EXPANDED YLSI MCH]TECTURES(U) PENNSYLVANIA SYHTE l.lV
WIVERS!TV PMK DEPT OF COMPUTER S
ET AL. SEP 84 PSU/CS-84-14 ARD-20890. 22-EL
UNCLASSIFIED IO.M.O-OI-C-.S!. F/G 1276

hi d

N3

etk g

BRI

(S

[-

-y ™ R U o al o W | T e - AP Y CAI I AL S A S

l4
MI -8’

.._.._o

o__

.
-

| |||||;—=.=_‘_

Vela s’ a 58] (XA [k] -c(. 4.\,\\.\.”‘“\\

LA L A

VY

0y
N)

'Y

oy
J}.’

PP
ALY

.

f\
oA

-~

OMC FILE Cupy -

&
s ™
[4

AD-A185 105

' e INCLASSIE. -
| SECUMTY CLASHFICATION OF Twil PAGY (When Dote Bntored . MASTER COPY FOR REPRODUCTION PQRPO

REPORT DOCUMENTATION PAGE oy EEAD TNFTRUCTIONS
m . GOVT ACCESSION WO,

| ___ARQ_20090,22:-EL N/A N/A

6. TITLE (and Bubtitse) §. TYPL OF REPORT & PERIOD COVERED

Technical

EXPANDED VLSI ARCHITECTURES 6. PERFORMING ORG. REPORT NUMBER

Robert Michasel Owens
Mary Jane Irwin DAAG29-83-K-0126
(9. PERFORMING ORGANITATION NAME AND ADORESS
Department of Computer Science

The Pennsylvania State University
University Park, PA 16802

AREA & WORK UNIT NUMBERS

Y. M?Md 8. CONTRACT OR GRANT NUMBER(s)

et r————————
10. PROGRAM ELEMENT. PROJECT, TASK

[76. DISTRIBUTION STATEMENT (of $his Report)

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
U. S. Army Research Office ‘ September 1984
Post Office Box 12211 13. NUMBER OF PAGES
n_m?ﬁ_‘%gmga_&:%_uc_qfw_______m_mﬁ
MONITORING AGENCY HANME & ADORESS(H! ferant from Controlling Otfice) 18. SECURITY CLASS. (of this report)
Unclassified

Approved for public release; distribution unlimited. ELECTE
SEP 2 3 1987
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, 1t dilferant from Report) Qt
NA

18a. DECLASMIFICATION/ DOWNGRADING |
SCHEOULE N

18. SUPPLEMENTARY NOTES

The view, opinions, and/or findings contained in this report are
those of the author(s) and should not be construed as an official
Department of the Army position, policy, or decision, unless so

19. XKEY WORDS (Centinue en roveree side I/ necossary and idontify by block manber)

20 ABSTRACY (Cantinw an sroveras ciid ¥ naseecary and Meatify by bleck manber)

"~ This paper describes a non von Neumann architecture which also conforms
to the requirements for VLSI implementation - expanded VLSI architectures.
In expanded VLSI machines, more than O(n) processors are used to solve O(n)
problems, where inexpensive (in terms of silicon area), fast processors have
been added to simplify the processor interconnections. Expanded architectures
are constructed by deriving algorithms which trace many of one type of operation

like addition, for regularity of dats movement. An expanded architecture for —

DD . :o:’. MT3 comow of * MOV 85 15 OBROLETE UNCLASSIFIED over

SECUMTY CLASSIFICATION OF THIS PAGE (When Date Enterdd)

L Sl

J Y
-

] _1‘ -w

o v “u e W N A USRS W) SN T T g T
N e et e o e e A i e

L5 VA a6 g% att at

o ot o 5 a' '8 a®S 28 at PO YIY oY Ty I\I}_‘mﬂmmw'\nﬂlwww

ARo 0490 -Aa-&¢

EXPANDED VLSl ARCHITECTURES

Robert Michael Owens
Mary Jane Irwin
Department of Computer Science
The Pennsylvania State University

CS-84-14 Sept. 1934

Accession For

NTIS GRA&I
September 1984 DTIC TAB

Unannounced 0
Justification

w T
DPistridbutton/

Availability Cedes
- lAvail and/er
Dist Speoial

41|

QUALITY

INgPECTED

2

This work is supported in part of the Office of Naval Research under Contract NOOO14-
80-C-0517 and the Army Research Office under Contract DAAG29-83-K-01286.

R P
v ’)f '_.'JN.I.'I__-{

SR

2

TN T Y TR, A B B 5 R Bt R b Y .Y gas BaY §at g
3 " . 0 s 2 BB h m
" [] (o) ty g4 [) P X AN AT gy by §

) o,
< .‘
()

EXPANDED VLSl ARCHITECTURES)

\J

)

8

ABSTRACT "

+ .

L]

W

(..!Y

. ol

This paper describes a non von Neumann architecture which also conforms to b,

the requirements for VLS] implementation - ezpanded VLS architectures. In expanded N

VLSI machines, more than O(n) processors are used to solve O(n) problems, where 3.

inexpensive (in terms of silicon area). fast processors have been added to simplify the ety

processor interconnections. Expanded architectures are constructed by deriving algo- o

rithms which trade many of one type of operation, like addition, for regularity of data

movement. An expanded architecture for the Discrete Fourier Transform problem is -
derived. Three operational components are described., each of which can be imple- N
mented in one (or a few) VLSI chips. Optimal measures for silicon area and processing N

time are primary concerns.

‘q"‘v B T N L S T S A S R e e e e
N A I AT S AR X P SN
ARG G VL W AR G LT S, OO

I, INTRODUCTION

" w w

Research in computer architecture in the last decade has been driven largely by

-

the motivation to overcome the "von Neumann bottleneck.” Many computer architects

-

believe that the next generation of computers will be based on non-von Neumann archi-

-

tecture capable of exploiting VLS] processors [Tre82). Some of these new architecture
designs tailor the number of processors to match the size of the problem; e.g.. O(n)

processors to solve O(n) problems. Our paper describes a VLSI architecture which has

- % -

many more than O(n) processors where processor have been added to simplify the

processor interconnection requirements. With an expanded number of processors, the

N A

f goal is to design with lots of inexpensive (in terms of silicon area), fast processors

-y

which have simple interconnection requirements.

%
s

New advances in VLSI technology have opened up new horizons for the design of

.28

fast, reliable, and efficient special-purpose processors. Since it is now possible to lay

hundreds of thousands of transistors on a single chip, eflicient algorithms for very

complex problems can be implemented in VLS]l. These designs have to satisfy several

R K XK

» -

general conditions, such as regular layout, simple control, modularity, and simple com-
.‘ munication. The main criteria used by researchers to evaluate a VLS| design are the
area of the chip and the time required to solve an instance of the problem. Theoretical
lower bounds on the area and time bave been obtained, together with new designs for
many problems which meet these bounds. However, many of these designs seem to be
difficult to implement on single chips because of the required complexity of the pro-
cessing components. For example, if we consider the VLSI design outlined in [Pre83],
" ’ n multipliers are required on a chip to compute the Discrete Fourier Transform of n

» points. Fowever, with current technology, it is not possible to lay out more than a few

" multipliers on a single chip. Hence, the large number of chips which would be needed

>
"
.]
!

;f.:n‘*;f_.""l_;.'_.'.:"'.“{f ---- O T R T PN AT R S T R T e e T e e to
» r

. to solve any but the most trivially sized problem make the design impractical. We con-
sider in this paper a VLSI design which is currently being implemented. Each process-

ing component can be implemented in: one (or a few) chips.

We introduce in the next section a sample expanded architecture. Using similar
derivation techniques, we hope to be able to construct a family of expanded, very high
speed VLSI arithmetic processors. Expanded architectures are based on algorithms
which trade many of one type of operation (like addition) for regularity of data move-
ment and speed. Since a one digit online adder is actually quite small, this trade off is
not only feasible, but from the point of view of being able to construct hardware which
is extremely fast, regular, and has minimal control, is very desirable. Expanded archi-
tectures are interesting in that fundamental data movement restrictions (like the
amount of information which can be transferred across the boundary of an area) limits
performance and nothing else. That is, even though the architecture seems to "throw
hardware” at the problem, it does achieve the Area x Time® lower bound of n® which
bolds for any VLSI processor [ChMo81). Each component of the expanded VLS] machine

can be implemented in one (or a few) chips.
THE EXPANDED VLSI ARCHITECTURE
To show the merits of our expanded architecture, we will consider the Discrete

Fourier Transform (DFT) problem. The DFT of the n element vector X is the n ele-

ment vector P which satisfies 7 = WX, where W is a nxn matrix such that W, = w¥

and w is the n'tA primitive root of unity. By reformulating the DFT equation into ei-
ther of the forms below, an expanded architecture for the DFT can be derived in a

straightforward manner.

Y=8DC [8, D, C, X]r (Prime Factors)

IRE SR PR L

LS R
AL P

. L] e G .
" 24" p' L’L{L{ P P A R A Ao

or

r
Y= 8 DG [AS, D, c.X] (Winograd)

where D,, Dy, A are diagonal arrays, 8,, 83, C,, and C; are arrays whose elements are ei-
ther -1, 0, or 1, and X and Y are arrays whose elements in row major form are the ele-
ments of X and P using Cood's algorithm with prime factors reduction [KoPa77) or

Winograd's small n algorithm [Win78]. For more background the reader is referred to

[JaB4].

The expanded DFT machine is designed by constructing components which can
compute SX (the summation component), DX (the scaling component), and X7 (the
transpose component) and which can be interconnected in an eflicient manner. The
expanded machine structure to solve the DFT using the prime factors reduction is ob-

tained by interconnecting components of these three types as indicated in Figure 1.

X - rSummation7 - | Scaling 1 - rSummation | « -
|

|
l

|
“ < | Summation | = | Scaling | = | Summation | = Y

Figure 1. Expanded DFT Machine

To aid in the construction of the VLS] hardware, each of the components should

have, where ever possible, the following properties.

1) The execution rate of each component should be constant and there-
fore independent of the mathematical and physical characteristics
of its size. As we will see later, this rate can be made quite high.

2) Each component should be constructed by interconnecting in a regu-
lar way smaller elements of a few different types. The size of the

B .y - ., R o’ - P . ~ o K g e ry -~
R I R S SR R R N O R R SR L L £ (R VAR O i s, A X RN
Ly v - » . . » .

h TN B oot

SR AP

4

.
o

i in ot Ta SLIR IR SN

x4

> 7,7 'l“l.“ ..‘."n"\'n_'.n

- v

+PLUFJFYJEME R RT ST RESAS

¢

elements should be small and independent of the size of the prob-
lem. Furthermore, given tbe formal description, the design of a
component should be straightforward.

3) The size of each component should be realistic and should satisfy VLS]
circuit density and size constraints.

4) The logical and the physical input/output characteristics of the vari-
ous components should be compatible so as to allow one com-
ponent to be connected to another in a straightforward manner.
Furthermore, the number of interconnections between components
should be realistic.

The Summation Component

The mathematical operation performed by the summation component is given by

Z = SX where

2
t"‘ S-’S-Osi<n 0=<j<]
t§ = |5 o J nll '

X= {X‘J,OS‘I.. <ﬂ'l'0‘j <ﬂ2} .
and
z:{z‘-J.OSi €ng. 0y <‘n2}

For the DFT problem, the elements of S are predefined and are either -1, 0, or 1. We
will make use of this fact by building them into the summation component itself rather
than supplying them to the component as the operation is performed. Being able to
tailor the component in this manner will decrease the complexity and, hence, the size
of the hardware needed to perform the calculation. The summation component will be
constructed by interconnecting smaller elements of only three different types (addi-
tion, subtraction, and delay), which share the same rectangular shape. The area of the
summation component is O(n,ng) and depends only on n,, n, and the size of the ele-
ments. The area of each elements depends only on the precision p of the integer

values being either added or subtracted. Each of these elements can be represented

as shown in Figure 2.

[B IR NN

-
P

- -

Cop -

These elements are interconnected as indicated in Figure 3 to form a summation

component.

S

e

.

>

where

[N

s
xh ‘lsl‘ xul
¢

znl

Xows = Xy, and

st S Zqn + X it Siy=1
Zowt = 2 = Xy it Siy = -1
Zows =2 if Siy=0

Figure 2. Summation Elements

e .p Nl ol Yal ted ol Vak tal ¢ €20 0ot ta a0 Al 1207002 2%8: Y N T N N U WO R W W wo Wy | g8y " o I~

0 0]
[] [é
’ : ’
Xos Xeg Xoa Xoo =} %.0 - 8.0 - = |_Bag-10
4 [} N
Xie X X ol .1 - 8., - el 8
’ : '
s : :
Xo,-10 < =] Boa-t (| Bar | 0 | Byaina
: s :
’ ’ ’
zo’ zl-" z‘o'l.o
Zox Z)y
Zo,s 210
Zgp

Figure 3. Summation Component

Element Sy, 0<i <ng, 0<j <n,, is either an addition element (Siy =1), a sub-
traction element (S¢y = —1), or a delay element (S;y = 0). Note that the elements
of the input array and the result array are supplied and generated in an element
skewed manner. Assuming addition takes unit time, the time required to compute SX

i!2(ﬂ| - 1)4’“'.

The principle difficulty in constructing the summation component in the manner
just outlined is having to deal with the relatively large number of inputs and outputs,
2p (n, + np), and the relatively large physical size of a high speed, full precision adder.
This difficulty can be illustrated by observing that our goal is to build DFT hardware
which can handle problems of size at least 1024 sixteen bit numbers. This does not
seem to be feasible with current or even foreseeable VLS] technology. Furthermore,
the required size of the perimeter, Op (n, + ng)), (as defined by the input/output re-

quirements of the summation component) does not fit well with its area requirements.

d‘..

s A R RIILF

Y

L T

Yy raxd

o
.

)
LR ¢

‘8

R R YR Ve Al @ Yag ta0 (2 Sabk tad 20 Caf gl ¢al Al “ub ‘ob o ¢

O(p®n,n,). This comment is based on the observation that if the perimeter require-
ment of & component exceeds the square root of the ares requirement. then either
aree or time is probably wasted. For small precision, this will nol be problem. Howev-

er, for large precision it will be.

The obvious first choice to get around this difficulty would be to share (via time
multiplexing) some smaller number of input and output interconnections and to share
a fewer number of integer adders and subtractors. However, this approach would
suffer not only the usual problem of having to map a larger problem to the available
bardware but also a given element could no longer be tailored for the calculation it
performs. Hence, we would would lose the size advantage we obtained by tailoring a
given element to a given task (addition, subtraction, and delay). We would also lose the
advantage of not having to supply the elements of S. To avoid the above problems, we
propose to use digit online processing [TrEr77. IrOw83] where each value is transmitted
in a digit serial manner. Digit online algorithms for arithmetic functions generate the
juI digit of the result after having been supplied with up to only the first (j + k)t'h digits
of the input operands, where k is a small integer corresponding to the digit online de-
lay. By using digit online arithmetic, we are able to reduce the perimeter required
from O(p (n, + ng)) to X(n, +ny) and the area required from O(p?n,ng) to O(n,;ne).
Note that neither the perimeter nor the area required depend on p. The only disadvan-
tage of using digit online arithmetic is that the digit online version of the summation
component must be clocked p times for each time the word paraliel version is clocked
once. This may not be as much of a problem as it first appears, since the digit online
version may be clocked at a faster rate than the word parallel version because its basic

elements are simpler (bit adders versus word adders) and, therefore, faster [Gur84).

We couid at this point elect either left directed digit online processing (working

from least significant digit to most significant digit) or right directed digit online pro-

* ‘-{\"-’S‘.\{'-"\-f‘--_‘-’:-.“\f:-}‘

-

.P-

“bad e - el AR
VRAR KA NP TR AU AN WAL o “alat "0 Al a d u¥ e Wy rAa S a' A el g o . Rl

bg¥ o]

NN,

-

B l.. ~ »

1] .

cessing (working from most significant digit to least significant digit), as integer addi- E
S

tion and subtraction can be done either way. If the construction of the summation o
Y

.l
component was the only consideration, we would elect Lo use left directed (convention- oy
al serial addition) as its digit online delay is lower (k = 0) and the complexity of the =
hardware necessary to perform the required calculations is smaller. However, as we -
will see, the scaling component requirements will force us to use right directed tech- ;2'
niques. Algorithms for right directed, digit online processing have been developed for -
floating point comparison exchange, addition, subtraction, and multiplication (k = 1); -
for floating point division, square root, and the trigonometric functions of sine and -
cosine (k = 3); and for fixed point logarithm and exponentiation (k = 1) [Owe B0, o
*»

OweB1]. o
N
The digit online summation element for S;; = 1 can be represented as shown in A
Figure 4. '.f:
24 -

+

Tin s Zow o
S e
R" - - RM -

\
$)

“w

Zout "

where ::.
.

Rewt = R .

Towt = I

hj = 2 + 2o — b g; where ‘,

»

gy is chosen so that (b ~1) < Ay < (b -1) and 'E_::

s
>

Zow = My, + gy

=

IS

- ‘.’ X -'.ﬁ-..\.}\-':-;'.-.':".:':-";"';':\"-"."\,'-'.';'-\'.'.J\.'.'_’.-;'.‘;'.‘.':'.'—*.':'.':\'.\-':\.'.-:'.-:"~:‘~;"‘:':-:"-:'.-;':.:'.: -’\ '.-:'~:'\'-:'-i ‘::.

b b, b al

44

i

Figure 4. Summaton Digit Onune Element

The flag \nput Ry, is used to notuy the element thet the first digit of a operand will be
supplied next. The digit values A, _, and g, are stored in digit registers in the summa-
tion element. The reset flag resets the value of g,., =0 to complete the previous

operation and resets the value of Ag = 0 to start the next operation.

The number systemn we have decided to use in our implementation is octal with a
maximally redundant digit set [Atk75] of
Dies = t-7. -8, =5, =4, -3, -2, -1, 0. 1. 2 3. 4. 5. 8, 7{ instead of the conventional digit
set D, = {0. 1,2 3, 4.5 6, 7{ However, the digits of predefined values of §; will be
restrictecd to the minumally redundant set Dy, = |-4. -3, -2, -1,0. 1, 2, 3, 4] It this
number system, three representations for 28, are 0034, 0041, and 0144, where
4 = —4. An example of the right directed, digit online addition operation used in the
summation element is shown below where X, = 3344, and Z,, = 3434, Note that this

exarnple would cause a full length ripple carry in a conventional adder.

clock 2z, 2, g5 A 2,y

R I . . 0'o0 .
1 3 3 0 ' 6 0
2 3 4 1 4 7
3 4 3 1 ' -1 0
4 4 4 1 10 0
R * . 0.0 0

The result generated by the exarnple is Z,,; = 7000, Note that there is a digit online
delay of one. The functional description of the digit online subtraction and delay ele-

ments follows from the description of the addition element.

The digit online summation elements are interconnected as indicated in Figure 5

to form a summation component.

o - T AT

- AN : R RS A A A AR SO
A AR . VLY 1_4'\.!.::.. '..11{.4.5 .A:AJA)_L_'.L'J_\L'J:‘

AR

. 8 ¥ d
.,-'l

o,

RN

LR BN N
»

« a0 e
[)

A

L

el
.

v’- RN

" . y
" o _ 12

i . . . *
!::)))
b
3 @] Bo |=*]| Bo | “| K10
" - - - - -
‘;‘l [} [4
;_":, =] R |+ &, |- <] -
:".‘ - - - - -
KN
¢ ‘ é
.l PRI
1 '
e [l)
‘v - |- &"‘l“ - sl.n,-x - hd a‘o“"‘l"
- - - - -
)) Il
N Y & 3
- Figure 5. Digit Online Summation Component
&
.
. It should be noted that the manner in which the input data is supplied to the summa-
.:: tion component has changed because of the use of digit online elements. Figure 8 illus-
nJ
‘A
o trates how the input data is now supplied to summation component.
\
i ®o.1)s (2q,)g Boahs Baak Booh-y - (sgpls (sg0)s @ooe o9 Gaoo
e Gui Bk Gyl 0 Gid Bh)s Gy B9, B9 -
!.
14
3e0%-1 Ueoe (pos (Bgoe (3p0 (sgo) -
.'
g
o
A
= Ga,-1.08 @ ~10n (B 100 *
\-’
'y
Figure 8. Digit Skewed Data
k o
.|
: _ Note, that the elements of the input array and the result array are now supplied and
t ¢
by generated in a digit skewed as well as element skewed manner.
gt
N
N The Scaling Component
O

The next component we will consider is the scaling component. The mathemati-

49 .
13 3
cal operation performed by this component is given by T = DX where

DglAJ.O“(ﬁo.0‘j<ﬂ|}N"j=>0.480 Y
X={Xu.05i <n,.0$j<n.} .
and
]

Z={Z‘-J.Osi<n°.0$j<n¢l . \

For the DFT problem, the elements along the major diagonal of D are predefined in- *
teger constants. As with the summation component, we will make use of this fact by

building them into the scaling component itself rather than supplying them to the com-

ponent as the operation is performed. This allows us to reduce the circuit complexity.

F

the number of input/output connections, and, hence, the size of the component. The -
*,

scaling component will be constructed by interconnecting only one type of element. ?
The area of the scaling component is (ng) and depends only ng and the size of the ele- :
-

ments. The area of each element depends only on the precision p of the integer values 3
being scaled. This element can be represented as shown in Figure 7. =
Xo = |DN |+ Zew N

——— .

where v

Zous = ¥ Xn

Figure 7. Scaling Element

These elements are interconnected as indicated in Figure 8 to form a scaling :
component. p
K

‘

L)

\

kY
R O B N N O N B N NN DRI

BEs ZZENREIS SAASANS

v
-

N
-

r

5
s

Xu,-a.o -] l upu,-l.n,-l) I -] zu,-lﬁ

Figure B. Scaling Component

Again because of the area difficulties discussed with respect to the summation com-
ponent, we elect to use digit online arithmetic. This eflect is even more dramatic in
the scaling component because of the size of a full precision integer multiplier. Howev-
er, while addition and subtraction can be done equally well left or right directed, multi-
plication is best done right directed. This occurs because of the following observations.
The product of two p digit integer numbers is a 2p digit integer. In left directed pro-
cessing the p digits of each input are supplied in a least significant digit to most
significant digit order. More importantly , the 2p digits of the result are generated in
a right to left order. The opposite holds for right directed arithmetic. Hence, if we use
left directed arithmetic, we would have only the least p significant digits of the resuit,
after supplying the p digits of each input. However, we are interested in the p most
significant digits of the result. Hence, we could either clock the multiplier p more
times or use a two stage multipler (the first part computes the p least significant digits
which are. unfortunately, then discarded; the second part computes the p most
significant digits). Two stages must be used so that we may keep up with the flow of in-
put digits as they are supplied to the component. Neither of these two options is very

palatable. Eowever for right directed arithmetic, the p most significant digits of the

v

PO S

RS PRI T A AR F A
SRV RCAL RN, P 3, LA LN

L TR ati pYEa pT R R g o 0 B g 8 R Rt g e g b g g (0 @ a8 0 a8 Uk 2@ Al Taf a® vat S0 Tgp ab et <o ‘A cad frl Vad <a® tak ial vat ‘al tsbocal st g0, ave 4Va g'a &Y,

O
av_ W,
15 "
"
result will be generated, after supplying the p digits of each input. These are the very oY
4
s
digits we want. Hence. we have elected to use right directed arithmetic despite the !
o
modest increase in hardware costs. b
¢
Each of the digit online scaling elements can be represented as shown in Figure 9. Z
2 - D(y) 0 Zew LY
o * Jeut
* * ;o
/
where :
hi =yze + 26 — b gou ;
.
A
Pows is chosen such that —(b-1) < h; < (b-1) and :
Zout = hy_y + g
¢
Figure 9. Scaling Digit Online Element i
N
The fiag input Ry, is used to notify the element that the first digit of an operand will be ;..
h
supplied next. The single digit constant y and the digit value A;_, are stored in digit o
registers in the scaling element. The reset flag resets the value A¢ = O to start the next =
A
operation. N
N
The digit online scaling elements are interconnected as indicated in Figure 10 to L]
form a scaling component. s
3
b
od
.
-~
‘.‘
~4
=

: " \ . . . R - . . . o>,
A ; \ N - e W ~ LN,V N - W
ROUCAOCTOGO0WN A b \ b Oy NPT L AN N PR A RN AN AL

‘o i B B AN BN A Sav e N0 gl Nt ADALS L) &

18

o|e| Dl | = Do) |- - < Dol |-
*] [} L [] '}

ol- L - - 1 - - - J :

ol - 1 - - 1l - T |

-] Didse - D) |+ o o+ D) ||~
] 4 4 4]

- - L - - l - - - ol]

U - 1 - - 1 - e o et

o] o [Dl crmgd) | = | Dmprmped) |+ o | Dl(dayetmyetlyen) |+ | -

- ; - - - -
? 4] L]

- - 1 - - L - - - o []

D 1 - 1 _ 2

Figure 10. Digit Online Scaling Component

Note that each element holds one digit of the appropriate integer operand D, ;. Thus,
each element contains a digit multiplier to form y 2. as well as a digit online adder.
Like the summation component, it should be noted that the manner in which the input
data is supplied to the scaling component has changed because of the use of digit on-
line elements. However, the input/output requirements of the two are identical
Hence, the output of a summation component can be connected (with respect to logi-

cal considerations) directly to the input of a scaling component and vice versa.

The Transpose Component

The last major component we will consider is the transpose component. Since
this component performs no arithmetic operations on the data supplied to it, it is in
some ways the simplest. However, since its data movement requirements are the most
general, it is in other ways the most complicated. The mathematical operation per-

formed by this component is Z = X', where

. Y A AR YR RN Y U T AT TS et Sy PRI PR e) P TS I) R O SR NN, ‘
L O 0 (R N R T T B O T A TR S X, A LR T T SR /S W O S

R

T WU I WL U W WU TOOCORR T R U . PR PR PR K aeey 14's a8 0" Y1 ;.-~ At Atatale Aty e Ua Yo A Sl b Ty AL YAt tat el Rl 1ol Y
4t
17

and

z='lz‘4.°‘i <‘n°.05j <n,

The transpose component will be constructed by interconnecting elements of only one
type (storage) which have a rectangular shape. The area of the transpose component
is O(n,n,) and depends only on ny, ne. and the size of the storage element. The area of
the element depends on the precision p of the integer value being stored. Each of

these elements can be represented as shown in Figure 11.

Yin
+
Xm - T - Z'u
* ¢
Ch zoul
where
Xeo fCGn=0

Zoa = Yin oOtherwise

Figure 11. Storage Element

These elements are interconnected as indicated in Figure 12 to form a transpose

component.

[L]
¢ L o
Yoa Y T T | R . e |° | g0
') ¢ | r
c -]~ - - 4 - - - - d '
[L) é
a e T Yo e L X! . o NI DA I W
. ! . | . |
c o) - - - - R I |
¢ ¢ L]
p 4 - r - [- -
13 Rpcie Tapes Kpewe 0t Saga 1my-1 Bon -1
' | v v
c P . 1 - - s - - - - d '
4 L} ¢
[} ¢ L)
5,10 2,00 e foo
Lp-1s Bag-tt e fas
La,-18 2.t a Toe
&,-13) e s

Figure 12. Transpose Component

By transferring X into the transpose component with (, = 0 and transferring Z out
with Cg, # 0, the transpose can be performed. Note that elements of input array and
the result array are not supplied and generated in an element skewed manner. Hence,
the input/output characteristics of this component are not compatible with the other
two components. This problem can be corrected by increasing the hardware area and

cost, but a more desirable solution to this problem is needed.
CONCLUSIONS

An expanded VLS architecture for solving the DFT was presented. Expanded ar-

AT G Py 0 e Ty Ca®a T O oV al) 3
A IV A v Uity LYY A I IR TAR AT

............

Tﬁ
chitectures are constructed by deriving algorithms which trade many of one type of
operation, like addition, for regularity of data movement. Three operational com-
ponents were described, 8 summetion component, a scaling component, and a
transform component, each of which can be implemented in one (or a few) VLS] chips.
Using the same expansion techniques, we are presently investigating other problem
domains for which optimal expanded architectures can be derived. The basic com-
ponents may have to be modified and augmented. However the goals of regularity of

data movement, speed, and being able to implement each component in one (or a few)

chips remain the same.

BIBLIOGRAPHY

Atk75 Atkins, D., "An Introduction to the Role of Redundancy in Computer Arithmetic,”
Computer, Vol. 8, No. 8, pp. 74-76, June 1975.

BoBr83 Bowen, B. A. and W. R. Brown, VLS/ Systems Design for Digital Signal Process-
ing. Volume 1, Prentice Hall, 1982.

ChMoB81 Chazelle, B. and L. Monier, “A Model of Computation for VLS! with Related Com-
plexity Results,” Procesding of the IXA Annual Symposium on Theory of
Computing, ACM, pp. 318-325, May 1981.

GurB4 Gurney, D.. "Investigation of Some Processors with Digit Serial 1/0,” M.S. Paper
in progress. Department of Computer Science, Penn State University, August
1984.

IrOw83 Irwin, M. J. and R. M. Owens, “Fully Digit Online Networks," /EEE Transactions
on Computers Vol. C-32, No. 4, pp. 402-408, April 1983.

JaB4 Jala, J., "High-speed VLS] Networks for Computing the Discrete Fourier
Transform.” Proceedings of the 1984 Conference on Advanced Research in
VLSI. pp. 11- 20, MIT, Boston, MA, January 1984.

KoPa77 Kolba. D. P. and 1. W. Parks, "A Prime Factor FFT Algorithm using Figh-speed
Convolution,” /EEE Transactions on Acoustic and Speech Signal Prozessing.
ASSP-25, pp. 281-294, 1977.

Pre83 Preparata, F. P, "A Mesh-connected Area-time Optimal VLS] Multiplier of Large

Integers.” JEEE Transactions on Computers, Vol C-32, No. 2, pp. 194-198,
February 1983

T ARARALLY

-

VP

5 “w

a
T e)

"’l"f‘d"f"’

4 G e e e

N R

Cha e

P P . .
WA AN A

AN AT AL AT AT L P o Vo S oy e gy TR -_\ '\..r,\ - _~.‘!\‘\\ - ._';."-.'._'. e -._‘ e ‘-,.‘.' R
N A - . {]

OweB0 Owens, R M., "Digit On-Line Algorithms for Pipeline Architectures.” Ph.D.
Thesis, Department of Computer Science Technical Report CS-80-21, Penn
State University, August 1980.

OweB1 Owens, R. M., "Compound Algorithms for Digit Online Arithmetic.” Proceedings
of the Fifth Symposium on Compuler Arithmetic, Ann Arbor, Ml, pp. 84-71,
May 1881.

Tre82 Treleaven, P. C., "VLSI Processor Architectures,” Computer. June 1982.

TrEr?? Trevedi, K. S. and M. D. Ercegovac, “On-line Algorithms for Division and Multipli-
cation,” JEEE Transactions on Computers, Vol. C-26. No. 7, pp. 881-887, July
1977.

Win78 Winograd, S., "On Computing the Discrete Fourier Transform,” Mathematics of
Computation, Vol. 32, pp. 175-199, 1978.

s Wiy 19y WG 1Ry N0, 10, TR,

AR AR

a_R_v_3_R

_“'

XX SRPIRINE |

S

S e dn LI

v e
v s

Ry

I, »’ I..

L R
z .

b A

A4 A N Y

l-
&
&
~
3
U4
o
I

P I L LA AT AR I T T Ry e N Lt LN L A LI R R U N R o O LT LR Lo o L o o U O O O Y T D P O O O Y Y O Y Y X O O T X

END
DI

hina, G *' - w v b 4 . N @ o R h J -9 A J h 4
,. '.o;: "'.‘,:.g,g" L < :
l‘ a‘ n‘.u

o. .' Ny l).‘

e

T e e m
- o bt

e s

T Pl

SEEE——
N

- -

- - - y

- e
<’

