids while the source
wall is covered by 21 cm pyramids. The walls, floor and ceiling are covered by 21 cm
longitudinal wedged material, which acts to channel energy towards the back wall, with
minimal reflections. A very low density foam target support is used in lieu of the
polyethylene support shown. The rotational position of the target is computer controlled
to high resolution by & stepping motor.

SIGNAL ACQUISITION AND PROCESSING

The operation of the free field scattering renge can be readily understood by
referring to the system representation shown in Figure 4. Various frequency domain
transfer functions represent the physical i1nteractions embodied in the scattering process
as they affect the measured scattered field waveform. For example, the pulse generator
output, Xif:, drives the transmitting antenna, whose field 1s then incident upon the
scatterer, H (), and the the absorber in the chamber (clutter scatterers), H.(f". In
addition, energy is directly coupled into the physically adjacent receiving anténna, as
18 symbolized by H_ (f). The purpose of the measurement is to ascertmin the transient
field response of 'the target to some specified excitation function. The pertinent
scattering characteristics of the target are embodied in its transfer function, H.(f),
which gives the frequency domain scattered field response at the receiving antenna dte to
the incident field at the scatterer. Direct scattering of the incident field by the
chamber is symbolized by H.(f), with multipath and multiple scattering between the target
and the chamber walls represented by the two-way interaction arrow from H, to H.. The
therma)] noise and interference, which either arrive through the receiving ntenna
{(antenna noise) or are innate to the DPO (receiver system noise), are lumped together as
N(t).

We will only have direct measurement access to Y(f), via yit). A wmultiple
measurement technique will allow us to eliminate (in theory) the effects of the antenna
transfer functions, antenna coupling and direct clutter pollution of the received signal,
Y(f). We will evep be able to obtain the target response to some specified incident
waveform, whose spectral content does not extend beyond that of the actual incident
field. As a vehicle for understanding this data acquisition and front-end signal
processing, we will follow the measurement of scattering from a 8.095 c¢m diameter
aluminus sphere, which we will refer to as the target. There are three fundamental
measurements to be made:

(1) No target present (termed the background measurement)

(2) Desired target present (termed the target measurement)

(3) Canonical target present (termed the calibration measurement)

Without any target present, the received signal spectrum will be fiven by
Yl(f) = HR(f) HT(f) X(f) { HA(f) + Hc(f) } o+ Nl(f) o1y
With the desired target present, this quantity becomes
- T T
Vz(f) = Hn(f> HT(f) x(£y { HA(f) + Hc(f) + Hs (f) + Hee (t) } » Nz(f) (2

where the superscript "T" indicates that the target is present while the interaction
between the target and the chamber, which includes multipath and multiplie scattering is




-4

denoted by H c: Note that the measured random noise, Nz(f), is assumed to differ froms
that acquire§ from the independent background measurement, as it should.

With the "canonical" target present, the received signal spectrum is given by

C [
Yo (fY = “R(f) HT(f) X(f) { HA(f) + Hc(f) + Hg (f) + Hse (f) ) » NK(f’ €3y

3

The purpose of this calibration measurement is to ellninatecthe effects of the @antenns
transfer functions by comparing Y, to a computation of H_"(f). Thus, the canonical
target should be emenable to an afcurate and efficient coiputer algorithm. A 20.32 ca
diameter aluminus sphere is used for the canonical target.

The three basic leu-ureﬁents are made directly in the time domain and are stored as
digital time-series for 2 equispaced points ranging from 64 to a wmaximum of 1024.
Example 512 point time-series for the background, target and calibration measurements are
shown respectively in Figurea 5 through 7. These measurements are each composed of 500
ensemwble averaged (time overlayed) sampled waveforms. This is done to reduce the nolse
background and improve the SNR by approxmately 500 times over that of a single saapled
signal. As part of this extensive ensemble averaging, an adapt-squares "drift
compensation” algorithe ia employed to compensate for slow shifts of the temporal range
being sampled. Thias relatively small drift occurs over the long time periods taken for
each measurement {typically several minutes).

Notice the large response beginning at sbout 16 Nsec in these weasurements. This 18
due to scattering frowm the back-wall, whose pyramid tips are roughly 2.5 m behind the
target support. In addition, the contribution that appears in the beginning of the
background measurement 1is the remnant of the very large antenna coupling which began
approximately 24 Nsec prior to the start of this tiwe window. To eliminate the clutter
returns and antenna coupling that are common to the thres measurements we si1mply subtract
the background measurement from both the target and calibration measurements. The
corresponding time-series of these subtracted waveforms are shown in Figures 8 and 9,
where the elimination of the common clutter and antenna coupling provides much enhanced
scattering signatures. A Fast Fourier Transform (FFT) is then applied to each of these
subtracted time-series. Using our previous frequency domsaip nomenclature, the subtracted
scattering signals have respective spectra given by

. - . T T B . .
Yq(f) = Yz(f§ Yx(f) = Hn(f) HT(f) X(f) | “S (f)y < “SC (f)y v+ Nz(f) Nl’f) (4

c C . Y
(fy X(fy ¢ HS (f) + HSC (f) | « Ns(fl - N if)r 05

Y (f) = ¥ \

s (f)y - Yl(f) = HR(f) H

3 T

The magnitude of Y_(f) 1s 11lustrated in Figure 10, where the systes bandwidth of about 1
to 7 GHz becomes apparent.

To further process the acquired datae, in order to eliminate the antenna transfer
function effects and to provide the target response to a specified i1ncident waveform, the
canonical target transfer function is computed using & Mie sertes sclution Mo, This
computation provides the frequency domain scattered fieid at the location of the
receiving antenna, including the effects of: (1; finite distence, without far field
approximations in the Hankel functions, and (2) the slight biatatic angle between the
transmitting and receiving antennas. The desired incident field weveshape 18 somewhat
arbitrary, being constrained only in its significant bandwidth, which can not be expected
to extend beyond that of the measurement system (l to 7 GHz). One such waveform is the
Gaussian awplitude modulated cosine (GAMC) of the form

X {(t) = A exp[ - ot t )zl cos (ZM™Mf t) .6

o ] o e
where the center frequency, f , and significant bandwidth vims o ) can be adjusted
independently. An example of the GAMC waveform is shown 11 Figure 11, while the

magnitude of the computed scattered electric field for the 20.32 ¢m diameter sphere
{canaonical target) is provided in Figure 12, being represented by

v ofy = x (f) nEn (7
o ~S

The next processing step involves forming an optimal deconvolution estimator for the
target’'s frequency domain response,

A
K (F) Hg (£) = —-ooo-teon P LSRR Ygif) (8
Yo(f) Yo (f) + ¢

This form of estimator can be shown to provide the best fidelity, in the least squares
sense, for the deconvolved target response [20}. The "smoothing parameter”, C, 1s
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selected so that the significant spectral content of the deconvolved response 1n Eq. -3
is approximately equal to that of the measurement system, as is shown in the spectral
magnitude plot of Figure 13, Notice that when C=0, the ratio in Eq.(8) becomes simply
Yq/Y , which could be termed "naive deconvolution”. In such a case, signal pollution in
y (t?. which has spectral components at frequencies where the unpolluted signal has low
spectral content will yield a very large amplified effect on the resultant spectral
ratio. This noise enhancement is thus tempered by establishing a minimum baseline for
the denominator through the addition of a positive C.

The inverse FFT of the spectrum in Figure 13 is shown as the time-series i1n Figure
14, which represents the estimated transient scattering response of the spherical target
due to an incident field having the GAMC waveforms in Eq. (6). This deconvolved measured
response canh be compared to the computed target response, which 18 shown 1n Figure 1§,
This computation is provided by performing an inverse FFT on a Mie series based spectral
response, obtained using the same algorithm as was employed to compute Y. for the
canonical sphere target. Notice that the computed transient response 1s essentially
composed of a main specular return, from the front face of the sphere, followed by a
first order (single circumnavigation) "creeping-wave” vreturn. The deconvolved
experimental return has this same initial waveform, but is followed by a small “error”
signal which continues out to the end of the 20 Nsec time window. Part of this error is
due to unfiltered measurement noise which is colocated 1n frequency with the scattered
field wavefornm. This noise remnant is further augmented by specular side-wall multaipath
returns which are delayed by sbout 3 Nasec from the direct return, when the target 18
positioned at 3.5 meters from the antennas. For the near grazing angle 1ncidence on
these corregated walls, independent experiments indicate an approximate 12 dB reflection
coefficient which, if doubled to 24 dB for two-way multipath from the target, roughly
corresponds to the magnitude that 1s observed in the multipath signal component. The
additional error contribution, near the end of the time record, 1s due to the uncancelled
back-wall echo of the forward scattering from the target.

To indicate the level of fidelity of the measurement deconvolution, a comparison 1s
shown, in Figure 16, of the first 5 Nsec of the measured target response to that which 1s

computed. The RMS error 18 of the order of only a few percent. The FFT magnitude for
this time-windowed wmeasured target response is compared to the <computed spectral
magnitude in Figure 17. Note the comparison of this "clean” spectrum with that 1n
Figure 14, which is polluted by the noise and other error sources that appear outside of
the temporal support region of the scattered signal. This dramatic 1mprovement of the
measured spectrums results from both frequency and time filtering. The same type of
range-gate filtering can even be used to improve the spectral measuresents of CW vranges.
In such cases, an inverse FFT is used on stepped-frequency wmeasurements, with the
resultant time-response being range-gated around the target to eliminate clutter. This
range-gated signal is then transformed back to the frequency domain. Another couwmon

method 1n CW ranges 18 to use a pulsed CW waveform and physical range-gating of the
return signal, [6].

A second scettering measurement that illustrates the accuracy of the TESL 1s that of
broadside backscatter from a thin copper wire, of length 10 ce and 0.24 «¢m dirameter.
The measurement of the background was subtracted from that of the thip wire and canonical

sphere, as before, and the spectral estimator was formed using Eq. i8). The resultant
spectral estimator of the thin-wire scattering response to the GAMC waveforms 18 then
inverse FFTed to yield the time-series in Figure 18. Notice the small wuitipath

contribution occuring near the end of the decaying wire response (approximately 3 Nsec
from the initially large direct return) as well as the uncancelled back -wall echo of the
target's forward scattering. To <check the accuracy of the scattering measurement
deconvolution, 8 comparison is made in Figure 19 to a time-dowain computation of the wire
acattering wusing the time domain E-field integral equation approach of Sayre and
Harrington, (21}. The apparent slight difference in the fundamental natural resonance
frequency may be due to the thin -wire approximation employed in the computation, which
ignores the current path length on the finite end caps of the wire. This effective
lengthening of non-ideal thin-wires is analogous to the "end effect” 1n predicting
resonant frequencies in antenna theory, [22]. In FFTing the 10 Nsec windowed transient
responses in Figure 19, we obtain the spectral responses, whose megnitudes are compared
in Figure 20. As was the case with the sphere scattering example, the RMS error level s
only a few percent.

It should be noted that numerocus additional measurements have been made using wmuch
more complex scattering objects than just simple spheres and wires. In fact, there
exiats 8 library of metalized scale model tactical aircraft, The wmeasured escattering
responses of these are being used in studies of natursl rescnance NCTR.

CONCLUSION

After providing some historicel perspective on transient scattering measurements,
the unique free-field range at the Naval Postgraduate School was described. This
description included both the physical configuration and & comprehensive systes
measuresent wmodel, which is based upon linear system theory. Two particulary
significant attributes of the range are its free-field configuration and its employment
of a solid-state amplified step generator transmission source. Using the wscattering
measurement fros a simple target as an example, the acquisition and signal processing
methodology of the range was considered. Direct time-dowain interpretations were given
for noise and clutter pollutants of the measured signal. Special emphasis was placed
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upon both the need for highly stable pulse sources, when used with sampling measurements,
and the limitations imposed Lty the finite practical bandwidth of the range.
Additionelly, the respective effects of spectral and temporal signal filtering on
improving time and frequency domain data was considered in the example.

Although the indicated fidelity of the scattering measurements for the sphere and
wire targets were quite good when compared to computations, there is room for

isprovement. The primary role of this facility is to support natural resonance target
identification efforts. As such, there is a continuing quest to improve both the SNR
and the frequency bandwidth of the measurements. Both of these improvements translate
into better target discrimination capability. A simple way to extend the effective

bendwidth of any scale model range is to employ a succession of alternately scaled
replicas of the targets, as was done in using the NPS TESL and an alternate stepped
frequency range in the effort described in [16]. This technique will be employed ipn the
future, as needed. On the other hand, to physically increase the range bandwidth to its
full potential of I to 12 GHz (as limited by the antennas and the sampling configuration)
two new methods are planned. These methods are intended to circumvent the current
limitations in the power-bandwidth product of stable (meaning solid-state} pulse
generators, One such method is to extend the bandwidth of the amplified step-generator
by adding an additional higher frequency amplifier in parallel with the current 1 - 7 GHz
asplifier. This can be done using & power splitter and a recombiner network. A more
novel method 1is also planned for enhancing the SNR and bandwidth: wusing a broadband
random noise source as the generator and employing a coherently triggered dual-channel
sampling scheme to provide cross-correlation measurements of the transmitted and received
noise signals, This cross-correlation provides an effective dynamic matched-filtering
whose output is the smoothed impulse response of the scattering system.

A final consideration for the future improvement of the measurement fidelity is the
multipath signal interference, as was observed in the example measurements. To reduce
this effect directly requires either a significant reduction in the reflection
coefficient around the specular regions of the chamber and/or the construction of a new,
and larger, anechoic chamber. Because of the small cross-sectional dimeasions of the
chamber, the specular region is illuminated at near grazing incidence, thus providing
enhanced reflection, even from otherwise excellent absorbing material. The enlargement
of the chamber’s cross-sectional dimensions is not possible because of physical space
limitations. Also, there 1is currently no larger space available to rebuild a larger
chamber. So, alas, there remains the possibility of a software fix. Such an approach
will rely wupon an accurate estimate of the frequency behavior of the specular region
scattering matrix elements. Since the multipath angle is only a few degrees from direct
backscattering, and the target is, 8t most, only a few wavelengths in dimension (at the
highest frequency), the multipath return caen be approximated as a delayed and frequency
filtered (dispersive) version of the direct return. Such a model will permit the
extraction of some of the multipath interference. The accuracy and practicality
of such 8 technique have yet to be tested.
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EXPERIMENTS:
TEST RANGE FACILITIES
(PART 2)

D.G. Dudley
Director, Electromagnetics Laboratory
ECE, Bldg. 104
The University of Arizona
Tucson, AZ 85721
USA

SUMMARY

We give a description of the electromagnetic transient range facility (EMTRF) at the
Lawrence Livermore National Laboratory (LLNL). We discuss thc range design and show the
instrumentation for both time domain and broadband frequency domain measurements. We
give two examples of experiments on the range: Scattering from a conducting plate and
transmission through an aperture in a screen.

1. LLNL RANGE HISTORY

The electromagnetic transient range facility (EMTRF) at the Lawrence Liverrnore
National Laboratory (LLNL) was initially constructed in 1968. Since that time, the
range has been used for a variety of transient measurements and has undergone a series
of improvements and updates [1]. Many scientists, engineers, and technicians have
contributed to this range to the degree where the EMTRF can now be considered one of the
premier facilities of its kind presently operational,

The range is located indoors and consists of a conducting ground plane (8.5 m x 8.5
m). Initially the transmitting antenna was a long vertical wire fed at its base with a
coaxial transmission line located beneath the ground plane. 1In 1975, the vertical wire
was replaced by a monocone with a 377 ohm input impedance. This design was followed by
a 120 degree sector monocone (Fig., 1) with a 50 ohm input impedance offering a better
match to the pulser. This monocone was constructed with a sheet brass conical section
at the apex joined to a conical copper screen and secured to the ceiling with resis-
tively loaded wires.

Fig. 1 - Monocone antenna, prior to 1984-1985 range upgyrade.

Although the 50 ohm monocone performed adequately in many applications for nearly a
decade, there were some serious limitations, Unwanted scatteri~g occurred from the
surface of the antenna, the junction with the ceiling, and various obstacles located in
the room. These effects combined to limit seriously the signal-to-noise ratio provided
by the system. Such limitations are particularly damaging in any attempt to observe
late time returns from objects exhibiting a high degree of radiation damping.

In the period 1984 to 1986, the range was subjected to an thorough upgrade aimed at
increasing the signal-to-noise ratio and increasing the bandwidth [1). The result was a
new monocone (Fig. 2), the EMP Engineering Research Omnidirectional adiator (EMPEROR).
The EMPEROR consists of a £0lid aluminum section at the apex. T remainer, up to a
height of 3 m, is 0.050 in. rheet aluminum attached to a girded fra work. The monocone
is supported from the ceiling. At the floor is a floating ¢conne 'r allowing flex as
the ceiling expands and contracts in response to changes in the envi.onment. The design
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Fig. 2 - EMPEROR monocone antenna.

was completed by adding absorber suspended around the cone perimeter (Fig. 3). 1In
addition, a vertical wall of absorber was also placed behind the test area.

The effects of the range upgrade have been demonstrated (1] by comparing the verti-
cal electric field in the absence of any test object (Fig. 4). The field is measured
with a small vertical D-dot sensor protruding up through the ground plane. The pulser
is an Omni-Wave R-100. Both monocones provide an increase in signal by approximately a
factor of three over the long wire. The improvement of the noise level of the new
monocone over the old monocone is apparent in the plot. The effect of the absorber is
also dramatically displayed on a time scale from zero to 100 ns (Fig. 5). Note that the
quieting effect of the absorber is approximately 12 db. This improvement is very impor-
tant in any attempt to do measurements on the range where observation of small late time
phenomena is required.

2. RANGE INSTRUMENTATION

The LLNL range is capable of opgrating in either the tranient or the broadband
frequency mode. We shall describe both methods of operation.

In the transient mode (Fig. 6), a repetitive pulser drives the monocone. Typically,
the pulser delivers 1 Kv peak at a 250 Hz repetition rate. The pulse has a rise time of
less than 0.2 ns and a 3 db width of less than 0.15 ns. The spectrum is flat within + 2
db from 1 MHz to 1 gHz. The transmitted signal from the monocone is typically received
with a D-dot sensor and routed through a delay line to a sampling oscilloscope. The
scope is triggered by a tap from the pulser. On-site storage and display is provided by
an LS1-11/02 computer. Provisions are made to store the data on floppy disk for trans-
fer to a VAX-11/780, where signal processing is accomplished with the algorithm SIG [2].

Fig. 3 -~ EMPEROR monocone antenna with absorber; note test object between monocone and
vertical absorber.
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Fig. 5 - Effect of absorber on late time signal.
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In the broadband frequency mode (3] (Fig. 7}, a frequency synthesized source and a
network analyser are used to provide frequency domain data from 0.1 to 18 gHz. Data is
typically taken at 401 equi-spaced points so that the frequency resolution is 45 MHz.
Should a finer resolution be required, the total frequency range can be subdivided and
401 points taken on each interval. Again, on-site computation is provided by the LSI-11
system, with storage and handover to the VAX.

3. EXAMPLE, PLATE SCATTERING, TRANSIENT MODE

As an example of use of the LLNL range in the transient mode, we have done
exhaustive tests [4] involving scattering from a conducting rectangular plate. For the
experiments described herein, we have used the sampling oscilloscope to average 100
repetitions of the signal.

A thin rectangular aluminum plate, 30 cm high and 60 cm wide, is mounted
perpendicular to the ground plane orthogonal to the direction of propagation from the
monocone (Fig. 8). The probe measuring backscatter is positioned 1.49 m from the mono-
cone and 0.914 m from the plate. Data is taken with the probe positioned at five
different angles relative to the plate: 0,45,90,135, and 180 degrees (Fig. 9). The
distance between the probe and the center of the plate is held constant at 0.914 m.

To obtain a measure of the incident field, as described elsewhere [5] in this
lecture series, data is first taken in the absence of the plate. Next the plate is
mounted and the data-taking process repeated to obtain the total field. Since the D-dot
probe differentiates the data, both data sets are measurements of the time derivative of
the vertical .electric field. There are 512 points per record at a sampling interval of
3.906 x 10~ seconds. For each of the five aspect ang.es, the incident and total

N N
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:Dﬂihlnd , 4 object
Absorber onacons
twoud N tnteons 7 ,
N '
N !
a H
liaky WP - B512A
tynthesized » -
wurce trans.fretl, unit
0.1 - 18 GHZ

¥ : j]wa.m

)

1 HP - 8S10A

_Grie wtomatie 181 1v23 Tek 4028
..... B sl "PRS PR B o1

and
smatyser computer haed copy

Fig. 7 - Range instrumentation, broadband frequency mode.
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Fig. 9 - Measurement diagram with receiving probe at five locations.

fields are registered. Then the incident field is subtracted from the total field to
obtain the scattered field. We process each incident and scattered field using the
algorithm SIG [2]. Herein, we describe only the 45 degree case.

We begin with the raw input field (Fig. 10) and total field (Fig. 11). We produce
the scattered field as described above. Next, we filter the data at 2 MHz with a tenth
order Butterworth filter. (The frequency 2 MHz approaches the upper limits of the
pulser bandwidth.,) To eliminate low frequency noise, we highpass filter both the input
and output data at 100 MHz with a sixth order Butterworth filter. We then decimate the
data to 90 points to eliminate oversampling. We display the final input data (Fig. 12)
and its spectrum (Fig. 13) and the output data (Fig. 14) .ad its spectrum (Fig. 15)., We
have used these results to obtain estimates of the complex resonances of the plate by

o8

03

Incident Electric Field
L

1 10 13 20
Time (nseconds)

Pig. 10 - Raw input field with probe at 45 degree probe position.
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Pig. 11 - Total field at 45 degree probe position.

Incident Electric Field

-2 z A ) [ 10
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Fig. 12 - Input pulse, bandpass filtered to 0.1 to 2 gHz, decimated to 90 points.

methods diecussed elsewhere in this lecture series [(5]. Using the algorithm NLS (6], we
have attempted to identify the complex resonances of the plate fo: all five observation
angles. Here, we include only representativve results at 45 degrees (Fig. 16), We
compare results with 18th, 23rd, 25th, and 27th order models with theoretical results
obtained by Pearson [7]. Note that for the pole closest to the real axis, the identifi-
cation is accurate for all model orders. For all other poles, the identification fails.

The upgrade of the LLNL range has made a significant contribution to our efforts to
identify the principal resonance of the rectangular conducting plate, Prior to the
upgrade, our attempts had been unsuccessful, After upgrade, however, the decrease in
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Fig. 14 - Output pulse, bandpass filtered to 0.1 to 2 gHz, decimated to 90 points.

the noise has allowed later time scattering to appear in the data. This improvement is
essential because of the strong radiation damping produced by the plate.

4. EXAMPLE - APERTURE COUPLING, BROADBAND PREQUENCY MODE

As a second example, we include aperture coupling through a conducting screen
(rig. 17), a case considered by Xing and Rudson [3]. A metal wall is mounted
perpendicular to the range ground plane with a S c¢m length rectangular aperture at
bottom center. A D-dot sensor is located at d = Scm from the slot. All data taken is
with the range instrumented in the broadband frequency mode as described above. We

adbe . e o
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Fig. 15 - Output pulse spectrum.
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display (Fig. 18) the transfer function of different slots, all with the same length (5
cm), but with various heights (1,2,4,8 mm), Clearly in evidence are the primary reso-
nances of each and the first secondary resonances at approximately three times primary.
The transfer function is simply the ratjio of the response of the D-dot sensor when
located behind the aperture to the response at the aperture in the absence of the wall.
The data clearly shows the utility of the range in making broadband electromagnetic
measurements. We comment that our included data is only a sample of a large group of
exhaustivve measurements that have been taken by LLNL scientists. The interested reader
is referred to R.J. King or H.G. Hudson at LLNL for details,
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Pig. 18 - Transfer function, various apertures in metal wall, LLNL range.
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