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ILLUSTRATIVE EXAMPLES OF PRINCIPAL COMPONENT ANALYSIS
USING GENSTAT/PCP

W. T. Federer, Z. D. Feng and C. E. McCulloch

BU-918-M November 1986

ABSTRACT

In order to provide a deeper understanding of the

workings of principal components, four data sets were

constructed by taking linear combinations of values of

two uncorrelated variables to form the X-variates for

the principal components analysis. The examples

highlight some of the properties and limitations of

principal component analysis.

This is part of a continuing project that produces

annotated computer output for principal components

analysis. The complete project will involve processing.

four examples on SAS/PRINCOMP, BMDP/4M, SPSS-X/FACTOR,

GENSTAT / PCP, and SYSTAT / FACTOR. We show here the

results from GENSTAT/PCP, Version 4.04.

* Supported by the U.S. Army Research Office through the Mathematical

Sciences Institute of Cornell University.



1. INTRODUCTION

Principal components is a form of multivariate statistical

analysis and is one method of studying the correlation or

covariance structure in a set of measurements on m variables for

n observations. For example, a data set may consist of n = 260

samples and m = 15 different fatty acid variables. It may be

advantageous to study the structure of the 15 fatty acid

variables since some or all of the variables may be measuring the

same response. One simple method of studying the correlation

structure is to compute the m(m-l)/2 pairwise correlations and

note which correlations are close to unity. When a group of

variables are all highly inter-correlated, one may be selected

for use and the others discarded or the sum of all the variables

may be used. When the structure is more complex, the method of

principal components analysis (PCA) becomes useful.

In order to use and interpret a principal components analysis

there needs to be some practical meaning associated with the

various principal components. In Section 2 we describe the basic

features of principal components and in Section 3 we examine some

constructed examples using GENSTAT/PCP to illustrate the

interpretations that are possible. In Section 4 we summarize our

results.

2. BASIC FEATURES OF PRINCIPAL COMPONENT ANALYSIS

PCA can be performed on either the variances and covariances

among the m variables or their correlations. one should always

2
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check which is being used in a particular computer package

program. GENSTAT can use either the X'X (where Xi is the

deviation of original observation from its mean), i.e. variance-

covariance multiplied by degree of freedom, or the variances and

covariances or the correlations but uses the correlations by

default. First we will consider analyses using the matrix of

variances and covariances. A PCA generates m new variables, the

principal components (PCs), by forming linear combinations of the

original variables, X = (X, X2,..., Xm), as follows:

PC1 = b11 X1 + b1 2X2 +.. .+bmXm = Xb 1

PC2 = b2 1 X1 + b2 2 X2 +.. .+ b 2mXm =

PC = b X + b X +.b Xm = Xb

PCm = bmlX1 + bm2X2 bmmXm = Xbm

where Xi have mean zero. In matrix notation,

P = (PCIPC2 1... ,PCm) = X (blpb 2 ,...,b) = XB,

and conversely X = P B- 1 .

The rationale in the selection of the coefficients, bij , that

define the linear combinations that are the PCs  is to try to

capture as much of the variation in the original variables with

as few PCs as possible. Since the variance of a linear

combination of the Xs can be made arbitrarily large by selecting -

very large coefficients, the bij are constrained by convention so

that the sum of squares of the coefficients for any PC is unity:

IT b 1
)=1 ij

3

j~-j = 1 = 1,2,OZ * a.. . .. .... N,



Under this constraint, the blj in PC1 are chosen so that PC1 has

maximal variance.
2

If we denote the variance of Xi by s? and if we define the
1 1

totl vriaceas = m 2
total variance, as T = , then the proportion of thei=l

variance in the original variables that is captured in PC1 can be

quantified as var(PCl)/T. In selecting the coefficients for PC2,

they are further constrained by the requirement that PC2 be

uncorrelated with PC1  . Subject to this constraint and the

constraint that the squared coefficients sum to one, the

coefficients b2j are selected so as to maximize var(PC2 ).

Further coefficients and PCs are selected in a similar manner, by

requiring that a PC be uncorrelated with all PCs previously

selected and then selecting the coefficients to maximize

variance. In this manner, all the PCs are constructed so that

they are uncorrelated and so that the first few PCs capture as

much variance as possible. The coefficients also have the

following interpretation which helps to relate the PCs back to

ththe original variables. The correlation between the i PC and

the jth variable is

b. Vvar(PC.)/s j

After all m PCs have been constructed, the following identity

holds:

var(PCl) + var(PC2) +...+ var(PCm) = T = i S
(P1=1 1

This equation has the interpretation that the PCs divide up the

4



total variance of the Xs completely. It may happen that one or

more of the last few PCs have variance zero. In such a case, all

the variation in the data can be captured by fewer than m

variables. Actually, a much stronger result is also true; the

PCs can also be used to reproduce the actual values of the Xs,

not just their variance. We will demonstrate this more

explicitly later.

The above properties of PCA are related to a matrix analysis

of the variance-covariance matrix of the Xs, S x .  Let D be a

diagonal matrix with entries being the eigenvalues, Ni , of Sx

arranged in order from largest to smallest. Then the following

*properties hold:

(i) Xi = var(PC,)

(ii) trace(S ) = Im 2 T m .T= X = var(PCi)= i=1 Si =  i = ilarP)

(iii) corr(PCi,Xj) = ij i
sj

(iv) Sx = B'DB

The statements made above are for the case when the analysis

is performed on the variance-covariance matrix of the Xs. The

correlation matrix could also be used, which is equivalent to

performing a PCA on the variance-covariance matrix of the

standardized variables,
xi -

g i =

PCA using the correlation martrix is different in these respects:

5



(i) The total "variance" is just the number of variables, m.

(ii) The correlation between PCi and Xj is given by

b ij.var(PCi) = b ij . Thus PCi is most highly correlated

with the Xj having the largest coefficient in PCi in

absolute value

The experimenter must choose whether to use standardized (PCA on

a correlation matrix) or unstandardized coefficients (PCA on a

variance-covariance matrix). The latter is used when the

variables are measured on a comparable basis. This usually means

that the variables must be in the same units and have roughly

comparable variances. If the variables are measured in different

units then the analysis will usually be performed on the

standardized scale, otherwise the analysis may only reflect the

different scales of measurement. For example, if a number of fat-

2ty acid analyses are made, but the variances, si, and means,

are obtained on different bases and by different methods, then

standardized variables could be used (PCA on the correlation

matrix). The situation for using X'X is the same as the one for

using variance-covariance matrix. To illustrate some of the

above ideas, a number of examples have been constructed and these

are described in Section 3. In each case, two variables, Z1 and

Z, which are uncorrelated, are used to construct Xi . Thus, all

the variance can be captured with two variables and hence only

two of the PCs will have nonzero variances. In matrix analysis

terms, only two eigenvalues will be nonzero. An important thing

to note is that in general, PCA will not recover the original

6
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variables Z and Z2. Both standardized and nonstandardized

computations will be made. In Example 3, PCA3, using X'X is also

illustrated.

3. EXAMPLES

Throughout the examples we will use the variables Z1 and Z2

(with n = 11) from which we will construct X1,X2 ,...,Xm . We will

perform PCA on the Xs. Thus, in our constructed examples, there

will only really be two underlying variables.

Values of Z1 and Z2

Z -5 -4 -3 -2 -1 0 1 2 3 4 5

Z2  15 6 -1 -6 -9 -10 -9 -6 -1 6 15

Notice that Z1 exhibits a linear trend through the 11 samples and

Z exhibits a quadratic trend. They are also chosen to have mean

zero and be uncorrelated. Z and Z have the following variance-

covariance matrix (a variance-covariance matrix has the variance
for the ith variable in the ith row and ith column and the

row anth olm n th
covariance between the ith variable and the jth variable in the ith

row and jth column).

Variance-covariance matrix of Z and Z

[i 85.8]

Thus the variance of Z1 is 11 and the covariance between Z and Z2

is zero. Also the total variance is 11 + 85.8 = 96.8.

7



Example 1: In this first example we analyze Z1 and Z2 as if they

were the data. If PCA is performed on the variance-covariance

matrix then the GENSTAT output is as follows (GENSTAT control

language for this example and all subsequent examples is in the

appendix and the boldface print was typed on computer output to

explain the calculation performed):

PCAI: USING VARIANCE-COVARIANCE MATRIX (UNSTANDARDIZED VARIABLES)
PRINCIPAL COMPONENT ANALYSIS

X1 X2

-5 15
-4 6
-3 -1
-2 -6
-1 -9
0 -10
1 -9
2 -6
3 -1
4 6
5 15

11 OBSERVATIONS
2 VARIABLES

Covariances and Means Matrices

S

X1 11.0000 = S = S1 Note: S S

X2 -0.0000 = S2i 85.8000 = S22 = 2

MEAN -0.0000 = Z -0.0000 = Z- 1.1000 1.1x10 11 = number of
n-i n-1

(n/n-i) observations
1 2 3

8
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PRINCIPAL COMPONENTS ANALYSIS

LATENT ROOTS

2 1 XS2 2
1 2 2

85.80000 11.00000

PERCENTAGE VARIANCE

1 2
88.6364 11.3636

LATENT %ECTORS (LOADINGS)

1 (b1 ) 2 (b 2 )

Xl b = -0.0000 b2 1 = 1.0000

X2 b = 1.0000 b22 = 0.0000

TRACE = 96.8000 = Iinl ) = T = 85.8 + 11.0 = 96.8

SIGNIFICANCE TESTS FOR EQUALITY OF REMAINING ROOTS

The following test comes from Lawley, D.N. and Maxwell, A.E.
"Factor Analysis as a Statistical Method" 2nd edition (1971).

DF = 2(m-k+2)(m-k-l) for k=0, the X statistics is computed

by the formula:

[n-l-(1)(2p+l+-)][-logeSI + p loge ( t r S/p)]

where n is the number of observations, p is the number of variables,

S is variance and covariance matrix. The formula for X2 statistics
are different when 0<k<p-1 or when the correlation matrix is used.
The interested readers may refer to p. 20-22 of Lawley and Maxwell.

9
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NUMBERS OF UNITS AND VARIATES DIFFER BY LESS THAN 50 SO CHI-SQUARED
APPROXIMATIONS ARE POOR (n - m = 11 - 2 = 9 < 50)

NO. OF ROOTS EXCLUDED(k) CHI SQ DF

0 8.1818 2 = 1(2-0+2)(2-0-1)
= 1 2=[11-1-(-!)(2-2+1 2)] [-lOge(85.8-11.0)+21Oge(96.--8) ]

PRINCIPAL COMPONENT SCORES 8.1818 > K2 =599 for k =0 reject
2, .05

H. that all Xi's are equal.

1(PC1 ) 2(PC2 )
PC = b Z I + b i2Z 2

1 15.0000 -5.0000 = 1(-5) + 0(15) = -5
2 6.0000 -4.0000
3 -1.0000 -3.0000
4 -6.0000 -2.0000
5 -9.0000 -1.0000
6 -10.0000 -0.0000
7 -9.0000 1.0000
8 -6.0000 2.0000
9 -1.0000 3.0000

10 6.0000 4.0000
11 15.0000 5.0000

RESIDUALS
A

(Residuals are distances between fitted X and X. A large
residual indicates an outlier, or the residuals can
indicate a systematic pattern in the remaining dimensions.
In our example, these residuals are all zero within
rounding error.)

1

1 8.25906E -7
2 4.76837E -7
3 0.OOOOOE 0
4 0.O0000E 0
5 0.OOOOOE 0
6 0.OOOOOE 0
7 3.37175E -7
8 4.12953E -7
9 0.OOOOOE 0

10 0.OOOOOE 0
11 0.OOOOOE 0

10



We can interpret the results as follows:

1) The first principal component is

PC 1 - 0-X 1 + 1X 2 = X2

2) PC2 = 1-X 1 + 0-X2 = X1

3) Var(PC1) eigenvalue = 85.8 = Var(X 2 )

4) Var(PC2 ) = eigenvalue = 11.0 = Var(X1 )

The PCs will be the same as the Xs whenever the Xs are

uncorrelated. Since X2 has the larger variance, it becomes the

first principal component.

If PCA is performed on the correlation matrix we get different

results.

Correlation Matrix of Z1 and Z2

(0 0)
A correlation matrix always has unities along its diagonal and

the correlation between the ith variable and the j th variable in

the ith row and jth column. PCA in GENSTAT would yield the

following output:

11



PCA1B: USING CORRELATION MATRIX (STANDARDIZED VARIABLES)
PRINCIPAL COMPONENT ANALYSIS

X1 X2

-5 15
-4 6
-3 -1
-2 -6
-1 -9
0 -10
1 -9
2 -6
3 -1
4 6
5 15

PRINCIPAL COMPONENTS ANALYSIS

LATENT ROOTS .

1IXl )  2I(X2
2()

1.000000 1.000000

PERCENTAGE VARIANCE

1 2
50.0000 50.0000 .

LATENT VECTORS(LOADINGS) = bi

1 2

Xl bll = 0.6925 b21 = 0.7214

X2 b = -0.7214 b22 - 0.6925

TRACE = 2.0000 - I1 A M= 2

12TRACE-~~ 2 %00= % u



*** SIGNIFICANCE TESTS FOR EQUALITY OF REMAINING ROOTS ***

NUMBERS OF UNITS AND VARIATES DIFFER BY LESS THAN 50 SO CHI-SQUARED

APPROXIMATIONS ARE POOR

NO. OF ROOTS EXCLUDED CHI SQ DF This is true since X 1 = = .

0 0.0000 2 2 = 0.0

***** PRINCIPAL COMPONENT SCORES *****

PC b il zl/S1  bi2 Z2/S2

1 2

1 -2.21223 0.03398 =.7214(-5) + .6925(15)
3.316625 9.262829

2 -1.30251 -0.42141
3 -0.54855 -0.72727
4 0.04965 -0.88360
5 0.49209 -0.89040
6 0.77878 -0.74766
7 0.90971 -0.45539
8 0.88489 -0.01359
9 0.70431 0.57774

10 0.36797 1.31861
11 -0.12412 2.20900

***** RESIDUALS *****

1

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

10 0
11 0

13



bij (correlations and scaled means)

Xl r = 1.0000E 0

X2 r2 1 - -1.4802E-14 r2 2 = 1.0000E 0

MEAN X= -5.6843E-15 2 2  -8.5265E-15 n = 1.1000E 0

n-1 n-i n-

1 2 3

Example 2: Let X1 = Z1 X2 =2Z1 and X3 = Z2 . If the analysis is

performed on the variance-covariance matrix using GENSTAT the

results are:

PCA2: USING VARIANCE-COVARIANCE MATRIX (UNSTANDARDIZED VARIABLES)
PRINCIPAL COMPONENT ANALYSIS

XI X2 X3

-5 -10 15
-4 -8 6
-3 -6 -1
-2 -4 -6
-1 -2 -9
0 0 -10
1 2 -9
2 4 -6
3 6 -1
4 8 6
5 10 15

COVARIANCES
S

X1 11.0000
X2 22.0000 44.0000
X3 -0.0000 -0.0000 85.8000
MEAN -0.0000 -0.0000 -0.0000 1.1000 ',.

1 2 3 4

14
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PRINCIPAL COMPONENTS ANALYSIS

LATENT ROOTS (Xi)

1 2 3
85.80000 55.00000 -0.00000

PERCENTAGE VARIANCE

1 2 3
60.9375 39.0625 -0.0000

LATENT VECTORS(LOADINGS) = bi

NOTE: Negative coefficient for PC2

1 3

X1 -0.0000 -0.4472 0.8944
X2 -0.0000 -0.8944 -0.4472
X3 1.0000 -0.0000 -0.0000

TRACE = 140.8000

SIGNIFICANCE TESTS FOR EQUALITY OF REMAINING ROOTS

NUMBERS OF UNITS AND VARIATES DIFFER BY LESS THAN 50 CHI-SQUARED
APPROXIMATIONS ARE POOR

For k>l, test the hypothesis that
NO. OF ROOTS EXCLUDED(k) CHI SQ DF the M-k smallest latent roots are

0 26.9240 5 equal.
1 20.9683 2 Here, test that X 2 and X are

2 3
equal, 20.9683>2 .05 Thus

x2 and X3 are not equal.

15
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NOTE: CHIi SQ Test is not
SPRINCIPAL COMPONENT SCORES *** reliable when at least one of

latent roots is zero

12 3

1 15.0000 11.1803 -0.0000
2 6.0000 8.9443 -0.0000
3 -1.0000 6.7082 0.0000
4 -6.0000 4.4721 0.0000
5 -9.0000 2.2361 0.0000
6 -10.0000 0.0000 0.0000
7 -9.0000 -2.2361 0.0000
8 -6.0000 -4.4721 0.0000
9 -1.0000 -6.7082 0.0000

10 6.0000 -8.9443 -0.0000
11 15.0000 -11.1803 -0.0000

4-11.1803 =-.4472(5) -. 894(10) + 0(15)
***RESIDUALS **

1 0.00173016
2 0.00138413
3 0.00103810
4 0.00069206
5 0.00034603
6 0.00000000
7 0.00034603
8 0.00069206
9 0.00103810

10 0.00138413
11 0.00173016

16



Analyzing the correlation matrix gives the following results:

PCA2B: USING CORRELATION MATRIX (STANDARDIZED VARIABLES)
PRINCIPAL COMPONENT ANALYSIS

Xl X2 X3

-5 -10 15
-4 -8 6
-3 -6 -1
-2 -4 -6
-1 -2 -9
0 0 -10
1 2 -9
2 4 -6
3 6 -1
4 8 6
5 10 15

PRINCIPAL COMPONENTS ANALYSIS

LATENT ROOTS (Xi)

1 2 3
2.000000 1.000000 -0.000000

PERCENTAGE VARIANCE

1 2 3
66.6667 33.3333 -0.0000

LATENT VECTORS(LOADINGS) = ti

1 2 3

Xl -0.7071 0.0000 0.7071
X2 -0.7071 0.0000 -0.7071
X3 0.0000 1.0000 0.0000

* TRACE = 3.0000

*** SIGNIFICANCE TESTS FOR EQUALITY OF REMAINING ROOTS ***

17



NUMBERS OF UNITS AND VARIATES DIFFER BY LESS THAN 50 SO CHI-SQUARED

APPROXIMATIONS ARE POOR

NO. OF ROOTS EXCLUDED(k) CHI SQ DF

0 0.0000 5 - '1(3+2)(3-1) 5

1 0.0000 2

***** PRINCIPAL COMPONENT SCORES ***

1 ,PC 1  2 PC2  3 PC3

1 2.13201 1.61938 0.00000
2 1.70561 0.64775 0.00000
3 1.27920 -0.10796 -0.00000
4 0.85280 -0.64775 -0.00000
5 0.42640 -0.97163 -0.00000
6 -0.00000 -1.07958 -0.00000
7 -0.42640 -0.97163 -0.00000
8 -0.85280 -0.64775 -0.00000
9 -1.27920 -0.10796 -0.00000

10 -1.70561 0.64775 0.00000
11 -2.13201 1.61938 0.00000

-2.13201 - -0.707107&X3- OL0 I X S 1  X.7 1 7 2 S 2  + 0 S 3

- -. 707107 f 770 0-0 + 0 [fi'2"2-2o
- .7070L3.3166251 -70 16.633251 09.2628291

***** RESIDUALS *****

1

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0
10 0
11 0

18
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S (Correlations)

Xl 1.0000
X2 1.0000 1.0000
X3 -0.0000 -0.0000 1.0000
MEAN -0.0000 -0.0000 -0.0000 1.1000

1 2 3 4

There are several items to note in these analyses:

i) There are only two nonzero eigenvalues since given X1 and X3,

X2 is computed from X1 .

ii) X3 is its own principal component since it is uncorrelated with

all the other variables.

iii) The sum of the eigenvalues is the sum of the variances, i.e.,

11 + 44 + 85.8 - 140.8
and

1+1+1=3.

iv) For the variance-covariance analysis, the ratio of the

coefficients of X1 and X2 in PC2 is the same as the ratio of

the variables themselves (since X2 = 2X1).

v) Since there are only two nonzero eigenvalues, only two of

the PCs have nonzero variances (are nonconstant).

vi) The coefficients help to relate the variables and the PCs. In

the variance-covariance analysis,

(coefficient of X1 in PC2)lvar(PC2 )
Corr(PC2,X1 ) =

vfvar(X 1)

212

8 1
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In the correlation analysis,

Corr(PCl,Xl) =bllVW1

- -.707107v2

--1.

Thus, in both these cases, the variable is perfectly correlated

with the PC.

vii) The Xs can be reconstructed exactly from the PCs with nonzero

eigenvalues. For example, in the variance-covariance analysis,

X3 is clearly given by PC1 . X and X2 can be recovered
1[

via the formulas

x!
= PCc2 /v

X 2= 2P 1V
x2

As a numerical example,

-5 = -11.180/%/g

Or more generally,

X = PC B-

where B is matrix consisting of bi's as columns.

Example 3: For Example 3 we use X1 = Z1, X2 = 2(Z1+5), X3 = 3(Z 1

+5) and X4 = Z2. Thus Xl, X2 and X3 are all created from ZI .

PCA3 and PCA3B follow the procedural calls for PCA1 and PCA2 (see

20
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pages 37 and 38). For examples PCA3C and PCA3D, use the proce-

dural call on pages 39 and 40. Note that this gives the correct

means and not the scaled means. The analyses for the variance-

covariance matrix (unstandardized analysis), correlation matrix

(standardized analysis), X'X matrix and correlation matrix based

on X'X matrix are given below:

PCA3: USING VARIANCE-COVARIANCE MATRIX (UNSTANDARDIZED VARIABLES)
PRINCIPAL COMPONENT ANALYSIS

X1 X2 X3 X4

-5 0 0 15
-4 2 3 6
-3 4 6 -1
-2 6 9 -6
-1 8 12 -9
0 10 15 -10
1 12 18 -9
2 14 21 -6
3 16 24 -1
4 18 27 6
5 20 30 15

11 OBSERVATIONS

4 VARIABLES

S (Covariances and scaled mean matrix)

X1 11.0000
X2 22.0000 44.0000
X3 33.0000 66.0000 99.0000
X4 -0.0000 -0.0000 -0.0000 85.8000
MEAN -0.0000 1.0000 1.5000 -0.0000 1.1000

NOTE: These are scaled means (Xi/(n-1)).

1 2 3 4 5
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PRINCIPAL COMPONENTS ANALYSIS

LATENT ROOTS

1 2 3 4
154.0000 85.8000 -0.0000 -0.0000

PERCENTAGE VARIANCE

1 2 3 4
64.2202 35.7798 -0.0000 -0.0000

LATENT VECTORS(LOADINGS) =

1 - -2 3 -3 4 -4

X1 -0.2673 0.0000 0.9514 -0.1531
X2 -0.5345 0.0000 -0.2786 -0.7979
X3 -0.8018 0.0000 -0.1314 0.5830
X4 0.0000 1.0000 0.0000 0.0000

TRACE = 239.8000

SIGNIFICANCE TESTS FOR EQUALITY OF REMAINING ROOTS

NUMBERS OF UNITS AND VARIATES DIFFER BY LESS THAN 50 SO CHI-SQUARED
APPROXIMATIONS ARE POOR

NO. OF ROOTS EXCLUDED(k) CHI SQ DF
1

0 57.9493 9 = .(4+2) (4-1) = 9
1 43.23078 5
2 43.3078 2
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PRINCIPAL COMPONENT SCORES

1 - PC 1  2 = PC2  3 = PC 3  4 = PC4

1 3.0735 15.0000 -4.2812 0.6890
2 -0.6682 6.0000 -4.2812 0.6890
3 -4.4098 -1.0000 -4.2812 0.6890
4 -8.1515 -6.0000 -4.2812 0.6890
5 -11.8931 -9.0000 -4.2812 0.6890
6 -15.6348 -10.0000 -4.2812 0.6890
7 -19.3764 -9.0000 -4.2812 0.6890
8 -23.1181 -6.0000 -4.2812 0.6890
9 -26.8598 -1.0000 -4.2812 0.6890

10 -30.6014 6.0000 -4.2812 0.6890
11 -34.3431 15.0000 -4.2812 0.6890

***** RESIDUALS *****

1

1 0.00000000
2 0.00000000
3 0.00000000
4 0.00083756
5 0.00149866
6 0.00198681
7 0.00240951
8 0.00279660
9 0.00316119

10 0.00351030
11 0.00384814

PCA3B: USING CORRELATION MATRIX (STANDARDIZED VARIABLES)
PRINCIPAL COMPONENT ANALYSIS

Xl X2 X3 X4

-5 0 0 15
-4 2 3 6
-3 4 6 -1
-2 6 9 -6
-1 8 12 -9
0 10 15 -10
1 12 18 -9
2 14 21 -6
3 16 24 -1
4 18 27 6
5 20 30 15 23 -



PRINCIPAL COMPONENTS ANALYSIS

LATENT ROOTS = X.1

1 2 3 4
3.000000 1.000000 0.000000 -0.000000

PERCENTAGE VARIANCE

1 2 3 4
75.0000 25.0000 0.0000 -0.0000

LATENT VECTORS(LOADINGS) = b i

1 2 3 4

X1 -0.5774 0.0000 0.4082 0.7071
X2 -0.5774 0.0000 0.4082 -0.7071
X3 -0.5774 0.0000 -0.8165 0.0000
X4 0.0000 1.0000 -0.0000 0.0000

TRACE = 4.0000

SIGNIFICANCE TESTS FOR EQUALITY OF REMAINING ROOTS

NUMBERS OF UNITS AND VARIATES DIFFER BY LESS THAN 50 SO CHI-SQUARED
APPROXIMATIONS ARE POOR

NO. OF ROOTS EXCLUDED(k) CHI SQ DF
0 145.5609 9

1 123.5886 5 (4-1+2)(4-1-1) = (5)(2) = 5

2 123.5886 2
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PRINCIPAL COMPONENT SCORES

1 2 3 4

1 1.04447 1.61938 -0.55391 -0.95940
2 0.52223 0.64775 -0.55391 -0.95940
3 0.00000 -0.10796 -0.55391 -0.95940
4 -0.52223 -0.64775 -0.55391 -0.95940
5 -1.04447 -0.97163 -0.55391 -0.95940
6 -1.56670 -1.07958 -0.55391 -0.95940
7 -2.08893 -0.97163 -0.55391 -0.95940
8 -2.61116 -0.64775 -0.55391 -0.95940
9 -3.13340 -0.10796 -0.55391 -0.95940

10 -3.65563 0.64775 -0.55391 -0.95940
11 -4.17786 1.61938 -0.55391 -0.95940

RESIDUALS

1

1 0.OOOOOE 0
2 0.OOOOOE 0
3 0.OOOOOE 0
4 0.OOOOOE 0
5 O.OOOOOE 0
6 0.OOOOOE 0
7 0.OOOOOE 0
8 1.82173E -4
9 3.61650E -4
10 4.97970E -4
11 6.20271E -4

S (Correlation matrices and scaled means)

x1 1.0000
X2 1.0000 1.0000
X3 1.0000 1.0000 1.0000
X4 -0.0000 -0.0000 -0.0000 1.0000
MEAN -0.0000 1.0000 1.5000 -0.0000 1.1000

(NOTE: These means are scaled.)

1 2 3 4 5
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PCA3C: USING Y'Y MATRIX (UNSTANDARDIZED VARIABLES)

PRINCIPAL COMPONENT ANALYSIS

(where Yj = X- )

Note: This output is from default, i.e.
SSP-Structure is not specified.
Only variable list is given. See

Xl X2 X3 X4 the control language in the
Appendix. (p.39).

-5 0 0 15

-4 2 3 6
-3 4 6 -1
-2 6 9 -6
-1 8 12 -9
0 10 15 -10
1 12 18 -9
2 14 21 -6
3 16 24 -1
4 18 27 6
5 20 30 15

PRINCIPAL COMPONENTS ANALYSIS

LATENT ROOTS Note: Latent roots are the ones from
variance-covariance matrix
multiplied by d.f = 11-1 = 10

1 2 3 4
1540.000 858.000 -0.000 -0.000

PERCENTAGE VARIANCE

1 2 3 4
64.2202 35.7798 -0.0000 -0.0000

LATENT VECTORS(LOADINGS)

1 2 3 4

X1 -0.2673 0.0000 0.9545 -0.1319
X2 -0.5345 0.0000 -0.2608 -0.8039
X3 -0.8018 0.0000 -0.1443 0.5799
X4 0.0000 1.0000 0.0000 0.0000

TRACE = 2398.0000
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SIGNIFICANCE TESTS FOR EQUALITY OF REMAINING ROOTS

NUMBERS OF UNITS AND VARIATES DIFFER BY LESS THAN 50 SO CHI-SQUARED
APPROXIMATIONS ARE POOR

NO. OF ROOTS EXCLUDED(k) CHI SQ DF
0 96.7095 9
1 78.8699 5

2 78.8699 2 = 1(m-k+2)(r-k-i)

1= i(4-2+2) (4-2-1) = 2

***** PRINCIPAL COMPONENT SCORES *****

1 2 3 4

1 18.7083 15.0000 -0.0000 0.0000
2 14.9666 6.0000 -0.0000 0.0000
3 11.2250 -1.0000 -0.0000 0.0000
4 7.4833 -6.0000 -0.0000 0.0000
5 3.7417 -9.0000 -0.0000 0.0000
6 -0.0000 -10.0000 0.0000 -0.0000
7 -3.7417 -9.0000 0.0000 -0.0000
8 -7.4833 -6.0000 0.0000 -0.0000
9 -11.2250 -1.0000 0.0000 -0.0000

10 -14.9666 6.0000 0.0000 -0.0000
11 -18.7083 15.0000 0.0000 -0.0000

-18.7083 = -. 2673(X1 - X) - .5345(X2 - X2) - .80181X3 - X3 ) + O(X 4 - X4)

= -. 2673(5) - .5345(20 - 10) - .8018(30 - 15)

OR, more generally:

PCj = y y is a row vector of observations

***** RESIDUALS *****

1

1 0.00140053
2 0.00112042
3 0.00084032
4 0.00056021
5 0.00028010
6 0.00000000
7 0.00028010
8 0.00056021
9 0.00084032

10 0.00112042
11 0.00140053

.
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PCA3D: USING CORRELATION MATRIX BASED ON Y'Y

Xl X2 X3 X4

-5 0 0 15
-4 2 3 6
-3 4 6 -1
-2 6 9 -6
-1 8 12 -9
0 10 15 -10
1 12 18 -9
2 14 21 -6
3 16 24 -1
4 18 27 6-
5 20 30 15

PRINCIPAL COMPONENTS ANALYSIS

LATENT ROOTS = A1

1 2 3 4
3.000000 1.000000 -0.000000 -0.000000

PERCENTAGE VARIANCE

1 2 3 4
75.0000 25.0000 -0.0000 -0.0000

LATENT VECTORS(LOADINGS) = Lbi

1 2 3 4

X1 -0.5774 0.0000 0.6110 0.5417
X2 -0.5774 0.0000 -0.7746 0.2583
X3 -0.5774 0.0000 0.1636 -0.7999
X4 0.0000 1.0000 0.0000 -0.0000

TRACE = 4.0000
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SIGNIFICANCE TESTS FOR EQUALITY OF REMAINING ROOTS

NUMBERS OF UNITS AND VARIATES DIFFER BY LESS THAN 50 SO CHI-SQUARED
APPROXIMATIONS ARE POOR

NO. OF ROOTS EXCLUDED CHI SQ DF
0 0.0000 9
1 0.0000 5
2 0.0000 2

PRINCIPAL COMPONENT SCORE = PC

1 = PC 1  2 =PC 2  3 =PC 3  4 PC4

1 0.825723 0.512092 0.000000 0.000000
2 0.660578 0.204837 0.000000 0.000000
3 0.495434 -0.034139 0.000000 0.000000
4 0.330289 -0.204837 0.000000 0.000000
5 0.165145 -0.307255 0.000000 0.000000
6 -0.000000 -0.341394 0.000000 0.000000
7 -0.165145 -0.307255 -0.000000 -0.000000
8 -0.330289 -0.204837 -0.000000 -0.000000
9 -0.495434 -0.034139 -0.000000 -0.000000
10 -0.660578 0.204837 -0.000000 -0.000000
11 -0.825723 0.512092 -0.000000 -0.000000

-0.825723 =-.5774 [x7 . 4 X 2  .5774 x__ + 0Ln- s1 j ~ 2  -1 L S3  %fn -- 4

-.5774[ 5 1 5774 20-101 . 774 [30-151

V'1 y [. 3 17J vi 1-0 t6.633J f - 19.950J

***** RESIDUALS *****

1

1 1.56445E -4
2 1.25156E -4
3 9.38666E -5
4 6.25778E -5
5 3.12889E -5
6 O.OOOOOE 0
7 3.12889E -5
8 6.25778E -5
9 9.38666E -5

10 1.25155E -4
11 1.56444E -4

S (Correlation matrices and means)
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X1 1.0000
X2 1.0000 1.0000
X3 1.0000 1.0000 1.0000
X4 -0.0000 -0.0000 -0.0000 1.0000
MEAN -0.0000 10.0000 15.0000 -0.0000 11.0000 - last entry is

the number of
(NOTE: These are correct means.) observations

1 2 3 4 5

For the variance-covariance analysis, the coefficients in PC1 are

in the same ratio as their relationship to Z . In the

correlation analysis X1 , X2 and X3 have equal coefficients. In

both analyses, as expected, the total variance is equal to the

sum of the variances for the PCs. In both cases two PCs, PC3 and
3p

PC4 , have zero variance; in the correlation analysis the PCs are

identically zero but in the variance-covariance analysis they are

constant, but not zero.

Example 4. In this example we take more complicated combinations

of Z and Z2.
X1 = Z
X =Z1 1

X = 2Z1

X = 3Z1

X = Z 1/2 + Z2

X5 - Z 1/4 + Z2

X 6 = Z 1/8 + Z2

X = Z2
7 2
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Note that Xl, X2 and X3  are colinear (they all have correlation

unity) and X4, X5 , X6 and X7 have steadily decreasing

correlations with X The PCAs for the variance-covariance and

correlation matrices are given below:

PCA4: USING VARIANCE-COVARIANCE MATRIX (UNSTANDARDIZED VARIABLES)
PRINCIPAL COMPONENT ANALYSIS

11 OBSERVATIONS
7 VARIABLES

S (Covariance and mean matrix)

X1 11.0000
X2 22.0000 44.0000
X3 33.0000 66.0000 99.0000
X4 5.5000 11.0000 16.5000 88.5500
X5 2.7500 5.5000 8.2500 87.1750 86.4875
X6 1.3750 2.7500 4.1250 86.4875 86.1438 85.9719
X7 -0.0000 -0.0000 -0.0000 85.8000 85.8000 85.8000 85.8000
MEAN -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 1.100

1 2 3 4 5 6 7

X1 X2 X3 X4 X5 X6 X7

-5 -10 -15 12.5 13.75 14.375 15
-4 -8 -12 4.0 5.00 5.500 6
-3 -6 -9 -2.5 -1.75 -1.375 -1
-2 -4 -6 -7.0 -6.50 -6.250 -6
-1 -2 -3 -9.5 -9.25 -9.125 -9
0 0 0 -10.0 -10.00 -10.000 -10
1 2 3 -8.5 -8.75 -8.875 -9
2 4 6 -5.0 -5.50 -5.750 -6
3 6 9 0.5 -0.25 -0.625 -1
4 8 12 8.0 7.00 6.500 6
5 10 15 17.5 16.25 15.625 15

PRINCIPAL COMPONENTS ANALYSIS

LATENT ROOTS - Ai

1 2 3 4 5 6 7
347.0151 153.7943 0.0000 0.0000 -0.0000 -0.0000 -0.0000
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PERCENTAGE VARIANCE

1 2 3 4 5 6 7
69.2908 30.7092 0.0000 0.0000 -0.0000 -0.0000 -0.0000

LATENT VECTORS(LOADINGS) = i

1 2 3 4 5 6 7

Xl -0.0250 -0.2648 -0.0002 -0.3530 0.8944 -0.0550 0.0406
X2 -0.0500 -0.5296 -0.0005 -0.7059 -0.4472 -0.1101 0.0811
X3 -0.0751 -0.7944 0.0915 0.5721 -0.0000 0.1636 -0.0312
X4 -0.5048 -0.0274 -0.8018 0.0416 -0.0000 -0.1178 -0.2930
X5 -0.4986 0.0388 0.2413 0.1640 0.0000 -0.6573 0.4825
X6 -0.4954 0.0719 0.5385 -0.1054 0.0000 0.0620 -0.6666
X7 -0.4923 0.1050 0.0220 -0.1002 -0.0000 0.7130 0.4772

TRACE = 500.8094

SIGNIFICANCE TESTS FOR EQUALITY OF REMAINING ROOTS

NUMBERS OF UNITS AND VARIATES DIFFER BY LESS THAN 50 SO CHI-SQUARED
APPROXIMATIONS ARE POOR

NO. OF ROOTS EXCLUDED(k) CHI SQ DF

0 563.1576 27 = ,(m-k+2)(m-k-i) = 1(7-0+2)

1 481.1394 20 (7-0-1) = 27
2 481.1394 14
3 481.1394 9
4 481.1394 5
5 481.1394 2
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PRINCIPAL COMPONENT SCORES

1 2 3 4 5 6 7

1 -25.9208 21.3322 -0.0000 -0.0000 0.0000 0.0000 -0.0000

2 -8.7899 15.9370 -0.0000 -0.0000 0.0000 0.0000 -0.0000

3 4.3588 10.9181 -0.0000 -0.0000 0.0000 -0.0000 0.0000

4 13.5252 6.2754 0.0000 -0.0000 0.0000 -0.0000 0.0000

5 18.7094 2.0089 0.0000 -0.0000 0.0000 -0.0000 0.0000

6 19.9113 -1.8813 0.0000 -0.0000 -0.0000 -0.0000 0.0000

7 17.1310 -5.3952 0.0000 0.0000 -0.0000 -0.0000 0.0000

8 10.3683 -8.5329 0.0000 0.0000 -0.0000 -0.0000 0.0000

9 -0.3766 -11.2943 0.0000 0.0000 -0.0000 -0.0000 0.0000

10 -15.1037 -13.6795 -0.0000 0.0000 -0.0000 0.0000 -0.0000

11 -33.8131 -15.6884 -0.0000 0.0000 -0.0000 0.0000 -0.0000

-0.0 = 0.8944(5) - 04472(10) - 0(15) - 0(17.5) + 0(16.25)

+ 0(15.625) - 0(15) = 0

***** RESIDUALS *****

1 0.0101166
2 0.0058595
3 0.0040048
4 0.0045667
5 0.0054862
6 0.0057451
7 0.0051710
8 0.0040467
9 0.0038625
10 0.0065797
11 0.0114167

PCA4B: USING CORRELATION MATRIX (STANDARDIZED VARIABLES)
PRINCIPAL COMPONENT ANALYSIS

-5 -10 -15 12.5 13.75 14.375 15
-4 -8 -12 4.0 5.00 5.500 6
-3 -6 -9 -2.5 -1.75 -1.375 -1
-2 -4 -6 -7.0 -6.50 -6.250 -6

-1 -2 -3 -9.5 -9.25 -9.125 -9
0 0 0 -10.0 -10.00 -10.000 -10

1 2 3 -8.5 -8.75 -8.875 -9

2 4 6 -5.0 -5.50 -5.750 -6

3 6 9 0.5 -0.25 -0.625 -1

4 8 12 8.0 7.00 6.500 6

5 10 15 17.5 16.25 15.625 15
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PRINCIPAL COMPONENTS ANALYSIS

LATENT ROOTS

1 2 3 4 5 6 7

4.052167 2.947833 0.000000 0.000000 0.000000 0.000000 0.000000

PERCENTAGE VARIANCE

1 2 3 4 5 6 7
57.8881 42.1119 0.0000 0.0000 0.0000 0.0000 0.0000

LATENT VECTORS(LOADINGS)

1 2 3 4 5 6 7

Xl -0.1443 -0.5573 -0.4054 0.0593 0.0266 0.0013 0.7071
X2 -0.1443 -0.5573 -0.4054 0.0593 0.0266 0.0013 -0.7071
X3 -0.1443 -0.5573 0.7876 -0.2128 0.0144 0.0529 -0.0000 .

X4 -0.4933 0.0683 0.1888 0.8204 -0.1900 -0.0846 0.0000
X5 -0.4863 0.1188 -0.0589 -0.3960 -0.1258 -0.7571 -0.0000
X6 -0.4813 0.1441 -0.1074 -0.3339 -0.5141 0.6002 -0.0000
X7 -0.4754 0.1692 -0.0200 -0.0796 0.8259 0.2378 -0.0000

TRACE = 7.0000

SIGNIFICANCE TESTS FOR EQUALITY OF REMAINING ROOTS *

NUMBERS OF UNITS AND VARIATES DIFFER BY LESS THAN 50 SO CHI-SQUARED
APPROXIMATIONS ARE POOR

NO. OF ROOTS EXCLUDED CHI SQ DF
0 1113.7754 27
1 1085.1265 20
2 330.3020 14
3 328.0259 9
4 325.2202 5
5 325.1621 2

lop
34

er.



WEWINEm~ufw V WuWw V' .w AE UY

PRINCIPAL COMPONENT SCORES = PC i

1 2 3 4 5 6 7

1 -2.23779 3.28436 0.00000 -0.00000 0.00000 0.00000 0.00000
2 -0.54253 2.30445 0.00000 -0.00000 0.00000 0.00000 0.00000
3 0.73683 1.43222 0.00000 -0.00000 0.00000 -0.00000 0.00000
4 1.60029 0.66767 0.00000 -0.00000 -0.00000 -0.00000 0.00000
5 2.04785 0.01080 0.00000 -0.00000 -0.00000 -0.00000 0.00000
6 2.07951 -0.53839 0.00000 -0.00000 -0.00000 -0.00000 0.00000
7 1.69526 -0.97991 -0.00000 0.00000 -0.00000 -0.00000 -0.00000
8 0.89511 -1.31374 -0.00000 0.00000 -0.00000 -0.00000 -0.00000
9 -0.32093 -1.53990 -0.00000 0.00000 -0.00000 0.00000 -0.00000
10 -1.95288 -1.65838 -0.00000 0.00000 -0.00000 0.00000 -0.00000
11 -4.00073 -1.66918 -0.00000 0.00000 0.00000 0.00000 -0.00000

13376. ]'0(9.950j ]-.
_ 16.25-0' J15. 625-01 (15-0

***** RESIDUALS ***** + 0 +0 1 "6 0 + 01-

1 8.77804E -4
2 7.22562E -4
3 4.92339E -4
4 1.11615E -4
5 0.OOOOOE 0
6 0.OOOOOE 0
7 0.OOOOOE 0
8 3.51122E -4
9 5.19716E -4

10 5.48122E -4
11 2.79035E -4

S (Correlation matrix)

X1 1.0000
X2 1.0000 1.0000
X3 1.0000 1.0000 1.0000
X4 0.1762 0.1762 0.1762 1.0000
X5 0.0892 0.0892 0.0892 0.9961 1.0000
X6 0.0447 0.0447 0.0447 0.9912 0.9990 1.0000
X7 -0.0000 -0.0000 -0.0000 0.9843 0.9960 0.9990 1.0000
MEAN -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 1.1000

1 2 3 4 5 6 7 8
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We note several things:

i) In both analyses there are only two eigenvalues that are nonzero

indicating that only two variables are needed. This is not

readily apparent from the correlation or variance-covariance

matrix.

ii) In PC1, and PC3 where the standardizrd X1, and X are

the same, they have the same coefficients.

iii) Neither PCA recovers Z and Z The PCAs with nonzero variances1 2

have elements of both Z and Z in them, i.e., neither PC1 or

PC2 is perfectly correlated with one of the Zs.

4. SUMMARY 'A.

PCA provides a method of extracting structure from the

variance-covariance or correlation matrix. If a multivariate

data set is actually constructed in a linear fashion from fewer

variables, then PCA will discover that structure. PCA constructs

linear combinations of the original data, X, with maximal

variance:
P = XB

This relationship can be inverted to recover the Xs from the PCs

(actually only those PCs with nonzero eigenvalues are needed -

see example 2). Though PCA will often help discover structure in

a data set, it does have limitations. It will not necessarily

recover the exact underlying variables, even if they were

uncorrelated (Example 4). Also, by its construction, PCA is

limited to searching for linear structures in the Xs.

36 1
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APPENDIX

Example 1: Control Language for PCAl

Control language is typed in upper case and comments are bolded.
Refer to GENSTAT RELEASE 4.04 PARTI I, 1983 for program documentation.

'REFE' PRINONE
'UNITS' $ 11
'SET' VARIATES=Xl, X2
'READ/P' Xl, X2 input variables
'RUN'
-5 15
-46
-3 -1
-2 -6
-1 -9
0 -10
1 -9
2 -6
3 -1
46
5 15
'EOD' signals GENSTAT that it is the end of data
'PRIN/P' Xl, X2, $ 9.4 print out data
'DSSP' S $ VARIATES specify X1 and X2 as columns of X

'SSP' S calculate VY

'CALC' S=S/10 divided by n-1 = (11-1) to get variance-covariance matrix
'PRINT' S $ 9.4 * print out variance-covariance matrix
'PCP / PRIN=LTRCS' VARIANCES=S * print out L - Latent roots and vectors
'RUN' T - Trace of Y'Y
'STOP' R - The Residuals

C - The fitted values
S - Asymptotic Chi-square test

"variance - s" Define variance-covariance
matrix to work with

t
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Example 2: Control Language for PCA2B

'REFE' PRINONE
'UNITS' $ 11
'SET' VARIATES=Xl, X2, X3
'READ/P' Xl, X3
'RUN'
-5 15
-4 6
-3 -1
-2 -6
-1 -9
0 -10
1 -9
2 -6
3 -1
4 6
5 15
'EOD'
'CALC' X2 = X1 * 2 creates X1 1X2 ,X 3

'PRIN/P' Xl, X2, X3 $ 9.4
'DSSP' S $ VARIATES
'SSPI S
'CALC' S=S/10
'PCP / PRIN=LTRCS, CORR=Y' VARIANCES=S; SSPCALC = S = define GENSTAT to use
'PRINT' S $ 9.4 correlation matrix to compute
'RUN' PCA by "CORR = Y" command.
'STOP' Save correlation matrix in S

for printout or other use.

3'
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Example 3: Control Language for PCA3D

SREFE' PRINONE
'UNITS' $ 11
'SET' VARIATES=X, X2, X3, X4
'READ/P' Xl, X4
'RUN'
-5 15
-4 6
-3 -1
-2 -6
-l -9
0 -10
1 -9
2 -6
3 -1
4 6
5 15
'EOD1
'CALC' X2 = 2*(Xl+5)
'CALC' X3 = 3*(Xl+5)
'PRIN/P' Xl, X2, X3, X4 $ 9.4
'DSSP' S $ VARIATES
'SSP' S
'PCP / PRIN=LTRCS, CORR=Y' VARIANCES=S; SSPCALC = S Note that before 'PCP
'PRINT' S $ 9.4 f command, "calc" S=S/1O" is
'RUN'I omitted, GENSTAT works on Y Y

'STOP' If we omit this command instead of variance-covariance
we will get output PCA3C matrix. GENSTAT then compute

correlation matrix from YY.
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Example 4: Control Language for PCA4

'REFE' PRINONE
'UNITS' $ 11
'SET' VARIATES=Xl, X2, X3, X4, X5, X6, X7
'READ/P' Xl, X7
'RUN'
-5 15
-4 6
-3 -1
-2 -6
-1 -9
o -10o
1 -9
2 -6
3-1

4 6
5 15
'EOD'
'CALC' X2=2*Xl
'CALC' X3=3*Xl
CALC' X4=X7+(Xl/2)
CALC' X5=X7+(Xl/4)
'CALC' X6=X7+ (Xl/8)
'PRIN/P' Xl, X2, X3, X4, X5, X6, X7 $9.4
'DSSP' S $ VARIATES
'SSPI S
'CALC' S=S1O
'PRINT' S $ 9.4
'PCP / PRIN=LTRCS' VARIANCES=S;
'RUN'
'STOP'
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